WO2018092751A1 - 蓄電モジュールおよび蓄電モジュール急速充電システム - Google Patents

蓄電モジュールおよび蓄電モジュール急速充電システム Download PDF

Info

Publication number
WO2018092751A1
WO2018092751A1 PCT/JP2017/040860 JP2017040860W WO2018092751A1 WO 2018092751 A1 WO2018092751 A1 WO 2018092751A1 JP 2017040860 W JP2017040860 W JP 2017040860W WO 2018092751 A1 WO2018092751 A1 WO 2018092751A1
Authority
WO
WIPO (PCT)
Prior art keywords
power storage
power
storage module
storage means
charging
Prior art date
Application number
PCT/JP2017/040860
Other languages
English (en)
French (fr)
Inventor
勉 桑田
小川 輝夫
弘治 河合
富男 菅野
Original Assignee
株式会社桑田
日本救命器具株式会社
株式会社パウデック
株式会社エネルギー応用技術研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社桑田, 日本救命器具株式会社, 株式会社パウデック, 株式会社エネルギー応用技術研究所 filed Critical 株式会社桑田
Priority to US16/349,569 priority Critical patent/US20200185930A1/en
Priority to JP2018551631A priority patent/JPWO2018092751A1/ja
Publication of WO2018092751A1 publication Critical patent/WO2018092751A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/345Parallel operation in networks using both storage and other dc sources, e.g. providing buffering using capacitors as storage or buffering devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1066Gate region of field-effect devices with PN junction gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/15Structures with periodic or quasi periodic potential variation, e.g. multiple quantum wells, superlattices
    • H01L29/151Compositional structures
    • H01L29/152Compositional structures with quantum effects only in vertical direction, i.e. layered structures with quantum effects solely resulting from vertical potential variation
    • H01L29/155Comprising only semiconductor materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/342The other DC source being a battery actively interacting with the first one, i.e. battery to battery charging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present invention relates to a power storage module including a quick charger and power storage means, and a power storage module quick charge system for rapidly charging the power storage module.
  • an object of the present invention is to provide a power storage module capable of remarkably reducing the size of the quick charger and a power storage module quick charging system for rapidly charging the power storage module.
  • a power storage module includes a first power storage unit and a power semiconductor for power conversion, and performs power conversion on power supplied from the outside to First power charging control means for performing quick charging, wherein the power semiconductor includes a sapphire substrate and a gallium nitride power transistor formed on the sapphire substrate, and is disposed on an outer surface of the gallium nitride power transistor. Is joined to a heat radiating means for releasing heat generated by power conversion in the first quick charge control means, and the object can be achieved.
  • the first rapid charge control means can be remarkably reduced in size by adopting a power semiconductor including a sapphire substrate and a gallium nitride power transistor.
  • the power semiconductor is a power semiconductor employing a polarization superjunction.
  • the heat dissipation means is connected to at least one of a source region and a drain region on the outer surface of the gallium nitride power transistor, and extends in a direction away from the sapphire substrate.
  • the first quick charge control means controls voltage and current for quick charge in consideration of the charging characteristics of the first power storage means by an integrated design with the first power storage means. It is configured to be possible.
  • the first power storage means includes at least one of a lithium ion battery, an electric double layer capacitor, and a lithium ion capacitor.
  • the first quick charge control means has artificial intelligence that optimally controls the charging condition of the first power storage means based on the charge history of the first power storage means.
  • the first power storage means and the first quick charge control means are configured to be incorporated into at least an electric mobile body including a vehicle or a communication mobile body including a mobile phone. .
  • the power storage module further includes a power converter that adjusts and outputs the voltage of the DC power output from the first power storage means.
  • the power storage module rapid charging system is a power storage device including the power storage module and a second power storage unit that can be electrically connected to the power storage module, and the power storage module is connected to the power storage device. And the power storage device configured to be able to supply power from the second power storage means to the power storage module, the above object can be achieved.
  • the second power storage means of the power storage device has a power storage capacity larger than that of the first power storage means, and a plurality of the above-described power storage devices are provided by DC power output from the second power storage means.
  • the power storage module can be charged at the same time.
  • the power stored in the power storage device is power generated by renewable energy.
  • the present invention it is possible to perform high-speed switching as compared with a conventional semiconductor using silicon, and it is possible to realize miniaturization of components constituting an electric circuit for operating a power semiconductor.
  • the control means can be remarkably reduced in size.
  • the heat dissipation means for releasing heat is joined to the element outer surface of the gallium nitride power transistor, the release of heat generated by power conversion in the first quick charge control means is promoted, and the gallium nitride power transistor is cooled. Therefore, it is possible to reduce the size of the structure.
  • the power storage module can significantly reduce the size of the first quick charge control means, the power storage module can be easily incorporated into various products, and product handling and business efficiency can be achieved.
  • FIG. 5 is a cross-sectional view taken along line AA in FIG. 4. It is a principal part expanded sectional view of the power semiconductor of FIG.
  • FIG. 5 is a wiring diagram which shows the outline
  • FIG. 1 the code
  • symbol 101 has shown the alternating current power supply as a commercial power supply.
  • the AC power supply 101 for example, a single-phase AC power supply is used.
  • AC power from the AC power source 101 is supplied to the power converter 35.
  • the power conversion device 35 has a function of converting alternating current power into direct current power, and is composed of, for example, an AC-DC converter.
  • the AC-DC converter has a function of converting AC power input by switching control into DC power.
  • the AC-DC converter is manufactured using a GaN (gallium nitride) semiconductor element in order to increase conversion efficiency when converting AC power to DC power. Since the GaN semiconductor element has heat resistance, the structure for cooling the AC-DC converter can be simplified.
  • GaN gallium nitride
  • the input terminal T 1 of the power storage module 1 can be connected to the power conversion device 35.
  • the power storage module 1 includes a first power storage unit 10 and a first quick charge control unit 20.
  • various devices are mounted on the power storage module 1.
  • the direct current power supplied to the power storage module 1 via the input terminal T 1 is controlled to a predetermined voltage and current by the first quick charge control means 20 and then supplied to the first power storage means 10. It has become. Even if the first quick charge control means 20 is capable of controlling the voltage and current for quick charge in consideration of the charging characteristics of the first power storage means 10 by the integrated design with the first power storage means 10.
  • the first power storage means 10 may be of any type as long as it has a function of storing DC power, but in the first embodiment, a storage battery, an electric double layer capacitor, and a lithium ion capacitor are used. It is composed of at least one of them. In the first embodiment, the first power storage means 10 is composed only of, for example, a lithium ion battery (including an all solid state battery) in which a large number of cells are connected in series. Or the structure which used together the lithium ion capacitor may be sufficient.
  • DC power stored in the first storage means 10 is capable supplied to the load via the output terminal T 2 (not shown).
  • a first battery management system (BMS) 11 Connected to the first power storage means 10 is a first battery management system (BMS) 11 for maintaining the charge balance of a large number of cells constituting the first power storage means 10.
  • BMS battery management system
  • the first power storage means 10 is configured to use a lithium ion battery and a lithium ion capacitor in combination. Accordingly, compared to when used alone lithium-ion battery, it is possible to reduce the voltage variation of the output terminal T 2 side. This is because most of the current that comes in and out due to charging / discharging of the first power storage means 10 that accompanies acceleration or deceleration during driving of the vehicle goes in and out of the lithium ion capacitor, and the amount of energy in and out of the lithium ion battery decreases It is to do. Therefore, the first power storage means 10 can be configured to use a lithium ion battery and a lithium ion capacitor in combination, whereby the burden on the lithium ion battery can be reduced and the first power storage means 10 can be extended in life. It becomes possible.
  • the first power storage unit 10 is connected to a power converter 15 configured by a DC-DC converter.
  • the DC power output from the first power storage means 10 can be adjusted in voltage by the power converter 15.
  • the power converter 15, is connected to switch voltage regulator (not shown), a voltage corresponding to the application is made possible from the output terminal T 4.
  • the supply voltage can be adjusted to the optimum value in accordance with the type and function of the electrical device, and the capacity of the electrical device can be maximized.
  • the temperature of the first power storage means 10 can be detected by the first temperature sensor 12.
  • An output signal K 4 from the first temperature sensor 12 is input to the charging information processing unit 25.
  • the temperature of the power control unit 21 can be detected by the second temperature sensor 27.
  • An output signal K 5 from the second temperature sensor 27 is input to the charging information processing unit 25.
  • the first quick charge control means 20 includes a power control unit 21 and a charge information processing unit 25.
  • the power control unit 21 includes a charge control unit 22 and a temperature control unit 24.
  • the charge control unit 22 has a quick charge control function for controlling the DC power from the power conversion device 35 to a charge voltage and a charge current suitable for the first power storage unit 10.
  • the charge control unit 22 has a DC chopper circuit (DC chopper circuit using a step-up chopper circuit and a step-down chopper circuit in combination) and a current control circuit.
  • the charging control unit 22 has a function of chopper-controlling the DC power supplied from the power converter 35 based on the control signal K 7 from the charging information processing unit 25 and charging the first power storage means 10 with the optimum charging voltage. is doing.
  • the voltage and current output from the charging control unit 22 to the first power storage unit 10 are measured by the output sensor 13, and the signal K 1 from the output sensor 13 is input to the charging information processing unit 25.
  • the first quick charge control means 20 performs a high-accuracy charge control considering this.
  • the charge control unit 22 has a DC chopper circuit that uses a step-up chopper circuit and a step-down chopper circuit together.
  • the charging information processing unit 25 is preliminarily input with a charging program for performing optimum rapid charging control on the first power storage unit 10 based on the detected battery voltage and charging current of the first power storage unit 10. Yes.
  • the power control unit 21 of the first quick charge control means 20 has a power semiconductor 23 for power conversion.
  • a gallium nitride (GaN) semiconductor element is used, and low loss in use at high temperatures and power conversion is achieved.
  • 3 to 6 show details of the power semiconductor 23, and FIG. 6 shows a basic structure of the power semiconductor 23 using a gallium nitride (GaN) semiconductor element.
  • a gallium nitride power transistor 231 employing a polarization superjunction (PSJ) is formed on a sapphire substrate 23a.
  • the superjunction is a technique for reducing the high breakdown voltage and low on-resistance employed in Si power MOS transistors
  • the polarization superjunction uses the polarization effect of GaN / AlGaN.
  • a technique for forming a superjunction on a GaN transistor The gallium nitride power transistor 231 employing the polarization superjunction in the first embodiment has an excellent withstand voltage of, for example, 6000 V, and the switching frequency is about 1000 kHz (1 MHz), which is significantly higher than the switching frequency of the conventional power semiconductor. It has become.
  • Examples of the gallium nitride semiconductor adopting the polarization superjunction include those described in Japanese Patent No. 5669119.
  • the gallium nitride power transistor 231 is composed of a sapphire substrate 23a to a drain (D) 23h.
  • a GaN film 23b is formed on the lowest sapphire substrate 23a.
  • the film formation and the film formation described later are performed by vapor deposition, for example.
  • An AlGaN film 23c is formed on the GaN film 23b.
  • a source (S) 23g and a drain (D) 23h are formed.
  • a GaN film 23d is formed between the source S and the drain D on the outer surface of the AlGaN film 23c.
  • a p-GaN film 23e is formed on the surface of the GaN film 23d.
  • a p-ohmic metal (Ni / Au) film is formed on the surface of the p-GaN film 23 e, and this p-ohmic metal film 23 f constitutes the gate G.
  • the use of the electrically insulating sapphire substrate 23a eliminates the restriction of the breakdown voltage due to the substrate, and the GaN thickness is about 1 ⁇ m, which is one fifth of the conventional ratio. It becomes possible to make it extremely thin. As a result, the GaN film formation time is about 2 hours, and the film formation cost can be greatly reduced compared to the conventional case by shortening the manufacturing time.
  • the power semiconductor 23 using a gallium nitride semiconductor element has a plurality of sources S, drains D, and gates G.
  • the sources S and drains D are alternately arranged at a predetermined interval in the vertical direction in the figure.
  • Each gate G is arranged between the source S and the drain D, respectively.
  • One patterning metal 23j has a function of electrically connecting a plurality of sources S in parallel as shown on the right side of FIG.
  • the other patterning metal 23k has a function of electrically connecting a plurality of drains D in parallel as shown on the left side of FIG.
  • each gate G is electrically connected in parallel via another patterning metal 23m. Accordingly, the power semiconductor 23 using the gallium nitride semiconductor element has a structure in which a large number of gallium nitride power transistors 231 are connected in parallel, and high power control is possible.
  • the gallium nitride power transistor 231 employing the polarization superjunction in the first embodiment has a wide band gap and a low on-resistance, but the sapphire substrate 23a has a heat dissipation characteristic as low as about one-fourth that of the Si substrate. Therefore, in the present invention, the power semiconductor 23 employs the heat radiating means 232 for radiating heat generated by power conversion to the outside instead of the sapphire substrate 23a having low heat radiating characteristics for heat radiation.
  • the heat accompanying the power conversion is mainly generated at the boundary surface between the GaN film formation 23b and the AlGaN film formation 23c, so that the outer surface of the source S region and the drain D region in the gallium nitride power transistor 231.
  • the heat dissipating means 232 is joined to the heat, and the heat generated by the power conversion is released to the outside through the heat dissipating means 232.
  • the heat dissipation means 232 is connected to at least one of the source S region and the drain D region on the outer surface of the gallium nitride power transistor, and extends in a direction away from the sapphire substrate 23a.
  • the heat radiating means 232 includes a submount substrate 23n, a metal plate 23p, and a heat sink 23r.
  • the submount substrate 23n is made of, for example, silicon nitride (Si 3 N 4 ), which is a material having insulating properties and good heat dissipation.
  • the thickness H 1 of the submount substrate 23n is set to, for example, about 100 [mu] m.
  • the heat sink 23r is joined.
  • the heat sink 23r is used for the purpose of heat dissipation and is made of a metal material such as an aluminum alloy or a copper alloy having good heat transfer characteristics. The heat sink 23r is bonded to almost the entire surface of the submount substrate 23n through the metal plate 23p.
  • the power semiconductor 23 may be packaged by covering the gallium nitride power transistor 231 and the heat dissipating means 232 with an insulating case (not shown), and can control high power by connecting to the related electric circuit. ing. Air E for forced cooling is blown to the power semiconductor 23 by the fan 32 shown in FIG. 2 in order to increase the heat radiation amount from the gallium nitride power transistor 231.
  • the power storage module 1 has a cooling unit 30 for cooling the charging system.
  • the cooling unit 30 includes a motor 31, a fan 32, and an electronic cooling element 33.
  • the fan 32 is rotationally driven by the motor 31 by the temperature control unit 24 that receives the control signal K 3 from the charging information processing unit 25, and blows air toward the cooling surface of the electronic cooling element 33.
  • the electronic cooling element 33 uses the Peltier effect, and operates by supplying power from the outside. Since the power control unit 21 controls the large power supplied to the first power storage unit 10 during the rapid charging, the temperature of the semiconductor element rises. Further, since the lithium ion battery constituting the first power storage means 10 is stored in a dense state in relation to the storage space, the temperature rises during rapid charging.
  • the power control unit 21 and the first power storage unit 10 are forcibly cooled by the blowing from the cooling unit 30 at the time of quick charging.
  • the cooling structure using the electronic cooling element 33 is used.
  • only the fan 32 may be operated, or a water cooling system using a heat exchanger may be used.
  • the first quick charge control means 20 can be reduced in size and weight, and a small space can be obtained.
  • the first quick charge control means 20 can be easily mounted on the camera. Furthermore, since the power semiconductor 23 using the gallium nitride semiconductor element has a significantly higher power conversion efficiency than the power semiconductor using the conventional silicon semiconductor element, the heat generation from the first quick charge control means 20 is less, Even the simple cooling unit 30 using the electronic cooling element 33 described above can sufficiently cool the first quick charge control means 20.
  • the first quick charge control means 20 has an artificial intelligence 26 that optimally controls the charging conditions of the first power storage means 10 based on the charge history of the first power storage means 10. is doing.
  • the artificial intelligence 26 is connected to the charging information processing unit 25, and the charging result (charging voltage, charging current, charging time at the time of rapid charging) of the first power storage unit 10 by the first rapid charging control unit 20 for each charging. Etc.) is stored.
  • the artificial intelligence 26 and the charging processing unit 25 for exchanging information between each other via a signal K 6.
  • Charging information processing unit 25 is connected to the terminal T 3 for exchanging information between the power source side unit.
  • the first quick charge control means 20 can estimate the lifetime of the first power storage means 10 by grasping the number of times of charging and the charging result via the artificial intelligence 26. Furthermore, artificial intelligence 26 has a function of determining based on a signal K 2 from the output sensor 14 whether there is an abnormality of the internal resistance in the lithium-ion battery constituting the first storage means 10, determines an abnormality In this case, a command for forcibly stopping the rapid charging is output via the signal K 6 and the signal K 7 to protect the first power storage means 10 from abnormal heat generation or the like. Information from the artificial intelligence 26 can be received by a data center (not shown) via wireless or the like, and the data center operates the first power storage unit 10 based on the information from the artificial intelligence 26. Can be grasped at all times.
  • the power storage module 1 includes a first power storage unit 10 and a first quick charge control unit 20, and direct-current power from the power converter 35 is supplied via the first quick charge control unit 20. Is supplied to one power storage means 10. A part of the direct-current power from the power conversion device 35 is controlled by the charge control unit 22 of the power control unit 21 in the first quick charge control means 20 to a charge voltage and charge current suitable for the first power storage means 10. . Further, a part of the DC power from the power conversion device 35 is supplied to the cooling unit 30 via the temperature control unit 24 in the first quick charge control means 20.
  • the power control unit 21 controls a large amount of power supplied when the first power storage unit 10 is rapidly charged, the temperature of the power semiconductor 23 in the power control unit 21 rises. Further, since the lithium ion battery constituting the first power storage means 10 is stored in a dense state in relation to the storage space, the temperature rises due to the charging current during rapid charging. Here, the power control unit 21 and the first power storage unit 10 are forcibly cooled by the air blow from the cooling unit 30 at the time of rapid charging, and the temperature rise due to the rapid charging is suppressed. The power storage means 10 is operated at an appropriate temperature within an allowable range. Since the first power storage means 10 uses at least a lithium ion battery, an electric double layer capacitor, and a lithium ion capacitor, it is possible to improve the rapid charge acceptance performance in the first power storage means 10, and the power storage module 1 can be shortened.
  • the heat accompanying the power conversion is mainly generated at the interface between the GaN film formation 23b and the AlGaN film formation 23c.
  • the heat radiating means 232 is joined to the outer surfaces of the S region and the drain D region, and heat generated by power conversion is released to the outside through the heat radiating means 232.
  • the heat sink 23r which is one of the components constituting the heat radiation means 232, is joined to almost the entire surface of the submount substrate 23n via the metal plate 23p. A large number of projections called fins are formed on the tip of the heat sink 23r to increase the surface area.
  • the power semiconductor 23 having the heat sink 23r receives air E for forced cooling by a fan 32 shown in FIG. Since it is sprayed, a large amount of heat exchange is performed via the heat sink 23r. As a result, the power semiconductor 23 is sufficiently cooled even for high-power control accompanying the rapid charging of the first power storage means 10, and an excessive temperature rise is prevented.
  • FIG. 16 shows a structure of a conventional power semiconductor using a gallium nitride semiconductor element.
  • Si is used as a substrate.
  • an AlN film 200b is formed on the Si substrate 200a.
  • a superlattice buffer layer 200c is formed on the surface of the AlN film 200b.
  • a GaN film 200d is formed on the surface of the superlattice buffer layer 200c.
  • An AlGaN barrier layer 200e is formed on the surface of the GaN film 200d.
  • a source (S) 200f, a drain (D) 200g, and a gate (G) 200h are formed on the surface of the AlGaN barrier layer 200e.
  • a gallium nitride power transistor 231 employing a polarization superjunction (PSJ) is formed on the sapphire substrate 23a, thereby reducing the film formation time to about 2 hours.
  • PSJ polarization superjunction
  • the first quick charge control means 20 is capable of controlling the voltage and current for quick charge in consideration of the charging characteristics of the first power storage means 10 by the integrated design with the first power storage means 10.
  • a design that further matches the first power storage means 10 and the charge control function can be realized.
  • the 1st electrical storage means 10 can exhibit the performance as expected, and the performance of the electrical storage module 1 can be improved.
  • supplying high-quality power called pure DC power to the load via the output terminal T 2 allows the load-side electric circuit to be designed on the assumption that high-quality power is supplied. Therefore, there is almost no need to consider noise and surge, and the electrical circuit on the load side can be easily designed.
  • artificial intelligence 26 of the first fast-charge controller 20 function determines on the basis of the presence or absence of an abnormality in the internal resistance value into a signal K 2 from the output sensor 14 in the lithium-ion battery constituting the first storage means 10 When the abnormality is determined, a command to forcibly stop the rapid charging is output and the first power storage unit 10 is protected from abnormal heat generation. It becomes possible to improve the safety and reliability.
  • the power semiconductor 23 since the power semiconductor 23 has the gallium nitride power transistor 231 employing the polarization superjunction formed on the sapphire substrate 23a, the power semiconductor 23 can be switched at a higher speed than the conventional semiconductor using silicon. It is possible to reduce the size of the components constituting the electric circuit for operating the power semiconductor 23 in the quick charge control means 20. Furthermore, since the heat radiating means 232 for releasing heat to the outside is joined to the outer surface of the gallium nitride power transistor 231, the release of heat generated by power conversion is promoted, and the gallium nitride power transistor 231 is cooled. Therefore, it is possible to reduce the size of the structure.
  • the heat radiation means 232 extends in a direction away from the sapphire substrate 23a, heat can be released in a direction away from the sapphire substrate 23a, and heat radiation performance can be improved.
  • the power storage module 1 can ensure the deterioration of the power storage performance against the rapid charge and ensure safety, and the first quick charge control means 20 can be remarkably miniaturized. It becomes easy to incorporate the product into the product, and product handling and work efficiency can be improved.
  • the first quick charge control means 20 has the artificial intelligence 26 that optimally controls the charging conditions of the first power storage means 10 based on the charge history of the first power storage means 10, Charging control according to the aging of the power storage means 10 is possible, and the life of the first power storage means 10 can be increased while ensuring safety.
  • Embodiment 2 of the present invention show Embodiment 2 of the present invention, and show an example in which a power storage module is incorporated in a vehicle as an electric mobile body.
  • the power storage module 1A in FIG. 7 is an in-vehicle power storage module in place of the power storage module in FIG. 1 and FIG. 2, and the configuration and function are the same as those of the power storage module 1 in FIG. 1 and FIG.
  • the description of the same part is abbreviate
  • the electric mobile body includes at least a vehicle, a ship, and an aircraft that can be moved by an electric motor (motor), and includes an industrial machine and a robot that can be self-propelled.
  • FIG. 7 shows a power storage module rapid charging system 2A for rapidly charging the power storage module 1A incorporated in the vehicle 50.
  • the power storage module rapid charging system 2A includes a power storage module 1A incorporated on the vehicle 50 side and a power storage device 40A installed on the charging station side.
  • the power storage module 1 ⁇ / b> A is disposed on the floor side of the vehicle 50 in order to lower the center of gravity of the vehicle 50.
  • the output terminal T 2 side of the first power storage unit 10 in the storage module 1A, the inverter 51 as a controller is connected.
  • the inverter 51 has a function of converting DC power into AC power.
  • a travel motor 52 is connected to the output side of the inverter 51.
  • the DC power stored in the first power storage means 10 can be supplied to the travel motor 52 via the inverter 51, and the vehicle 50 can travel using the travel motor 52 as a drive source.
  • the vehicle 50 is equipped with an automatic operation control device 53.
  • the automatic operation control device 53 is operable by supplying power from the first power storage means 10.
  • Sensors 54 for performing automatic driving are connected to the automatic driving control device 53.
  • the sensors 54 have a function of recognizing the surroundings of the vehicle 50 during traveling, and the vehicle 50 can be operated unattended. That is, the automatic operation control device 53 can automatically steer the vehicle 50 based on information from the sensors 54 and 3D digital map information transmitted from the data center, and can automatically travel along a predetermined route. It has become.
  • the power storage device 40 ⁇ / b> A includes a second power storage unit 42 that can be electrically connected to the power storage module 1 ⁇ / b> A and can store power supplied from the outside. In the state where the power storage module 1A is connected, the power storage device 40A can supply power from the second power storage means 42 to the power storage module 1A.
  • the power storage device 40 ⁇ / b> A includes a rectifier 41, a second power storage unit 42, and a power supply control unit 46.
  • An AC power supply 101 is connected to the input terminal T 5 of the rectifier 41.
  • the rectifier 41 has functions of converting AC power to DC power and charging the second power storage means 42 under appropriate conditions.
  • the second power storage means 42 may be of any type as long as it can store DC power, but in the second embodiment, at least a storage battery, an electric double layer capacitor, and a lithium ion capacitor are used. It consists of either one.
  • the second power storage means 42 may be configured only from a lithium ion battery in which a large number of cells 42a are connected in series, or may be configured to use a lithium ion battery and a lithium ion capacitor in combination.
  • An output terminal T 6 for connecting to an external load side is connected to the output side of the second power storage means 42.
  • a second battery management system (BMS) 43 Connected to the second power storage means 42 is a second battery management system (BMS) 43 for maintaining the charge balance of a large number of cells 42 a constituting the second power storage means 42.
  • BMS battery management system
  • the second power storage means 42 of the power storage device 40A has a power storage capacity larger than that of the first power storage means 10, and simultaneously charges a plurality of power storage modules 1A with DC power output from the second power storage means 42. It is possible. That is, in the second embodiment, the power storage device 40A has the second power storage means 42 that stores large power, and thus can charge a plurality of vehicles 50 simultaneously. .
  • An inverter 47 is connected to the second power storage means 42 of the power storage device 40A. Inverter 47 is translated through the terminal T 7 are connected like the smart meter (not shown), the DC power part of which is stored in the second storage means on the basis of the commands from the power company into AC power And has a function of supplying to the commercial power side.
  • Each device constituting the power storage device 40A is accommodated in a storage room 49 having the same size as, for example, a marine container. In the storage room 49, the temperature and humidity are adjusted within a certain range throughout the year by the air conditioner 48.
  • the first quick charge control means 20 is capable of controlling the voltage and current for quick charge in consideration of the charging characteristics of the first power storage means 10 by the integrated design with the first power storage means 10. If such control is possible, the charging characteristics of the first power storage means 10 can be sufficiently taken into account by the integrated design, so that highly accurate charge control can be performed, and the first power storage means 10 can have a longer life and further safety can be ensured.
  • the quick charger installed on the charging station side and the secondary battery mounted on the vehicle are generally manufactured by different manufacturers. Therefore, it is difficult to fully grasp the characteristics of the secondary battery mounted on the vehicle. Therefore, the charging characteristics of the secondary battery mounted on the vehicle are sufficient for the conventional rapid charging system of the electric vehicle.
  • the vehicle 50 stops near the power storage device 40A.
  • the operation switch of the vehicle 50 is turned off, and the vehicle 50 is fixed at the stop position by the operation of the parking brake.
  • charging plug P 1 of the front end portion of the charging cable 45 connected to the second storage means 42 of the electric power storage device 40A is attached to the charging connector P 2 of the vehicle 50.
  • charging plug P 1 is charging connector P terminal T 3 is connected by being attached to the 2 and the power supply control unit of the electric power storage device 40A from the vehicle 50 side via the terminal T 8 46
  • the control signal K 8 is output, and the power supply control means 46 stops the power supply from the rectifier 41 to the second power storage means 42.
  • the second power storage means 42 is disconnected from the commercial power supply 101, and the second power storage means 42 can supply large power for rapidly charging the vehicle 50.
  • the first power storage means 10 can be rapidly charged using the direct-current power directly sent from the second power storage means 42 of the external power storage device 40A, so that the power system distribution system is overloaded. Can be avoided, and the power for rapidly charging the first power storage means 10 can be greatly increased. As a result, the power storage module 1A can be fully charged in a short time, and the efficiency of the charging operation can be improved. In addition, since the charging time of the power storage module 1A is shortened, it is possible to avoid waiting for the vehicle 50 to be charged and to increase the use rotation rate of the charging station.
  • FIGS. 9 and 10 show Embodiment 3 of the present invention, and show an example in which the power storage module 1 shown in FIGS. 1 and 2 is incorporated in a personal computer 60 as a communication mobile unit.
  • the power storage module 1B in FIG. 9 is a power storage module dedicated to the personal computer 60 having the same function as the power storage module 1 in FIGS. 1 and 2, and the configuration and function are the same as those in the power storage module 1 in FIGS.
  • FIG. 9 shows a power storage module rapid charging system 2B for rapidly charging the power storage module 1B incorporated in the personal computer 60.
  • the personal computer 60 has a main body portion 61 and a display portion 62, and the display portion 62 can be folded to the main body portion 61 side.
  • the main body 61 is provided with a keyboard 63 for inputting information.
  • the connection port 64 formed on the side surface of the main body portion 61, an input terminal T 1 of the power storage module 1B are provided.
  • the power storage module quick charging system 2 ⁇ / b> B includes a power storage module 1 ⁇ / b> B incorporated on the main body 61 side of the personal computer 60 and a portable power storage device 40 ⁇ / b> B that can be connected to the personal computer 60.
  • the power storage device 40B is reduced in size and weight so as to be portable like the personal computer 60, and conforms to the function of the power storage device 40A shown in FIGS.
  • the difference between the power storage device 40B and the power storage device 40A is the type of power supply to be input.
  • the power storage device 40A has only an AC power supply as input power, whereas the power storage device 40B receives input from a DC power supply.
  • a power converter 44 composed of a DC-DC converter is added as possible.
  • the type of the input power source in the power storage device 40B can be switched by the changeover switch 45.
  • the first power storage unit 10 can be rapidly charged using the direct-current power directly transmitted from the second power storage unit 42 of the external power storage device 40B.
  • the power storage module 1B can be fully charged in a short time, and the efficiency of the charging operation can be improved. If the power consumption for rapid charging of the personal computer 60 is small and it is possible to reliably avoid overloading the indoor wiring at home or office without using the power storage device 40B, the power storage device 40B.
  • the power conversion device 35 of FIG. 1 that converts AC power into DC power.
  • FIG. 11 shows Embodiment 4 of the present invention, and shows an example in which the power storage module 1 of FIGS. 1 and 2 is incorporated in a smartphone 70 which is a type of mobile phone as a communication mobile unit.
  • a power storage module 1C in FIG. 11 is a power storage module dedicated to the smartphone 70 having the same function as that of the power storage module 1 in FIGS. 1 and 2, and the configuration and function are the same as those of the power storage module 1 in FIGS.
  • FIG. 11 shows a power storage module rapid charging system 2 ⁇ / b> C for rapidly charging the power storage module 1 ⁇ / b> C incorporated in the smartphone 70.
  • the smartphone 70 includes a main body 71 and an operation unit 72.
  • the operation unit 71 has both an input function for inputting information and a display function for displaying information.
  • the power storage module rapid charging system 2C includes a power storage module 1C and a power storage device 40B.
  • the power storage device 40B can be used for both the personal computer 60 and the smartphone 70, and is shared.
  • the first power storage means 10 can be rapidly charged using the direct-current power directly sent from the second power storage means 42 of the external power storage device 40B.
  • the electric power for rapidly charging the first power storage means 10 can be greatly increased.
  • the power storage module 1C can be fully charged in a short time, and the efficiency of the charging operation can be improved. If the power consumption for rapid charging of the smartphone 70 is small and it is possible to reliably avoid overloading the indoor wiring in the home or office without using the power storage device 40B, the AC power is converted to DC power. It is also possible to use the power conversion device 35 of FIG.
  • FIG. 12 shows a fifth embodiment of the present invention, and shows an example in which the power storage module 1 of FIGS. 1 and 2 is incorporated in an electric tool 80.
  • the power storage module 1D in FIG. 12 is a power storage module dedicated to the electric tool 80 having the same function as the power storage module 1 in FIGS. 1 and 2, and the configuration and function are the same as those in the power storage module 1 in FIGS.
  • FIG. 12 shows a power storage module rapid charging system 2D for rapidly charging the power storage module 1D incorporated in the electric tool 80.
  • the power storage module rapid charging system 2D includes a power storage module 1D and a power storage device 40B.
  • the power storage module 1 ⁇ / b> D can be attached to and detached from the main body 81 of the electric power tool 80.
  • a motor 82 is housed in the main body 81 of the electric power tool 80, and the drill 83 is rotated around the axis by the rotational drive of the motor 82 by the operation of the switch 84.
  • the power storage module 1D is detached from the main body 81 when the power storage module 1D is charged. Thereafter, the power storage module 1D is electrically connected to the portable power storage device 40B, and the first power storage means of the power storage module 1D using the direct-current power directly sent from the second power storage device 42 of the power storage device 40B. 10 quick charges are performed.
  • the power storage module 1D is mounted again on the main body portion 81 of the power tool 80 is connected to the terminal 85 of the power storage module 1D of the terminal T 2 and the power tool 80 is a battery module 1D power of the first power storage unit 10 via the terminal 85 of the terminal T 2 and the electric power tool 80 of the storage module 1D is supplied to the motor 82, allows the use of the power tool 80.
  • the power storage device 40B it is possible to significantly increase the power for rapidly charging the power storage module 1D of the power tool 80 as compared with the conventional power tool charging, and to shorten the power storage module 1D. It will be possible to fully charge in time. Thereby, the efficiency of the charging operation of the electric power tool 80 can be increased, and the working time using the electric power tool 80 can be shortened.
  • FIGS. 1 and 2 show Embodiment 6 of the present invention, and show an example in which the power storage module 1 of FIGS. 1 and 2 is used as a portable power storage module 1E.
  • a power storage module rapid charging system 2E of the portable power storage module 1E shown in FIG. 13 includes a portable power storage module 1E and a power storage device 40B.
  • the portable power storage module 1E and the power storage device 40B are separable.
  • the power storage device 40B is always arranged at a specific place in the room, and only the portable power storage module 1E can be carried outdoors.
  • the portable power storage module 1E has a function of supplying power to various electric devices 90, for example.
  • the input terminal T 1 of the portable storage module 1E is electrically connected to the output terminal T 6 of the electric power storage device 40B.
  • the signal terminal T 3 of the portable storage module 1E is electrically connected to the signal terminal T 8 of the electric power storage device 40B, via the signal passing between the terminals Information for quick charge control is exchanged.
  • the connection of the signal terminal T 3 and the signal terminal T 8 is carried out, for example, in conjunction with the connection operation of the input terminal T 1 and the output terminal T 6.
  • the portable power storage module 1E separated from the power storage device 40B can be carried outdoors and can be electrically connected to various electric devices 90.
  • the input terminal T 9 of the electric device 90 the portable storage module 1E Output It is electrically connected to the terminal T 2.
  • electric power can be supplied from the portable power storage module 1E to the electrical device 90.
  • the portable power storage module 1E and the electric device 90 are separated, and the portable power storage module 1E can be carried alone.
  • FIG. 14 shows an air-conditioning suit 90A as an electrical device.
  • the air-conditioning garment 90A is composed of a lightweight fabric 91 woven with chemical fibers, and the front side can be opened and closed by a chuck (not shown).
  • Cooling fans 93 are respectively provided on both lower sides of the air-conditioning suit 90A. The number of rotations of the cooling fan 93 is changed by a change in the voltage applied to the motor 92, and the amount of air blown for cooling can be adjusted.
  • the motors 92 that rotate the cooling fans 93 are electrically connected in parallel.
  • An input terminal 94 for supplying electric power to each motor 92 is provided on the surface side of the fabric 91 of the air conditioning clothing 90A.
  • Input terminal 94 of the air-conditioning clothes 90A is connectable to the output terminal T 4 of the portable storage module 1E.
  • an output changeover switch (not shown) provided in the portable power storage module 1E shown in FIG. 13 is switched to the power converter 15 side. In this state, the voltage of the DC power supplied to the motor 92 for rotationally driving each cooling fan 93 can be adjusted stepwise by the control of the power converter 15.
  • the sixth embodiment three types of voltages are applied to the motor 92, for example, and the amount of air blown for cooling increases as the voltage increases.
  • the sixth embodiment is not limited to these numbers, and the sixth embodiment is provided when the number of the motors 92 and the cooling fans 93 is one.
  • the present invention can be applied to the case where there are three or more motors 92 and the number of cooling fans 93 is different.
  • FIG. 15 shows Embodiment 7 of the present invention.
  • a power storage module rapid charging system 2F shown in FIG. 15 includes one power storage device 40B and a plurality of portable power storage modules 1E, and is disposed in a room of a home or office.
  • the input terminal T 5 of the electric power storage device 40B is adapted to the power generated by the renewable energy is input.
  • Example shown in FIG. 15 is for using sunlight as a renewable energy, but solar panel 111 that can be generated by solar light are connected to the input terminal T 5 of the electric power storage device 40B, Renewable energy other than sunlight may be used.
  • the output side of the power storage device 40B is provided with a plurality of output terminals T 6, a plurality of output terminals T 6 is connected in parallel.
  • the output terminal T 6 is are five provided.
  • the five output terminals T 6 is a portable storage module 1E can be connected, respectively.
  • the second power storage unit 42 of the power storage device 40B has a significantly larger storage capacity than the first power storage unit 10 of the portable power storage module 1E in consideration of rapid charging of the five portable power storage modules 1E simultaneously. Is set to
  • a plurality of output terminals of the input terminal T 1 is the electric power storage device 40B of the portable storage module 1E It is connected to T 6. In this state, the output terminal T 2 of the respective portable storage module 1E, electrical equipment 90 is not connected.
  • each portable power storage module 1E When simultaneous rapid charging of a plurality of portable power storage modules 1E is completed, each portable power storage module 1E is separated from the power storage device 40B and can be carried outdoors. Each portable power storage module 1 ⁇ / b> E carried out outdoors is used when supplying power to various electric devices 90.
  • each portable power storage module 1 ⁇ / b> E converts the direct-current power directly sent from the power storage device 40 ⁇ / b> B into power suitable for rapid charging of the first power storage means 10. Since the charging control means 20 is provided, each portable power storage module 1E is rapidly charged under optimum charging conditions, and safety against rapid charging can be ensured, and the first power storage means 10 can be secured. Can increase the lifetime.
  • the portable power storage module 1E has a different degree of deterioration of the first power storage means 10 between a new one and an aged one, but each of the portable power storage modules 1E is provided with a first quick charge control means 21. Therefore, optimum charging control corresponding to the degree of deterioration of the first power storage means 10 is performed for each portable power storage module 1E, and the safety of rapid charging is ensured.
  • the electric power stored in the electric power storage device 40B is electric power generated by sunlight, which is a renewable energy, it is possible to prevent carbon dioxide emission during power generation. This can contribute to the suppression of conversion.
  • the first power storage means can be rapidly charged using DC power directly sent from the second power storage means of the external power storage device, the indoor wiring in the home or office becomes overloaded. Can be avoided, and the electric power for rapidly charging the first power storage means can be greatly increased. As a result, the power storage module can be fully charged in a short time, and the efficiency of the charging operation can be increased.
  • the first to seventh embodiments of the present invention have been described in detail. However, the specific configuration is not limited to these embodiments, and there are design changes and the like within a range not departing from the gist of the present invention. However, it is included in this invention.
  • a gallium nitride power semiconductor adopting a polarization superjunction has been described.
  • the power semiconductor of the present invention includes a gallium nitride power transistor formed on a sapphire substrate, and a gallium nitride power transistor. What is necessary is just to equip the element outer surface with the thermal radiation means to discharge
  • Embodiments 1 to 7 the configuration in which the power storage module includes the cooling unit has been described, but the power storage module of the present invention may not include the cooling unit.
  • a cooling unit may be provided outside the power storage module, and when the heat generated in the power storage module is small, the cooling unit may not be provided.
  • Embodiments 1 to 7 have been described with the provision of artificial intelligence, but the present invention is also applicable to those without artificial intelligence.
  • the output of the power storage module is two types of output, that is, output via T 2 and output via T 4.
  • the present invention is not limited to this configuration. The configuration may be such that only one of the outputs is provided.
  • the power supply source AC power supply 101 is used in Embodiments 1 to 6, and renewable energy is used in Embodiment 7, but the present invention is not limited to a specific power supply source.
  • renewable energy may be used in Embodiments 1 to 6, and AC power supply 101 may be used in Embodiment 7.
  • the electric device 90 includes a mobile communication device such as a transceiver, a drone (unmanned aerial vehicle), a robot, and an agricultural device in addition to the above.
  • the portable power storage module 1E may be a size that can be carried with one hand, for example, or may be a trunk size with a moving wheel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

急速充電制御手段が備えるパワー半導体23は、サファイア基板23aと、サファイア基板上に形成された窒化ガリウムパワートランジスタ231とを備えており、窒化ガリウムパワートランジスタ231の素子外面には、急速充電制御手段における電力変換によって生ずる熱を放出させる放熱手段232が接合されている。1つの実施形態では、上記パワー半導体は、分極超接合を採用したパワー半導体である。さらに1つの実施形態では、上記放熱手段は、上記窒化ガリウムパワートランジスタの素子外面におけるソース領域とドレーン領域の少なくともいずれかに接続され、上記サファイア基板に対して遠ざかる方向に延びている。

Description

蓄電モジュールおよび蓄電モジュール急速充電システム
 本発明は、急速充電器と蓄電手段とを備えた蓄電モジュールおよびこの蓄電モジュールを急速充電するための蓄電モジュール急速充電システムに関する。
 近年、リチウムイオン電池の技術の進歩に伴い、電動工具など充電可能な各種の電気機器が多く用いられるに至っている。これらの電気機器については、通常は商用電源である交流電力を利用して充電しているが、商用電源が利用できない屋外などでも短時間で充電ができれば便利である。そこで、充電技術の一例として、蓄電装置に貯蔵された電力を負荷に向けて供給する技術が提案されている(例えば特許文献1参照。)。この特許文献1の蓄電装置は、二次電池とキャパシタを併用することにより、二次電池の劣化を防止しつつ、二次電池を急速充電することが可能となっている。
特開2015-12751号公報
 ところで、従来からリチウムイオン電池の充電については、充電時間が長く使い勝手が悪いという問題がある。例えば、スマートフォンやパーソナルコンピュータなどの通信用移動体の充電が数分間という短時間で行うことができれば、非常に便利であり業務の効率が図れる。しかし、充電時間を著しく短縮するには、従来の電力制御用半導体を用いた急速充電制御では電力変換部分が大型化し、スマートフォンやパーソナルコンピュータなどに急速充電のための機能を組込むことが難しいという問題がある。
 今日では、地球環境の改善の観点から各種の産業機器類の電動化が急速に進められており、急速充電器を著しく小型化できれば業務の効率化が図れることから、これらに関する新規な蓄電モジュールの開発が求められる。
 そこで本発明は、急速充電器を著しく小型化することが可能な蓄電モジュールおよびこの蓄電モジュールを急速充電するための蓄電モジュール急速充電システムを提供することを目的とする。
 本発明の1つの実施形態の蓄電モジュールは、第1の蓄電手段と、電力変換用のパワー半導体を有し、外部から供給される電力に対して電力変換を行って上記第1の蓄電手段の急速充電を行う第1の急速充電制御手段と、を備え、上記パワー半導体は、サファイア基板と、上記サファイア基板上に形成された窒化ガリウムパワートランジスタとを備え、上記窒化ガリウムパワートランジスタの素子外面には、上記第1の急速充電制御手段における電力変換によって生ずる熱を放出させる放熱手段が接合されており、上記目的を達成できる。
 この実施形態に係る発明によれば、サファイア基板と窒化ガリウムパワートランジスタとを備えたパワー半導体の採用により第1の急速充電制御手段を著しく小型化することが可能となる。
 1つの実施形態では、上記パワー半導体は、分極超接合を採用したパワー半導体である。
 1つの実施形態では、上記放熱手段は、上記窒化ガリウムパワートランジスタの素子外面におけるソース領域とドレーン領域の少なくともいずれかに接続され、上記サファイア基板に対して遠ざかる方向に延びている。
 1つの実施形態では、上記第1の急速充電制御手段は、上記第1の蓄電手段との一体設計によって上記第1の蓄電手段の充電特性を考慮した急速充電のための電圧および電流の制御が可能であるように構成されている。
 1つの実施形態では、上記第1の蓄電手段は、少なくともリチウムイオン電池と、電気二重層キャパシタと、リチウムイオンキャパシタのいずれかを含む。
 1つの実施形態では、上記第1の急速充電制御手段は、上記第1の蓄電手段の充電履歴に基づき上記第1の蓄電手段の充電条件を最適に制御する人工知能を有している。
 1つの実施形態では、上記第1の蓄電手段と上記第1の急速充電制御手段は、少なくとも車両を含む電動式移動体または携帯電話器を含む通信用移動体に組込まれるように構成されている。
 1つの実施形態では、上記蓄電モジュールは、上記第1の蓄電手段から出力される直流電力の電圧を調整して出力する電力変換器をさらに備える。
 本発明の1つの実施形態の蓄電モジュール急速充電システムは、上記蓄電モジュールと、上記蓄電モジュールと電気的に接続可能な第2の蓄電手段を有する電力貯蔵装置であって、上記蓄電モジュールが接続された状態では上記第2の蓄電手段から上記蓄電モジュールへの電力供給が可能なように構成されている電力貯蔵装置と、を備え、上記目的を達成できる。
 1つの実施形態では、上記電力貯蔵装置の上記第2の蓄電手段は、上記第1の蓄電手段よりも蓄電容量が大であり、上記第2の蓄電手段から出力される直流電力によって複数の上記蓄電モジュールを同時に充電することが可能である。
 1つの実施形態では、上記電力貯蔵装置に貯蔵される電力は、再生可能エネルギーによって発電された電力である。
 本発明によれば、従来のシリコンを用いた半導体に比べて高速スイッチングが可能となり、パワー半導体を動作させるための電気回路を構成する部品の小型化が実現でき、結果的に第1の急速充電制御手段を著しく小型化することが可能となる。さらに、窒化ガリウムパワートランジスタの素子外面には、熱を放出させる放熱手段が接合されているので、第1の急速充電制御手段における電力変換によって生ずる熱の放出が促進され、窒化ガリウムパワートランジスタの冷却のための構成も小型化することが可能となる。このように、蓄電モジュールは、第1の急速充電制御手段を著しく小型化することができるので、蓄電モジュールを種々の製品に組み込むことが容易となり、製品の取り扱いおよび業務の効率が図れる。
本発明の実施の形態1に係わる蓄電モジュールの概要を示す配線図である。 図1の蓄電モジュールにおける強制冷却構造の詳細を示す配線図である。 図1の蓄電モジュールにおけるパワー半導体の拡大断面図である。 図4のパワー半導体の要部斜視図である。 図4のA-A線に沿う断面図である。 図3のパワー半導体の要部拡大断面図である。 本発明の実施の形態2に係わる蓄電モジュールを組み込んだ電気自動車を急速充電するための蓄電モジュール急速充電システムの概要を示す配線図である。 図7における電力貯蔵装置の概要を示す配線図である。 本発明の実施の形態3に係わる蓄電モジュールを組み込んだパーソナルコンピュータの概要を示す斜視図である。 図9のパーソナルコンピュータを急速充電するための電力貯蔵装置の概要を示す配線図である。 本発明の実施の形態4に係わる蓄電モジュールを組み込んだスマートフォンの概要を示す斜視図である。 本発明の実施の形態5に係わる蓄電モジュールを組み込んだ電動工具の概要図である。 本発明の実施の形態6に係わる蓄電モジュールを携帯用蓄電モジュールとして利用した場合を示す蓄電モジュール急速充電システムの概要図である。 図13の蓄電モジュールを空調服の電源として利用した場合を示す概要図である。 本発明の実施の形態7に係わる蓄電モジュールを同時に複数台急速充電する状態を示す概要図である。 窒化ガリウム素子を用いた従来のパワー半導体の拡大断面図である。
 つぎに、この発明の実施の形態について、図面を用いて詳しく説明する。
(実施の形態1)
 図1ないし図6は、本発明の実施の形態1を示している。図1において、符号101は商用電源としての交流電源を示している。交流電源101としては、例えば単相交流電源が用いられている。交流電源101からの交流電力は、電力変換装置35に供給されている。電力変換装置35は、交流電力を直流電力に変換する機能を有しており、例えばAC-DCコンバータから構成されている。AC-DCコンバータは、スイッチング制御により入力された交流電力を直流電力に変換する機能を有している。AC-DCコンバータは、交流電力から直流電力に変換する際の変換効率を高めるため、GaN(窒化ガリウム)半導体素子を利用して製作されている。GaN半導体素子は、耐熱性を有することから、AC-DCコンバータの冷却のための構造を簡略化することが可能である。
 図1に示すように、電力変換装置35には、蓄電モジュール1の入力端子Tが接続可能となっている。蓄電モジュール1は、第1の蓄電手段10と、第1の急速充電制御手段20とを有している。蓄電モジュール1には、第1の蓄電手段10と第1の急速充電制御手段20の他に種々の機器が搭載されている。入力端子Tを介して蓄電モジュール1に供給された直流電力は、第1の急速充電制御手段20により所定の電圧および電流に制御された後、第1の蓄電手段10に供給されるようになっている。第1の急速充電制御手段20は、第1の蓄電手段10との一体設計によって第1の蓄電手段10の充電特性を考慮した急速充電のための電圧および電流の制御が可能となっていてもよく、そのような制御が可能となっていると、一体設計により第1の蓄電手段10の充電特性が十分に考慮できるため、高精度の充電制御を行うことが可能となり、第1の蓄電手段10を長寿命化させることができるうえ、さらなる安全性を確保することができる。第1の蓄電手段10は、直流電力を貯蔵できる機能を有すればどのような種類のものであってもよいが、本実施の形態1においては、蓄電池と電気二重層キャパシタとリチウムイオンキャパシタの少なくともいずれか一つから構成されている。本実施の形態1においては、第1の蓄電手段10は、例えば多数のセルが直列に接続されたリチウムイオン電池(全固体電池を含む)のみから構成されるが、リチウムイオン電池と二重層キャパシタまたはリチウムイオンキャパシタとを併用した構成であってもよい。第1の蓄電手段10に貯蔵された直流電力は、出力端子Tを介して負荷(図示略)に供給可能となっている。第1の蓄電手段10には、第1の蓄電手段10を構成する多数のセルの充電バランスを保つための第1の電池管理システム(BMS)11が接続されている。
 制動によって生ずる回生エネルギーを回収することが可能な電気自動車などの電動式移動体に蓄電モジュール1を組み込む場合は、第1の蓄電手段10をリチウムイオン電池とリチウムイオンキャパシタを併用した構成にすることにより、リチウムイオン電池を単独で使用した場合に比べ、出力端子T側の電圧変動を小さくすることが可能となる。これは、車両の運転時における加速または減速に伴う第1の蓄電手段10の充放電によって出入りする電流は、ほとんどリチウムイオンキャパシタから出入りすることになり、リチウムイオン電池からのエネルギーの入出量が減少するためである。したがって、第1の蓄電手段10をリチウムイオン電池とリチウムイオンキャパシタを併用する構成とすることにより、リチウムイオン電池の負担を低減することができ、第1の蓄電手段10を長寿命化させることが可能となる。
 第1の蓄電手段10には、DC-DCコンバータから構成される電力変換器15が接続されている。第1の蓄電手段10から出力される直流電力は、電力変換器15によって電圧が調整可能となっている。電力変換器15には、電圧調整用スイッチ(図示略)が接続されており、用途に応じた電圧が出力端子Tから出力可能となっている。これにより、電気機器の種類や機能に合わせて供給電圧を最適値に調整することができ、電気機器の能力を最大限に発揮させることができる。第1の蓄電手段10の温度は、第1の温度センサ12によって検出可能となっている。第1の温度センサ12からの出力信号Kは、充電情報処理部25に入力されている。パワー制御部21の温度は、第2の温度センサ27によって検出可能となっている。第2の温度センサ27からの出力信号Kは、充電情報処理部25に入力されている。
 第1の急速充電制御手段20は、パワー制御部21と充電情報処理部25を有している。パワー制御部21は、充電制御ユニット22と温度制御ユニット24から構成されている。充電制御ユニット22は、電力変換装置35からの直流電力を第1の蓄電手段10に適合した充電電圧および充電電流に制御する急速充電制御機能を有している。充電制御ユニット22は、直流チョッパ回路(昇圧チョッパ回路と降圧チョッパ回路を併用した直流チョッパ回路)および電流制御回路を有している。充電制御ユニット22は、充電情報処理部25からの制御信号Kに基づき電力変換装置35から供給される直流電力をチョッパ制御し、第1の蓄電手段10を最適充電電圧で充電する機能を有している。充電制御ユニット22から第1の蓄電手段10に出力される電圧および電流は出力センサ13により測定されており、出力センサ13からの信号Kは充電情報処理部25に入力されている。リチウムイオン電池の充電については、とくに充電電圧に対して高い制御精度が必要となるため、第1の急速充電制御手段20ではこれを考慮した高精度の充電制御が行われるようになっている。充電制御ユニット22は、昇圧チョッパ回路と降圧チョッパ回路を併用した直流チョッパ回路を有している。充電情報処理部25には、検出される第1の蓄電手段10の電池電圧、充電電流に基づき第1の蓄電手段10に対して最適な急速充電制御を行うための充電プログラムが予め入力されている。
 第1の急速充電制御手段20のパワー制御部21は、電力変換用のパワー半導体23を有している。パワー半導体23は、窒化ガリウム(GaN)半導体素子が用いられており、高温での使用や電力変換における低損失が図られている。図3ないし図6は、パワー半導体23の詳細を示しており、このうち図6が窒化ガリウム(GaN)半導体素子を用いたパワー半導体23の基本構造を示している。パワー半導体23は、分極超接合(PSJ)を採用した窒化ガリウムパワートランジスタ231がサファイア基板23a上に形成されている。ここで、超接合(SJ)とは、Si製パワーMOSトランジスタで採用されている高耐圧・低オン抵抗化の手法をいい、分極超接合(PSJ)とは、GaN/AlGaNによる分極効果を利用し、GaNトランジスタ上に超接合を形成する手法をいう。この実施の形態1における分極超接合を採用した窒化ガリウムパワートランジスタ231は、例えば耐電圧が6000Vと優れており、スイッチング周波数は約1000kHz(1MHz)と従来のパワー半導体のスイッチング周波数に比べて著しく高くなっている。分極超接合を採用した窒化ガリウム半導体としては、例えば特許第5669119号に記載のものが挙げられる。
 図6に示すように、窒化ガリウムパワートランジスタ231は、サファイア基板23a~ドレーン(D)23hによって構成されている。まず、最下位のサファイア基板23a上には、GaN成膜23bが形成されている。この成膜の形成および後述する成膜の形成は、例えば蒸着によって行われている。GaN成膜23b上には、AlGaN成膜23cが形成されている。AlGaN成膜23cの表面には、ソース(S)23gおよびドレーン(D)23hが成膜されている。AlGaN成膜23cの外表面におけるソースSとドレーンDとの間には、GaN成膜23dが形成されている。GaN成膜23dの表面には、p-GaN成膜23eが形成されている。p-GaN成膜23eの表面には、p-オーミックメタル(Ni/Au)が成膜されており、このp-オーミックメタル成膜23fがゲートGを構成している。このように、分極超接合を採用した窒化ガリウムパワートランジスタ231では、電気絶縁性のサファイア基板23aを用いることにより、基板による耐圧の制約がなくなり、GaN厚みが約1μmと従来比の5分の1と極薄にすることが可能となる。これにより、GaN成膜時間は2時間程度となり、製造時間の短縮によって成膜コストを従来に比べて大幅に低減することができる。
 図4に示すように、窒化ガリウム半導体素子を用いたパワー半導体23は、複数のソースSとドレーンDとゲートGを有している。各ソースSとドレーンDは、図中縦方向に所定の間隔をおいて交互に配置されている。各ゲートGは、ソースSとドレーンDとの間にそれぞれ配置されている。一方のパターニング金属23jは、図4の右側に示すように、複数のソースSを電気的に並列に接続する機能を有している。他方のパターニング金属23kは、図4の左側に示すように、複数のドレーンDを電気的に並列に接続する機能を有している。各ゲートGは、同様に他のパターニング金属23mを介して電気的に並列に接続されている。これにより、窒化ガリウム半導体素子を用いたパワー半導体23は、多数の窒化ガリウムパワートランジスタ231が並列に接続された構造となり、大電力の制御が可能となっている。
 つぎに、窒化ガリウム半導体素子を用いたパワー半導体23の放熱構造について説明する。この実施の形態1における分極超接合を採用した窒化ガリウムパワートランジスタ231は、バンドギャップが広くオン抵抗を小さくできるが、サファイア基板23aは放熱特性がSi基板に対して約4分の1と低い。そこで、本発明では、パワー半導体23は、放熱のために、放熱特性が低いサファイア基板23aではなく、電力変換によって生ずる熱を外部に放出させる放熱手段232を採用している。窒化ガリウムパワートランジスタ23においては、電力変換に伴う熱は、主にGaN成膜23bとAlGaN成膜23cとの境界面で生じることから、窒化ガリウムパワートランジスタ231におけるソースS領域とドレーンD領域の外面に放熱手段232を接合し、電力変換に伴って生じる熱を放熱手段232を介して外部に放出させている。
 この実施の形態1においては、放熱手段232は、窒化ガリウムパワートランジスタの素子外面におけるソースS領域とドレーンD領域の少なくともいずれかに接続され、サファイア基板23aに対して遠ざかる方向に延びている。放熱手段232は、図3および図5に示すように、サブマウント基板23nと金属板23pとヒートシンク23rとから構成されている。サブマウント基板23nは、例えば絶縁性を有し放熱性が良好な材料であるシリコンナイトライド(Si)から構成されている。サブマウント基板23nの厚Hは、例えば100μm程度に設定されている。この実施の形態1においては、放熱手段232は、窒化ガリウムパワートランジスタ231を構成するAlGaN成膜23cの外面FにおけるソースS領域とドレーンD領域の双方にハンダ23iおよびパターニング金属23j、23k、23k’を介して接続されている。すなわち、AlGaN成膜23cの外面FのソースS領域は、ハンダ23iおよびパターニング金属23jを介してサブマウント基板23nに接続されている。同様に、AlGaN成膜23cの外面FのドレーンD領域は、ハンダ23iおよびパターニング金属23k、23k’を介してサブマウント基板23nに接続されている。
 サブマウント基板23nにおける窒化ガリウムパワートランジスタ231が位置する反対側の表面Fの全面には、熱伝導性の高い金属板23pが接合されている。これにより、金属板23pには、窒化ガリウムパワートランジスタ231が電力変換の際に生じる熱の大部分が伝熱されるようになっている。金属板23pにおける表面Fと反対側の面には、ヒートシンク23rが接合されている。ヒートシンク23rは、放熱を目的として用いられるものであり、伝熱特性の良いアルミニウム合金や銅合金などの金属材料から構成されている。ヒートシンク23rは、金属板23pを介してサブマウント基板23nのほぼ全面と接合されている。ヒートシンク23rの先端部側には、表面積を広げるためにフィンと呼ばれる多数の突起が形成されている。パワー半導体23は、窒化ガリウムパワートランジスタ231および放熱手段232を絶縁ケース(図示略)で覆ってパッケージ化したものであってもよく、関連する電気回路との接続によって大電力の制御が可能となっている。パワー半導体23には、窒化ガリウムパワートランジスタ231からの熱の放熱量を増大させるために、図2に示すファン32により強制冷却のための空気Eが吹き付けられるようになっている。
 蓄電モジュール1は、充電系統を冷却するための冷却ユニット30を有している。冷却ユニット30は、モーター31と、ファン32と、電子冷却素子33を有している。ファン32は、充電情報処理部25からの制御信号Kを受けた温度制御ユニット24によって、モーター31によって回転駆動され、電子冷却素子33の冷却面に向けて送風するようになっている。電子冷却素子33は、ペルチェ効果を利用したものであり、外部からの電力供給によって動作するようになっている。パワー制御部21は、急速充電時に第1の蓄電手段10に供給される大電力を制御することから、半導体素子の温度が上昇する。また、第1の蓄電手段10を構成するリチウムイオン電池は、収納スペースとの関係で密集した状態で収納されることから、急速充電時には温度が上昇することになる。そのため、パワー制御部21および第1の蓄電手段10は、急速充電時には冷却ユニット30からの送風により強制冷却される。この実施の形態1においては、電子冷却素子33を用いた冷却構造としているが、ファン32のみを動作させる冷却としても良いし、熱交換器を用いた水冷方式の冷却構造としても良い。
 このように、第1の急速充電制御手段20に、窒化ガリウム半導体素子を用いたパワー半導体23を使用することにより、第1の急速充電制御手段20の小型化、軽量化が可能となり、小さなスペースへの第1の急速充電制御手段20の搭載が著しく容易となる。さらに、窒化ガリウム半導体素子を用いたパワー半導体23は、従来のシリコン半導体素子を用いたパワー半導体に比べて電力変換効率が著しく高いことから、第1の急速充電制御手段20からの発熱も少なく、上述した電子冷却素子33を使用した簡易な冷却ユニット30でも、第1の急速充電制御手段20を十分に冷却することができる。
 第1の急速充電制御手段20は、図1および図2に示すように、第1の蓄電手段10の充電履歴に基づき第1の蓄電手段10の充電条件を最適に制御する人工知能26を有している。人工知能26は、充電情報処理部25に接続されており、第1の急速充電制御手段20による第1の蓄電手段10の充電毎の充電結果(急速充電時における充電電圧、充電電流、充電時間などの充電データ)を記憶するようになっている。人工知能26と充電情報処理部25とは信号Kを介して相互間で情報のやりとりをする。充電情報処理部25は、電源側装置との情報のやりとりをするための端子Tに接続されている。第1の急速充電制御手段20は、人工知能26を介して充電回数および充電結果を把握することで、第1の蓄電手段10の寿命を推測することが可能となっている。また、人工知能26は、第1の蓄電手段10を構成するリチウムイオン電池における内部抵抗値の異常の有無を出力センサ14からの信号Kに基づき判定する機能を有しており、異常を判定した際には、信号Kおよび信号Kを介して急速充電を強制的に中止する旨の指令を出力し、第1の蓄電手段10を異常発熱などから保護するようにしている。人工知能26からの情報は、無線などを介してデータセンタ(図示略)で受け取ることが可能となっており、データセンタでは人工知能26からの情報に基づき、第1の蓄電手段10の運用状況を常時把握することが可能となっている。
 つぎに、実施の形態1における蓄電モジュール1の動作および作用について説明する。
 交流電源101からの交流電力は、電力変換装置35によって直流電力に変換され、蓄電モジュール1に供給される。蓄電モジュール1は、第1の蓄電手段10と、第1の急速充電制御手段20とを有しており、電力変換装置35からの直流電力は、第1の急速充電制御手段20を介して第1の蓄電手段10に供給される。電力変換装置35からの直流電力の一部は、第1の急速充電制御手段20におけるパワー制御部21の充電制御ユニット22によって第1の蓄電手段10に適合した充電電圧および充電電流に制御される。また、電力変換装置35からの直流電力の一部は、第1の急速充電制御手段20における温度制御ユニット24を介して冷却ユニット30に供給される。
 パワー制御部21は、第1の蓄電手段10の急速充電時に供給される大電力を制御することから、パワー制御部21におけるパワー半導体23の温度が上昇する。また、第1の蓄電手段10を構成するリチウムイオン電池は、収納スペースとの関係で密集した状態で収納されることから、急速充電時には充電電流によって温度が上昇することになる。ここで、パワー制御部21および第1の蓄電手段10は、急速充電時には冷却ユニット30からの送風により強制冷却され、急速充電に伴う温度上昇が抑制されるので、パワー制御部21および第1の蓄電手段10は許容範囲内の適正な温度により運用される。第1の蓄電手段10は、少なくともリチウムイオン電池と、電気二重層キャパシタと、リチウムイオンキャパシタを用いているので、第1の蓄電手段10における急速充電の受け入れ性能を向上させることができ、蓄電モジュール1の充電時間を短縮することが可能となる。
 本発明では、パワー半導体23の窒化ガリウムパワートランジスタ231においては、電力変換に伴う熱は、主にGaN成膜23bとAlGaN成膜23cとの境界面で生じることから、窒化ガリウムパワートランジスタ231におけるソースS領域とドレーンD領域の外面に放熱手段232を接合し、電力変換に伴って生じる熱を放熱手段232を介して外部に放出させている。ここで、放熱手段232を構成している部品の一つであるヒートシンク23rは、金属板23pを介してサブマウント基板23nのほぼ全面と接合されている。ヒートシンク23rの先端部側には、表面積を広げるためにフィンと呼ばれる多数の突起が形成されており、ヒートシンク23rを有するパワー半導体23は、図2に示すファン32により強制冷却のための空気Eが吹き付けられるようになっているので、ヒートシンク23rを介して大量の熱交換が行われる。これにより、パワー半導体23は、第1の蓄電手段10の急速充電に伴う大電力の制御に対しても十分に冷却され、過度な温度上昇が防止される。
 図16は、窒化ガリウム半導体素子を用いた従来のパワー半導体の構造を示している。従来のパワー半導体においては、図16に示すように、Siを基板としている。Si基板200a上には、AlN成膜200bが形成されている。AlN成膜200bの表面には、超格子バッファ層200cが形成されている。超格子バッファ層200cの表面には、GaN成膜200dが形成されている。GaN成膜200dの表面には、AlGaNバリア層200eが形成されている。AlGaNバリア層200eの表面には、ソース(S)200fとドレーン(D)200gとゲート(G)200hがそれぞれ形成されている。図16におけるGaN厚みは6μmであり、成膜時間は10~12時間となる。これに対し、実施の形態1においては、図6に示す如く分極超接合(PSJ)を採用した窒化ガリウムパワートランジスタ231がサファイア基板23a上に形成することにより、成膜時間を2時間程度に短縮することができ、製造コストを著しく低減することが可能となる。
 第1の急速充電制御手段20は、第1の蓄電手段10との一体設計によって第1の蓄電手段10の充電特性を考慮した急速充電のための電圧および電流の制御が可能となっていてもよく、そのような場合には、第1の蓄電手段10と充電制御機能とをさらにマッチングさせる設計が実現できる。これにより、第1の蓄電手段10は期待通りの性能を発揮することが可能となり、蓄電モジュール1の性能を高めることができる。また、純粋直流電力という高品質な電力を出力端子Tを介して負荷に供給することは、高品質の電力が供給されることを前提として負荷側の電気回路を設計することができ、リップル、ノイズ、サージをほとんど考慮する必要がなく、負荷側の電気回路の設計が容易となる。また、第1の急速充電制御手段20の人工知能26は、第1の蓄電手段10を構成するリチウムイオン電池における内部抵抗値の異常の有無を出力センサ14からの信号Kに基づき判定する機能を有しており、異常を判定した際には、急速充電を強制的に中止する旨の指令を出力し、第1の蓄電手段10を異常発熱などから保護するので、急速充電に対する蓄電モジュール1の安全性および信頼性を高めることが可能となる。
 このように、パワー半導体23は、分極超接合を採用した窒化ガリウムパワートランジスタ231がサファイア基板23a上に形成されているので、従来のシリコンを用いた半導体に比べて高速スイッチングが可能となり、第1の急速充電制御手段20におけるパワー半導体23を動作させるための電気回路を構成する部品を小型化することが可能となる。さらに、窒化ガリウムパワートランジスタ231の素子外面には、熱を外部に放出させるための放熱手段232が接合されているので、電力変換によって生ずる熱の放出が促進され、窒化ガリウムパワートランジスタ231の冷却のための構造も小型化することが可能となる。また、放熱手段232は、サファイア基板23aに対して遠ざかる方向に延びているので、サファイア基板23aから離れる方向に熱を逃がすことができ、放熱性能を高めることができる。このように、蓄電モジュール1は、急速充電に対する蓄電性能の劣化抑制および安全性が確保できるとともに、第1の急速充電制御手段20を著しく小型化することができるので、蓄電モジュール1を種々の製品に組み込むことが容易となり、製品の取り扱いおよび業務の効率が図れる。さらに、第1の急速充電制御手段20は、第1の蓄電手段10の充電履歴に基づき第1の蓄電手段10の充電条件を最適に制御する人工知能26を有しているので、第1の蓄電手段10の経年劣化に応じた充電制御が可能となり、安全性を確保しつつ、第1の蓄電手段10の寿命を高めることができる。
(実施の形態2)
 図7および図8は、本発明の実施の形態2を示しており、蓄電モジュールを電動式移動体としての車両に組込んだ例を示している。図7における蓄電モジュール1Aは、図1および図2の蓄電モジュールを車載式の蓄電モジュールとしたものであり、構成および機能は図1および図2の蓄電モジュール1に準ずるので、準ずる部分に実施の形態1と同じ符号を付すことにより、同じ部分の説明を省略する。後述する他の実施の形態の説明も同様とする。電動式移動体は、少なくとも電動機(モーター)によって移動可能な車両、船舶、航空機を含むものであり、自走可能な産業機械やロボットなども含まれる。
 図7は、車両50に組込まれた蓄電モジュール1Aを急速充電するための蓄電モジュール急速充電システム2Aを示している。蓄電モジュール急速充電システム2Aは、車両50側に組込まれる蓄電モジュール1Aと、充電ステーション側に設置される電力貯蔵装置40Aを備えている。蓄電モジュール1Aは、車両50の重心を低くするため、車両50の床側に配置されている。蓄電モジュール1Aにおける第1の蓄電手段10の出力端子T側には、コントローラとしてのインバータ51が接続されている。インバータ51は、直流電力を交流電力に変換する機能を有している。インバータ51の出力側には、走行モーター52が接続されている。第1の蓄電手段10に貯蔵された直流電力は、インバータ51を介して走行モーター52に供給可能となっており、車両50は走行モーター52を駆動源として走行可能となっている。
 車両50には、自動運転制御装置53が搭載されている。自動運転制御装置53は、第1の蓄電手段10からの電力供給によって動作可能となっている。自動運転制御装置53には、自動運転を行うためのセンサ類54が接続されている。センサ類54は、走行時における車両50の周囲を認識する機能を有しており、車両50は無人での運転も可能となっている。すなわち、自動運転制御装置53は、センサ類54からの情報およびデータセンタから送信される3次元デジタル地図情報などに基づき車両50を自動操舵し、定められたルートに沿って自動走行することが可能となっている。
 電力貯蔵装置40Aは、図7に示すように、蓄電モジュール1Aと電気的に接続可能であり、外部から供給される電力を貯蔵可能な第2の蓄電手段42を有している。電力貯蔵装置40Aは、蓄電モジュール1Aが接続された状態では、第2の蓄電手段42から蓄電モジュール1Aへの電力供給が可能となっている。電力貯蔵装置40Aは、図7に示すように、整流器41と第2の蓄電手段42と給電制御手段46を有している。整流器41の入力端子Tには、交流電源101が接続されている。整流器41は、交流電力を直流電力に変換するとともに、第2の蓄電手段42を適正な条件で充電する機能を有している。第2の蓄電手段42は、直流電力を貯蔵できるものであればどのような種類のものであってもよいが、本実施の形態2においては、蓄電池と電気二重層キャパシタとリチウムイオンキャパシタの少なくともいずれか一つから構成されている。第2の蓄電手段42は、例えば多数のセル42aを直列に接続したリチウムイオン電池のみから構成してもよいし、リチウムイオン電池とリチウムイオンキャパシタを併用した構成としてもよい。第2の蓄電手段42の出力側には、外部の負荷側と接続するための出力端子Tが接続されている。第2の蓄電手段42には、第2の蓄電手段42を構成する多数のセル42aの充電バランスを保つための第2の電池管理システム(BMS)43が接続されている。
 電力貯蔵装置40Aの第2の蓄電手段42は、第1の蓄電手段10よりも蓄電容量が大であり、第2の蓄電手段42から出力される直流電力によって複数の蓄電モジュール1Aを同時に充電することが可能となっている。すなわち、この実施の形態2においては、電力貯蔵装置40Aは、大電力を貯蔵する第2の蓄電手段42を有しているので、複数台の車両50を同時に充電することが可能となっている。電力貯蔵装置40Aの第2の蓄電手段42には、インバータ47が接続されている。インバータ47は、端子Tを介してスマートメータ(図示略)などに接続されており、電力会社などからの指令に基づき第2の蓄電手段に貯蔵された直流電力の一部を交流電力に変換し、商用電力側に供給する機能を有している。電力貯蔵装置40Aを構成する各機器は、例えば海上コンテナと同じ大きさの収納室49内に収納されている。収納室49内は、空調機48によって年間を通して温度と湿度が一定範囲内に調整されている。
 第1の急速充電制御手段20は、第1の蓄電手段10との一体設計によって第1の蓄電手段10の充電特性を考慮した急速充電のための電圧および電流の制御が可能となっていてもよく、そのような制御が可能となっていると、一体設計により第1の蓄電手段10の充電特性が十分に考慮できるため、高精度の充電制御を行うことが可能となり、第1の蓄電手段10を長寿命化させることができるうえ、さらなる安全性を確保することができる。これにより、従来の電気自動車については、充電ステーション側に設置される急速充電器と車両に搭載される二次電池とは、一般的に異なる製造者によって製造されるため、急速充電器の設計側においては、車両に搭載される二次電池の特性を十分に把握することが困難であり、そのため、従来の電気自動車の急速充電システムについては、車両に搭載される二次電池の充電特性を十分に考慮した高精度の充電制御を行うことが難しく、二次電池の寿命や安全性の確保の面で問題があったが、そのような問題も解決することができる。
 つぎに、実施の形態2における車両の急速充電の手順および作用について説明する。
 車両50が充電ステーションに到着すると、車両50は電力貯蔵装置40Aの近傍に停車する。充電を開始する前には、車両50の運転スイッチがオフとされ、パーキングブレーキの動作により車両50は停車位置に固定される。その後、電力貯蔵装置40Aの第2の蓄電手段42に接続された充電ケーブル45の先端部の充電プラグPが車両50の充電コネクタPに装着される。充電が開始される直前には、充電プラグPが充電コネクタPに装着されることにより接続された端子Tと端子Tを介して車両50側から電力貯蔵装置40Aの給電制御手段46に制御信号Kが出力され、給電制御手段46によって整流器41から第2の蓄電手段42への電力供給が停止される。これにより、第2の蓄電手段42は商用電源101から切り離された状態となり、第2の蓄電手段42からは車両50を急速充電するための大電力を供給することが可能となる。
 このように、外部の電力貯蔵装置40Aの第2の蓄電手段42から直送される直流電力を利用して第1の蓄電手段10の急速充電が可能となるので、電力会社の配電系統に過負荷となることが回避できるとともに、第1の蓄電手段10を急速充電するための電力を大幅に増加させることができる。これにより、蓄電モジュール1Aを短時間でフル充電することが可能となり、充電業務の能率を高めることができる。また、蓄電モジュール1Aの充電時間が短縮されることから、車両50の充電待ちを回避することができ、充電ステーションの利用回転率を高めることが可能となる。
(実施の形態3)
 図9および図10は、本発明の実施の形態3を示しており、図1および図2に示す蓄電モジュール1を通信用移動体としてのパーソナルコンピュータ60に組込んだ例を示している。図9における蓄電モジュール1Bは、図1および図2の蓄電モジュール1と同じ機能を備えたパーソナルコンピュータ60専用の蓄電モジュールであり、構成および機能は図1および図2の蓄電モジュール1に準ずる。
 図9は、パーソナルコンピュータ60に組込まれた蓄電モジュール1Bを急速充電するための蓄電モジュール急速充電システム2Bを示している。パーソナルコンピュータ60は、本体部61と表示部62を有しており、表示部62は本体部61側に折り畳み可能となっている。本体部61には、情報を入力するためのキーボード63が設けられている。本体部61の側面に形成された接続口64には、蓄電モジュール1Bの入力端子Tが設けられている。蓄電モジュール急速充電システム2Bは、パーソナルコンピュータ60の本体部61側に組込まれる蓄電モジュール1Bと、パーソナルコンピュータ60と接続可能な携帯用の電力貯蔵装置40Bを備えている。電力貯蔵装置40Bは、パーソナルコンピュータ60と同様に携帯可能なように小型軽量化が図られており、図7や図8に示す電力貯蔵装置40Aの機能に準じている。電力貯蔵装置40Bが電力貯蔵装置40Aと異なるところは、入力する電源の種類であり、電力貯蔵装置40Aは入力電源が交流電源のみであるのに対し、電力貯蔵装置40Bでは直流電源からの入力が可能なように、DC―DCコンバータからなる電力変換器44が追加されている。電力貯蔵装置40Bにおける入力電源の種類の切替は、切替スイッチ45により可能となっている。
 このように構成された実施の形態3においては、外部の電力貯蔵装置40Bの第2の蓄電手段42から直送される直流電力を利用して第1の蓄電手段10の急速充電が可能となるので、自宅や事務所における屋内配線が過負荷となることが回避できるとともに、第1の蓄電手段10を急速充電するための電力を大幅に増加させることができる。これにより、蓄電モジュール1Bを短時間でフル充電することが可能となり、充電業務の能率を高めることができる。なお、パーソナルコンピュータ60の急速充電のための消費電力が小さく、電力貯蔵装置40Bを使用しなくとも自宅や事務所における屋内配線が過負荷となることが確実に回避できる場合は、電力貯蔵装置40Bに替えて、交流電力を直流電力に変換する図1の電力変換装置35を用いることも可能である。
(実施の形態4)
 図11は、本発明の実施の形態4を示しており、図1および図2の蓄電モジュール1を通信用移動体としての携帯電話器の一種であるスマートフォン70に組込んだ例を示している。図11における蓄電モジュール1Cは、図1および図2の蓄電モジュール1と同じ機能を備えたスマートフォン70専用の蓄電モジュールであり、構成および機能は図1および図2の蓄電モジュール1に準ずる。図11は、スマートフォン70に組込まれた蓄電モジュール1Cを急速充電するための蓄電モジュール急速充電システム2Cを示している。スマートフォン70は、本体部71と操作部72を有している。操作部71は、情報を入力するための入力機能と情報を表示するための表示機能を兼ね備えている。本体部71の側面に形成された接続口74には、蓄電モジュール1Cの入力端子Tが設けられている。蓄電モジュール急速充電システム2Cは、蓄電モジュール1Cと、電力貯蔵装置40Bを備えている。電力貯蔵装置40Bは、パーソナルコンピュータ60およびスマートフォン70のいずれにも使用可能であり、共用化が図られている。
 このように構成された実施の形態4においては、外部の電力貯蔵装置40Bの第2の蓄電手段42から直送される直流電力を利用して第1の蓄電手段10の急速充電が可能となるので、第1の蓄電手段10を急速充電するための電力を大幅に増加させることができる。これにより、蓄電モジュール1Cを短時間でフル充電することが可能となり、充電業務の能率を高めることができる。なお、スマートフォン70の急速充電のための消費電力が小さく、電力貯蔵装置40Bを使用しなくとも自宅や事務所における屋内配線が過負荷となることが確実に回避できる場合は、交流電力を直流電力に変換する図1の電力変換装置35を用いることも可能である。
(実施の形態5)
 図12は、本発明の実施の形態5を示しており、図1および図2の蓄電モジュール1を電動工具80に組込んだ例を示している。図12における蓄電モジュール1Dは、図1および図2の蓄電モジュール1と同じ機能を備えた電動工具80専用の蓄電モジュールであり、構成および機能は図1および図2の蓄電モジュール1に準ずる。図12は、電動工具80に組込まれた蓄電モジュール1Dを急速充電するための蓄電モジュール急速充電システム2Dを示している。蓄電モジュール急速充電システム2Dは、蓄電モジュール1Dと、電力貯蔵装置40Bを備えている。蓄電モジュール1Dは、電動工具80の本体部81に対して着脱可能となっている。電動工具80の本体部81には、モーター82が収納されており、スイッチ84の操作によるモーター82の回転駆動により、ドリル83が軸心周りに回転するようになっている。
 このように構成された実施の形態5においては、蓄電モジュール1Dの充電時には、蓄電モジュール1Dが本体部81から取り外される。その後、蓄電モジュール1Dは携帯可能な電力貯蔵装置40Bに電気的に接続され、電力貯蔵装置40Bの第2の蓄電手段42から直送される直流電力を利用して蓄電モジュール1Dの第1の蓄電手段10の急速充電が行われる。蓄電モジュール1Dの急速充電が完了すると、蓄電モジュール1Dは再び電動工具80の本体部81に装着され、蓄電モジュール1Dの端子Tと電動工具80の端子85とが接続されて、蓄電モジュール1Dの第1の蓄電手段10の電力が蓄電モジュール1Dの端子Tと電動工具80の端子85とを介してモーター82に供給され、電動工具80の使用が可能となる。このように、電力貯蔵装置40Bを用いることにより、従来の電動工具の充電に比べて電動工具80の蓄電モジュール1Dを急速充電するための電力を大幅に増加させることができ、蓄電モジュール1Dを短時間でフル充電することが可能となる。これにより、電動工具80の充電業務の能率を高めることができ、電動工具80を用いた作業時間を短縮することが可能となる。
(実施の形態6)
 図13および図14は、本発明の実施の形態6を示しており、図1および図2の蓄電モジュール1を携帯用蓄電モジュール1Eとして利用した例を示している。図13に示す携帯用蓄電モジュール1Eの蓄電モジュール急速充電システム2Eは、携帯用蓄電モジュール1Eと電力貯蔵装置40Bとを備えている。携帯用蓄電モジュール1Eと電力貯蔵装置40Bは分離可能であり、例えば電力貯蔵装置40Bは室内の特定の場所に常時配置され、携帯用蓄電モジュール1Eのみが屋外への持ち運びが可能となっている。携帯用蓄電モジュール1Eは、例えば各種電気機器90に電力を供給する機能を有している。電力貯蔵装置40Bによる携帯用蓄電モジュール1Eの急速充電時には、携帯用蓄電モジュール1Eの入力端子Tは、電力貯蔵装置40Bの出力端子Tに対して電気的に接続される。また、携帯用蓄電モジュール1Eの急速充電時には、携帯用蓄電モジュール1Eの信号端子Tは、電力貯蔵装置40Bの信号端子Tに対して電気的に接続され、端子間を通る信号を介して急速充電の制御のための情報がやりとりされる。この信号端子Tと信号端子Tの接続は、例えば入力端子Tと出力端子Tの接続操作に連動して行われる。
 電力貯蔵装置40Bから分離された携帯用蓄電モジュール1Eは、屋外などへの持ち運びが可能であり、各種の電気機器90と電気的に接続可能となっている。電力貯蔵装置40Bから分離された携帯用蓄電モジュール1Eによる各種の電気機器90への電力供給に際しては、図13に示すように、電気機器90の入力端子Tは、携帯用蓄電モジュール1Eの出力端子Tに対して電気的に接続される。これにより、携帯用蓄電モジュール1Eから電気機器90に電力を供給することが可能となる。携帯用蓄電モジュール1Eによる電気機器90への電力の供給が終了すると、携帯用蓄電モジュール1Eと電気機器90は分離され、携帯用蓄電モジュール1Eは単独での持ち運びが可能となる。
 電気機器90の具体例としては、例えば空調服90Aなどがある。図14は、電気機器としての空調服90Aを示している。空調服90Aは、化学繊維を編み込んだ軽量な生地91から構成されており、前部側がチャック(図示略)によって開閉可能となっている。空調服90Aの下方両側部には、冷却ファン93がそれぞれ設けられている。冷却ファン93は、モーター92に印加される電圧の変化によって回転数が変化し、冷却のための空気の送風量が調整可能となっている。冷却ファン93をそれぞれ回転させるモーター92は、電気的に並列に接続されている。空調服90Aの生地91の表面側には、各モーター92に電力を供給するための入力端子94が設けられている。空調服90Aの入力端子94は、携帯用蓄電モジュール1Eの出力端子Tと接続可能となっている。携帯用蓄電モジュール1Eによる空調服90Aへの電力供給の際は、図13に示す携帯用蓄電モジュール1Eに設けられた出力切替スイッチ(図示略)が電力変換器15側に切替えられる。この状態では各冷却ファン93を回転駆動させるためのモーター92に供給される直流電力の電圧は、電力変換器15の制御によって段階的に調整可能となっている。この実施の形態6においては、モーター92に印加される電圧は例えば3種類に設定されており、電圧が高くなるほど冷却のための空気の送風量が増加するようになっている。ここでは、モーター92および冷却ファン93がそれぞれ2つある場合について説明したが、実施の形態6はこれらの個数に限定されず、実施の形態6は、モーター92および冷却ファン93が1つの場合にも、3つ以上の場合にも、モーター92と冷却ファン93の個数が異なる場合にも適用可能である。
(実施の形態7)
 図15は、本発明の実施の形態7を示している。図15に示す蓄電モジュール急速充電システム2Fは、1つの電力貯蔵装置40Bと複数の携帯用蓄電モジュール1Eを備えており、家庭や事務所の室内に配置されている。図15に示すように、電力貯蔵装置40Bの入力端子Tには、再生可能エネルギーによって発電された電力が入力されるようになっている。図15に示す例は、再生可能エネルギーとして太陽光を用いたものであり、太陽光によって発電することが可能な太陽電池パネル111が電力貯蔵装置40Bの入力端子Tに接続されているが、再生可能エネルギーとしては太陽光以外のものを用いてもよい。電力貯蔵装置40Bの出力側には、複数の出力端子Tが設けられており、複数の出力端子Tはそれぞれ並列に接続されている。この実施の形態7においては、出力端子Tは5つ設けられている。5つの出力端子Tには、携帯用蓄電モジュール1Eがそれぞれ接続可能となっている。図15に示すように、蓄電モジュール急速充電システム2Fでは、1つの電力貯蔵装置40Bで5つの携帯用蓄電モジュール1Eを同時に急速充電することが可能となっている。電力貯蔵装置40Bの第2の蓄電手段42は、5つの携帯用蓄電モジュール1Eを同時に急速充電することを考慮して、携帯用蓄電モジュール1Eの第1の蓄電手段10よりも蓄電容量が著しく大に設定されている。
 このように構成された実施の形態7においては、複数の携帯用蓄電モジュール1Eを同時に急速充電する際には、各携帯用蓄電モジュール1Eの入力端子Tが電力貯蔵装置40Bの複数の出力端子Tにそれぞれ接続される。この状態では、各携帯用蓄電モジュール1Eの出力端子Tには、電気機器90は接続されていない。そして、電力貯蔵装置40Bの出力端子Tを介して各携帯用蓄電モジュール1Eに純粋直流電力が出力されることにより、5つの携帯用蓄電モジュール1Eは、純粋直流電力の供給によって同時に急速充電される。このように、電力貯蔵装置40Bの第2の蓄電手段42は、携帯用蓄電モジュール1Eの第1の蓄電手段10よりも蓄電容量が著しく大に設定されているので、第2の蓄電手段42から出力される直流電力によって複数の携帯用蓄電モジュール1Eを同時に充電することが可能となり、充電業務の能率を高めることができる。
 複数の携帯用蓄電モジュール1Eの同時急速充電が終了すると、各携帯用蓄電モジュール1Eは、電力貯蔵装置40Bから分離され、屋外への持ち運びが可能となる。屋外に運び出された各携帯用蓄電モジュール1Eは、各種の電気機器90へ電力供給する際に使用される。ここで、各携帯用蓄電モジュール1Eには、図13に示すように、電力貯蔵装置40Bから直送される直流電力を第1の蓄電手段10の急速充電に適した電力に変換する第1の急速充電制御手段20が設けられているので、各携帯用蓄電モジュール1Eは最適な充電条件をもって急速充電されることになり、急速充電に対する安全性を確保することができ、かつ第1の蓄電手段10の寿命を高めることができる。また、携帯用蓄電モジュール1Eは、新品のものと経年使用のものでは第1の蓄電手段10の劣化度が異なるが、携帯用蓄電モジュール1Eにはそれぞれ第1の急速充電制御手段21が設けられているので、各携帯用蓄電モジュール1E毎に第1の蓄電手段10の劣化度に見合った最適の充電制御が行われることになり、急速充電の安全性が確保される。この実施の形態7においては、電力貯蔵装置40Bに貯蔵される電力は、再生可能エネルギーである太陽光によって発電された電力であるので、発電に際して二酸化炭素の排出を防止することができ、地球温暖化の抑制に寄与することができる。さらに、外部の電力貯蔵装置の第2の蓄電手段から直送される直流電力を利用して第1の蓄電手段の急速充電が可能となるので、家庭や事務所における屋内配線が過負荷となることが回避できるとともに、第1の蓄電手段を急速充電するための電力を大幅に増加させることができる。これにより、蓄電モジュールを短時間でフル充電することが可能となり、充電業務の能率を高めることができる。
 以上、この発明の実施の形態1ないし7を詳述してきたが、具体的な構成はこれらの実施の形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計の変更等があっても、この発明に含まれる。例えば実施の形態1ないし7では、窒化ガリウムパワー半導体として分極超接合を採用したものを説明したが、本発明のパワー半導体は、サファイア基板上に窒化ガリウムパワートランジスタを形成し、窒化ガリウムパワートランジスタの素子外面に、電力変換によって生ずる熱を放出させる放熱手段を備えたものであればよく、分極超接合を採用しないものであってもよい。さらに例えば実施の形態1ないし7では蓄電モジュールが冷却ユニットを備える構成のものを説明したが、本発明の蓄電モジュールは、冷却ユニットを備えないものであってもよい。例えば蓄電モジュールの外部に冷却ユニットを設けてもよく、蓄電モジュールで生じる熱が少ない場合には冷却ユニットを設けなくてもよい。さらに例えば、実施の形態1ないし7では、人工知能を備えたものを説明したが、本発明は、人工知能を備えていないものにも適用可能である。さらに例えば実施の形態1ないし7では、蓄電モジュールの出力がTを介した出力とTを介した出力という2種類の出力となっているが、本発明は、この構成には限定されず、一方のみの出力の構成であってもよい。さらに例えば電力の供給源として、実施の形態1ないし6では交流電源101を用い、実施の形態7では再生可能エネルギーを用いているが、本発明は、特定の電力の供給源には限定されず、実施の形態1ないし6で再生可能エネルギーを用い、実施の形態7で交流電源101を用いてもよい。さらに例えば電気機器90としては、上述の他にトランシーバなどの携帯通信機器、ドローン(無人航空機)、ロボット、農業機器なども含まれる。携帯用蓄電モジュール1Eは、例えば片手で持ち運べるサイズとしてもよいし、移動用車輪を備えたトランクサイズの大きさとしてもよい。
 1     蓄電モジュール
 1A    蓄電モジュール(電気自動車用蓄電モジュール)
 1B    蓄電モジュール(パーソナルコンピュータ用蓄電モジュール)
 1C    蓄電モジュール(スマートフォン用蓄電モジュール)
 1D    蓄電モジュール(電動工具用蓄電モジュール)
 1E    蓄電モジュール(携帯用蓄電モジュール)
 2A    蓄電モジュール急速充電システム(電気自動車急速充電システム)
 2B    蓄電モジュール急速充電システム(パソコン急速充電システム)
 2C    蓄電モジュール急速充電システム(スマートフォン急速充電システム)
 2D    蓄電モジュール急速充電システム(電動工具急速充電システム)
 2E    蓄電モジュール急速充電システム(携帯用蓄電装置急速充電システム)
 2F    蓄電モジュール急速充電システム
 10    第1の蓄電手段
 20    第1の急速充電制御手段
 23    パワー半導体
 231   窒化ガリウムパワートランジスタ
 23a   サファイア基板
 232   放熱手段
 26    人工知能
 30    冷却ユニット
 40A   電力貯蔵装置(電気自動車の急速充電用電力貯蔵装置)
 40B   電力貯蔵装置(電気機器の急速充電用電力貯蔵装置)
 42    第2の蓄電手段
 50    車両(電動式移動体)
 60    パーソナルコンピュータ(通信用移動体)
 70    スマートフォン(通信用移動体)
 80    電動工具
 90    電気機器
 90A   空調服

Claims (11)

  1.  第1の蓄電手段と、
     電力変換用のパワー半導体を有し、外部から供給される電力に対して電力変換を行って前記第1の蓄電手段の急速充電を行う第1の急速充電制御手段と、
     を備えた蓄電モジュールであって、
     前記パワー半導体は、サファイア基板と、前記サファイア基板上に形成された窒化ガリウムパワートランジスタとを備え、前記窒化ガリウムパワートランジスタの素子外面には、前記第1の急速充電制御手段における電力変換によって生ずる熱を放出させる放熱手段が接合されている、蓄電モジュール。
  2.  前記パワー半導体は、分極超接合を採用したパワー半導体である、請求項1に記載の蓄電モジュール。
  3.  前記放熱手段は、前記窒化ガリウムパワートランジスタの素子外面におけるソース領域とドレーン領域の少なくともいずれかに接続され、前記サファイア基板に対して遠ざかる方向に延びている、請求項1または2に記載の蓄電モジュール。
  4.  前記第1の急速充電制御手段は、前記第1の蓄電手段との一体設計によって前記第1の蓄電手段の充電特性を考慮した急速充電のための電圧および電流の制御が可能であるように構成されている、請求項1ないし3のいずれか1項に記載の蓄電モジュール。
  5.  前記第1の蓄電手段は、少なくともリチウムイオン電池と、電気二重層キャパシタと、リチウムイオンキャパシタのいずれかを含む、請求項1ないし4のいずれか1項に記載の蓄電モジュール。
  6.  前記第1の急速充電制御手段は、前記第1の蓄電手段の充電履歴に基づき前記第1の蓄電手段の充電条件を最適に制御する人工知能を有している、請求項1ないし5のいずれか1項に記載の蓄電モジュール。
  7.  前記第1の蓄電手段と前記第1の急速充電制御手段は、少なくとも車両を含む電動式移動体または携帯電話器を含む通信用移動体に組込まれるように構成されている、請求項1ないし6のいずれか1項に記載の蓄電モジュール。
  8.  前記第1の蓄電手段から出力される直流電力の電圧を調整して出力する電力変換器をさらに備える、請求項1ないし7のいずれか1項に記載の蓄電モジュール。
  9.  請求項1ないし8のいずれか1項に記載の蓄電モジュールと、
     前記蓄電モジュールと電気的に接続可能な第2の蓄電手段を有する電力貯蔵装置であって、前記蓄電モジュールが接続された状態では前記第2の蓄電手段から前記蓄電モジュールへの電力供給が可能なように構成されている電力貯蔵装置と、
    を備えた蓄電モジュール急速充電システム。
  10.  前記電力貯蔵装置の前記第2の蓄電手段は、前記第1の蓄電手段よりも蓄電容量が大であり、前記第2の蓄電手段から出力される直流電力によって複数の前記蓄電モジュールを同時に充電することが可能である、請求項9に記載の蓄電モジュール急速充電システム。
  11.  前記電力貯蔵装置に貯蔵される電力は、再生可能エネルギーによって発電された電力である、請求項9または10に記載の蓄電モジュール急速充電システム。
PCT/JP2017/040860 2016-11-15 2017-11-14 蓄電モジュールおよび蓄電モジュール急速充電システム WO2018092751A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/349,569 US20200185930A1 (en) 2016-11-15 2017-11-14 Electric storage module and electric storage module rapid charging system
JP2018551631A JPWO2018092751A1 (ja) 2016-11-15 2017-11-14 蓄電モジュールおよび蓄電モジュール急速充電システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-222441 2016-11-15
JP2016222441A JP2020017551A (ja) 2016-11-15 2016-11-15 蓄電モジュールおよび蓄電モジュール急速充電システム

Publications (1)

Publication Number Publication Date
WO2018092751A1 true WO2018092751A1 (ja) 2018-05-24

Family

ID=62146521

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/040860 WO2018092751A1 (ja) 2016-11-15 2017-11-14 蓄電モジュールおよび蓄電モジュール急速充電システム

Country Status (3)

Country Link
US (1) US20200185930A1 (ja)
JP (2) JP2020017551A (ja)
WO (1) WO2018092751A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020235500A1 (ja) * 2019-05-21 2020-11-26
WO2021200565A1 (ja) * 2020-03-31 2021-10-07 豊田合成株式会社 半導体素子および装置
WO2021200564A1 (ja) * 2020-03-31 2021-10-07 豊田合成株式会社 半導体素子および装置
US11923716B2 (en) 2019-09-13 2024-03-05 Milwaukee Electric Tool Corporation Power converters with wide bandgap semiconductors
JP7510642B2 (ja) 2020-03-31 2024-07-04 豊田合成株式会社 半導体素子および装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108598161B (zh) * 2018-04-29 2021-03-09 杭州电子科技大学 一种利用全固态电池实现的增强型iii-v hemt器件
WO2020068703A1 (en) * 2018-09-24 2020-04-02 Goal Zero Llc Link device for coupling energy storage devices having disparate chemistries
US11532403B2 (en) * 2019-10-11 2022-12-20 Open Platform Systems Llc Microcontroller for IoT GaN power devices and mesh network comprising one or more microcontroller controlled IoT GaN devices
US20220176839A1 (en) * 2020-12-09 2022-06-09 Ford Global Technologies, Llc Electrified vehicle charging station configured to provide parking guidance to electrified vehicles
JP7284923B2 (ja) 2021-04-09 2023-06-01 株式会社安川電機 エンコーダ、サーボモータ、サーボシステム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014230301A (ja) * 2013-05-17 2014-12-08 株式会社エネルギー応用技術研究所 急速充電用電力供給システム
WO2015159450A1 (ja) * 2014-04-18 2015-10-22 株式会社パウデック 半導体素子、電気機器、双方向電界効果トランジスタおよび実装構造体
WO2016125354A1 (ja) * 2015-02-03 2016-08-11 株式会社パウデック 半導体素子、電気機器、双方向電界効果トランジスタおよび実装構造体

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014230301A (ja) * 2013-05-17 2014-12-08 株式会社エネルギー応用技術研究所 急速充電用電力供給システム
WO2015159450A1 (ja) * 2014-04-18 2015-10-22 株式会社パウデック 半導体素子、電気機器、双方向電界効果トランジスタおよび実装構造体
WO2016125354A1 (ja) * 2015-02-03 2016-08-11 株式会社パウデック 半導体素子、電気機器、双方向電界効果トランジスタおよび実装構造体

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020235500A1 (ja) * 2019-05-21 2020-11-26
WO2020235500A1 (ja) * 2019-05-21 2020-11-26 株式会社ケーヒン 電力変換装置及び電気式駆動ユニット
JP7153137B2 (ja) 2019-05-21 2022-10-13 日立Astemo株式会社 電力変換装置及び電気式駆動ユニット
EP3975407A4 (en) * 2019-05-21 2023-06-07 Hitachi Astemo, Ltd. POWER CONVERSION DEVICE AND ELECTRICAL DRIVE UNIT
US11894789B2 (en) 2019-05-21 2024-02-06 Hitachi Astemo, Ltd. Power conversion device and electric drive unit
US11923716B2 (en) 2019-09-13 2024-03-05 Milwaukee Electric Tool Corporation Power converters with wide bandgap semiconductors
WO2021200565A1 (ja) * 2020-03-31 2021-10-07 豊田合成株式会社 半導体素子および装置
WO2021200564A1 (ja) * 2020-03-31 2021-10-07 豊田合成株式会社 半導体素子および装置
JP7510642B2 (ja) 2020-03-31 2024-07-04 豊田合成株式会社 半導体素子および装置

Also Published As

Publication number Publication date
JPWO2018092751A1 (ja) 2020-02-06
US20200185930A1 (en) 2020-06-11
JP2020017551A (ja) 2020-01-30

Similar Documents

Publication Publication Date Title
WO2018092751A1 (ja) 蓄電モジュールおよび蓄電モジュール急速充電システム
US10889205B2 (en) Thermal management system for vehicles with an electric powertrain
US9290101B2 (en) Power control unit for electric vehicle with converters cooled by surfaces of a cooling unit
EP1641067B1 (en) System for controlling temperature of a secondary battery module
US10688873B2 (en) Charging system for electric vehicles
JP5331666B2 (ja) 電動車両の冷却システム
US20120129020A1 (en) Temperature-controlled battery system ii
US20150229011A1 (en) Battery System and Motor Vehicle
US8803275B2 (en) Semiconductor device including power semiconductor element, branch line, and thermoelectric conversion element, and electrically powered vehicle
US20100072946A1 (en) Motor-driven travelling body and high-speed charge method for motor-driven travelling body
US20200295418A1 (en) Electric Vehicle Battery Pack Cooling System and Electric Vehicle Battery Pack System Cooling Method Using Same
US20090103341A1 (en) Integrated bi-directional converter for plug-in hybrid electric vehicles
US20140356666A1 (en) Battery case and vehicle
KR20070095220A (ko) 향상된 장착성을 갖는 다중 전력공급장치
CN107710548B (zh) 用于双向电流控制的电池系统和方法
CN106134062B (zh) 电动压缩机
JP2011078147A (ja) 車載電源装置
WO2017208710A1 (ja) 充電装置
CN102725157A (zh) 车辆的温度管理系统
US20120235640A1 (en) Energy management systems and methods
JP2020188644A (ja) 蓄電モジュールおよび蓄電モジュール搭載電気機器の急速充電ステーション
JP2001127475A (ja) 車両の電圧変換装置および冷却装置
KR101722043B1 (ko) 차량용 냉온 컵홀더 장치
JP2014150684A (ja) 車両用制御装置
WO2013118445A1 (ja) 電池パック

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17872240

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018551631

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 03/09/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17872240

Country of ref document: EP

Kind code of ref document: A1