WO2018094797A1 - 一种太阳能四旋翼飞行器 - Google Patents
一种太阳能四旋翼飞行器 Download PDFInfo
- Publication number
- WO2018094797A1 WO2018094797A1 PCT/CN2016/111412 CN2016111412W WO2018094797A1 WO 2018094797 A1 WO2018094797 A1 WO 2018094797A1 CN 2016111412 W CN2016111412 W CN 2016111412W WO 2018094797 A1 WO2018094797 A1 WO 2018094797A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- solar
- aircraft
- converter
- solar panel
- input end
- Prior art date
Links
- 239000000463 material Substances 0.000 claims abstract description 11
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 5
- 229920000049 Carbon (fiber) Polymers 0.000 claims abstract description 5
- 239000004964 aerogel Substances 0.000 claims abstract description 5
- 239000004917 carbon fiber Substances 0.000 claims abstract description 5
- 229910021389 graphene Inorganic materials 0.000 claims abstract description 5
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 4
- 238000013461 design Methods 0.000 abstract description 2
- 238000005516 engineering process Methods 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U10/00—Type of UAV
- B64U10/10—Rotorcrafts
- B64U10/13—Flying platforms
- B64U10/14—Flying platforms with four distinct rotor axes, e.g. quadcopters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U20/00—Constructional aspects of UAVs
- B64U20/80—Arrangement of on-board electronics, e.g. avionics systems or wiring
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U50/00—Propulsion; Power supply
- B64U50/30—Supply or distribution of electrical power
- B64U50/31—Supply or distribution of electrical power generated by photovoltaics
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/34—Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
- H02J7/35—Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U20/00—Constructional aspects of UAVs
- B64U20/60—UAVs characterised by the material
- B64U20/65—Composite materials
Definitions
- the utility model relates to the technical field, in particular to a solar four-rotor aircraft.
- the existing lithium battery for the drone has poor battery life and heavy battery.
- the battery heat causes the drone components to overheat, it is easy to cause the bomber.
- the solar cell energy conversion of the existing structure is low. To meet the pure solar power supply, a large-area solar panel is required, and the whole machine is too heavy to fly.
- the technical problem to be solved by the present invention is to provide a solar quadrotor aircraft to solve the deficiencies of the prior art.
- the present invention provides a solar four-rotor aircraft comprising a frame, a solar panel and four rotors, and four motors respectively driving four rotors to rotate, wherein: the solar panel input The end is electrically connected to the output of the electronic switch, the output of the solar panel is electrically connected to the DC/DC converter, the charger and the voltage collecting module, and the input end of the electronic switch is connected to the microcontroller, and the output of the electronic switch Also connected to a battery, the battery input is connected to a charger, the battery output is connected to a DC/DC converter, and the microcontroller input is The DC/DC converter and the voltage acquisition module are connected, and the outputs of the microcontroller and the DC/DC converter are both connected to a motor driver, and the motor driver is connected to the motor.
- the above solar four-rotor aircraft is characterized in that the solar panel is a transparent solar panel made of a perovskite material.
- the above-mentioned solar quadrotor aircraft is characterized in that the solar panel is divided into three layers, wherein a reflective material is added to the bottom layer.
- the utility model has the advantages of simple structure, and the specially designed three-layer solar panel structure can greatly enhance the solar energy utilization rate, reduce the volume of the whole machine, and reduce the design cost; the fuselage is made of carbon fiber or graphene aerogel material to reduce the overall Weight, flying smart and light; comes with battery and power switching control device to ensure reliable power supply.
- FIG. 1 is a schematic view of the overall structure of the present invention.
- FIG. 2 is a schematic structural view of a solar panel of the present invention.
- FIG. 3 is a schematic block diagram of a power switching control system of the present invention.
- a solar quadrotor aircraft includes a frame, a solar panel 1 and four rotors 2, and four motors 3 that respectively drive the rotation of the four rotors 2, characterized in that: the solar cell
- the input end of the board 1 is electrically connected to the output end of the electronic switch 1.
- the output end of the solar panel 1 is connected to the DC/DC converter 5, the charger 6 and the voltage collecting module 8.
- the input end of the electronic switch 9 and the micro control The output of the electronic switch 9 is also connected to the battery 7, the input end of the battery 7 is connected to the charger 6, and the output of the battery 7 is connected to the DC/DC converter 5, the microcontroller 4
- the input terminal is connected to the DC/DC converter 5 and the voltage collecting module 8, the microcontroller
- the output terminals of the DC/DC converter 5 are connected to a motor driver 10, which is connected to the motor 3.
- the solar panel 1 is a transparent solar panel made of a perovskite material. As shown in FIG. 2, the solar panel 1 is divided into three layers of an upper layer 11, a middle layer 12, and a bottom layer 13, wherein the bottom layer 13 is added with a reflective material or uniformly printed together to increase the photoelectric conversion rate per unit area.
- This technology can reduce the solar panel area, especially reduce the bracket for erecting solar panels, thus greatly reducing the weight of the whole machine.
- the frame is made of carbon fiber or graphene aerogel material, which reduces the overall weight to facilitate carrying other equipment.
- the utility model is designed to prevent the solar battery from being reduced in power generation due to insufficient light, and the utility model has a small storage battery.
- the control principle is: the solar panel is transmitted to the microcontroller through the voltage acquisition module to collect the voltage for voltage detection.
- the battery is charged by the charger and also passed.
- the DC/DC converter generates a low voltage power supply to power the microcontroller and motor driver.
- the microcontroller control electronic switch will be changed from the original solar panel power supply to the battery power supply.
Landscapes
- Engineering & Computer Science (AREA)
- Aviation & Aerospace Engineering (AREA)
- Mechanical Engineering (AREA)
- Remote Sensing (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Power Engineering (AREA)
- Photovoltaic Devices (AREA)
Abstract
一种太阳能四旋翼飞行器,其太阳能电池板(1)输入端与电子开关(9)输出端电连接,太阳能电池板(1)输出端与DC/DC转换器(5)、充电器(6)和电压采集模块(8)相连接,电子开关(9)输入端与微控制器(4)连接,电子开关(9)输出端还与蓄电池(7)连接,蓄电池(7)输入端与充电器(6)连接,蓄电池(7)输出端与DC/DC转换器(5)连接,微控制器(4)输入端与DC/DC转换器(5)、电压采集模块(8)连接,微控制器(4)和DC/DC转换器(5)的输出端均与电机驱动器(10)连接,电机驱动器(10)与电机(3)连接。该飞行器结构简单,利用立体分层采光,可以大大增强太阳能利用率,减小整机的体积,降低了设计成本;机身利用碳纤维或石墨烯气凝胶材料制作,减轻整体重量,飞行灵巧轻便;自带蓄电池和电源切换控制装置,保证了整机的可靠供电。
Description
本实用新型涉及技术领域,尤其涉及一种太阳能四旋翼飞行器。
近年来,世界主要国家在发展长航时无人机的同时,也在着力发展小型和微型无人机,不断研制无人机小型化,甚至微型化的技术。世界各国对微小型无人机的需求日益提高,并力求使其在作战中发挥更大的作用。随着嵌入式处理器、微传感器技术、控制理论的发展,微机电系统技术在军事武器、民用产品等各方面的广泛应用,世界各国都开始竞相开发研制遥控式、半自主式或自主式的单兵可携带的微小型无人机,并逐步装备部队。微型无人机可以完成超低空侦察、干扰、监视等各种复杂的任务。载有全天候图像传感器的微小型无人机可以近距离对目标实施侦察监视。
现有的无人机用锂电池供电续航能力差、电池重。另外,由于电池发热让无人机元件过热,容易引起炸机。其次,现有结构的太阳能电池能效转化低,要满足纯太阳能供电,需要大面积太阳能板,反而令整机过重而无法飞起。
实用新型内容
有鉴于现有技术的上述缺陷,本实用新型所要解决的技术问题是提供一种太阳能四旋翼飞行器,以解决现有技术的不足。
为实现上述目的,本实用新型提供了一种太阳能四旋翼飞行器,包括机架、太阳能电池板和四个旋翼以及分别驱动四个旋翼旋转的四个电机,其特征在于:所述太阳能电池板输入端与电子开关输出端电连接,所述太阳能电池板输出端与DC/DC转换器、充电器和电压采集模块电连接,所述电子开关输入端与微控制器连接,所述电子开关输出端还与蓄电池连接,所述蓄电池输入端与充电器连接,所述蓄电池输出端与DC/DC转换器连接,所述微控制器输入端与
DC/DC转换器、电压采集模块连接,所述微控制器和DC/DC转换器的输出端均与电机驱动器连接,所述电机驱动器与电机连接。
上述的一种太阳能四旋翼飞行器,其特征在于:所述太阳能电池板为利用钙钛矿材料制成的透明太阳能电池板。
上述的一种太阳能四旋翼飞行器,其特征在于:所述太阳能电池板分为三层,其中底层添加反光材料。
上述的一种太阳能四旋翼飞行器,其特征在于:所述机架利用碳纤维或石墨烯气凝胶材料制成。
本实用新型的有益效果是:
本实用新型结构简单,特殊设计的三层式太阳能电池板结构可以大大增强太阳能利用率,减小整机的体积,降低了设计成本;机身利用碳纤维或石墨烯气凝胶材料制作,减轻整体重量,飞行灵巧轻便;自带蓄电池和电源切换控制装置,保证了整机的可靠供电。
以下将结合附图对本实用新型的构思、具体结构及产生的技术效果作进一步说明,以充分地了解本实用新型的目的、特征和效果。
图1是本实用新型的整体结构示意图。
图2是本实用新型的太阳能电池板结构示意图。
图3是本实用新型的电源切换控制系统原理框图。
如图1、3所示,一种太阳能四旋翼飞行器,包括机架、太阳能电池板1和四个旋翼2以及分别驱动四个旋翼2旋转的四个电机3,其特征在于:所述太阳能电池板1输入端与电子开关输出端9电连接,所述太阳能电池板1输出端与DC/DC转换器5、充电器6和电压采集模块8相连接,所述电子开关9输入端与微控制器4连接,所述电子开关9输出端还与蓄电池7连接,所述蓄电池7输入端与充电器6连接,所述蓄电池7输出端与DC/DC转换器5连接,所述微控制器4输入端与DC/DC转换器5、电压采集模块8连接,所述微控制器
4和DC/DC转换器5的输出端均与电机驱动器10连接,所述电机驱动器10与电机3连接。
本实施例中,所述太阳能电池板1为利用钙钛矿材料制成的透明太阳能电池板。如图2所示,所述太阳能电池板1分为上层11、中层12、底层13三层,其中底层13添加反光材料,或重叠在一起统一印刷而成,增大单位面积的光电转化率。此技术可以减少太阳能电池板面积,尤其减少架设太阳能电池板的支架,从而大大减轻整机的重量。
本实施例中,所述机架利用碳纤维或石墨烯气凝胶材料制成,减轻整体重量,以方便携带其他设备。
本实用新型为防止因光线不足使太阳能电池发电降低而造成炸机,自带一小型蓄电池。当太阳能电池板发电量足够时,自动给蓄电池充电;当太阳能电池发电量过低,无法支持飞行时,自动切入蓄电池供电,并自动平稳降落。如图3所示,其控制原理是:太阳能电池板通过电压采集模块采集电压传送到微控制器进行电压检测,当检测到太阳能电池板发电量足够时,通过充电器给蓄电池充电,同时还通过DC/DC转换器产生低压电源为微控制器、电机驱动器供电。当检测到太阳能电池发电量过低,微控制器控制电子开关将由原来的太阳能电池板供电改为由蓄电池供电。
以上详细描述了本实用新型的较佳具体实施例。应当理解,本领域的普通技术人员无需创造性劳动就可以根据本实用新型的构思做出诸多修改和变化。因此,凡本技术领域中技术人员依本实用新型的构思在现有技术的基础上通过逻辑分析、推理或者有限的实验可以得到的技术方案,皆应在由权利要求书所确定的保护范围内。
Claims (4)
- 一种太阳能四旋翼飞行器,包括机架、太阳能电池板(1)和四个旋翼(2)以及分别驱动四个旋翼(2)旋转的四个电机(3),其特征在于:所述太阳能电池板(1)输入端与电子开关输出端(9)电连接,所述太阳能电池板(1)输出端与DC/DC转换器(5)、充电器(6)和电压采集模块(8)连接,所述电子开关(9)输入端与微控制器(4)连接,所述电子开关(9)输出端还与蓄电池(7)连接,所述蓄电池(7)输入端与充电器(6)连接,所述蓄电池(7)输出端与DC/DC转换器(5)连接,所述微控制器(4)输入端与DC/DC转换器(5)、电压采集模块(8)连接,所述微控制器(4)和DC/DC转换器(5)的输出端均与电机驱动器(10)连接,所述电机驱动器(10)与电机(3)连接。
- 如权利要求1所述的一种太阳能四旋翼飞行器,其特征在于:所述太阳能电池板(1)为利用钙钛矿材料制成的透明太阳能电池板。
- 如权利要求2所述的一种太阳能四旋翼飞行器,其特征在于:所述太阳能电池板(1)分为上层(11)、中层(12)、底层(13)三层,其中底层(13)添加反光材料。
- 如权利要求1所述的一种太阳能四旋翼飞行器,其特征在于:所述机架利用碳纤维或石墨烯气凝胶材料制成。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201621276046.7U CN206187335U (zh) | 2016-11-25 | 2016-11-25 | 一种太阳能四旋翼飞行器 |
CN2016212760467 | 2016-11-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018094797A1 true WO2018094797A1 (zh) | 2018-05-31 |
Family
ID=58725140
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2016/111412 WO2018094797A1 (zh) | 2016-11-25 | 2016-12-22 | 一种太阳能四旋翼飞行器 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN206187335U (zh) |
WO (1) | WO2018094797A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020005163A1 (en) * | 2018-06-29 | 2020-01-02 | National University Of Singapore | Fully solar powered multi-copter and enabling methods and structures |
RU2825903C1 (ru) * | 2024-01-19 | 2024-09-02 | Василий Юрьевич Прудников | Летательный аппарат вертикального взлета и посадки |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107364577B (zh) * | 2017-08-17 | 2023-04-07 | 西安航空学院 | 太阳能垂直起降侦察巡逻飞行器 |
TWI642597B (zh) * | 2017-11-29 | 2018-12-01 | 英屬維爾京群島商飛思捷投資股份有限公司 | 小型太陽能動力無人機 |
CN109229362A (zh) * | 2018-11-26 | 2019-01-18 | 吉林大学 | 一种应用于海洋探测的复合式无人机 |
KR102219922B1 (ko) * | 2019-10-25 | 2021-03-02 | 중앙대학교 산학협력단 | 압축기체를 이용한 측면비행이 가능한 무인비행체 및 그 작동방법 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130285440A1 (en) * | 2012-02-15 | 2013-10-31 | Microlink Devices, Inc. | Integration of high-efficiency, lightweight solar sheets onto unmanned aerial vehicle for increased endurance |
CN204368418U (zh) * | 2014-11-27 | 2015-06-03 | 成都盛世普益科技有限公司 | 一种双动力四旋翼无人机 |
CN104943860A (zh) * | 2015-07-13 | 2015-09-30 | 国鹰航空科技有限公司 | 光伏六旋翼飞行器 |
TW201544399A (zh) * | 2014-05-23 | 2015-12-01 | Univ Nat Taiwan Science Tech | 多電源無人飛機 |
CN105450168A (zh) * | 2015-11-24 | 2016-03-30 | 上海空间电源研究所 | Mppt统一控制电路及其控制方法 |
CN105438483A (zh) * | 2015-12-03 | 2016-03-30 | 上海奥科赛飞机有限公司 | 一种适用于太阳能飞行器的动力总成及其输出控制方法 |
CN106026344A (zh) * | 2016-07-22 | 2016-10-12 | 珠海银通农业科技有限公司 | 无人机的太阳能充电系统 |
-
2016
- 2016-11-25 CN CN201621276046.7U patent/CN206187335U/zh not_active Expired - Fee Related
- 2016-12-22 WO PCT/CN2016/111412 patent/WO2018094797A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130285440A1 (en) * | 2012-02-15 | 2013-10-31 | Microlink Devices, Inc. | Integration of high-efficiency, lightweight solar sheets onto unmanned aerial vehicle for increased endurance |
TW201544399A (zh) * | 2014-05-23 | 2015-12-01 | Univ Nat Taiwan Science Tech | 多電源無人飛機 |
CN204368418U (zh) * | 2014-11-27 | 2015-06-03 | 成都盛世普益科技有限公司 | 一种双动力四旋翼无人机 |
CN104943860A (zh) * | 2015-07-13 | 2015-09-30 | 国鹰航空科技有限公司 | 光伏六旋翼飞行器 |
CN105450168A (zh) * | 2015-11-24 | 2016-03-30 | 上海空间电源研究所 | Mppt统一控制电路及其控制方法 |
CN105438483A (zh) * | 2015-12-03 | 2016-03-30 | 上海奥科赛飞机有限公司 | 一种适用于太阳能飞行器的动力总成及其输出控制方法 |
CN106026344A (zh) * | 2016-07-22 | 2016-10-12 | 珠海银通农业科技有限公司 | 无人机的太阳能充电系统 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020005163A1 (en) * | 2018-06-29 | 2020-01-02 | National University Of Singapore | Fully solar powered multi-copter and enabling methods and structures |
RU2825903C1 (ru) * | 2024-01-19 | 2024-09-02 | Василий Юрьевич Прудников | Летательный аппарат вертикального взлета и посадки |
Also Published As
Publication number | Publication date |
---|---|
CN206187335U (zh) | 2017-05-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018094797A1 (zh) | 一种太阳能四旋翼飞行器 | |
CN204055195U (zh) | 一种六旋翼潜水飞行器 | |
CN203876983U (zh) | 球形飞行装置 | |
CN205044948U (zh) | 一种太阳能无人机 | |
CN203593169U (zh) | 航拍无人机 | |
CN206141833U (zh) | 无人飞行系统 | |
CN207759063U (zh) | 具有太阳能充电装置的野外无人飞行平台 | |
TWI619643B (zh) | 多電源無人飛機 | |
CN207045715U (zh) | 一种新型多功能无人机 | |
CN210000581U (zh) | 一种物理组合式无人机集群 | |
CN204368434U (zh) | 一种上铺设太阳能电池板的带双活动摄像头的无人机 | |
CN206664920U (zh) | 一种支架可伸缩的节能型无人机 | |
CN207826544U (zh) | 一种双涵道载人无人互换飞行器 | |
CN203246592U (zh) | 无人机的混合动力驱动装置 | |
CN204846366U (zh) | 光伏六旋翼飞行器 | |
CN203294306U (zh) | 无人机外壳 | |
CN105048545B (zh) | 光伏四旋翼飞行器 | |
CN109760843A (zh) | 一种可太阳能充电的无人机 | |
CN104943860B (zh) | 光伏六旋翼飞行器 | |
CN207712309U (zh) | 一种无人机目标位置锁定装置 | |
CN204368430U (zh) | 太阳能电动个人飞行器 | |
CN207450236U (zh) | 一种便捷小型无人机 | |
CN107298172A (zh) | 一种便捷小型无人机 | |
CN106314806A (zh) | 一种无人机风光互补发电系统及其运行方法 | |
CN206939075U (zh) | 一种续航能力强的无人机 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16922105 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16922105 Country of ref document: EP Kind code of ref document: A1 |