WO2018095391A1 - 有机混合物、有机组合物、有机电子器件及其制备方法 - Google Patents

有机混合物、有机组合物、有机电子器件及其制备方法 Download PDF

Info

Publication number
WO2018095391A1
WO2018095391A1 PCT/CN2017/112712 CN2017112712W WO2018095391A1 WO 2018095391 A1 WO2018095391 A1 WO 2018095391A1 CN 2017112712 W CN2017112712 W CN 2017112712W WO 2018095391 A1 WO2018095391 A1 WO 2018095391A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
organic
organic compound
aromatic
compound
Prior art date
Application number
PCT/CN2017/112712
Other languages
English (en)
French (fr)
Inventor
潘君友
何锐锋
谭甲辉
李毅妮
Original Assignee
广州华睿光电材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州华睿光电材料有限公司 filed Critical 广州华睿光电材料有限公司
Priority to CN201780059593.0A priority Critical patent/CN109791982B/zh
Priority to US16/463,349 priority patent/US20190355911A1/en
Publication of WO2018095391A1 publication Critical patent/WO2018095391A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D253/00Heterocyclic compounds containing six-membered rings having three nitrogen atoms as the only ring hetero atoms, not provided for by group C07D251/00
    • C07D253/02Heterocyclic compounds containing six-membered rings having three nitrogen atoms as the only ring hetero atoms, not provided for by group C07D251/00 not condensed with other rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/06Peri-condensed systems
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/622Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing four rings, e.g. pyrene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/20Delayed fluorescence emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/30Highest occupied molecular orbital [HOMO], lowest unoccupied molecular orbital [LUMO] or Fermi energy values
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/40Interrelation of parameters between multiple constituent active layers or sublayers, e.g. HOMO values in adjacent layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to the technical field of organic photoelectric materials, in particular to an organic mixture and its application, an organic electronic device and a preparation method thereof.
  • OLED Organic Light-Emitting Diode
  • the host material is the key.
  • Organic light-emitting diodes using phosphorescent materials can achieve nearly 100% internal electroluminescence quantum efficiency, and thus become the mainstream material system in the industry, especially red-green light.
  • the phosphorescent OLED has an efficiency roll-off effect (Roll-off effect) due to charge imbalance in the device, etc., wherein the efficiency roll-off effect refers to a rapid decrease in luminous efficiency with an increase in current or voltage. This is especially detrimental to high brightness applications.
  • Kim et al. see Kim et al. Adv. Func. Mater. 2013 DOI: 10.1002/adfm. 201300547, and Kim et al. Adv. Func.
  • Mater. 2013, DOI: 10.1002/adfm. 201300187 can form a composite by utilizing The co-host of the exciplex, plus a metal complex as a phosphorescent emitter, achieves low-roll-off, highly efficient OLEDs. However, the life of such devices still needs to be greatly improved.
  • an organic mixture an organic composition, an organic electronic device, and The preparation method solves one or more problems involved in the background art.
  • An organic mixture comprising two organic compounds H1 and H2, the organic compound H1 being a spiro compound, the organic compound H2 being an electron-rich group-containing compound, wherein min((LUMO(H1)-HOMO (H2)), (LUMO(H2)-HOMO(H1))) ⁇ min(E T (H1), E T (H2)) + 0.1 eV; wherein, LUMO (H1), HOMO (H1) and E T (H1) respectively represents the lowest unoccupied orbital, highest occupied orbital, and triplet level of the organic compound H1; LUMO (H2), HOMO (H2), and E T (H2) respectively represent the lowest of the organic compound H2 Occupy orbit, highest occupied orbit, and triplet energy level.
  • a composition comprising an organic solution and the above organic mixture.
  • An organic electronic device comprising a cathode, an anode, and a functional layer between the cathode and the anode, the functional layer comprising the above organic mixture or the above composition.
  • a method for preparing the above organic electronic device comprising the steps of:
  • the organic compound H1 and the organic compound H2 are ground and mixed;
  • the organic compound H1 and the organic compound H2 after the grinding and mixing are placed in an organic source to be evaporated to form the functional layer.
  • a method for preparing the above organic electronic device comprising the steps of:
  • the organic compound H1 and the organic compound H2 were separately deposited in two sources under vacuum to form the functional layer.
  • compositions, printing inks, and inks have the same meaning and are interchangeable.
  • the host material, matrix material, Host material, and Matrix material have the same meaning and are interchangeable.
  • Metal has Machine complexes, metal organic complexes, and organometallic complexes have the same meaning and are interchangeable.
  • (HOMO-1) is defined as the second highest occupied orbital energy level
  • (HOMO-2) is the third highest occupied orbital energy level
  • organometallic complexes have the same meaning and are interchangeable.
  • (HOMO-1) is defined as the second highest occupied orbital energy level
  • (HOMO-2) is the third highest occupied orbital energy level
  • LUMO+1) is defined as the second lowest unoccupied orbital level
  • (LUMO+2) is the third lowest occupied orbital level, and so on.
  • the organic mixture of an embodiment comprises two organic compounds H1 and H2.
  • the organic compound H1 is a spiro compound
  • the organic compound H2 is an electron-rich group-containing compound.
  • the energy of the organic compound H1 and the organic compound H2 to form a complex excited state depends on min ((LUMO(H1)-HOMO(H2)), (LUMO(H2)-HOMO(H1)))).
  • the above organic mixture including a spiro compound and an electron-rich group-containing compound, both have excellent photoelectric properties and intrinsic stability, and by satisfying the energy levels of both (min (LUMO(H1)-HOMO( H2)), (LUMO(H2)-HOMO(H1))) ⁇ min(E T (H1), E T (H2)) + 0.1 eV, comparison between spiro compounds and electron-rich groups Appropriate HOMO and LUMO energy levels are beneficial to reduce the barrier of electron and hole injection, and easy to achieve carrier balance, thereby reducing the operating voltage and Roll-off effect of the device.
  • organic compound H1 and organic compound H2 The energy transfer intermediate state of the exciplex with small single-line and triplet energy level difference is formed, and the energy of the exciton can be more fully utilized, thereby effectively improving the efficiency and lifetime of the device.
  • the excited state of the organic mixture will preferentially occupy the lowest excited composite excited state, or facilitate the transfer of the energy of the triplet excited state on H1 or H2 to the complex excited state, thereby increasing the concentration of the composite excited state.
  • the HOMO level and the LUMO level can be measured by photoelectric effect, such as XPS (X-ray photoelectron spectroscopy) and UPS (ultraviolet photoelectron spectroscopy) or by cyclic voltammetry (hereinafter referred to as CV).
  • photoelectric effect such as XPS (X-ray photoelectron spectroscopy) and UPS (ultraviolet photoelectron spectroscopy) or by cyclic voltammetry (hereinafter referred to as CV).
  • quantum chemical methods such as density functional theory (hereinafter referred to as DFT) can also be used to calculate the molecular orbital energy level.
  • DFT density functional theory
  • the triplet level E T of the organic material can be measured by low temperature time resolved luminescence spectroscopy or by quantum simulation calculations (eg by Time-dependent DFT), as by the commercial software Gaussian 03W (Gaussian Inc.). Specific simulation methods can be found in WO2011141110 or as described below.
  • the absolute values of HOMO, LUMO and E T depend on the measurement method or calculation method used. Even for the same method, different evaluation methods, such as starting point and peak point on the CV curve, can give different HOMO/ LUMO value. Therefore, reasonable and meaningful comparisons should be made using the same measurement method and the same evaluation method.
  • the values of HOMO, LUMO, and E T are simulations based on Time-dependent DFT. However, it does not affect the application of other measurement or calculation methods. Other measurement or calculation methods can also be used to obtain HOMO, LUMO and E T .
  • min((LUMO(H1)-HOMO(H2)), (LUMO(H2)-HOMO(H1)))) is less than or equal to the triplet excited state energy level of the organic compound H1
  • min((LUMO( H1)-HOMO(H2)), (LUMO(H2)-HOMO(H1))) is less than or equal to the triplet excited state level of the organic compound H2.
  • the organic compound H1 and/or the organic compound H2 (HOMO-(HOMO-1)) ⁇ 0.2 eV, wherein HOMO refers to the highest occupied orbit of the organic compound H1 or the organic compound H2 (HOMO- 1) refers to the occupied orbit of the organic compound H1 or the organic compound H2 which is one level lower than the highest occupied orbit, that is, the second highest occupied orbit.
  • HOMO-(HOMO-1)) of the organic compound H1 and/or the organic compound H2 is ⁇ 0.25 eV.
  • (HOMO-(HOMO-1)) of the organic compound H1 and/or the organic compound H2 is ⁇ 0.3 eV.
  • (HOMO-(HOMO-1)) of the organic compound H1 and/or the organic compound H2 is ⁇ 0.35 eV. Further, (HOMO-(HOMO-1)) of the organic compound H1 and/or the organic compound H2 is ⁇ 0.4 eV. The (HOMO-(HOMO-1)) of the organic compound H1 and/or the organic compound H2 may also be 0.45 eV or more.
  • the organic compound H2 has a (HOMO-(HOMO-1)) ⁇ 0.2 eV, wherein HOMO refers to the highest occupied orbital of the organic compound H2, and (HOMO-1) refers to the ratio of the organic compound H2.
  • (HOMO-(HOMO-1)) of the organic compound H2 is ⁇ 0.25 eV.
  • (HOMO-(HOMO-1)) of the organic compound H2 is ⁇ 0.3 eV.
  • (HOMO-(HOMO-1)) of the organic compound H2 is ⁇ 0.35 eV.
  • (HOMO-(HOMO-1)) of the organic compound H2 is ⁇ 0.4 eV.
  • the organic compound H2 (HOMO-(HOMO-1)) may also be 0.45 eV or more.
  • the structure of the organic compound H1 is as shown in the general formula (1):
  • Z 1 , Z 2 , Z 3 are independently selected from N or C atoms, and at least one of Z 1 , Z 2 , Z 3 is an N atom;
  • Ar 1 and Ar 2 are independently selected from an aromatic group or an aromatic hetero group having a ring number of 5 to 60;
  • R is selected from the group consisting of H, D, F, CN, a carbonyl group, a sulfone group, an alkoxy group, an alkyl group having 1 to 30 carbon atoms, a cycloalkyl group having 3 to 30 carbon atoms, or an aromatic group having 5 to 60 ring atoms. a group or an aromatic group.
  • At least two of Z 1 , Z 2 , and Z 3 shown in the general formula (1) are N atoms. Further, Z 1 , Z 2 and Z 3 are all N atoms.
  • Y represented by the formula (1) is a single bond, N(R), C(R) 2 , O or S. Further, Y shown in the formula (1) is a single bond or N(R). Further, Y shown in the formula (1) is a single bond.
  • Ar 1 and Ar 2 represented by the formula (1) are an aromatic group or an aromatic hetero group having 5 to 50 ring atoms. Further, Ar 1 and Ar 2 are an aromatic group or an aromatic hetero group having 5 to 40 ring atoms. Further, Ar 1 and Ar 2 are an aromatic group or an aromatic hetero group having 5 to 30 ring atoms.
  • the aromatic group means a hydrocarbon group containing at least one aromatic ring.
  • the aromatic group may also be an aromatic ring system, and the aromatic ring system refers to a ring system including a monocyclic group and a polycyclic ring.
  • the aryl group refers to a hydrocarbon group (containing a hetero atom) containing at least one aromatic heterocyclic ring.
  • the aryl group may also be an aromatic heterocyclic ring system, and the aromatic heterocyclic ring system refers to a ring system including a monocyclic group and a polycyclic ring.
  • These polycyclic ring species may have two or more rings in which two carbon atoms are shared by two adjacent rings, a fused ring.
  • the aromatic or aromatic heterocyclic ring system includes not only a system of an aromatic group or an aromatic hetero group.
  • the aromatic or aromatic heterocyclic ring system may also include wherein a plurality of aryl or aryl groups are interrupted by short non-aromatic units ( ⁇ 10% non-H atoms, preferably less than 5% non-H atoms, such as C, N) Or O atom). Therefore, a system such as 9,9'-spirobifluorene, 9,9-diarylfluorene, triarylamine or diaryl ether may be an aromatic ring system.
  • the aromatic group is selected from the group consisting of benzene, naphthalene, anthracene, phenanthrene, perylene, tetracene, anthracene, benzopyrene, triphenylene, anthracene or anthracene, or a derivative thereof.
  • the aromatic hetero group is selected from the group consisting of furan, benzofuran, thiophene, benzothiophene, pyrrole, pyrazole, triazole, imidazole, oxazole, oxadiazole, thiazole, tetrazole, anthracene, oxazole, pyrroloimidazole , pyrrolopyrrole, thienopyrrole, thienothiophene, furopyrrol, furanfuran, thienofuran, benzisoxazole, benzisothiazole, benzimidazole, pyridine, pyrazine, pyridazine, pyrimidine, Triazine, quinoline, isoquinoline, o-naphthyridine, quinoxaline, phenanthridine, carbaidine, quinazoline or quinazolinone, or their respective derivatives.
  • Ar 1 , Ar 2 in formula (1) are independently selected from one of the following groups:
  • Ar 9, Ar 10 is an aromatic ring atoms or a heteroaryl group having 5 to 48.
  • the organic compound H1 is selected from one of the following structural formulae:
  • Z 1 , Z 2 , Z 3 are independently selected from N or C atoms, and at least one of Z 1 , Z 2 , Z 3 is an N atom;
  • Ar 1 and Ar 2 are independently selected from an aromatic group or an aromatic hetero group having a ring number of 5 to 60;
  • R is selected from the group consisting of H, D, F, CN, a carbonyl group, a sulfone group, an alkoxy group, an alkyl group having 1 to 30 carbon atoms, a cycloalkyl group having 3 to 30 carbon atoms, or an aromatic group having 5 to 60 ring atoms. a group or an aromatic group.
  • Ar 1 and Ar 2 in the formula (1) are independently selected from one of the following structural groups:
  • a 1 , A 2 , A 3 , A 4 , A 5 , A 6 , A 7 , A 8 are independently selected from CR 3 or N;
  • R 3 , R 4 , R 5 are independently selected from H, D, a linear alkyl group having 1 to 20 C atoms, an alkoxy group having 1 to 20 C atoms, and a thio group having 1 to 20 C atoms.
  • Ar 1 , Ar 2 are independently selected from one of the following structural groups:
  • H of any of the above groups may be optionally substituted.
  • the organic compound H2 is a compound represented by one of the following formulae (2) to (5):
  • L 1 is selected from an aromatic group or an aromatic hetero group having a ring atom of 5 to 60;
  • L 2 is selected from a single bond, or an aromatic group or an aromatic heterocyclic group having 5 to 30 ring atoms, and the linking position of L 2 is at any carbon atom on the ring;
  • Ar 3 , Ar 4 , Ar 5 , Ar 6 , Ar 7 , Ar 8 are independently selected from an aromatic group or an aromatic hetero group having 5 to 30 ring atoms;
  • R 1 , R 2 and R are independently selected from the group consisting of H, D, F, CN, alkenyl, alkynyl, nitrile, amine, nitro, acyl, alkoxy, carbonyl, sulfone, and carbon number 1 to An alkyl group of 30, a cycloalkyl group having 3 to 30 carbon atoms, or an aromatic hydrocarbon group having 5 to 60 ring atoms or an aromatic heterocyclic group; wherein R 1 and R 2 are bonded at any position on a condensed ring; On one or more carbon atoms;
  • n is selected from 1, 2, 3 or 4.
  • aromatic group or the aromatic hetero group is as described above and will not be described herein.
  • L 1 is selected from an aromatic group or an aromatic heterocyclic group having 5 to 50 ring atoms. Further, L 1 is selected from an aromatic ring atoms or a heteroaryl group having 5 to 40. Further, L 1 is selected from an aromatic group or an aromatic hetero group having a ring number of 6 to 30.
  • L 2 is selected from a single bond or an aromatic group or an aromatic heterocyclic group having 5 to 25 ring atoms. Further, L 2 is selected from a single bond, an aromatic group having 5 to 20 ring atoms or an aromatic hetero group. Further, L 2 is selected from a single bond or an aromatic group or an aromatic hetero group having a ring number of 5 to 15.
  • Ar 3 , Ar 4 , Ar 5 , Ar 6 , Ar 7 , and Ar 8 are independently selected from an aromatic group or an aromatic hetero group having 5 to 25 ring atoms. Further, Ar 3 , Ar 4 , Ar 5 , Ar 6 , Ar 7 and Ar 8 are independently selected from an aromatic group or an aromatic hetero group having 5 to 20 ring atoms. Further, Ar 3 , Ar 4 , Ar 5 , Ar 6 , Ar 7 and Ar 8 are independently selected from an aromatic group or an aromatic hetero group having 5 to 15 ring atoms.
  • X 1 is selected from the group consisting of a single bond, N(R), C(R) 2 , O or S.
  • X 2 , X 3 , X 4 , X 5 , X 6 , X 7 , X 8 , X 9 are independently selected from a single bond, N(R), C(R) 2 , O or S .
  • n is selected from 1, 2 or 3. Further, n is selected from 1 or 2.
  • the organic compound H2 comprises an electron-rich group selected from one or more of the following:
  • Ar 3 , Ar 4 , Ar 5 , Ar 6 , Ar 7 , Ar 8 independently comprise one or more of the following structural groups:
  • a 1 , A 2 , A 3 , A 4 , A 5 , A 6 , A 7 , A 8 are independently selected from CR 3 or N;
  • R 3 , R 4 , R 5 are independently selected from H, D, a linear alkyl group having 1 to 20 C atoms, an alkoxy group having 1 to 20 C atoms, and a thio group having 1 to 20 C atoms.
  • Ar 3 , Ar 4 , Ar 5 , Ar 6 , Ar 7 , Ar 8 , A 1 , A 2 independently comprise one of the following structural groups:
  • H of any of the above groups may be optionally substituted.
  • the compound according to formula (2) is selected from one of the following structural formulae:
  • Ar 3 and Ar 4 are independently selected from an aromatic group or an aromatic heterocyclic group having 5 to 30 ring atoms;
  • R 1 and R 2 are independently selected from the group consisting of H, D, F, CN, alkenyl, alkynyl, nitrile, amine, nitro, acyl, alkoxy, carbonyl, sulfone, and having from 1 to 30 carbon atoms.
  • n is selected from 1, 2, 3 or 4;
  • L 1 is selected from an aromatic group or an aromatic hetero group having a ring atom of 5 to 60.
  • the structure of the organic compound H2 is as shown in the general formula (6):
  • R 1 and R 2 are independently selected from the group consisting of H, D, F, CN, alkenyl, alkynyl, nitrile, amine, nitro, acyl, alkoxy, carbonyl, sulfone, and carbon number 1 to An alkyl group of 30, a cycloalkyl group having 3 to 30 carbon atoms, or an aromatic hydrocarbon group having 5 to 60 ring atoms or an aromatic heterocyclic group; wherein R 1 and R 2 are bonded at any position on a condensed ring; One or more carbon atoms; n is selected from 1, 2, 3 or 4; L 1 is selected from an aromatic group or an aromatic group having a ring atom of 5 to 60.
  • the organic compound H2 is selected from the group consisting of
  • the organic compound H2 is selected from one of the following structural formulae.
  • Ar 3 and Ar 6 are independently selected from an aromatic group or an aromatic heterocyclic group having 5 to 30 ring atoms;
  • R 1 , R 2 and R are independently selected from the group consisting of H, D, F, CN, alkenyl, alkynyl, nitrile, amine, nitro, acyl, alkoxy, carbonyl, sulfone, and carbon number 1 to An alkyl group of 30, a cycloalkyl group having 3 to 30 carbon atoms, or an aromatic hydrocarbon group having 5 to 60 ring atoms or an aromatic heterocyclic group; wherein R 1 and R 2 are bonded at any position on a condensed ring; On one or more carbon atoms.
  • the structure of the organic compound H2 is as shown in the general formula (7):
  • R 1 , R 2 , R are independently selected from the group consisting of H, D, F, CN, alkenyl, alkynyl, nitrile, amine, nitro, acyl, alkoxy, carbonyl, sulfone, carbon atom
  • the organic compound H2 is selected from one of the following structural formulae:
  • L 1 is selected from an aromatic group or an aromatic hetero group having a ring atom of 5 to 60; and Ar 3 and Ar 5 are independently selected from an aromatic group or an aromatic hetero group having 5 to 30 ring atoms;
  • R 1 , R 2 , R are independently selected from H, D, F, CN, alkenyl, alkynyl, nitrile
  • the structure of the organic compound H2 is as shown in the general formula (8):
  • L 1 is selected from an aromatic group or an aromatic hetero group having a ring atom of 5 to 60;
  • R 1 , R 2 , R are independently selected from H, D, F, CN, alkenyl, alkynyl, nitrile, amine, nitro, acyl, alkoxy, carbonyl, sulfone, carbon atom
  • the organic compound H2 is selected from one of the following structural formulae:
  • Ar 4 , Ar 5 , Ar 7 , and Ar 8 are independently selected from an aromatic group or an aromatic hetero group having 5 to 30 ring atoms;
  • the structure of the organic compound H2 is as shown in the general formula (9):
  • Ar 4 and Ar 7 are independently selected from an aromatic group or an aromatic hetero group having a ring number of 5 to 30;
  • the organic compound H1 has an electron transporting property
  • the organic compound H2 has a hole transporting property, so that the organic compound H1 and the organic compound H2 form a type II semiconductor heterojunction.
  • the molar ratio of the organic compound H1 to the organic compound H2 is (2:8)-(8:2). Further, the molar ratio of the organic compound H1 to the organic compound H2 is (3:7)-(7:3). Further, the molar ratio of the organic compound H1 to the organic compound H2 is (4:6)-(6:4). Further, the molar ratio of the organic compound H1 to the organic compound H2 is (4.5: 5.5) - (5.5: 4.5).
  • the organic mixture, the difference between the molecular weight of the organic compound H1 and the molecular weight of the organic compound H2 is less than or equal to 100 g/mol. Further, the difference between the molecular weight of the organic compound H1 and the molecular weight of the organic compound H2 is 80 g/mol or less. Further, the difference between the molecular weight of the organic compound H1 and the molecular weight of the organic compound H2 is 70 g/mol or less. Further, the difference between the molecular weight of the organic compound H1 and the molecular weight of the organic compound H2 is 60 g/mol or less.
  • the difference between the molecular weight of the organic compound H1 and the molecular weight of the organic compound H2 is 40 g/mol or less. More preferably, the difference between the molecular weight of the organic compound H1 and the molecular weight of the organic compound H2 is 30 g/mol or less.
  • the organic mixture, the sublimation temperature of the organic compound H1 and the sublimation temperature of the organic compound H2 are less than or equal to 50K. Further, the difference between the sublimation temperature of the organic compound H1 and the sublimation temperature of the organic compound H2 is 30 K or less. Further, the sublimation temperature of the organic compound H1 and the sublimation of the organic compound H2 The difference in temperature is less than or equal to 20K. Further, the difference between the sublimation temperature of the organic compound H1 and the sublimation temperature of the organic compound H2 is 10 K or less.
  • the organic compound H1 and/or the organic compound H2 has a glass transition temperature of 100 ° C or more. Further, the organic compound H1 and/or the organic compound H2 has a glass transition temperature of 120 ° C or more. Further, the organic compound H1 and/or the organic compound H2 has a glass transition temperature of 140 ° C or more. Further, the organic compound H1 and/or the organic compound H2 has a glass transition temperature of 160 ° C or more. Further, the organic compound H1 and/or the organic compound H2 has a glass transition temperature of 180 ° C or more.
  • the organic compound H1 and the organic compound H2 are both small molecule materials. Thereby the organic mixture can be used for an evaporation type OLED.
  • the molecular weight of the organic organic compound H1 is 1000 g/mol or less; and the molecular weight of the organic compound H2 is 1000 g/mol or less.
  • the molecular weight of the organic organic compound H1 is 900 g/mol or less; the molecular weight of the organic compound H2 is 900 g/mol or less.
  • the molecular weight of the organic organic compound H1 is 850 g/mol or less; the molecular weight of the organic compound H2 is 850 g/mol or less.
  • the molecular weight of the organic organic compound H1 is 800 g/mol or less; the molecular weight of the organic compound H2 is 800 g/mol or less. Further, the molecular weight of the organic organic compound H1 is 700 g/mol or less; and the molecular weight of the organic compound H2 is 700 g/mol or less.
  • small molecule refers to a molecule that is not a polymer, oligomer, dendrimer, or blend. In particular, there are no repeating structures in small molecules.
  • the molecular weight of the small molecule is ⁇ 3000 g/mol, preferably ⁇ 2000 g/mol, preferably ⁇ 1500 g/mol.
  • the high polymer that is, the polymer, includes a homopolymer, a copolymer, and a block copolymer. Further, in the present invention, the high polymer also includes a dendrimer.
  • a dendrimer For the synthesis and application of the tree, see [Dendrimers and Dendrons, Wiley-VCH Verlag GmbH & Co. KGaA, 2002, Ed. George R. Newkome, Charles N. Moorefield, Fritz Vogtle.].
  • the conjugated polymer is a high polymer, and its backbone backbone is mainly composed of sp2 hybrid orbitals of C atoms.
  • Famous examples are: polyacetylene polyacetylene and poly(phenylene vinylene), the main chain thereof.
  • the C atom on it can also be replaced by other non-C atoms, and when the sp2 hybrid on the main chain is interrupted by some natural defects, it is still considered to be a conjugated polymer.
  • the conjugated polymer also includes The main chain contains an aryl amine, an aryl phosphine and other heteroarmotics, organometallic complexes and the like.
  • the molecular weight of the organic compound H1 and/or the organic compound H2 is greater than or equal to 700 g/mol. Thereby the organic mixture can be used for a printed OLED. Further, the molecular weight of the organic compound H1 and/or the organic compound H2 is 900 g/mol or more. Further, the molecular weight of the organic compound H1 and/or the organic compound H2 is 1000 g/mol or more. Further, the molecular weight of the organic compound H1 and/or the organic compound H2 is 1100 g/mol or more.
  • the organic mixture has a solubility in toluene of greater than or equal to 10 mg/ml at 25 °C. Further, the organic mixture has a solubility in toluene of 15 mg/ml or more at 25 °C. Further, the organic mixture has a solubility in toluene of 20 mg/ml or more at 25 °C.
  • the organic mixture further comprises an organic functional material.
  • the organic functional material is selected from the group consisting of a hole (also called a hole) injection or transport material (HIM/HTM), a hole blocking material (HBM), an electron injecting or transporting material (EIM/ETM), an electron blocking material (EBM), Organic host material or luminescent material.
  • the luminescent material is selected from the group consisting of a singlet illuminant (fluorescent illuminant), a heavy illuminant (phosphorescent illuminant) or an organic thermally excited delayed fluorescent material (TADF material).
  • the organic thermal excitation delayed fluorescent material may be a light-emitting organic metal complex.
  • Various organic functional materials are described in detail in, for example, WO2010135519A1, US20090134784A1, and WO 2011110277A1, the entire disclosure of each of each of The organic functional material may be a small molecule and a high polymer material.
  • the organic functional material is selected from the group consisting of luminescent materials, the luminescent material being from 1% to 30% by weight.
  • the organic functional material is selected from the group consisting of phosphorescent emitters.
  • the organic mixture may be used as a host material, wherein the phosphorescent emitter weight percentage is ⁇ 30% by weight. Further, the phosphorescent emitter weight percentage is ⁇ 25 wt%. Further, the phosphorescent emitter weight percentage is ⁇ 20 wt%.
  • the organic functional material is selected from the group consisting of fluorescent emitters.
  • the organic mixture can be used as a fluorescent host material, wherein the fluorescent illuminant is ⁇ 15% by weight. Further, the fluorescent illuminant weight percentage ⁇ 10% by weight. Further, the fluorescent illuminant weight percentage is ⁇ 8 wt%.
  • the organic functional material is selected from the group consisting of phosphorescent emitters. It may also include a mixture of a host material, a host material, a phosphorescent emitter, and an organic mixture. At this point, the organic mixture can act as an auxiliary luminescent material, which is phosphorescent The weight ratio of the illuminants is from 1:2 to 2:1. In other embodiments, the excimer complex of the organic mixture has a higher energy level than the phosphorescent emitter.
  • the organic functional material is selected from the group consisting of TADF materials.
  • the above organic mixture can be used as a TADF host material in which the weight percentage of the TADF material is ⁇ 15% by weight. Further, the weight percentage of the TADF material is ⁇ 10% by weight. Further, the weight percentage of the TADF material is ⁇ 8 wt%.
  • the singlet emitter, the triplet emitter, and the TADF material are described in further detail below (but are not limited thereto).
  • Singlet emitters tend to have longer conjugated pi-electron systems.
  • styrylamine and its derivatives disclosed in JP 2913116 B and WO 2001021729 A1
  • indenoindenes and derivatives thereof disclosed in WO 2008/006449 and WO 2007/140847.
  • the singlet emitter may be selected from the group consisting of monostyrylamine, dibasic styrylamine, ternary styrylamine, quaternary styrylamine, styrene phosphine, styrene ether, and arylamine. Or a variety.
  • the monostyrylamine comprises an unsubstituted or substituted styryl group and at least one amine, preferably an aromatic amine.
  • the dibasic styrylamine comprises two unsubstituted or substituted styryl groups and at least one amine, preferably an aromatic amine.
  • the ternary styrylamine comprises three unsubstituted or substituted styryl groups and at least one amine, preferably an aromatic amine.
  • the quaternary styrylamine comprises four unsubstituted or substituted styryl groups and at least one amine, preferably an aromatic amine.
  • the styrene is stilbene and it can be further substituted.
  • the corresponding phosphines and ethers are defined similarly to amines.
  • the arylamine or aromatic amine comprises three unsubstituted or substituted aromatic ring or heterocyclic systems directly bonded to the nitrogen. There is at least one fused ring system in these aromatic or heterocyclic ring systems. Further, the fused ring system has at least 14 aromatic ring atoms.
  • the arylamine or aromatic amine can be selected from the group consisting of aromatic amides, aromatic guanidine diamines, aromatic guanamines, aromatic guanidine diamines, aromatic thiamines, or aromatic quinone diamines.
  • Aromatic guanamine refers to a compound in which a diarylamine group is attached directly to the oxime, preferably at the position of 9.
  • Aromatic quinone diamine refers to a compound in which two diaryl arylamine groups are attached directly to the oxime, preferably at the 9,10 position.
  • the aromatic decylamine, the aromatic guanidine diamine, the aromatic thiamine and the aromatic thiamine are similarly defined, wherein the diarylamine group is preferably attached to the 1 or 1,6 position of the oxime.
  • the singlet emitter can be a singlet emitter based on vinylamine and an aromatic amine. It can be found in the following patent documents: WO 2006/000388, WO 2006/058737, WO 2006/000389, WO 2007/065549, WO 2007/115610, US Pat. No. 7,250,532 B2, DE 102005058557 A1, CN 1583691 A, JP 08 053 397 A, US Pat. No. 6,251, 531 B1, US 2006/210830 A, EP 1 957 606 A1 and US 2008/0113101 A1, hereby listed above The entire contents of the patent documents are incorporated herein by reference. A singlet emitter based on a stilbene extreme derivative can be referred to US 5121029.
  • the singlet emitter can be selected from the group consisting of an indeno-amine or an indeno-diamine (see WO 2006/122630), a benzoindole-amine or a benzoindole-di- Amines (please refer to WO 2008/006449) or dibenzoindolo-amine or dibenzoindeno-diamine (see WO2007/140847).
  • polycyclic aromatic hydrocarbon compounds in particular derivatives of the following compounds: for example, 9,10-bis(2-naphthoquinone), naphthalene, tetraphenyl, xanthene, phenanthrene , ⁇ (such as 2,5,8,11-tetra-t-butyl fluorene), anthracene, phenylene such as (4,4'-bis(9-ethyl-3-carbazolevinyl)-1 , 1 '-biphenyl), indenyl hydrazine, decacycloolefin, hexacene benzene, anthracene, spirobifluorene, aryl hydrazine (such as US20060222886), arylene vinyl (such as US5121029, US5130603), cyclopentane Alkene such as tetraphenylcyclopentadiene, rub
  • TDF Thermally activated delayed fluorescent luminescent material
  • the thermally activated delayed fluorescent luminescent material is a third generation organic luminescent material developed after organic fluorescent materials and organic phosphorescent materials.
  • Such materials generally have a small singlet-triplet energy level difference ( ⁇ E st ), and triplet excitons can be converted into singlet exciton luminescence by inter-system crossing. This can make full use of the singlet excitons and triplet excitons formed under electrical excitation.
  • the quantum efficiency in the device can reach 100%.
  • the TADF material needs to have a small singlet-triplet energy level difference, typically ⁇ Est ⁇ 0.3 eV, preferably ⁇ Est ⁇ 0.2 eV, more preferably ⁇ Est ⁇ 0.1 eV, and most preferably ⁇ Est ⁇ 0.05 eV.
  • TADF has better fluorescence quantum efficiency.
  • TADF luminescent materials can be found in the following patent documents: CN103483332(A), TW201309696(A), TW201309778(A), TW201343874(A), TW201350558(A), US20120217869(A1), WO2013133359(A1), WO2013154064(A1), Adachi, et.al.Adv.Mater., 21, 2009, 4802, Adachi, et. al. Appl. Phys. Lett., 98, 2011, 083302, Adachi, et. al. Appl. Phys. Lett., 101, 2012, 093306, Adachi, et. al. Chem. Commun.
  • TADF luminescent materials Some examples of suitable TADF luminescent materials are listed in the table below.
  • Triplet emitters are also known as phosphorescent emitters.
  • the triplet emitter is a metal complex having the general formula M(L)n; wherein M is a metal atom; and L is an organic ligand, which may be the same or different each time it occurs, It is attached to the metal atom M by one or more position bonding or coordination.
  • n is an integer greater than one.
  • n is selected from 1, 2, 3, 4, 5 or 6.
  • the metal complexes are coupled to a polymer by one or more locations, preferably by an organic ligand.
  • the metal atom M is selected from a transition metal element, a lanthanide element or a lanthanide element. Further, the metal atom M is selected from the group consisting of Ir, Pt, Pd, Au, Rh, Ru, Os, Sm, Eu, Gd, Tb, Dy, Re, Cu or Ag. Further, the metal atom M is selected from the group consisting of Os, Ir, Ru, Rh, Re, Pd or Pt.
  • the triplet emitter comprises a chelating ligand, ie a ligand, coordinated to the metal by at least two bonding sites, and it is particularly preferred to consider that the triplet emitter comprises two or three identical Or different bidentate or multidentate ligands.
  • Chelating ligands are beneficial for increasing the stability of metal complexes.
  • the organic ligand may be selected from the group consisting of a phenylpyridine derivative, a 7,8-benzoquinoline derivative, a 2(2-thienyl)pyridine derivative, a 2(1-naphthyl)pyridine derivative, or a 2-phenylquinoline.
  • a morphine derivative All of these organic ligands may be substituted, for example by fluorine or trifluoromethyl.
  • the ancillary ligand may be selected from the group consisting of acetone acetate or picric acid.
  • the general formula of the metal complex used as the triplet emitter is as follows:
  • M is a metal and M is selected from a transition metal element or a lanthanide or a lanthanide;
  • Ar 1 is a cyclic group which may be the same or different at each occurrence, and Ar 1 contains at least one donor atom, that is, an atom having a lone pair of electrons, such as nitrogen or phosphorus, through which a cyclic group and a metal Coordination;
  • Ar 2 is a cyclic group which may be the same or different at each occurrence, Ar 2 contains at least one C atom through which a cyclic group is attached to the metal;
  • Ar 1 and Ar 2 are covalently
  • the linkages are linked together and each may carry one or more substituent groups, which may also be taken
  • L may be the same or different at each occurrence, L is an auxiliary ligand, preferably a bidentate chelate ligand, preferably a monoanionic bidentate chelate ligand; m is selected from 1, 2 or 3, preferably 2 or 3, particularly preferably 3; n is selected from 0, 1, or 2, preferably 0 or 1, particularly preferably 0.
  • the composition of an embodiment comprises the above organic mixture and an organic solvent.
  • the composition is an ink.
  • the viscosity and surface tension of the ink are important parameters when the composition is used in a printing process. Suitable surface tension parameters for the ink are suitable for the particular substrate and the particular printing method.
  • the surface tension of the ink at the operating temperature or at 25 ° C is in the range of from about 19 dyne/cm to 50 dyne/cm; more preferably in the range of from 22 dyne/cm to 35 dyne/cm; preferably at 25 dyne/cm. Up to 33dyne/cm.
  • the viscosity of the ink at the operating temperature or at 25 ° C is in the range of from about 1 cps to about 100 cps; preferably in the range of from 1 cps to 50 cps; more preferably in the range of from 1.5 cps to 20 cps; preferably at 4.0 Cps to 20cps range. This makes the composition more convenient for ink jet printing.
  • the viscosity can be adjusted by different methods, such as by selection of a suitable solvent and concentration of the functional material in the ink.
  • An ink containing a metal organic complex or a polymer facilitates the adjustment of the printing ink to an appropriate range in accordance with the printing method used.
  • the weight ratio of the organic functional material contained in the composition is from 0.3% to 30% by weight, preferably from 0.5% to 20% by weight, more preferably from 0.5% to 15% by weight, still more preferably from 0.5% to 10% by weight. %, preferably from 1% to 5% by weight.
  • the organic solvent comprises a first solvent selected from the group consisting of aromatic and/or heteroaromatic based solvents.
  • the first solvent may be an aliphatic chain/ring-substituted aromatic solvent, or an aromatic ketone solvent, or an aromatic ether solvent.
  • Examples of the first solvent are, but not limited to, aromatic or heteroaromatic based solvents: p-diisopropylbenzene, pentylbenzene, tetrahydronaphthalene, cyclohexylbenzene, chloronaphthalene, 1,4-dimethylnaphthalene.
  • the first solvent may also be selected from aliphatic ketones, for example, 2-nonanone, 3-fluorenone, 5-fluorenone, 2-nonanone, 2,5-hexanedione, 2,6,8 - trimethyl-4-indolone, phorone, di-n-pentyl ketone, etc.; or an aliphatic ether, for example, pentyl ether, hexyl ether, dioctyl ether, ethylene glycol dibutyl ether, diethylene glycol II Ether, diethylene glycol butyl methyl ether, diethylene glycol dibutyl ether, triethylene glycol dimethyl ether, triethylene glycol ethyl methyl ether, triethylene glycol butyl methyl ether, tripropylene glycol dimethyl ether and tetraethylene One or more of the glycerols.
  • aliphatic ketones for example, 2-nonanone, 3-fluorenone, 5-fluor
  • the organic solvent further includes a second solvent selected from the group consisting of methanol, ethanol, 2-methoxyethanol, dichloromethane, chloroform, chlorobenzene, o-dichlorobenzene, tetrahydrofuran, Anisole, morpholine, toluene, o-xylene, m-xylene, p-xylene, 1,4 dioxane, acetone, methyl ethyl ketone, 1,2 dichloroethane, 3-benzene Oxytoluene, 1,1,1-trichloroethane, 1,1,2,2-tetrachloroethane, ethyl acetate, butyl acetate, dimethylformamide, dimethylacetamide, dimethyl One or more of a sulfoxide, tetrahydronaphthalene, decalin, and anthracene.
  • a second solvent selected from the group consisting of methanol, ethanol,
  • the composition can be a solution or suspension. This is determined based on the compatibility between the organic mixture and the organic solvent.
  • the weight percent of the organic mixture in the composition is from 0.01 to 20% by weight, preferably from 0.1 to 15% by weight, more preferably from 0.2 to 10% by weight, most preferably from 0.25 to 5% by weight of the organic mixture. .
  • the above composition is used in the preparation of an organic electronic device.
  • its use as a coating or printing ink in the preparation of an organic electronic device is particularly preferred by a printing or coating preparation method.
  • suitable printing or coating techniques include, but are not limited to, inkjet printing, Nozzle Printing, Typography, screen printing, dip coating, spin coating, knife coating, roller printing, torsion roll printing, lithography, flexographic printing, rotary printing, spray coating, brush coating or pad printing or slit extrusion Coating, etc.
  • Preferred are gravure, inkjet and inkjet printing.
  • the composition may further include a component example, and the cap component is selected from one or more of a surface active compound, a lubricant, a wetting agent, a dispersing agent, a hydrophobic agent, and a binder, thereby being used for adjusting viscosity. , film forming properties, improved adhesion and the like.
  • the above organic mixture is used in an organic electronic device.
  • the organic electronic device may be selected from an Organic Light-Emitting Diode (OLED), an Organic Photovoltaic (OPV), an Organic Light Emitting Battery (OLEEC), an organic field effect transistor (OFET), and an organic organic device.
  • Luminescent field effect transistor organic laser, organic spintronic device, organic sensor or organic plasmon emitting diode (Organic Plasmon Emitting Diode).
  • the organic electronic device is an OLED.
  • the organic mixture is used for a light-emitting layer for an OLED device.
  • the organic electronic device includes a cathode, an anode, and a functional layer between the cathode and the anode, the functional layer comprising the organic mixture described above.
  • the organic electronic device comprises at least a cathode, an anode and a functional layer between the cathode and the anode, the functional layer comprising at least one organic mixture as described above.
  • the functional layer is selected from one or more of a hole injection layer, a hole transport layer, a hole blocking layer, an electron injection layer, an electron transport layer, an electron blocking layer, and a light emitting layer.
  • the organic electronic device may be selected from an Organic Light-Emitting Diode (OLED), an Organic Photovoltaic (OPV), an Organic Light Emitting Battery (OLEEC), an organic field effect transistor (OFET), and an organic organic device.
  • OLED Organic Light-Emitting Diode
  • OLED Organic Photovoltaic
  • OEEC Organic Light Emitting Battery
  • OFET organic field effect transistor
  • Luminescent field effect transistor organic laser, organic spintronic device, organic sensor or organic plasmon emitting diode (Organic Plasmon Emitting Diode).
  • the organic electronic device is an organic electroluminescent device such as an OLED, OLEEC or organic light-emitting field effect transistor.
  • the organic light emitting diode may be an evaporation type organic light emitting diode or a printed organic light emitting diode.
  • the light-emitting layer of the organic electroluminescent device comprises the above organic mixture.
  • the organic electroluminescent device comprises a substrate, an anode, a light-emitting layer, and a cathode, which are sequentially stacked.
  • the number of layers of the light-emitting layer is at least one layer.
  • the substrate can be opaque or transparent.
  • a transparent substrate can be used to make a transparent luminescent component, see Bulovic et al. Nature 1996, 380, p29, and Gu et al, Appl. Phys. Lett. 1996, 68, p2606.
  • the substrate can be rigid or elastic.
  • the substrate can also be plastic, metal, semiconductor wafer or glass.
  • the substrate has a smooth surface. Substrates without surface defects are a particularly desirable choice.
  • the substrate is flexible, optionally in a polymeric film or plastic, having a glass transition temperature Tg of 150 ° C or higher, preferably more than 200 ° C, more preferably more than 250 ° C, and most preferably more than 300 ° C. .
  • the flexible substrate can be poly(ethylene terephthalate) (PET) or polyethylene glycol (2,6-naphthalene) (PEN).
  • the anode can include a conductive metal or metal oxide, or a conductive polymer.
  • the anode can easily inject holes into a hole injection layer (HIL) or a hole transport layer (HTL) or a light-emitting layer.
  • HIL hole injection layer
  • HTL hole transport layer
  • the absolute value of the difference between the work function of the anode and the HOMO level or the valence band level of the illuminant in the luminescent layer or the p-type semiconductor material as the HIL or HTL or electron blocking layer (EBL) is less than 0.5 eV, preferably less than 0.3 eV, and most preferably less than 0.2 eV.
  • anode material examples include, but are not limited to, Al, Cu, Au, Ag, Mg, Fe, Co, Ni, Mn, Pd, Pt, ITO, and aluminum-doped zinc oxide (AZO).
  • the anode material can also be other materials.
  • the anode material can be deposited using any suitable technique, such as a suitable physical vapor deposition process, including radio frequency magnetron sputtering, vacuum thermal evaporation, electron beam (e-beam), and the like.
  • the anode is patterned.
  • a patterned ITO conductive substrate is commercially available and can be used to prepare an organic electronic device according to the present embodiment.
  • the cathode can include a conductive metal or metal oxide.
  • the cathode can easily inject electrons into the EIL or ETL or directly into the luminescent layer.
  • the work function of the cathode and the LUMO level or conductance of the illuminant in the luminescent layer or the n-type semiconductor material as an electron injection layer (EIL) or an electron transport layer (ETL) or a hole blocking layer (HBL)
  • EIL electron injection layer
  • ETL electron transport layer
  • HBL hole blocking layer
  • the absolute value of the difference in the band level is less than 0.5 eV, preferably less than 0.3 eV, and most preferably less than 0.2 eV. All materials which can be used as the cathode of the OLED are possible as the cathode material of the organic electronic device of the present embodiment.
  • cathode material examples include, but are not limited to, Al, Au, Ag, Ca, Ba, Mg, LiF/Al, MgAg alloy, BaF 2 /Al, Cu, Fe, Co, Ni, Mn, Pd, Pt, ITO, and the like.
  • the cathode material can be deposited using any suitable technique, such as a suitable physical vapor deposition process, including radio frequency magnetron sputtering, vacuum thermal evaporation, and electron beam (e-beam).
  • the OLED may further comprise other functional layers such as a hole injection layer (HIL), a hole transport layer (HTL), an electron blocking layer (EBL), an electron injection layer (EIL), an electron transport layer (ETL) or a hole blocking layer.
  • HIL hole injection layer
  • HTL hole transport layer
  • EBL electron blocking layer
  • EIL electron injection layer
  • ETL electron transport layer
  • HBL hole blocking layer
  • a method of preparing an organic electronic device includes the steps of depositing the organic mixture on a surface to form the functional layer. Specifically, the organic compound H1 and the organic compound H2 are ground and mixed; the organic compound H1 and the organic compound H2 after the grinding and mixing are placed in an organic source to be vapor-deposited to form a functional layer. In addition, it is also possible to heat-melt the organic compound H1 and the organic compound H2 under vacuum to obtain a molten mixture; after the molten mixture is cooled to room temperature, it is ground; and then the ground molten mixture is placed in an organic The source was vapor-deposited to form a functional layer.
  • the organic electronic device is an organic electroluminescent device, the functional layer of which is a light-emitting layer.
  • a method of preparing an organic electronic device includes the steps of: separately depositing an organic compound H1 and an organic compound H2 in two sources under vacuum to form a functional layer.
  • the organic electronic device is an organic electroluminescent device, and the functional layer thereof is a light-emitting layer.
  • the organic electroluminescent device light-emitting device has an emission wavelength of between 300 and 1000 nm, preferably between 350 and 900 nm, more preferably between 400 and 800 nm.
  • the above-described organic electronic device is used in an electronic device.
  • the electronic device is selected from a display device, a lighting device, a light source or a sensor.
  • the organic electronic device may be an organic electroluminescent device.
  • An electronic device comprising the above organic electronic device.
  • the energy level of the organic material can be obtained by quantum calculation, for example, by TD-DFT (time-dependent density functional theory) by Gaussian 03W (Gaussian Inc.), and the specific simulation method can be found in WO2011141110.
  • TD-DFT time-dependent density functional theory
  • Gaussian 03W Gaussian Inc.
  • the specific simulation method can be found in WO2011141110.
  • the semi-empirical method “Ground State/Semi-empirical/Default Spin/AM1" (Charge 0/Spin Singlet) is used to optimize the molecular geometry, and then the energy structure of the organic molecule is determined by TD-DFT (time-dependent density functional theory) method.
  • TD-SCF/DFT/Default Spin/B3PW91 and the base group "6-31G(d)” (Charge 0/Spin Singlet).
  • the HOMO and LUMO levels are calculated according to the following calibration formula, and S1 and T1 are used directly.
  • HOMO(eV) ((HOMO(G) ⁇ 27.212)-0.9899)/1.1206
  • HOMO (G) and LUMO (G) are direct calculation results of Gaussian 03W, the unit is Hartree. Result As shown in Table 1:
  • HATCN, SFNFB, Ir(p-ppy) 3 , NaTzF 2 , Liq are all commercially available, such as Jilin Elound (Jilin OLED Material Tech Co., Ltd, www.jl-oled.com).
  • the above materials HATCN, SFNFB, Ir(p-ppy) 3 , NaTzF 2 , Liq can also be obtained by synthetic methods respectively, as described in the prior art references or patents: or patent: J. Org. Chem., 1986, 51, 5241, WO2012034627, WO2010028151, US2013248830.
  • the structure of the OLED device is ITO/HATCN/SFNFB/host material: Ir(p-ppy) 3 (10%) / NaTzF 2 : Liq/Liq/Al.
  • the method for preparing an OLED device includes the following steps:
  • S3 Package: The OLED device is encapsulated in a nitrogen glove box with an ultraviolet curable resin.
  • an organic mixture is used as a host material of the light-emitting layer, and a method of producing the host material is as described above. Specifically, the following three methods are included:
  • Vacuum co-evaporation The organic compound H1 and the organic compound H2 are respectively placed in two different sources, and the doping ratio of the two host materials is controlled by controlling the respective evaporation rates.
  • Organic alloy After the organic compound H1 and the organic compound H2 are respectively weighed according to a certain ratio, they are doped together, and under a vacuum of less than 10 -3 torr, the mixture is heated and stirred until the mixture is melted, and after cooling, The mixture is ground and the resulting mixture is placed in an organic source for evaporation.
  • Table 2 Host materials in different OLED devices.
  • mCP was purchased from Jilin Olaide.
  • the current-voltage (J-V) characteristics of each OLED device are characterized by characterization equipment while recording important parameters such as efficiency, lifetime and external quantum efficiency.
  • the lifetime of the organic mixture-based OLED device is tested as shown in Table 2, wherein the lifetime data represented by the relative lifetime of the RefOLED-based device, wherein the OLED 3, OLED 6, OLED 9 and OLED 12 have the same luminescence lifetime in the same type of device. It is the highest, and the lifetime of devices based on OLED9 is more than 10 times that of RefOELD. It can be seen that the lifetime of the OLED device prepared by using the above organic compound is greatly improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Electroluminescent Light Sources (AREA)
  • Pyridine Compounds (AREA)

Abstract

一种有机混合物、有机组合物、有机电子器件及其制备方法,该有机混合物包括两种有机化合物H1和H2,有机化合物H1为螺环类化合物,有机化合物H2为含富电子基团的的化合物;其中,min((LUMO(H1)-HOMO(H2)),(LUMO(H2)-HOM O(H1)))≤min(ET(H1),ET(H2))+0.1eV;其中,LUMO(H1)、HOMO(H1)及ET(H1)分别表示所述有机化合物H1的最低未占有轨道、最高占有轨道以及三线态能级;LUMO(H2)、HOMO(H2)及ET(H2)分别表示所述有机化合物H2的最低未占有轨道、最高占有轨道以及三线态能级。

Description

有机混合物、有机组合物、有机电子器件及其制备方法
本申请要求于2016年11月23日提交中国专利局、申请号为201611046922.1、发明名称为“一种有机混合物及其在有机电子器件中的应用”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及有机光电材料技术领域,特别是涉及一种有机混合物及其应用、有机电子器件及其制备方法。
背景技术
有机发光二极管(Organic Light-Emitting Diode,OLED)具有质轻、主动发光、视角广、对比度高、发光效率高、能耗低、易制备柔性以及大尺寸面板等特点,其被业界视为最有希望的下一代的显示技术。
为了推进有机发光二极管大范围产业化进程,进一步提高有机发光二极管的发光性能和寿命是目前的急需解决的关键问题,高性能的有机光电材料体系仍需进一步的开发。
要获得高效长寿命的发光二极管,主体材料是关键。使用磷光材料的有机发光二极管可以取得几乎100%的内部电致发光量子效率,因此成为目前业界的主流材料体系,特别是红绿光。但磷光OLED由于器件中电荷不平衡等原因,存在效率滚降效应(Roll-off效应),其中,效率滚降效应指的是发光效率随电流或电压的增加而迅速降低。,这对高亮度的应用尤为不利。为了解决这个问题,Kim等(参见Kim等Adv.Func.Mater.2013 DOI:10.1002/adfm.201300547,及Kim等Adv.Func.Mater.2013,DOI:10.1002/adfm.201300187)通过利用能形成复合受激态(exciplex)的共主体(Co-host),另加一金属配合物作为磷光发光体,实现了低Roll-off、很高效率的OLEDs。但这类器件的寿命尚需大幅提高。
发明内容
根据本申请的各种实施例,提供一种有有机混合物、有机组合物、有机电子器件及其 制备方法,解决了背景技术中所涉及的一个或多个问题。
一种有机混合物,包括两种有机化合物H1和H2,所述有机化合物H1为螺环类化合物,所述有机化合物H2为含富电子基团的化合物,其中,min((LUMO(H1)-HOMO(H2)),(LUMO(H2)-HOMO(H1)))≤min(ET(H1),ET(H2))+0.1eV;其中,LUMO(H1)、HOMO(H1)及ET(H1)分别表示所述有机化合物H1的最低未占有轨道、最高占有轨道以及三线态能级;LUMO(H2)、HOMO(H2)及ET(H2)分别表示所述有机化合物H2的最低未占有轨道、最高占有轨道以及三线态能级。
一种组合物,所述组合物括有机溶和上述有机混合物。
一种有机电子器件,包括阴极、阳极以及位于所述阴极和所述阳极之间的功能层,所述功能层包括上述有机混合物或上述组合物。
一种上述有机电子器件的制备方法,包括如下步骤:
将所述有机化合物H1和所述有机化合物H2进行研磨混合;
将研磨混合后的所述有机化合物H1和所述有机化合物H2放在一个有机源中进行蒸镀,形成所述功能层。
一种上述有机电子器件的制备方法,包括如下步骤:
在真空下,将所述有机化合物H1和所述有机化合物H2分别放在两个源中分别进行蒸镀,形成所述功能层。
本发明的一个或多个实施例的细节在下面的附图和描述中提出。本发明的其它特征、目的和优点将从说明书、附图以及权利要求书变得明显。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用于解释本发明,并不用于限定本发明。
在本文中,组合物、印刷油墨以及油墨具有相同的含义,它们之间可以互换。主体材料、基质材料、Host材料以及Matrix材料具有相同的含义,它们之间可以互换。金属有 机络合物、金属有机配合物以及有机金属配合物具有相同的含义,它们之间可以互换。且在本文中,(HOMO-1)定义为第二高的占有轨道能级,(HOMO-2)为第三高的占有轨道能级,以此类推。(LUMO+1)定义为第二低的未占有轨道能级,(LUMO+2)为第三低的占有轨道能级,以此类推。
一实施例的有机混合物包括两种有机化合物H1和H2。有机化合物H1为螺环类化合物,有机化合物H2为含富电子基团的化合物。其中,min((LUMO(H1)-HOMO(H2)),(LUMO(H2)-HOMO(H1)))≤min(ET(H1),ET(H2))+0.1eV;其中,LUMO(H1)、HOMO(H1)及ET(H1)分别表示所述有机化合物H1的最低未占有轨道、最高占有轨道以及三线态能级;LUMO(H2)、HOMO(H2)及ET(H2)分别表示所述有机化合物H2的最低未占有轨道、最高占有轨道以及三线态能级。其中,有机化合物H1与有机化合物H2形成复合受激态的能量取决于min((LUMO(H1)-HOMO(H2)),(LUMO(H2)-HOMO(H1)))。
上述有机混合物,包括螺环类化合物和含富电子基团的化合物,两者具有优异的光电性质及本征稳定性,且通过将两者的能级满足min((LUMO(H1)-HOMO(H2)),(LUMO(H2)-HOMO(H1)))≤min(ET(H1),ET(H2))+0.1eV,螺环类化合物和含富电子基团的化合物均具有比较合适的HOMO和LUMO能级,有利于降低电子和空穴注入的势垒,易于实现载流子传输的平衡,从而降低器件的工作电压及Roll-off效应,同时,机化合物H1和有机化合物H2之间形成单线态和三线态能级差较小的激基复合物能量传输中间态,能更充分地利用激子的能量,从而有效提高器件的效率和寿命。
在本实施例中,有机混合物的激发态将优先占据能量最低的复合受激态,或便于H1或H2上的三重激发态的能量向复合受激态转移,从而提高复合受激态的浓度。
其中,HOMO能级和LUMO能级可以通过光电效应进行测量,例如XPS(X射线光电子光谱法)和UPS(紫外光电子能谱)或通过循环伏安法(以下简称CV)。此外,也可以采用量子化学方法,例如密度泛函理论(以下简称DFT)计算分子轨道能级的方法。
有机材料的三线态能级ET可通过低温时间分辨发光光谱来测量,或通过量子模拟计算(如通过Time-dependent DFT)得到,如通过商业软件Gaussian 03W(Gaussian Inc.)。具体的模拟方法可参见WO2011141110或如下所述。
应该注意,HOMO、LUMO以及ET的绝对值取决于所用的测量方法或计算方法,甚至对 于相同的方法,不同评价的方法,例如在CV曲线上起始点和峰点可给出不同的HOMO/LUMO值。因此,合理有意义的比较应该用相同的测量方法和相同的评价方法进行。本发明实施例中,HOMO、LUMO、ET的值是基于Time-dependent DFT的模拟。但不影响其他测量或计算方法的应用,也可以采用其他测量或计算方法得到HOMO、LUMO以及ET
在一实施例中,min((LUMO(H1)-HOMO(H2)),(LUMO(H2)-HOMO(H1)))≤min(ET(H1),ET(H2))。进一步地,min((LUMO(H1)-HOMO(H2)),(LUMO(H2)-HOMO(H1)))≤min(ET(H1),ET(H2))-0.05eV。再进一步地,min((LUMO(H1)-HOMO(H2)),(LUMO(H2)-HOMO(H1)))≤min(ET(H1),ET(H2))-0.1eV。更进一步地,min((LUMO(H1)-HOMO(H2)),(LUMO(H2)-HOMO(H1)))≤min(ET(H1),ET(H2))-0.15eV。在一实施例中,min((LUMO(H1)-HOMO(H2)),(LUMO(H2)-HOMO(H1)))≤min(ET(H1),ET(H2))-0.2eV。
在一实施例中,min((LUMO(H1)-HOMO(H2)),(LUMO(H2)-HOMO(H1)))小于等于有机化合物H1的三重激发态能级,且min((LUMO(H1)-HOMO(H2)),(LUMO(H2)-HOMO(H1)))小于等于有机化合物H2的三重激发态能级。
在一实施例中,有机化合物H1和/或有机化合物H2的(HOMO-(HOMO-1))≥0.2eV,其中,HOMO指的是有机化合物H1或有机化合物H2的最高占有轨道,(HOMO-1)指的是有机化合物H1或有机化合物H2的比最高占有轨道少一级的占有轨道,也就是第二高占有轨道。进一步地,有机化合物H1和/或有机化合物H2的(HOMO-(HOMO-1))≥0.25eV。进一步地,有机化合物H1和/或有机化合物H2的(HOMO-(HOMO-1))≥0.3eV。更进一步地,有机化合物H1和/或有机化合物H2的(HOMO-(HOMO-1))≥0.35eV。再进一步地,有机化合物H1和/或有机化合物H2的(HOMO-(HOMO-1))≥0.4eV。有机化合物H1和/或有机化合物H2的(HOMO-(HOMO-1))也可以大于等于0.45eV。
在一实施例中,有机化合物H2的(HOMO-(HOMO-1))≥0.2eV,其中,HOMO指的是有机化合物H2的最高占有轨道,(HOMO-1)指的是有机化合物H2的比最高占有轨道少一级的占有轨道,也就是第二高占有轨道。进一步地,有机化合物H2的(HOMO-(HOMO-1))≥0.25eV。进一步地,有机化合物H2的(HOMO-(HOMO-1))≥0.3eV。更进一步地,有机化合物H2的(HOMO-(HOMO-1))≥0.35eV。再进一步地,有机化合物H2的(HOMO-(HOMO-1))≥0.4eV。有机化合物H2的(HOMO-(HOMO-1))也可以大于等于0.45eV。
在一实施例中,有机化合物H1的结构如通式(1)所示:
Figure PCTCN2017112712-appb-000001
其中,
Z1、Z2、Z3独立地选自N或C原子,且Z1、Z2、Z3中至少一个为N原子;
Y选自单键、N(R)、C(R)2、Si(R)2、O、C=N(R)、C=C(R)2、P(R)、P(=O)R、S、S=O或SO2
Ar1、Ar2独立地选自环原子数为5~60的芳香基团或芳杂基团;
R选自H、D、F、CN、羰基、砜基、烷氧基、碳原子数1~30的烷基、碳原子数3~30的环烷基或环原子数为5~60的芳香基团或芳杂基团。
在一实施例中,通式(1)中所示的Z1、Z2、Z3至少两个为N原子。进一步地,Z1、Z2、Z3全为N原子。
在一实施例中,通式(1)中所示的Y为单键、N(R)、C(R)2、O或S。进一步地,通式(1)中所示的Y为单键或N(R)。更进一步地,通式(1)中所示的Y为单键。
在一实施例中,通式(1)中所示的Ar1、Ar2为环原子数为5~50的芳香基团或芳杂基团。进一步地,Ar1、Ar2为环原子数为5~40的芳香基团或芳杂基团。更进一步地,Ar1、Ar2为环原子数为5~30的芳香基团或芳杂基团。
芳香基团指至少包含一个芳环的烃基。芳香基团也可以为芳香环系,芳香环系指的是包括单环基团和多环的环系统。芳杂基团指包含至少一个芳杂环的烃基(含有杂原子)。芳杂基团也可以为芳杂环系,芳杂环系指的是包括单环基团和多环的环系统。这些多环的环种可以具有两个或多个环,其中两个碳原子被两个相邻的环共用,即稠环。多环的这些环种,至少一个环是芳族的或杂芳族的。在本实施例中,芳香族或芳杂族环系不仅包括芳香基或芳杂基的体系。芳香族或芳杂族环系还可以包括其中多个芳基或芳杂基被短的非芳族单元间断(<10%的非H原子,优选小于5%的非H原子,比如C、N或O原子)。因此,9,9'-螺二芴,9,9-二芳基芴,三芳胺,二芳基醚等体系也可以为是芳香族环系。
在一实施例中,芳香基团选自苯、萘、蒽、菲、二萘嵌苯、并四苯、芘、苯并芘、三亚苯、苊或芴,或它们各自的衍生物。
芳杂族基团选自呋喃、苯并呋喃、噻吩、苯并噻吩、吡咯、吡唑、三唑、咪唑、噁唑、噁二唑、噻唑、四唑、吲哚、咔唑、吡咯并咪唑、吡咯并吡咯、噻吩并吡咯、噻吩并噻吩、呋喃并吡咯、呋喃并呋喃、噻吩并呋喃、苯并异噁唑、苯并异噻唑、苯并咪唑、吡啶、吡嗪、哒嗪、嘧啶、三嗪、喹啉、异喹啉、邻二氮萘、喹喔啉、菲啶、伯啶、喹唑啉或喹唑啉酮,或它们各自的衍生物。
在一实施例中,通式(1)中的Ar1,Ar2独立地选自如下基团中的一种:
Figure PCTCN2017112712-appb-000002
其中,Ar9、Ar10为环原子数为5~48的芳香基团或芳杂基团。
在一实施例中,有机化合物H1选自如下结构式中的一种:
Figure PCTCN2017112712-appb-000003
其中,Z1、Z2、Z3独立地选自N或C原子,且Z1、Z2、Z3中至少一个为N原子;
Y选自单键、N(R)、C(R)2、Si(R)2、O、C=N(R)、C=C(R)2、P(R)、P(=O)R、S、S=O或 SO2
Ar1、Ar2独立地选自环原子数为5~60的芳香基团或芳杂基团;
R选自H、D、F、CN、羰基、砜基、烷氧基、碳原子数1~30的烷基、碳原子数3~30的环烷基或环原子数为5~60的芳香基团或芳杂基团。
在一实施例中,通式(1)中的Ar1和Ar2独立地选自如下结构基团中的一种:
Figure PCTCN2017112712-appb-000004
其中,A1、A2、A3、A4、A5、A6、A7、A8独立地选自CR3或N;
Y1、Y2独立地选自CR4R5、SiR4R5、NR3、C(=O)、S或O;
R3、R4、R5独立地选自H、D、具有1至20个C原子的直链烷基、具有1至20个C原子的烷氧基、具有1至20个C原子硫代烷氧基基团、具有3至20个C原子的支链或环状的烷基、具有3至20个C原子的支链或环状的烷氧基、具有3至20个C原子的支链或环状的硫代烷氧基基团、具有3至20个C原子的支链或环状的甲硅烷基基团、具有1至20个C原子的取代的酮基基团、具有2至20个C原子的烷氧基羰基基团、具有7至20个C原子的芳氧基羰基基团、氰基基团、氨基甲酰基基团、卤甲酰基基团、甲酰基基团、异氰基基团、异氰酸酯基团、硫氰酸酯基团、异硫氰酸酯基团、羟基基团、硝基基团、CF3基团、Cl、Br、F、可交联的基团、具有5-40个环原子的取代或未取代的芳族或杂芳族环系以及具有5至40个环原子的芳氧基或杂芳氧基基团中的一种或多种;其中,R3,R4,R5中的至少一个与所述基团键合的环形成单环或多环的脂族或芳族环,或者R3,R4,R5中的至少两个相互之间形成单环或多环的脂族或芳族环。
在一实施例中,Ar1、Ar2独立地选自如下结构基团中的一种:
Figure PCTCN2017112712-appb-000005
其中,上述基团的任一环上的H可以被任意取代。
下面举例按照通式(1)所示的化合物的具体例子,但并不限定于:
Figure PCTCN2017112712-appb-000006
Figure PCTCN2017112712-appb-000007
Figure PCTCN2017112712-appb-000008
Figure PCTCN2017112712-appb-000009
Figure PCTCN2017112712-appb-000010
Figure PCTCN2017112712-appb-000011
Figure PCTCN2017112712-appb-000012
Figure PCTCN2017112712-appb-000013
Figure PCTCN2017112712-appb-000014
在一实施例中,有机化合物H2为如下通式(2)-(5)之一所示的化合物:
Figure PCTCN2017112712-appb-000015
其中,
L1选自环原子为5~60的芳香基团或芳杂基团;
L2选自单键、或环原子数为5~30的芳香基团或芳杂基团,L2的连接位置为环上任意一碳原子上;
Ar3、Ar4、Ar5、Ar6、Ar7、Ar8独立地选自环原子数为5~30的芳香基团或芳杂基团;
X1选自单键、N(R)、C(R)2、Si(R)2、O、C=N(R)、C=C(R)2、P(R)、P(=O)R、S、S=O或SO2
X2、X3、X4、X5、X6、X7、X8、X9独立地选自单键、N(R)、C(R)2、Si(R)2、O、C=N(R)、C=C(R)2、P(R)、P(=O)R、S、S=O或SO2,但X2和X3不同时为单键,X4和X5不同时为单键,X6和X7不同时为单键,X8和X9不同时为单键;
R1、R2、R独立地选自H、D、F、CN、烯基、炔基、腈基、胺基、硝基、酰基、烷氧基、羰基、砜基、碳原子数1~30的烷基、碳原子数3~30的环烷基、或环原子数为5~60芳香族烃基或芳香族杂环基;其中,R1、R2的连接位置为稠环上的任意一个或多个碳原子上;
n选自1、2、3或4。
需要说明的是,芳香基团或芳杂基团如上述描述,在此不再赘述。
在一实施例中,L1选自环原子数为5~50的芳香基团或芳杂基团。进一步地,L1选自环原子数为5~40的芳香基团或芳杂基团。更进一步地,L1选自环原子数为6~30的芳香基团或芳杂基团。
在一实施例中,L2选自单键或环原子数为5~25的芳香基团或芳杂基团。进一步地,L2选自单键、环原子数为5~20的芳香基团或芳杂基团。更进一步地,L2选自单键或环原子数为5~15的芳香基团或芳杂基团。
在一实施例中,Ar3、Ar4、Ar5、Ar6、Ar7、Ar8独立地选自环原子数为5~25的芳香基团或芳杂基团。进一步地,Ar3、Ar4、Ar5、Ar6、Ar7、Ar8独立地选自环原子数为5~20的芳香基团或芳杂基团。更进一步地,Ar3、Ar4、Ar5、Ar6、Ar7、Ar8独立地选自环原子数为5~15的芳香基团或芳杂基团。
在一实施例中,X1选自单键、N(R)、C(R)2、O或S。
在一实施例中,X2、X3、X4、X5、X6、X7、X8、X9独立地选自单键、N(R)、C(R)2、O或S。
在一实施例中,n选自1、2或3。进一步地,n选自1或2。
在一实施例中,有机化合物H2包含的富电子基团选自如下的一种或多种:
Figure PCTCN2017112712-appb-000016
在一实施例中,Ar3、Ar4、Ar5、Ar6、Ar7、Ar8独立地包含如下结构基团中的一种或多种:
Figure PCTCN2017112712-appb-000017
。其中,A1、A2、A3、A4、A5、A6、A7、A8独立地选自CR3或N;
Y1、Y2独立地选自CR4R5、SiR4R5、NR3、C(=O)、S或O;
R3、R4、R5独立地选自H、D、具有1至20个C原子的直链烷基、具有1至20个C原子的烷氧基、具有1至20个C原子硫代烷氧基基团、具有3至20个C原子的支链或环状的烷基、具有3至20个C原子的支链或环状的烷氧基、具有3至20个C原子的支链或环状的硫代烷氧基基团、具有3至20个C原子的支链或环状的甲硅烷基基团、具有1至20个C原子的取代的酮基基团、具有2至20个C原子的烷氧基羰基基团、具有7至20个C原子的芳氧基羰基基团、氰基基团、氨基甲酰基基团、卤甲酰基基团、甲酰基基团、异氰基基团、异氰酸酯基团、硫氰酸酯基团、异硫氰酸酯基团、羟基基团、硝基基团、CF3基团、Cl、Br、F、可交联的基团、具有5-40个环原子的取代或未取代的芳族或杂芳族环系以及具有5至40个环原子的芳氧基或杂芳氧基基团中的一种或多种;其中,R3,R4,R5中的至少一个与所述基团键合的环形成单环或多环的脂族或芳族环,或者R3,R4,R5中的至少两个相互之间形成单环或多环的脂族或芳族环。
在一实施例中,Ar3、Ar4、Ar5、Ar6、Ar7、Ar8、A1、A2独立地包含如下结构基团中的一种:
Figure PCTCN2017112712-appb-000018
。其中,上述基团的任一环上的H可以被任意取代。
在一实施例中,按照通式(2)所示的化合物选自如下结构式中的一个:
Figure PCTCN2017112712-appb-000019
;其中,
Ar3、Ar4独立地选自环原子数为5~30的芳香基团或芳杂基团;
R1、R2独立地选自H、D、F、CN、烯基、炔基、腈基、胺基、硝基、酰基、烷氧基、羰基、砜基、碳原子数1~30的烷基、碳原子数3~30的环烷基、或环原子数为5~60芳香族烃基或芳香族杂环基;其中,R1、R2的连接位置为稠环上的任意一个或多个碳原子上;
n选自1、2、3或4;
L1选自环原子为5~60的芳香基团或芳杂基团。
在一实施例中,有机化合物H2的结构如通式(6)所示:
Figure PCTCN2017112712-appb-000020
其中,R1、R2独立地选自H、D、F、CN、烯基、炔基、腈基、胺基、硝基、酰基、烷氧基、羰基、砜基、碳原子数1~30的烷基、碳原子数3~30的环烷基、或环原子数为5~60芳香族烃基或芳香族杂环基;其中,R1、R2的连接位置为稠环上的任意一个或多个碳原子上;n选自1、2、3或4;L1选自环原子为5~60的芳香基团或芳杂基团。
下面举例按照通式(2)所示的化合物的具体例子,但并不限定于:
Figure PCTCN2017112712-appb-000021
Figure PCTCN2017112712-appb-000022
Figure PCTCN2017112712-appb-000023
Figure PCTCN2017112712-appb-000024
Figure PCTCN2017112712-appb-000025
在一实施例中,有机化合物H2选自
Figure PCTCN2017112712-appb-000026
在一实施例中,有机化合物H2选自如下结构式中的一个。
Figure PCTCN2017112712-appb-000027
其中,
Ar3、Ar6独立地选自环原子数为5~30的芳香基团或芳杂基团;
X2、X3、X4、X5、X6、X7、X8、X9独立地选自单键、N(R)、C(R)2、Si(R)2、O、C=N(R)、C=C(R)2、P(R)、P(=O)R、S、S=O或SO2,X2和X3不同时为单键,X4和X5不同时为单键,X6和X7不同时为单键,X8和X9不同时为单键;
R1、R2、R独立地选自H、D、F、CN、烯基、炔基、腈基、胺基、硝基、酰基、烷氧基、羰基、砜基、碳原子数1~30的烷基、碳原子数3~30的环烷基、或环原子数为5~60芳香族烃基或芳香族杂环基;其中,R1、R2的连接位置为稠环上的任意一个或多个碳原子上。
在一实施例中,有机化合物H2的结构如通式(7)所示:
Figure PCTCN2017112712-appb-000028
其中,R1、R2、R独立地选自H、D、F、CN、烯基、炔基、腈基、胺基、硝基、酰基、烷氧基、羰基、砜基、碳原子数1~30的烷基、碳原子数3~30的环烷基、或环原子数为5~60芳香族烃基或芳香族杂环基;其中,R1、R2的连接位置为稠环上的任意一个或多个碳原子上;L1选自环原子为5~60的芳香基团或芳杂基团;L2选自单键、或环原子数为5~30的芳香基团或芳杂基团,L2的连接位置为环上任意一碳原子上;L3选自环原子为5~60的芳香基团或芳杂基团。
下面举例按照通式(3)所示的化合物的具体例子,但并不限定于:
Figure PCTCN2017112712-appb-000029
Figure PCTCN2017112712-appb-000030
Figure PCTCN2017112712-appb-000031
Figure PCTCN2017112712-appb-000032
Figure PCTCN2017112712-appb-000033
Figure PCTCN2017112712-appb-000034
Figure PCTCN2017112712-appb-000035
Figure PCTCN2017112712-appb-000036
Figure PCTCN2017112712-appb-000037
Figure PCTCN2017112712-appb-000038
Figure PCTCN2017112712-appb-000039
Figure PCTCN2017112712-appb-000040
Figure PCTCN2017112712-appb-000041
在一实施例中,有机化合物H2选自如下结构式中的一个:
Figure PCTCN2017112712-appb-000042
其中,L1选自环原子为5~60的芳香基团或芳杂基团;Ar3、Ar5独立地选自环原子数为5~30的芳香基团或芳杂基团;X1选自单键、N(R)、C(R)2、Si(R)2、O、C=N(R)、C=C(R)2、P(R)、P(=O)R、S、S=O或SO2;X2、X3独立地选自单键、N(R)、C(R)2、Si(R)2、O、C=N(R)、C=C(R)2、P(R)、P(=O)R、S、S=O或SO2,且X2和X3不同时为单键;R1、R2、R独立地选自H、D、F、CN、烯基、炔基、腈基、胺基、硝基、酰基、烷氧基、羰基、砜基、碳原子数1~30的烷基、碳原子数3~30的环烷基、或环原子数为5~60芳香族烃基或芳香族杂环基;其中,R1、R2的连接位置为稠环上的任意一个或多个碳原子上;n选自1、2、3或4。
一实施例中,有机化合物H2的结构如通式(8)所示:
Figure PCTCN2017112712-appb-000043
其中,L1选自环原子为5~60的芳香基团或芳杂基团;X2、X3独立地选自单键、N(R)、C(R)2、Si(R)2、O、C=N(R)、C=C(R)2、P(R)、P(=O)R、S、S=O或SO2,且X2和X3不同时为单键;R1、R2、R独立地选自H、D、F、CN、烯基、炔基、腈基、胺基、硝基、酰基、烷氧基、羰基、砜基、碳原子数1~30的烷基、碳原子数3~30的环烷基、或环原子数为5~60芳香族烃基或芳香族杂环基;其中,R1、R2的连接位置为稠环上的任意一个或多个碳原子 上;n选自1、2、3或4。
下面举例按照通式(4)所示的化合物的具体例子,但并不限定于:
Figure PCTCN2017112712-appb-000044
Figure PCTCN2017112712-appb-000045
Figure PCTCN2017112712-appb-000046
Figure PCTCN2017112712-appb-000047
Figure PCTCN2017112712-appb-000048
Figure PCTCN2017112712-appb-000049
Figure PCTCN2017112712-appb-000050
在一实施例中,有机化合物H2选自如下结构式中的一个:
Figure PCTCN2017112712-appb-000051
;其中,Ar4、Ar5、Ar7、Ar8独立地选自环原子数为5~30的芳香基团或芳杂基团;
X2、X3、X4、X5、X6、X7、X8、X9独立地选自单键、N(R)、C(R)2、Si(R)2、O、C=N(R)、C=C(R)2、P(R)、P(=O)R、S、S=O或SO2,X2和X3不同时为单键,X4和X5不同时为单键,X6和X7不同时为单键,X8和X9不同时为单键;R1、R2、R独立地选自H、D、F、CN、烯基、炔基、腈基、胺基、硝基、酰基、烷氧基、羰基、砜基、碳原子数1~30的烷基、碳原子数3~30的环烷基、或环原子数为5~60芳香族烃基或芳香族杂环基;其中,R1、R2的连接位置为稠环上的任意一个或多个碳原子上。
在一实施例中,有机化合物H2的结构如通式(9)所示:
Figure PCTCN2017112712-appb-000052
其中,Ar4、Ar7独立地选自环原子数为5~30的芳香基团或芳杂基团;
X4、X5、X8、X9独立地选自单键、N(R)、C(R)2、Si(R)2、O、C=N(R)、C=C(R)2、P(R)、P(=O)R、S、S=O或SO2,X4和X5不同时为单键,X8和X9不同时为单键;R1、R2、R独立地选自H、D、F、CN、烯基、炔基、腈基、胺基、硝基、酰基、烷氧基、羰基、砜基、碳原子数1~30的烷基、碳原子数3~30的环烷基、或环原子数为5~60芳香族烃基或芳香族杂环基;其中,R1、R2的连接位置为稠环上的任意一个或多个碳原子上。
下面举例按照通式(5)所示的化合物的具体例子,但并不限定于:
Figure PCTCN2017112712-appb-000053
Figure PCTCN2017112712-appb-000054
Figure PCTCN2017112712-appb-000055
在一实施例中,有机化合物H1具有电子传输的特性,有机化合物H2具有空穴传输的特性,从而使得有机化合物H1和有机化合物H2形成II型半导体异质结。
在一实施例中,有机化合物H1和有机化合物H2的摩尔比为(2:8)-(8:2)。进一步地,有机化合物H1和有机化合物H2的摩尔比为(3:7)-(7:3)。更进一步地,有机化合物H1和有机化合物H2的摩尔比为(4:6)-(6:4)。再进一步地,有机化合物H1和有机化合物H2的摩尔比为(4.5:5.5)-(5.5:4.5)。
在一实施例中,所述的有机混合物,有机化合物H1的分子量和有机化合物H2的分子量之差小于等于100克/摩尔。进一步地,有机化合物H1的分子量和有机化合物H2的分子量之差小于等于80克/摩尔。更进一步地,有机化合物H1的分子量和有机化合物H2的分子量之差小于等于70克/摩尔。再进一步地,有机化合物H1的分子量和有机化合物H2的分子量之差小于等于60克/摩尔。
再进一步地,有机化合物H1的分子量和有机化合物H2的分子量之差小于等于40克/摩尔。更优地,有机化合物H1的分子量和有机化合物H2的分子量之差小于等于30克/摩尔。
在一实施例中,所述的有机混合物,有机化合物H1的升华温度和有机化合物H2的升华温度之差小于等于50K。进一步地,有机化合物H1的升华温度和有机化合物H2的升华温度之差小于等于30K。更进一步地,有机化合物H1的升华温度和有机化合物H2的升华 温度之差小于等于20K。再进一步地,有机化合物H1的升华温度和有机化合物H2的升华温度之差小于等于10K。
在一实施例中,有机化合物H1和/或有机化合物H2的玻璃化转变温度大于等于100℃。进一步地,有机化合物H1和/或有机化合物H2的玻璃化转变温度大于等于120℃。更进一步地,有机化合物H1和/或有机化合物H2的玻璃化转变温度大于等于140℃。再进一步地,有机化合物H1和/或有机化合物H2的玻璃化转变温度大于等于160℃。再进一步地,有机化合物H1和/或有机化合物H2的玻璃化转变温度大于等于180℃。
在一实施例中,有机化合物H1和有机化合物H2均为小分子材料。从而使得该有机混合物可用于蒸镀型OLED。其中,在一实施例中,有机有机化合物H1的分子量小于等于1000克/摩尔;有机化合物H2的分子量小于等于1000克/摩尔。进一步地,有机有机化合物H1的分子量小于等于900克/摩尔;有机化合物H2的分子量小于等于900克/摩尔。更进一步地,有机有机化合物H1的分子量小于等于850克/摩尔;有机化合物H2的分子量小于等于850克/摩尔。再进一步地,有机有机化合物H1的分子量小于等于800克/摩尔;有机化合物H2的分子量小于等于800克/摩尔。再进一步地,有机有机化合物H1的分子量小于等于700克/摩尔;有机化合物H2的分子量小于等于700克/摩尔。
需要说明的是,本文中所定义的术语“小分子”是指不是聚合物,低聚物,树枝状聚合物,或共混物的分子。特别是,小分子中没有重复结构。小分子的分子量≤3000克/摩尔,较好是≤2000克/摩尔,最好是≤1500克/摩尔。
其中,高聚物,即Polymer,包括均聚物(homopolymer),共聚物(copolymer),镶嵌共聚物(block copolymer)。另外在本发明中,高聚物也包括树状物(dendrimer),有关树状物的合成及应用请参见[Dendrimers and Dendrons,Wiley-VCH Verlag GmbH&Co.KGaA,2002,Ed.George R.Newkome,Charles N.Moorefield,Fritz Vogtle.]。
共轭高聚物(conjugated polymer)是一高聚物,它的主链backbone主要是由C原子的sp2杂化轨道构成,著名的例子有:聚乙炔polyacetylene和poly(phenylene vinylene),其主链上的C原子的也可以被其他非C原子取代,而且当主链上的sp2杂化被一些自然的缺陷打断时,仍然被认为是共轭高聚物。另外在本发明中共轭高聚物也包括 主链上包含有芳基胺(aryl amine)、芳基磷化氢(aryl phosphine)及其他杂环芳烃(heteroarmotics)、有机金属络合物(organometallic complexes)等。
在一实施例中,有机化合物H1和/或有机化合物H2的分子量大于等于700克/摩尔。从而使得该有机混合物可用于印刷型OLED。进一步地,有机化合物H1和/或有机化合物H2的分子量大于等于900克/摩尔。更进一步地,有机化合物H1和/或有机化合物H2的分子量大于等于1000克/摩尔。再进一步地,有机化合物H1和/或有机化合物H2的分子量大于等于1100克/摩尔。
在一实施例中,该有机混合物在25℃下在甲苯中的溶解度大于等于10mg/ml。进一步地,该有机混合物在25℃下在甲苯中的溶解度大于等于15mg/ml。更进一步地,该有机混合物在25℃下在甲苯中的溶解度大于等于20mg/ml。
在一实施例中,该有机混合物还包括有机功能材料。该有机功能材料选自空穴(也称电洞)注入或传输材料(HIM/HTM)、空穴阻挡材料(HBM)、电子注入或传输材料(EIM/ETM)、电子阻挡材料(EBM)、有机主体材料(Host)或发光材料。
在一实施例中,发光材料选自单重态发光体(荧光发光体)、重态发光体(磷光发光体)或有机热激发延迟荧光材料(TADF材料)。其中,有机热激发延迟荧光材料可以为发光有机金属络合物。例如在WO2010135519A1、US20090134784A1和WO 2011110277A1中对各种有机功能材料有详细的描述,特此将此三篇专利文件中的全部内容并入本文作为参考。有机功能材料可以是小分子和高聚物材料。
在一实施例中,有机功能材料选自发光材料,所述发光材料的重量百分比为1%-30%。
在一实施例中,有机功能材料选自磷光发光体。此时,有机混合物可以作为主体材料,其中,磷光发光体重量百分比≤30wt%。进一步地,磷光发光体重量百分比≤25wt%。更进一步地,磷光发光体重量百分比≤20wt%。
在另一实施例中,有机功能材料选自荧光发光体。此时,有机混合物可以作为荧光主体材料,其中,荧光发光体重量百分比≤15wt%。进一步地,荧光发光体重量百分比≤10wt%。更进一步地,荧光发光体重量百分比≤8wt%。
在一实施例中,有机功能材料选自磷光发光体。还可以包括主体材料,主体材料、磷光发光体以及有机混合物三者混合。此时,有机混合物可以作为辅助发光材料,其与磷光 发光体的重量比为从1:2到2:1。在其他实施例中,有机混合物的激基络合物的能级高于磷光发光体。
在另一实施例中,有机功能材料选自TADF材料。上述有机混合物可以作为TADF主体材料,其中,TADF材料的重量百分比≤15wt%。进一步地,TADF材料的重量百分比≤10wt%。更进一步地,TADF材料的重量百分比≤8wt%。
下面对单重态发光体,三重态发光体以及TADF材料作进一步较详细的描述(但不限于此)。
1、单重态发光体(Singlet Emitter)
单重态发光体往往有较长的共轭π电子系统。迄今,已有许多例子,例如在JP2913116B和WO2001021729A1中公开的苯乙烯胺及其衍生物,以及在WO2008/006449和W O2007/140847中公开的茚并芴及其衍生物。
在一实施中,单重态发光体可选自一元苯乙烯胺,二元苯乙烯胺,三元苯乙烯胺,四元苯乙烯胺,苯乙烯膦,苯乙烯醚以及芳胺中的一种或多种。
一元苯乙烯胺包含一个无取代或取代的苯乙烯基组和至少一个胺,最好是芳香胺。二元苯乙烯胺包含二个无取代或取代的苯乙烯基组和至少一个胺,最好是芳香胺。三元苯乙烯胺包含三个无取代或取代的苯乙烯基组和至少一个胺,最好是芳香胺。四元苯乙烯胺包含四个无取代或取代的苯乙烯基组和至少一个胺,最好是芳香胺。在一实施例中,苯乙烯是二苯乙烯,且其可进一步被取代。相应的膦类和醚类的定义与胺类相似。
芳基胺或芳香胺包含三个直接联接氮的无取代或取代的芳香环或杂环系统。这些芳香族或杂环的环系统中至少有一个稠环系统。进一步地,该稠环系统具有至少14个芳香环原子。在一实施例中,芳基胺或芳香胺可选自芳香蒽胺、芳香蒽二胺、芳香芘胺、芳香芘二胺、芳香屈胺或芳香屈二胺。芳香蒽胺是指一化合物,其中,二元芳基胺基团直接连到蒽上,最好是在9的位置上。芳香蒽二胺是指一化合物,其中二个二元芳基胺基团直接连到蒽上,最好是在9,10的位置上。芳香芘胺,芳香芘二胺,芳香屈胺和芳香屈二胺的定义类似,其中二元芳基胺基团最好连到芘的1或1,6位置上。
在一实施例中,单重态发光体可以是基于乙烯胺及芳胺的单重态发光体。其可在下述专利文件中找到:WO 2006/000388,WO 2006/058737,WO 2006/000389, WO 2007/065549,WO 2007/115610,US 7250532 B2,DE 102005058557 A1,CN 1583691 A,JP 08053397 A,US 6251531 B1,US 2006/210830 A,EP 1957606 A1以及US 2008/0113101 A1,特此上述列出的专利文件中的全部内容并入本文作为参考。基于均二苯乙烯极其衍生物的单重态发光体可参考US 5121029。
在一实施例汇总,单重态发光体可选自茚并芴-胺或茚并芴-二胺(请参考WO 2006/122630)、苯并茚并芴-胺或苯并茚并芴-二胺(请参考WO 2008/006449)或二苯并茚并芴-胺或二苯并茚并芴-二胺(请参考WO2007/140847)。
其他可用作单重态发光体的材料有多环芳烃化合物,特别是如下化合物的衍生物:蒽如9,10-二(2-萘并蒽),萘,四苯,氧杂蒽,菲,芘(如2,5,8,11-四-t-丁基苝),茚并芘,苯撑如(4,4’-双(9-乙基-3-咔唑乙烯基)-1,1’-联苯),二茚并芘,十环烯,六苯并苯,芴,螺二芴,芳基芘(如US20060222886),亚芳香基乙烯(如US5121029,US5130603),环戊二烯如四苯基环戊二烯,红荧烯,香豆素,若丹明,喹吖啶酮,吡喃如4(二氰基亚甲基)-6-(4-对二甲氨基苯乙烯基-2-甲基)-4H-吡喃(DCM),噻喃,双(吖嗪基)亚胺硼化合物(US 2007/0092753 A1),双(吖嗪基)亚甲基化合物,carbostyryl化合物,噁嗪酮,苯并恶唑,苯并噻唑,苯并咪唑及吡咯并吡咯二酮。
一些单重态发光体的材料可在下述专利文件中找到:US 20070252517 A1,US 4769292,US 6020078,US 2007/0252517 A1或US 2007/0252517 A1。特此将上述列出的专利文件中的全部内容并入本文作为参考。
在下面列出一些合适的单重态发光体的例子:
Figure PCTCN2017112712-appb-000056
2、热激活延迟荧光发光材料(TADF):
传统有机荧光材料只能利用电激发形成的25%单线态激子发光,器件的内量子效率较低(最高为25%)。尽管磷光材料由于重原子中心强的自旋-轨道耦合增强了系间穿越,可以有效利用电激发形成的单线态激子和三线态激子发光,使器件的内量子效率达到100%。但磷光材料昂贵,材料稳定性差,器件效率滚降严重等问题限制了其在OLED中的应用。热激活延迟荧光发光材料是继有机荧光材料和有机磷光材料之后发展的第三代有机发光材料。该类材料一般具有小的单线态-三线态能级差(ΔEst),三线态激子可以通过反系间穿越转变成单线态激子发光。这可以充分利用电激发下形成的单线态激子和三线态激子。器件内量子效率可达到100%。
TADF材料需要具有较小的单线态-三线态能级差,一般是ΔEst<0.3eV,较好是ΔEst<0.2eV,更好是ΔEst<0.1eV,最好是ΔEst<0.05eV。在一实施例中,TADF有较好的荧光量子效率。一些TADF发光的材料可在下述专利文件中找到:CN103483332(A), TW201309696(A),TW201309778(A),TW201343874(A),TW201350558(A),US20120217869(A1),WO2013133359(A1),WO2013154064(A1),Adachi,et.al.Adv.Mater.,21,2009,4802,Adachi,et.al.Appl.Phys.Lett.,98,2011,083302,Adachi,et.al.Appl.Phys.Lett.,101,2012,093306,Adachi,et.al.Chem.Commun.,48,2012,11392,Adachi,et.al.Nature Photonics,6,2012,253,Adachi,et.al.Nature,492,2012,234,Adachi,et.al.J.Am.Chem.Soc,134,2012,14706,Adachi,et.al.Angew.Chem.Int.Ed,51,2012,11311,Adachi,et.al.Chem.Commun.,48,2012,9580,Adachi,et.al.Chem.Commun.,48,2013,10385,Adachi,et.al.Adv.Mater.,25,2013,3319,Adachi,et.al.Adv.Mater.,25,2013,3707,Adachi,et.al.Chem.Mater.,25,2013,3038,Adachi,et.al.Chem.Mater.,25,2013,3766,Adachi,et.al.J.Mater.Chem.C.,1,2013,4599,Adachi,et.al.J.Phys.Chem.A.,117,2013,5607,特此将上述列出的专利或文章文件中的全部内容并入本文作为参考。
在下面的表中列出一些合适的TADF发光材料的例子。
Figure PCTCN2017112712-appb-000057
Figure PCTCN2017112712-appb-000058
Figure PCTCN2017112712-appb-000059
3、三重态发光体(Triplet Emitter)
三重态发光体也称磷光发光体。在一实施例中,三重态发光体是金属络合物,其通式为M(L)n;其中,M是金属原子;L为有机配体,其每次出现时可以是相同或不同,它通过一个或多个位置键接或配位连接到金属原子M上。n为大于1的整数。优选地,n选自1,2,3,4,5或6。在一实施例中,这些金属络合物通过一个或多个位置联接到一个聚合物上,最好是通过有机配体。
在一实施例中,金属原子M选自过渡金属元素、镧系元素或锕系元素。进一步地,金属原子M选自Ir,Pt,Pd,Au,Rh,Ru,Os,Sm,Eu,Gd,Tb,Dy,Re,Cu或Ag。更进一步地,金属原子M选自Os,Ir,Ru,Rh,Re,Pd或Pt。
在一实施例中,,三重态发光体包含有螯合配体,即配体,通过至少两个结合点与金属配位,特别优选考虑的是三重态发光体包含有两个或三个相同或不同的双齿或多齿配体。螯合配体有利于提高金属络合物的稳定性。
有机配体可选自苯基吡啶衍生物,7,8-苯并喹啉衍生物,2(2-噻吩基)吡啶衍生物,2(1-萘基)吡啶衍生物,或2苯基喹啉衍生物。所有这些有机配体都可能被取代,例如被含氟或三氟甲基取代。辅助配体可选自乙酸丙酮或苦味酸。
在一实施例中,用作三重态发光体的金属络合物的通式如下:
Figure PCTCN2017112712-appb-000060
其中,M是金属,M选自过渡金属元素或镧系元素或锕系元素;
Ar1为环状基团,其每次出现时可以是相同或不同,且Ar1至少包含有一个施主原子,即有一孤对电子的原子,如氮或磷,通过它环状基团与金属配位连接;Ar2为环状基团,其每次出现时可以是相同或不同,Ar2至少包含有一个C原子,通过它环状基团与金属连 接;Ar1和Ar2由共价键联接在一起,可各自携带一个或多个取代基团,它们也可再通过取
代基团联接在一起;L每次出现时可以是相同或不同,L为辅助配体,优选于双齿螯合配体,最好是单阴离子双齿螯合配体;m选自1,2或3,优选地是2或3,特别优选地是3;n选自0,1,或2,优选地是0或1,特别优选地是0。
一些三重态发光体的材料极其应用的例子可在下述专利文件和文献中找到:WO 200070655,WO 200141512,WO 200202714,WO 200215645,EP 1191613,EP 1191612,EP 1191614,WO 2005033244,WO 2005019373,US 2005/0258742,WO 2009146770,WO 2010015307,WO 2010031485,WO 2010054731,WO 2010054728,WO 2010086089,WO 2010099852,WO 2010102709,US 20070087219 A1,US 20090061681 A1,US 20010053462 A1,Baldo,Thompson et al.Nature 403,(2000),750-753,US 20090061681 A1,US 20090061681 A1,Adachi et al.Appl.Phys.Lett.78(2001),1622-1624,J.Kido et al.Appl.Phys.Lett.65(1994),2124,Kido et al.Chem.Lett.657,1990,US 2007/0252517 A1,Johnson et al.,JACS 105,1983,1795,Wrighton,JACS 96,1974,998,Ma et al.,Synth.Metals 94,1998,245,US 6824895,US 7029766,US 6835469,US 6830828,US 20010053462 A1,WO 2007095118 A1,US 2012004407A1,WO 2012007088A1,WO2012007087A1,WO 2012007086A1,US 2008027220A1,WO 2011157339A1,CN 102282150A,WO 2009118087A1。特此将上述列出的专利文件和文献中的全部内容并入本文作为参考。
在下面的表中列出一些合适的三重态发光体的例子。
Figure PCTCN2017112712-appb-000061
Figure PCTCN2017112712-appb-000062
Figure PCTCN2017112712-appb-000063
一实施例的组合物包括上述有机混合物和有机溶剂。在本实施例中,组合物即为油墨。从而该组合物用于印刷工艺时,油墨的粘度,表面张力是重要的参数。合适的油墨的表面张力参数适合于特定的基板和特定的印刷方法。
在一实施例中油墨在工作温度或在25℃下的表面张力约在19dyne/cm到50dyne/cm范围内;更好是在22dyne/cm到35dyne/cm范围内;最好是在25dyne/cm到33dyne/cm范围内。
在一实施例中,油墨在工作温度或25℃下的粘度约在1cps到100cps范围内;较好是在1cps到50cps范围内;更好是在1.5cps到20cps范围内;最好是在4.0cps到20cps范围内。从而使得该组合物更便于喷墨印刷。
粘度可以通过不同的方法调节,如通过合适的溶剂选取和油墨中功能材料的浓度。包含有金属有机配合物或高聚物的油墨可方便人们将印刷油墨按照所用的印刷方法在适当的范围调节。一般地,组合物中包含的有机功能材料的重量比为0.3%~30wt%,较好的为0.5%~20wt%,更好的为0.5%~15wt%,更更好的为0.5%~10wt%,最好的为1%~5wt%。
在一实施例中,有机溶剂包括第一溶剂,该第一溶剂选自基于芳族和/或杂芳族的溶剂。进一步地,该第一溶剂可以为脂肪族链/环取代的芳族溶剂、或芳族酮溶剂,或芳族醚溶剂。
第一溶剂的例子有,但不限于:基于芳族或杂芳族的溶剂:对二异丙基苯、戊苯、四氢萘、环己基苯、氯萘、1,4-二甲基萘、3-异丙基联苯、对甲基异丙苯、二戊苯、三戊苯、戊基甲苯、邻二甲苯、间二甲苯、对二甲苯、邻二乙苯、间二乙苯、对二乙苯、1,2,3,4-四甲苯、1,2,3,5-四甲苯、1,2,4,5-四甲苯、丁苯、十二烷基苯、二己基苯、二丁基苯、对二异丙基苯、1-甲氧基萘、环己基苯、二甲基萘、3-异丙基联苯、对甲基异丙苯、1-甲基萘、1,2,4-三氯苯、1,3-二丙氧基苯、4,4-二氟二苯甲烷、1,2-二甲氧基-4-(1-丙烯基)苯、二苯甲烷、2-苯基吡啶、3-苯基吡啶、N-甲基二苯胺、4-异丙基联苯、-二氯二苯甲烷、4-(3-苯基丙基)吡啶、苯甲酸苄酯、1,1-双(3,4-二甲基苯基)乙烷、2-异丙基萘、二苄醚等;基于酮的溶剂:1-四氢萘酮,2-四氢萘酮,2-(苯基环氧)四氢萘酮,6-(甲氧基)四氢萘酮,苯乙酮、苯丙酮、二苯甲酮、及它们的衍生物,如4-甲基苯乙酮、3-甲基苯乙酮、2-甲基苯乙酮、4-甲基苯丙酮、3-甲基苯丙酮、2-甲基苯丙酮,异佛尔酮、 2,6,8-三甲基-4-壬酮、葑酮、2-壬酮、3-壬酮、5-壬酮、2-癸酮、2,5-己二酮、佛尔酮、二正戊基酮;芳族醚溶剂:3-苯氧基甲苯、丁氧基苯、苄基丁基苯、对茴香醛二甲基乙缩醛、四氢-2-苯氧基-2H-吡喃、1,2-二甲氧基-4-(1-丙烯基)苯、1,4-苯并二噁烷、1,3-二丙基苯、2,5-二甲氧基甲苯、4-乙基本乙醚、1,2,4-三甲氧基苯、4-(1-丙烯基)-1,2-二甲氧基苯、1,3-二甲氧基苯、缩水甘油基苯基醚、二苄基醚、4-叔丁基茴香醚、反式-对丙烯基茴香醚、1,2-二甲氧基苯、1-甲氧基萘、二苯醚、2-苯氧基甲醚、2-苯氧基四氢呋喃、乙基-2-萘基醚、戊醚c己醚、二辛醚、乙二醇二丁醚、二乙二醇二乙醚、二乙二醇丁基甲醚、二乙二醇二丁醚、三乙二醇二甲醚、三乙二醇乙基甲醚、三乙二醇丁基甲醚、三丙二醇二甲醚、四乙二醇二甲醚;酯溶剂:辛酸烷酯、癸二酸烷酯、硬脂酸烷酯、苯甲酸烷酯、苯乙酸烷酯、肉桂酸烷酯、草酸烷酯、马来酸烷酯、烷内酯、油酸烷酯等。
进一步地,该第一溶剂还可以选自脂肪族酮,例如,2-壬酮、3-壬酮、5-壬酮、2-癸酮、2,5-己二酮、2,6,8-三甲基-4-壬酮、佛尔酮、二正戊基酮等;或脂肪族醚,例如,戊醚、己醚、二辛醚、乙二醇二丁醚、二乙二醇二乙醚、二乙二醇丁基甲醚、二乙二醇二丁醚、三乙二醇二甲醚、三乙二醇乙基甲醚、三乙二醇丁基甲醚、三丙二醇二甲醚以及四乙二醇二甲醚中的一种或多种。
在一实施例中,该有机溶剂还包括第二溶剂,该第二溶剂选自甲醇、乙醇、2-甲氧基乙醇、二氯甲烷、三氯甲烷、氯苯、邻二氯苯、四氢呋喃、苯甲醚、吗啉、甲苯、邻二甲苯、间二甲苯、对二甲苯、1,4二氧杂环己烷、丙酮、甲基乙基酮、1,2二氯乙烷、3-苯氧基甲苯、1,1,1-三氯乙烷、1,1,2,2-四氯乙烷、醋酸乙酯、醋酸丁酯、二甲基甲酰胺、二甲基乙酰胺、二甲基亚砜、四氢萘、萘烷以及茚中的一种或多种。
在一实施例中,该组合物可以是溶液或悬浮液。这根据有机混合物和有机溶剂之间的相容性来确定。
在一实施例中,该组合物中有机混合物的重量百分比为0.01至20wt%,较好的是0.1至15wt%,更好的是0.2至10wt%,最好的是0.25至5wt%的有机混合物。
一实施例中,上述组合物在制备有机电子器件中的应用。尤其地,其作为涂料或印刷油墨在制备有机电子器件时的用途,特别优选的是通过打印或涂布的制备方法。
其中,适合的打印或涂布技术包括(但不限于)喷墨打印,喷印(Nozzle Printing), 活版印刷,丝网印刷,浸涂,旋转涂布,刮刀涂布,辊筒印花,扭转辊印刷,平版印刷,柔版印刷,轮转印刷,喷涂,刷涂或移印或狭缝型挤压式涂布等。优选的是凹版印刷,喷印及喷墨印刷。该组合物还可以包括组份例,盖组份例选自表面活性化合物、润滑剂、润湿剂、分散剂、疏水剂以及粘接剂中的一种或多种,从而可以用于调节粘度,成膜性能,提高附着性等。有关打印技术,及其对有关溶液的相关要求,如溶剂及浓度,粘度等,的详细信息请参见Helmut Kipphan主编的《印刷媒体手册:技术和生产方法》(Handbook of Print Media:Technologies and Production Methods),ISBN 3-540-67326-1。
一实施例中,上述有机混合物在有机电子器件中的应用。该有机电子器件可选自有机发光二极管(Organic Light-Emitting Diode,OLED)、有机光伏电池(Organic Photovoltage,OPV)、有机发光电池(OLEEC)、有机场效应管(organic field2effect transistor,OFET)、有机发光场效应管、有机激光器、有机自旋电子器件、有机传感器或有机等离激元发射二极管(Organic Plasmon Emitting Diode)。在一实施例中,该有机电子器件为OLED。进一步地,该有机混合物用于用于OLED器件的发光层。
一实施例中,有机电子器件包括阴极、阳极以及位于阴极和阳极之间的功能层,该功能层包括上述有机混合物。具体地,有机电子器件至少包含阴极,阳极及位于阴极和阳极之间的一个功能层,功能层至少包含一种如上所述的有机混合物。功能层选自空穴注入层、空穴传输层、空穴阻挡层、电子注入层、电子传输层、电子阻挡层以及发光层的一种或多种。
该有机电子器件可选自有机发光二极管(Organic Light-Emitting Diode,OLED)、有机光伏电池(Organic Photovoltage,OPV)、有机发光电池(OLEEC)、有机场效应管(organic field2effect transistor,OFET)、有机发光场效应管、有机激光器、有机自旋电子器件、有机传感器或有机等离激元发射二极管(Organic Plasmon Emitting Diode)。在一实施例中,该有机电子器件为有机电致发光器件,如OLED,OLEEC或有机发光场效应管。进一步地,有机发光二极管可以为蒸镀型有机发光二极管或印刷型有机发光二极管。
在一实施例中,有机电致发光器件的发光层包含上述有机混合物。
在一实施例中,有机电致发光器件包括依次层叠的基片、阳极、发光层以及阴极。其中,发光层的层数至少为一层。
基片可以是不透明或透明的。透明的基板可以用来制造一个透明的发光元器件,请参见Bulovic等Nature 1996,380,p29,和Gu等,Appl.Phys.Lett.1996,68,p2606。基片可以是刚性的或弹性的。基片也可以是塑料,金属,半导体晶片或玻璃。优选地,基片具有平滑的表面。无表面缺陷的基板是特别理想的选择。在一实施例,基片是柔性的,可选于聚合物薄膜或塑料,其玻璃化温度Tg为150℃以上,较好是超过200℃,更好是超过250℃,最好是超过300℃。柔性基板可以为聚(对苯二甲酸乙二醇酯)(PET)或聚乙二醇(2,6-萘)(PEN)。
阳极可包括导电金属或金属氧化物、或导电聚合物。阳极可以容易地注入空穴到空穴注入层(HIL)或空穴传输层(HTL)或发光层中。在一个的实施例中,阳极的功函数和发光层中的发光体或作为HIL或HTL或电子阻挡层(EBL)的p型半导体材料的HOMO能级或价带能级的差的绝对值小于0.5eV,较好是小于0.3eV,最好是小于0.2eV。阳极材料的例子包括但不限于:Al、Cu、Au、Ag、Mg、Fe、Co、Ni、Mn、Pd、Pt、ITO以及铝掺杂氧化锌(AZO)等。阳极材料也可以其他材料。阳极材料可以使用任何合适的技术沉积,如一合适的物理气相沉积法,包括射频磁控溅射,真空热蒸发,电子束(e-beam)等。在其他实施例中,阳极是图案结构化的。图案化的ITO导电基板可在市场上买到,并且可以用来制备根据本实施例的有机电子器件。
阴极可包括导电金属或金属氧化物。阴极可以容易地注入电子到EIL或ETL或直接到发光层中。在一实施例中,阴极的功函数和发光层中发光体或作为电子注入层(EIL)或电子传输层(ETL)或空穴阻挡层(HBL)的n型半导体材料的LUMO能级或导带能级的差的绝对值小于0.5eV,较好是小于0.3eV,最好是小于0.2eV。所有可用作OLED的阴极的材料都可能作为本实施例的有机电子器件的阴极材料。阴极材料的例子包括但不限于:Al、Au、Ag、Ca、Ba、Mg、LiF/Al、MgAg合金、BaF2/Al、Cu、Fe、Co、Ni、Mn、Pd、Pt、ITO等。阴极材料可以使用任何合适的技术沉积,如一合适的物理气相沉积法,包括射频磁控溅射,真空热蒸发以及电子束(e-beam)等。
OLED还可以包含其他功能层,如空穴注入层(HIL)、空穴传输层(HTL)、电子阻挡层(EBL)、电子注入层(EIL)、电子传输层(ETL)或空穴阻挡层(HBL)。适合用于这些功能层中的材料在上面及在WO2010135519A1、US20090134784A1和WO2011110277A1中有详细的描 述,特此将此三篇篇专利文件中的全部内容并入本文作为参考。
一实施例中,有机电子器件的制备方法,包括如下步骤:将所述有机混合物沉积在一个表面上,形成所述功能层。具体地,将有机化合物H1和有机化合物H2进行研磨混合;再将研磨混合后的有机化合物H1和有机化合物H2放在一个有机源中进行蒸镀,形成功能层。此外,还可以的是,在真空条件下,将有机化合物H1和有机化合物H2进行加热熔融,得到熔融混合物;将熔融混合物降至室温后,进行研磨;再将研磨后的熔融混合物放在一个有机源中进行蒸镀,形成功能层。
在一实施例中,该有机电子器件为有机电致发光器件,其功能层为发光层。
在另一实施例中,有机电子器件的制备方法,包括如下步骤:在真空下,将有机化合物H1和有机化合物H2分别放在两个源中分别进行蒸镀,形成功能层。需要说明的是,该有机电子器件为有机电致发光器件,其功能层为发光层。
在一实施例中,该有机电致发光器件发光器件的发光波长在300到1000nm之间,较好的是在350到900nm之间,更好的是在400到800nm之间。
在一实施例中,上述有机电子器件在电子设备中的应用。电子设备选自显示设备、照明设备、光源或传感器。其中,有机电子器件可以为有机电致发光器件。
一种电子设备,包括上述有机电子器件。
有机化合物H1(1-21)的合成
Figure PCTCN2017112712-appb-000064
Figure PCTCN2017112712-appb-000065
氮气环境下,将(31.6g,80mmol)的化合物1-21-1和200mL无水四氢呋喃加入到500mL的三口瓶中,降温到-78℃,缓慢滴加85mmol正丁基锂,反应2小时,一次性 注入90mmol异丙醇频哪醇硼酸酯,让反应自然升到室温,继续反应12小时,加入纯净水淬灭反应,旋走大部分溶剂后,用二氯甲烷萃取并水洗3遍,收集有机相,旋干后重结晶,产率90%。
Figure PCTCN2017112712-appb-000066
氮气环境下,将(26.5g,60mmol)的化合物1-21-2和(13.6g,60mmol)的化合物1-21-3,(3.45g,3mmol)四(三苯基磷)钯,(2.6g,8mmol)四丁基溴化铵,(3.2g,80mmol)氢氧化钠,(20mL)水和(150mL)甲苯加入250mL的三口瓶中,加热80℃搅拌反应12小时,结束反应,将反应液旋转蒸发掉大部分溶剂,用二氯甲烷溶解水洗3遍,收集有机液拌硅胶过柱进行纯化,产率70%。
Figure PCTCN2017112712-appb-000067
氮气环境下,将(7g,30mmol)的化合物1-21-5和150mL无水四氢呋喃加入到300mL的三口瓶中,降温到-78℃,缓慢滴加35mmol正丁基锂,反应2小时,一次性注入40mmol异丙醇频哪醇硼酸酯,让反应自然升到室温,继续反应12小时,加入纯净水淬灭反应,旋走大部分溶剂后,用二氯甲烷萃取并水洗3遍,收集有机相,旋干后重结晶,产率90%。
Figure PCTCN2017112712-appb-000068
氮气环境下,将(10.1g,20mmol)的化合物1-21-4和(5.6g,20mmol)的化合物1-21-6,(1.15g,1mmol)四(三苯基磷)钯,(1.3g,4mmol)四丁基溴化铵,(1.6g,40mmol)氢氧化钠,(10mL)水和(60mL)甲苯加入150mL的三口瓶中,加热80℃搅拌反应12小时,结束反应,将反应液旋转蒸发掉大部分溶剂,用二氯甲烷溶解水洗3遍,收集有机液拌硅胶过柱进行纯化,得到该化合物,产率80%。
有机化合物H1(1-22)的合成
Figure PCTCN2017112712-appb-000069
氮气环境下,将(10.1g,20mmol)的化合物1-21-4和(5.6g,20mmol)的化合物1-22-1,(1.15g,1mmol)四(三苯基磷)钯,(1.3g,4mmol)四丁基溴化铵,(1.6g,40mmol)氢氧化钠,(10mL)水和(60mL)甲苯加入150mL的三口瓶中,加热80℃搅拌反应12小时,结束反应,将反应液旋转蒸发掉大部分溶剂,用二氯甲烷溶解水洗3遍,收集有机液拌硅胶过柱进行纯化,产率80%。
有机化合物H2(2-7)的合成
Figure PCTCN2017112712-appb-000071
Figure PCTCN2017112712-appb-000072
氮气环境下,将(62.4g,200mmol)的化合物2-7-1和(56g,200mmol)的化合物1-22-1,(11.5g,10mmol)四(三苯基磷)钯,(13g,40mmol)四丁基溴化铵,(16g,400mmol)氢氧化钠,(50mL)水和(600mL)甲苯加入1500mL的三口瓶中,加热80℃搅拌反应12小时,结束反应,将反应液旋转蒸发掉大部分溶剂,用二氯甲烷溶解水洗3遍,收集有机液拌硅胶过柱进行纯化,产率70%。
Figure PCTCN2017112712-appb-000073
氮气环境下,将(38.5g,100mmol)的化合物2-7-2,(16.7g,100mmol)的化合物2-7-3,(0.7g,10mmol)铜粉,(13.8g,100mmol)碳酸钾和(2.65g,5mmol)18-冠醚-6和(400mL)邻二氯苯加入到1000mL的两口瓶中,加热150℃搅拌反应24个小时,结束反应,将反应液减压蒸馏掉大部分溶剂,用二氯甲烷溶解水洗3遍,收集有机液拌硅胶过柱进行纯化,产率80%。
Figure PCTCN2017112712-appb-000074
Figure PCTCN2017112712-appb-000075
将(28.3g,60mmol)的化合物2-7-4和100mL N,N-二甲基甲酰胺加入250mL单口瓶中,冰浴下滴加60mmol NBS的N,N-二甲基甲酰胺溶液,避光搅拌反应12小时,结束反应,将反应液倒入到500mL水中,抽滤,滤渣重结晶,产率85%。
Figure PCTCN2017112712-appb-000076
氮气环境下,将(6.68g,40mmol)的化合物2-7-3,(18.9g,40mmol)的化合物2-7-5,(0.26g,4mmol)铜粉,(5.52g,40mmol)碳酸钾和(1g,2mmol)18-冠醚-6和(100mL)邻二氯苯加入到300mL的两口瓶中,加热150℃搅拌反应24个小时,结束反应,将反应液减压蒸馏掉大部分溶剂,用二氯甲烷溶解水洗3遍,收集有机液拌硅胶过柱进行纯化,产率75%。
有机化合物H2(2-29)的合成
Figure PCTCN2017112712-appb-000077
Figure PCTCN2017112712-appb-000078
氮气环境下,将(27.4g,100mmol)的化合物2-29-1和(19.2g,100mmol)的化合物2-29-2,(5.8g,5mmol)四(三苯基磷)钯,(6.5g,20mmol)四丁基溴化铵,(8g,200mmol)氢氧化钠,(30mL)水和(200mL)甲苯加入500mL的三口瓶中,加热80℃搅拌反应12小时,结束反应,将反应液旋转蒸发掉大部分溶剂,用二氯甲烷溶解水洗3遍,收集有机液拌硅胶过柱进行纯化,产率90%。
Figure PCTCN2017112712-appb-000079
氮气环境下,将(16g,60mmol)的化合物2-29-3和(20g,120mmol)的化合物2-7-3,碳酸钾(27.6g,200mmol),然后加入200mL N,N-二甲基甲酰胺溶剂,155℃搅拌反应12小时,冷却到室温,二氯甲烷萃取,收集有机液拌硅胶过柱进行纯化,产率80%。
有机化合物H2(3-2)的合成
Figure PCTCN2017112712-appb-000080
Figure PCTCN2017112712-appb-000081
氮气环境下,将(16.7g,100mmol)的化合物2-7-3,(24.5g,105mmol)的化合物3-2-2,(0.65g,10mmol)铜粉,(13.8g,100mmol)碳酸钾和(2.65g,5mmol)18-冠醚-6和(200mL)邻二氯苯加入到500mL的两口瓶中,加热150℃搅拌反应24个小时,结束反应,将反应液减压蒸馏掉大部分溶剂,用二氯甲烷溶解水洗3遍,收集有机液拌硅胶过柱进行纯化,产率80%。
Figure PCTCN2017112712-appb-000082
将(19.1g,60mmol)的化合物3-2-3和100mL N,N-二甲基甲酰胺加入250mL单口瓶中,冰浴下滴加60mmol NBS的N,N-二甲基甲酰胺溶液,避光搅拌反应12小时,结束反应,将反应液倒入到500mL水中,抽滤,滤渣重结晶,产率90%。
Figure PCTCN2017112712-appb-000083
氮气环境下,将(15.9g,40mmol)的化合物3-2-4和300mL无水四氢呋喃加入到500mL的三口瓶中,降温到-78℃,缓慢滴加50mmol正丁基锂,反应2小时,一次性注入55mmol异丙醇频哪醇硼酸酯,让反应自然升到室温,继续反应12小时,加入纯净 水淬灭反应,旋走大部分溶剂后,用二氯甲烷萃取并水洗3遍,收集有机相,旋干后重结晶,产率80%。
Figure PCTCN2017112712-appb-000084
氮气环境下,将(16.7g,100mmol)的化合物2-7-3,(24.5g,105mmol)的化合物3-2-5,(0.65g,10mmol)铜粉,(13.8g,100mmol)碳酸钾和(2.65g,5mmol)18-冠醚-6和(200mL)邻二氯苯加入到500mL的两口瓶中,加热150℃搅拌反应24个小时,结束反应,将反应液减压蒸馏掉大部分溶剂,用二氯甲烷溶解水洗3遍,收集有机液拌硅胶过柱进行纯化,产率75%。
Figure PCTCN2017112712-appb-000085
将(19.1g,60mmol)的化合物3-2-6和100mL N,N-二甲基甲酰胺加入250mL单口瓶中,冰浴下滴加60mmol NBS的N,N-二甲基甲酰胺溶液,避光搅拌反应12小时,结束反应,将反应液倒入到500mL水中,抽滤,滤渣重结晶,产率88%。
Figure PCTCN2017112712-appb-000086
氮气环境下,将(8.9g,20mmol)的化合物3-2-5和(8g,20mmol)的化合物3-2-7,(1.15g,1mmol)四(三苯基磷)钯,(2.6g,8mmol)四丁基溴化铵,(3.2 g,80mmol)氢氧化钠,(10mL)水和(100mL)甲苯加入250mL的三口瓶中,加热80℃搅拌反应12小时,结束反应,将反应液旋转蒸发掉大部分溶剂,用二氯甲烷溶解水洗3遍,收集有机液拌硅胶过柱进行纯化,产率80%。
有机化合物H2(3-20)的合成
Figure PCTCN2017112712-appb-000087
Figure PCTCN2017112712-appb-000088
氮气环境下,将(24.5g,60mmol)的化合物3-20-1,(18.4g,60mmol)的化合物3-20-2,(0.39g,6mmol)铜粉,(8.28g,60mmol)碳酸钾和(2.65g,5mmol)18-冠醚-6和(150mL)邻二氯苯加入到300mL的两口瓶中,加热150℃搅拌反应24个小时,结束反应,将反应液减压蒸馏掉大部分溶剂,用二氯甲烷溶解水洗3遍,收集有机液拌硅胶过柱进行纯化,产率85%。
有机化合物H2(4-10)的合成
Figure PCTCN2017112712-appb-000089
Figure PCTCN2017112712-appb-000090
氮气环境下,将(26.7g,60mmol)的化合物3-2-5和(12.1g,60mmol)的化合物4-10-1,(3.45g,3mmol)四(三苯基磷)钯,(7.8g,24mmol)四丁基溴化铵,(3.2g,80mmol)氢氧化钠,(20mL)水和(120mL)甲苯加入250mL的三口瓶中,加热80℃搅拌反应12小时,结束反应,将反应液旋转蒸发掉大部分溶剂,用二氯甲烷溶解水洗3遍,收集有机液拌硅胶过柱进行纯化,产率80%。
Figure PCTCN2017112712-appb-000091
氮气环境下,将(17.6g,40mmol)的化合物4-10-2和(10.1g,100mmol)的三乙基磷加入150mL两口瓶中,加热190℃搅拌反应12小时,结束反应,将反应液减压蒸馏掉大部分溶剂,用二氯甲烷溶解水洗3遍,收集有机液拌硅胶过柱进行纯化,产率85%。
Figure PCTCN2017112712-appb-000092
Figure PCTCN2017112712-appb-000093
氮气环境下,将(8.2g,20mmol)的化合物4-10-4,(6.2g,20mmol)的化合物4-10-5,(0.13g,2mmol)铜粉,(2.8g,20mmol)碳酸钾和(2.65g,5mmol)18-冠醚-6和(80mL)邻二氯苯加入到150mL的两口瓶中,加热150℃搅拌反应24个小时,结束反应,将反应液减压蒸馏掉大部分溶剂,用二氯甲烷溶解水洗3遍,收集有机液拌硅胶过柱进行纯化,产率80%。
有机化合物H2(5-2)的合成
Figure PCTCN2017112712-appb-000094
Figure PCTCN2017112712-appb-000095
氮气环境下,将(36.9g,100mmol)的化合物5-2-1和(20.2g,100mmol)的化合物4-10-1,(5.75g,5mmol)四(三苯基磷)钯,(16.3g,50mmol)四丁基溴化铵,(6g,150mmol)氢氧化钠,(20mL)水和(120mL)甲苯加入250mL的三口瓶中,加热80℃搅拌反应12小时,结束反应,将反应液旋转蒸发掉大部分溶剂,用二氯甲烷溶解水洗3遍,收集有机液拌硅胶过柱进行纯化,产率80%。
Figure PCTCN2017112712-appb-000096
Figure PCTCN2017112712-appb-000097
氮气环境下,将(21.8g,60mmol)的化合物5-2-2和(10.1g,100mmol)的三乙基磷加入150mL两口瓶中,加热190℃搅拌反应12小时,结束反应,将反应液减压蒸馏掉大部分溶剂,用二氯甲烷溶解水洗3遍,收集有机液拌硅胶过柱进行纯化,产率85%。
Figure PCTCN2017112712-appb-000098
氮气环境下,将(10g,30mmol)的化合物5-2-3,(6.1g,30mmol)的化合物5-2-4,(0.26g,4mmol)铜粉,(5.6g,40mmol)碳酸钾和(2.65g,5mmol)18-冠醚-6和(80mL)邻二氯苯加入到150mL的两口瓶中,加热150℃搅拌反应24个小时,结束反应,将反应液减压蒸馏掉大部分溶剂,用二氯甲烷溶解水洗3遍,收集有机液拌硅胶过柱进行纯化,产率75%。
Figure PCTCN2017112712-appb-000099
将(8.2g,20mmol)的化合物5-2-5和100mL N,N-二甲基甲酰胺加入250mL单口瓶中,冰浴下滴加20mmol NBS的N,N-二甲基甲酰胺溶液,避光搅拌反应12小时,结束反应,将反应液倒入到500mL水中,抽滤,滤渣重结晶,产率88%。
Figure PCTCN2017112712-appb-000100
氮气环境下,将(4.9g,10mmol)的化合物5-2-6和80mL无水四氢呋喃加入到150mL的三口瓶中,降温到-78℃,缓慢滴加50mmol正丁基锂,反应2小时,一次性注入12mmol异丙醇频哪醇硼酸酯,让反应自然升到室温,继续反应12小时,加入纯净水淬灭反应,旋走大部分溶剂后,用二氯甲烷萃取并水洗3遍,收集有机相,旋干后重结晶,产率80%。
Figure PCTCN2017112712-appb-000101
氮气环境下,将(2.4g,5mmol)的化合物5-2-6和(2.7g,5mmol)的化合物5-2-7,(1.15g,1mmol)四(三苯基磷)钯,(1.6g,5mmol)四丁基溴化铵,(0.6g,15mmol)氢氧化钠,(2mL)水和(30mL)甲苯加入100mL的三口瓶中,加热80℃搅拌反应12小时,结束反应,将反应液旋转蒸发掉大部分溶剂,用二氯甲烷溶解水洗3遍,收集有机液拌硅胶过柱进行纯化,产率80%。
有机化合物的能量结构
有机材料的能级可通过量子计算得到,比如利用TD-DFT(含时密度泛函理论)通过Gaussian03W(Gaussian Inc.),具体的模拟方法可参见WO2011141110。首先用半经验方法“Ground State/Semi-empirical/Default Spin/AM1”(Charge 0/Spin Singlet)来优化分子几何结构,然后有机分子的能量结构由TD-DFT(含时密度泛函理论)方法算得“TD-SCF/DFT/Default Spin/B3PW91”与基组“6-31G(d)”(Charge 0/Spin Singlet)。HOMO和LUMO能级按照下面的校准公式计算,S1和T1直接使用。
HOMO(eV)=((HOMO(G)×27.212)-0.9899)/1.1206
LUMO(eV)=((LUMO(G)×27.212)-2.0041)/1.385
其中,HOMO(G)和LUMO(G)是Gaussian 03W的直接计算结果,单位为Hartree。结果 如表一所示:
表一
Figure PCTCN2017112712-appb-000102
Figure PCTCN2017112712-appb-000103
OLED器件的制备及表征
Figure PCTCN2017112712-appb-000104
在本实施例中,分别用化合物(1-21):(3-2)=1:1、(1-21):(3-20)=1:1、(1-22):(3-2)=1:1和(1-22):(3-20)=1:1(质量比)作为主体材料,Ir(p-ppy)3(三(2-苯基吡啶)合铱(III))作为发光材料,HATCN作为空穴注入材料,SFNFB作为空穴传输材料,NaTzF2作为电子传输材料,Liq作为电子注入材料,构造成器件结构为ITO/HATCN/HTL/主体材料:Ir(p-ppy)3(10%)/NaTzF2:Liq/Liq/Al的电致发光器件。
上述材料HATCN、SFNFB、Ir(p-ppy)3、NaTzF2、Liq均是可商业购得,如吉林奥莱德(Jilin OLED Material Tech Co.,Ltd,www.jl-oled.com)。上述材料HATCN、SFNFB、Ir(p-ppy)3、NaTzF2、Liq也可以分别采用合成方法获得,详见现有技术中的参考文献或专利:或专利:J.Org.Chem.,1986,51,5241、WO2012034627、WO2010028151、US2013248830。
OLED器件的制备
OLED器件的结构为ITO/HATCN/SFNFB/主体材料:Ir(p-ppy)3(10%)/NaTzF2:Liq/Liq/Al。OLED器件的制备方法包括如下步骤:
S1:ITO(铟锡氧化物)导电玻璃基片的清洗:使用各种溶剂(例如氯仿、丙酮或异丙醇中的一种或几种)清洗,然后进行紫外臭氧处理;
S2:HATCN(30nm)/SFNFB(50nm)/主体材料:10%Ir(p-ppy)3(40nm),NaTzF2:Liq(30nm),Liq(1nm),Al(100nm)在高真空(1×10-6毫巴)中热蒸镀而成;
S3:封装:OLED器件在氮气手套箱中用紫外线硬化树脂封装。
其中,有机混合物作为发光层的主体材料,主体材料的的制作方法如上述所述。具体地,包括如下三种方式:
(1)真空共蒸:将有机化合物H1和有机化合物H2分别放在两个不同的源,通过控制各自的蒸发速率来控制两种主体材料的掺杂比例。
(2)简单共混:将有机化合物H1和有机化合物H2按一定的配比分别称好后,掺杂在一起,在室温下进行研磨,所得的混合物放在一个有机源中进行蒸镀。
(3)有机合金:将有机化合物H1和有机化合物H2按一定的配比分别称好后,掺杂在一起,在真空度低于10-3torr下,加热搅拌直至混合物熔融,降温后,将混合物进行研磨,所得的混合物放在一个有机源中进行蒸镀。
表2:不同OLED器件中的主体材料。
OLED器件 主体材料 器件寿命T90@1000nits
OLED1 (1-21):(3-2)=1:1真空共蒸 12
OLED2 (1-21):(3-2)=1:1简单共混 16
OLED3 (1-21):(3-2)=1:1有机合金 18
OLED4 (1-21):(3-20)=1:1真空共蒸 10
OLED5 (1-21):(3-20)=1:1简单共混 14
OLED6 (1-21):(3-20)=1:1有机合金 16
OLED7 (1-22):(3-2)=1:1真空共蒸 18
OLED8 (1-22):(3-2)=1:1简单共混 22
OLED9 (1-22):(3-2)=1:1有机合金 25
OLED10 (1-22):(3-20)=1:1真空共蒸 15
OLED11 (1-22):(3-20)=1:1简单共混 19
OLED12 (1-22):(3-20)=1:1有机合金 20
RefOLED mCP 1
Figure PCTCN2017112712-appb-000105
其中mCP购于吉林奥莱德。
各OLED器件的电流电压(J-V)特性通过表征设备来表征,同时记录重要的参数如效率,寿命及外部量子效率。经检测,基于有机混合物的OLED器件的寿命如表2所示,其中所表示的寿命数据均以基于RefOLED的器件的相对寿命,其中,OLED3、OLED6、OLED9和OLED12的发光寿命在同类型器件中是最高的,其中,基于OLED9的器件寿命比RefOELD的10倍以上。可见,采用上述有机化合物制备的OLED器件,其寿命得到大大提高。

Claims (20)

  1. 一种有机混合物,其特征在于,包括两种有机化合物H1和H2,所述有机化合物H1为螺环类化合物,所述有机化合物H2为含富电子基团的化合物;其中,min((LUMO(H1)-HOMO(H2)),(LUMO(H2)-HOMO(H1)))≤min(ET(H1),ET(H2))+0.1eV;其中,LUMO(H1)、HOMO(H1)及ET(H1)分别表示所述有机化合物H1的最低未占有轨道、最高占有轨道以及三线态能级;LUMO(H2)、HOMO(H2)及ET(H2)分别表示所述有机化合物H2的最低未占有轨道、最高占有轨道以及三线态能级。
  2. 根据权利要求1所述的有机混合物,其特征在于,所述有机化合物H1的结构如通式(1)所示:
    Figure PCTCN2017112712-appb-100001
    其中,
    Z1、Z2、Z3独立地选自N或C原子,且Z1、Z2、Z3中至少一个为N;
    Y选自单键、N(R)、C(R)2、Si(R)2、O、C=N(R)、C=C(R)2、P(R)、P(=O)R、S、S=O或SO2,R选自H、D、F、CN、羰基、砜基、烷氧基、碳原子数1~30的烷基、碳原子数3~30的环烷基或环原子数为5~60的芳香基团或芳杂基团;
    Ar1、Ar2独立地选自环原子数为5~60的芳香基团或芳杂基团。
  3. 根据权利要求2所述的有机混合物,其特征在于,所述Ar1和所述Ar2独立地选自如下基团中的一种:
    Figure PCTCN2017112712-appb-100002
    其中,所述Ar9、Ar10为环原子数为5~48的芳香基团或芳杂基团。
  4. 根据权利要求2所述有机混合物,其特征在于,所述有机化合物H1选自如下结构的化合物中的一种:
    Figure PCTCN2017112712-appb-100003
  5. 根据权利要求2-4中任一项所述的有机混合物,其特征在于,所述有机化合物H2为如下通式(2)-(5)之一所示的化合物:
    Figure PCTCN2017112712-appb-100004
    其中,
    L1选自环原子为5~60的芳香基团或芳杂基团;
    L2选自单键、或环原子数为5~30的芳香基团或芳杂基团,L2的连接位置为环上任意 一碳原子上;
    Ar3、Ar4、Ar5、Ar6、Ar7、Ar8独立地选自环原子数为5~30的芳香基团或芳杂基团;
    X1选自单键、N(R)、C(R)2、Si(R)2、O、C=N(R)、C=C(R)2、P(R)、P(=O)R、S、S=O或SO2
    X2、X3、X4、X5、X6、X7、X8、X9独立地选自单键、N(R)、C(R)2、Si(R)2、O、C=N(R)、C=C(R)2、P(R)、P(=O)R、S、S=O或SO2,但X2和X3不同时为单键,X4和X5不同时为单键,X6和X7不同时为单键,X8和X9不同时为单键;
    R1、R2、R独立地选自H、D、F、CN、烯基、炔基、腈基、胺基、硝基、酰基、烷氧基、羰基、砜基、碳原子数1~30的烷基、碳原子数3~30的环烷基、或环原子数为5~60芳香族烃基或芳香族杂环基;其中,R1、R2的连接位置为稠环上的任意一个或多个碳原子上;
    n为1、2、3或4。
  6. 根据权利要求5所述的有机混合物,其特征在于,所述有机化合物H2的结构如通式(6)-(9)之一所示:
    Figure PCTCN2017112712-appb-100005
    其中,L3选自单键、或环原子数为5~30的芳香基团或芳杂基团,L2的连接位置为环上任意一碳原子上。
  7. 根据权利要求6所述的有机混合物,其特征在于,所述Ar1、Ar2、Ar3、Ar4、Ar5、Ar6、Ar7以及Ar8独立地选自以下基团中的一种:
    Figure PCTCN2017112712-appb-100006
    其中,
    A1、A2、A3、A4、A5、A6、A7、A8独立地选自CR3或N;
    Y1、Y2独立地选自CR4R5、SiR4R5、NR3、C(=O)、S或O;
    R3、R4、R5独立地选自H、D、具有1至20个C原子的直链烷基、具有1至20个C原子的烷氧基、具有1至20个C原子硫代烷氧基基团、具有3至20个C原子的支链或环状的烷基、具有3至20个C原子的支链或环状的烷氧基、具有3至20个C原子的支链或环状的硫代烷氧基基团、具有3至20个C原子的支链或环状的甲硅烷基基团、具有1至20个C原子的取代的酮基基团、具有2至20个C原子的烷氧基羰基基团、具有7至20个C原子的芳氧基羰基基团、氰基基团、氨基甲酰基基团、卤甲酰基基团、甲酰基基团、异氰基基团、异氰酸酯基团、硫氰酸酯基团、异硫氰酸酯基团、羟基基团、硝基基团、CF3基团、Cl、Br、F、可交联的基团、具有5-40个环原子的取代或未取代的芳族或杂芳族环系以及具有5至40个环原子的芳氧基或杂芳氧基基团中的一种或多种;其中,R3,R4,R5中的至少一个与所述基团键合的环形成单环或多环的脂族或芳族环,或者R3,R4,R5中的至少两个相互之间形成单环或多环的脂族或芳族环。
  8. 根据权利要求7所述的有机混合物,其特征在于,所述Ar1、Ar2、Ar3、Ar4、Ar5、Ar6、Ar7、Ar8、A1以及A2独立地选自如下结构基团中的一种:
    Figure PCTCN2017112712-appb-100007
    其中,所述结构基团的环上的H可被任意取代。
  9. 根据权利要求8所述的有机混合物,其特征在于,所述有机化合物H2选自如下结构的化合物中的一种:
    Figure PCTCN2017112712-appb-100008
    Figure PCTCN2017112712-appb-100009
  10. 根据权利要求1-5中任一项所述的有机混合物,其特征在于,所述有机化合物H1和所述有机化合物H2形成II型半导体异质结。
  11. 根据权利要求1-5中任一项所述的有机混合物,其特征在于,所述有机化合物H1和/或所述有机化合物H2的(HOMO-(HOMO-1))≥0.2eV;其中,HOMO指的是所述有机化合物H1或所述有机化合物H2的最高占有轨道,(HOMO-1)指的是所述有机化合物H1或所述有机化合物H2的比最高占有轨道少一级的占有轨道。
  12. 根据权利要求1-5中任一项所述的有机混合物,其特征在于,所述有机化合物H1的分子量和所述有机化合物H2的分子量之差小于等于100克/摩尔。
  13. 根据权利要求1-5中任一项所述的有机混合物,其特征在于,所述有机化合物H1的升华温度和所述有机化合物H2的升华温度之差小于等于30K。
  14. 根据权利要求1所述的有机混合物,其特征在于,还包括有机功能材料;所述有机功能材料选自空穴注入材料、空穴传输材料、空穴阻挡材料、电子注入材料、电子传输材料、电子阻挡材料或发光材料。
  15. 根据权利材料14所述的有机混合物,其特征在于,所述有机功能材料选自发光材料,所述发光材料的重量百分比为1%-30%。
  16. 一种组合物,其特征在于,所述组合物包括有机溶剂和如权利要求1-15中任一项所述的有机混合物。
  17. 一种有机电子器件,其特征在于,包括阴极、阳极以及位于所述阴极和所述阳极之间的功能层,所述功能层包括权利要求1-15中任一项所述的有机混合物或如权利要求16所述的组合物。
  18. 根据权利要求17述的有机电子器件,其特征在于,所述的有机电子器件为有机发光二极管、有机光伏电池、有机发光电池、有机场效应管、有机发光场效应管、有机传感器或有机等离激元发射二极管。
  19. 一种如权利要求17或18所述的有机电子器件的制备方法,其特征在于,包括如下步骤:
    将所述有机化合物H1和所述有机化合物H2进行研磨混合;
    将研磨混合后的所述有机化合物H1和所述有机化合物H2放在一个有机源中进行蒸镀,形成所述功能层。
  20. 一种如权利要求17或18所述的有机电子器件的制备方法,其特征在于,包括如下步骤:
    在真空下,将所述有机化合物H1和所述有机化合物H2分别放在两个源中分别进行蒸镀,形成所述功能层。
PCT/CN2017/112712 2016-11-23 2017-11-23 有机混合物、有机组合物、有机电子器件及其制备方法 WO2018095391A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780059593.0A CN109791982B (zh) 2016-11-23 2017-11-23 有机混合物、有机组合物、有机电子器件及其制备方法
US16/463,349 US20190355911A1 (en) 2016-11-23 2017-11-23 Organic mixture, organic composition, organic electronic component and preparation method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611046922 2016-11-23
CN201611046922.1 2016-11-23

Publications (1)

Publication Number Publication Date
WO2018095391A1 true WO2018095391A1 (zh) 2018-05-31

Family

ID=62195767

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/112712 WO2018095391A1 (zh) 2016-11-23 2017-11-23 有机混合物、有机组合物、有机电子器件及其制备方法

Country Status (3)

Country Link
US (1) US20190355911A1 (zh)
CN (1) CN109791982B (zh)
WO (1) WO2018095391A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100131745A (ko) * 2009-06-08 2010-12-16 제일모직주식회사 유기광전소자용 조성물 및 이를 이용한 유기광전소자
CN102077379A (zh) * 2008-08-08 2011-05-25 默克专利有限公司 有机电致发光器件
CN103765623A (zh) * 2011-08-22 2014-04-30 默克专利有限公司 有机电致发光器件

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9666806B2 (en) * 2009-09-16 2017-05-30 Merck Patent Gmbh Formulations for the production of electronic devices
US20140319428A1 (en) * 2011-07-27 2014-10-30 Merck Patent Gmbh Small molecules and their use as organic semiconductors
US20150108409A1 (en) * 2012-06-05 2015-04-23 Merck Patent Gmbh Small molecules and their use as organic semiconductors
CN104277063B (zh) * 2013-07-07 2019-02-01 潘才法 一种基于环硼氮烷的化合物及在有机电子器件中的应用
WO2015154845A1 (en) * 2014-04-10 2015-10-15 Merck Patent Gmbh Organic semiconducting compounds
CN103985822B (zh) * 2014-05-30 2017-05-10 广州华睿光电材料有限公司 有机混合物、包含其的组合物、有机电子器件及应用
CN105679949A (zh) * 2014-12-04 2016-06-15 广州华睿光电材料有限公司 有机发光晶体管及其应用
CN107004778B (zh) * 2014-12-04 2019-12-20 广州华睿光电材料有限公司 有机混合物、包含其的组合物、有机电子器件及应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102077379A (zh) * 2008-08-08 2011-05-25 默克专利有限公司 有机电致发光器件
KR20100131745A (ko) * 2009-06-08 2010-12-16 제일모직주식회사 유기광전소자용 조성물 및 이를 이용한 유기광전소자
CN103765623A (zh) * 2011-08-22 2014-04-30 默克专利有限公司 有机电致发光器件

Also Published As

Publication number Publication date
CN109791982B (zh) 2023-10-17
CN109791982A (zh) 2019-05-21
US20190355911A1 (en) 2019-11-21

Similar Documents

Publication Publication Date Title
CN111278795B (zh) 有机混合物及其在有机电子器件中的应用
CN109792002B (zh) 有机混合物、组合物及有机电子器件和应用
WO2017092495A1 (zh) 热激发延迟荧光材料、高聚物、混合物、组合物以及有机电子器件
WO2017092508A1 (zh) D-a型化合物及其应用
EP3547385B1 (en) Organic mixture, composition, and organic electronic component
WO2018103749A1 (zh) 三嗪类稠环衍生物及其在有机电子器件中的应用
WO2018095390A1 (zh) 有机化合物及其应用、有机混合物、有机电子器件
CN109575002A (zh) 有机化合物及其应用
CN109705107B (zh) 稠环有机化合物、包含其的混合物及有机电子器件
WO2018103744A1 (zh) 混合物、组合物及有机电子器件
CN111848590B (zh) 化合物、高聚物、混合物、组合物及有机电子器件
WO2019120263A1 (zh) 有机混合物及其在有机电子器件中的应用
CN110746405B (zh) 一种含吡咯基团的化合物及其在有机电子器件中的应用
CN109843837A (zh) 含氮稠杂环的化合物及其应用
WO2019128762A1 (zh) 含酰胺键基团的聚合物、混合物、组合物及其应用
WO2018095393A1 (zh) 有机化合物、有机混合物、有机电子器件
WO2017118252A1 (zh) 含砜基稠杂环化合物及其应用
WO2019128599A1 (zh) 含氮杂环化合物、高聚物、混合物、组合物及其用途
CN110669048A (zh) 基于含氮稠环的有机化合物及其应用
CN112724125B (zh) 含氮有机化合物及其应用
WO2018103746A1 (zh) 咔唑苯类稠环衍生物、聚合物、混合物、组合物、有机电子器件及其制备方法
CN115925719A (zh) 一种有机化合物、组合物及其在有机电子器件中的应用
CN110734396B (zh) 有机化合物、高聚物、混合物、组合物及有机电子器件
WO2018103748A1 (zh) 芘三嗪类衍生物及其在有机电子器件中的应用
WO2019114611A1 (zh) 芳香胺化合物,包含其的有机电子器件及应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17874371

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17874371

Country of ref document: EP

Kind code of ref document: A1