WO2018092836A1 - 生体組織孔閉鎖用、潰瘍保護用及び血管塞栓療術用ゾル - Google Patents
生体組織孔閉鎖用、潰瘍保護用及び血管塞栓療術用ゾル Download PDFInfo
- Publication number
- WO2018092836A1 WO2018092836A1 PCT/JP2017/041238 JP2017041238W WO2018092836A1 WO 2018092836 A1 WO2018092836 A1 WO 2018092836A1 JP 2017041238 W JP2017041238 W JP 2017041238W WO 2018092836 A1 WO2018092836 A1 WO 2018092836A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sol
- collagen
- gel
- concentration
- genipin
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L24/00—Surgical adhesives or cements; Adhesives for colostomy devices
- A61L24/04—Surgical adhesives or cements; Adhesives for colostomy devices containing macromolecular materials
- A61L24/10—Polypeptides; Proteins
- A61L24/102—Collagen
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/0057—Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/02—Inorganic compounds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/06—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
- A61K47/22—Heterocyclic compounds, e.g. ascorbic acid, tocopherol or pyrrolidones
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/30—Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
- A61K47/42—Proteins; Polypeptides; Degradation products thereof; Derivatives thereof, e.g. albumin, gelatin or zein
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0019—Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L26/00—Chemical aspects of, or use of materials for, wound dressings or bandages in liquid, gel or powder form
- A61L26/0009—Chemical aspects of, or use of materials for, wound dressings or bandages in liquid, gel or powder form containing macromolecular materials
- A61L26/0028—Polypeptides; Proteins; Degradation products thereof
- A61L26/0033—Collagen
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/14—Macromolecular materials
- A61L27/22—Polypeptides or derivatives thereof, e.g. degradation products
- A61L27/24—Collagen
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/50—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L27/52—Hydrogels or hydrocolloids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/50—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L27/58—Materials at least partially resorbable by the body
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/04—Macromolecular materials
- A61L31/043—Proteins; Polypeptides; Degradation products thereof
- A61L31/044—Collagen
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/14—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L31/145—Hydrogels or hydrocolloids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/14—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L31/148—Materials at least partially resorbable by the body
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2310/00—Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
- A61F2310/00005—The prosthesis being constructed from a particular material
- A61F2310/00365—Proteins; Polypeptides; Degradation products thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/06—Ointments; Bases therefor; Other semi-solid forms, e.g. creams, sticks, gels
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/40—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
- A61L2300/418—Agents promoting blood coagulation, blood-clotting agents, embolising agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L24/00—Surgical adhesives or cements; Adhesives for colostomy devices
- A61L24/04—Surgical adhesives or cements; Adhesives for colostomy devices containing macromolecular materials
- A61L24/10—Polypeptides; Proteins
- A61L24/104—Gelatin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2400/00—Materials characterised by their function or physical properties
- A61L2400/04—Materials for stopping bleeding
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2400/00—Materials characterised by their function or physical properties
- A61L2400/06—Flowable or injectable implant compositions
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2430/00—Materials or treatment for tissue regeneration
- A61L2430/36—Materials or treatment for tissue regeneration for embolization or occlusion, e.g. vaso-occlusive compositions or devices
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/04—Macromolecular materials
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/14—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
Definitions
- the present invention relates to a sol for bioinjection used for endoscopic treatment or the like, and more specifically, an ulcer that can occur during endoscopic treatment or the like in order to close a hole generated during endoscopic treatment or the like.
- the present invention relates to a sol for closing a biological tissue hole, protecting an ulcer, and vascular embolization for use in vascular embolization for protecting cancer or for gastrointestinal bleeding.
- Minimally invasive treatments such as endoscopic treatment and IVR (interventional radiology) treatment (X-ray, CT, etc., which are performed by inserting a catheter into the body while using an image diagnostic apparatus) are rapidly spreading. It's getting on. These minimally invasive treatments may require the use of a bioinjection gel to close through-holes, protect ulcers, and embolize blood vessels created in living tissue. Delivery of chemicals and materials via a catheter is essential for minimally invasive treatment, but it is not easy to deliver a solid material via a catheter.
- bioadhesives also called biosealants and tissue adhesives
- preparations using a reaction between a crosslinking agent and a polymer preparations using a polymerization reaction of monomers.
- Patent Document 1 Patent Document 1
- it has a function of gelling in a short time and binding to a living tissue, gelation starts immediately after the preparation is prepared, so that it is not suitable for an application for delivery through a long capillary such as a catheter. Therefore, it is difficult to use for biological tissue hole closure, ulcer protection, and vascular embolization which are often performed endoscopically.
- Non-patent Document 1 As a preparation widely used as a biological sealant or hemostatic agent, there is a fibrin glue using a cross-linking reaction between fibrinogen and thrombin, which is one of biological reactions. Since the gelation time after mixing the chemicals is long, it can be delivered via a catheter and has a hemostatic effect. However, since gelation has no body temperature responsiveness, it is difficult to form a gel locally with good reproducibility. Even if a gel can be formed locally, the strength of the gel is weak, so a stable ulcer coating cannot be formed unless used in combination with a protective sheet such as a polyglycolic acid sheet (Non-patent Document 1).
- Adhesive strength to living tissue is also extremely low (Patent Document 5) and lacks stability as a closure material, embolization / occlusion, and protective material. Furthermore, since it is a kind of blood product, it has a high risk in terms of safety, and infections such as hepatitis C have been reported.
- Patent Document 6 a specific collagen / genipin mixed aqueous solution has a gelling property in which collagen is fibrillated at a temperature close to body temperature and then genipin crosslinking is introduced. It has also been found that the gelation rate of a specific collagen aqueous solution can be accelerated by adjusting the inorganic salt concentration (Patent Document 7 and Non-Patent Document 2). However, the effectiveness of these aqueous solutions for specific medical uses has not been known.
- an object of the present invention is to provide a sol for injecting a living body suitable for delivery by a catheter, which can be used for closing a tissue hole, protecting an ulcer, or performing vascular embolization.
- the present inventors have developed a sol containing a specific concentration of collagen, water, a specific concentration of sodium chloride and a buffer and having a specific pH to close through holes and physically protect ulcers. And three characteristics suitable for vascular embolization: (1) long fluidity retention time that can be delivered from outside the living body through the catheter, and (2) sharp body temperature responsiveness that gels immediately after delivery, And (3) The present invention has been completed by finding that it has the property of hardening after gelation and fixing to a living tissue, and can close a living tissue hole, protect an ulcer or embolize a blood vessel.
- the present invention relates to the following.
- a biological tissue pore closing sol containing 0.6% to 3% by weight of collagen, water, 200 mM to 330 mM sodium chloride and a buffer, and having a pH of 6.0 to 9.0.
- An ulcer protecting sol containing 0.6% to 3% by weight of collagen, water, 200 mM to 330 mM sodium chloride and a buffer, and having a pH of 6.0 to 9.0.
- a vascular embolization sol containing 0.6 mass% to 3 mass% collagen, water, 200 mM to 330 mM sodium chloride and a buffer, and having a pH of 6.0 to 9.0.
- the present invention also relates to the following.
- a kit for closing a biological tissue hole, protecting an ulcer, or embolizing a blood vessel with a sol that gels upon contact with the biological tissue and adheres to the biological tissue A kit comprising collagen, sodium chloride, a buffer and genipin for forming the sol.
- a kit for closing a biological tissue hole, protecting an ulcer or embolizing a blood vessel with a sol that gels upon contact with the biological tissue and adheres to the biological tissue A kit containing 0.6% to 3% by weight of collagen, water, 200 mM to 330 mM sodium chloride and a buffer and having a pH of 6.0 to 9.0, and genipin.
- [11] A biological tissue pore closing method using the sol according to any one of [1] to [8].
- [12] [1] A method for protecting ulcer using the sol according to any one of [8].
- [13] [1] A vascular embolization method using the sol according to any one of [1] to [8].
- a sol that can be delivered through a catheter can close a through-hole of a living tissue, protect an ulcer, or embolize a blood vessel.
- porcine stomach perforation formation (FIG. 1a), collagen sol delivery (FIG. 1b), gelation (FIG. 1c), and perforation closure (FIG. 1d) are shown in the porcine stomach perforation closing experiment of Test Example 1.
- the state of the leak test of the removed stomach in the perforation closure experiment of the porcine stomach of Test Example 1 is shown.
- 7 shows an HE-stained image of porcine stomach tissue including a perforated part in a porcine stomach perforation closing experiment of Test Example 1.
- Fig. 4 shows porcine colon perforation formation (Fig. 4a), collagen sol delivery (Fig. 4b), gelation (Fig. 4c), and perforation closure (Fig. 4d) in the experiment of porcine colon perforation closure in Test Example 2.
- FIG. 8a The result of the dynamic viscoelasticity test of the collagen sol of Test Example 6 is shown.
- the gelation behavior of sols with different NPB concentrations is shown in FIG. 9a, and the result of plotting the gelation time after reaching 37 ° C. against the NPB concentration is shown in FIG. 9b.
- the gel penetration test result of Test Example 7 is shown.
- the stress-strain curves for gels with different genipin concentrations are shown in FIG. 10a and the elastic modulus is shown in FIG. 10b.
- the result of a viscosity measurement of Test Example 8 is shown.
- the result of the perforation closure experiment of the porcine stomach using the collagen sol of the comparative example 1 of the test example 9 is shown.
- the present embodiment a mode for carrying out the present invention (hereinafter also simply referred to as “the present embodiment”) will be described in detail.
- the following embodiment is an exemplification for explaining the present invention, and is not intended to limit the present invention only to this embodiment.
- the sol (sol composition, pharmaceutical composition) of the present embodiment contains 0.6% by mass to 3% by mass of collagen, water, 200 mM to 330 mM sodium chloride and a buffer, and has a pH of 6.0 to 9. .0.
- Collagen contained in the sol of this embodiment is not particularly limited, but is preferably telopeptide-removed collagen that hardly progresses to fibrosis around room temperature, and more preferably substantially consists of telopeptide-removed collagen.
- Telopeptide-removed collagen is a telopeptide that collagen molecules have at both ends enzymatically decomposed and removed by proteolytic enzymes. For example, telopeptide that collagen molecules have at both ends is decomposed and removed by pepsin digestion. It is a thing.
- telopeptide-removable collagens mammalian-derived telopeptide-removable collagen that is approved as a raw material for medical devices is preferable, and telopeptide-removable collagen derived from pig skin that has already been clinically applied and has excellent thermal stability. More preferably used. Telopeptide-removed collagen is commercially available as another name for atelocollagen and can be easily obtained.
- Collagen is not particularly limited as long as it has collagen-forming ability (fibrogenic collagen).
- fibrogenic collagens type I which is collagen constituting bone, skin, tendon and ligament, type II which is collagen constituting cartilage, type III contained in living tissue composed of type I collagen, etc. It is preferably used from the viewpoints of availability, abundant research results, and similarity to the biological tissue to which the produced gel is applied.
- Collagen may be obtained by extraction and purification from a living tissue by a conventional method, or a commercially available product may be obtained. Collagen may be purified from each type or a mixture of multiple types.
- the denaturation temperature of collagen is preferably 32 ° C. or higher, more preferably 35 ° C. or higher, and further preferably 37 ° C. or higher.
- the upper limit of the denaturation temperature of collagen is not particularly limited, but is preferably 50 ° C. or lower, more preferably 45 ° C. or lower, and further preferably 41 ° C.
- gelation at the time of contact with a living tissue can be advanced more rapidly.
- the denaturation temperature of collagen is measured by a conventional method, that is, a change in circular dichroism, optical rotation, or viscosity accompanying an increase in temperature of the collagen aqueous solution.
- the denaturation temperature of collagen may be adjusted by selecting collagen having a denaturation temperature within the above numerical range.
- the sol of this embodiment is a sol containing a collagen aqueous solution containing collagen and water, and a sol having a high collagen concentration is desirable from the viewpoint of sol retention for causing gelation locally at the site of administration. If the collagen concentration is too low, the viscosity of the sol decreases, and the sol may dissipate from the introduction site before gelation. In addition, since the hardness of the gel after gelation is improved when the collagen concentration of the sol is high, a sol having a high collagen concentration is desirable from the viewpoint of reliably performing tissue through-holes, vascular embolization, and the like. On the other hand, from the viewpoint of administering the sol of this embodiment via a catheter, a sol having a low collagen concentration is desirable.
- the collagen concentration is 0.6% by mass to 3.0% by mass and 0.8% by mass to 2.2% by mass based on the total amount of the sol. It is preferably 1.4% by mass to 1.7% by mass, more preferably 1.4% by mass to 1.6% by mass.
- the sol of this embodiment contains sodium chloride, which is an inorganic salt, at a predetermined concentration, so that collagen fibrillation is accelerated when it comes into contact with living tissue, and gels quickly in response to body temperature.
- the concentration of sodium chloride contained in the sol can be appropriately adjusted in the range of 200 mM to 330 mM higher than the physiological salt concentration (140 mM), preferably 220 mM to 310 mM, and can be, for example, around 280 mM.
- the sodium chloride concentration is less than the physiological salt concentration, collagen fibrosis in response to body temperature may take a long time.
- the sodium chloride concentration exceeds 330 mM, the sol may easily lose its fluidity in the catheter. By setting the concentration of sodium chloride within such a range, it becomes possible to rapidly gel in response to body temperature while maintaining the fluidity of the sol in the catheter.
- the pH of the sol of this embodiment (pH at 23 ° C., the same throughout the present specification unless otherwise specified) is 6.0 to 9.0, and more preferably 6.5 to 8.0. It is known that collagen fibrosis occurs actively near neutrality. By setting the pH within a predetermined range, collagen fibrosis can be further promoted.
- the pH can be adjusted by a conventional method, for example, control of the concentration of inorganic salt contained in the sol, preferably sodium chloride and sodium hydrogenphosphate, strong acid such as hydrochloric acid and sodium hydroxide, and / or
- the pH can be adjusted by adding a strong alkali.
- the pH can be measured by a known pH meter (for example, trade name “NAVIh F-71” manufactured by HORIBA).
- the sol of this embodiment contains a buffer for the purpose of maintaining pH.
- the buffer is not particularly limited as long as the sol has desired characteristics.
- phosphate, acetate, borate, HEPES, Tris, and the like can be used.
- phosphates include sodium phosphate, sodium hydrogen phosphate (generic name for sodium dihydrogen phosphate and disodium hydrogen phosphate), and potassium hydrogen phosphate (generic name for potassium dihydrogen phosphate and dipotassium hydrogen phosphate).
- Etc. can be used.
- Sodium acetate or the like can be used as the acetate, and sodium borate or the like can be used as the borate, which can be used in combination with pH adjustment with sodium hydroxide or the like.
- buffer solutions such as sodium chloride containing phosphate buffer (NPB) which combined said sodium chloride and the buffering agent.
- NPB phosphate buffer
- Phosphate has superior buffering ability at pH 6-9 where collagen fibrillation is actively generated, and has the advantage that it is safe for living bodies to be included in cell washing solutions such as phosphate buffered saline. There is.
- the concentration of the buffer is not particularly limited as long as the pH is maintained in a desired range and the sol has desired characteristics. From the viewpoint of sufficiently exhibiting the pH buffering effect, the buffering agent concentration can be 5 mM or more. On the other hand, if the buffer concentration is high, salt in the buffer solution may precipitate before dispensing, or the ionic strength may become too high and cause tissue damage when using the sol. It can be.
- the buffer concentration is preferably more than 10 mM and less than 120 mM, for example, 20 mM to 110 mM, and more preferably 30 mM to 100 mM.
- the buffer concentration in such a range, it becomes easy to maintain the pH of the sol within the range of 6.0 to 9.0, and the catheter can be operated while maintaining the fluidity of the sol within the catheter. It is possible to suppress salt precipitation and tissue damage while exhibiting the effect of the sol of the present embodiment that gels at a delivery place promptly in response to body temperature after delivery via.
- the sol When the sol comes into contact with a living tissue, it gels in response to body temperature. From the viewpoint of increasing the strength of the gel and improving the adhesion to living tissue, the sol may contain a crosslinking agent.
- the crosslinking agent is not particularly limited, and one kind can be used alone or two or more kinds can be used in combination.
- the plant-derived genipin which is considered to have low cytotoxicity of the crosslinking agent itself, or a crosslinking agent between collagen molecules.
- EDC 1- (3-dimethylaminopropyl) -3-ethylcarbodiimide
- NHS N-hydroxysuccinimide
- Genipin is an aglycone of geniposide, and can be obtained, for example, by oxidation, reduction and hydrolysis of geniposide or by enzymatic hydrolysis of geniposide.
- Geniposide is an iridoid glycoside contained in Rubiaceae gardenia and is obtained by extraction from gardenia.
- Genipin is represented by a molecular formula of C 11 H 14 O 5 , and may be synthesized by a conventional method or a commercially available product may be obtained. Further, genipin may be derivatized to the extent that the crosslinking effect is ensured to the extent that the desired properties of the sol of the present embodiment are not impaired.
- genipin derivative for example, those described in JP-T-2006-500975 can be used.
- genipin includes a polymer of genipin.
- Genipin is known to polymerize under various conditions, and the polymerization conditions and method are not particularly limited. For example, a method of polymerizing by aldol condensation under strong alkaline conditions (Mi et al. Characterization of ring-opening polymerization) Journal of Polymer Science: Part A: Polymer Chemistry, Vol. 43, 1985-2000 (2005)) of genipin and pH-dependent cross-linking reactions between chitosan and genipin.
- EDC is a kind of water-soluble carbodiimide, and any water-soluble carbodiimide can be used as a cross-linking agent regardless of its type. Among them, EDC is particularly preferably used because it is inexpensive and highly safe. A water-soluble carbodiimide is used individually by 1 type or in combination of 2 or more types. EDC may be used alone or in combination with NHS. It is known that the crosslinking reaction by EDC is promoted by mixing NHS.
- the genipin concentration can be 1800 mg / L or less from the viewpoint of maintaining the fluidity of the sol until delivery to the affected area, and is preferably 40 mg / L to 1400 mg / L, for example, 100 mg / L to 1000 mg / L.
- the gel strength can be enhanced by crosslinking while maintaining the fluidity of the sol in the catheter.
- the sol of this embodiment may further include various solvents and additives used in conventional collagen aqueous solutions.
- solvents and additives include acids such as dilute hydrochloric acid, citric acid, and acetic acid.
- the above additives and solvents may be used alone or in combination of two or more. Further, the content ratio of the additive and the solvent in the sol is not particularly limited as long as the desired characteristics of the sol of the present embodiment are not impaired.
- the sol of this embodiment is useful in minimally invasive treatment using catheters such as endoscopic treatment and IVR treatment, and is particularly useful for closing through-holes generated in living tissues, protecting ulcers, and embolizing blood vessels. is there.
- vascular embolization is widely used in IVR treatment.
- Vascular embolization is a technique in which an embolic material is sent into a blood vessel through a catheter inserted into an artery for the purpose of treating cancer such as the liver and stopping hemorrhage from the digestive tract or lungs.
- the embolizing material is delivered to the vicinity of a lesion in an organ, and is delivered to a blood vessel supplying nutrients to a cancer lesion and a blood vessel causing bleeding, thereby blocking the blood flow.
- Gelatin sponges conventionally used for embolization materials need to be cut according to the size of the affected area, and there is a problem that embolization cannot be achieved if the size is incompatible.
- Coils are also used for embolization materials, but they are expensive and once delivered will remain in the body forever.
- the sol of this embodiment has a long fluidity retention time that can be administered to a living tissue through a catheter, a body temperature responsiveness that quickly gels at a living body temperature after delivery, and a property that adheres to living tissue after gelation.
- a body temperature responsiveness that quickly gels at a living body temperature after delivery
- a property that adheres to living tissue after gelation Particularly useful in the above-mentioned applications, and more specifically, protection of ulcers formed during endoscopic treatments such as ESD and EMR (including ulcer repair associated therewith), clipping It is useful for closing a perforated part including temporary closure for easy operation, vascular embolization during IVR treatment, and the like.
- the viscosity immediately increases after compounding and gelation occurs in about 1 minute.
- the sol of this embodiment has a long fluidity retention time that can be administered to a living tissue through a catheter. (For example, 10 minutes at room temperature) and can be delivered via, for example, an endoscope or a fluoroscopic image via a catheter having an inner diameter of 2.2 mm and a total length of 2.8 m.
- administration through a catheter includes administration using a nebulizing catheter. The inner diameter and length of the catheter used for administration can be appropriately changed according to the administration site, the viscosity of the sol, etc.
- a catheter having an inner diameter of 0.5 mm to 2.8 mm and a length of 1 m to 3 m is used. It can.
- the sol of this embodiment can be administered to a living tissue using a catheter having a small inner diameter (for example, an inner diameter of 0.5 mm to 2.5 mm) or a long catheter (for example, a length of 1.5 m to 3 m).
- a catheter having a small inner diameter for example, an inner diameter of 0.5 mm to 2.5 mm
- a long catheter for example, a length of 1.5 m to 3 m.
- the viscosity of the sol of this embodiment can be adjusted as appropriate according to the pore diameter of the catheter.
- the viscosity measured at 23 ° C. at a shear rate of 1 s ⁇ 1 is 0.2 Pa ⁇ s to 52 Pa ⁇ s, preferably 2 Pa ⁇ s to 20 Pa ⁇ s, more preferably 5 Pa ⁇ s to 12 Pa ⁇ s.
- the viscosity is measured using a known rheometer capable of controlling the shear rate using a cone-plate system described in Japanese Industrial Standard (JIS) K7117-2, as illustrated in the examples below.
- the polymer solution such as the collagen sol of the present embodiment is a non-Newtonian fluid, and when the shear rate during measurement increases, the viscosity decreases and converges to a certain viscosity value. Therefore, the viscosity of the sol of the present embodiment is described as a viscosity measured specifically at a shear rate of 1 s ⁇ 1 at a low shear rate where the difference in viscosity is clearly observed.
- the sol of this embodiment starts gelation rapidly at the living body temperature (body temperature) to form a gel locally, thereby closing the living tissue hole, protecting the ulcer, and vascular embolism It can be performed.
- Gelation usually occurs within 5 minutes after reaching 37 ° C. after administration.
- the strength of the gel to be formed is not particularly limited, but the elastic modulus determined by, for example, a compression test or a penetration test described in Examples described later is preferably in the range of 10 kPa to 200 kPa, and preferably in the range of 20 kPa to 100 kPa. is there. If the elastic modulus is too small, the gel may be easily deformed and the biological tissue hole may be closed or the vascular embolus may be broken. When the elastic modulus significantly exceeds the living tissue around the gel, when the living tissue is distorted, the adhesion between the gel and the living tissue may be broken due to the difference in elastic modulus.
- the sol of the present embodiment can penetrate and settle in the submucosal layer of a living tissue. Due to the above characteristics, the sol of this embodiment can form a gel having a tissue fixing property and strength enough to close a perforation and embolize a blood vessel locally with good reproducibility in a living body where flow occurs. it can.
- the formed gel is a gel having a component composition excellent in safety and biocompatibility, and gradually undergoes actions such as hydrolysis and enzymatic degradation as in the case of normal collagen.
- the sol of this embodiment may further contain a drug depending on the state of the affected area to be administered.
- a drug is not particularly limited as long as it can be contained in a conventional injectable gel, and examples thereof include physiologically active peptides, proteins, other antibiotics, antitumor agents, and hormone agents. Can be mentioned.
- a medicine is used individually by 1 type or in combination of 2 or more types.
- medical agent will not be specifically limited if it is the range which does not inhibit the desired characteristic of the gel of this embodiment, exhibiting the effect of the chemical
- the present embodiment also relates to a kit for closing a biological tissue hole, protecting an ulcer, or embolizing a blood vessel with a sol that gels upon contact with the biological tissue and adheres to the biological tissue.
- the kit includes collagen, sodium chloride, and a buffer for forming the sol, and optionally further includes genipin, a catheter for sol administration, and the like.
- Each component contained in the kit may be in the form of a solution, or the components contained in the kit in a dry state may be appropriately dissolved before use to form a sol.
- the kit contains 0.6 wt% to 3 wt% collagen, water, 200 mM to 330 mM sodium chloride and a buffer, and has a pH of 6.0 to 9.0. It may be a kit containing sol for use and genipin.
- the present embodiment also relates to a biological tissue hole closing method, ulcer protection method, or blood vessel embolization method using the sol. Furthermore, the present embodiment also relates to a minimally invasive treatment method such as endoscopic treatment and IVR treatment including these methods. These methods can be carried out with reference to the above description regarding the sol of the present embodiment.
- a collagen solution made of pig skin having a concentration of 1.0% by mass (telopeptide-removable collagen, Nippon Ham Co., Ltd., collagen denaturation temperature: 40 ° C.) was prepared as a collagen stock solution.
- the collagen solution was concentrated using an evaporator (water temperature: 29 ° C.) to obtain a collagen solution having a concentration of 2.4% by mass. This was divided into 15 mL centrifuge tubes or 50 mL centrifuge tubes and stored in a refrigerator.
- Genipin (manufactured by Wako Pure Chemical Industries, Ltd.) was dissolved in pure water to prepare a genipin aqueous solution having a concentration of 24 mM (5430 mg / L). This was diluted with pure water to prepare genipin aqueous solutions having different concentrations.
- NPB Preparation of NPB
- a 50 mM concentration disodium hydrogen phosphate aqueous solution (containing 140 mM sodium chloride) and a 50 mM sodium dihydrogen phosphate aqueous solution (containing 140 mM sodium chloride) were prepared using pure water as a solvent. These were stirred and mixed while measuring with a pH meter (trade name “NAVIh F-71”, manufactured by HORIBA) to prepare a 50 mM phosphate buffer solution containing 140 mM sodium chloride at pH 7.0. Defined.
- pH was measured at 23 ° C. using the pH meter.
- 12 ⁇ NPB (0.6M phosphate buffer containing 1.68 M sodium chloride at pH 7.0) was prepared and diluted with pure water to prepare different multiples of NPB (n ⁇ NPB).
- Example 1 [A. Preparation of collagen sol: when used for other than animal experiments]
- the collagen solution 6g which prepared in the above and entered into the 15 mL centrifuge tube was left still in the styrofoam container filled with crushed ice.
- a magnetic stirrer (10.8 g, inner diameter 10 mm ⁇ 39 mm) for promoting stirring was accommodated in the tube.
- 2 mL of genipin aqueous solution left in a refrigerator at 4 ° C. and 2 mL of 10 ⁇ NPB left still at room temperature were sucked up with a micropipette, added to a centrifuge tube containing a collagen solution, and the centrifuge tube was shaken vigorously and stirred. .
- the centrifuge tube after stirring for about 30 seconds is set at a predetermined position of the centrifuge, centrifuged at 3200 rpm for 1.5 minutes, air bubbles are collected on the liquid surface, and 1.44% collagen sol ( Solvent, 2 ⁇ NPB; genipin concentration, 4 mM (905 mg / L)).
- Solvent, 2 ⁇ NPB; genipin concentration, 4 mM (905 mg / L) 1.
- 12 g of the collagen solution prepared in the above manner and contained in a 50 mL centrifuge tube was allowed to stand in a styrofoam container filled with crushed ice.
- a magnetic stirrer (10.8 g, inner diameter 10 mm ⁇ 39 mm) for promoting stirring was accommodated in the tube.
- Example 2 A collagen sol having the same composition as in Example 1 was prepared except that the collagen concentration was increased from 1.44% to 1.6%.
- Example 3 A collagen sol having the same composition as in Example 1 was prepared except that the NPB concentration was lowered from 2 ⁇ NPB to 1.8 ⁇ NPB.
- Example 4 A collagen sol having the same composition as in Example 1 was prepared except that the NPB concentration was decreased from 2 ⁇ NPB to 1.6 ⁇ NPB.
- Example 5 A collagen sol having the same composition as in Example 1 was prepared except that the genipin concentration was lowered from 4 mM to 2 mM (452 mg / L).
- Example 6 A collagen sol having the same composition as in Example 1 was prepared except that genipin was not contained.
- [Comparative Example 1] A collagen sol in which the NPB concentration of the collagen sol of Example 1 was increased from 2 ⁇ NPB to 2.4 ⁇ NPB and the genipin concentration was increased from 4 mM to 8 mM (1810 mg / L) was prepared.
- [Comparative Example 2] A collagen sol having the same composition as in Example 1 was prepared except that the NPB concentration was decreased from 2 ⁇ NPB to 1 ⁇ NPB.
- [Comparative Example 3] A collagen sol having the same composition as in Example 1 was prepared except that the NPB concentration was lowered from 2 ⁇ NPB to 1 ⁇ NPB and the collagen concentration was lowered from 1.44% to 0.5%.
- a leak test was performed in which the stomach pylorus was closed with forceps and water was injected from the cardia to fill the stomach with water. After the leak test, the part including the perforated part was excised and fixed and subjected to tissue observation by hematoxylin-eosin (HE) staining.
- HE hematoxylin-eosin
- the obtained sections were air-dried and subjected to hematoxylin-eosin staining.
- the sections were washed with an aqueous ethanol solution whose concentration was gradually increased from 70% to 99.5%, sealed with a mounting medium (Eukitt; Kindler), and then with an upright microscope (BX53; Olympus). Observed.
- the viscosity of the collagen sol was measured by a rotation mode using a dynamic viscoelasticity measuring device (HAAKE MARSIII; manufactured by ThermoFisher Scientific).
- Collagen sol was filled in a double cone sensor (DC60 / 1Ti, cone angle 1 °) having an inner diameter of 60 mm set at 23 ° C., and rotation at a shear rate of 1 s ⁇ 1 was started.
- the shear rate was gradually increased to 100 s ⁇ 1 at a holding time of 20 s for each step, the stress was measured, and the viscosity was calculated from the shear rate and the stress.
- the viscosity value at a shear rate of 1 s ⁇ 1 was adopted.
- the gelation rate of the body temperature responsiveness of the collagen sol was measured by dynamic measurement (vibration mode) using a dynamic viscoelasticity measuring apparatus (similar to that used for viscosity measurement).
- a double cone sensor set at 23 ° C. was filled with collagen sol, and dynamic measurement (frequency, 1 Hz; shear strain, 0.005) with controlled shear strain was started. After 5 minutes, the temperature was increased from 23 ° C. to 37 ° C. over 30 s and kept at 37 ° C.
- Example 1 Using the collagen sol of Example 1, the porcine stomach perforation closing experiment described in the test method was performed. The appearance of porcine stomach perforation, collagen sol delivery, gelation and perforation closure is shown in FIG. It was proved that the perforated part was closed because the stomach was expanded when air was fed immediately after the sol in the perforated part was gelled. The state of the leaked gastric leak test is shown in FIG. There was no water leakage from the two closed holes, and it was proved that the hole was closed. FIG. 3 shows an HE-stained image of porcine stomach tissue containing a perforated part. The perforated part was closed so as to be plugged with gel, and it was observed that the gel and the tissue were in close contact.
- FIG. 6 shows the state of perforation formation, collagen sol delivery, and perforation closure on the bottom of a porcine gastric ulcer produced by the same method as in Test Example 1. It was proved that the perforated part was closed because the stomach was expanded when air was fed immediately after the sol in the perforated part was gelled. Even when physiological saline was sprayed onto the gel, the gel was not destroyed (FIG. 6). Further, a perforation with a larger inner diameter (inner diameter of 10 mm) was created at another position, and the perforation was similarly closed with gel (FIG. 6e).
- the collagen sol of Example 3 contained genipin at the same concentration as in Examples 1 and 2, and the strength when gelled was considered to be sufficient for ulcer protection.
- the sol gels without dissipating from the ulcer bottom even if there is time to gel (control in FIG. 7).
- the ulcer is often located on the side of the stomach.
- the result of this test example shows that the sol of the example can be protected by a gel layer by rapid gelation even for a lateral ulcer that is easily dissipated by gravity.
- the collagen sol of Comparative Example 2 was used, a portion where the collagen gel layer was not formed was generated, and the thickness of the gel layer was 11 ⁇ 2 mm even in the formed portion (average value of 10 points ⁇ standard). (Deviation).
- Test Example 5 A dynamic viscoelasticity test of the collagen sols of Example 1, Example 2, and Comparative Example 2 was performed. The result of evaluating the body temperature responsiveness of gelation is shown in FIG. 8a.
- G ′ did not change during the first 5 minutes when the apparatus temperature was maintained at 23 ° C., and G ′ increased exponentially immediately after reaching 37 ° C. did.
- the collagen sol of Comparative Example 2 was used, the body temperature responsiveness of collagen fibrosis decreased. This was considered to be because the sodium chloride concentration contained in the sol was lowered to 140 mM, which was the same as PBS, by reducing the NPB concentration.
- FIG. 8 b shows the result of tracking G ′ for 30 minutes from the start of measurement (24.5 minutes after the apparatus temperature reached 37 ° C.).
- the difference in genipin concentration had little effect on the exponential G ′ increase immediately after reaching 37 ° C., but G ′ gradually increased depending on the genipin concentration after 5 minutes had elapsed after reaching 37 ° C. Increased.
- the increase in G ′ was almost completed 7 minutes after reaching 37 ° C. From these results shown in FIG. 8, the collagen fibrillation is responsible for the gelation that occurs immediately after the collagen sol contacts the living tissue, and the collagen fiber gel is gradually cross-linked by genipin. It was thought that a strong gel could be obtained.
- the NPB concentration (2 ⁇ NPB) of the collagen sol of Example 6 which is 1.44% collagen sol without addition of genipin is set as follows: The dynamic viscoelasticity test was carried out by changing to 4, 1.6 and 1.8 (xNPB), and the gelation behavior due to body temperature responsive fibrosis was examined. The result is shown in FIG. 9a. When 1 ⁇ NPB corresponding to PBS, which is widely used as an isotonic solution, was used, no increase in G ′ was observed in about 5 minutes after the apparatus temperature reached 37 ° C., and collagen fibrillation was slow.
- Example 1 and Example 6 collagen sols (genipin concentrations of 4 mM and 0 mM, respectively) and the results of penetration tests of gels prepared on dishes using collagen sols having genipin concentrations of 0.2 mM and 1 mM.
- the overall slope of the obtained stress-strain curve increased with genipin concentration, indicating that the strength of the collagen gel was improved by the addition of genipin.
- the genipin concentration increased from 1 mM to 4 mM (concentration of Example 1), the increase in slope almost reached its peak (FIG. 10a). In the absence of genipin, the gel was weak and brittle.
- the elastic modulus of the collagen gel also increased with the genipin concentration, but showed a monotonic increase to 4 mM (FIG. 10b).
- the elastic modulus obtained with the sol-derived gel of Example 1 (genipin concentration 4 mM) was about 8 times higher than that of the sol-derived gel of Example 6 containing no genipin. From the results of FIG. 10, it can be seen that when the genipin concentration is 1 mM, the same gel strength as that of 4 mM of Example 1 is obtained, and an elastic modulus that is 4.0 times higher than that of the gel to which genipin is not added is obtained. Therefore, by adding genipin, a gel harder than the collagen sol to which genipin is not added can be formed in the perforated part.
- FIG. 11 shows the result of measuring the viscosity at a shear rate of 1 s ⁇ 1 by the rotation mode of the viscoelasticity measuring apparatus.
- the viscosity was only 0.12 (Pa ⁇ s), but when the concentration was increased to 1.44%, the viscosity increased to 6.56 (Pa ⁇ s).
- the viscosity reached 19.4 (Pa ⁇ s).
- the viscosity of collagen sol has an exponential change property with respect to the collagen concentration. Therefore, the contradictory properties of collagen sol in the gastrointestinal tract and its ability to be introduced into a capillary tube such as a catheter. It is important to adjust the concentration to meet the above requirements.
- Collagen sols whose body temperature-responsive gelation has been accelerated by the use of high concentrations of NPB and genipin may gel prior to delivery to the affected area, closing biological tissue pores, protecting ulcers and vascular emboli It was considered unsuitable for use.
- three properties suitable for through-hole closure, ulcer physical protection and vascular embolization are (1) long fluidity retention time that can be delivered from ex vivo to in vivo through a catheter, (2) Sharp body temperature responsiveness that gels immediately after delivery, and (3) Hardening after gelation, and the property of fixing to living tissue. Protection and vascular embolization can be performed.
- the present invention has industrial applicability in the medical field.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Epidemiology (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Surgery (AREA)
- Heart & Thoracic Surgery (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Vascular Medicine (AREA)
- Dermatology (AREA)
- General Chemical & Material Sciences (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Transplantation (AREA)
- Dispersion Chemistry (AREA)
- Materials Engineering (AREA)
- Cardiology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Biomedical Technology (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Materials For Medical Uses (AREA)
- Medicinal Preparation (AREA)
Abstract
本発明は、生体組織孔閉鎖、潰瘍保護、又は血管塞栓療術に利用できる、カテーテルによる送達に適した生体注入用ゾルを提供することを目的とする。0.6質量%~3質量%のコラーゲン、水、200mM~330mMの塩化ナトリウム及び緩衝剤を含有し、pHが6.0~9.0である生体組織孔閉鎖用ゾル、潰瘍保護用ゾル及び血管塞栓療術用ゾルを提供する。
Description
本願発明は、内視鏡治療等に用いる生体注入用ゾルに関し、より詳細には、内視鏡治療等の際に生じた孔を閉鎖するため、内視鏡治療等の際に発生し得る潰瘍を保護するため、又は癌治療や消化管出血の止血を行う血管塞栓療術に用いるための、生体組織孔閉鎖用、潰瘍保護用及び血管塞栓療術用ゾルに関する。
内視鏡治療、IVR(インターベンショナル・ラジオロジー)治療(X線、CT等、画像診断装置を使用しながら体内にカテーテルを挿入して行われる治療)などの低侵襲治療が急速に普及しつつある。これらの低侵襲治療には、生体組織に生じた貫通孔の閉鎖、潰瘍の保護、血管の塞栓を生体注入ゲルで行うことが求められる場合がある。カテーテル経由で薬液や材料を送達することが低侵襲治療にとって肝要であるが、固体状の材料をカテーテル経由で送達することは容易ではない。
臨床で用いられるゲル化能を有する製剤としては、生体接着剤と呼ばれる(生体シーラントや組織接着剤とも呼ばれる)、架橋剤と高分子の反応を用いた製剤や、モノマーの重合反応を用いた製剤がある(特許文献1等)。短時間にゲル化して生体組織と結合する機能を有するが、製剤を調合した後すぐにゲル化が開始するため、カテーテルのような長い細管を通して送達する用途にとって不向きである。従って、内視鏡的に行われることが多い生体組織孔閉鎖、潰瘍の保護及び血管塞栓療術に利用することが難しい。
また、架橋剤を用いずに、高分子の自己組織化(疎水性相互作用や静電的相互作用など)によってゾル‐ゲル転移を生じる生体注入ゲルも報告されている(特許文献2~4等)。体温に応答してゲル化するため、例えばカテーテル経由での送達が容易になる等の利点があるが、弱く不安定であり、生体組織への定着性が低く、生体組織孔閉鎖、潰瘍保護及び血管塞栓療術に利用することが難しい。
さらに、生体シーラント剤もしくは止血剤として汎用されている製剤として、生体反応の1つであるフィブリノーゲンとトロンビンの架橋反応を用いたフィブリングルーがある。薬液混合後のゲル化時間が長いためカテーテル経由での送達が可能で止血効果を有するが、ゲル化に体温応答性がないため、局所的に再現性良くゲルを形成させることが難しい。たとえ局所的にゲルを形成できたとしても、ゲルの強度が弱いため、ポリグリコール酸シートなどの保護シートと併用しなければ安定な潰瘍被覆を形成できない(非特許文献1)。生体組織への接着力も極めて低く(特許文献5)、ゲルによる閉鎖、塞栓・閉塞、保護材としての安定性に欠ける。さらに、血液製剤の一種であることから安全性の面でもリスクが高く、C型肝炎等の感染が報告されている。
一方、本発明者は、特定のコラーゲン/ゲニピン混合水溶液について、コラーゲンが体温付近の温度で線維化し、その後ゲニピン架橋が導入されるゲル化特性を有することを既に見出している(特許文献6)。また、特定のコラーゲン水溶液のゲル化速度を、無機塩濃度の調整により早めることができることも見出している(特許文献7及び非特許文献2)。しかしながら、これらの水溶液の特定の医療用途への有効性は知られていなかった。
Tsuji et al. Gastrointestinal Endoscopy Volume 79, Issue 1, Pages 151-155, 2014
Yunoki et al. Journal of Biomedical Materials Research Part A Volume 103, Issue 9, pages 3054-3065, 2015
以上のように、生体組織孔閉鎖、潰瘍保護又は血管塞栓療術に利用できる、カテーテルによる送達に適した生体注入用ゲルはこれまで存在しなかった。また、カテーテルを経由してゾル状物質を送達し、ゾル-ゲル転移したゲルによる生体組織孔の閉鎖、潰瘍の保護、又は血管塞栓に成功したという事例はなかった。
このような背景のもと、本発明は、生体組織孔閉鎖、潰瘍の保護、又は血管塞栓療術に利用できる、カテーテルによる送達に適した生体注入用ゾルを提供することを目的とする。
上記課題に対し、本発明者らは、特定の濃度のコラーゲン、水、特定の濃度の塩化ナトリウム及び緩衝剤を含有し、特定のpHを有するゾルが、貫通孔の閉鎖、潰瘍の物理的保護、及び血管塞栓に適する3つの特性である(1)カテーテルを通して生体外から生体内へと送達することが可能な長い流動性保持時間、(2)送達後すみやかにゲル化する鋭い体温応答性、及び(3)ゲル化したあとに硬化を生じ、生体組織に定着する性質を備え、生体組織孔の閉鎖、潰瘍の保護又は血管の塞栓を行うことができることを見出し、本発明を完成させた。
すなわち、本発明は、以下のものに関する。
[1]
0.6質量%~3質量%のコラーゲン、水、200mM~330mMの塩化ナトリウム及び緩衝剤を含有し、pHが6.0~9.0である生体組織孔閉鎖用ゾル。
[2]
0.6質量%~3質量%のコラーゲン、水、200mM~330mMの塩化ナトリウム及び緩衝剤を含有し、pHが6.0~9.0である潰瘍保護用ゾル。
[3]
0.6質量%~3質量%のコラーゲン、水、200mM~330mMの塩化ナトリウム及び緩衝剤を含有し、pHが6.0~9.0である血管塞栓療術用ゾル。
[4]
前記緩衝剤がリン酸塩を含む、[1]~[3]のいずれかに記載のゾル。
[5]
ゲニピン又はゲニピン誘導体を40mg/L~1400mg/Lの範囲で含有する、[1]~[4]のいずれかに記載のゾル。
[6]
コラーゲンが、テロペプチド除去型コラーゲンを含む、[1]~[5]のいずれかに記載のゾル。
[7]
1.4質量%~1.7質量%のコラーゲンを含有し、カテーテルを通して生体組織に局所投与される、[1]~[6]のいずれかに記載のゾル。
[8]
生体組織に接触するとゲル化して生体組織に付着する、[1]~[7]のいずれかに記載のゾル。
[1]
0.6質量%~3質量%のコラーゲン、水、200mM~330mMの塩化ナトリウム及び緩衝剤を含有し、pHが6.0~9.0である生体組織孔閉鎖用ゾル。
[2]
0.6質量%~3質量%のコラーゲン、水、200mM~330mMの塩化ナトリウム及び緩衝剤を含有し、pHが6.0~9.0である潰瘍保護用ゾル。
[3]
0.6質量%~3質量%のコラーゲン、水、200mM~330mMの塩化ナトリウム及び緩衝剤を含有し、pHが6.0~9.0である血管塞栓療術用ゾル。
[4]
前記緩衝剤がリン酸塩を含む、[1]~[3]のいずれかに記載のゾル。
[5]
ゲニピン又はゲニピン誘導体を40mg/L~1400mg/Lの範囲で含有する、[1]~[4]のいずれかに記載のゾル。
[6]
コラーゲンが、テロペプチド除去型コラーゲンを含む、[1]~[5]のいずれかに記載のゾル。
[7]
1.4質量%~1.7質量%のコラーゲンを含有し、カテーテルを通して生体組織に局所投与される、[1]~[6]のいずれかに記載のゾル。
[8]
生体組織に接触するとゲル化して生体組織に付着する、[1]~[7]のいずれかに記載のゾル。
本発明は、また、以下のものに関する。
[9] 生体組織に接触するとゲル化して生体組織に付着するゾルにより、生体組織孔閉鎖、潰瘍保護又は血管塞栓を行うためのキットであって、
前記ゾルを形成するためのコラーゲン、塩化ナトリウム、緩衝剤及びゲニピンを含むキット。
[10]
生体組織に接触するとゲル化して生体組織に付着するゾルにより、生体組織孔閉鎖、潰瘍保護又は血管塞栓を行うためのキットであって、
0.6質量%~3質量%のコラーゲン、水、200mM~330mMの塩化ナトリウム及び緩衝剤を含有し、pHが6.0~9.0であるゾル、並びに
ゲニピンを含むキット。
[11]
[1]~[8]のいずれかに記載のゾルを用いる、生体組織孔閉鎖方法。
[12]
[1]~[8]のいずれかに記載のゾルを用いる、潰瘍保護方法。
[13]
[1]~[8]のいずれかに記載のゾルを用いる、血管塞栓方法。
[9] 生体組織に接触するとゲル化して生体組織に付着するゾルにより、生体組織孔閉鎖、潰瘍保護又は血管塞栓を行うためのキットであって、
前記ゾルを形成するためのコラーゲン、塩化ナトリウム、緩衝剤及びゲニピンを含むキット。
[10]
生体組織に接触するとゲル化して生体組織に付着するゾルにより、生体組織孔閉鎖、潰瘍保護又は血管塞栓を行うためのキットであって、
0.6質量%~3質量%のコラーゲン、水、200mM~330mMの塩化ナトリウム及び緩衝剤を含有し、pHが6.0~9.0であるゾル、並びに
ゲニピンを含むキット。
[11]
[1]~[8]のいずれかに記載のゾルを用いる、生体組織孔閉鎖方法。
[12]
[1]~[8]のいずれかに記載のゾルを用いる、潰瘍保護方法。
[13]
[1]~[8]のいずれかに記載のゾルを用いる、血管塞栓方法。
本発明によれば、カテーテルを通して送達可能なゾルにより、生体組織の貫通孔の閉鎖、潰瘍の保護又は血管の塞栓を行うことができる。
以下、本発明を実施するための形態(以下、単に「本実施形態」ともいう。)について詳細に説明する。以下の本実施形態は、本発明を説明するための例示であり、本発明をこの本実施形態のみに限定する趣旨ではない。
本実施形態のゾル(ゾル組成物、医薬組成物)は、0.6質量%~3質量%のコラーゲン、水、200mM~330mMの塩化ナトリウム及び緩衝剤を含有し、pHが6.0~9.0である。
本実施形態のゾルが含有するコラーゲンは、特に限定されないが、室温付近での線維化が進み難いテロペプチド除去型コラーゲンであることが好ましく、実質的にテロペプチド除去型コラーゲンからなることがより好ましい。テロペプチド除去型コラーゲンは、コラーゲン分子が両末端に有するテロペプチドを、タンパク質分解酵素により酵素的に分解除去したものであり、例えば、コラーゲン分子が両末端に有するテロペプチドをペプシン消化により分解除去されたものである。また、テロペプチド除去型コラーゲンの中でも、医療機器の原料として承認されている哺乳類由来のテロペプチド除去型コラーゲンが好ましく、既に臨床応用され、熱安定性に優れるブタ皮由来のテロペプチド除去型コラーゲンがより好ましく用いられる。テロペプチド除去型コラーゲンはアテロコラーゲンの別称で市販されており、容易に入手することができる。
コラーゲンは、線維形成能を有するコラーゲン(線維形成コラーゲン)であれば特に限定されない。線維形成コラーゲンの中でも、骨、皮膚、腱、及び靭帯を構成するコラーゲンであるタイプI、軟骨を構成するコラーゲンであるタイプII、タイプIコラーゲンで構成される生体組織に含まれるタイプIIIなどが、入手のしやすさ、研究実績の豊富さ、あるいは製造したゲルを適用する生体組織との類似性の観点から好ましく用いられる。コラーゲンは常法により生体組織から抽出・精製して得てもよく、市販品を入手してもよい。コラーゲンは各タイプが精製されたものでも、複数のタイプの混合物でもよい。
コラーゲンの変性温度は、32℃以上であると好ましく、35℃以上であるとより好ましく、37℃以上であると更に好ましい。変性温度が32℃以上であることにより、ゾルの室温での流動性をより長く維持することが可能になると共に、生体内でのコラーゲンの変性が起こりにくくなる。コラーゲンの変性温度の上限は特に限定されないが、50℃以下であると好ましく、45℃以下であるとより好ましく、41℃であると更に好ましい。
変性温度が上記上限値以下であることにより、生体組織に接触した際のゲル化をより速やかに進行させることができる。コラーゲンの変性温度は、常法、すなわちコラーゲン水溶液の温度上昇に伴う円偏光二色性、旋光度、又は粘度の変化によって測定される。コラーゲンの変性温度は、上記数値範囲内の変性温度を有するコラーゲンを選択することにより調整してもよい。
変性温度が上記上限値以下であることにより、生体組織に接触した際のゲル化をより速やかに進行させることができる。コラーゲンの変性温度は、常法、すなわちコラーゲン水溶液の温度上昇に伴う円偏光二色性、旋光度、又は粘度の変化によって測定される。コラーゲンの変性温度は、上記数値範囲内の変性温度を有するコラーゲンを選択することにより調整してもよい。
本実施形態のゾルは、コラーゲンと水を含有するコラーゲン水溶液を含むゾルであり、投与した部位において局所的にゲル化させるためのゾル滞留性の観点から、コラーゲン濃度が高いゾルが望ましい。コラーゲン濃度が低すぎるとゾルの粘度が低下し、ゲル化前にゾルが導入部位から散逸することがある。加えて、ゾルのコラーゲン濃度が高い方が、ゲル化後のゲルの硬さが向上するため、組織貫通孔、血管塞栓等を確実に行うという観点からも、コラーゲン濃度が高いゾルが望ましい。
一方、カテーテルを経由して本実施形態のゾルを投与するという観点からは、コラーゲン濃度が低いゾルが望ましい。カテーテルの径や長さにも依存するが、コラーゲン濃度が高くなるにつれてゾルの粘度が高くなり、押し出し抵抗が増加し、投与が困難になることがある。
以上の観点から、本実施形態のゾルにおいて、コラーゲンの濃度はゾルの全量を基準として、0.6質量%~3.0質量%であり、0.8質量%~2.2質量%であると好ましく、1.4質量%~1.7質量%であるとより好ましく、1.4質量%~1.6質量%であると特に好ましい。
一方、カテーテルを経由して本実施形態のゾルを投与するという観点からは、コラーゲン濃度が低いゾルが望ましい。カテーテルの径や長さにも依存するが、コラーゲン濃度が高くなるにつれてゾルの粘度が高くなり、押し出し抵抗が増加し、投与が困難になることがある。
以上の観点から、本実施形態のゾルにおいて、コラーゲンの濃度はゾルの全量を基準として、0.6質量%~3.0質量%であり、0.8質量%~2.2質量%であると好ましく、1.4質量%~1.7質量%であるとより好ましく、1.4質量%~1.6質量%であると特に好ましい。
本実施形態のゾルは、無機塩である塩化ナトリウムを所定濃度含むことにより、生体組織に接触した際にコラーゲンの線維化が加速され、体温に応答して速やかにゲル化する。
ゾルに含まれる塩化ナトリウムの濃度は、生理的塩濃度(140mM)よりも高い200mM~330mMの範囲で適宜調整することができ、220mM~310mMであると好ましく、例えば280mM前後とすることができる。塩化ナトリウム濃度が生理的塩濃度未満の場合、体温に応答したコラーゲンの線維化に長い時間を要することがある。一方、塩化ナトリウム濃度が330mMを超えると、カテーテル内でゾルが流動性を失いやすくなることがある。塩化ナトリウムの濃度をこのような範囲にすることにより、カテーテル内でのゾルの流動性を保持しながら、体温に応答して速やかにゲル化することが可能となる。
本実施形態のゾルのpH(23℃におけるpH。特筆しない限り本明細書全体において同様。)は、6.0~9.0であり、6.5~8.0がより好ましい。コラーゲンの線維化は中性付近で活発に生じることが知られている。pHを所定の範囲内とすることにより、コラーゲンの線維化をより促進することができる。pHの調整は、常法により可能であり、例えば、ゾルに含まれる無機塩の濃度、好ましくは塩化ナトリウム及びリン酸水素ナトリウムの濃度の制御や、塩酸や水酸化ナトリウムなどの強酸、及び/又は強アルカリの添加により、pHを調整することが可能である。pHは公知のpHメータ(例えば、HORIBA社製、商品名「NAVIh F-71」)により測定することができる。
また、本実施形態のゾルは、pHを維持する等の目的のため、緩衝剤を含有する。緩衝剤としては、ゾルが所望の特性を有する限り特に限定されないが、例えばリン酸塩、酢酸塩、ホウ酸塩、HEPES、トリス等を用いることができる。リン酸塩としては、リン酸ナトリウム、リン酸水素ナトリウム(リン酸二水素ナトリウム及びリン酸水素ニナトリウムの総称)、及びリン酸水素カリウム(リン酸二水素カリウム及びリン酸水素二カリウムの総称)等を用いることができる。酢酸塩としては酢酸ナトリウム等を用いることができ、ホウ酸塩としてはホウ酸ナトリウム等を用いることができ、それぞれ水酸化ナトリウム等によるpH調節と合わせて用いることができる。また、上記の塩化ナトリウムと緩衝剤を合わせた、塩化ナトリウム含有リン酸緩衝液(NPB)等の緩衝液を用いてもよい。
これらの緩衝剤のうち、リン酸塩及びこれを含むNPBが特に好ましく用いられる。リン酸塩は、コラーゲンの線維化が活発に生じるpH6~9での緩衝能に優れ、リン酸緩衝生理食塩水など細胞洗浄液にも含まれるように生体への安全性が確認されているという利点がある。
これらの緩衝剤のうち、リン酸塩及びこれを含むNPBが特に好ましく用いられる。リン酸塩は、コラーゲンの線維化が活発に生じるpH6~9での緩衝能に優れ、リン酸緩衝生理食塩水など細胞洗浄液にも含まれるように生体への安全性が確認されているという利点がある。
緩衝剤の濃度はpHが所望の範囲に維持され、ゾルが所望の特性を有する限り特に限定されない。
pH緩衝効果を十分に発揮する観点から、緩衝剤濃度を5mM以上とすることができる。一方、緩衝剤濃度が高くなると、調剤前に緩衝液中の塩が析出する場合、あるいはイオン強度が高くなりすぎてゾル使用時に組織障害性を惹起する場合があるため、緩衝剤濃度を140mM以下とすることができる。緩衝剤濃度は、10mM超120mM未満であると好ましく、例えば20mM~110mMとすることができ、30mM~100mMであるとより好ましい。緩衝剤濃度をこのような範囲にすることにより、ゾルのpHを6.0~9.0の範囲内に維持することが容易になり、カテーテル内でのゾルの流動性を保持しながらカテーテルを介した送達後は体温に応答して速やかに送達場所でゲル化するという本実施形態のゾルの効果を発揮しつつ、塩の析出や組織障害性を抑えることが可能となる。
pH緩衝効果を十分に発揮する観点から、緩衝剤濃度を5mM以上とすることができる。一方、緩衝剤濃度が高くなると、調剤前に緩衝液中の塩が析出する場合、あるいはイオン強度が高くなりすぎてゾル使用時に組織障害性を惹起する場合があるため、緩衝剤濃度を140mM以下とすることができる。緩衝剤濃度は、10mM超120mM未満であると好ましく、例えば20mM~110mMとすることができ、30mM~100mMであるとより好ましい。緩衝剤濃度をこのような範囲にすることにより、ゾルのpHを6.0~9.0の範囲内に維持することが容易になり、カテーテル内でのゾルの流動性を保持しながらカテーテルを介した送達後は体温に応答して速やかに送達場所でゲル化するという本実施形態のゾルの効果を発揮しつつ、塩の析出や組織障害性を抑えることが可能となる。
上記ゾルは、生体組織に接触すると、体温に応答してゲル化する。このゲルの強度を高める観点及び生体組織への付着性を高める観点から、上記ゾルは架橋剤を含むものであってもよい。架橋剤は特に限定されず、1種を単独で又は2種以上を組み合わせて用いることもできるが、架橋剤そのものの細胞毒性が低いとされている植物由来のゲニピン、あるいは架橋剤がコラーゲン分子間に挿入されないため水洗で除去される1-(3-ジメチルアミノプロピル)-3-エチルカルボジイミド(以下、「EDC」と表記する。)とその架橋助剤であるN-ヒドロキシスクシンイミド(NHS)などが好ましく用いられる。ゲニピンはゲニポシドのアグリコンであり、例えば、ゲニポシドの酸化、還元及び加水分解により得られ、あるいは、ゲニポシドの酵素加水分解によって得られる。ゲニポシドは、アカネ科のクチナシに含まれるイリドイド配糖体であり、クチナシから抽出して得られる。ゲニピンは、C11H14O5の分子式で表され、常法により合成してもよく、市販品を入手してもよい。また、ゲニピンは、本実施形態のゾルの所望の特性を阻害しない程度に、その架橋効果を確保する範囲で、誘導体化されていてもよい。ゲニピンの誘導体としては、例えば、特表2006-500975号公報に記載のものを用いることができる。また、本明細書中において、ゲニピンはゲニピンの重合体も含む。ゲニピンは種々の条件で重合することが知られており、その重合条件・方法についてはとくに限定されないが、例えば強アルカリ条件下でアルドール縮合によって重合させる方法(Mi et al. Characterization of ring-opening polymerization of genipin and pH-dependent cross-linking reactions between chitosan and genipin. Journal of Polymer Science: Part A: Polymer Chemistry, Vol.43, 1985-2000 (2005))を用いることができる。
EDCは水溶性カルボジイミドの一種であり、水溶性カルボジイミドであればその種類を問わず架橋剤として用いることができるが、その中でも、安価かつ安全性が高いEDCが特に好ましく用いられる。水溶性カルボジイミドは1種を単独で又は2種以上を組み合わせて用いられる。また、EDCは単独で用いてもよいし、NHSと混合して用いてもよい。EDCによる架橋反応はNHSの混合によって促進されることが知られている。
EDCは水溶性カルボジイミドの一種であり、水溶性カルボジイミドであればその種類を問わず架橋剤として用いることができるが、その中でも、安価かつ安全性が高いEDCが特に好ましく用いられる。水溶性カルボジイミドは1種を単独で又は2種以上を組み合わせて用いられる。また、EDCは単独で用いてもよいし、NHSと混合して用いてもよい。EDCによる架橋反応はNHSの混合によって促進されることが知られている。
本実施形態のゾルがゲニピンを含有する場合、ゲニピン濃度は患部送達までゾルの流動性を保持する観点から、1800mg/L以下とすることができ、40mg/L~1400mg/Lが好ましく、例えば100mg/L~1000mg/Lとすることができる。ゲニピン濃度をこのような範囲とすることにより、カテーテル内でのゾルの流動性を保持しながら、ゲル強度を架橋により増強することができる。
また、本実施形態のゾルには、従来のコラーゲン水溶液に用いられる各種の溶媒及び添加剤が更に含まれてもよい。そのような溶媒及び添加剤としては、例えば、希塩酸、クエン酸、酢酸などの酸が挙げられる。
上記添加剤及び溶媒は1種を単独で又は2種以上を組み合わせて用いられる。また、ゾルにおける上記添加剤及び溶媒の含有割合は、本実施形態のゾルの所望の特性を阻害しない範囲であれば特に限定されない。
本実施形態のゾルは、内視鏡治療、IVR治療等のカテーテルを用いた低侵襲治療において有用であり、特に、生体組織に生じた貫通孔の閉鎖、潰瘍の保護及び血管の塞栓に有用である。
例えば、EMR(内視鏡的粘膜切除術)やESD(内視鏡的粘膜下層剥離術)などの内視鏡治療において、偶発症としての穿孔の発症が問題となっている。穿孔の閉鎖はクリッピングで行われるが、数個のクリップを1つずつスコープ経由で送達するため手間がかかり、また、穿孔を確実に閉鎖するためには内視鏡デバイスの高度な操作技術を要する。内視鏡治療後の潰瘍治癒の不良などによる後出血や遅発性穿孔なども報告されている。
また、IVR治療では、血管塞栓療術が普及している。血管塞栓療術とは肝臓などの癌の治療と消化管や肺からの出血の止血を目的とし、動脈に挿入されたカテーテルを介して塞栓材を血管内に送り込む手技である。具体的には、塞栓材が臓器内の病変部近傍へと送達され、癌病巣に栄養を供給する血管と、出血の原因となる血管へ、それぞれ送達されて血流を遮断する方法である。塞栓材に従来用いられているゼラチンスポンジは患部のサイズに合わせてカットする必要があり、そのサイズが不適合な場合は塞栓が達成されないという問題もある。また、コイルも塞栓材に使用されるが、高価であり、一度送達されたものは永久に体内に残る。
本実施形態のゾルは、カテーテルを通して生体組織に投与可能な長い流動性保持時間、送達後に生体温度で速やかにゲル化する体温応答性、及びゲル化したあとに生体組織に接着する特性を備えるため、上記のような用途において特に有用であり、より具体的には、ESDやEMRなどの内視鏡治療の際に形成される潰瘍部の保護(これに伴う潰瘍部の修復を含む)、クリッピング操作を容易に行うための一時的閉鎖も含めた穿孔部の閉鎖、IVR治療時の血管塞栓等において有用である。
従来の生体接着剤は、調合後すみやかに粘度が上昇し1分前後にはゲル化に至るものであったが、本実施形態のゾルは、カテーテルを通して生体組織に投与可能な長い流動性保持時間(例えば、室温で10分間)を有し、例えば、内径2.2mm、全長2.8mのカテーテルを経由して、例えば内視鏡や透視画像下で送達することができる。なお、本実施形態において、カテーテルを通した投与には、噴霧用カテーテルを用いた投与も含まれる。投与に用いるカテーテルの内径及び長さは、投与部位やゾルの粘度等に応じて適宜変更することができるが、例えば内径0.5mm~2.8mm、長さ1m~3mのカテーテルを用いることができる。本実施形態のゾルは、内径が小さいカテーテル(例えば内径0.5mm~2.5mm)や、長いカテーテル(例えば、長さ1.5m~3m)を用いても生体組織に投与可能であるという特性を有する。
本実施形態のゾルの粘度は、カテーテルの孔径に応じて適宜調整可能であるが、例えば、せん断速度1s-1において23℃で計測される粘度が0.2Pa・s~52Pa・s、好ましくは、2Pa・s~20Pa・s、より好ましくは5Pa・s~12Pa・sである。上記の範囲の粘度であることにより、投与中は流動性を有し、かつ、投与後は患部に滞留して所望の位置にゲル形成を行うことができる。粘度の測定は、後述の実施例に例示するとおり、日本工業規格(JIS)K7117-2に記述される円錐‐平板システムを用いて、せん断速度を制御できる公知のレオメーターを用いて行うことができる。本実施形態のコラーゲンゾルのような高分子溶液は非ニュートン流体であり、計測時のせん断速度が増加すると粘度が低下し、ある粘度値へと収束する。したがって、本実施形態のゾルの粘度は、粘度の違いが明瞭に観察される低せん断速度において、具体的にはせん断速度1s-1で計測される粘度として記述される。
上記のとおりカテーテルを通して生体組織に投与後、本実施形態のゾルは、生体温度(体温)で速やかにゲル化を開始して局所的にゲルを形成し、生体組織孔閉鎖、潰瘍保護及び血管塞栓を行うことができる。ゲル化は、通常、投与後37℃に到達してから5分以内に起こる。形成されるゲルの強度は、特に限定されないが、例えば後述の実施例に記載の圧縮試験又は貫入試験等により決定される弾性率として10kPa~200kPaの範囲が望ましく、好ましくは20kPa~100kPaの範囲である。弾性率が小さすぎると、ゲルが容易に変形し、生体組織孔の閉鎖や血管塞栓が破たんする場合がある。ゲル周囲の生体組織を大幅に超える弾性率を示す場合、生体組織が歪んだ場合に弾性率の違いによってゲル‐生体組織の接着が破たんする場合がある。
上記のとおり、局所的にゲルを形成する際、まずは生体組織上でコラーゲンが線維化(自己組織化の一種)してゲルを形成する(一次ゲル化)。ゲニピン等の架橋剤をゾルが含有している場合、コラーゲン線維ゲルに架橋が導入され(二次ゲル化)、ゲルの強度が高くなるとともに、コラーゲンと生体組織との間を化学的により強固に接着する。
本実施形態のゾルは、生体組織の粘膜下層に浸透し、定着することができる。
以上の特性により、本実施形態のゾルは、流動が生じる生体内で局所的に再現性よく、穿孔を閉鎖し、血管を塞栓するほどの組織定着性と強度を備えたゲルを形成することができる。形成されたゲルは、安全性及び生体適合性に優れた成分組成のゲルであり、通常のコラーゲンの場合と同様、徐々に加水分解、酵素分解等の作用を受ける。
本実施形態のゾルは、生体組織の粘膜下層に浸透し、定着することができる。
以上の特性により、本実施形態のゾルは、流動が生じる生体内で局所的に再現性よく、穿孔を閉鎖し、血管を塞栓するほどの組織定着性と強度を備えたゲルを形成することができる。形成されたゲルは、安全性及び生体適合性に優れた成分組成のゲルであり、通常のコラーゲンの場合と同様、徐々に加水分解、酵素分解等の作用を受ける。
本実施形態のゾルは、投与対象の患部の状態に応じて、更に薬剤を含んでもよい。そのような薬剤としては、従来のインジェクタブルゲルに含有させられるものであれば特に限定されず、例えば、生理活性を有するペプチド類、蛋白類、その他の抗生物質、抗腫瘍剤、ホルモン剤などが挙げられる。薬剤は1種を単独で又は2種以上を組み合わせて用いられる。また、薬剤の含有割合は、その薬剤の効能を発揮しつつ、本実施形態のゲルの所望の特性を阻害しない範囲であれば特に限定されない。
本実施形態はまた、生体組織に接触するとゲル化して生体組織に付着するゾルにより、生体組織孔閉鎖、潰瘍保護又は血管塞栓を行うためのキットにも関する。
一態様において、前記キットは、前記ゾルを形成するためのコラーゲン、塩化ナトリウム及び緩衝剤を含み、所望によりゲニピン、ゾル投与用のカテーテル等をさらに含む。キットに含まれる各成分は溶液の状態であってもよいし、乾燥状態でキットに含まれる成分を使用前に適宜溶解してゾルを形成してもよい。
一態様において、前記キットは、0.6質量%~3質量%のコラーゲン、水、200mM~330mMの塩化ナトリウム及び緩衝剤を含有し、pHが6.0~9.0である生体組織孔閉鎖用ゾルと、ゲニピンを含むキットであってもよい。
一態様において、前記キットは、前記ゾルを形成するためのコラーゲン、塩化ナトリウム及び緩衝剤を含み、所望によりゲニピン、ゾル投与用のカテーテル等をさらに含む。キットに含まれる各成分は溶液の状態であってもよいし、乾燥状態でキットに含まれる成分を使用前に適宜溶解してゾルを形成してもよい。
一態様において、前記キットは、0.6質量%~3質量%のコラーゲン、水、200mM~330mMの塩化ナトリウム及び緩衝剤を含有し、pHが6.0~9.0である生体組織孔閉鎖用ゾルと、ゲニピンを含むキットであってもよい。
本実施形態はまた、上記のゾルを用いた生体組織孔閉鎖方法、潰瘍保護方法又は血管塞栓方法にも関する。さらに、本実施形態は、これらの方法を含む、内視鏡治療及びIVR治療等の低侵襲治療方法にも関する。これらの方法は、本実施形態のゾルに関する上述の記載を参照して実施することができる。
以下、実施例及び比較例に基づいて本実施形態をより具体的に説明するが、本発明は以下の実施例及び比較例に限定されるものではない。
〔コラーゲン溶液の準備〕
濃度1.0質量%のブタ皮膚製コラーゲン溶液(テロペプチド除去型コラーゲン、日本ハム株式会社製、コラーゲンの変性温度:40℃)をコラーゲン原液として準備した。エバポレーター(水溶温度:29℃)を用いてコラーゲン溶液を濃縮し、濃度2.4質量%のコラーゲン溶液を得た。これを15mL遠心チューブもしくは50mL遠心チューブに小分けし、冷蔵庫に保管した。
濃度1.0質量%のブタ皮膚製コラーゲン溶液(テロペプチド除去型コラーゲン、日本ハム株式会社製、コラーゲンの変性温度:40℃)をコラーゲン原液として準備した。エバポレーター(水溶温度:29℃)を用いてコラーゲン溶液を濃縮し、濃度2.4質量%のコラーゲン溶液を得た。これを15mL遠心チューブもしくは50mL遠心チューブに小分けし、冷蔵庫に保管した。
〔ゲニピン水溶液の準備〕
ゲニピン(和光純薬工業株式会社製)を純水に溶解し、濃度24mM(5430mg/L)のゲニピン水溶液を調製した。これを純水で希釈し、異なる濃度のゲニピン水溶液を調製した。
ゲニピン(和光純薬工業株式会社製)を純水に溶解し、濃度24mM(5430mg/L)のゲニピン水溶液を調製した。これを純水で希釈し、異なる濃度のゲニピン水溶液を調製した。
〔NPBの準備〕
濃度50mMのリン酸水素二ナトリウム水溶液(140mMの塩化ナトリウム含有)及び濃度50mMのリン酸二水素ナトリウム水溶液(140mMの塩化ナトリウム含有)を、純水を溶媒として調製した。これらをpHメータ(HORIBA社製、商品名「NAVIh F-71」)により測定しながら攪拌・混合し、pH7.0の140mM塩化ナトリウム含有50mMリン酸緩衝液を調整し、これを1×NPBと定義した。なお、実施例全体において、特筆しない限り、pHは上記pHメータを用いて23℃で測定した。同様の操作により12×NPB(pH7.0の1.68M塩化ナトリウム含有0.6Mリン酸緩衝液)を調製し、純水で希釈して異なる倍数のNPB(n×NPB)を調製した。
濃度50mMのリン酸水素二ナトリウム水溶液(140mMの塩化ナトリウム含有)及び濃度50mMのリン酸二水素ナトリウム水溶液(140mMの塩化ナトリウム含有)を、純水を溶媒として調製した。これらをpHメータ(HORIBA社製、商品名「NAVIh F-71」)により測定しながら攪拌・混合し、pH7.0の140mM塩化ナトリウム含有50mMリン酸緩衝液を調整し、これを1×NPBと定義した。なお、実施例全体において、特筆しない限り、pHは上記pHメータを用いて23℃で測定した。同様の操作により12×NPB(pH7.0の1.68M塩化ナトリウム含有0.6Mリン酸緩衝液)を調製し、純水で希釈して異なる倍数のNPB(n×NPB)を調製した。
〔実施例1〕
〔a.コラーゲンゾルの調製:動物実験以外に用いる場合〕
上記のようにして準備した、15mL遠心チューブに入ったコラーゲン溶液6gを、クラッシュアイスを満たした発泡スチロール容器内に静置した。チューブ内には撹拌を促進するためのマグネティックスターラー(10.8g、内径10mm×39mm)を収容した。次いで、4℃冷蔵庫内に静置したゲニピン水溶液2mL及び室温に静置した10×NPB2mLをマイクロピペットで吸い上げ、コラーゲン溶液の入った遠心チューブに添加して、その遠心チューブを激しく振り混ぜて撹拌した。およそ30秒間で撹拌の後の遠心チューブを遠心分離機の所定位置にセットして、3200rpm、1.5分間の条件で遠心分離を行い、気泡を液上面に集め、1.44%コラーゲンゾル(溶媒、2×NPB;ゲニピン濃度、4mM(905mg/L))を得た。
〔b.コラーゲンゾルの調製:動物実験に用いる場合〕
上記のようにして準備した、50mL遠心チューブに入ったコラーゲン溶液12gを、クラッシュアイスを満たした発泡スチロール容器内に静置した。チューブ内には撹拌を促進するためのマグネティックスターラー(10.8g、内径10mm×39mm)を収容した。次いで、同じくクラッシュアイスを満たした容器内に静置した20mMゲニピン水溶液4mL及び室温に静置した10×NPB4mLをマイクロピペットで吸い上げ、コラーゲン溶液の入った遠心チューブに添加して、その遠心チューブを激しく振り混ぜて撹拌し、1.44%コラーゲンゾル(溶媒、2×NPB;ゲニピン濃度、4mM(905mg/L))を得た。これを実施例1のブタ胃穿孔閉鎖実験用として用いた。
〔a.コラーゲンゾルの調製:動物実験以外に用いる場合〕
上記のようにして準備した、15mL遠心チューブに入ったコラーゲン溶液6gを、クラッシュアイスを満たした発泡スチロール容器内に静置した。チューブ内には撹拌を促進するためのマグネティックスターラー(10.8g、内径10mm×39mm)を収容した。次いで、4℃冷蔵庫内に静置したゲニピン水溶液2mL及び室温に静置した10×NPB2mLをマイクロピペットで吸い上げ、コラーゲン溶液の入った遠心チューブに添加して、その遠心チューブを激しく振り混ぜて撹拌した。およそ30秒間で撹拌の後の遠心チューブを遠心分離機の所定位置にセットして、3200rpm、1.5分間の条件で遠心分離を行い、気泡を液上面に集め、1.44%コラーゲンゾル(溶媒、2×NPB;ゲニピン濃度、4mM(905mg/L))を得た。
〔b.コラーゲンゾルの調製:動物実験に用いる場合〕
上記のようにして準備した、50mL遠心チューブに入ったコラーゲン溶液12gを、クラッシュアイスを満たした発泡スチロール容器内に静置した。チューブ内には撹拌を促進するためのマグネティックスターラー(10.8g、内径10mm×39mm)を収容した。次いで、同じくクラッシュアイスを満たした容器内に静置した20mMゲニピン水溶液4mL及び室温に静置した10×NPB4mLをマイクロピペットで吸い上げ、コラーゲン溶液の入った遠心チューブに添加して、その遠心チューブを激しく振り混ぜて撹拌し、1.44%コラーゲンゾル(溶媒、2×NPB;ゲニピン濃度、4mM(905mg/L))を得た。これを実施例1のブタ胃穿孔閉鎖実験用として用いた。
〔実施例2〕
コラーゲン濃度を1.44%から1.6%に高めたことを除き実施例1と同じ組成のコラーゲンゾルを調合した。
〔実施例3〕
NPB濃度を2×NPBから1.8×NPBに低下させたことを除き実施例1と同じ組成のコラーゲンゾルを調製した。
〔実施例4〕
NPB濃度を2×NPBから1.6×NPBに低下させたことを除き実施例1と同じ組成のコラーゲンゾルを調製した。
〔実施例5〕
ゲニピン濃度を4mMから2mM(452mg/L)に低下させたことを除き実施例1と同じ組成のコラーゲンゾルを調製した。
〔実施例6〕
ゲニピンを含まないことを除き実施例1と同じ組成のコラーゲンゾルを調合した。
コラーゲン濃度を1.44%から1.6%に高めたことを除き実施例1と同じ組成のコラーゲンゾルを調合した。
〔実施例3〕
NPB濃度を2×NPBから1.8×NPBに低下させたことを除き実施例1と同じ組成のコラーゲンゾルを調製した。
〔実施例4〕
NPB濃度を2×NPBから1.6×NPBに低下させたことを除き実施例1と同じ組成のコラーゲンゾルを調製した。
〔実施例5〕
ゲニピン濃度を4mMから2mM(452mg/L)に低下させたことを除き実施例1と同じ組成のコラーゲンゾルを調製した。
〔実施例6〕
ゲニピンを含まないことを除き実施例1と同じ組成のコラーゲンゾルを調合した。
〔比較例1〕
実施例1のコラーゲンゾルのNPB濃度を2×NPBから2.4×NPBに高め、ゲニピン濃度を4mMから8mM(1810mg/L)に高めたコラーゲンゾルを調製した。
〔比較例2〕
NPB濃度を2×NPBから1×NPBに低下させたことを除き実施例1と同じ組成のコラーゲンゾルを調製した。
〔比較例3〕
NPB濃度を2×NPBから1×NPBに下げ、コラーゲン濃度を1.44%から0.5%に下げたことを除き実施例1と同じ組成のコラーゲンゾルを調製した。
実施例1のコラーゲンゾルのNPB濃度を2×NPBから2.4×NPBに高め、ゲニピン濃度を4mMから8mM(1810mg/L)に高めたコラーゲンゾルを調製した。
〔比較例2〕
NPB濃度を2×NPBから1×NPBに低下させたことを除き実施例1と同じ組成のコラーゲンゾルを調製した。
〔比較例3〕
NPB濃度を2×NPBから1×NPBに下げ、コラーゲン濃度を1.44%から0.5%に下げたことを除き実施例1と同じ組成のコラーゲンゾルを調製した。
〔試験方法〕
〔ブタ胃の穿孔閉鎖実験〕
SPFブタ(体重30kg)を用いて急性の穿孔閉鎖実験を行った。全身麻酔下、ブタ胃に対して生理食塩水を粘膜下に局注し、膨隆形成した仮想病変に対して、ESD専用ナイフを用いてESDを実施した。形成された潰瘍底に対し、内径5mmの穿孔を作製した。脱気による胃の虚脱を確認後、すみやかにコラーゲンゾルをカテーテル(全長2400mm;製品名:ファインジェット S2825(株式会社トップ);内径:2.2mm;先端100mmをハサミで切断)経由で穿孔部に送達した。送気によって胃が拡張されることを確認した後、1時間安静にし、ブタを安楽死させた後に胃を摘除した。胃の幽門を鉗子で閉鎖して、噴門から水を注入して胃を水で満たすリーク試験を実施した。リーク試験後、穿孔部を含む箇所を切除・固定化してヘマトキシリン‐エオジン(HE)染色による組織観察に供した。
〔ブタ胃の穿孔閉鎖実験〕
SPFブタ(体重30kg)を用いて急性の穿孔閉鎖実験を行った。全身麻酔下、ブタ胃に対して生理食塩水を粘膜下に局注し、膨隆形成した仮想病変に対して、ESD専用ナイフを用いてESDを実施した。形成された潰瘍底に対し、内径5mmの穿孔を作製した。脱気による胃の虚脱を確認後、すみやかにコラーゲンゾルをカテーテル(全長2400mm;製品名:ファインジェット S2825(株式会社トップ);内径:2.2mm;先端100mmをハサミで切断)経由で穿孔部に送達した。送気によって胃が拡張されることを確認した後、1時間安静にし、ブタを安楽死させた後に胃を摘除した。胃の幽門を鉗子で閉鎖して、噴門から水を注入して胃を水で満たすリーク試験を実施した。リーク試験後、穿孔部を含む箇所を切除・固定化してヘマトキシリン‐エオジン(HE)染色による組織観察に供した。
〔ブタ結腸の穿孔閉鎖実験〕
SPFブタ(体重30kg)を用いて急性の穿孔閉鎖実験を行った。全身麻酔下、ブタ結腸に対して、ESD専用ナイフを用いて内径5mmの穿孔を作製した。脱気による結腸の虚脱を確認後、すみやかにコラーゲンゾルをカテーテル(〔ブタ胃の穿孔閉鎖実験〕と同様)経由で穿孔部に送達した。送気によって結腸が拡張されることを確認した後、1時間安静にし、ブタを安楽死させた後に結腸を切断、摘除した。切断された結腸の片側を鉗子で閉鎖して、一方の開口部から水を注入して結腸を水で満たすリーク試験を実施した。
SPFブタ(体重30kg)を用いて急性の穿孔閉鎖実験を行った。全身麻酔下、ブタ結腸に対して、ESD専用ナイフを用いて内径5mmの穿孔を作製した。脱気による結腸の虚脱を確認後、すみやかにコラーゲンゾルをカテーテル(〔ブタ胃の穿孔閉鎖実験〕と同様)経由で穿孔部に送達した。送気によって結腸が拡張されることを確認した後、1時間安静にし、ブタを安楽死させた後に結腸を切断、摘除した。切断された結腸の片側を鉗子で閉鎖して、一方の開口部から水を注入して結腸を水で満たすリーク試験を実施した。
〔ブタ胃のex vivo潰瘍保護試験〕
内視鏡治療で生じる潰瘍のコラーゲンゲルによる被覆処置を模倣した、ブタ切除胃を用いたex vivo潰瘍保護試験を行った。約60×60mmのブタ切除胃に対し、23Gの針を用いて生理食塩水を粘膜下局注して膨隆を形成させ、切除胃の中央に手術用メスを用いて30×30mmの人工潰瘍を作製した。このように得られた試験片を、60°に傾斜させたアルミニウム板上に固定し、37℃、湿度70%に設定した孵卵器(Rcom Max 20;Autoelex社製)に設置した。赤外温度計(IT-545;堀場製作所製)を用いて試験片の表面温度が37℃に達したことを確認した後、18Gのシリンジニードルを用いて試験片の人工潰瘍部にコラーゲンゾル(3mL)を送達した。そのまま2時間静置し、コラーゲンのゲル化を完了させた。
人工潰瘍部に形成されたコラーゲンゲルの接着と厚みを評価するため、試験片を組織観察へと供した。試験片を4%パラホルムアルデヒド水溶液で固定し、20%スクロース水溶液で置換した後、4%カルボキシメチルセルロース水溶液で包埋した。これを-100℃で5分間凍結し、凍結ミクロトーム(CM3050S;ライカマイクロシステムズ社製)を用いて厚さ20μmの切片を作製した。得られた切片を風乾し、ヘマトリキシリン‐エオジン染色を施した。70%から99.5%へと段階的に濃度を増加させたエタノール水溶液で切片を洗浄し、封入剤(Eukitt;Kindler社製)で封入した後、正立顕微鏡(BX53; オリンパス社製)により観察した。
内視鏡治療で生じる潰瘍のコラーゲンゲルによる被覆処置を模倣した、ブタ切除胃を用いたex vivo潰瘍保護試験を行った。約60×60mmのブタ切除胃に対し、23Gの針を用いて生理食塩水を粘膜下局注して膨隆を形成させ、切除胃の中央に手術用メスを用いて30×30mmの人工潰瘍を作製した。このように得られた試験片を、60°に傾斜させたアルミニウム板上に固定し、37℃、湿度70%に設定した孵卵器(Rcom Max 20;Autoelex社製)に設置した。赤外温度計(IT-545;堀場製作所製)を用いて試験片の表面温度が37℃に達したことを確認した後、18Gのシリンジニードルを用いて試験片の人工潰瘍部にコラーゲンゾル(3mL)を送達した。そのまま2時間静置し、コラーゲンのゲル化を完了させた。
人工潰瘍部に形成されたコラーゲンゲルの接着と厚みを評価するため、試験片を組織観察へと供した。試験片を4%パラホルムアルデヒド水溶液で固定し、20%スクロース水溶液で置換した後、4%カルボキシメチルセルロース水溶液で包埋した。これを-100℃で5分間凍結し、凍結ミクロトーム(CM3050S;ライカマイクロシステムズ社製)を用いて厚さ20μmの切片を作製した。得られた切片を風乾し、ヘマトリキシリン‐エオジン染色を施した。70%から99.5%へと段階的に濃度を増加させたエタノール水溶液で切片を洗浄し、封入剤(Eukitt;Kindler社製)で封入した後、正立顕微鏡(BX53; オリンパス社製)により観察した。
〔動的粘弾性試験〕
〔粘度測定〕
動的粘弾性測定装置(HAAKE MARSIII;ThermoFisher Scientific製)を用いた回転モードにより、コラーゲンゾルの粘度を測定した。23℃に設定した内径60mmのダブルコーンセンサー(DC60/1Ti、コーン角度1°)にコラーゲンゾルを充填し、せん断速度1s-1の回転を開始した。各ステップの保持時間20sでせん断速度を段階的に100s-1まで増加させ、応力を計測し、せん断速度と応力から粘度を算出した。得られた粘度曲線(粘度vsせん断速度)からコラーゲンゾルの流動特性が非ニュートニアンであることを確認した後、せん断速度1s-1のときの粘度値を採用した。
〔動的粘弾性測定〕
動的粘弾性測定装置(粘度測定で用いたものと同様。)を用いた動的測定(振動モード)により、コラーゲンゾルの体温応答性のゲル化速度を計測した。23℃に設定したダブルコーンセンサーにコラーゲンゾルを充填し、せん断歪を制御した動的測定(周波数、1Hz;せん断歪、0.005)を開始した。5min経過後、温度を23℃から37℃まで30sかけて増加させ、そのまま37℃で保持した。全行程において貯蔵弾性率(G’)及び損失弾性率(G’’)の変化を追跡した。室温ではG’<G’’であった粘弾性特性が、装置温度が37℃に到達してからG’=G’’となるまでの時間をゲル化時間と定義した。
〔粘度測定〕
動的粘弾性測定装置(HAAKE MARSIII;ThermoFisher Scientific製)を用いた回転モードにより、コラーゲンゾルの粘度を測定した。23℃に設定した内径60mmのダブルコーンセンサー(DC60/1Ti、コーン角度1°)にコラーゲンゾルを充填し、せん断速度1s-1の回転を開始した。各ステップの保持時間20sでせん断速度を段階的に100s-1まで増加させ、応力を計測し、せん断速度と応力から粘度を算出した。得られた粘度曲線(粘度vsせん断速度)からコラーゲンゾルの流動特性が非ニュートニアンであることを確認した後、せん断速度1s-1のときの粘度値を採用した。
〔動的粘弾性測定〕
動的粘弾性測定装置(粘度測定で用いたものと同様。)を用いた動的測定(振動モード)により、コラーゲンゾルの体温応答性のゲル化速度を計測した。23℃に設定したダブルコーンセンサーにコラーゲンゾルを充填し、せん断歪を制御した動的測定(周波数、1Hz;せん断歪、0.005)を開始した。5min経過後、温度を23℃から37℃まで30sかけて増加させ、そのまま37℃で保持した。全行程において貯蔵弾性率(G’)及び損失弾性率(G’’)の変化を追跡した。室温ではG’<G’’であった粘弾性特性が、装置温度が37℃に到達してからG’=G’’となるまでの時間をゲル化時間と定義した。
〔ディッシュ上に作製したゲルの貫入試験〕
ゲル中央部にプローブを貫入させる力学試験により、コラーゲンゲルの力学特性を評価した。6wellバイオロジカルプレートに約3g/well(内径35mm)のコラーゲンゾルを加え、37℃の水浴に浮かべて加温した。30min経過後、乾燥を防ぐためにプレート全体をパラフィルムで覆い、37℃インキュベータに24h静置してゲル化を完了させた。テクスチャーアナライザー(TA.XTplus;Stable Microsystems社製)を用いて、得られたゲルの中央部に対し直径5mmのステンレス製円柱プローブを速度0.2mm/sで貫入させ、応力‐歪曲線を得た。応力‐歪曲線における歪0.005~0.04の直線領域の傾きから弾性率を算出した。
ゲル中央部にプローブを貫入させる力学試験により、コラーゲンゲルの力学特性を評価した。6wellバイオロジカルプレートに約3g/well(内径35mm)のコラーゲンゾルを加え、37℃の水浴に浮かべて加温した。30min経過後、乾燥を防ぐためにプレート全体をパラフィルムで覆い、37℃インキュベータに24h静置してゲル化を完了させた。テクスチャーアナライザー(TA.XTplus;Stable Microsystems社製)を用いて、得られたゲルの中央部に対し直径5mmのステンレス製円柱プローブを速度0.2mm/sで貫入させ、応力‐歪曲線を得た。応力‐歪曲線における歪0.005~0.04の直線領域の傾きから弾性率を算出した。
〔試験例1〕
実施例1のコラーゲンゾルを用いて、試験方法に記載のブタ胃の穿孔閉鎖実験を行った。ブタ胃の穿孔形成、コラーゲンゾル送達、ゲル化及び穿孔閉鎖の様子を図1に示す。穿孔部のゾルがゲル化した直後に送気を行うと胃が拡張されたことで、穿孔部が閉鎖されたことが証明された。
摘除した胃のリーク試験の様子を図2に示す。閉鎖した2箇所の穿孔からの漏水は認められず、穿孔部の閉鎖が維持されていることが証明された。
穿孔部を含むブタ胃組織のHE染色像を図3に示す。穿孔部はゲルで栓をされるように閉鎖され、ゲルと組織が密着している様子が観察された。
実施例1のコラーゲンゾルを用いて、試験方法に記載のブタ胃の穿孔閉鎖実験を行った。ブタ胃の穿孔形成、コラーゲンゾル送達、ゲル化及び穿孔閉鎖の様子を図1に示す。穿孔部のゾルがゲル化した直後に送気を行うと胃が拡張されたことで、穿孔部が閉鎖されたことが証明された。
摘除した胃のリーク試験の様子を図2に示す。閉鎖した2箇所の穿孔からの漏水は認められず、穿孔部の閉鎖が維持されていることが証明された。
穿孔部を含むブタ胃組織のHE染色像を図3に示す。穿孔部はゲルで栓をされるように閉鎖され、ゲルと組織が密着している様子が観察された。
〔試験例2〕
実施例1及び2のコラーゲンゾルを用いて、試験方法に記載のブタ結腸の穿孔閉鎖実験を行った。ブタ結腸の穿孔形成、コラーゲンゾル送達、及び穿孔閉鎖の様子を図4に示す。穿孔部のゾルがゲル化した直後に送気を行うと結腸が拡張されたことで、穿孔部が閉鎖されたことが証明された。
摘除した結腸のリーク試験の様子を図5に示す。いずれのゾルを用いた場合も、閉鎖した2箇所の穿孔からの漏水は認められず、穿孔部の閉鎖が維持されていることが証明された。なお、実施例1のコラーゲンゾルを結腸穿孔閉鎖に用いた場合、穿孔部に生じる圧力差でゾルが腸外に流出し、うまく穿孔部にゲルを形成できない場合もあったが、実施例1(1.44%)よりもより濃度の高い実施例2のコラーゲンゾル(1.6%)を用いた場合には、穿孔部におけるゲル形成が、より容易であった。
実施例1及び2のコラーゲンゾルを用いて、試験方法に記載のブタ結腸の穿孔閉鎖実験を行った。ブタ結腸の穿孔形成、コラーゲンゾル送達、及び穿孔閉鎖の様子を図4に示す。穿孔部のゾルがゲル化した直後に送気を行うと結腸が拡張されたことで、穿孔部が閉鎖されたことが証明された。
摘除した結腸のリーク試験の様子を図5に示す。いずれのゾルを用いた場合も、閉鎖した2箇所の穿孔からの漏水は認められず、穿孔部の閉鎖が維持されていることが証明された。なお、実施例1のコラーゲンゾルを結腸穿孔閉鎖に用いた場合、穿孔部に生じる圧力差でゾルが腸外に流出し、うまく穿孔部にゲルを形成できない場合もあったが、実施例1(1.44%)よりもより濃度の高い実施例2のコラーゲンゾル(1.6%)を用いた場合には、穿孔部におけるゲル形成が、より容易であった。
〔試験例3〕
実施例3のコラーゲンゾルを用いて、試験方法に記載のブタ胃の穿孔閉鎖実験を行った。試験例1と同様の方法で作製したブタ胃潰瘍底に対する穿孔形成、コラーゲンゾル送達、及び穿孔閉鎖の様子を図6に示す。穿孔部のゾルがゲル化した直後に送気を行うと胃が拡張されたことで、穿孔部が閉鎖されたことが証明された。生理食塩水をゲルに噴射してもゲルは破壊されなかった(図6)。
更に内径の大きな穿孔(内径10mm)を別の位置に作成し、同様にゲルで穿孔を閉鎖した(図6e)。生理食塩水をゲルに噴射してもゲルは破壊されなかった(図6f)。ゲルは破壊されなかった。穿孔周囲の潰瘍底に拡散・付着したゲルも、生理食塩水の噴射によって剥離せず、潰瘍を保護していることを確認した。実施例3のコラーゲンゾルは、実施例1及び2と同濃度のゲニピンを含み、ゲル化した際の強度が潰瘍保護に十分な強度と考えられた。
実施例3のコラーゲンゾルを用いて、試験方法に記載のブタ胃の穿孔閉鎖実験を行った。試験例1と同様の方法で作製したブタ胃潰瘍底に対する穿孔形成、コラーゲンゾル送達、及び穿孔閉鎖の様子を図6に示す。穿孔部のゾルがゲル化した直後に送気を行うと胃が拡張されたことで、穿孔部が閉鎖されたことが証明された。生理食塩水をゲルに噴射してもゲルは破壊されなかった(図6)。
更に内径の大きな穿孔(内径10mm)を別の位置に作成し、同様にゲルで穿孔を閉鎖した(図6e)。生理食塩水をゲルに噴射してもゲルは破壊されなかった(図6f)。ゲルは破壊されなかった。穿孔周囲の潰瘍底に拡散・付着したゲルも、生理食塩水の噴射によって剥離せず、潰瘍を保護していることを確認した。実施例3のコラーゲンゾルは、実施例1及び2と同濃度のゲニピンを含み、ゲル化した際の強度が潰瘍保護に十分な強度と考えられた。
〔試験例4〕
実施例1、実施例4、比較例2及び比較例3のコラーゲンゾルを用いて、試験方法に記載のブタ胃のexvivo潰瘍保護試験を行った。結果を図7に示す。傾斜させたブタ切除胃潰瘍部に実施例1及び実施例4のコラーゲンゾルを吹き付けた場合、粘膜下層表面には対照試験に類似したコラーゲンゲル層の形成を認めた。ゲル層の厚みは、実施例1のゾルを用いた場合は24±4mm(10点の平均値±標準偏差)、実施例4のゾルを用いた場合は20±2mm(10点の平均値±標準偏差)と計測された。
実際の手術において潰瘍部を下方に位置させられるとは限らない。もし下方に位置させられた場合、ゲル化するまでに時間があってもゾルは潰瘍底から散逸せずにゲル化する(図7の対照)。しかし、臨床では潰瘍部が胃の側方に位置する場合がよくある。本試験例の結果は、実施例のゾルが重力によって散逸しやすい側方潰瘍に対しても、速やかなゲル化によって潰瘍をゲル層で保護可能であることを示している。
一方、比較例2のコラーゲンゾルを用いた場合、コラーゲンゲル層が形成された部位とされない部位が生じ、形成されていた部位においてもゲル層の厚みは11±2mm(10点の平均値±標準偏差)まで減少した。NPB濃度を下げたことによりゾルに含まれる塩化ナトリウム濃度がPBSと同じ140mMまで低下し、コラーゲン線維化の体温応答性が低下したため(試験例5及び図8参照)、吹き付けたほとんどのコラーゲンゾルがゲル化前に潰瘍部から散逸してしまったと考えられた。
比較例3コラーゲンゾルを用いた場合、傾斜させたブタ切除胃潰瘍部にコラーゲンゾルを吹き付けると、コラーゲンゾルはゲル化前に潰瘍部から散逸し、組織切片からはゲル層の形成を確認できなかった。コラーゲン濃度の低下により、ゲルによる潰瘍保護が困難になると考えられた。
実施例1、実施例4、比較例2及び比較例3のコラーゲンゾルを用いて、試験方法に記載のブタ胃のexvivo潰瘍保護試験を行った。結果を図7に示す。傾斜させたブタ切除胃潰瘍部に実施例1及び実施例4のコラーゲンゾルを吹き付けた場合、粘膜下層表面には対照試験に類似したコラーゲンゲル層の形成を認めた。ゲル層の厚みは、実施例1のゾルを用いた場合は24±4mm(10点の平均値±標準偏差)、実施例4のゾルを用いた場合は20±2mm(10点の平均値±標準偏差)と計測された。
実際の手術において潰瘍部を下方に位置させられるとは限らない。もし下方に位置させられた場合、ゲル化するまでに時間があってもゾルは潰瘍底から散逸せずにゲル化する(図7の対照)。しかし、臨床では潰瘍部が胃の側方に位置する場合がよくある。本試験例の結果は、実施例のゾルが重力によって散逸しやすい側方潰瘍に対しても、速やかなゲル化によって潰瘍をゲル層で保護可能であることを示している。
一方、比較例2のコラーゲンゾルを用いた場合、コラーゲンゲル層が形成された部位とされない部位が生じ、形成されていた部位においてもゲル層の厚みは11±2mm(10点の平均値±標準偏差)まで減少した。NPB濃度を下げたことによりゾルに含まれる塩化ナトリウム濃度がPBSと同じ140mMまで低下し、コラーゲン線維化の体温応答性が低下したため(試験例5及び図8参照)、吹き付けたほとんどのコラーゲンゾルがゲル化前に潰瘍部から散逸してしまったと考えられた。
比較例3コラーゲンゾルを用いた場合、傾斜させたブタ切除胃潰瘍部にコラーゲンゾルを吹き付けると、コラーゲンゾルはゲル化前に潰瘍部から散逸し、組織切片からはゲル層の形成を確認できなかった。コラーゲン濃度の低下により、ゲルによる潰瘍保護が困難になると考えられた。
〔試験例5〕
実施例1、実施例2及び比較例2のコラーゲンゾルの動的粘弾性試験を実施した。ゲル化の体温応答性を評価した結果を図8aに示す。
実施例1及び実施例2のコラーゲンゾルを用いた場合、装置温度を23℃に保持した最初の5分間にG’は変化せず、37℃に達した直後にG’は指数関数的に増加した。
一方、比較例2のコラーゲンゾルを用いた場合、コラーゲン線維化の体温応答性は低下した。これは、NPB濃度を下げたことによりゾルに含まれる塩化ナトリウム濃度がPBSと同じ140mMまで低下したためと考えられた。
次に、実施例1、実施例5及び実施例6のコラーゲンゾル(それぞれ、ゲニピン4mM、2mM及び0mM)の動的粘弾性試験を実施した。計測開始から30分(装置温度が37℃に到達してから24.5分)までG’を追跡した結果を図8bに示す。ゲニピンの濃度の違いは、37℃到達直後の指数関数的なG’増加にはほとんど影響しなかったが、37℃到達後5minが経過したころから、ゲニピン濃度に依存してG’が徐々に増加した。一方、ゲニピンを添加しなかった場合、37℃に到達後7分でG’の増加はほぼ終了した。
図8に示したこれらの結果から、コラーゲンゾルが生体組織に接触してから速やかに生じるゲル化をコラーゲンの線維化が担い、このコラーゲン線維ゲルをゲニピンが徐々に架橋するという2段階の工程で強固なゲルが得られると考えられた。
実施例1、実施例2及び比較例2のコラーゲンゾルの動的粘弾性試験を実施した。ゲル化の体温応答性を評価した結果を図8aに示す。
実施例1及び実施例2のコラーゲンゾルを用いた場合、装置温度を23℃に保持した最初の5分間にG’は変化せず、37℃に達した直後にG’は指数関数的に増加した。
一方、比較例2のコラーゲンゾルを用いた場合、コラーゲン線維化の体温応答性は低下した。これは、NPB濃度を下げたことによりゾルに含まれる塩化ナトリウム濃度がPBSと同じ140mMまで低下したためと考えられた。
次に、実施例1、実施例5及び実施例6のコラーゲンゾル(それぞれ、ゲニピン4mM、2mM及び0mM)の動的粘弾性試験を実施した。計測開始から30分(装置温度が37℃に到達してから24.5分)までG’を追跡した結果を図8bに示す。ゲニピンの濃度の違いは、37℃到達直後の指数関数的なG’増加にはほとんど影響しなかったが、37℃到達後5minが経過したころから、ゲニピン濃度に依存してG’が徐々に増加した。一方、ゲニピンを添加しなかった場合、37℃に到達後7分でG’の増加はほぼ終了した。
図8に示したこれらの結果から、コラーゲンゾルが生体組織に接触してから速やかに生じるゲル化をコラーゲンの線維化が担い、このコラーゲン線維ゲルをゲニピンが徐々に架橋するという2段階の工程で強固なゲルが得られると考えられた。
〔試験例6〕
コラーゲンの線維化によるゲル化とゲニピン架橋によるゲル化を分けて記述するため、ゲニピンを添加しない1.44%コラーゲンゾルである実施例6のコラーゲンゾルのNPB濃度(2xNPB)を、1、1.4、1.6及び1.8(xNPB)に変化させて動的粘弾性試験を実施し、体温応答性の線維化によるゲル化挙動を調べた。結果を図9aに示す。等張液として汎用されるPBSに相当する1×NPBを用いた場合、装置温度が37℃に到達してから約5分間にG’の増加は観察されず、コラーゲンの線維化は遅かった。一方、NPB濃度を高めると、NPB濃度に依存して体温応答性のゲル化が加速した。37℃到達後のゲル化時間をNPB濃度に対してプロットした結果(図9b)からも、NPB濃度の増加によってコラーゲン線維化によるゲル化が加速したことがわかる。
コラーゲンの線維化によるゲル化とゲニピン架橋によるゲル化を分けて記述するため、ゲニピンを添加しない1.44%コラーゲンゾルである実施例6のコラーゲンゾルのNPB濃度(2xNPB)を、1、1.4、1.6及び1.8(xNPB)に変化させて動的粘弾性試験を実施し、体温応答性の線維化によるゲル化挙動を調べた。結果を図9aに示す。等張液として汎用されるPBSに相当する1×NPBを用いた場合、装置温度が37℃に到達してから約5分間にG’の増加は観察されず、コラーゲンの線維化は遅かった。一方、NPB濃度を高めると、NPB濃度に依存して体温応答性のゲル化が加速した。37℃到達後のゲル化時間をNPB濃度に対してプロットした結果(図9b)からも、NPB濃度の増加によってコラーゲン線維化によるゲル化が加速したことがわかる。
〔試験例7〕
実施例1及び実施例6のコラーゲンゾル(それぞれ、ゲニピン濃度4mM及び0mM)並びにこれらのゾルのゲニピン濃度を0.2mM及び1mMとしたコラーゲンゾルを用いてディッシュ上に作製したゲルの貫入試験結果を図10に示す。得られた応力‐歪曲線の全体的な傾斜はゲニピン濃度とともに増加し、コラーゲンゲルの強度がゲニピンの添加により向上したことが示された。ゲニピン濃度が1mMから4mM(実施例1の濃度)にかけて傾斜の増加はほぼ頭打ちになった(図10a)。ゲニピンを含まない場合、ゲルは弱く脆かった。
一方、コラーゲンゲルの弾性率もゲニピン濃度とともに増加したが、4mMまで単調な増加を示した(図10b)。実施例1のゾル由来のゲル(ゲニピン濃度4mM)で得られた弾性率はゲニピンを含まない実施例6のゾル由来のゲルに比べておよそ8倍高かった。
図10の結果から、ゲニピン濃度が1mMでは実施例1の4mMと同様のゲル強度が得られ、ゲニピンを添加していないゲルよりも4.0倍高い弾性率が得られることがわかる。従って、ゲニピンを添加することにより、ゲニピンを添加していないコラーゲンゾルよりも硬いゲルを穿孔部に形成できる。
実施例1及び実施例6のコラーゲンゾル(それぞれ、ゲニピン濃度4mM及び0mM)並びにこれらのゾルのゲニピン濃度を0.2mM及び1mMとしたコラーゲンゾルを用いてディッシュ上に作製したゲルの貫入試験結果を図10に示す。得られた応力‐歪曲線の全体的な傾斜はゲニピン濃度とともに増加し、コラーゲンゲルの強度がゲニピンの添加により向上したことが示された。ゲニピン濃度が1mMから4mM(実施例1の濃度)にかけて傾斜の増加はほぼ頭打ちになった(図10a)。ゲニピンを含まない場合、ゲルは弱く脆かった。
一方、コラーゲンゲルの弾性率もゲニピン濃度とともに増加したが、4mMまで単調な増加を示した(図10b)。実施例1のゾル由来のゲル(ゲニピン濃度4mM)で得られた弾性率はゲニピンを含まない実施例6のゾル由来のゲルに比べておよそ8倍高かった。
図10の結果から、ゲニピン濃度が1mMでは実施例1の4mMと同様のゲル強度が得られ、ゲニピンを添加していないゲルよりも4.0倍高い弾性率が得られることがわかる。従って、ゲニピンを添加することにより、ゲニピンを添加していないコラーゲンゾルよりも硬いゲルを穿孔部に形成できる。
〔試験例8〕
実施例6のコラーゲンゾル(コラーゲン濃度1.44%)のコラーゲン濃度を、0.5、0.9、1.2、1.8、及び2.06%に変更したゾルを調製し、動的粘弾性測定装置の回転モードによりせん断速度1s-1のときの粘度を測定した結果を図11に示す。
コラーゲン濃度が0.5%のときの粘度はわずか0.12(Pa・s)であったが、濃度を1.44%まで高めると粘度は6.56(Pa・s)まで増加し、濃度が2.06%になると粘度は19.4(Pa・s)に達した。このように、コラーゲンゾルの粘度はコラーゲン濃度に対して指数関数的に変化する性質があるため、コラーゲンゾルの消化管内での局所滞留性及びカテーテルのような細管への導入性という、相反する性質を満たすための濃度調節が重要である。
実施例6のコラーゲンゾル(コラーゲン濃度1.44%)のコラーゲン濃度を、0.5、0.9、1.2、1.8、及び2.06%に変更したゾルを調製し、動的粘弾性測定装置の回転モードによりせん断速度1s-1のときの粘度を測定した結果を図11に示す。
コラーゲン濃度が0.5%のときの粘度はわずか0.12(Pa・s)であったが、濃度を1.44%まで高めると粘度は6.56(Pa・s)まで増加し、濃度が2.06%になると粘度は19.4(Pa・s)に達した。このように、コラーゲンゾルの粘度はコラーゲン濃度に対して指数関数的に変化する性質があるため、コラーゲンゾルの消化管内での局所滞留性及びカテーテルのような細管への導入性という、相反する性質を満たすための濃度調節が重要である。
〔試験例9〕
比較例1のコラーゲンゾルを用いて、ブタ胃の穿孔閉鎖実験を試みた。しかし、図12に示す通り、カテーテルから吐出されたゾルはすでにゲル化し(図12a)、ひも状にゲル化したコラーゲンは潰瘍底に付着することなく滑落した(図12b)。追加の吐出を行ったが、カテーテル先端からひも状コラーゲンゲルが吐出された(図12c及び12d)。
口腔及び食道を経由するように設置された内視鏡は体温により加温され、そこに挿入されたカテーテルも室温より高い温度まで加温される。高濃度のNPB及びゲニピンの使用によって体温応答性のゲル化が加速され過ぎたコラーゲンゾルの場合、患部への送達前にゲル化する場合があり、生体組織孔の閉鎖、潰瘍の保護及び血管塞栓用途には適していないと考えられた。
※評価
A.In vivoブタ胃穿孔閉鎖
B.In vivoブタ結腸穿孔閉鎖
C.Ex vivoブタ胃潰瘍保護
D.ゲル化の体温応答性評価
E.ゲルの貫入試験
F.回転粘度測定
比較例1のコラーゲンゾルを用いて、ブタ胃の穿孔閉鎖実験を試みた。しかし、図12に示す通り、カテーテルから吐出されたゾルはすでにゲル化し(図12a)、ひも状にゲル化したコラーゲンは潰瘍底に付着することなく滑落した(図12b)。追加の吐出を行ったが、カテーテル先端からひも状コラーゲンゲルが吐出された(図12c及び12d)。
口腔及び食道を経由するように設置された内視鏡は体温により加温され、そこに挿入されたカテーテルも室温より高い温度まで加温される。高濃度のNPB及びゲニピンの使用によって体温応答性のゲル化が加速され過ぎたコラーゲンゾルの場合、患部への送達前にゲル化する場合があり、生体組織孔の閉鎖、潰瘍の保護及び血管塞栓用途には適していないと考えられた。
A.In vivoブタ胃穿孔閉鎖
B.In vivoブタ結腸穿孔閉鎖
C.Ex vivoブタ胃潰瘍保護
D.ゲル化の体温応答性評価
E.ゲルの貫入試験
F.回転粘度測定
本発明によれば、貫通孔の閉鎖、潰瘍の物理的保護及び血管塞栓に適する3つの特性である(1)カテーテルを通して生体外から生体内へと送達することが可能な長い流動性保持時間、(2)送達後すみやかにゲル化する鋭い体温応答性、及び(3)ゲル化したあとに硬化を生じ、生体組織に定着する性質、を備えたゾルにより、貫通孔の閉鎖、潰瘍の物理的保護及び血管塞栓を行うことができる。本発明は、医療分野における産業上の利用可能性を有する。
本出願は、2016年11月17日に出願された日本国特許出願第2016-224255号に基づく優先権を主張するものであり、その内容はここに参照として組み込まれる。
Claims (8)
- 0.6質量%~3質量%のコラーゲン、水、200mM~330mMの塩化ナトリウム及び緩衝剤を含有し、pHが6.0~9.0である生体組織孔閉鎖用ゾル。
- 0.6質量%~3質量%のコラーゲン、水、200mM~330mMの塩化ナトリウム及び緩衝剤を含有し、pHが6.0~9.0である潰瘍保護用ゾル。
- 0.6質量%~3質量%のコラーゲン、水、200mM~330mMの塩化ナトリウム及び緩衝剤を含有し、pHが6.0~9.0である血管塞栓療術用ゾル。
- 前記緩衝剤がリン酸塩を含む、請求項1~3のいずれか一項に記載のゾル。
- ゲニピン又はゲニピン誘導体を40mg/L~1400mg/Lの範囲で含有する、請求項1~4のいずれか一項に記載のゾル。
- コラーゲンが、テロペプチド除去型コラーゲンを含む、請求項1~5のいずれか一項に記載のゾル。
- 1.4質量%~1.7質量%のコラーゲンを含有し、カテーテルを通して生体組織に局所投与される、請求項1~6のいずれか一項に記載のゾル。
- 生体組織に接触するとゲル化して生体組織に付着する、請求項1~7のいずれか一項に記載のゾル。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/461,527 US11559602B2 (en) | 2016-11-17 | 2017-11-16 | Sol for tissue perforation closure, ulcer protection, and vascular embolization |
KR1020197016712A KR102408275B1 (ko) | 2016-11-17 | 2017-11-16 | 생체 조직 구멍 폐쇄용, 궤양 보호용 및 혈관 색전 치료술용 졸 |
EP17872367.2A EP3542830B1 (en) | 2016-11-17 | 2017-11-16 | Sol for occluding holes in living tissue, protecting ulcers, and treating vascular embolization |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-224255 | 2016-11-17 | ||
JP2016224255A JP7012950B2 (ja) | 2016-11-17 | 2016-11-17 | 生体組織孔閉鎖用、潰瘍保護用及び血管塞栓療術用ゾル |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018092836A1 true WO2018092836A1 (ja) | 2018-05-24 |
Family
ID=62146513
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/041238 WO2018092836A1 (ja) | 2016-11-17 | 2017-11-16 | 生体組織孔閉鎖用、潰瘍保護用及び血管塞栓療術用ゾル |
Country Status (5)
Country | Link |
---|---|
US (1) | US11559602B2 (ja) |
EP (1) | EP3542830B1 (ja) |
JP (1) | JP7012950B2 (ja) |
KR (1) | KR102408275B1 (ja) |
WO (1) | WO2018092836A1 (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102477180B1 (ko) * | 2020-06-04 | 2022-12-14 | 서울대학교산학협력단 | 색전 물질 |
CN114404644A (zh) * | 2022-01-20 | 2022-04-29 | 深圳兰度生物材料有限公司 | 医用胶及其制备方法 |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5019851B2 (ja) | 1972-02-18 | 1975-07-10 | ||
JPS63500566A (ja) * | 1985-07-02 | 1988-03-03 | タ−ゲツト セラピユウテイクス | 血管閉塞コラ−ゲン組成物および方法 |
JP2006500975A (ja) | 2002-08-02 | 2006-01-12 | ジーピー メディカル | ゲニピンで化学的に処理した薬物担持生体材料 |
JP2007325824A (ja) | 2006-06-09 | 2007-12-20 | National Institute For Materials Science | 局所投与型化学療法用材料 |
JP2008505919A (ja) | 2004-07-06 | 2008-02-28 | スリーディー マトリックス, インコーポレイテッド | 精製両親媒性ペプチド組成物およびその使用 |
WO2010041636A1 (ja) * | 2008-10-06 | 2010-04-15 | 株式会社スリー・ディー・マトリックス | 組織閉塞剤 |
JP4585743B2 (ja) | 2003-02-13 | 2010-11-24 | 独立行政法人物質・材料研究機構 | 生体内分解吸収性粘着性医用材料 |
JP2014103985A (ja) | 2012-11-22 | 2014-06-09 | Tokyo Metropolitan Industrial Technology Research Institute | コラーゲン水溶液及びそれから得られるゲル |
JP2014221830A (ja) | 2005-04-25 | 2014-11-27 | マサチューセッツ インスティテュート オブ テクノロジー | 止血および他の生理学的活性を促進するための組成物および方法 |
JP2016077410A (ja) | 2014-10-14 | 2016-05-16 | 地方独立行政法人東京都立産業技術研究センター | コラーゲン水溶液及びそれを用いたゲルの製造方法 |
JP2016515113A (ja) * | 2013-03-14 | 2016-05-26 | 株式会社スリー・ディー・マトリックス | 消化管閉塞の予防のための材料 |
JP2016224255A (ja) | 2015-05-29 | 2016-12-28 | キヤノン株式会社 | 画像形成装置 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0229165A4 (en) | 1985-07-02 | 1988-07-25 | Target Therapeutics Inc | PROCESS AND COMPOSITION OF VASO-OCCLUSIVE COLLAGEN. |
US5106949A (en) * | 1989-09-15 | 1992-04-21 | Organogenesis, Inc. | Collagen compositions and methods for preparation thereof |
EP0466383A1 (en) * | 1990-07-09 | 1992-01-15 | BAUSCH & LOMB INCORPORATED | A collagen medical adhesive and its uses |
DE69922050T2 (de) * | 1999-02-05 | 2005-11-10 | The Regents Of The University Of California, Oakland | Thermoreversibles polymer für intralumenalimplantate |
US7749529B2 (en) | 2005-02-08 | 2010-07-06 | Ash Access Technology, Inc. | Catheter lock solution comprising citrate and a paraben |
WO2007087350A2 (en) | 2006-01-25 | 2007-08-02 | University Of Virginia Patent Foundation | Methods for regulating gelation of polysaccharide solutions and uses thereof |
JP5019851B2 (ja) | 2006-11-09 | 2012-09-05 | 学校法人 関西大学 | 温度応答性ゾル−ゲル転移を示す生分解性ポリマー及びその製造方法 |
CN104689381A (zh) | 2013-12-10 | 2015-06-10 | 复旦大学 | 一种消化道黏膜下注射的水凝胶组合物及其应用 |
DE102014013832A1 (de) | 2014-09-15 | 2016-03-17 | Schock Gmbh | Abflussvorrichtung und Becken mit einer solchen Abflussvorrichtung |
JP6454125B2 (ja) * | 2014-10-14 | 2019-01-16 | 地方独立行政法人東京都立産業技術研究センター | コラーゲンゲルの作製方法 |
JP6587702B2 (ja) * | 2015-08-11 | 2019-10-09 | アクロ バイオメディカル カンパニー. エルティーディー.Acro Biomedical Company. Ltd. | 無細胞軟骨グラフトの調製及びその使用 |
-
2016
- 2016-11-17 JP JP2016224255A patent/JP7012950B2/ja active Active
-
2017
- 2017-11-16 KR KR1020197016712A patent/KR102408275B1/ko active IP Right Grant
- 2017-11-16 EP EP17872367.2A patent/EP3542830B1/en active Active
- 2017-11-16 US US16/461,527 patent/US11559602B2/en active Active
- 2017-11-16 WO PCT/JP2017/041238 patent/WO2018092836A1/ja unknown
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5019851B2 (ja) | 1972-02-18 | 1975-07-10 | ||
JPS63500566A (ja) * | 1985-07-02 | 1988-03-03 | タ−ゲツト セラピユウテイクス | 血管閉塞コラ−ゲン組成物および方法 |
JP2006500975A (ja) | 2002-08-02 | 2006-01-12 | ジーピー メディカル | ゲニピンで化学的に処理した薬物担持生体材料 |
JP4585743B2 (ja) | 2003-02-13 | 2010-11-24 | 独立行政法人物質・材料研究機構 | 生体内分解吸収性粘着性医用材料 |
JP2008505919A (ja) | 2004-07-06 | 2008-02-28 | スリーディー マトリックス, インコーポレイテッド | 精製両親媒性ペプチド組成物およびその使用 |
JP2014221830A (ja) | 2005-04-25 | 2014-11-27 | マサチューセッツ インスティテュート オブ テクノロジー | 止血および他の生理学的活性を促進するための組成物および方法 |
JP2007325824A (ja) | 2006-06-09 | 2007-12-20 | National Institute For Materials Science | 局所投与型化学療法用材料 |
WO2010041636A1 (ja) * | 2008-10-06 | 2010-04-15 | 株式会社スリー・ディー・マトリックス | 組織閉塞剤 |
JP2014103985A (ja) | 2012-11-22 | 2014-06-09 | Tokyo Metropolitan Industrial Technology Research Institute | コラーゲン水溶液及びそれから得られるゲル |
JP2016515113A (ja) * | 2013-03-14 | 2016-05-26 | 株式会社スリー・ディー・マトリックス | 消化管閉塞の予防のための材料 |
JP2016077410A (ja) | 2014-10-14 | 2016-05-16 | 地方独立行政法人東京都立産業技術研究センター | コラーゲン水溶液及びそれを用いたゲルの製造方法 |
JP2016224255A (ja) | 2015-05-29 | 2016-12-28 | キヤノン株式会社 | 画像形成装置 |
Non-Patent Citations (6)
Title |
---|
MI ET AL.: "Characterization of ring-opening polymerization of genipin and pH-dependent cross-linking reactions between chitosan and genipin", JOURNAL OF POLYMER SCIENCE: PART A: POLYMER CHEMISTRY, vol. 43, 2005, pages 1985 - 2000 |
See also references of EP3542830A4 |
TAKEFUMI NARITA ET AL: "In situ gelation properties of a collagen–genipin sol with a potential for the treatment of gastrointestinal ulcers", MEDICAL DEVICES: EVIDENCE AND RESEARCH, vol. 9, 15 December 2016 (2016-12-15), pages 429 - 439, XP055596335, DOI: 10.2147/MDER.S116633 * |
TSUJI ET AL., GASTROINTESTINAL ENDOSCOPY, vol. 79, no. 1, 2014, pages 151 - 155 |
YUNOKI ET AL., JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, vol. 103, no. 9, 2015, pages 3054 - 3065 |
YUNOKI, SHUNJIN ET AL.: "2C-06 Physical properties required to use injectable gel for accidental treatment of gastrointestinal endoscopy", BIOMATERIALS SOCIETY SYMPOSIUM 2016 PROCEEDINGS; 21-22/11/2016, no. 2c-06, 21 November 2016 (2016-11-21), pages 195, XP009515308 * |
Also Published As
Publication number | Publication date |
---|---|
EP3542830A4 (en) | 2020-08-19 |
KR20190084286A (ko) | 2019-07-16 |
US11559602B2 (en) | 2023-01-24 |
EP3542830B1 (en) | 2022-06-22 |
EP3542830A1 (en) | 2019-09-25 |
KR102408275B1 (ko) | 2022-06-10 |
JP2018079145A (ja) | 2018-05-24 |
JP7012950B2 (ja) | 2022-01-31 |
US20190343992A1 (en) | 2019-11-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7333425B2 (ja) | 精製された両親媒性ペプチド組成物を用いた、外科的方法 | |
US6063061A (en) | Fragmented polymeric compositions and methods for their use | |
US8864738B2 (en) | Devices and methods for agent-assisted medical procedures | |
US9844597B2 (en) | Biocompatible in situ hydrogel | |
JP7565214B2 (ja) | 溶解に耐える組織接着性キトサン材料 | |
WO2018092837A1 (ja) | 粘膜下局注用コラーゲンゾル | |
EP3288601A1 (en) | Hemostatic composition and device | |
WO2018092836A1 (ja) | 生体組織孔閉鎖用、潰瘍保護用及び血管塞栓療術用ゾル | |
JP7389418B2 (ja) | 止血剤 | |
US11951229B2 (en) | Liquid hemostatic medical material | |
FR2754183A1 (fr) | Composition visqueuse hemostatique, notamment a l'etat de gel | |
JP2022035989A (ja) | 液状医療材料 | |
JP2022035398A (ja) | 液状医療材料 | |
WO2024123809A1 (en) | Flowable chitosan bioadhesive hemostatic compositions that resist dissolution | |
JP2021115286A (ja) | 液状医療材料 | |
JP2021115287A (ja) | 液状医療材料 | |
JP2021115288A (ja) | 液状組成物および液状医療材料 | |
JP2021115285A (ja) | 液状高分子化合物組成物 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17872367 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20197016712 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2017872367 Country of ref document: EP Effective date: 20190617 |