WO2018094891A1 - 用于涡旋压缩机的涡旋盘、涡旋压缩机和制冷设备 - Google Patents

用于涡旋压缩机的涡旋盘、涡旋压缩机和制冷设备 Download PDF

Info

Publication number
WO2018094891A1
WO2018094891A1 PCT/CN2017/074816 CN2017074816W WO2018094891A1 WO 2018094891 A1 WO2018094891 A1 WO 2018094891A1 CN 2017074816 W CN2017074816 W CN 2017074816W WO 2018094891 A1 WO2018094891 A1 WO 2018094891A1
Authority
WO
WIPO (PCT)
Prior art keywords
scroll
wrap
compressor according
scroll compressor
fixed
Prior art date
Application number
PCT/CN2017/074816
Other languages
English (en)
French (fr)
Inventor
李冬元
黄柏英
Original Assignee
广东美的暖通设备有限公司
美的集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东美的暖通设备有限公司, 美的集团股份有限公司 filed Critical 广东美的暖通设备有限公司
Publication of WO2018094891A1 publication Critical patent/WO2018094891A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0246Details concerning the involute wraps or their base, e.g. geometry
    • F04C18/0269Details concerning the involute wraps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0215Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
    • F04C18/0223Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving with symmetrical double wraps

Definitions

  • the present invention relates to the field of compressors, and more particularly to a scroll disk, a scroll compressor and a refrigeration device for a scroll compressor.
  • the scroll compressor includes a co-rotating fixed scroll and an orbiting scroll, and a crankshaft that drives the orbiting scroll, wherein the fixed scroll and the orbiting scroll both include a disk body and protrude from the disk body
  • the upper wrap is generally perpendicular to the wrap and the disk of the fixed scroll or the orbiting scroll.
  • the orbiting scroll mainly receives the centrifugal force brought by the crankshaft drive, the radial force and the tangential force parallel to the radial direction of the disk body, and the centrifugal force parallel to the axial direction.
  • the tangential force and the axial centrifugal force are large, and at the same time, the combined force of the tangential force, the radial force and the centrifugal force is also transmitted to the eccentricity of the crankshaft of the scroll compressor, thereby causing the reaction force at the bearing of the crankshaft and The friction is large, which has a great influence on the performance and reliability of the scroll compressor.
  • a primary object of the present invention is to provide a scroll compressor and a scroll thereof for reducing forces in a radial direction and an axial direction on a scroll, thereby reducing frictional power consumption of a scroll compressor and a crankshaft The reliability of the bearing is improved.
  • the present invention provides a scroll for a scroll compressor, comprising: a disk; a wrap, the wrap is disposed on one side surface of the disk, and The wrap teeth extend from the one side surface of the disc body toward a direction away from the disc body, and the wall thickness of the wrap teeth gradually changes along the extending direction of the wrap teeth.
  • the wall thickness of the wrap is gradually reduced from an end of the wrap near the disc toward an end of the wrap that is remote from the disc.
  • the wall thickness of the wrap is gradually increased from an end of the wrap near the disc toward an end of the wrap away from the disc.
  • the side walls of the wrap are disposed obliquely with respect to a central axis of the wrap.
  • the side wall of the wrap has an angle ⁇ with the central axis of the wrap, wherein the ⁇ satisfies: 0° ⁇ ⁇ ⁇ 10°.
  • the ⁇ further satisfies: 0° ⁇ ⁇ ⁇ 3°.
  • the central axis of the wrap is perpendicular to the disk.
  • the longitudinal section of the wrap is an isosceles trapezoid.
  • the tooth profile of the scroll is a circle involute, an algebraic spiral, a reduced diameter circle involute, a line involute, a regular polygon involute, a parallelogram. At least one of an open line, an Archimedes spiral, and an envelope.
  • the scroll is an orbiting scroll or a stationary scroll.
  • the present invention also provides a scroll compressor including an orbiting scroll; a fixed scroll, the orbiting scroll and the fixed scroll mesh with each other to form a crescent-shaped compression chamber
  • the orbiting scroll and the fixed scroll are both scrolls of the above structure, and the wall thickness of the orbiting scroll of the orbiting scroll and the fixed scroll is along the scroll The degree of gradual change in the direction in which the teeth extend is uniform.
  • the profile of the fixed scroll is greater than or equal to the profile of the orbiting scroll.
  • the tooth height of the wrap of the fixed scroll coincides with the tooth height of the wrap of the orbiting scroll.
  • the present invention also proposes a refrigeration apparatus comprising the scroll compressor of the above construction.
  • the tangential force can be decomposed into a radial component and an axial component by the force decomposition, wherein The radial component should be smaller than the original tangential force, and the axial component is opposite to the axial force, so the axial force can be effectively reduced.
  • the technical solution of the present invention has a smaller tangential force and axial force than the conventional vertical profile setting scheme, so that the force acting on the bearing through the crankshaft is reduced. This will reduce the frictional power consumption of the compressor and improve the reliability of the crankshaft bearing, thereby improving the performance and reliability of the scroll compressor.
  • FIG. 1 is a schematic cross-sectional structural view of a scroll compressor according to an embodiment of the present invention
  • Figure 2 is a schematic view showing the tooth profile of the movable scroll and the fixed scroll shown in Figure 1;
  • Figure 3 is a schematic cross-sectional structural view of the orbiting scroll and the fixed scroll shown in Figure 1;
  • Figure 4 is an enlarged schematic view of a portion A in Figure 3;
  • Figure 5 is a cross-sectional structural view showing an orbiting scroll and a fixed scroll of a scroll compressor according to another embodiment of the present invention.
  • Fig. 6 is an enlarged schematic view showing a portion B in Fig. 5.
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated. Thus, features defining “first” and “second” may include one or more of the features either explicitly or implicitly. In the description of the present invention, "a plurality” means two or more unless otherwise stated.
  • connection In the description of the present invention, it should be noted that the terms “installation”, “connected”, and “connected” are to be understood broadly, and may be fixed or detachable, for example, unless otherwise explicitly defined and defined. Connected, or integrally connected; can be mechanical or electrical; can be directly connected, or indirectly connected through an intermediate medium, can be the internal communication of the two components.
  • Connected, or integrally connected can be mechanical or electrical; can be directly connected, or indirectly connected through an intermediate medium, can be the internal communication of the two components.
  • the specific meaning of the above terms in the present invention can be understood in a specific case by those skilled in the art.
  • the present invention mainly proposes a scroll for a scroll compressor, the scroll including an orbiting scroll and a fixed scroll.
  • the scroll compressor By modifying the scroll of the existing scroll compressor, it is applied to the scroll compressor, which can effectively reduce the force in the radial direction and the axial direction on the scroll, thereby making the friction of the compressor Reduced power consumption and increased reliability of crankshaft bearings.
  • the scroll compressor is specifically applied to an air conditioner.
  • the scroll compressor can also be applied to other refrigeration equipment.
  • the scroll compressor includes a hermetic receiving space formed by the casing 10, the upper cover 101, and the lower cover 102, that is, a casing of the compressor.
  • the accommodating space is provided with a plurality of components such as, but not limited to, an orbiting scroll 11, a fixed scroll 12, an upper bracket 13, a lower bracket 14, a crankshaft 15, a motor 16 (including a stator and a rotor), an oil pool 17, and the like. .
  • the casing 10 has a cylindrical shape with both ends open, and an air suction pipe 103 and an exhaust pipe 104 are disposed on the upper surface thereof.
  • the upper end opening of the casing 10 is engaged with the upper cover 101 which is arched upward in the middle, and the casing 10 is assembled.
  • the lower end opening is engaged with the lower cover 102 which is disposed downwardly in the middle, and the arched lower cover 102 is enclosed with the casing 10 to form an oil pool 17 at the bottom of the compressor, which can be used for accommodating lubricating oil.
  • the lubricating oil is introduced into the oil guiding hole 181 through the oil guiding assembly 18 at the lower end of the crankshaft 15, and the bearing of the compressor and the orbiting scroll 11 and the stationary scroll are supplied from the bottom up.
  • the disk 12 and the like are lubricated.
  • the upper bracket 13 is located at an upper portion of the accommodating space and is fixed to the casing 10, and the movable scroll 11 is located above the upper bracket 13 and is vortexed by the support of the upper bracket 13
  • the disk 12 is meshed with each other up and down to form a gas compression chamber 3.
  • the fixed scroll 12 is disposed closer to the upper cover 101 than the movable scroll 11, and the top surface of the fixed scroll 12 and the upper cover 101 are enclosed to form a first exhaust chamber 41.
  • a vent hole 121 is formed in the fixed scroll 12, and an intake pipe 103 is connected to the fixed scroll 12.
  • the suction pipe 103 extends in the radial direction of the fixed scroll 12 and passes through the casing 10.
  • the suction pipe 103 may also extend along the axial direction of the fixed scroll 12 and pass through. Cover 101 Settings (not shown).
  • the chamber 42 has a first exhaust chamber 41 in communication with the second exhaust chamber 42 and a second exhaust chamber 42 in communication with the exhaust tube 104.
  • the operation of the refrigerant of the air conditioner in the scroll compressor should be as follows: the low-pressure refrigerant gas is sucked into the compression chamber 3 through the suction pipe 103, and after being compressed, The exhaust hole 121 of the scroll 12 is discharged to the exhaust chamber (including the first exhaust chamber 41 and the second exhaust chamber 42 described above), specifically, first to the first exhaust chamber 41, and then to the first The second exhaust chamber 42 is finally discharged by the exhaust pipe 104.
  • crankshaft 15 passes through the motor 16 and is coupled to the orbiting scroll 11 to drive the orbiting scroll 11 to rotate relative to the fixed scroll 12, and the lower end of the crankshaft 15 is supported below.
  • the bracket 14 and the lower end of the crankshaft 15 also extend into the oil sump 17 through the oil guiding assembly 18.
  • the crankshaft 15 is an eccentric crankshaft, and includes an eccentric shaft fixedly coupled to the rotor of the motor 16 and a matching bearing (not labeled).
  • An eccentric sleeve 111 is disposed on a side surface of the scroll 11 facing away from the fixed scroll 12, and an upper end of the eccentric shaft can be disposed in the eccentric sleeve 111 through a bearing, thereby realizing transmission of the movable scroll 11 and the crankshaft 15. connection.
  • the motor 16 when the motor 16 is started, the rotor of the motor 16 drives the crankshaft 15 to rotate, and the crankshaft 15 has an eccentric shaft, and the crankshaft 15 performs an eccentric rotational motion about the eccentric shaft, and the eccentric shaft is driven by the eccentric sleeve 111 of the movable scroll 11.
  • the orbiting scroll 11 performs a translational motion along a certain movement trajectory.
  • a cross slip ring 19 may be disposed between the movable scroll 11 and the upper bracket 13, and the movable scroll 11 and the upper portion are provided.
  • a seal ring 20 is also disposed between the brackets 13.
  • the crankshaft 15 drives the orbiting scroll 11 to perform eccentric operation under the driving of the motor 16.
  • the low-pressure refrigerant gas is sucked into the plurality of crescent-shaped compression chambers 3 composed of the fixed scroll 12 and the orbiting scroll 11 through the suction pipe 103; with the eccentric operation of the orbiting scroll 11, the compression chamber 3 is The outer edge continuously moves toward the center, and the refrigerant gas in the compression chamber 3 is also pushed toward the center.
  • the orbiting scroll 11 and the scroll of the fixed scroll 12 are substantially identical, that is, each includes a disk body and a wrap tooth protruding from the disk body, and the wall of the wrap tooth
  • the convex direction of the thick scroll teeth gradually changes.
  • the scroll structure of the orbiting scroll 11 and the fixed scroll 12 may respectively include a disk body and a wrap, the wrap teeth are disposed on one side surface of the disk body, and the wrap teeth are from the disk body The one side surface extends away from the disk body, and the wall thickness of the wrap gradually changes along the extending direction of the wrap.
  • the orbiting scroll 11 includes a movable disc body 112 and a movable scroll 113.
  • the fixed scroll 12 includes a stationary disc body 122 and a stationary scroll 123, and the movable disc body 112 and the stationary disc
  • the body 122 is oppositely disposed, and one end surface of the movable scroll 113 is formed to protrude toward the static disk body 122.
  • the stationary scroll 123 protrudes from one end surface of the static disk body 122 toward the movable disk body 112.
  • the wall thickness of the orbiting scroll 113 gradually changes along the protruding direction of the movable wrap 113
  • the wall thickness of the fixed wrap 123 gradually changes along the protruding direction of the fixed wrap 123, and the degree of gradation of the two
  • the movable wrap 113 and the fixed wrap 123 can be meshed with each other to form the crescent-shaped compression chamber 3 without gas leakage.
  • the fixed wrap 123 and the orbiting scroll 113 are disposed above and below each other, and the static disk body 122 is located above the movable disk body 112, and the wall thickness of the fixed scroll 123 is self-stationary.
  • the end of the serration 123 close to the stationary disc body 122 gradually becomes larger toward the other end of the stationary wrap 123 away from the stationary disc body 122.
  • the wall thickness of the orbiting scroll 113 is close to the movable disc of the scroll wrap 113.
  • One end of the body 112 gradually becomes larger toward the other end of the movable scroll 113 which is away from the movable disk body 112.
  • the cross section of the fixed wrap 123 and the movable wrap 113 are both isosceles trapezoidal in cross section, and the central axis of the wrap is perpendicular to the disk body, that is, the central axis of the stationary wrap 123
  • the central axis of the movable scroll 113 is perpendicular to the movable body 112 perpendicular to the stationary disk body 122.
  • the meshing surfaces of the stationary scroll 123 and the movable scroll 113 are arranged perpendicular to the disk body.
  • the scroll compressor when the scroll compressor is operated, as shown in FIG. It is shown that when the center of the orbiting scroll 11 is operated to the positive direction of the X-axis, that is, when the angle between the center of the orbiting scroll 11 and the center of the fixed scroll 12 and the X-axis is 0°,
  • the orbiting scroll 11 mainly receives the centrifugal force Fc brought by the driving of the crankshaft 15, and is parallel to the radial direction of the moving disc body 112 and the radial force Fr of the X-axis, parallel to the radial direction but The tangential force Ft perpendicular to the X axis and the axial gas separation force parallel to the axial direction, that is, the axial force Fa.
  • the tangential force Ft and the axial force Fa are large, especially the tangential force Ft is much larger than the radial force Fr, so the influence on the performance and reliability of the scroll compressor is large, the tangential force Ft, the radial direction
  • the resultant force of the force Fr and the centrifugal force Fc is transmitted to the eccentricity of the crankshaft 15, resulting in a large reaction force and friction of the bearing of the crankshaft 15.
  • the tangential force Ft can pass the force.
  • the present invention Compared with the conventional vertical line setting scheme, the technical solution has a small tangential force and axial force, so that the force acting on the bearing through the crankshaft 15 is reduced, thereby reducing the scroll compressor.
  • the frictional power consumption and the reliability of the crankshaft 15 bearing improve the performance and reliability of the scroll compressor.
  • the technical solution of the present invention has the following advantages: First, since the axial force Fa is offset by the designed back pressure, when the axial force Fa is large, the design of the back pressure is increased, and the present invention Technical solution is effective The axial force Fa is reduced, so that the back pressure design can be made simpler, thereby reducing the compressor cost. Second, since the wall thicknesses of the movable scroll 113 and the fixed scroll 123 are both gradually arranged in the axial direction, The suction volume of the compressor can be increased on the basis of other structural designs, thereby increasing the capacity of the scroll compressor.
  • the type of the scroll of the scroll of the scroll compressor there are usually round involutes, line involutes, regular polygon involutes, parallelogram involutes, and Archimedes.
  • the general type line and the combined type line such as a snail line, an algebraic spiral line, a variable diameter base involute line, an envelope line, etc., can be applied to the technical solution of the present invention.
  • the circular involute, the algebraic spiral, and the variable diameter base involute are three commonly used types of wire types.
  • the type of the scroll of the scroll in the embodiment is preferably in the form of a circle involute.
  • the tooth profile of the fixed scroll 12 is larger than the tooth profile of the movable scroll, and the profile of the movable scroll 11 and the fixed scroll 12
  • the profile of the tooth profile is set at an offset of 180°.
  • the profile of the fixed scroll may also be in a symmetrical arrangement equal to the profile of the orbiting scroll.
  • a first compression chamber may be formed on the inner side of the coil 12 wire, and a second compression chamber may be formed on the inner side of the movable scroll 11 line and the outside of the fixed scroll 12 line.
  • the tooth height of the fixed wrap 123 and the tooth height of the movable wrap 113 should be identical, so that the fixed wrap 123 and the movable wrap can be made.
  • the meshing gap between 113 is as small as possible, thereby reducing the risk of refrigerant gas leakage.
  • the range of ⁇ may preferably be 0° ⁇ ⁇ ⁇ 10°, and further, in most air conditioners, The preferred range of ⁇ can be further reduced to 0° ⁇ ⁇ ⁇ 3°.
  • the wall thickness of the stationary wrap 123 is from the end of the fixed wrap 123 near the stationary disk body 122.
  • the other end of the fixed wrap 123 gradually becomes smaller, and at the same time, the end of the orbiting scroll 113 that is closer to the movable body 112 of the orbiting scroll 113 is gradually smaller toward the other end of the movable wrap 113.

Abstract

一种用于涡旋压缩机的涡旋盘,包括:盘体和涡旋齿,涡旋齿设在盘体的一侧表面上,且涡旋齿从盘体的一侧表面朝向远离盘体的方向延伸出,涡旋齿的壁厚沿涡旋齿的延伸方向逐渐变化。

Description

用于涡旋压缩机的涡旋盘、涡旋压缩机和制冷设备 技术领域
本发明涉及压缩机领域,特别涉及一种用于涡旋压缩机的涡旋盘、涡旋压缩机和制冷设备。
背景技术
目前,涡旋压缩机因其结构简单、体积小、重量轻、噪音低、效率高、受力平稳等优点而被广泛应用于空调器等领域。通常,涡旋压缩机包括相互配合的静涡旋盘和动涡旋盘,以及驱动动涡旋盘的曲轴,其中,静涡旋盘和动涡旋盘均包括盘体以及凸设于盘体上的涡旋齿,且涡旋齿与静涡旋盘或动涡旋盘的盘体之间通常呈垂直设计。
在涡旋压缩机工作时,动涡旋盘主要承受曲轴驱动带来的离心力、平行于盘体的径向方向的径向力和切向力,以及平行于轴向方向的离心力等。然而,切向力和轴向离心力较大,同时,切向力、径向力与离心力的合力也会传递到涡旋压缩机的曲轴的偏心处,从而导致驱动曲轴的轴承处的反作用力及摩擦力较大,从而对涡旋压缩机的性能及可靠性造成较大影响。
发明内容
本发明的主要目的是提供一种涡旋压缩机及其涡旋盘,旨在降低涡旋盘上沿径向方向和轴向方向的力,从而使得涡旋压缩机的摩擦功耗降低以及曲轴轴承的可靠性提高。
为实现上述目的,本发明提供了一种用于涡旋压缩机的涡旋盘,包括:盘体;涡旋齿,所述涡旋齿设在所述盘体的一侧表面上,且所述涡旋齿从所述盘体的所述一侧表面朝向远离所述盘体的方向延伸出,所述涡旋齿的壁厚沿所述涡旋齿的延伸方向逐渐变化。
根据本发明的其中一些示例,所述涡旋齿的壁厚从所述涡旋齿的靠近所述盘体的一端朝向所述涡旋齿的远离所述盘体的一端逐渐变小。
根据本发明的其中一些示例,所述涡旋齿的壁厚从所述涡旋齿的靠近所述盘体的一端朝向所述涡旋齿的远离所述盘体的一端逐渐变大。
根据本发明的其中一些示例,所述涡旋齿的侧壁相对于所述涡旋齿的中心轴线倾斜设置。
根据本发明的其中一些示例,所述涡旋齿的侧壁与所述涡旋齿的中心轴线之间具有夹角β,其中,所述β满足:0°<β≤10°。
根据本发明的其中一些示例,所述β进一步满足:0°<β≤3°。
根据本发明的其中一些示例,所述涡旋齿的中心轴线垂直于所述盘体。
根据本发明的其中一些示例,所述涡旋齿的纵向截面为等腰梯形。
根据本发明的其中一些示例,所述涡旋盘的齿型线为圆的渐开线、代数螺线、变径基圆渐开线、线段渐开线、正多边形渐开线、平行四边形渐开线、阿基米德螺线和包络线中的至少一种。
根据本发明的其中一些示例,所述涡旋盘为动涡旋盘或静涡旋盘。
此外,为实现上述目的,本发明还提供了一种涡旋压缩机,包括动涡旋盘;静涡旋盘,所述动涡旋盘和所述静涡旋盘相互啮合形成月牙形压缩腔,所述动涡旋盘和所述静涡旋盘均为上述结构的涡旋盘,且所述动涡旋盘和所述静涡旋盘的涡旋齿的壁厚在沿所述涡旋齿的延伸方向上逐渐变化的程度一致。
根据本发明的其中一些示例,所述静涡旋盘的齿型线大于或等于所述动涡旋盘的齿型线。
根据本发明的其中一些示例,所述静涡旋盘的涡旋齿的齿高与所述动涡旋盘的涡旋齿的齿高一致。
本发明还提出一种制冷设备,包括上述结构的涡旋压缩机。
在本发明的技术方案中,由于涡旋齿的壁厚沿涡旋齿的延伸方向逐渐变化,故切向力就可通过力的分解作用,分解成径向分力和轴向分力,其中,径向分力应小于原切向力,而轴向分力与轴向力的方向相反,故可有效减小轴向力。如此,在相同条件下,相比目前常见的垂直型线的设置方案,本发明的技术方案其切向力和轴向力都要小,这样,通过曲轴作用到轴承上的力就会减小,从而会降低压缩机的摩擦功耗以及提高曲轴轴承的可靠性,进而提高涡旋压缩机的性能及可靠性。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1为根据本发明实施例的涡旋压缩机的截面结构示意图;
图2为图1中所示的动涡旋盘与静涡旋盘于配合状态的齿型线示意图;
图3为图1中所示的动涡旋盘与静涡旋盘的截面结构示意图;
图4为图3中A处的放大示意图;
图5为根据本发明另一个实施例的涡旋压缩机的动涡旋盘与静涡旋盘的截面结构示意图;
图6为图5中B处的放大示意图。
附图标号说明:
标号 名称 标号 名称
10 机壳 101 上盖
102 下盖 103 吸气管
104 排气管 11 动涡旋盘
111 偏心套 112 动盘体
113 动涡旋齿 12 静涡旋盘
121 排气孔 122 静盘体
123 静涡旋齿 13 上支架
14 下支架 15 曲轴
16 电机 17 油池
18 导油组件 181 导油孔
3 压缩腔 41 第一排气腔
42 第二排气腔 19 十字滑环
20 密封圈    
本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的 方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
本发明主要提出一种应用于涡旋压缩机的涡旋盘,该涡旋盘包括动涡旋盘和静涡旋盘。通过对现有的涡旋压缩机的涡旋盘进行改进,使得其应用于涡旋压缩机中,可有效降低涡旋盘上沿径向方向和轴向方向的力,从而使得压缩机的摩擦功耗降低以及曲轴轴承的可靠性提高。
参照图1至图6,在本发明一实施例中,该涡旋压缩机具体应用于一空调器中,当然,该涡旋压缩机也可适用于其他的制冷设备中。
如图1所示,该涡旋压缩机包括由机壳10、上盖101和下盖102形成的密闭的收容空间,即压缩机的壳体。该收容空间内设有多个部件,例如但不限于动涡旋盘11、静涡旋盘12、上支架13、下支架14、曲轴15、电机16(包括定子和转子)、油池17等。
其中,机壳10呈两端开口的圆筒状,上面设置有吸气管103和排气管104,机壳10的上端开口与呈中部向上拱起设置的上盖101卡合,机壳10的下端开口与呈中部向下拱起设置的下盖102卡合,而拱起的下盖102与机壳10围合即可形成位于压缩机底部的油池17,该油池17可用于容纳润滑油。曲轴15在电机的带动下做偏心转动时,通过曲轴15下端的导油组件18将润滑油引入导油孔181,并自下而上供给压缩机的轴承以及动涡旋盘11和静涡旋盘12等,进行润滑。
另外,在本实施例中,上支架13位于上述收容空间的上部,并与机壳10固定,动涡旋盘11则位于上支架13的上方,并通过上支架13的支撑而与静涡旋盘12上下相互啮合以形成气体压缩腔3。同时,静涡旋盘12比动涡旋盘11更靠近上盖101设置,且静涡旋盘12的顶面与上盖101之间围合形成第一排气腔41。静涡旋盘12上设有排气孔121,且静涡旋盘12上连接有一吸气管103。吸气管103沿静涡旋盘12的径向方向延伸,并穿出机壳10,当然,在其他实施例中,吸气管103也可以沿静涡旋盘12的轴向延伸,并穿出上盖101 设置(图未示出)。
此外,下支架14位于油池17的上方,电机16位于上支架13和下支架14之间,且电机16、上支架13和下支架14这三者之间围成的空间形成第二排气腔42,第一排气腔41与第二排气腔42连通,而第二排气腔42又与排气管104连通。根据以上结构描述,以空调器为例,空调器的冷媒在该涡旋压缩机内的运行过程应如下:低压冷媒气体经吸气管103吸入至压缩腔3内,经过压缩后,再由静涡旋盘12的排气孔121排至排气腔(包括上述的第一排气腔41和第二排气腔42),具体地,先排至第一排气腔41,再排至第二排气腔42,最后由排气管104排出。
特别地,在本实施例中,曲轴15的上端穿过电机16并与动涡旋盘11连接,以驱动动涡旋盘11相对静涡旋盘12平转运动,曲轴15的下端则支撑在下支架14上,且曲轴15的下端还通过导油组件18伸入油池17内。在此,需特别对曲轴15结构进行进一步说明,在本实施例中,曲轴15为偏心曲轴,包括与电机16的转子固定连接的偏心轴和与之相配套的轴承(未标示),而动涡旋盘11的背离静涡旋盘12的一侧表面上则设有偏心套111,上述偏心轴的上端可以通过轴承设置在偏心套111中,从而实现动涡旋盘11与曲轴15的传动连接。具体地,当电机16启动时,电机16的转子会带动曲轴15旋转,而曲轴15具有偏心轴,曲轴15则绕偏心轴做偏心旋转运动,偏心轴通过动涡旋盘11的偏心套111驱动动涡旋盘11沿一定的运动轨迹做平动运动。其中,为了使动涡旋盘11相对于静涡旋盘12仅做平动运动,在动涡旋盘11与上支架13之间可以设置有十字滑环19,另外,动涡旋盘11与上支架13之间还设置有密封圈20。
以空调器为例,并结合以上对于涡旋压缩机的结构描述,可知上述涡旋压缩机的工作原理如下:曲轴15在电机16的带动下,驱动动涡旋盘11进行偏心运转,此时,低压冷媒气体经过吸气管103吸入到由静涡旋盘12和动涡旋盘11构成的多个月牙形的压缩腔3中;伴随着动涡旋盘11的偏心运转,压缩腔3由外缘不断的向中心移动,同时压缩腔3内的冷媒气体也被推向中心,可以理解,随着压缩腔3容积的不断减小,压缩腔3内的气体压力不断升高,直至冷媒成为高压气体后由静涡旋盘12的排气孔121排到排气腔中,最后由排气管104排出。
在本发明的技术方案中,动涡旋盘11与静涡旋盘12的涡旋盘结构基本一致,即均包括盘体及凸设于盘体上的涡旋齿,且涡旋齿的壁厚沿涡旋齿的凸伸方向逐渐变化。也就是说,动涡旋盘11与静涡旋盘12的涡旋盘结构可以分别包括盘体和涡旋齿,涡旋齿设在盘体的一侧表面上,且涡旋齿从盘体的上述一侧表面朝向远离盘体的方向延伸出,涡旋齿的壁厚沿涡旋齿的延伸方向逐渐变化。
具体地,在本实施例中,动涡旋盘11包括动盘体112以及动涡旋齿113,静涡旋盘12包括静盘体122以及静涡旋齿123,动盘体112与静盘体122呈相对设置,动涡旋齿113自动盘体112的一侧端面朝向静盘体122凸伸形成,静涡旋齿123自静盘体122的一侧端面朝向动盘体112凸伸形成;动涡旋齿113的壁厚沿动涡旋齿113的凸伸方向逐渐变化,静涡旋齿123的壁厚也沿静涡旋齿123的凸伸方向逐渐变化,且两者的渐变程度一致,如此,就可以使动涡旋齿113和静涡旋齿123相互啮合形成月牙形压缩腔3,而不发生气体泄漏。例如在图3和图4的示例中,静涡旋齿123与动涡旋齿113呈上下相对设置,静盘体122位于动盘体112的上方,静涡旋齿123的壁厚自静涡旋齿123的靠近静盘体122的一端朝向静涡旋齿123的远离静盘体122的另一端逐渐变大,同样地,动涡旋齿113的壁厚自动涡旋齿113的靠近动盘体112的一端朝向动涡旋齿113的远离动盘体112的另一端逐渐变大。优选地,从截面上看,静涡旋齿123和动涡旋齿113的截面均为一等腰梯形,此时涡旋齿的中心轴线垂直于盘体,即静涡旋齿123的中心轴线垂直于静盘体122,动涡旋齿113的中心轴线垂直于动盘体112。
在目前常见的涡旋压缩机中,静涡旋齿123和动涡旋齿113的啮合面均呈与盘体垂直设置,在此设置方案中,当涡旋压缩机工作时,如图2所示,当动涡旋盘11的中心运行至X轴的正方向,即动涡旋盘11的中心与静涡旋盘12的中心的连线与X轴之间的角度为0°时,在垂直型线的压缩腔中,动涡旋盘11主要承受曲轴15驱动带来的离心力Fc、同时平行于动盘体112的径向方向和X轴的径向力Fr、平行于径向方向但垂直于X轴的切向力Ft、以及平行于轴向方向的轴向气体分离力,即轴向力Fa。其中,切向力Ft和轴向力Fa较大,特别是切向力Ft远远大于径向力Fr,故对涡旋压缩机的性能及可靠性影响较大,切向力Ft、径向力Fr与离心力Fc的合力会传递到曲轴15的偏心处,从而导致曲轴15的轴承的反作用力及摩擦力较大。而在本发明的技术方案中,参照图3至图6,由于动涡旋齿113和静涡旋齿123的壁厚均呈沿凸伸方向逐渐变化,故切向力Ft就可通过力的分解作用,分解成径向分力Ftx和轴向分力Fty,其中,轴向分力Fty应小于原切向力Ft,而轴向分力Fty与轴向力Fa的方向相反,故可有效减小轴向力Fa。具体地,若以涡旋齿的凸伸方向与涡旋齿的中心轴线之间的夹角为β,则Ftx=Ft×cosβ,Fty=Ft×sinβ,可以理解,在相同条件下,本发明的技术方案相比目前常见的垂直型线的设置方案,其切向力和轴向力都要小,这样,通过曲轴15作用到轴承上的力就会减小,从而会降低涡旋压缩机的摩擦功耗以及提高曲轴15轴承的可靠性,进而提高涡旋压缩机的性能及可靠性。
另外,本发明的技术方案还具有以下优点:其一,由于轴向力Fa要通过设计的背压力进行抵消,故当轴向力Fa较大时,会增加背压力设计的困难,而本发明的技术方案可有效 减小轴向力Fa,故可使背压设计更简单,从而降低压缩机成本;其二,由于动涡旋齿113和静涡旋齿123的壁厚均呈沿轴向渐变设置,故还可以在其他结构设计相同的基础上提升压缩机的吸气容积,进而提升涡旋压缩机能力。
在此需要特别说明的是,对于涡旋压缩机的涡旋盘的型线类型,通常有圆的渐开线、线段渐开线、正多边形渐开线、平行四边形渐开线、阿基米德螺线、代数螺线、变径基圆渐开线、包络线等通用型线及组合型线等等,以上型线类型均可适用于本发明的技术方案中。其中,圆的渐开线、代数螺线、以及变径基圆渐开线是常用的三种型线类型。而在本实施例中,由于圆的渐开线形式设计简单且加工工艺容易控制,故本实施例中涡旋盘的型线类型优选采用圆的渐开线形式。
进一步地,如图2所示,在本实施例中,静涡旋盘12的齿型线大于动涡旋盘的齿型线,且动涡旋盘11的齿型线与静涡旋盘12的齿型线呈相错180°的非对称型设置。当然,在其他实施例中,静涡盘的型线还可呈等于动涡旋盘的型线的对称型设置。当压缩机工作时,动涡旋盘11按顺时针或逆时针方向(本实施例中为顺时针方向)绕静涡旋盘12平转运动,动涡旋盘11的型线外侧与静涡旋盘12型线内侧可形成第一压缩腔,而动涡旋盘11型线内侧与静涡旋盘12型线外侧可形成第二压缩腔。
进一步地,如图3所示,在本实施例中,静涡旋齿123的齿高与动涡旋齿113的齿高应一致,如此,就可以使静涡旋齿123与动涡旋齿113之间的啮合间隙尽可能的小,从而降低了冷媒气体泄漏的风险。
在本实施例中,考虑到常见的涡旋压缩机的相关参数,例如涡旋齿的齿高等,β的范围可优选为0°<β≤10°,进一步地,在大部分空调器中,β的优选范围可进一步缩小至0°<β≤3°。
参照图6,在本发明的另一实施例中,其与上面的实施例的主要不同之处在于:静涡旋齿123的壁厚自静涡旋齿123的靠近静盘体122的一端朝向静涡旋齿123的另一端逐渐变小,同时,动涡旋齿113的壁厚自动涡旋齿113的靠近动盘体112的一端朝向动涡旋齿113的另一端也逐渐变小。其技术效果与上面的实施例相同,在此不再一一赘述。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示意性实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管已经示出和描述了本发明的实施例,本领域的普通技术人员可以理解:在不脱离 本发明的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由权利要求及其等同物限定。

Claims (14)

  1. 一种用于涡旋压缩机的涡旋盘,其特征在于,包括:
    盘体;
    涡旋齿,所述涡旋齿设在所述盘体的一侧表面上,且所述涡旋齿从所述盘体的所述一侧表面朝向远离所述盘体的方向延伸出,所述涡旋齿的壁厚沿所述涡旋齿的延伸方向逐渐变化。
  2. 如权利要求1所述的用于涡旋压缩机的涡旋盘,其特征在于,所述涡旋齿的壁厚从所述涡旋齿的靠近所述盘体的一端朝向所述涡旋齿的远离所述盘体的一端逐渐变小。
  3. 如权利要求1所述的用于涡旋压缩机的涡旋盘,其特征在于,所述涡旋齿的壁厚从所述涡旋齿的靠近所述盘体的一端朝向所述涡旋齿的远离所述盘体的一端逐渐变大。
  4. 如权利要求2或3所述的用于涡旋压缩机的涡旋盘,其特征在于,所述涡旋齿的侧壁相对于所述涡旋齿的中心轴线倾斜设置。
  5. 如权利要求4所述的用于涡旋压缩机的涡旋盘,其特征在于,所述涡旋齿的侧壁与所述涡旋齿的中心轴线之间具有夹角β,其中,所述β满足:0°<β≤10°。
  6. 如权利要求5所述的用于涡旋压缩机的涡旋盘,其特征在于,所述β进一步满足:0°<β≤3°。
  7. 如权利要求1-6中任一项所述的用于涡旋压缩机的涡旋盘,其特征在于,所述涡旋齿的中心轴线垂直于所述盘体。
  8. 如权利要求1-7中任一项所述的用于涡旋压缩机的涡旋盘,其特征在于,所述涡旋齿的纵向截面为等腰梯形。
  9. 如权利要求1-8中任一项所述的用于涡旋压缩机的涡旋盘,其特征在于,所述涡旋盘的齿型线为圆的渐开线、代数螺线、变径基圆渐开线、线段渐开线、正多边形渐开线、平行四边形渐开线、阿基米德螺线和包络线中的至少一种。
  10. 如权利要求1-9中任一项所述的用于涡旋压缩机的涡旋盘,其特征在于,所述涡旋盘为动涡旋盘或静涡旋盘。
  11. 一种涡旋压缩机,其特征在于,包括:
    动涡旋盘;
    静涡旋盘,所述动涡旋盘和所述静涡旋盘相互啮合形成月牙形压缩腔,所述动涡旋盘和所述静涡旋盘均为如权利要求1-10中任一项所述的用于涡旋压缩机的涡旋盘,且所述动涡旋盘和所述静涡旋盘的涡旋齿的壁厚在沿所述涡旋齿的延伸方向上逐渐变化的程度一 致。
  12. 如权利要求11所述的涡旋压缩机,其特征在于,所述静涡旋盘的齿型线大于或等于所述动涡旋盘的齿型线。
  13. 如权利要求11或12所述的涡旋压缩机,其特征在于,所述静涡旋盘的涡旋齿的齿高与所述动涡旋盘的涡旋齿的齿高一致。
  14. 一种制冷设备,其特征在于,包括如权利要求11-13中任一项所述的涡旋压缩机。
PCT/CN2017/074816 2016-11-28 2017-02-24 用于涡旋压缩机的涡旋盘、涡旋压缩机和制冷设备 WO2018094891A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611076975.8A CN106438369A (zh) 2016-11-28 2016-11-28 涡旋盘、涡旋压缩机和空调器
CN201611076975.8 2016-11-28

Publications (1)

Publication Number Publication Date
WO2018094891A1 true WO2018094891A1 (zh) 2018-05-31

Family

ID=58222455

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/074816 WO2018094891A1 (zh) 2016-11-28 2017-02-24 用于涡旋压缩机的涡旋盘、涡旋压缩机和制冷设备

Country Status (2)

Country Link
CN (1) CN106438369A (zh)
WO (1) WO2018094891A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115585930A (zh) * 2022-09-12 2023-01-10 哈尔滨工程大学 一种测量涡轮盘腔轴向力的装置
US11767844B2 (en) 2020-08-31 2023-09-26 Danfoss (Tianjin) Ltd. Fixed scroll disk and scroll compressor having the same

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106438369A (zh) * 2016-11-28 2017-02-22 广东美的暖通设备有限公司 涡旋盘、涡旋压缩机和空调器
CN109127055B (zh) * 2018-08-20 2020-07-03 江苏广都建设有限公司 一种建筑工程使用的小型粉磨机
CN109281832B (zh) * 2018-12-12 2023-08-08 中国石油大学(华东) 一种涡旋压缩机的三涡旋齿及其啮合型线设计方法
CN112855532B (zh) * 2021-01-19 2022-02-18 珠海格力电器股份有限公司 一种动盘组件及压缩机
CN115929629B (zh) * 2022-11-16 2023-11-24 北京理工大学 一种多维共轭曲面涡齿组、压缩机和膨胀机
CN117307483A (zh) * 2023-10-12 2023-12-29 兰州理工大学 一种涡旋压缩机的变截面涡旋齿及其型线设计方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010048226A (ja) * 2008-08-25 2010-03-04 Sanden Corp スクロール型流体機械
JP2010156249A (ja) * 2008-12-26 2010-07-15 Daikin Ind Ltd スクロール圧縮機
CN106438369A (zh) * 2016-11-28 2017-02-22 广东美的暖通设备有限公司 涡旋盘、涡旋压缩机和空调器

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03225002A (ja) * 1990-01-31 1991-10-04 Hitachi Ltd スクロール流体機械
JPH0842468A (ja) * 1995-04-03 1996-02-13 Hitachi Ltd スクロール圧縮機
CN2235516Y (zh) * 1995-11-16 1996-09-18 高翔 自动补偿间隙的梯形涡旋盘
JP2002221170A (ja) * 2001-01-25 2002-08-09 Toyota Industries Corp スクロール圧縮機
CN2469212Y (zh) * 2001-04-11 2002-01-02 冯玉宁 涡旋式压缩机
CN201165981Y (zh) * 2008-03-14 2008-12-17 乔建设 涡旋锥面式空调压缩机
CN101922449A (zh) * 2010-08-19 2010-12-22 罗学圣 一种喷水涡旋式压缩机

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010048226A (ja) * 2008-08-25 2010-03-04 Sanden Corp スクロール型流体機械
JP2010156249A (ja) * 2008-12-26 2010-07-15 Daikin Ind Ltd スクロール圧縮機
CN106438369A (zh) * 2016-11-28 2017-02-22 广东美的暖通设备有限公司 涡旋盘、涡旋压缩机和空调器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11767844B2 (en) 2020-08-31 2023-09-26 Danfoss (Tianjin) Ltd. Fixed scroll disk and scroll compressor having the same
CN115585930A (zh) * 2022-09-12 2023-01-10 哈尔滨工程大学 一种测量涡轮盘腔轴向力的装置

Also Published As

Publication number Publication date
CN106438369A (zh) 2017-02-22

Similar Documents

Publication Publication Date Title
WO2018094891A1 (zh) 用于涡旋压缩机的涡旋盘、涡旋压缩机和制冷设备
US8215933B2 (en) Scroll compressor and refrigerating machine having the same
US11668303B2 (en) Scroll compressor with wrap having gradually decreasing thickness
US10851782B2 (en) Rotary-type compressor
WO2013105368A1 (ja) スクロール圧縮機
CN210599396U (zh) 涡旋式压缩机
JP2007170253A (ja) スクロール圧縮機
KR20140144032A (ko) 스크롤 압축기
US20060093506A1 (en) Scroll compressor
EP2177766A2 (en) Scroll compressor and refrigerating machine having the same
US7722341B2 (en) Scroll compressor having variable height scroll
US8734142B2 (en) Rotation preventing member of a scroll compressor
CN112154270B (zh) 涡旋压缩机
WO2018230437A1 (ja) スクロール圧縮機
CN114320915A (zh) 泵体组件、压缩机及制冷制热设备
US9695823B2 (en) Compressor with unloader counterweight assembly
JP2003301784A (ja) スクロール流体機械の自転防止機構
WO2022000887A1 (zh) 压缩机构及包括该压缩机构的涡旋压缩机
US8967987B2 (en) Scroll compressor having at least one bypass hole
JP3874018B2 (ja) スクロール型流体機械
JP4013992B2 (ja) スクロール型流体機械
KR100343727B1 (ko) 스크롤 압축기의 구동축 지지구조
JP3976070B2 (ja) スクロール型流体機械
JP2020076370A (ja) スクロール型真空ポンプ
CN113482923A (zh) 压缩组件、涡旋压缩机及空调器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17873905

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17873905

Country of ref document: EP

Kind code of ref document: A1