WO2018095090A1 - 防短缩覆膜支架及其制作方法 - Google Patents

防短缩覆膜支架及其制作方法 Download PDF

Info

Publication number
WO2018095090A1
WO2018095090A1 PCT/CN2017/099024 CN2017099024W WO2018095090A1 WO 2018095090 A1 WO2018095090 A1 WO 2018095090A1 CN 2017099024 W CN2017099024 W CN 2017099024W WO 2018095090 A1 WO2018095090 A1 WO 2018095090A1
Authority
WO
WIPO (PCT)
Prior art keywords
stent
wave
straight
stent graft
short
Prior art date
Application number
PCT/CN2017/099024
Other languages
English (en)
French (fr)
Inventor
肖本好
刘彩萍
李�真
Original Assignee
先健科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 先健科技(深圳)有限公司 filed Critical 先健科技(深圳)有限公司
Publication of WO2018095090A1 publication Critical patent/WO2018095090A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • A61F2/06Blood vessels
    • A61F2/07Stent-grafts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/89Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure the wire-like elements comprising two or more adjacent rings flexibly connected by separate members
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • A61F2/06Blood vessels
    • A61F2/07Stent-grafts
    • A61F2002/077Stent-grafts having means to fill the space between stent-graft and aneurysm wall, e.g. a sleeve
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2002/823Stents, different from stent-grafts, adapted to cover an aneurysm

Definitions

  • the invention relates to a cardiovascular medical device, in particular to a self-expanding anti-short shrink film stent and a manufacturing method thereof.
  • the stent graft is usually made of nickel-titanium alloy as the scaffold skeleton, and the polyester film (PET) or polytetrafluoroethylene (PTFE) is used for the coating.
  • PET polyester film
  • PTFE polytetrafluoroethylene
  • Various types of products are obtained by changing the combination of the bone structure and the film.
  • the design concept of the stent graft is to construct a new vascular channel by using the tubular membrane to avoid the rupture of the original diseased blood vessel for therapeutic purposes. How to effectively maintain the stability and effectiveness of the "channel" is the goal pursued by the designers. Due to the special anatomical structure of the thoracic aortic dissection, it is not suitable to design the anchor thorn into the blood vessel wall to improve the stability of the stent in the vascular channel.
  • preventing the displacement of the stent graft is mainly achieved by the friction between the proximal end of the stent graft and the vessel wall, and the frictional force and the material are related to the friction coefficient of the vessel wall.
  • the same material if you want to get more friction, you need a stent graft to provide greater radial support, but this will bring new problems, and the long-term pressure on the vessel wall will cause new pressure. Tearing the mouth.
  • the stent graft is lacking in axial support and is implanted in the diseased tissue, retraction will occur under long-term pulsation.
  • the aortic dissection will cause the fracture of the original covered stent to be retracted due to the stent.
  • Re-exposed, for aortic aneurysm will cause the stent to retract into the tumor cavity, resulting in treatment failure.
  • the axial support of the stent graft is resistant to the impact of a portion of the blood flow on the stent graft to avoid stent displacement.
  • the axial support prevents the stent from contracting under pulsation and prevents the aneurysm treatment from failing.
  • the axial support of the stent graft is mainly in the following ways:
  • the stent graft disclosed in Chinese Patent Application Publication No. CN102670338A which has a straight tubular body, and the straight tubular body adopts an overlapping waveform design, that is, the first and last waveforms of the same wave coil.
  • the support rods are overlapped and fixed together by a steel sleeve 10 to form a closed wave ring, and a plurality of steel sleeves 10 are connected by wires to form a "keel" 1.
  • the axial direction of the steel sleeve 10 coincides with the axial direction of the support rod.
  • the "keel” 1 is generally along the axial direction of the stent graft, but the axial direction of the steel sheath 10 is not along the axial direction of the stent graft, and the two wires between any adjacent three coils may be The steel sleeve is present and cannot be aligned in the axial direction. Although such a design can provide a portion of the axial force to resist the impact of blood flow on the stent graft, the shortening of the stent can be controlled. However, overlapping waveforms can cause the sheath to be oversized and not suitable for patients with small diameter vessels.
  • FIG. 16 and FIG. 17 a Chinese patent application with the publication number CN101176686B and a Chinese patent publication No. CN103598929A respectively disclose a film-covered stent which is provided with a wire at the axial position of the stent.
  • the keel such as the wire 100 in Fig. 16, is stitched up after the metal corrugated ring is completed, which inevitably causes the wire to overlap with the wire constituting the corrugated ring at the junction of the two.
  • a plurality of steel wires 231 as shown in FIG. 17 are connected by a plurality of steel sleeves 232 to form a keel.
  • This structure also causes the keel and the corrugated ring to overlap in the radial direction of the bracket. Radial overlap will increase the size of the stent graft after it has been compressed into the sheath, and the inside of the guide stent will be uneven and prone to thrombosis. Furthermore, the protrusions formed at the overlaps cause a cutting action on the film between the true and false cavities, destroying the fragile film.
  • the stent graft disclosed in Chinese Patent Publication No. CN201445575U is provided with a wire 17 rotating around the axis of the stent graft as a keel, and the stent is compressed into the sheath and the spiral wire is along the stent.
  • Axial elongation which will cause axial extension of the stent graft, which will affect the stent positioning.
  • Another problem is that during the release process, the stent graft is affected by the spiral wire, and the stent graft rotates and shifts in the human blood vessel, thereby causing the positioning failure, and when the stent graft is implanted After entering the human blood vessel, due to the longitudinal support design of the spiral, the axial force is not a line, which will result in poor longitudinal support. When the blood flow is impacted, the stent graft will shrink to some extent.
  • the present invention proposes a novel anti-short film stent.
  • the technical problem to be solved by the present invention is to provide a stent graft which is not prone to long thrombus and which is resistant to shortening in view of the defects of the prior art.
  • an anti-short film-covered stent which comprises a hollow-tube-shaped stent-supporting segment having a large curved side region and a small curved side a region comprising a stent body and a coating coated on the stent body, the stent body comprising a plurality of waveform units, the waveform unit comprising a parallel to the busbar of the stent graft and directly connected to the membrane a straight portion and a corrugated portion connected to the straight portion, at least a portion of the straight portions of any two adjacent wave units are connected side by side along the circumferential direction of the stent graft to form a parallel with the bus bar An axial support portion, and the axial support portion is located in the large curved side region.
  • the straight portions of any two adjacent wave unit are connected side by side in the axial direction of the connecting member.
  • the connecting member is a steel sleeve or a welded member connecting the two straight portions between the two straight portions.
  • the waveform portion includes a first wave portion and a second wave portion respectively provided at both ends of the straight portion.
  • the first wave portion and the second wave portion are respectively located on the same side or different sides of the straight portion.
  • the waveforms of the first waveform portion and the second waveform portion have the same or opposite phase.
  • the wavelength of the first waveform portion is greater than the wavelength of the second waveform portion.
  • the wavelength of the first waveform portion is twice the wavelength of the second waveform portion.
  • the shortest distance between two adjacent wave portions closest to the axial support portion is L1, and any one of the adjacent two wave portions is formed.
  • the distance L between the outer diameter D of the straight portion and the central axes of the two straight portions satisfies: D ⁇ L ⁇ 1.1D.
  • the stent graft further includes a corrugated metal ring disposed at each end of the stent body, and the corrugated metal ring is connected to the coating.
  • an anti-short film-covered stent which comprises a hollow cylindrical stent-supporting segment having a large curved side region and a small curved side. a region comprising a stent body and a coating coated on the stent body, the stent body comprising an axial support portion parallel to the busbar of the stent graft and directly connected directly to the membrane A corrugated portion connected to the axial support portion, the axial support portion being located in the large curved side region.
  • the axial support portion is formed by splicing a plurality of straight portions parallel to the bus bar of the stent graft and located in the large curved side region, each straight portion and at least one The waveforms are connected.
  • the plurality of straight portions are integrally formed.
  • the anti-short film stent further includes a bare stent segment coupled to the proximal end of the stent segment.
  • the bare stent segment includes at least one corrugated annulus characterized in that the outer contour of the corrugated annulus is coated with a biocompatible barrier layer.
  • the barrier layer is a polytetrafluoroethylene layer.
  • the invention also provides a method for manufacturing the anti-short shrink film stent as described above, comprising the following steps:
  • S1 providing a plurality of waveform units, the waveform unit comprising a straight portion and a waveform portion connected to the straight portion;
  • step S2 the length of the side-by-side connecting portions of any two connected straight portions is substantially equal to the height of the wave portion.
  • the invention also proposes a method for manufacturing the anti-short shrink film stent as described above, the method comprising the following steps:
  • step S4 a straight portion is reserved along the end of the wave portion, and the straight portion is in line with the straight end, and then step S2 and step S3 are repeated to woven at the end of the straight portion.
  • the next annular corrugated portion is formed until the bracket having the axial support portion is formed.
  • the axial support portion of the stent graft of the present invention has no radial overlapping phenomenon, and can solve the problem that the axial support of the prior art stent graft in the radial overlap causes the size of the stent graft in the sheath tube to be too large, and the inside of the stent graft is not Smooth, prone to long thrombus, the problem of the radial overlap is easy to pierce the membrane.
  • the axial support portion coincides with the bus bar of the stent graft to provide better longitudinal support for the stent graft, and solves the problem that the longitudinal support member of the prior art stent graft is spirally wrapped around the axial direction, and the axial support member is deformed after compression to cause the stent graft.
  • Figure 1 is a schematic view showing the structure of a first embodiment of the anti-short shrinkable film stent of the present invention
  • Figure 2a is a development view of the stent body in the first embodiment of the anti-short film stent of the present invention
  • FIG. 2b is a schematic structural view of a waveform unit in the first embodiment of the anti-short shrinkable film stent of the present invention
  • Figure 3a is an enlarged view of the connector of the anti-short film stent of the present invention shown in Figure 2a;
  • Figure 3b is a cross-sectional view taken along line B-B of Figure 3a of the present invention.
  • Figure 4a is an enlarged view of another embodiment of the connector of Figure 2a of the anti-short film stent of Figure 2a;
  • Figure 4b is a cross-sectional view taken along line C-C of Figure 4a of the present invention.
  • Figure 5a is a development view of a stent body in a second embodiment of the anti-short film stent of the present invention.
  • Figure 5b is a schematic view showing the structure of a wave unit in the second embodiment of the anti-short film-covered stent of the present invention.
  • Figure 6a is a development view of a stent body in a third embodiment of the anti-short film-covered stent of the present invention.
  • 6b is a schematic structural view of a waveform unit in a third embodiment of the anti-short film-covered stent of the present invention.
  • Figure 7 is a schematic structural view of a fourth embodiment of the anti-short film-covered stent of the present invention.
  • Figure 8 is a development view of a stent body in a fifth embodiment of the anti-short film-covered stent of the present invention.
  • Figure 9a is a development view of a stent body in a sixth embodiment of the anti-short film-covered stent of the present invention.
  • Figure 9b is a schematic structural view of a seventh embodiment of the anti-short film-covered stent of the present invention.
  • Figure 10 is a schematic view showing the structure of the aortic dissection
  • FIG. 11 is a schematic view showing the implantation of a shunt-proof stent according to an embodiment of the present invention.
  • Figure 12 is a schematic view showing the structure of an aortic aneurysm
  • FIG. 13 is a schematic view showing the implantation of a shunt-proof stent in an aortic aneurysm according to an embodiment of the present invention
  • Figure 14 is a schematic view showing a method of manufacturing a shrink-proof stent according to the present invention.
  • Figure 15 is a schematic view showing the structure of a stent graft in the prior art
  • 16 and 17 are schematic views showing the structure of another stent graft in the prior art
  • FIG. 18 is a schematic structural view of still another stent graft in the prior art.
  • the "busbar" referred to in the present invention is a line which is obtained by rotating the axis of the stent graft to obtain the outer contour of the stent graft.
  • an anti-short film stent 10 includes a stent graft segment 12 and a bare stent segment 11 coupled to the proximal end of the stent graft segment 12.
  • the bare stent segment 11 is used to increase the anchoring force of the stent graft 10 and the vessel wall, which typically includes at least one corrugated ring that is not covered by a membrane, which can be cut from a wire braid or a metal tube.
  • the wire can be made of Nitinol wire
  • the metal tube can be made of a nickel-titanium tube, which is heat-set to form a bare bracket wave.
  • the bare stent segment 11 is further coated with a biocompatible barrier layer, preferably a polytetrafluoroethylene layer.
  • the polytetrafluoroethylene layer can be formed by: winding a strip of a polytetrafluoroethylene film on the surface of a wire for forming a bare stent coil. The other is to spray liquid polytetrafluoroethylene on the surface of the bare support coil by spraying.
  • a biocompatible barrier layer on the surface of the bare stent by coating or spraying, it can prevent the formation of thrombus on the surface of the bare stent, inhibit the release of divalent nickel ions, and protect the chloride ions in the bare stent. For the purpose of erosion, it has good anti-thrombotic, anti-corrosion and anti-metal ion oxidizing properties.
  • the stent graft segment 12 has a large curved side region and a small curved side region (none of which is not shown) opposite the large curved side region, and includes a stent body 122 and a coating 121 coated on the stent body 122.
  • the inner surface and the outer surface of the bracket body 122 may be integrally covered with an e-PTFE film, and the bracket body 122 is located between the two layers of the film, and the inner and outer layers of the e-PTFE film are bonded by high temperature and pressure. Together, the stent body 122 is secured between the membranes.
  • the bare stent segment 11 and the stent body 122 may be sutured and fixed to the coating 121.
  • the membrane 121 is a lumen structure with an open end at both ends and a hollow structure in the middle. When the stent graft is implanted into the blood vessel, the lumen of the membrane 121 serves as a blood flow channel.
  • the stent body 122 includes a plurality of wave units 122'.
  • Each of the waveform units 122' includes a flat portion 122'a parallel to the bus bar of the stent graft and a corrugated portion connected to the flat portion 122'a.
  • the corrugated portion includes a first corrugated portion 122'b and a second corrugated portion 122'c which are respectively provided at both ends of the flat portion 122'a. It can be understood that the straight portion 122'a, The first corrugated portion 122'b and the second corrugated portion 122'c may be integrally bent and formed using a nickel-titanium wire.
  • the first wave portion 122'b and the second wave portion 122'c are respectively located on opposite sides of the straight portion 122'a, that is, the opposite sides, and the first wave portion 122'b and the second wave portion 122
  • the waveform of 'c is opposite in phase, that is, the peak or trough of the first waveform portion 122'b is opposite to the trough or peak of the second waveform portion 122'c, and the wavelengths of the two are equal.
  • the waveform of the waveform unit may be a Z-wave structure or other waveform that can be compressed to a smaller diameter.
  • the straight portions 122'a of the adjacent two wave unit 122' are connected in the direction indicated by the arrow in the figure, that is, the flat portion 122' of one of the wave units 122'.
  • a is parallel with the flat portion 122'a of the other wave unit 122' along the axial direction of the stent graft 10.
  • the two flat portions 122'a are partially juxtaposed and are directly connected to the film, wherein one of the waveform units 122'
  • the first waveform portion 122'b is combined with the second waveform portion 122'c of the other waveform unit 122' to form a complete wave circle.
  • the length of the portion in which the straight portions 122'a are juxtaposed is substantially equal to the waveform height of the wave unit.
  • the flat portions 122'a are provided on the film 121 side by side in the circumferential direction of the stent graft through the joint portion 14.
  • the stent body 122 and the axial support unit 13 also known as the keel
  • the straight portions are directly connected to the film, so the axial support unit 13 is also in direct contact with the film.
  • the axial support unit 13 coincides with or parallel to the bus bar of the stent graft, so that the force of the axial support unit 13 exists only in parallel with the component of the stent graft busbar, and there is no component in other directions, so the axial support force is better. It is capable of resisting the force of the stent graft being shortened in the axial direction.
  • the stent graft 10 is a hollow cylinder, so that the busbar of the stent graft 10 is parallel to the axis of the stent graft.
  • the straight portions of any one of the waveform units are continuous and coincide with or parallel with the bus bar of the stent graft, and in other possible embodiments, the straight portion of any one of the waveform units may also be The two parts on the same straight line are formed by the end-to-end stitching, and the two parts of the end-to-end stitching are coincident or parallel with the bus bar of the stent graft.
  • the adjacent two corrugated portions on the large curved side axial support unit of the stent graft have a shortest distance L1, and any one of the adjacent two corrugated portions is closest to the shaft.
  • the significance of setting this value is to control the overall flexibility of the stent graft.
  • the ratio of the two is less than 0.1, the flexibility of the axial support unit on the large curved side will be deteriorated, which may cause the adjacent waveform portions to overlap after the stent is compressed. Therefore, the partial compression diameter of the stent is too large to be loaded into the sheath tube with a small size, which increases the difficulty of transportation.
  • the wave height of the small curved side waveform can be reduced; when the ratio is too large, the adjacent two waveform portions Increasing the spacing will make the local anti-extrusion performance of the stent graft worse, and in severe cases, the stent may be partially collapsed, which is contrary to the original design of the stent.
  • the connecting portion 14 is a steel sleeve.
  • the joint 14 can also be a welded component as shown in Figure 4a.
  • the welded component is located between the two straight portions 122'a, that is, welded between the two parallel flat portions 122'a and is not exposed, thereby maximally reducing the protrusion on the surface of the bracket body 122, thereby reducing the The incidence of thrombosis.
  • D and L should satisfy D ⁇ L ⁇ 1.1D. .
  • This expression defines the positional relationship of the two flat portions 122'a in the steel sleeve, which determines that the straight portion 122'a remains parallel to the bus bar at all times, and minimizes the bending caused by the connection of the two, that is, the retaining shaft
  • the support portion 13 is always parallel to the generatrix of the stent graft 10.
  • the axial support unit 13 Since the axial support unit 13 has no wire overlap in the radial direction and itself belongs to a part of the bracket body 122, that is, belongs to a part of the wire constituting the wave ring, and the axial support unit 13 is parallel to the axial direction of the stent graft 10. Therefore, there is no component of force in the axial direction of the stent graft, that is, there is no local stress in the axial direction, so there is no axial displacement, and the anti-shrinking effect is better and the strength is higher.
  • the anti-short film stent provided in this embodiment has substantially the same structure as the stent graft provided in the previous embodiment, and includes a stent graft segment and a bare stent segment connected to the proximal end of the stent graft segment.
  • the bare stent segment is used to increase the anchoring force of the stent graft to the vessel wall, which typically includes at least one bare wave ring that is not covered by the membrane.
  • the stent graft segment has a large curved side region and a small curved side region opposite the large curved side region, and includes a stent body 20 and a coating film coated on the stent body 20.
  • the inner surface and the outer surface of the stent body 20 may be integrally coated with an e-PTFE membrane.
  • the stent body 20 is located between the two layers of the membrane, and the inner and outer layers of the e-PTFE membrane are bonded by high temperature and pressure. Together, the stent body 20 is secured between the membranes.
  • the bare stent segment and the stent body 20 may be sutured to the film.
  • the membrane is a lumen structure with open ends at both ends and a hollow structure in the middle. When the stent graft is implanted into the blood vessel, the lumen of the membrane serves as a blood flow channel.
  • the bare stent segment is also coated with a biocompatible barrier layer, preferably a polytetrafluoroethylene layer.
  • the polytetrafluoroethylene layer can be formed by winding a long strip of a polytetrafluoroethylene film around the outer circumference of a wire for forming a bare stent coil. The other is to spray liquid polytetrafluoroethylene on the surface of the bare support coil by spraying.
  • a biocompatible barrier layer on the surface of the bare stent by coating or spraying, it can prevent the formation of thrombus on the surface of the bare stent, inhibit the release of divalent nickel ions, and protect the chloride ions in the bare stent.
  • it has good anti-thrombotic, anti-corrosion and anti-metal ion oxidizing properties.
  • the stent body 20 includes a plurality of wave units 21, each of which includes a straight portion 211 parallel to the bus bar of the stent graft and a corrugated portion connected to the flat portion 211.
  • the waveform portion includes a first wave portion 212 and a second wave portion 213 which are respectively provided at both ends of the straight portion 211. It can be understood that the straight portion 211, The first wave portion 212 and the second wave portion 213 may be integrally bent and formed using a nickel-titanium wire.
  • the first waveform portion 212 and the second waveform portion 213 are respectively located on the same side of the straight portion 211, and the waveforms of the first waveform portion 212 and the second waveform portion 213 are opposite in phase, that is, the first waveform portion 212.
  • the peak of the second waveform portion 213 is opposite to the valley of the second waveform portion 213, and the peak of the second waveform portion 213 is opposite to the peak of the second waveform portion 213, and the wavelengths of the two are equal.
  • the waveform of the waveform unit may be a Z-wave structure or other waveform that can be compressed to a smaller diameter.
  • the straight portions 211 of the adjacent two wave unit 21 are connected end to end in the direction indicated by the arrow in the figure, that is, the straight portion 211 of one of the waveform units and the other waveform unit.
  • the straight portions are aligned along the axial direction of the stent graft 20, and the two straight portions are juxtaposed, wherein the first wave portion of one wave unit is combined with the second wave portion of the other wave unit to form a complete wave ring.
  • the length of the connected flat portion 211 is substantially equal to the waveform height of the wave unit.
  • the straight portions 211 are connected side by side in the circumferential direction of the stent graft through the connecting portion 23.
  • the stent body 20 and the axial support unit 22 formed by the combination of the plurality of straight portions 211 in the large curved side region and parallel to the stent graft busbar can be obtained.
  • the busbar of the stent graft in this embodiment is parallel to the axis of the stent graft.
  • the connecting portion 23 is a steel sleeve.
  • the connecting portion 23 may also be a welded component between the two flat portions 211 as shown in Figures 4a and 4b.
  • D and L should satisfy D ⁇ L ⁇ 1.1D.
  • This expression defines the positional relationship of the two flat portions 211 within the steel sleeve, which determines that the straight portion 211 remains parallel to the busbar at all times and minimizes bending due to the connection of the two. That is, the axial support portion 22 is always kept parallel to the axial direction of the stent graft 20.
  • the axial support unit 22 Since the axial support unit 22 has no wire overlap in the radial direction and itself belongs to a part of the bracket body 20, there is no component of the force in the axial direction of the stent graft, that is, there is no local stress in the axial direction, and there is no existence.
  • the axial displacement is better, the anti-shrinking effect is better, and the strength is higher.
  • the structure of the anti-short shrink film stent provided in this embodiment is the same as that of the previous two embodiments, and details are not described herein again. The difference is in the waveform setting of the waveform section.
  • the stent body 30 also includes a plurality of wave units 31, each of which includes a straight portion 311 parallel to the bus bar of the stent graft and a corrugated portion connected to the flat portion 311.
  • the waveform portion includes a first wave portion 312 and a second wave portion 313 which are respectively provided at both ends of the straight portion 311. It can be understood that the straight portion 311, The first wave portion 312 and the second wave portion 313 may be integrally bent and formed using a nickel-titanium wire.
  • the first waveform portion 312 and the second waveform portion 313 are respectively located on the same side of the straight portion 311, and the waveforms of the first waveform portion 312 and the second waveform portion 313 are in the same phase, and the above two embodiments
  • the wavelengths of the first waveform portion 312 and the second waveform portion 313 are not equal.
  • the wavelength of the first waveform portion 312 is greater than the wavelength of the second waveform portion 313 and is twice the wavelength of the second waveform portion 313.
  • the stent graft segment of the anti-short film stent 40 of the present embodiment further includes a corrugated ring 44 respectively disposed at two ends of the stent graft segment. 45.
  • the corrugated rings 44, 45 are connected to the coating 42.
  • Waveform rings 44, 45 can be designed with different waveform heights and quantities as needed.
  • Figure 10 shows a schematic view of an aortic dissection 80 including a sandwich breach 81, a small curved side 83, a large curved side 82, and a descending aorta 84.
  • the stent graft 40 is placed in a blood vessel, and an axial support portion 46 composed of a straight portion in the stent graft 40 is placed on the side of the large curved side 82, and the straight axial support portion 16 is shown.
  • FIG. 12 is a schematic illustration of an aortic aneurysm 90 including a large curved side 91, a small curved side region 92, and a descending aorta 93.
  • the stent graft is placed at the position of the aortic aneurysm 90, and the axial support portion is located at the large curved side region 91. In both cases, the axial support portion does not extend to both ends of the stent graft segment, and the above-mentioned adverse events can be avoided.
  • the anti-short shrink film stent provided in this embodiment has been modified in some respects to the diameter of the stent graft segment on the basis of the anti-short film stent of the fourth embodiment.
  • the radial dimension of the stent graft segment is tapered along the axial direction from the proximal end to the distal end such that the stent graft is generally frustoconical.
  • the stent graft is made into a truncated cone shape and is more suitable for the blood vessel morphology of most people. It should be noted that in the present embodiment, the axial support portion that coincides with the bus bar of the truncated stent-graft is not parallel to the axis of the stent graft.
  • the anti-short shrink film stent 60 shown in Fig. 9a can be regarded as being integrally cut by a cutting process in accordance with the form of the wave unit in the second embodiment.
  • the integrally formed stent body is more consistent and more productive than the stent body formed by the braiding and shaping process.
  • the axial support unit can be seen as being integrally formed as a single unit from the flat portions of the plurality of wave units.
  • the anti-short shrink film stent 70 shown in Fig. 9b can be regarded as being integrally cut by a cutting process in accordance with the form of the wave unit in the first embodiment.
  • the axial support portion 71 is connected to the peak of each waveform unit.
  • the axial support portion can be viewed as being integrally formed as a single unit from the flat portions of the plurality of wave units.
  • the axial support portion may also be formed by a plurality of flat portions joined end to end by a connecting steel sleeve.
  • the present invention also provides a method of manufacturing the anti-short film stent, which comprises the following steps:
  • a plurality of waveform units are provided, the waveform unit including a straight portion and a corrugated portion as shown in the foregoing embodiment connected to the flat portion.
  • the two corrugated portions located at the proximal end and the distal end of the semi-finished product of the stent body are removed, and the distal end surface and the proximal end surface are flattened.
  • the manufacturing method further includes the step of coating the film on the body of the stent obtained by the above method, and connecting all the straight portions directly to the film. This step is a well-known technique and will not be described again.
  • the wire 100 is preferably a nickel titanium alloy wire.
  • step S4 On the basis of step S3, a straight portion 104 is reserved along the end 101 of the corrugated portion, and the flat portion 104 is placed on the same straight line L as the flat end 101, and then steps S2 and S3 are repeated. The end of the straight portion 104 is knitted with the next annular corrugated portion until the bracket having the axial support portion is formed.
  • the method uses a wire to woven into a complete stent body, and the knitting method is simple and easy to operate.
  • the axial support portion of the stent graft of the present invention has no wire overlap phenomenon in the radial direction, and can solve the problem that the axial support of the prior art stent graft is not smooth and the thrombus is prone to be caused in the radial overlap.
  • the axial support portion is parallel to the axis of the stent graft, and provides better longitudinal support for the stent graft.
  • the prior art stent graft longitudinal support member is spirally wrapped around the axial direction, and the axial support member is deformed after compression to cause the stent graft. Axial extension, affecting positioning and poor longitudinal support, the problem of shrinkage of the stent graft.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Cardiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Pulmonology (AREA)
  • Prostheses (AREA)

Abstract

一种防短缩覆膜支架(10,40,60),其包括呈中空筒状的覆膜支架段(12)。所述覆膜支架段(12)具有大弯侧区和小弯侧区,其包括支架本体(122,20,30)和包覆在支架本体(122,20,30)上的覆膜(121)。所述支架本体(122,20,30)包括多个波形单元(122',21,31)。所述波形单元(122',21,31)包括与覆膜支架的母线平行的平直部(122'a,211,311)以及与平直部(122'a,211,311)相连的波形部,任意相邻两个波形单元(122',21,31)的平直部(122'a,211,311)至少有部分沿周向并排相连从而形成与所述母线平行的轴向支撑部(13,22,16),且所述轴向支撑部(13,22,16)位于大弯侧区。该覆膜支架的轴向支撑部(13,22,16)与覆膜支架的母线重合,能够给覆膜支架提供较好的纵向支撑,避免覆膜支架短缩。

Description

防短缩覆膜支架及其制作方法
【技术领域】
本发明涉及心血管医疗器械,尤其涉及一种自膨式防短缩覆膜支架及其制作方法。
【背景技术】
随着人口老龄化的加剧,心血管疾病死亡率不断攀升。相对于传统开放式治疗手段,利用微创手术将覆膜支架植入人体内,治疗主动脉瘤及夹层动脉瘤的手术方式因创伤小,见效快而受到诸多医患青睐。
覆膜支架通常以镍钛合金作为支架骨架,覆膜选用涤纶布(PET)或聚四氟乙烯(PTFE),通过改变骨架构型与覆膜结合方式得出各类产品。覆膜支架的设计理念是利用管状覆膜构建新的血管通道,规避原有病变血管发生破裂,以达到治疗目的。如何有效维持该“通道”的稳定性及提高其有效性是设计者们追寻的目标。由于胸主动脉夹层特殊的解剖结构,不适合在支架上设计锚刺刺入血管壁上来提高支架在血管通道内的稳定性。因此,防止覆膜支架移位主要通过覆膜支架近端和血管壁的摩擦力来实现,而摩擦力和材料与血管壁的摩擦系数有关。同样的材料,若想获得更大的摩擦力,则需要覆膜支架提供较大的径向支撑力,但这会带来新的问题,对血管壁长期作用较大的压力,会造成新的撕裂口。
另外,覆膜支架如缺少轴向支撑,植入病变组织处后,在长期的脉动下,会发生回缩,针对主动脉夹层则会导致原本被覆膜支架封闭的破口因支架回缩而重新裸露,对于主动脉瘤则会导致支架缩回到瘤腔内,导致治疗失败。
给覆膜支架提供轴向支撑可抵抗一部分血流对覆膜支架的冲击力,避免发生支架移位。轴向的支撑可防止支架在脉动下发生短缩,避免动脉瘤治疗失效。
现有技术中,覆膜支架的轴向支撑主要有以下几种方式:
1)如图15所示的公开号为CN102670338A的中国专利申请揭示的覆膜支架,该覆膜支架具有直管形本体,直管形本体采用重叠波形设计,即将同一波圈的首尾两个波形的支撑杆重叠并用钢套10固定在一起形成封闭波圈,且若干个钢套10之间通过金属丝连接起来从而形成“龙骨”1。钢套10的轴向与支撑杆的轴向重合。“龙骨”1大体上是沿覆膜支架的轴向的,但是钢套10的轴向并不沿覆膜支架的轴向,且任意相邻三个波圈之间的两根金属丝会因为钢套的存在而无法在轴向上对齐。虽然这样的设计可以提供一部分轴向的力来抵抗血流对覆膜支架的冲击力,可以控制支架的短缩率。但重叠的波形会造成鞘管的尺寸偏大,不适用于入路血管直径小的患者。
2)如图16和图17所示,公告号为CN101176686B的中国专利和公开号为CN103598929A的中国专利申请分别公开了一种覆膜支架,覆膜支架在支架轴线位置设置了一根金属丝作为龙骨,如图16中的金属丝100,金属丝100是在金属波形环状物完成后才缝合上去的,这样必然造成金属丝与构成波形环状物的金属丝在两者连接处重叠。或采用如图17中多根的金属丝231用若干个钢套232连接起来形成龙骨,这种结构也会造成龙骨与波形环状物在支架径向上的重叠。径向重叠会增大覆膜支架被压缩入鞘管后的尺寸,且会导丝覆膜支架内部不平,易长血栓。再者,重叠处形成的凸起会对处于真假腔之间的覆膜产生切割作用,破坏脆弱的覆膜。
3)如图18所示,公告号为CN201445575U的中国专利公开的覆膜支架在支架设置一条绕覆膜支架轴线旋转的金属丝17作为龙骨,支架压缩到鞘管中螺旋的金属丝会沿支架轴向拉长,这样会导致覆膜支架发生轴向延长,会影响支架定位。另一个问题是,这种覆膜支架在释放过程中,受到螺旋金属丝的影响,覆膜支架在人体血管内会发生旋转,移位,从而导致定位失效,且当这种覆膜支架被植入人体血管内之后,由于螺旋的纵向支撑设计,轴向力不成一条线,会导致纵向支撑效果差,在受到血流的冲击时,覆膜支架会发生一定程度的短缩。
针对上述现有技术存在的问题,本发明提出一种新型的防短缩覆膜支架。
【发明内容】
本发明要解决的技术问题在于,针对现有技术的缺陷,提供一种不易长血栓且防短缩的覆膜支架。
本发明解决其技术问题所采用的技术方案是:构造一种防短缩覆膜支架,其包括呈中空筒状的覆膜支架段,所述覆膜支架段具有大弯侧区和小弯侧区,包括支架本体和包覆在所述支架本体上的覆膜,所述支架本体包括多个波形单元,所述波形单元包括与所述覆膜支架的母线平行且直接与所述覆膜相连的平直部以及与所述平直部相连的波形部,任意相邻两个所述波形单元的平直部至少有部分沿所述覆膜支架的周向并排相连形成与所述母线平行的轴向支撑部,且所述轴向支撑部位于所述大弯侧区。
依本发明的一实施例中,任意相邻两个所述波形单元的平直部通过连接件轴向并排相连相连。
依本发明的一实施例中,所述连接件为钢套或位于两所述平直部之间连接两平直部的焊接部件。
依本发明的一实施例中,所述波形部包括分别设于所述平直部的两端的第一波形部和第二波形部。
依本发明的一实施例中,所述第一波形部和所述第二波形部分别位于所述平直部的同侧或异侧。
依本发明的一实施例中,所述第一波形部与所述第二波形部的波形相位相同或相反。
依本发明的一实施例中,所述第一波形部的波长大于所述第二波形部的波长。
依本发明的一实施例中,所述第一波形部的波长为所述第二波形部的波长的2倍。
依本发明的一实施例中,最靠近所述轴向支撑部的相邻两个所述波形部之间的最短距离为L1,在该相邻两个所述波形部中,任意一个波形部最靠近所述轴向支撑部的波形的波高为L2,则L1与L2满足:L1/L2=0.1~1.2。
依本发明的一实施例中,所述平直部的外径D与两所述平直部中心轴之间的间距L满足:D≤L≤1.1D。
依本发明的一实施例中,所述覆膜支架还包括分别设于所述支架本体两端的波形金属环,所述波形金属环与所述覆膜相连。
本发明解决其技术问题采用的另一技术方案为:构造一种防短缩覆膜支架,包括呈中空筒状的覆膜支架段,所述覆膜支架段具有大弯侧区和小弯侧区,其包括支架本体和包覆在所述支架本体上的覆膜,所述支架本体包括与所述覆膜支架的母线平行且直接与所述覆膜直接相连的轴向支撑部以及与所述轴向支撑部相连的波形部,所述轴向支撑部位于所述大弯侧区。
依本发明的一实施例中,所述轴向支撑部由多个与所述覆膜支架的母线平行且位于大弯侧区的平直部首尾拼接而成,每个平直部与至少一个波形部相连。
依本发明的一实施例中,多个所述平直部一体成型。
依本发明的一实施例中,该防短缩覆膜支架还包括与所述覆膜段近端相连的裸支架段。
依本发明的一实施例中,所述裸支架段包括至少一个波形环状物,其特征在于,所述波形环状物的外轮廓上包覆有具有生物相容性的阻挡层。
依本发明的一实施例中,所述阻挡层为聚四氟乙烯层。
本发明还提出一种如上述所述的防短缩覆膜支架的制作方法,包括以下步骤:
S1、提供多个波形单元,所述波形单元包括平直部和与所述平直部相连的波形部;
S2、将所有波形单元的平直部的至少一部分两两并排相连,利用所有平直部配合形成与该覆膜支架的母线平行并位于所述覆膜支架的大弯侧的轴向支撑部,得到支架本体半成品;
S3、去除位于所述支架本体半成品近端和远端的两个波形部。
依本发明的一实施例中,在步骤S2中,任意两个相连的平直部并排相连部分的长度大致等于所述波形部的高度。
本发明还提出又一种如上述的防短缩覆膜支架的制作方法,该方法包括以下步骤:
S1、提供一金属丝;
S2、将所述金属丝末端的至少一部分弯折至与所述覆膜支架的母线平行,并以该平直的末端为始端沿周向编织环状的波形部,直至所述波形部编织回到所述平直的末端处;
S3、将该波形部的末端弯折至与所述覆膜支架的母线平行,并将所述波形部的末端与所述平直的末端通过连接件沿周向并排相连;
S4、沿所述的波形部的末端预留一段平直部,并使得该平直部与所述平直的末端处于同一直线,然后重复步骤S2和步骤S3在所述平直部的末端编织下一个环状的波形部直至形成具有所述轴向支撑部的支架。
本发明的覆膜支架的轴向支撑部无径向重叠现象,可解决现有技术覆膜支架轴向支撑在径向重叠导致覆膜支架在鞘管内的尺寸过大,且覆膜支架内部不平滑,易长血栓,径向重叠部分容易刺破覆膜的问题。且轴向支撑部与覆膜支架的母线重合,给覆膜支架提供较好的纵向支撑,解决现有技术覆膜支架纵向支撑部件绕轴向螺旋,压缩后轴向支撑部件变形导致覆膜支架轴向延长,影响定位及后期纵向支撑效果差,覆膜支架发生短缩的问题。
【附图说明】
下面将结合附图及实施例对本发明作进一步说明,附图中:
图1是本发明的防短缩覆膜支架第一实施例的结构示意图;
图2a是本发明的防短缩覆膜支架第一实施例中支架主体的展开图;
图2b是本发明的防短缩覆膜支架第一实施例中波形单元的结构示意图;
图3a是本发明的防短缩覆膜支架图2a中A部位所指的连接件的放大图;
图3b是本发明图3a中B-B向的剖视图;
图4a是本发明的防短缩覆膜支架图2a中A部位所指的连接件的另一实施例的放大图;
图4b是本发明图4a中C-C向的剖视图;
图5a是本发明的防短缩覆膜支架第二实施例中支架主体的展开图;
图5b是本发明的防短缩覆膜支架第二实施例中波形单元的结构示意图;
图6a是本发明的防短缩覆膜支架第三实施例中支架主体的展开图;
图6b是本发明的防短缩覆膜支架第三实施例中波形单元的结构示意图;
图7是本发明的防短缩覆膜支架第四实施例的结构示意图;
图8是本发明的防短缩覆膜支架第五实施例中支架主体的展开图;
图9a是本发明的防短缩覆膜支架第六实施例中支架主体的展开图;
图9b是本发明的防短缩覆膜支架第七实施例的结构示意图;
图10是主动脉夹层的结构示意图;
图11是本发明一实施例提供的防短缩覆膜支架植入主动脉夹层的示意图;
图12是主动脉瘤的结构示意图;
图13是本发明一实施例提供的防短缩覆膜支架植入主动脉瘤内的示意图;
图14是本发明一种防短缩覆膜支架的制作方法的示意图;
图15是现有技术中的一种覆膜支架的结构示意图;
图16和图17是现有技术中的另一种覆膜支架的结构示意图;
图18是现有技术中的又一种覆膜支架的结构示意图。
【具体实施方式】
为了对本发明的技术特征、目的和效果有更加清楚的理解,现对照附图详细说明本发明的具体实施方式。
本发明中提到的“母线”是一条绕覆膜支架的轴线旋转后能得到该覆膜支架的外轮廓的线。
第一实施例:
如图1所示,一种防短缩覆膜支架10包括覆膜支架段12和与覆膜支架段12近端相连的裸支架段11。裸支架段11用于增加覆膜支架10与血管壁的锚定力,其通常包括至少一个未被覆膜包覆的波形环状物,该波形环状物可由金属丝编织或金属管切割成所需的波形,该金属丝可以采用镍钛合金丝,金属管可采用镍钛管,经热定型后形成裸支架波圈。优选的,在本发明中,裸支架段11上还包覆有一层具有生物相容性的阻挡层,该阻挡层优选聚四氟乙烯层。聚四氟乙烯层可以通过以下方式形成:一种是采用长条形的聚四氟乙烯膜缠绕在用于形成裸支架波圈的金属丝的表面。另一种是通过喷涂的方式将液态的聚四氟乙烯喷涂在裸支架波圈的表面。通过包覆或喷涂等方式在裸支架表面形成一层具有生物相容性的阻挡层,可以达到防止裸支架表面血栓形成、抑制二价镍离子释放以及保护裸支架不受体液中氯化物离子侵蚀的目的,具有良好的抗血栓、耐蚀、防止金属毒性离子溶出的性能。
覆膜支架段12具有大弯侧区和与大弯侧区相对的小弯侧区(均未标示),其包括支架本体122和包覆在支架本体122上的覆膜121。具体地,可在支架本体122的内表面和外表面整体包覆e-PTFE膜,支架本体122位于两层覆膜中间,通过高温加压的方式,将内外层的e-PTFE覆膜粘接在一起,从而将支架本体122固定在覆膜之间。或者也可将裸支架段11和支架本体122缝合固定在覆膜121上。覆膜121为管腔结构,两端为开口,中间为中空结构,当覆膜支架植入血管后,覆膜121的管腔作为血流通道。
如图2a和图2b所示,支架本体122包括多个波形单元122’。每一个波形单元122’均包括与覆膜支架的母线平行的平直部122’a以及与平直部122’a相连的波形部。波形部包括分别设于平直部122’a两端的第一波形部122’b和第二波形部122’c。可以理解的是,平直部122’a、 第一波形部122’b和第二波形部122’c可采用镍钛金属丝一体折弯成型。在本实施例中,第一波形部122’b和第二波形部122’c分别位于平直部122’a的两侧即异侧,且第一波形部122’b和第二波形部122’c的波形相位相反,即第一波形部122’b的波峰或波谷与第二波形部122’c的波谷或波峰相对,且二者的波长相等。此外,波形单元的波形可以是Z形波结构或其它可以压缩到更小直径的波形。
如图2b所示,在编织时,将相邻两个波形单元122’的平直部122’a沿着图中箭头所指的方向相连,即将其中一个波形单元122’的平直部122’a与另一个波形单元122’的平直部122’a沿覆膜支架10的轴向并列,两平直部122’a部分周向并列且均与覆膜直接相连,其中一个波形单元122’的第一波形部122’b与另一个波形单元122’的第二波形部122’c组合形成一个完整的波圈。优选的,平直部122’a并列连接的部分的长度大致等于波形单元的波形高度。如图3a所示的放大图,进一步的,平直部122’a通过连接部14沿覆膜支架的周向并排地设于覆膜121上。重复该过程即可得到支架本体122和由若干个平直部122’a组合形成的位于大弯侧区、且与覆膜支架的母线重合的轴向支撑单元13(又称龙骨),由于平直部均与覆膜直接相连,因此该轴向支撑单元13亦与覆膜直接接触相连。轴向支撑单元13与覆膜支架的母线重合或平行可以使得轴向支撑单元13的受力只存在平行于覆膜支架母线的分量,而不存在其他方向的分量,因此轴向支撑力更好,能够抵抗覆膜支架沿轴线方向短缩的力。在本实施例中,覆膜支架10为一空心的柱体,因此覆膜支架10的母线与覆膜支架的轴线平行。
在本实施例中,任意一个波形单元的平直部都是连续的且与覆膜支架的母线重合或平行的,而在其它可能的实施例中,任意一个波形单元的平直部还可以由处于同一直线上的两部分首尾拼接形成,首尾拼接的这两部分均与覆膜支架的母线重合或平行。
此外,如图2a所示,覆膜支架大弯侧轴向支撑单元上相邻两个波形部之间具有最短距离L1,在该相邻的两个波形部中,任意一个波形部最靠近轴向支撑单元的波形高度为L2(如图2a中波峰1221与波谷1222之间的垂直距离),远离该位置的波形的波高、以及整个波形部的波数可随支架实际需求进行调整(例如自该位置起始,沿波形部的周向各波形的波高逐渐变小),则L1和L2满足:L1/L2=0.1-1.2。设定该数值的意义在于控制覆膜支架的整体柔顺性,当二者比例小于0.1时,大弯侧轴向支撑单元的柔顺性将变差,可能导致支架压缩后相邻波形部发生重叠,以致支架局部压缩直径偏大不利于装入尺寸较小的鞘管内,增加了输送难度,此外,小弯侧波形的波高可微调范围将减小;当该比例偏大时,相邻两波形部间距增大,将使得覆膜支架局部抗挤压性能变差,严重时可引起支架局部塌陷,与支架设计初衷相悖。
在本实施例中,连接部14为钢套。在其它可能的实施例中,连接部14也可是如图4a所示的焊接部件。焊接部件位于两个平直部122’a之间,即在两个平行的平直部122’a之间进行焊接且不外露,最大可能地减少了支架主体122表面的凸起,从而降低了血栓的发生几率。此外,如图3b和4b所示,假定平直部122’a具有直径D,两个平直部122’a中心轴之间的距离为L,则D和L应当满足D≤L≤1.1D。该表达式限定了两平直部122’a在钢套内的位置关系,决定了平直部122’a始终保持与母线平行,且最大限度地减少由于二者相连导致的弯曲,即保持轴向支撑部13始终与覆膜支架10的母线平行。
由于轴向支撑单元13在径向方向无金属丝重叠且其本身属于支架本体122的一部分,即属于构成波圈的金属丝的一部分,且轴向支撑单元13与覆膜支架10的轴向平行,因此覆膜支架在轴向方向不存在力的分量即在轴向方向不存在局部应力,因此不会存在轴向的分位移,防短缩效果更好,强度更高。
第二实施例:
本实施例提供的防短缩覆膜支架具有与前一实施例提供的覆膜支架大致相同的结构,包括覆膜支架段和与覆膜支架段近端相连的裸支架段。裸支架段用于增加覆膜支架与血管壁的锚定力,其通常包括至少一个未被覆膜包覆的裸波圈。覆膜支架段具有大弯侧区和与大弯侧区相对的小弯侧区,其包括支架本体20和包覆在支架本体20上的覆膜。具体地,可在支架本体20的内表面和外表面整体包覆e-PTFE膜,支架本体20位于两层覆膜中间,通过高温加压的方式,将内外层的e-PTFE覆膜粘接在一起,从而将支架本体20固定在覆膜之间。或者也可将裸支架段和支架本体20缝合固定在覆膜上。覆膜为管腔结构,两端为开口,中间为中空结构,当覆膜支架被植入血管后,覆膜的管腔作为血流通道。
与上一实施例相同的是,裸支架段上同样包覆有一层具有生物相容性的阻挡层,该阻挡层优选聚四氟乙烯层。聚四氟乙烯层可通过以下方式形成:一种是采用长条形的聚四氟乙烯膜缠绕在用于形成裸支架波圈的金属丝的外周。另一种是通过喷涂的方式将液态的聚四氟乙烯喷涂在裸支架波圈的表面。通过包覆或喷涂等方式在裸支架表面形成一层具有生物相容性的阻挡层,可以达到防止裸支架表面血栓形成、抑制二价镍离子释放以及保护裸支架不受体液中氯化物离子侵蚀的目的,具有良好的抗血栓、耐蚀、防止金属毒性离子溶出的性能。
如图5a和5b所示,支架本体20包括多个波形单元21,每一个波形单元21均包括与覆膜支架的母线平行的平直部211以及与平直部211相连的波形部。波形部包括分别设于平直部211两端的第一波形部212和第二波形部213。可以理解的,平直部211、 第一波形部212和第二波形部213可采用镍钛金属丝一体折弯成型。在本实施例中,第一波形部212和第二波形部213分别位于平直部211的同侧,且第一波形部212和第二波形部213的波形相位相反,即第一波形部212的波峰与第二波形部213的波谷相对,第一波形部212的波谷与第二波形部213的波峰相对,且二者的波长相等。此外,波形单元的波形可以是Z形波结构或其它可以压缩到更小直径的波形。
如图5b所示,在编织时,将相邻两个波形单元21的平直部211沿着图中箭头所指的方向首尾相连,即将其中一个波形单元的平直部211与另一个波形单元的平直部沿覆膜支架20的轴向平列,两平直部部分并列,其中一个波形单元的第一波形部与另一个波形单元的第二波形部组合形成一个完整的波圈。优选的,连接的平直部211的长度大致等于波形单元的波形高度。与上一实施例相同的是,平直部211通过连接部23沿覆膜支架的周向并排连接。重复该过程即可得到支架本体20和由若干个平直部211组合形成的位于大弯侧区、且平行于覆膜支架母线的轴向支撑单元22。与上一实施例相同的是,本实施例中的覆膜支架的母线与覆膜支架的轴线平行。
在本实施例中,连接部23为钢套。在其它可能的实施例中,连接部23也可以是如图4a和4b所示的位于两个平直部211之间的焊接部件。进一步的,假定平直部211具有直径D,两个平直部211中心轴之间的距离为L,则D和L应当满足D≤L≤1.1D。该表达式限定了两平直部211在钢套内的位置关系,决定了平直部211始终保持与母线平行,且最大限度地减少由于二者相连导致的弯曲。即保持了轴向支撑部22的始终与覆膜支架20的轴向平行。由于轴向支撑单元22在径向方向无金属丝重叠且其本身属于支架本体20的一部分,因此覆膜支架在轴向方向不存在力的分量即在轴向方向不存在局部应力,不会存在轴向的分位移,防短缩效果更好,强度更高。
第三实施例:
如图6a和6b所示,本实施例提供的防短缩覆膜支架的结构与上两个实施例相同,在此不再赘述。不同之处在于,波形部的波形设置。
支架本体30同样包括多个波形单元31,每一个波形单元31均包括与覆膜支架的母线平行的平直部311以及与平直部311相连的波形部。波形部包括分别设于平直部311两端的第一波形部312和第二波形部313。可以理解的,平直部311、 第一波形部312和第二波形部313可采用镍钛金属丝一体折弯成型。在本实施例中,第一波形部312和第二波形部313分别位于平直部311的同侧,且第一波形部312和第二波形部313的波形相位相同,与上两个实施例不同的是,第一波形部312和第二波形部313的波长不相等。具体的,第一波形部312的波长大于第二波形部313的波长,且为第二波形部313波长的两倍。在覆膜支架弯曲的时候,波谷顶点不与波峰顶点相对,第二波形部313的波形可以部分重叠到第一波形部312内,柔顺性更好。
第四实施例:
如图7所示,在上述三个实施例的基础上,本实施例中的防短缩覆膜支架40的覆膜支架段还包括分别设于覆膜支架段两端的波形环状物44、45。波形环状物44、45与覆膜42相连。
波形环状物44、45可以根据需求设计不同波形高度及数量。图10给出了一个主动脉夹层80的示意图,其包括夹层破口81,小弯侧83,大弯侧82和降主动脉84。如图11所示,覆膜支架40放置在血管中,由覆膜支架40中的平直部组成的轴向支撑部46被放置在大弯侧82一侧,平直的轴向支撑部16处于这种弯曲的形态会对血管形成一个反弹力,如果轴向支撑部16一直延伸到覆膜支架段的两端,则其形成的反弹力将使轴向支撑部16的两端对血管壁形成新的破口或撕裂口,导致二次手术。图12给出了一个主动脉瘤90的示意图,其包括大弯侧91、小弯侧区92以及降主动脉93。如图13所示,覆膜支架被放置在主动脉瘤90的位置,且轴向支撑部位于大弯侧区91。在这两例中,轴向支撑部均未延伸到覆膜支架段的两端,则可避免上述不良事件发生。
第五实施例:
如图8所示,本实施例提供的防短缩覆膜支架在第四实施例的防短缩覆膜支架的基础上,对覆膜支架段的直径做了一些更改设计。覆膜支架段的径向尺寸沿着由近端指向远端的轴向方向逐渐缩小,使得该覆膜支架整体上成圆台状。将覆膜支架做成圆台状更能适应大多数人的血管形态。值得注意的是,在本实施例中,与圆台状的覆膜支架的母线重合的轴向支撑部并不与该覆膜支架的轴线平行。
第六实施例:
如图9a所示的防短缩覆膜支架60可看做是按照第二实施例中的波形单元的形态采用切割工艺一体切割而成的。切割一体成型的支架本体相对于编织定型工艺形成的支架本体,其一致性更好,生产效率更高。在该实施例中,轴向支撑单元可以看做是由若干个波形单元的平直部一体成型为一个单一的整体。
第七实施例:
如图9b所示的防短缩覆膜支架70可以看做是按照第一实施例中的波形单元的形态采用切割工艺一体切割而成的。且在该实施例中,轴向支撑部71连接的是各波形单元的波峰。在该实施例中,轴向支撑部可以看做是由若干个波形单元的平直部一体成型为一个单一的整体。
在另一种实施例中,轴向支撑部也可以是由若干个平直部通过连接钢套首尾拼接形成的。
针对本发明第一实施例到第五实施例中描述的防短缩覆膜支架,本发明还提出了一种制作这种防短缩覆膜支架的方法,其包括以下步骤:
S1、提供多个波形单元,该波形单元包括平直部和与平直部相连的如前述实施例所示的波形部。
S2、将多个波形单元的平直部的至少一部分沿覆膜支架的周向两两并排相连,利用所有平直部配合形成与该覆膜支架的母线平行并位于所述覆膜支架的大弯侧的轴向支撑部,制得支架本体的半成品。平直部并排相连的部分可以与波形部的波形高度相等。
S3、得到支架本体的半成品后,需去除位于所述支架本体半成品近端和远端单独的两个波形部,保持远端端面和近端端面的平整。
此外,该制作方法还包括将覆膜包覆于采用上述方法得到的支架本体上的步骤,并使得所有平直部都直接与覆膜相连。关于该步骤属于现有公知技术,因此不再赘述。
如图14所示,针对本发明的防短缩覆膜支架的技术构思,还提出了另一种防短缩覆膜支架的制作方法,该方法包括以下步骤:
S1、提供一金属丝100。该金属丝100优选镍钛合金丝。
S2、将金属丝100的末端101弯折一部分直至与覆膜支架的母线平行,并以该平直的末端101为始端沿周向编织波形部,直至波形部编织回到平直的末端101处;
S3、将该波形部的末端102弯折至与覆膜支架的母线平行,并将波形部的末端102与平直的末端通过连接件103沿周向并排相连;
S4、在步骤S3的基础上,沿波形部的末端101预留一段平直部104,并使得该平直部104与平直的末端101处于同一直线L上,然后重复步骤S2和步骤S3在平直部104的末端编织下一个环状的波形部直至形成具有所述轴向支撑部的支架。
该方法采用一根金属丝编织成完整的支架本体,编织方法简单容易操作。
本发明的覆膜支架的轴向支撑部在径向无金属丝重叠现象,可解决现有技术覆膜支架轴向支撑在径向重叠导致覆膜支架内部不平滑,易长血栓的问题。且轴向支撑部与覆膜支架的轴线平行,给覆膜支架提供较好的纵向支撑,解决现有技术覆膜支架纵向支撑部件绕轴向螺旋,压缩后轴向支撑部件变形导致覆膜支架轴向延长,影响定位及后期纵向支撑效果差,覆膜支架发生短缩的问题。

Claims (20)

  1. 一种防短缩覆膜支架,包括呈中空筒状的覆膜支架段,所述覆膜支架段具有大弯侧区和小弯侧区,包括支架本体和包覆在所述支架本体上的覆膜,其特征在于,所述支架本体包括多个波形单元,所述波形单元包括与所述覆膜支架的母线平行且直接与所述覆膜相连的平直部,以及与所述平直部相连的波形部,任意相邻两个所述波形单元的平直部至少有部分沿所述覆膜支架的周向并排相连形成与所述母线平行的轴向支撑部,所述轴向支撑部位于所述大弯侧区。
  2. 根据权利要求1所述的防短缩覆膜支架,其特征在于,任意相邻两个所述波形单元的平直部通过连接件周向并排相连。
  3. 根据权利要求2所述的防短缩覆膜支架,其特征在于,所述连接件为钢套或位于两所述平直部之间连接两平直部的焊接部件。
  4. 根据权利要求2所述的防短缩覆膜支架,其特征在于,所述波形部包括分别设于所述平直部的两端的第一波形部和第二波形部。
  5. 根据权利要求4所述的防短缩覆膜支架,其特征在于,所述第一波形部和所述第二波形部分别位于所述平直部的同侧或异侧。
  6. 根据权利要求5所述的防短缩覆膜支架,其特征在于,所述第一波形部与所述第二波形部的波形相位相同或相反。
  7. 根据权利要求6所述的防短缩覆膜支架,其特征在于,所述第一波形部的波长大于所述第二波形部的波长。
  8. 根据权利要求7所述的防短缩覆膜支架,其特征在于,所述第一波形部的波长为所述第二波形部的波长的2倍。
  9. 根据权利要求2所述的防短缩覆膜支架,其特征在于,最靠近所述轴向支撑部的相邻两个所述波形部之间的最短距离为L1,在该相邻两个所述波形部中,任意一个波形部最靠近所述轴向支撑部的波形的波高为L2,则L1与L2满足:L1/L2=0.1~1.2。
  10. 根据权利要求1所述的防短缩覆膜支架,其特征在于,所述平直部的外径D与两所述平直部中心轴之间的间距L满足:D≤L≤1.1D。
  11. 根据权利要求1所述的防短缩覆膜支架,其特征在于,所述覆膜支架还包括分别设于所述支架本体两端的波形金属环,所述波形金属环与所述覆膜相连。
  12. 一种防短缩覆膜支架,包括呈中空筒状的覆膜支架段,所述覆膜支架段具有大弯侧区和小弯侧区,包括支架本体和包覆在所述支架本体上的覆膜,其特征在于,所述支架本体包括与所述覆膜支架的母线平行且直接与所述覆膜直接相连的轴向支撑部以及与所述轴向支撑部相连的波形部,所述轴向支撑部位于所述大弯侧区。
  13. 根据权利要求12所述的防短缩覆膜支架,其特征在于,所述轴向支撑部由多个与所述覆膜支架的母线平行且位于大弯侧区的平直部首尾拼接而成,每个平直部与至少一个波形部相连。
  14. 根据权利要求13所述的防短缩覆膜支架,其特征在于,多个所述平直部一体成型。
  15. 根据权利要求1或12所述的防短缩覆膜支架,其特征在于,该防短缩覆膜支架还包括与所述覆膜段近端相连的裸支架段。
  16. 根据权利要求15所述的防短缩覆膜支架,其特征在于,所述裸支架段包括至少一个波形环状物,所述波形环状物的外轮廓上包覆有具有生物相容性的阻挡层。
  17. 根据权利要求16所述的防短缩覆膜支架,其特征在于,所述阻挡层为聚四氟乙烯层。
  18. 一种防短缩覆膜支架的制作方法,其特征在于,其包括以下步骤:
    S1、提供多个波形单元,所述波形单元包括平直部和与所述平直部相连的波形部;
    S2、将所有波形单元的平直部的至少一部分两两并排相连,利用所有平直部配合形成与该覆膜支架的母线平行并位于所述覆膜支架的大弯侧的轴向支撑部,得到支架本体半成品;
    S3、去除位于所述支架本体半成品近端和远端的两个波形部。
  19. 根据权利要求18所述的防短缩覆膜支架的制作方法,其特征在于,在步骤S2中,任意两个相连的平直部并排相连部分的长度大致等于所述波形部的高度。
  20. 一种如权利要求12所述的防短缩覆膜支架的制作方法,其特征在于,该方法包括以下步骤:
    S1、提供一金属丝;
    S2、将所述金属丝末端的至少一部分弯折至与所述覆膜支架的母线平行,并以该平直的末端为始端沿周向编织环状的波形部,直至所述波形部编织回到所述平直的末端处;
    S3、将该波形部的末端弯折至与所述覆膜支架的母线平行,并将所述波形部的末端与所述平直的末端通过连接件沿周向并排相连;
    S4、沿所述的波形部的末端预留一段平直部,并使得该平直部与所述平直的末端处于同一直线,然后重复步骤S2和步骤S3在所述平直部的末端编织下一个环状的波形部直至形成具有所述轴向支撑部的支架。
PCT/CN2017/099024 2016-11-24 2017-08-25 防短缩覆膜支架及其制作方法 WO2018095090A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611063291.4A CN108095858B (zh) 2016-11-24 2016-11-24 防短缩覆膜支架及其制作方法
CN201611063291.4 2016-11-24

Publications (1)

Publication Number Publication Date
WO2018095090A1 true WO2018095090A1 (zh) 2018-05-31

Family

ID=62195765

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/099024 WO2018095090A1 (zh) 2016-11-24 2017-08-25 防短缩覆膜支架及其制作方法

Country Status (2)

Country Link
CN (1) CN108095858B (zh)
WO (1) WO2018095090A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10888414B2 (en) 2019-03-20 2021-01-12 inQB8 Medical Technologies, LLC Aortic dissection implant
CN112998907A (zh) * 2019-12-20 2021-06-22 深圳市先健畅通医疗有限公司 覆膜支架
EP3988060A4 (en) * 2019-12-19 2023-07-05 Shenzhen Chuangxin Medical Technology Co., Ltd. STENT AND STENT SYSTEMS
US11918452B2 (en) 2019-11-22 2024-03-05 Lifetech Scientific (Shenzhen) Co., Ltd. Covered stent

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108553202A (zh) * 2018-07-03 2018-09-21 上海交通大学医学院附属第九人民医院 一种治疗b型主动脉夹层的支架
CN111096823B (zh) * 2018-10-25 2022-01-18 深圳市先健畅通医疗有限公司 覆膜支架
CN109431650B (zh) * 2018-11-27 2021-08-17 深圳市先健畅通医疗有限公司 覆膜支架
CN109464212B (zh) * 2018-12-14 2022-04-05 深圳市先健畅通医疗有限公司 覆膜支架
CN109481109B (zh) * 2018-12-18 2021-03-30 深圳市先健畅通医疗有限公司 编织支架
CN110393607B (zh) * 2019-07-17 2022-04-05 深圳市先健畅通医疗有限公司 覆膜支架
CN113827370A (zh) * 2021-10-18 2021-12-24 广东迈迪健通科技有限公司 覆膜支架

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6071308A (en) * 1997-10-01 2000-06-06 Boston Scientific Corporation Flexible metal wire stent
CN1330530A (zh) * 1998-11-09 2002-01-09 米维技术公司 可膨胀的展幅及其制造方法
CN101176686A (zh) * 2007-11-20 2008-05-14 微创医疗器械(上海)有限公司 一种覆膜支架
CN102670338A (zh) * 2012-06-11 2012-09-19 上海中山医疗科技发展公司 一种预弯型主动脉覆膜支架及其制作方法
CN103598929A (zh) * 2013-11-28 2014-02-26 先健科技(深圳)有限公司 胸主动脉覆膜支架
CN105769383A (zh) * 2016-03-18 2016-07-20 唯强医疗科技(上海)有限公司 一种主动脉裸支架及主动脉夹层支架

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6071308A (en) * 1997-10-01 2000-06-06 Boston Scientific Corporation Flexible metal wire stent
CN1330530A (zh) * 1998-11-09 2002-01-09 米维技术公司 可膨胀的展幅及其制造方法
CN101176686A (zh) * 2007-11-20 2008-05-14 微创医疗器械(上海)有限公司 一种覆膜支架
CN102670338A (zh) * 2012-06-11 2012-09-19 上海中山医疗科技发展公司 一种预弯型主动脉覆膜支架及其制作方法
CN103598929A (zh) * 2013-11-28 2014-02-26 先健科技(深圳)有限公司 胸主动脉覆膜支架
CN105769383A (zh) * 2016-03-18 2016-07-20 唯强医疗科技(上海)有限公司 一种主动脉裸支架及主动脉夹层支架

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10888414B2 (en) 2019-03-20 2021-01-12 inQB8 Medical Technologies, LLC Aortic dissection implant
US11918452B2 (en) 2019-11-22 2024-03-05 Lifetech Scientific (Shenzhen) Co., Ltd. Covered stent
EP3988060A4 (en) * 2019-12-19 2023-07-05 Shenzhen Chuangxin Medical Technology Co., Ltd. STENT AND STENT SYSTEMS
CN112998907A (zh) * 2019-12-20 2021-06-22 深圳市先健畅通医疗有限公司 覆膜支架

Also Published As

Publication number Publication date
CN108095858A (zh) 2018-06-01
CN108095858B (zh) 2020-08-21

Similar Documents

Publication Publication Date Title
WO2018095090A1 (zh) 防短缩覆膜支架及其制作方法
US6962604B2 (en) Flexible endoluminal stent and process of repairing a body lumen
US7691109B2 (en) Method of producing low profile stent and graft combination
US10285798B2 (en) Esophageal stent
US10321991B2 (en) Collapsible valve having paravalvular leak protection
WO2014071837A1 (zh) 一种编织的自膨式管腔支架及其制作方法
JP2001231867A (ja) 膨張ポリテトラフルオロエチレンで被覆した膨張可能なステント移植皮弁
US20060106406A1 (en) Methods and devices for extravascular intervention
JP2015043987A (ja) ステント部材
CN107157616A (zh) 一种主动脉开窗分支覆膜支架
CN115919504A (zh) 分体式单内嵌分支覆膜支架
CN115429485A (zh) 一种主动脉覆膜支架
WO2011051812A1 (en) Endoprosthesis comprising at least one collateral branch attached to a pre-established window
CN113116612B (zh) 覆膜支架
CN110420074A (zh) 覆膜支架
WO2022121734A1 (zh) 一种支架输送系统组合件及人工瓣膜输送系统组合件
CN220778491U (zh) 一种带缺口的管状结构的人工血管
CN219070799U (zh) 一种主动脉覆膜支架
RU2712868C1 (ru) Расширяемый медицинский стент и способ его расширения
US20230293325A1 (en) Non-forshortening balloon expandable stent frame
CN217960413U (zh) 覆膜支架及血液通道修复组件
WO2022134193A1 (zh) 肺动脉支架
US20230233346A1 (en) Stent with multiple knitting patterns
CN116687635A (zh) 适于植入血管的支架
CN116370143A (zh) 贴壁血管支架及覆膜支架系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17872911

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17872911

Country of ref document: EP

Kind code of ref document: A1