WO2018092307A1 - 通信制御装置、料金収受システム、通信制御方法及びプログラム - Google Patents

通信制御装置、料金収受システム、通信制御方法及びプログラム Download PDF

Info

Publication number
WO2018092307A1
WO2018092307A1 PCT/JP2016/084443 JP2016084443W WO2018092307A1 WO 2018092307 A1 WO2018092307 A1 WO 2018092307A1 JP 2016084443 W JP2016084443 W JP 2016084443W WO 2018092307 A1 WO2018092307 A1 WO 2018092307A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication
antenna
signal
narrow area
received
Prior art date
Application number
PCT/JP2016/084443
Other languages
English (en)
French (fr)
Inventor
前田 孝士
聡 能崎
Original Assignee
三菱重工機械システム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工機械システム株式会社 filed Critical 三菱重工機械システム株式会社
Priority to JP2018550999A priority Critical patent/JP6748733B2/ja
Priority to MYPI2019001825A priority patent/MY194433A/en
Priority to PCT/JP2016/084443 priority patent/WO2018092307A1/ja
Priority to KR1020197011107A priority patent/KR102225730B1/ko
Priority to US16/336,330 priority patent/US10742351B2/en
Priority to GB1905424.6A priority patent/GB2570816B/en
Publication of WO2018092307A1 publication Critical patent/WO2018092307A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0036Systems modifying transmission characteristics according to link quality, e.g. power backoff arrangements specific to the receiver
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07BTICKET-ISSUING APPARATUS; FARE-REGISTERING APPARATUS; FRANKING APPARATUS
    • G07B15/00Arrangements or apparatus for collecting fares, tolls or entrance fees at one or more control points
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07BTICKET-ISSUING APPARATUS; FARE-REGISTERING APPARATUS; FRANKING APPARATUS
    • G07B15/00Arrangements or apparatus for collecting fares, tolls or entrance fees at one or more control points
    • G07B15/06Arrangements for road pricing or congestion charging of vehicles or vehicle users, e.g. automatic toll systems
    • G07B15/063Arrangements for road pricing or congestion charging of vehicles or vehicle users, e.g. automatic toll systems using wireless information transmission between the vehicle and a fixed station
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0108Measuring and analyzing of parameters relative to traffic conditions based on the source of data
    • G08G1/0116Measuring and analyzing of parameters relative to traffic conditions based on the source of data from roadside infrastructure, e.g. beacons
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/20Services signaling; Auxiliary data signalling, i.e. transmitting data via a non-traffic channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/44Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for communication between vehicles and infrastructures, e.g. vehicle-to-cloud [V2C] or vehicle-to-home [V2H]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/80Services using short range communication, e.g. near-field communication [NFC], radio-frequency identification [RFID] or low energy communication

Definitions

  • the present invention relates to a communication control device, a fee collection system, a communication control method, and a program.
  • ETC Electronic Toll Collection System (registered trademark), also called “automatic toll collection system” for automatic toll collection on toll roads is an application in the Intelligent Transport System (ITS). It is utilized as.
  • ITS Intelligent Transport System
  • tolls can be collected through narrow area wireless communication between a roadside antenna (narrow area communication antenna) installed at a toll booth and an on-board unit mounted on a vehicle.
  • the roadside antenna When communicating between the roadside antenna and the vehicle-mounted device, the roadside antenna communicates with a vehicle that is outside the narrow-band communication area specified for performing regular narrow-band wireless communication (miscommunication). There is a problem that can be made. For example, due to the reflection of radio waves at structures such as the ceiling of a toll gate, the roadside antenna is mistaken for an in-vehicle device of another vehicle that runs behind a vehicle (a vehicle that performs regular communication) that exists in a narrow communication area. Can communicate. There exists a technique which installs an electromagnetic wave absorption panel in a road structure with respect to such a subject (for example, refer patent documents 1).
  • the present invention provides a communication control device, a toll collection system, a communication control method, and a program that can suppress erroneous communication with a simple configuration.
  • the communication control apparatus (1a) includes a radio wave leakage monitoring area (Q2) defined in an area different from the narrow area communication area (Q1) that performs normal communication with the narrow area communication antenna (20).
  • the signal modification unit is controlled and transmitted from the narrow area communication antenna to the main control device.
  • the signal modification unit control unit controls the signal modification unit to transmit the received signal received from the narrow area communication antenna to the antenna controller 31. Is modified. Therefore, miscommunication with the vehicle-mounted device that does not exist in the narrow communication area can be suppressed with only the simple configuration described above.
  • the signal modification unit is a switch (320) that can select connection or disconnection of the communication wiring.
  • the signal modification unit control unit controls the signal modification unit that is a switch, and the received signal received from the narrow area communication antenna, Transmission to the antenna controller 31 can be at least partially blocked (modified).
  • the communication control device described above further includes a monitoring time setting unit (323) that sets a monitoring time according to the transmission timing of the transmission signal from the main control device, and the signal The modification unit control unit modifies the received signal when a radio wave is received by the erroneous communication preventing antenna within the monitoring time.
  • a monitoring time setting unit (323) that sets a monitoring time according to the transmission timing of the transmission signal from the main control device, and the signal The modification unit control unit modifies the received signal when a radio wave is received by the erroneous communication preventing antenna within the monitoring time.
  • the modification process by the signal modification unit control unit is limited to only within a period (monitoring time) in which the reception of the response signal with respect to the transmission signal is assumed. Therefore, it is possible to suppress malfunction of the communication control apparatus due to reception of disturbance radio waves or the like by the erroneous communication preventing antenna.
  • the signal modification unit control unit receives the radio communication when the erroneous communication preventing antenna receives a radio wave having the same frequency as the frequency of the radio wave transmitted by the narrow area communication antenna. Alter the signal. By doing in this way, when narrow-range communication is performed at different frequencies for different lanes, erroneous communication with vehicles traveling in other lanes can be suppressed.
  • the narrow-area communication antenna is installed so as to be able to receive radio waves transmitted from the narrow-area communication area defined in the lane on the overhead, and the erroneous communication preventing antenna is The radio wave transmitted from the radio wave leakage monitoring area defined in the lane under the overpass is installed so as to be receivable.
  • One aspect of the present invention is the above-described communication control device, the narrow-area communication antenna, and the main control device, and an antenna controller that performs toll collection communication via the narrow-area communication antenna; Is a toll collection system.
  • one embodiment of the present invention is an erroneous communication preventing antenna capable of receiving radio waves transmitted from a radio wave leakage monitoring area defined in an area different from a narrow area communication area that performs regular communication with a narrow area communication antenna.
  • a communication control method using a signal modification unit provided on a communication wiring between the narrow area communication antenna and the main control device, and modifying a received signal received from the narrow area communication antenna In the communication control method, the method includes a step of controlling the signal modifying unit to modify a received signal transmitted from the narrow area communication antenna to a main control device when radio waves are received by a communication preventing antenna.
  • one embodiment of the present invention is an erroneous communication preventing antenna capable of receiving radio waves transmitted from a radio wave leakage monitoring area defined in an area different from a narrow area communication area that performs regular communication with a narrow area communication antenna.
  • a communication control device provided on a communication wiring between the narrow-area communication antenna and the main control device, and a signal modifying unit that modifies a received signal received from the narrow-area communication antenna.
  • toll collection system toll collection system, communication control method and program
  • erroneous communication can be suppressed with a simple configuration.
  • FIG. 1 is a diagram illustrating an overall configuration of a toll collection system according to the first embodiment.
  • the toll collection system 1 according to the first embodiment performs narrow area wireless communication for toll collection (hereinafter also simply referred to as “narrow area communication”) with a vehicle traveling in a lane, and the vehicle This is a fee collection system that performs electronic payment (fee collection processing) without stopping.
  • Such a toll collection system 1 is provided, for example, at an entrance toll gate, an exit toll gate or the like on a toll road such as an expressway. As shown in FIG.
  • the fare collection system 1 has a plurality of lanes L adjacent to each other, and the vehicle A that is going to pass through the entrance toll gate (exit toll gate) is one of the lanes L. Drive on. Further, a roof CA is provided at the entrance toll gate (exit toll gate) where the fee collection system 1 is installed.
  • the toll collection system 1 includes a vehicle detector 10, a narrow area communication antenna 20, an erroneous communication prevention antenna 21, and a lane control device 30.
  • An antenna controller 31 and an IF box (interface box) 32 are provided inside the lane control device 30.
  • the communication control device 1 a includes an erroneous communication preventing antenna 21 and an IF box 32.
  • the vehicle detector 10 is provided on the island I on the upstream side ( ⁇ X direction side) of the lane L, and detects whether or not the vehicle has entered the lane L.
  • the narrow area communication antenna 20 is an antenna for performing narrow area communication between a lane control device 30 (antenna controller 31) to be described later and the vehicle-mounted device A1 mounted on the vehicle A.
  • the narrow area communication antenna 20 is attached to a support member (a gantry, a pole, etc.) and arranged in each of the plurality of lanes L.
  • Each narrow area communication antenna 20 performs narrow area communication for the vehicle A traveling in each lane L.
  • the directivity of radio waves that can be transmitted and received is designed in advance so that the narrow area communication antenna 20 can perform narrow area communication with the vehicle A existing in the narrow area communication area Q1 in the lane L. Yes.
  • the erroneous communication preventing antenna 21 is used for controlling communication between the narrow area communication antenna 20 and the antenna controller 31 in an IF box 32 described later.
  • the erroneous communication preventing antenna 21 is a reception-only antenna.
  • the miscommunication prevention antenna 21 is designed in advance so that it can receive radio waves from the vehicle A (vehicle-mounted device A1) existing within the radio wave leakage monitoring area Q2 in the lane L.
  • the radio wave leakage monitoring area Q2 is defined to be an area different from the narrow area communication area Q1.
  • the lane control device 30 is installed on the island I for each lane L.
  • the lane control device 30 controls the entire toll collection process in the toll collection system 1.
  • the antenna controller 31 of the lane control device 30 performs narrow-area communication with respect to the vehicle A with the vehicle-mounted device A1 mounted on the vehicle A traveling on the lane L through the narrow-area communication antenna 20.
  • the lane control device 30 detects the entry of the vehicle A into the lane L via the vehicle detector 10
  • the lane control device 30 transmits radio waves through the narrow-area communication antenna 20 to start narrow-area communication with the vehicle A. send.
  • FIG. 2 is a diagram illustrating a functional configuration of the fee collection system according to the first embodiment.
  • the lane control device 30 includes an antenna controller 31 and an IF box 32.
  • the antenna controller 31 is a main control device provided inside the lane control device 30, and performs toll collection communication with the vehicle-mounted device A ⁇ b> 1 via the narrow area communication antenna 20.
  • the antenna controller 31 outputs an FCMC signal (frame control message channel signal) D1 toward the narrow area communication antenna 20 at a timing when a vehicle detection signal from the vehicle detector 10 (not shown in FIG. 2) is received.
  • FCMC signal frame control message channel signal
  • the ACTC signal D2 activation
  • the ACTC signal D2 includes an identification number (vehicle equipment number) uniquely assigned to the vehicle equipment A1.
  • the FCMC signal D1 and the ACTC signal D2 are signals stipulated in the ARIB (Association of Radio Industries and Businesses) standard, which is a standard communication standard of a dedicated short-range communication (DSRC) system. .
  • the FCMC signal D1 (radio wave) transmitted from the narrow area communication antenna 20 is normally received by the vehicle-mounted device A1-1 present in the narrow area communication area Q1.
  • the on-vehicle device A1-1 receives the FCMC signal D1 transmitted from the narrow area communication antenna 20, it transmits an ACTC signal D2 (radio wave) in response thereto.
  • the ACTC signal D2 transmitted from the vehicle-mounted device A1-1 is received by the narrow area communication antenna 20.
  • the ACTC signal D ⁇ b> 2 received by the narrow area communication antenna 20 propagates through the communication wiring connecting the narrow area communication antenna 20 and the antenna controller 31 and is received by the antenna controller 31.
  • the FCMC signal D1 transmitted from the narrow area communication antenna 20 is also transmitted outside the narrow area communication area Q1 (radio wave leakage monitoring area Q2) through reflection of the roof CA or the like. Therefore, the FCMC signal D1 can also be received by the vehicle-mounted device A1-2 existing in the radio wave leakage monitoring area Q2.
  • the vehicle-mounted device A1-2 receives the FCMC signal D1 (radio wave) transmitted from the narrow area communication antenna 20, the vehicle-mounted device A1-2 transmits the ACTC signal D2 (radio wave) as with the vehicle-mounted device A1-1.
  • the ACTC signal D2 transmitted from the vehicle-mounted device A1-2 is received by the narrow area communication antenna 20.
  • the ACTC signal D2 transmitted by the vehicle-mounted device A1-2 is also received by the erroneous communication preventing antenna 21.
  • the IF box 32 includes a CPU 32 a and a switch 320.
  • the CPU 32 a is a processor that controls the operation of the entire IF box 32.
  • the CPU 32a exhibits various functions by operating according to the read predetermined program. The function of the CPU 32a will be described later.
  • the switch 320 is provided on a communication wiring that connects the narrow area communication antenna 20 and the antenna controller 31, and functions as a signal modification unit that modifies the received signal received from the narrow area communication antenna 20. More specifically, the switch 320 is a switch that can switch connection and disconnection of communication wiring between the narrow area communication antenna 20 and the antenna controller 31.
  • the switch 320 may be a switch realized by hardware or a switch realized by software.
  • the CPU 32a functions as a reception signal monitoring unit 321, a signal modification unit control unit 322, and a monitoring time setting unit 323.
  • the reception signal monitoring unit 321 monitors the reception signal received from the miscommunication prevention antenna 21 and determines whether or not radio waves have been received by the miscommunication prevention antenna 21.
  • the signal modification unit control unit 322 controls the switch 320 when a radio wave is received by the erroneous communication preventing antenna 21, and receives a received signal (narrow region communication antenna) transmitted from the narrow region communication antenna 20 to the antenna controller 31.
  • the received signal received by 20 is modified. Specifically, the signal modification unit control unit 322 disconnects the communication wiring by opening the switch 320 and causes at least a part of the reception signal transmitted from the narrowband communication antenna 20 to the antenna controller 31 to be lost. .
  • the monitoring time setting unit 323 sets the monitoring time according to the transmission timing of the transmission signal (FCMC signal D1) from the antenna controller 31.
  • FIG. 3 is a first diagram illustrating the operation of the communication control apparatus according to the first embodiment.
  • FIG. 3 is a schematic view of the lane L as seen from the side, and shows an example in which erroneous communication occurs.
  • the FCMC signal D1 transmitted from the narrow area communication antenna 20 reflects the road surface of the lane L and the roof CA, and does not exist in the narrow area communication area Q1 (in the radio wave leakage monitoring area Q2). Can be received by the vehicle-mounted device A1 of the vehicle A. In this case, the vehicle-mounted device A1 transmits an ACTC signal D2 according to the received FCMC signal D1.
  • the ACTC signal D2 transmitted from the vehicle-mounted device A1 reflects the roof CA and the road surface of the lane L, and is received by the narrow area communication antenna 20, like the FCMC signal D1.
  • the narrow area communication antenna 20 cannot distinguish whether the received ACTC signal D2 is transmitted from within the narrow area communication area Q1 or from outside the narrow area communication area Q1. Therefore, in this state, erroneous communication with the vehicle A existing outside the narrow communication area Q1 may occur.
  • the miscommunication prevention antenna 21 is disposed so as to be able to receive radio waves transmitted from the radio wave leakage monitoring area Q2. Therefore, as shown in FIG. 3, the erroneous communication preventing antenna 21 receives the ACTC signal D2 transmitted from the vehicle-mounted device A1 existing in the radio wave leakage monitoring region Q2.
  • FIG. 4 is a diagram for explaining operations of the antenna controller and the vehicle-mounted device according to the first embodiment.
  • FIG. 4 shows a timing chart of the FCMC signal D1 transmitted from the antenna controller 31 toward the onboard device A1 and the ACTC signal D2 transmitted from the onboard device A1 toward the antenna controller 31.
  • the outline of the narrow area communication performed between the antenna controller 31 and the vehicle-mounted device A1 will be described with reference to FIG.
  • the antenna controller 31 is present in the narrow area communication area Q1 by repeatedly transmitting the FCMC signal D1 at a constant period toward the narrow area communication area Q1 (FIGS. 1 and 2).
  • the vehicle-mounted device A1 that has received the FCMC signal D1 corresponds to any one of six channels (channels C1 to C6 shown in FIG. 4) defined in advance for different periods.
  • the ACTC signal D2 is transmitted by radio waves.
  • the timing (channels C1 to C6) at which the vehicle-mounted device A1 transmits the ACTC signal D2 is selected at random every transmission.
  • the timing (channels C1 to C6) at which the vehicle-mounted device A1 outputs (transmits) the ACTC signal D2 is defined with reference to the time tf when the antenna controller 31 outputs the FCMC signal D1.
  • the on-board device A1 transmits the ACTC signal D2 between a time ta1 when a predetermined time width ⁇ t1 has elapsed from the time tf and a time ta2 when a predetermined time width ⁇ t2 has elapsed from the time ta1. To be done.
  • 5 and 6 are a second diagram and a third diagram illustrating the operation of the communication control apparatus according to the first embodiment.
  • 5 and 6 show the Up-Link side (transmission side) signal of the antenna controller 31, the Down-Link side (reception side) signal of the antenna controller 31, the transmission signal of the vehicle-mounted device A1, and the erroneous communication preventing antenna 21.
  • 5 is a timing chart showing the received signal and the ON / OFF state of the switch 320.
  • FIG. FIG. 5 shows a case where the narrow area communication antenna 20 receives a transmission signal (ACTC signal D2) transmitted from the vehicle A (onboard unit A1-1 (see FIG. 2)) existing in the narrow area communication area Q1. The timing chart is shown.
  • FIG. 6 shows a timing chart when the narrow area communication antenna 20 receives a transmission signal transmitted from the vehicle A (onboard unit A1-2 (see FIG. 2)) existing in the radio wave leakage monitoring area Q2. ing.
  • ACTC signal D2 transmission signal
  • FIG. 6 shows a timing chart when the
  • the antenna controller 31 outputs the FCMC signal D1 at time tf (see the antenna controller 31 (Up-Link) in FIG. 5).
  • the monitoring time setting unit 323 (CPU 32a) of the IF box 32 sets the monitoring time using the output of the FCMC signal D1 by the antenna controller 31 as a trigger. Specifically, the monitoring time setting unit 323 sets the time (time ta1 to time ta2) expected to receive the response signal (ACTC signal D2) to the FCMC signal D1 output at time tf as “monitoring time”. To do.
  • the FCMC signal D ⁇ b> 1 output from the antenna controller 31 is transmitted as a radio wave through the narrow area communication antenna 20.
  • the vehicle-mounted device A1-1 present in the narrow area communication area Q1 receives the FCMC signal D1 transmitted from the narrow area communication antenna 20.
  • the vehicle-mounted device A1-1 transmits an ACTC signal D2 in response to the reception of the FCMC signal D1.
  • the vehicle-mounted device A1-1 transmits the ACTC signal D2 during the channel C2.
  • the ACTC signal D2 transmitted from the vehicle-mounted device A1-1 is received by the narrow area communication antenna 20.
  • the ACTC signal D2 transmitted by the vehicle-mounted device A1-1 is used for preventing erroneous communication. It is not received by the antenna 21.
  • the reception signal monitoring unit 321 (CPU 32a) of the IF box 32 determines whether or not radio waves are received by the erroneous communication preventing antenna 21.
  • the erroneous communication preventing antenna 21 does not receive radio waves within the monitoring time. Therefore, the reception signal monitoring unit 321 does not detect reception of radio waves by the erroneous communication preventing antenna 21 within the monitoring time.
  • the signal modification unit control unit 322 (CPU 32a) of the IF box 32 always closes the switch 320 during the monitoring time. That is, the connection of the communication wiring between the antenna controller 31 and the narrow area communication antenna 20 is always maintained within the monitoring time. Accordingly, as shown in FIG. 5, the ACTC signal D2 received by the narrow area communication antenna 20 is received as it is by the antenna controller 31 (see the antenna controller 31 (Down-Link) in FIG. 5). Through the processing flow as described above, the antenna controller 31 can perform regular narrow-area communication with the vehicle A (the vehicle-mounted device A1-1) existing in the narrow-area communication area Q1.
  • the antenna controller 31 outputs the FCMC signal D1 at time tf (see antenna controller 31 (Up-Link) in FIG. 6).
  • the monitoring time setting unit 323 sets the monitoring time using the output of the FCMC signal D1 from the antenna controller 31 as a trigger.
  • the monitoring time setting unit 323 sets the time (time ta1 to time ta2) at which the ACTC signal D2 corresponding to the FCMC signal D1 output at time tf is expected to be received as “monitoring time”.
  • the FCMC signal D1 output from the antenna controller 31 is transmitted as a radio wave through the narrow area communication antenna 20.
  • the in-vehicle device A1-2 present in the radio wave leakage monitoring area Q2 normally does not receive the FCMC signal D1 transmitted from the narrow area communication antenna 20.
  • the vehicle-mounted device A1-2 that does not exist in the narrow communication area Q1 may receive the FCMC signal D1 through reflection on the road surface of the lane L and the roof CA.
  • the vehicle-mounted device A1-2 transmits an ACTC signal D2 in response to receiving the FCMC signal D1.
  • the vehicle-mounted device A1-2 transmits an ACTC signal D2 during the channel C2.
  • FIG. 1 the vehicle-mounted device A1-2 transmits an ACTC signal D2 during the channel C2.
  • the ACTC signal D2 transmitted from the vehicle-mounted device A1-2 reflects the road surface of the roof CA and the lane L in the same manner as the FCMC signal D1 transmitted from the narrow area communication antenna 20, and narrow area communication is performed. Received by the antenna 20. Further, since the vehicle-mounted device A1-2 exists in the radio wave leakage monitoring area Q2, the ACTC signal D2 transmitted by the vehicle-mounted device A1-2 is also received by the erroneous communication preventing antenna 21.
  • the miscommunication prevention antenna 21 receives radio waves within the monitoring time. Therefore, the reception signal monitoring unit 321 determines that the radio wave is received by the erroneous communication preventing antenna 21.
  • the signal modification unit control unit 322 (CPU 32a) of the IF box 32 opens the switch 320 (transition from ON to OFF) at the timing (time ts) when the reception signal monitoring unit 321 detects the reception signal. That is, the connection of the communication wiring between the antenna controller 31 and the narrow area communication antenna 20 is cut off at the timing (time ts) when the reception signal by the erroneous communication preventing antenna 21 is detected. As a result, as shown in FIG. 6, the ACTC signal D2 received by the narrow area communication antenna 20 is not transmitted to the antenna controller 31 after the time ts (antenna controller 31 (Down-Link) in FIG. 6). reference).
  • the antenna controller 31 does not continue normal narrowband communication with respect to the ACTC signal D2 that is partially lost (modified). Due to the above processing flow, the antenna controller 31 does not properly receive the ACTC signal D2 transmitted by the vehicle A (vehicle-mounted device A1-2) existing in the radio wave leakage monitoring area Q2, so the vehicle-mounted device A1-2. Narrow-area communication is not established with
  • the communication control device 1a includes the erroneous communication preventing antenna 21 that can receive the radio wave transmitted from the radio wave leakage monitoring region Q2, the narrow communication antenna 20, and the antenna controller 31.
  • the switch 320 provided on the communication wiring and capable of blocking at least a part of the received signal received from the narrow area communication antenna 20 and the erroneous communication preventing antenna 21, the switch 320 is And a signal modification unit control unit 322 that controls and blocks a reception signal transmitted from the narrow area communication antenna 20 to the erroneous communication prevention antenna 21.
  • the miscommunication preventing antenna 21 may have a simple configuration that can determine whether or not radio waves are received from the vehicle-mounted device A1, or may be dedicated to reception.
  • the IF box 32 (signal modification unit control unit 322) uses only the determination result of “whether or not a radio wave is received by the erroneous communication preventing antenna 21” as the determination criterion for connection / disconnection by the switch 320. Processing is extremely simple.
  • the communication control device 1a further includes a monitoring time setting unit 323 that sets a monitoring time according to the transmission timing of the transmission signal (FCMC signal D1) from the antenna controller 31. Then, the signal modification unit control unit 322 blocks the reception signal (ACTC signal D2) when a radio wave is received by the miscommunication prevention antenna within the monitoring time set by the monitoring time setting unit 323. By doing so, the modification (blocking) processing of the ACTC signal D2 according to the reception of the radio wave by the erroneous communication preventing antenna 21 is limited to only within the period during which the ACTC signal D2 is received with respect to the FCMC signal D1.
  • the erroneous communication preventing antenna 21 is assumed to receive disturbance radio waves regardless of the narrow area communication in the toll collection system 1. Even when the miscommunication prevention antenna 21 receives such disturbance radio waves, if the reception timing of the disturbance radio waves is outside the monitoring time (time ta1 to time ta2 (see FIG. 4)), the signal modification is performed. The unit control unit 322 does not perform the communication wiring blocking process. Therefore, it is possible to suppress a malfunction in which the reception signal (ACTC signal D2) is unexpectedly blocked due to the reception of an unexpected radio wave such as a disturbance radio wave.
  • the reception signal ACTC signal D2
  • the switch 320 is an aspect of a “signal modification unit” that modifies the reception signal (ACTC signal D2) received from the narrow area communication antenna 20, and is not limited to the aspect of the switch 320. That is, any mode may be used as long as the modified received signal (ACTC signal D2) is modified to such an extent that the antenna controller 31 cannot recognize it as a received signal.
  • the signal modification unit may be configured to detect the CRC error in the antenna controller 31 by modifying the cyclic redundancy check signal (CRC) included on the rear side of the ACTC signal D2. In this case, when the antenna controller 31 detects a CRC error when receiving the ACTC signal D2, the antenna controller 31 does not perform normal narrowband communication.
  • CRC cyclic redundancy check signal
  • the erroneous communication preventing antenna 21 may be configured to include a radio wave detection circuit configured by combining known amplification circuits, detection circuits, and the like.
  • the reception signal monitoring unit 321 is configured to receive a reception signal from the narrow area communication antenna 20 via the radio wave detection circuit.
  • FIG. 7 is a diagram illustrating an overall configuration of a fee collection system according to the second embodiment.
  • the toll collection system 1 according to the second embodiment is provided in each of the lane L1 and the lane L2.
  • Each toll collection system 1 includes a vehicle detector 10, a narrow area communication antenna 20, an erroneous communication prevention antenna 21, and a lane control device 30, as in the first embodiment. Similar to the first embodiment, an antenna controller 31 and an IF box 32 are provided inside the lane control device 30.
  • the communication control device 1a includes an erroneous communication preventing antenna 21 and an IF box 32.
  • the narrow area communication antenna 20 of the toll collection system 1 installed in the lane L1 uses the narrow area communication area Q1 defined on the lane L1 as a regular communication target. Further, the narrow area communication antenna 20 of the toll collection system 1 installed in the lane L2 uses the narrow area communication area Q1 defined on the lane L2 as a regular communication target.
  • the antenna controller 31 of the toll collection system 1 installed in the lane L1 performs narrow area communication using radio waves of a predetermined A channel frequency (hereinafter referred to as “Ach”).
  • the antenna controller 31 of the toll collection system 1 installed in the lane L2 performs narrow area communication using radio waves having a B channel frequency (hereinafter referred to as “Bch”) different from Ach.
  • the erroneous communication preventing antenna 21 of the toll collection system 1 installed in the lane L1 has a radio wave leakage monitoring area Q2 defined on the lane L2 as a radio wave communicable range as shown in FIG. Is done.
  • the IF box 32 (reception signal monitoring unit 321) of the toll collection system 1 installed in the lane L1 detects only reception of Ach radio waves by the erroneous communication preventing antenna 21, and does not detect reception of Bch radio waves. .
  • the erroneous communication prevention antenna 21 receives a radio wave (ACTC signal D2) having the same frequency as the radio wave (FCMC signal D1) transmitted from the narrow area communication antenna 20. In this case, it is determined that the ACTC signal D2 has been received.
  • the operation of the communication control device 1a according to the second embodiment will be described with reference to FIG.
  • a vehicle A ′ traveling on the lane L1 (a vehicle not equipped with the vehicle-mounted device A1) enters the vehicle detection position of the vehicle detector 10 provided on the road side of the lane L1.
  • the vehicle detector 10 outputs a vehicle detection signal to the antenna controller 31 on the lane L1 side.
  • the antenna controller 31 on the lane L1 side transmits an Ach radio wave (FCMC signal D1) through the narrow area communication antenna 20 at the timing when the vehicle A ′ is detected.
  • FCMC signal D1 Ach radio wave
  • the response of the ACTC signal D2 is not performed.
  • the vehicle A including the vehicle-mounted device A1 is traveling on the lane L2 at the timing when the FCMC signal D1 (Ach) is transmitted from the narrow area communication antenna 20 on the lane L1 side.
  • the vehicle A traveling in the lane L2 has not yet passed through the vehicle detector 10 in the lane L2 at the timing when the narrow area communication antenna 20 in the lane L1 transmits the FCMC signal D1 (Ach). Therefore, the vehicle-mounted device A1 of the vehicle A traveling in the lane L2 has not started narrow-area communication (communication by Bch) with the antenna controller 31 on the lane L2 side.
  • the vehicle-mounted device A1 of the vehicle A traveling in the lane L2 receives the FCMC signal D1 (Ach) transmitted from the narrow area communication antenna 20 on the adjacent lane L1 side, and in response to this, the ACTC signal D2 ( Ach). Then, the narrow area communication antenna 20 on the lane L1 side receives the ACTC signal D2 (Ach) from the vehicle A (onboard unit A1) traveling on the lane L2. Thereby, erroneous communication may occur in the toll collection system 1 on the lane L1 side.
  • the erroneous communication preventing antenna 21 on the lane L1 side can receive radio waves from the radio wave leakage monitoring area Q2 defined on the lane L2. Therefore, the erroneous communication preventing antenna 21 receives the ACTC signal D2 (Ach) transmitted from the vehicle-mounted device A1 existing on the lane L2 (in the radio wave leakage monitoring area Q2). Therefore, the ACTC signal D2 (Ach) transmitted from the vehicle-mounted device A1 of the vehicle A traveling on the lane L2 based on the reception signal blocking function by the IF box 32 according to the second embodiment is not transmitted to the antenna controller 31. .
  • the reception signal blocking function by the IF box 32 (switch 320, reception signal monitoring unit 321, signal modification unit control unit 322, and monitoring time setting unit 323) according to the second embodiment is described in the first embodiment. (Refer to FIG. 5 and FIG. 6), and detailed description is omitted.
  • works an adjacent lane can be suppressed.
  • the reception signal monitoring unit 321 of the toll collection system 1 on the lane L1 side detects reception of radio waves only when the radio wave (ACTC signal D2) received by the miscommunication prevention antenna 21 is Ach. Therefore, the regular narrow-band communication (that is, narrow-band communication performed using the Bch radio wave) performed between the antenna controller 31 on the lane L2 side and the vehicle A traveling on the lane L2 is an error on the lane L1 side. Even if it is received by the communication preventing antenna 21, the narrow area communication in the toll collection system 1 on the lane L1 side is not interrupted.
  • FIG. 8 is a diagram illustrating an overall configuration of a fee collection system according to the third embodiment.
  • the toll collection system 1 according to the third embodiment is provided in the vicinity of the viaduct B.
  • the toll collection system 1 includes a vehicle detector 10, a narrow area communication antenna 20, an erroneous communication prevention antenna 21, and a lane control device 30, as in the first embodiment. Similar to the first embodiment, an antenna controller 31 and an IF box 32 are provided inside the lane control device 30.
  • the communication control device 1a includes an erroneous communication preventing antenna 21 and an IF box 32.
  • the narrow area communication antenna 20 is installed so as to be able to receive radio waves transmitted from the narrow area communication area Q1 defined in the lane L1 on the viaduct B.
  • the erroneous communication preventing antenna 21 is installed so as to be able to receive radio waves transmitted from the radio wave leakage monitoring area Q2 defined in the lane L2 under the viaduct B.
  • a vehicle detector 10 for example, FIG. 8 shows a vehicle A ′ (a vehicle not equipped with the vehicle-mounted device A1) traveling on the elevated lane L1 provided on the road side of the lane L1. It is assumed that the vehicle has entered the vehicle detection position (not shown). At this time, the vehicle detector 10 outputs a vehicle detection signal to the antenna controller 31.
  • the antenna controller 31 transmits a radio wave (FCMC signal D1) through the narrow area communication antenna 20 at the timing when the vehicle A ′ is detected.
  • FCMC signal D1 radio wave
  • the vehicle A including the vehicle-mounted device A1 is traveling on the lane L2 under the overhead at the timing when the FCMC signal D1 is transmitted from the narrow area communication antenna 20.
  • the vehicle A traveling on the lane L2 exists under the overpass, the vehicle A is in a positional relationship capable of receiving the FCMC signal D1 from the overpass.
  • the vehicle-mounted device A1 of the vehicle A traveling in the lane L2 under the overhead receives the FCMC signal D1 transmitted from the narrow-area communication antenna 20 on the overhead, and transmits the ACTC signal D2 in response thereto.
  • the narrow area communication antenna 20 receives the ACTC signal D2 from the vehicle A (onboard unit A1) traveling on the lane L2. Thereby, erroneous communication may occur in the fee collection system 1.
  • the erroneous communication preventing antenna 21 can receive radio waves from the radio wave leakage monitoring area Q2 defined on the lane L2 under the overhead. Therefore, the miscommunication preventing antenna 21 receives the ACTC signal D2 transmitted from the vehicle-mounted device A1 existing on the lane L2 under the overhead (in the radio wave leakage monitoring area Q2). Therefore, the ACTC signal D2 transmitted from the vehicle-mounted device A1 of the vehicle A traveling in the lane L2 and received by the narrow area communication antenna 20 is at least partially blocked by the IF box 32 according to the third embodiment, and the antenna It is not transmitted to the controller 31.
  • the ACTC signal D2 cutoff processing by the IF box 32 (the switch 320, the received signal monitoring unit 321, the signal modification unit control unit 322, and the monitoring time setting unit 323) according to the third embodiment is the first Since it is the same as that of embodiment (refer FIG. 5, FIG. 6), detailed description is abbreviate
  • works a lane under an overhead can be suppressed.
  • a program for realizing various functions of the IF box 32 (CPU 32a) is recorded on a computer-readable recording medium, and the program recorded on the recording medium is read into a computer system.
  • the various processes are performed by executing.
  • the various processes of the IF box 32 described above are stored in a computer-readable recording medium in the form of a program, and the above-described various processes are performed by the computer reading and executing the program.
  • the computer-readable recording medium is a magnetic disk, a magneto-optical disk, a CD-ROM, a DVD-ROM, a semiconductor memory, or the like.
  • the computer program may be distributed to the computer via a communication line, and the computer that has received the distribution may execute the program.
  • the IF box 32 is not limited to a mode in which various functional configurations are housed in a single device housing, and the various functional configurations of the IF box 32 are provided over a plurality of devices connected via a network. An aspect may be sufficient.
  • toll collection system toll collection system, communication control method and program
  • erroneous communication can be suppressed with a simple configuration.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Business, Economics & Management (AREA)
  • Finance (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Devices For Checking Fares Or Tickets At Control Points (AREA)
  • Traffic Control Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

通信制御装置(1a)は、狭域通信アンテナ(20)と正規の通信を行う狭域通信領域(Q1)とは異なる領域に規定された電波漏洩監視領域(Q2)から発信された電波を受信可能な誤通信防止用アンテナ(21)と、狭域通信アンテナ(20)とアンテナコントローラ(31)との通信用配線上に設けられ、当該狭域通信アンテナ(20)から受信した受信信号を改変する信号改変部と、誤通信防止用アンテナ(21)によって電波が受信された場合に、狭域通信アンテナ(20)からアンテナコントローラ(31)へ伝送される受信信号を改変させる信号改変部制御部と、を備えている。

Description

通信制御装置、料金収受システム、通信制御方法及びプログラム
 本発明は、通信制御装置、料金収受システム、通信制御方法及びプログラムに関する。
 有料道路の自動料金収受を目的とした電子式料金収受システム(ETC:Electronic Toll Collection System(登録商標)、「自動料金収受システム」とも言う)は、高度交通システム(ITS:Intelligent Transport System)におけるアプリケーションとして活用されている。この電子式料金収受システムによれば、料金所に設置された路側アンテナ(狭域通信アンテナ)と、車両に搭載した車載器との間の狭域無線通信を通じて有料道路の料金を収受できる。
 路側アンテナと車載器との間で通信を行う場合、路側アンテナが、正規の狭域無線通信を行うために規定された狭域通信領域の外に位置する車両と想定外の通信(誤通信)がなされ得る、という問題がある。例えば、料金所の天井などの構造物における電波の反射により、路側アンテナは、狭域通信領域内に存在する車両(正規の通信を行う車両)の後方を走行する別の車両の車載器と誤通信し得る。
 このような課題に対して、路上構造物に電波吸収パネルを設置する技術がある(例えば、特許文献1参照)。
特開2001-068925号公報
 しかしながら、料金所の構造物に対して電波吸収パネルを設置する場合、対象となる構造物の全てに対して電波吸収パネルを設置するためには膨大なコストがかかる。また、この場合、電波吸収パネルの落下防止のための保守メンテナンス費用も増加する。
 上記課題に鑑みて、本発明は、簡素な構成で誤通信を抑制可能な通信制御装置、料金収受システム、通信制御方法及びプログラムを提供する。
 本発明の一態様に係る通信制御装置(1a)は、狭域通信アンテナ(20)と正規の通信を行う狭域通信領域(Q1)とは異なる領域に規定された電波漏洩監視領域(Q2)から発信された電波を受信可能な誤通信防止用アンテナ(21)と、前記狭域通信アンテナと主制御装置(31)との通信用配線上に設けられ、当該狭域通信アンテナから受信した受信信号を改変する信号改変部(320)と、前記誤通信防止用アンテナによって電波が受信された場合に、前記信号改変部を制御して、前記狭域通信アンテナから前記主制御装置へ伝送される前記受信信号を改変させる信号改変部制御部(322)と、を備えている。
 このようにすることで、主制御装置が正規の通信を行うべきでない車載器から電波が発信された場合に、その電波が誤通信防止用アンテナによって受信される。そして、誤通信防止用アンテナによって電波が受信された場合、信号改変部制御部は、信号改変部を制御して、狭域通信アンテナから受信された受信信号の、アンテナコントローラ31への伝達する信号を改変する。
 したがって、上述の簡素な構成のみで、狭域通信領域内に存在しない車載器との誤通信を抑制することができる。
 また、本発明の一態様によれば、前記信号改変部は、前記通信用配線の接続、切断を選択可能なスイッチ(320)である。
 このようにすることで、誤通信防止用アンテナによって電波が受信された場合、信号改変部制御部は、スイッチである信号改変部を制御して、狭域通信アンテナから受信された受信信号の、アンテナコントローラ31への伝達を少なくとも一部遮断(改変)することができる。
 また、本発明の一態様によれば、上述の通信制御装置は、前記主制御装置からの送信信号の送信タイミングに応じた監視時間を設定する監視時間設定部(323)を更に備え、前記信号改変部制御部は、前記監視時間内に前記誤通信防止用アンテナによって電波が受信された場合に前記受信信号を改変させる。
 このようにすることで、信号改変部制御部による改変処理が、送信信号に対する応答信号の受信が想定される期間内(監視時間)のみに限定される。したがって、誤通信防止用アンテナによる外乱電波等の受信に起因する通信制御装置の誤動作を抑制することができる。
 また、本発明の一態様によれば、前記信号改変部制御部は、前記誤通信防止用アンテナが、前記狭域通信アンテナが発信する電波の周波数と同じ周波数の電波を受信した場合に前記受信信号を改変させる。
 このようにすることで、異なる車線別に異なる周波数で狭域通信がなされる場合において、他の車線を走行する車両との誤通信を抑制することができる。
 また、本発明の一態様によれば、前記狭域通信アンテナは、高架上の車線に規定された前記狭域通信領域から発信される電波を受信可能に設置され、前記誤通信防止用アンテナは、高架下の車線に規定された前記電波漏洩監視領域から発信される電波を受信可能に設置されている。
 このようにすることで、高架下の車線を走行する車両との誤通信を抑制することができる。
 また、本発明の一態様は、上述の通信制御装置と、前記狭域通信アンテナと、前記主制御装置であって、前記狭域通信アンテナを介して料金収受用の通信を行うアンテナコントローラと、を備える料金収受システムである。
 また、本発明の一態様は、狭域通信アンテナと正規の通信を行う狭域通信領域とは異なる領域に規定された電波漏洩監視領域から発信された電波を受信可能な誤通信防止用アンテナと、前記狭域通信アンテナと主制御装置との通信用配線上に設けられ、当該狭域通信アンテナから受信した受信信号を改変する信号改変部と、を用いた通信制御方法であって、前記誤通信防止用アンテナによって電波が受信された場合に、前記信号改変部を制御して、前記狭域通信アンテナから主制御装置へ伝送される受信信号を改変させるステップを有する通信制御方法である。
 また、本発明の一態様は、狭域通信アンテナと正規の通信を行う狭域通信領域とは異なる領域に規定された電波漏洩監視領域から発信された電波を受信可能な誤通信防止用アンテナと、前記狭域通信アンテナと主制御装置との通信用配線上に設けられ、当該狭域通信アンテナから受信した受信信号を改変する信号改変部と、を備える通信制御装置のコンピュータを、前記誤通信防止用アンテナによって電波が受信された場合に、前記信号改変部を制御して、前記狭域通信アンテナから前記主制御装置へ伝送される前記受信信号を改変させる信号改変部制御部として機能させるプログラムである。
 上述の通信制御装置、料金収受システム、通信制御方法及びプログラムによれば、簡素な構成で誤通信を抑制できる。
第1の実施形態に係る料金収受システムの全体構成を示す図である。 第1の実施形態に係る料金収受システムの機能構成を示す図である。 第1の実施形態に係る通信制御装置の動作を説明する第1の図である。 第1の実施形態に係るアンテナコントローラ及び車載器の動作を説明する図である。 第1の実施形態に係る通信制御装置の動作を説明する第2の図である。 第1の実施形態に係る通信制御装置の動作を説明する第3の図である。 第2の実施形態に係る料金収受システムの全体構成を示す図である。 第3の実施形態に係る料金収受システムの全体構成を示す図である。
<第1の実施形態>
 以下、図1~図6を参照しながら、第1の実施形態に係る料金収受システム及び通信制御装置について詳細に説明する。
(料金収受システムの全体構成)
 図1は、第1の実施形態に係る料金収受システムの全体構成を示す図である。
 第1の実施形態に係る料金収受システム1は、車線を走行する車両との間で料金収受用の狭域無線通信(以下、単に「狭域通信」とも記載する。)を行い、当該車両を停止させることなく電子決済(料金収受処理)を行う料金収受システムである。
 このような料金収受システム1は、例えば、高速道路等の有料道路における入口料金所、出口料金所等に設けられる。図1に示すように、料金収受システム1には複数の車線Lが隣接して敷設されており、当該入口料金所(出口料金所)を通過しようとする車両Aは、各車線Lのいずれかを走行する。
 また、料金収受システム1が設置された入口料金所(出口料金所)には、屋根CAが設けられている。
 図1に示すように、料金収受システム1は、車両検知器10と、狭域通信アンテナ20と、誤通信防止用アンテナ21と、車線制御装置30と、を備えている。車線制御装置30の内部には、アンテナコントローラ31とIFボックス(インターフェイスボックス)32とが設けられている。
 本実施形態において、通信制御装置1aは、誤通信防止用アンテナ21とIFボックス32とを有してなる。
 車両検知器10は、車線Lの上流側(-X方向側)におけるアイランドI上に設けられ、車線Lに車両が進入したか否かを検知する。
 狭域通信アンテナ20は、後述する車線制御装置30(アンテナコントローラ31)と、車両Aに搭載された車載器A1との間で狭域通信を行うためのアンテナである。
 狭域通信アンテナ20は、支持部材(ガントリー、ポール等)に取り付けられて複数の車線Lの各々に配置される。各狭域通信アンテナ20は、各車線Lを走行する車両Aを対象に狭域通信を行う。具体的には、狭域通信アンテナ20は、車線Lにおける狭域通信領域Q1の範囲内に存在する車両Aと狭域通信が可能なように、送受可能な電波の指向性が予め設計されている。
 誤通信防止用アンテナ21は、後述するIFボックス32にて、狭域通信アンテナ20とアンテナコントローラ31との間の通信を制御するために用いられる。本実施形態において、誤通信防止用アンテナ21は、受信専用のアンテナである。誤通信防止用アンテナ21は、車線Lにおける電波漏洩監視領域Q2の範囲内に存在する車両A(車載器A1)からの電波を受信可能なように、指向性が予め設計されている。
 なお、電波漏洩監視領域Q2は、狭域通信領域Q1とは異なる領域となるように規定される。
 車線制御装置30は、各車線L別に、アイランドI上に設置される。車線制御装置30は、料金収受システム1における料金収受処理全体を制御する。特に、車線制御装置30のアンテナコントローラ31は、狭域通信アンテナ20を通じて、車線Lを走行する車両Aに搭載された車載器A1との間で当該車両Aに対する狭域通信を行う。
 車線制御装置30は、車両検知器10を介して車両Aの車線Lへの進入を検知した場合に、当該車両Aとの間で狭域通信を開始すべく、狭域通信アンテナ20を通じて電波を発信する。
 図2は、第1の実施形態に係る料金収受システムの機能構成を示す図である。
 図2に示すように、車線制御装置30は、アンテナコントローラ31と、IFボックス32と、を備えている。
 アンテナコントローラ31は、車線制御装置30の内部に具備される主制御装置であって、狭域通信アンテナ20を介して、車載器A1との間で料金収受用の通信を行う。
 アンテナコントローラ31は、車両検知器10(図2には図示せず)からの車両検知信号を受け付けたタイミングで、狭域通信アンテナ20に向けてFCMC信号(フレームコントロールメッセージチャネル信号)D1を出力する。後述するように、車載器A1(図1)は、アンテナコントローラ31から出力されたFCMC信号D1を受信すると、アンテナコントローラ31と狭域通信を開始するための応答信号であるACTC信号D2(アクティベーションチャネル信号)を発信する。ACTC信号D2には、車載器A1の固有に割り振られた識別番号(車載器番号)が含まれる。
 なお、FCMC信号D1及びACTC信号D2は、狭域通信(DSRC:Dedicated Short-Range Communication)システムの標準的な通信規格であるARIB(Association of Radio Industries and Businesses)標準規格に規定される信号である。
 図2に示すように、狭域通信アンテナ20から発信されたFCMC信号D1(電波)は、通常は、狭域通信領域Q1内に存在する車載器A1-1に受信される。車載器A1-1は、狭域通信アンテナ20から発信されたFCMC信号D1を受信すると、これに応答してACTC信号D2(電波)を発信する。車載器A1-1が発信したACTC信号D2は、狭域通信アンテナ20にて受信される。狭域通信アンテナ20にて受信されたACTC信号D2は、当該狭域通信アンテナ20とアンテナコントローラ31とを接続する通信用配線を伝搬して、当該アンテナコントローラ31に受信される。
 なお、図2に示すように、狭域通信アンテナ20から発信されたFCMC信号D1は、屋根CA等の反射を通じて、狭域通信領域Q1の外(電波漏洩監視領域Q2)にも発信される。したがって、FCMC信号D1は、電波漏洩監視領域Q2内に存在する車載器A1-2にも受信され得る。
 この場合、車載器A1-2は、狭域通信アンテナ20から発信されたFCMC信号D1(電波)を受信すると、車載器A1-1と同様に、ACTC信号D2(電波)を発信する。車載器A1-2が発信したACTC信号D2は、狭域通信アンテナ20にて受信される。
 また、車載器A1-2は電波漏洩監視領域Q2内に存在するため、当該車載器A1-2が発信したACTC信号D2は、誤通信防止用アンテナ21にも受信される。
 次に、IFボックス32の機能構成について説明する。
 図2に示すように、IFボックス32は、CPU32aと、スイッチ320と、を備えている。
 CPU32aは、IFボックス32全体の動作を制御するプロセッサである。CPU32aは、読み込まれた所定のプログラムに従って動作することで、種々の機能を発揮する。CPU32aの機能については後述する。
 スイッチ320は、狭域通信アンテナ20とアンテナコントローラ31とを接続する通信用配線上に設けられ、当該狭域通信アンテナ20から受信した受信信号を改変する信号改変部として機能する。より具体的には、スイッチ320は、狭域通信アンテナ20とアンテナコントローラ31との通信用配線の接続、切断を切り替え可能なスイッチである。
 スイッチ320は、ハードウェアによって実現されるスイッチでも構わないし、ソフトウェアによって実現されるスイッチであってもよい。
 CPU32aは、受信信号監視部321、信号改変部制御部322、及び、監視時間設定部323としての機能を発揮する。
 受信信号監視部321は、誤通信防止用アンテナ21から受信した受信信号を監視し、誤通信防止用アンテナ21にて電波の受信があったか否かを判定する。
 信号改変部制御部322は、誤通信防止用アンテナ21によって電波が受信された場合に、スイッチ320を制御して、狭域通信アンテナ20からアンテナコントローラ31へ伝送される受信信号(狭域通信アンテナ20によって受信された受信信号)を改変させる。具体的には、信号改変部制御部322は、スイッチ320を開制御することで通信用配線を切断させ、狭域通信アンテナ20からアンテナコントローラ31へ伝送される受信信号の少なくとも一部を欠損させる。
 監視時間設定部323は、アンテナコントローラ31からの送信信号(FCMC信号D1)の送信タイミングに応じた監視時間を設定する。
 図3は、第1の実施形態に係る通信制御装置の動作を説明する第1の図である。
 図3は、車線Lを側面側から見た模式図であり、誤通信が起こる一例を示している。図3に示すように、狭域通信アンテナ20から発信されたFCMC信号D1は、車線Lの路面と屋根CAとを反射して、狭域通信領域Q1内に存在しない(電波漏洩監視領域Q2内に存在する)車両Aの車載器A1に受信され得る。この場合、車載器A1は、受信したFCMC信号D1に応じてACTC信号D2を発信する。車載器A1から発信されたACTC信号D2は、FCMC信号D1と同様に屋根CAと車線Lの路面とを反射して狭域通信アンテナ20に受信される。狭域通信アンテナ20は、受信したACTC信号D2が、狭域通信領域Q1内から発信されたものか狭域通信領域Q1の範囲外から発信されたものかを見分けることはできない。したがって、このままでは狭域通信領域Q1の範囲外に存在する車両Aとの誤通信が発生し得る。
 本実施形態においては、誤通信防止用アンテナ21は、電波漏洩監視領域Q2から発信された電波を受信可能となるように配置されている。したがって、誤通信防止用アンテナ21は、図3に示すように、当該電波漏洩監視領域Q2に存在する車載器A1から発信されたACTC信号D2を受信する。
 図4は、第1の実施形態に係るアンテナコントローラ及び車載器の動作を説明する図である。
 図4は、アンテナコントローラ31が車載器A1に向けて送信するFCMC信号D1と、車載器A1がアンテナコントローラ31に向けて送信するACTC信号D2と、のタイミングチャートを示している。
 ここで、図4を参照しながら、アンテナコントローラ31と車載器A1との間で行われる狭域通信の概要について説明する。
 図4に示すように、アンテナコントローラ31は、狭域通信領域Q1(図1、図2)に向けて、一定の周期で繰り返しFCMC信号D1を送信することで、狭域通信領域Q1内に存在する車載器A1によるACTC信号D2の送信(応答)を要求する。
 上述したARIB標準規格によれば、FCMC信号D1を受信した車載器A1は、予め異なる期間別に規定された6個のチャネル(図4に示すチャネルC1~C6)のうちの何れか一つに対応するタイミングで、ACTC信号D2を電波で送信する。
 ここで、車載器A1がACTC信号D2を送信するタイミング(チャネルC1~C6)は、その送信の都度、ランダムに選択される。これにより、同一の狭域通信領域Q1において、複数の車両A(車載器A1)が同時にFCMC信号D1を受信した場合において、当該複数の車載器A1の各々から送信されるACTC信号D2の送信のタイミングが重なって混信することを抑制することができる。
 なお、車載器A1がACTC信号D2を出力(発信)するタイミング(チャネルC1~C6)は、アンテナコントローラ31がFCMC信号D1を出力した時刻tfを基準にして規定される。具体的には、車載器A1によるACTC信号D2の発信は、時刻tfから予め規定された時間幅Δt1経過した時刻ta1と、当該時刻ta1から予め規定された時間幅Δt2経過した時刻ta2との間に行われる。
 図5、図6は、第1の実施形態に係る通信制御装置の動作を説明する第2の図、第3の図である。
 図5、図6は、アンテナコントローラ31のUp-Link側(送信側)の信号、アンテナコントローラ31のDown-Link側(受信側)の信号、車載器A1の発信信号、誤通信防止用アンテナ21の受信信号、及び、スイッチ320のON/OFFの状態を示すタイミングチャート図である。
 また、図5は、狭域通信アンテナ20が、狭域通信領域Q1に存在する車両A(車載器A1-1(図2参照))から発信された発信信号(ACTC信号D2)を受信した場合のタイミングチャートを示している。また、図6は、狭域通信アンテナ20が、電波漏洩監視領域Q2に存在する車両A(車載器A1-2(図2参照))から発信された発信信号を受信した場合のタイミングチャートを示している。
 ここで、図2及び図5を参照しながら、アンテナコントローラ31と車載器A1-1との間で行われる正規の狭域通信の処理の流れについて説明する。
 まず、アンテナコントローラ31は、時刻tfにて、FCMC信号D1を出力する(図5のアンテナコントローラ31(Up-Link)参照)。
 ここで、IFボックス32の監視時間設定部323(CPU32a)は、アンテナコントローラ31によるFCMC信号D1の出力をトリガに、監視時間を設定する。具体的には、監視時間設定部323は、時刻tfで出力されたFCMC信号D1に対する応答信号(ACTC信号D2)の受信が想定される時間(時刻ta1~時刻ta2)を「監視時間」として設定する。
 図5に示すように、アンテナコントローラ31から出力されたFCMC信号D1は、狭域通信アンテナ20を通じて電波として発信される。
 狭域通信領域Q1内に存在する車載器A1-1は、狭域通信アンテナ20から発信されたFCMC信号D1を受信する。そして車載器A1-1は、当該FCMC信号D1の受信に応じて、ACTC信号D2を発信する。図5に示す例では、車載器A1-1は、チャネルC2の期間にACTC信号D2を発信している。図5に示すように、車載器A1-1が発信したACTC信号D2は、狭域通信アンテナ20によって受信される。しかし、車載器A1-1は狭域通信領域Q1に存在している(電波漏洩監視領域Q2には存在していない)ため、車載器A1-1が発信したACTC信号D2は、誤通信防止用アンテナ21には受信されない。
 監視時間設定部323が設定した監視時間内にある間、IFボックス32の受信信号監視部321(CPU32a)は、誤通信防止用アンテナ21によって電波が受信されたか否かを判定する。図5に示す例の場合、監視時間内において、誤通信防止用アンテナ21は電波を受信していない。したがって、受信信号監視部321は、監視時間内において、誤通信防止用アンテナ21による電波の受信を検出しない。
 そうすると、IFボックス32の信号改変部制御部322(CPU32a)は、監視時間内においては常に、スイッチ320を閉動作させる。即ち、監視時間内においては常に、アンテナコントローラ31と狭域通信アンテナ20との間の通信用配線の接続が維持される。これにより、図5に示すように、狭域通信アンテナ20によって受信されたACTC信号D2は、そのままアンテナコントローラ31に受信される(図5のアンテナコントローラ31(Down-Link)参照)。
 以上のような処理の流れにより、アンテナコントローラ31は、狭域通信領域Q1内に存在する車両A(車載器A1-1)との間で正規の狭域通信を行うことができる。
 次に、図2及び図6を参照しながら、アンテナコントローラ31と車載器A1-2との間で行われる狭域通信の処理の流れについて説明する。
 図5と同様に、アンテナコントローラ31は、時刻tfにて、FCMC信号D1を出力する(図6のアンテナコントローラ31(Up-Link)参照)。
 監視時間設定部323は、アンテナコントローラ31によるFCMC信号D1の出力をトリガに、監視時間を設定する。ここで、監視時間設定部323は、時刻tfで出力されたFCMC信号D1に対応するACTC信号D2の受信が想定される時間(時刻ta1~時刻ta2)を「監視時間」として設定する。
 図6に示すように、アンテナコントローラ31から出力されたFCMC信号D1は、狭域通信アンテナ20を通じて電波として発信される。
 電波漏洩監視領域Q2内に存在する車載器A1-2は、通常であれば、狭域通信アンテナ20から発信されたFCMC信号D1を受信しない。しかし、図3で説明したように、車線Lの路面、屋根CAによる反射を経て、狭域通信領域Q1に存在しない車載器A1-2がFCMC信号D1を受信する場合がある。この場合、車載器A1-2は、当該FCMC信号D1の受信に応じて、ACTC信号D2を発信する。図6に示す例では、車載器A1-2は、チャネルC2の期間にACTC信号D2を発信している。図6に示すように、車載器A1-2が発信したACTC信号D2は、狭域通信アンテナ20から発信されたFCMC信号D1と同様に屋根CA、車線Lの路面を反射して、狭域通信アンテナ20によって受信される。また、車載器A1-2は電波漏洩監視領域Q2に存在しているため、車載器A1-2が発信したACTC信号D2は、誤通信防止用アンテナ21にも受信される。
 図6に示す例の場合、監視時間内において、誤通信防止用アンテナ21は電波を受信している。したがって、受信信号監視部321は、誤通信防止用アンテナ21によって電波を受信したと判定する。
 そうすると、IFボックス32の信号改変部制御部322(CPU32a)は、受信信号監視部321において受信信号が検出されたタイミング(時刻ts)でスイッチ320を開動作(ONからOFFに遷移)させる。即ち、誤通信防止用アンテナ21による受信信号が検出されたタイミング(時刻ts)で、アンテナコントローラ31と狭域通信アンテナ20との間の通信用配線の接続が遮断される。これにより、図6に示すように、狭域通信アンテナ20によって受信されたACTC信号D2は、時刻ts以降の一部がアンテナコントローラ31に伝達されなくなる(図6のアンテナコントローラ31(Down-Link)参照)。アンテナコントローラ31は、一部が欠損(改変)されたACTC信号D2に対しては、正規の狭域通信を継続しない。
 以上のような処理の流れにより、アンテナコントローラ31は、電波漏洩監視領域Q2内に存在する車両A(車載器A1-2)が発信したACTC信号D2を正規に受信しないので、車載器A1-2との間では狭域通信が確立しない。
(作用・効果)
 以上のとおり、第1の実施形態に係る通信制御装置1aは、電波漏洩監視領域Q2から発信された電波を受信可能な誤通信防止用アンテナ21と、狭域通信アンテナ20とアンテナコントローラ31との通信用配線上に設けられ、当該狭域通信アンテナ20から受信した受信信号の少なくとも一部を遮断可能とするスイッチ320と、誤通信防止用アンテナ21によって電波が受信された場合に、スイッチ320を制御して、狭域通信アンテナ20から誤通信防止用アンテナ21へ伝送される受信信号を遮断させる信号改変部制御部322と、を備えている。
 このようにすることで、アンテナコントローラ31が正規の通信を行うべきでない車載器A1(電波漏洩監視領域Q2内に存在する車載器A1)から電波(ACTC信号D2)が発信された場合に、その電波が誤通信防止用アンテナ21によって受信される。そして、誤通信防止用アンテナ21によって電波が受信された場合、信号改変部制御部322は、スイッチ320を制御して、当該ACTC信号D2の、アンテナコントローラ31への伝達を遮断する。
 したがって、狭域通信領域Q1内に存在しない車載器A1との誤通信を抑制することができる。
 また、本実施形態と同様の課題を解決する他の手段として、車載器からの電波の到来角度を検出するとともに、その到来角度の検出結果に基づいて、正規の狭域通信を行うか否かを判断する技術が知られている。しかし、電波の到来角度を正確に検出するためには、専用のアレイアンテナ(AOA(Angle of Arrival)アンテナ)を少なくとも一つ以上設置する必要があるばかりでなく、到来角度演算を含む複雑な判定処理が必須となる。
 これに対し、本実施形態に係る誤通信防止用アンテナ21は、車載器A1からの電波の受信の有無を判別できる程度のシンプルな構成で良く、また、受信専用で良い。また、IFボックス32(信号改変部制御部322)は、「誤通信防止用アンテナ21によって電波が受信されたか否か」の判定結果のみをスイッチ320による接続/遮断の判定基準とするので、判定処理が極めて簡素となる。
 また、本実施形態に係る通信制御装置1aは、アンテナコントローラ31からの送信信号(FCMC信号D1)の送信タイミングに応じた監視時間を設定する監視時間設定部323を更に備えている。そして、信号改変部制御部322は、監視時間設定部323によって設定された監視時間内に、誤通信防止用アンテナによって電波が受信された場合に受信信号(ACTC信号D2)を遮断させる。
 このようにすることで、誤通信防止用アンテナ21による電波の受信に応じたACTC信号D2の改変(遮断)処理が、FCMC信号D1に対するACTC信号D2の受信が想定される期間内のみに限定される。したがって、誤通信防止用アンテナ21による外乱電波等の受信に起因する通信制御装置1aの誤動作を抑制することができる。
 例えば、誤通信防止用アンテナ21は、料金収受システム1における狭域通信とは無関係に外乱電波を受信することも想定される。誤通信防止用アンテナ21がこのような外乱電波を受信した場合であっても、当該外乱電波の受信のタイミングが監視時間(時刻ta1~時刻ta2(図4参照))外であれば、信号改変部制御部322は、通信用配線の遮断処理を行わない。したがって、外乱電波等の想定しない電波の受信によって、想定外に受信信号(ACTC信号D2)が遮断される誤動作を抑制することができる。
(変形例)
 以上、第1の実施形態に係る料金収受システム1及び通信制御装置1aについて詳細に説明したが、第1の実施形態に係る料金収受システム1及び通信制御装置1aの具体的な態様は、上述のものに限定されることはなく、要旨を逸脱しない範囲内において種々の設計変更等を加えることは可能である。
 例えば、第1の実施形態によれば、アンテナコントローラ31と狭域通信アンテナ20との間の通信用配線にスイッチ320が設けられる態様で説明した。しかし、スイッチ320は、狭域通信アンテナ20から受信した受信信号(ACTC信号D2)を改変する「信号改変部」の一態様であり、スイッチ320の態様に限定されない。
 即ち、改変された受信信号(ACTC信号D2)が、アンテナコントローラ31によって受信信号と認識できない程度に改変される態様であれば如何なる態様であってもよい。例えば、信号改変部は、ACTC信号D2の後側に含まれる巡回冗長検査信号(CRC)を改変することで、アンテナコントローラ31においてCRCエラーを検出させる態様であってもよい。この場合において、アンテナコントローラ31は、ACTC信号D2受信時にCRCエラーを検出した場合には、正規の狭域通信を行わないものとする。
 また、誤通信防止用アンテナ21は、既知の増幅回路、検波回路等を組み合わせて構成された電波検出回路を具備する態様とされていてもよい。この場合、受信信号監視部321は、当該電波検出回路を介して狭域通信アンテナ20からの受信信号を受信する態様とされる。
<第2の実施形態>
 次に、図7を参照しながら、第2の実施形態に係る料金収受システム及び通信制御装置について詳細に説明する。
 図7は、第2の実施形態に係る料金収受システムの全体構成を示す図である。
 図7に示すように、第2の実施形態に係る料金収受システム1は、車線L1、車線L2のそれぞれに設けられている。各料金収受システム1は、第1の実施形態と同様に、車両検知器10と、狭域通信アンテナ20と、誤通信防止用アンテナ21と、車線制御装置30と、を備えている。第1の実施形態と同様に、車線制御装置30の内部には、アンテナコントローラ31とIFボックス32とが設けられている。
 通信制御装置1aは、誤通信防止用アンテナ21とIFボックス32とを有してなる。
 図7に示すように、車線L1に設置された料金収受システム1の狭域通信アンテナ20は、車線L1上に規定される狭域通信領域Q1を正規の通信対象とする。また、車線L2に設置された料金収受システム1の狭域通信アンテナ20は、車線L2上に規定される狭域通信領域Q1を正規の通信対象とする。車線L1に設置された料金収受システム1のアンテナコントローラ31は、所定のAチャネル周波数(以下、「Ach」と記載する)の電波を用いて狭域通信を行う。一方、車線L2に設置された料金収受システム1のアンテナコントローラ31は、Achとは異なるBチャネル周波数(以下、「Bch」と記載する)の電波を用いて狭域通信を行う。
 このようにすることで、隣り合う車線L1、L2における狭域通信の混信を防止することができる。
 本実施形態において、車線L1に設置された料金収受システム1の誤通信防止用アンテナ21は、図7に示すように、車線L2上に規定される電波漏洩監視領域Q2を電波の通信可能範囲とされる。
 他方、車線L1に設置された料金収受システム1のIFボックス32(受信信号監視部321)は、誤通信防止用アンテナ21によるAchの電波の受信のみを検出し、Bchの電波の受信を検出しない。つまり、本実施形態に係る受信信号監視部321は、誤通信防止用アンテナ21が、狭域通信アンテナ20が発信する電波(FCMC信号D1)の周波数と同じ周波数の電波(ACTC信号D2)を受信した場合に、ACTC信号D2の受信があったと判定する。
 次に、図7を参照しながら、第2の実施形態に係る通信制御装置1aの動作について説明する。
 図7に示すように、例えば、車線L1を走行する車両A’(車載器A1を搭載しない車両)が車線L1の路側に設けられた車両検知器10の車両検知位置に進入したとする。このとき、当該車両検知器10は、車線L1側のアンテナコントローラ31に車両検知信号を出力する。車線L1側のアンテナコントローラ31は、車両A’が検知されたタイミングで、狭域通信アンテナ20を通じてAchの電波(FCMC信号D1)を発信する。しかしながら、車線L1上に存在する車両A’は車載器A1を搭載しないため、ACTC信号D2の応答は行われない。
 一方、車線L1側の狭域通信アンテナ20からFCMC信号D1(Ach)が発信されたタイミングにて、車載器A1を具備する車両Aが車線L2を走行していたとする。図7に示す通り、車線L2を走行する車両Aは、車線L1の狭域通信アンテナ20がFCMC信号D1(Ach)を発信したタイミングでは未だ車線L2の車両検知器10を通過していない。したがって、車線L2を走行する車両Aの車載器A1は、車線L2側のアンテナコントローラ31との狭域通信(Bchによる通信)を開始していない。そうすると、車線L2を走行する車両Aの車載器A1は、隣の車線L1側の狭域通信アンテナ20から発信されたFCMC信号D1(Ach)を受信するとともに、これに応答してACTC信号D2(Ach)を発信する。そうすると、車線L1側の狭域通信アンテナ20は、車線L2を走行する車両A(車載器A1)からのACTC信号D2(Ach)を受信する。これにより、車線L1側の料金収受システム1において誤通信が発生し得る。
 しかしながら、本実施形態に係る通信制御装置1aによれば、車線L1側の誤通信防止用アンテナ21は、車線L2上に規定された電波漏洩監視領域Q2からの電波を受信可能とされている。したがって、誤通信防止用アンテナ21は、車線L2上(電波漏洩監視領域Q2内)に存在する車載器A1から発信されたACTC信号D2(Ach)を受信する。
 したがって、第2の実施形態に係るIFボックス32による受信信号遮断機能に基づいて、車線L2を走行する車両Aの車載器A1が発信したACTC信号D2(Ach)は、アンテナコントローラ31には伝送されない。なお、第2の実施形態に係るIFボックス32(スイッチ320、受信信号監視部321、信号改変部制御部322、及び、監視時間設定部323)による受信信号遮断機能については、第1の実施形態と同様(図5、図6参照)であるため、詳細な説明を省略する。
 以上より、第2の実施形態に係る通信制御装置1aによれば、隣の車線を走行する車両との誤通信を抑制することができる。
 また、車線L1側の料金収受システム1の受信信号監視部321は、誤通信防止用アンテナ21によって受信した電波(ACTC信号D2)がAchのときのみ、電波の受信を検出するものとしている。したがって、車線L2側のアンテナコントローラ31と車線L2を走行する車両Aとの間で行われる正規の狭域通信(即ち、Bchの電波で行われる狭域通信)の電波が、車線L1側の誤通信防止用アンテナ21によって受信されたとしても、当該車線L1側の料金収受システム1における狭域通信が遮断されることはない。
<第3の実施形態>
 次に、図8を参照しながら、第3の実施形態に係る料金収受システム及び通信制御装置について詳細に説明する。
 図8は、第3の実施形態に係る料金収受システムの全体構成を示す図である。
 図8に示すように、第3の実施形態に係る料金収受システム1は、高架橋B周辺に設けられている。料金収受システム1は、第1の実施形態と同様に、車両検知器10と、狭域通信アンテナ20と、誤通信防止用アンテナ21と、車線制御装置30と、を備えている。第1の実施形態と同様に、車線制御装置30の内部には、アンテナコントローラ31とIFボックス32とが設けられている。
 通信制御装置1aは、誤通信防止用アンテナ21とIFボックス32とを有してなる。
 本実施形態に係る料金収受システム1は、高架橋B上の車線L1(高架道路)を走行する車両Aのみを料金収受の対象とし、高架橋B下の車線L2(高架下道路)を走行する車両Aを料金収受の対象としない。
 図8に示すように、本実施形態に係る狭域通信アンテナ20は、高架橋B上の車線L1に規定された狭域通信領域Q1から発信される電波を受信可能に設置されている。また、本実施形態に係る誤通信防止用アンテナ21は、高架橋B下の車線L2に規定された電波漏洩監視領域Q2から発信される電波を受信可能に設置されている。
 次に、図8を参照しながら、第3の実施形態に係る通信制御装置1aの動作について説明する。
 第2の実施形態と同様に、例えば、高架上の車線L1を走行する車両A’(車載器A1を搭載しない車両)が車線L1の路側に設けられた車両検知器10(図8には図示せず)の車両検知位置に進入したとする。このとき、当該車両検知器10は、アンテナコントローラ31に車両検知信号を出力する。アンテナコントローラ31は、車両A’が検知されたタイミングで、狭域通信アンテナ20を通じて電波(FCMC信号D1)を発信する。しかしながら、車線L1上に存在する車両A’は車載器A1を搭載しないため、ACTC信号D2の応答は行われない。
 一方、狭域通信アンテナ20からFCMC信号D1が発信されたタイミングにて、車載器A1を具備する車両Aが高架下の車線L2を走行していたとする。図8に示す通り、車線L2を走行する車両Aは高架下に存在するものの、高架上からのFCMC信号D1を受信可能な位置関係にある。したがって、高架下の車線L2を走行する車両Aの車載器A1は、高架上の狭域通信アンテナ20から発信されたFCMC信号D1を受信するとともに、これに応答してACTC信号D2を発信する。そうすると、狭域通信アンテナ20は、車線L2を走行する車両A(車載器A1)からのACTC信号D2を受信する。これにより、料金収受システム1において誤通信が発生し得る。
 しかしながら、本実施形態に係る通信制御装置1aによれば、誤通信防止用アンテナ21は、高架下の車線L2上に規定された電波漏洩監視領域Q2からの電波を受信可能とされている。したがって、誤通信防止用アンテナ21は、高架下の車線L2上(電波漏洩監視領域Q2内)に存在する車載器A1から発信されたACTC信号D2を受信する。
 したがって、車線L2を走行する車両Aの車載器A1が発信し、狭域通信アンテナ20によって受信されたACTC信号D2は、第3の実施形態に係るIFボックス32によって少なくとも一部が遮断され、アンテナコントローラ31には伝送されない。なお、第3の実施形態に係るIFボックス32(スイッチ320、受信信号監視部321、信号改変部制御部322、及び、監視時間設定部323)によるACTC信号D2の遮断処理については、第1の実施形態と同様(図5、図6参照)であるため、詳細な説明を省略する。
 以上より、第3の実施形態に係る通信制御装置1aによれば、高架下の車線を走行する車両との誤通信を抑制することができる。
 なお、上述の実施形態においては、IFボックス32(CPU32a)の各種機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することにより各種処理を行うものとしている。ここで、上述したIFボックス32の各種処理の過程は、プログラムの形式でコンピュータ読み取り可能な記録媒体に記憶されており、このプログラムをコンピュータが読み出して実行することによって上記各種処理が行われる。また、コンピュータ読み取り可能な記録媒体とは、磁気ディスク、光磁気ディスク、CD-ROM、DVD-ROM、半導体メモリ等をいう。また、このコンピュータプログラムを通信回線によってコンピュータに配信し、この配信を受けたコンピュータが当該プログラムを実行するようにしても良い。
 また、IFボックス32は、各種機能構成が単一の装置筐体に収められる態様に限定されず、IFボックス32が有する各種機能構成が、ネットワークで接続される複数の装置に渡って具備される態様であってもよい。
 以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものとする。
 上述の通信制御装置、料金収受システム、通信制御方法及びプログラムによれば、簡素な構成で誤通信を抑制できる。
1 料金収受システム
1a 通信制御装置
10 車両検知器
20 狭域通信アンテナ
21 誤通信防止用アンテナ
30 車線制御装置
31 アンテナコントローラ(主制御装置)
32 IFボックス
320 スイッチ(信号改変部)
321 受信信号監視部
322 信号改変部制御部
323 監視時間設定部
A 車両
A1 車載器
Q1 狭域通信領域
Q2 電波漏洩監視領域
L 車線
I アイランド
CA 屋根
B 高架橋

Claims (8)

  1.  狭域通信アンテナと正規の通信を行う狭域通信領域とは異なる領域に規定された電波漏洩監視領域から発信された電波を受信可能な誤通信防止用アンテナと、
     前記狭域通信アンテナと主制御装置との通信用配線上に設けられ、当該狭域通信アンテナから受信した受信信号を改変する信号改変部と、
     前記誤通信防止用アンテナによって電波が受信された場合に、前記信号改変部を制御して、前記狭域通信アンテナから前記主制御装置へ伝送される前記受信信号を改変させる信号改変部制御部と、
     を備える通信制御装置。
  2.  前記信号改変部は、
     前記通信用配線の接続、切断を選択可能なスイッチである
     請求項1に記載の通信制御装置。
  3.  前記主制御装置からの送信信号の送信タイミングに応じた監視時間を設定する監視時間設定部を更に備え、
     前記信号改変部制御部は、
     前記監視時間内に前記誤通信防止用アンテナによって電波が受信された場合に前記受信信号を改変させる
     請求項1又は請求項2に記載の通信制御装置。
  4.  前記信号改変部制御部は、
     前記誤通信防止用アンテナが、前記狭域通信アンテナが発信する電波の周波数と同じ周波数の電波を受信した場合に前記受信信号を改変させる
     請求項1から請求項3の何れか一項に記載の通信制御装置。
  5.  前記狭域通信アンテナは、高架上の車線に規定された前記狭域通信領域から発信される電波を受信可能に設置され、
     前記誤通信防止用アンテナは、高架下の車線に規定された前記電波漏洩監視領域から発信される電波を受信可能に設置されている
     請求項1から請求項4の何れか一項に記載の通信制御装置。
  6.  請求項1から請求項5のいずれか一項に記載の通信制御装置と、
     前記狭域通信アンテナと、
     前記主制御装置であって、前記狭域通信アンテナを介して料金収受用の通信を行うアンテナコントローラと、
     を備える料金収受システム。
  7.  狭域通信アンテナと正規の通信を行う狭域通信領域とは異なる領域に規定された電波漏洩監視領域から発信された電波を受信可能な誤通信防止用アンテナと、前記狭域通信アンテナと主制御装置との通信用配線上に設けられ、当該狭域通信アンテナから受信した受信信号を改変する信号改変部と、を用いた通信制御方法であって、
     前記誤通信防止用アンテナによって電波が受信された場合に、前記信号改変部を制御して、前記狭域通信アンテナから主制御装置へ伝送される受信信号を改変させるステップ
     を有する通信制御方法。
  8.  狭域通信アンテナと正規の通信を行う狭域通信領域とは異なる領域に規定された電波漏洩監視領域から発信された電波を受信可能な誤通信防止用アンテナと、前記狭域通信アンテナと主制御装置との通信用配線上に設けられ、当該狭域通信アンテナから受信した受信信号を改変する信号改変部と、を備える通信制御装置のコンピュータを、
     前記誤通信防止用アンテナによって電波が受信された場合に、前記信号改変部を制御して、前記狭域通信アンテナから前記主制御装置へ伝送される前記受信信号を改変させる信号改変部制御部
     として機能させるプログラム。
PCT/JP2016/084443 2016-11-21 2016-11-21 通信制御装置、料金収受システム、通信制御方法及びプログラム WO2018092307A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2018550999A JP6748733B2 (ja) 2016-11-21 2016-11-21 通信制御装置、料金収受システム、通信制御方法及びプログラム
MYPI2019001825A MY194433A (en) 2016-11-21 2016-11-21 Communication Control Device, Toll Collection System, Communication Control Method And Communication Control Program
PCT/JP2016/084443 WO2018092307A1 (ja) 2016-11-21 2016-11-21 通信制御装置、料金収受システム、通信制御方法及びプログラム
KR1020197011107A KR102225730B1 (ko) 2016-11-21 2016-11-21 통신 제어 장치, 요금 수수 시스템, 통신 제어 방법 및 프로그램이 기록된 컴퓨터 판독가능 매체
US16/336,330 US10742351B2 (en) 2016-11-21 2016-11-21 Communication control device, toll collection system, communication control method, and communication control program
GB1905424.6A GB2570816B (en) 2016-11-21 2016-11-21 Communication control device, toll collection system, communication control method, and communication control program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/084443 WO2018092307A1 (ja) 2016-11-21 2016-11-21 通信制御装置、料金収受システム、通信制御方法及びプログラム

Publications (1)

Publication Number Publication Date
WO2018092307A1 true WO2018092307A1 (ja) 2018-05-24

Family

ID=62146359

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/084443 WO2018092307A1 (ja) 2016-11-21 2016-11-21 通信制御装置、料金収受システム、通信制御方法及びプログラム

Country Status (6)

Country Link
US (1) US10742351B2 (ja)
JP (1) JP6748733B2 (ja)
KR (1) KR102225730B1 (ja)
GB (1) GB2570816B (ja)
MY (1) MY194433A (ja)
WO (1) WO2018092307A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY195152A (en) * 2016-03-31 2023-01-11 Mitsubishi Heavy Ind Mach Systems Ltd Toll Collection Facility, Onboard Unit, Toll Collection System, Toll Collection Method, And Program
US11272382B2 (en) * 2020-03-26 2022-03-08 Cypress Semiconductor Corporation Interference reduction for wireless communications devices
CN112712602B (zh) * 2020-12-11 2022-09-02 陇东学院 一种基于智能交通的自动收费装置
CN115954648B (zh) * 2022-12-29 2024-09-03 北京万集科技股份有限公司 Rsu天线以及电子收费系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08194851A (ja) * 1995-01-18 1996-07-30 Mitsubishi Heavy Ind Ltd 料金収受システム
JP2007241542A (ja) * 2006-03-07 2007-09-20 Mitsubishi Heavy Ind Ltd 料金収受用無線装置および料金自動収受システム
JP2013098772A (ja) * 2011-11-01 2013-05-20 Mitsubishi Electric Corp 通信装置、自動料金収受システムおよび自動料金収受方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3614729A (en) * 1968-03-29 1971-10-19 Matsushita Electric Ind Co Ltd Vehicle-detecting apparatus using electromagnetic wave
US6657554B1 (en) * 1999-06-29 2003-12-02 Matsushita Electric Industrial Co., Ltd. Road antenna controlled on the basis of receiving rate
JP2001068925A (ja) 1999-08-26 2001-03-16 Matsushita Electric Ind Co Ltd 路側アンテナ装置
US6999001B2 (en) * 2002-07-02 2006-02-14 Kabushiki Kaisha Toshiba Card processing system and card processing method on toll road
JP3768939B2 (ja) * 2002-09-05 2006-04-19 株式会社東芝 カード処理システム、カード処理方法
DE102005018557A1 (de) * 2005-04-20 2006-10-26 T-Mobile International Ag & Co. Kg Verfahren und Vorrichtung zur automatischen Rekonstruktion und Auswertung einer gefahrenen Strecke
JP6026329B2 (ja) * 2013-03-21 2016-11-16 クラリオン株式会社 車載機器システム、携帯端末及び車載機
US11006283B2 (en) * 2016-08-25 2021-05-11 Sony Corporation Wireless communication control device, wireless communication device and wireless communication system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08194851A (ja) * 1995-01-18 1996-07-30 Mitsubishi Heavy Ind Ltd 料金収受システム
JP2007241542A (ja) * 2006-03-07 2007-09-20 Mitsubishi Heavy Ind Ltd 料金収受用無線装置および料金自動収受システム
JP2013098772A (ja) * 2011-11-01 2013-05-20 Mitsubishi Electric Corp 通信装置、自動料金収受システムおよび自動料金収受方法

Also Published As

Publication number Publication date
GB2570816B (en) 2022-07-06
GB2570816A (en) 2019-08-07
US20190222350A1 (en) 2019-07-18
US10742351B2 (en) 2020-08-11
JP6748733B2 (ja) 2020-09-02
MY194433A (en) 2022-11-30
GB201905424D0 (en) 2019-05-29
KR20190057334A (ko) 2019-05-28
JPWO2018092307A1 (ja) 2019-07-11
KR102225730B1 (ko) 2021-03-09

Similar Documents

Publication Publication Date Title
JP3213300B1 (ja) 有料道路料金収受システム
WO2018092307A1 (ja) 通信制御装置、料金収受システム、通信制御方法及びプログラム
JP6157755B1 (ja) 通信制御装置
JP2009104654A (ja) 無線通信システム、および路車間通信方法
JP2004199587A (ja) 自動料金収受システム
JP4695351B2 (ja) 無線通信システム、および路車間通信方法
CN104794765A (zh) 一种电子不停车收费系统及方法
US11133878B2 (en) Toll collection system and soundness determination method
US10417835B2 (en) Toll collection system and soundness determination method
JP2007249800A (ja) 通信システム及び通信方法
JP2009253828A (ja) 無線通信システム
JP3304865B2 (ja) 自動料金収受システム
JP2002208044A (ja) 専用狭域通信システム
JPH11202938A (ja) 車両走行制御システムおよびこのシステムに用いられる車両
JP2002260033A (ja) 路側無線通信システム
JP4527611B2 (ja) 無線通信走行支援装置
JP5743726B2 (ja) 電波発射源検出センサ及びレーン識別判定方法
JP2013045387A (ja) 料金収受システムおよび無線通信装置
JP5258690B2 (ja) 路側無線装置
JP2002042191A (ja) 狭域無線通信システム
JP2011237943A (ja) 自動料金収受システム及び方法
JP3436140B2 (ja) ノンストップ自動料金収受システム
JP2009260781A (ja) 移動体用通信装置
JP3405228B2 (ja) 自動料金収受システム
JP2001043407A (ja) 路側無線装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16921721

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018550999

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 201905424

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20161121

ENP Entry into the national phase

Ref document number: 20197011107

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16921721

Country of ref document: EP

Kind code of ref document: A1