WO2018092256A1 - Inline x-ray inspection system and imaging method for inline x-ray inspection system - Google Patents

Inline x-ray inspection system and imaging method for inline x-ray inspection system Download PDF

Info

Publication number
WO2018092256A1
WO2018092256A1 PCT/JP2016/084189 JP2016084189W WO2018092256A1 WO 2018092256 A1 WO2018092256 A1 WO 2018092256A1 JP 2016084189 W JP2016084189 W JP 2016084189W WO 2018092256 A1 WO2018092256 A1 WO 2018092256A1
Authority
WO
WIPO (PCT)
Prior art keywords
ray
detector unit
array detector
element array
dimensional
Prior art date
Application number
PCT/JP2016/084189
Other languages
French (fr)
Japanese (ja)
Inventor
定岡 紀行
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2016/084189 priority Critical patent/WO2018092256A1/en
Publication of WO2018092256A1 publication Critical patent/WO2018092256A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material

Definitions

  • the present invention relates to an apparatus and a method for continuously imaging an internal state in a production line of a mass-produced machine part having a complicated shape, nondestructively.
  • a target object may be installed between the X-ray source and the detector, and the internal state measurement evaluation without contact with the target object is possible.
  • the internal state measurement evaluation without contact with the target object is possible.
  • not only internal defect measurement but also internal complicated three-dimensional shape and dimension measurement that cannot be measured from the outside can be evaluated from the captured image.
  • Patent Document 1 a partial image of a target product is captured by a combination of an X-ray tube and a two-dimensional planar detector in an in-line inspection of a mounted circuit board, and the X-ray tube and a two-dimensional image are taken for the entire region.
  • An X-ray inspection method and an inspection apparatus have been devised that move by a combination of flat-type detectors to image the entire area of the target product.
  • the target is a metal mass-produced cast product
  • a high X is required to transmit the product.
  • Line energy is required.
  • this configuration is difficult to apply to a metal mass production casting.
  • the object of the present invention is made in the background as described above, and in order to transmit X-rays in a metal product such as a mass-produced cast product, the X-ray energy can be increased and at the same time.
  • An object of the present invention is to provide an X-ray in-line inspection system that realizes in-line X-ray inspection.
  • the shielded element built-in type two-dimensional element array detector and the two-dimensional element array detector respectively perform transmission imaging. Then, after calculating the difference between the two, the difference is subtracted from the transmission image of each mass-produced cast product flowing in the production line to generate a transmission image of each cast product.
  • a detector unit consisting of a two-dimensional element array detector and a detector unit including a shield element built-in type two-dimensional element array detector are simultaneously held as a detection system,
  • These two detector units have equipment position structures that can be installed independently of each other at a position where a transmission image can be taken with respect to a cast product flowing on the production line.
  • detection elements are densely arranged two-dimensionally in order to increase the X-ray energy in order to transmit X-rays in a metal product such as a mass-produced cast product and at the same time to realize imaging in a short time.
  • FIG. 1 is a schematic view of an X-ray in-line inspection system according to Embodiment 1.
  • FIG. 2 is an example of in-line inspection of a mass-produced cast product sample of the X-ray in-line inspection system according to Example 1.
  • FIG. It is a figure which shows the example of a transmission image at the time of imaging the mass-production casting sample of imaging object with the X-ray in-line inspection system by Example 1.
  • FIG. It is a flowchart which shows the procedure of the transmission image imaging method of the X-ray in-line inspection system by Example 2. It is the schematic of the X-ray in-line inspection system by Example 2.
  • FIG. 10 is a flowchart illustrating a procedure of a transmission image capturing method of the X-ray inline inspection system according to the third embodiment.
  • FIG. 1 is a flowchart showing a procedure of a transmission image capturing method for capturing a transmission image of a target product in a production line by the X-ray inline inspection system of the first embodiment
  • FIG. 2 is an X-ray inline of the present embodiment
  • FIG. 3 is a schematic diagram of an inspection system
  • FIG. 3 is an example of in-line inspection of a mass production casting product sample in the X-ray in-line inspection system of the present embodiment
  • FIG. 4 is an imaging method of the mass production casting product sample of FIG. An example of a transmission image when captured is shown.
  • the apparatus includes two types of detector units, a shield element-embedded two-dimensional element array detector unit 2 and a two-dimensional element array detector unit 5, and these detector units.
  • the detector unit support structure 7 has a structure installed at a position facing the X-ray tube 1.
  • X-rays, ⁇ -rays, and neutrons can be selected as a radiation source that transmits the mass-produced casting to be imaged.
  • a radiation source an X-ray tube is used at a voltage of 600 kV or less, and a linear accelerator (LINAC) is used at 1 MV or more.
  • LINAC linear accelerator
  • Shielding element built-in type two-dimensional element array detector unit 2 includes detection elements 3 arranged in a square lattice shape, and these detection elements 3 and shielding elements 6 arranged on staggered.
  • the detection element 3 is composed of a semiconductor element such as Si or CdTe or a scintillator type detector element, and detects radiation flowing into the element.
  • the shielding element 6 is made of lead, tungsten, or the like, and shields scattered rays from detection elements adjacent to each direction.
  • a collimator is provided in front of each detection element 3.
  • the inspection object product is moved by the belt conveyor 4 and set at the position of the shielding element built-in type two-dimensional element array detector unit 2 in S101, and then irradiated with X-rays from the X-ray tube 1, and in S102 Transmission image data A101 is acquired.
  • Transmission image data A101 is acquired.
  • the vertical and horizontal lengths of the shielding element 6 are moved to acquire transmission image data on the entire surface.
  • the signal processing circuit 8 that digitizes the radiation transmission amount measured by the detector, and the imaging data calculation / storage that performs the following calculation and further stores and displays the data.
  • a display device 9 is provided.
  • the mass production cast product sample 10 is moved to the installation position of the two-dimensional element array detector unit 5 by the belt conveyor 4 in S103 of FIG.
  • the mass production casting product sample 10 to be imaged with the X-ray tube 1 is set at a position facing the two-dimensional element array detector unit 5.
  • FIG. 3 shows the set state.
  • the two-dimensional element array detector unit 5 is a detector unit in which the detection elements 3 are arranged in a square lattice pattern on a two-dimensional plane.
  • the shielding element 6 is not provided unlike the shielding element built-in type two-dimensional element array detector unit 2 and the projection surface of the mass-produced casting sample 10 to be imaged can be received by the two-dimensional element array detection element, Unlike the shielded element built-in type two-dimensional element array detector unit 2, it is not necessary to move the detector in the vertical and horizontal directions of the shield element, and in S104 of FIG.
  • the difference amount between the transmission image data A101 and the transmission image data B102 of the mass-produced cast product sample 10 is calculated.
  • a shielded element built-in type two-dimensional element array detection is performed using the transmission image simulator.
  • An example of a transmission image obtained by trial calculation of the transmission image data A101 of the mass-produced cast product sample 10 by the vessel unit 2 and the transmission image data B102 of the mass-production cast product sample 10 by the two-dimensional element array detector unit 5 is shown.
  • the scattered radiation from the adjacent detector element 3 is cut by the shield element 6 provided around the detector element 3.
  • the transmission image 14 of the casting mold region is picked up by the two-dimensional element array detector unit 5 since the detection elements 3 are arrayed in the entire projection surface region of the mass-produced cast product sample 10 to be imaged, the transmission image is instantaneously generated. can get.
  • the transmission image data B102 of the mass-produced cast product sample 10 by the two-dimensional element array detector unit 5 and the mass-produced cast product sample 10 by the shield element-embedded two-dimensional element array detector unit 2 are used.
  • the amount of difference from the transmission image data A101 is calculated.
  • the difference amount data C103 at each detection element position obtained here is the amount of scattered radiation that flows from each detection element to the adjacent detection element in the two-dimensional element array detector unit 5.
  • the soundness of the first mass-produced cast product sample 10 is evaluated in S107 using the transmission image data D104.
  • a mass production casting product (second mass production casting sample 11, third mass production casting sample 12) continuously produced on the production line is continuously installed on the belt conveyor 4.
  • imaging by the shielding element built-in type two-dimensional element array detector unit 2 is omitted, and only imaging by the two-dimensional element array detector unit 5 in S105 is performed (S109). Thereby, transmission image data E105 of the second and subsequent mass-produced cast products is obtained.
  • the difference amount data C103 of each inspection element position calculated in the first is subtracted from the transmission image data E105 of the second and subsequent mass production castings (S110), and the scattered radiation component of the second and subsequent mass production castings is obtained.
  • the removed transmission image data F106 is calculated.
  • the soundness of the second mass-produced cast product sample 11 is evaluated in S111.
  • the processes from S108 to S111 are repeated with respect to the total number of mass-produced castings that are continuously charged.
  • the detection elements are densely arranged in two dimensions.
  • An X-ray in-line inspection system that prevents internal defect detection accuracy from deteriorating due to an increase in scattered radiation components generated between detection elements and realizes high-precision in-line X-ray inspection when using a planar detector arranged in It can be provided.
  • FIG. 5 is a flowchart showing a procedure of a transmission image capturing method of the X-ray inline inspection system according to the second embodiment, and a schematic diagram of the X-ray inline inspection system apparatus is shown in FIG.
  • the rotary table 15 that rotates the imaging target product to a position where the shielding element built-in type two-dimensional element array detector unit 2 and the X-ray tube 1 face each other.
  • a rotary table 16 for rotating the imaging target product is provided at a position where the two-dimensional element array detector unit 5 and the X-ray tube 1 face each other.
  • FIG. 7 shows a transmission image simulation in which a transmission image of the mass-produced cast product sample 10 is taken every 90 degrees.
  • FIG. 8 is a flowchart showing the procedure of the transmission image capturing method of the X-ray in-line inspection system according to the third embodiment.
  • the shielding element-embedded two-dimensional element array detector unit 2 and the X-ray are configured in the apparatus configuration shown in FIG.
  • Projection data at a specified angle pitch for one rotation of the target product is acquired using the rotary table 15 that rotates the imaging target product to a position where the tube 1 is opposed, and the image reconstruction processing step S117 is performed based on these projection data.
  • a three-dimensional CT image is created by the same image reconstruction processing step S118 at the position of the rotary table 16 for rotating the imaging target product provided at the position where the two-dimensional element array detector unit 5 and the X-ray tube 1 face each other.
  • the soundness of the target product is evaluated from the obtained three-dimensional CT image.
  • X-ray energy is increased, and at the same time, imaging in a short time is realized in two dimensions.
  • An in-line inspection system can be provided, which can lead to an improvement in the quality of mass-produced statues on the production line.
  • not only casting products but also general machine parts can be visualized on the production line by nondestructive internal structure, which can lead to improvement of the quality of these machine parts.
  • this invention is not limited to the above-mentioned Example, Various modifications are included.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.

Abstract

The purpose of the present invention is to prevent the degradation of internal defect detection accuracy resulting from increased scattered ray component generation between detection elements when a planar detector in which detection elements are densely arranged in two dimensions is used for the purpose of shortening imaging while raising X-ray energy such that X-rays will pass through metal products such as mass-produced castings, and to thereby provide an inline X-ray inspection system capable of highly accurate inline X-ray inspection. To achieve this purpose, this inline x-ray inspection device system, which has a radiation source (1) for irradiating radiation, a detector (2, 5) for detecting the radiation that has passed through a subject to be imaged, a driving mechanism (4) for moving the subject between the radiation source and the detector, a signal processing circuit (8) for quantifying the amount of transmitted radiation measured by the detector, and a calculation device (9) for constructing an image on the basis of signals from the signal processing circuit (8), is characterized by having, as a detection system, a two-dimensional-element-array detector unit (2) having shielding elements partially embedded therein and a two-dimensional-element-array detector unit (5) and in that a transmission image is created using images of the same subject imaged by the two detector units.

Description

X線インライン検査システム及びX線インライン検査システムの撮像方法X-ray inline inspection system and imaging method of X-ray inline inspection system
 本発明は、複雑形状の量産機械部品の製造ラインにおける内部状態を非破壊で連続的に撮像する装置及び方法に関する。 The present invention relates to an apparatus and a method for continuously imaging an internal state in a production line of a mass-produced machine part having a complicated shape, nondestructively.
 自動車用鋳物部品に代表される量産機械部品の製造ラインにおける健全性、品質検査では、信頼性を高めるために全数検査が求められている。量産機械部品の検査では、寸法形状計測が主な評価項目になるが、量産鋳造品では、寸法検査の他に、鋳造プロセス時に発生する事がある内部欠陥の検出が重要になる。製品外側の寸法形状計測では、レーザー距離計やカメラに代表される光学系撮像画像からの計測が可能であるが、量産鋳造品における内部欠陥の評価では、製品内部を非破壊で計測する必要がある。製品内部の非破壊検査で最も有効である計測手段はX線による透過像およびCT像計測である。超音波でも内部欠陥の有無はある程度計測可能であるが、探触子を製品自体に接触させる必要があるため、鋳物部品のような3次元複雑形状品に対しては取り扱いが難しい。 In the soundness and quality inspection in the production line of mass-produced machine parts typified by automobile casting parts, 100% inspection is required to enhance reliability. In the inspection of mass-produced machine parts, dimension / shape measurement is the main evaluation item, but in mass-produced cast products, in addition to dimensional inspection, it is important to detect internal defects that may occur during the casting process. Dimensional shape measurement on the outside of the product can be measured from images taken by optical systems such as laser rangefinders and cameras. However, in evaluating internal defects in mass-produced castings, it is necessary to measure the inside of the product nondestructively. is there. The most effective measuring means for nondestructive inspection inside a product is X-ray transmission image and CT image measurement. Even with ultrasonic waves, the presence or absence of internal defects can be measured to some extent, but since it is necessary to bring the probe into contact with the product itself, it is difficult to handle a three-dimensional complicated shape product such as a cast part.
 X線による透過像およびCT像計測では、X線源と検出器の間に対象被検体を設置すればよく、対象とする被検体には非接触での内部状態計測評価が可能である。また、X線による透過像およびCT像計測では、内部欠陥計測だけでなく、外部からは計測できない内部の複雑な3次元形状および寸法計測が、撮像画像から評価可能である。 In X-ray transmission image and CT image measurement, a target object may be installed between the X-ray source and the detector, and the internal state measurement evaluation without contact with the target object is possible. In addition, in X-ray transmission image and CT image measurement, not only internal defect measurement but also internal complicated three-dimensional shape and dimension measurement that cannot be measured from the outside can be evaluated from the captured image.
 量産鋳造品以外でも、アセンブリ製品では、外側のケーシングを外すことなく内部状態の健全性を評価する事が必要となる場合が出てくる。この場合も、X線による透過像およびCT像計測が有効な計測手段となる。 Even in the case of non-mass cast products, assembly products may require evaluation of the soundness of the internal state without removing the outer casing. In this case as well, transmission image and CT image measurement using X-rays is an effective measurement means.
 これらの製造ラインにおける全数検査では、製品が短時間で連続的に製造されるため、短い時間間隔で継続的に健全性評価に必要な物理量を計測し、健全性の有無を判定する必要がある。X線による透過像およびCT像計測で内部欠陥を連続的に短時間で高精度に評価するためには、2次元平面型の検出器で製品全体の投影像を取得する必要がある。この場合、検出器間で発生する散乱線が画像ノイズとなり計測精度を悪化させる。特に、量産鋳造品のような金属製の製品ではX線を透過させるためX線エネルギーを高くする必要があり、その場合、検出器間で発生する散乱線成分が増加する。 In 100% inspection in these production lines, since products are manufactured continuously in a short time, it is necessary to measure the physical quantities necessary for soundness evaluation continuously at short time intervals and determine the presence or absence of soundness. . In order to evaluate internal defects continuously and in a short time with high accuracy by X-ray transmission image and CT image measurement, it is necessary to obtain a projection image of the entire product with a two-dimensional planar detector. In this case, the scattered radiation generated between the detectors becomes image noise and deteriorates the measurement accuracy. In particular, in a metal product such as a mass-produced cast product, it is necessary to increase the X-ray energy in order to transmit X-rays. In this case, the scattered radiation component generated between detectors increases.
国際公開第2010/074031号International Publication No. 2010/074031
 従来、量産鋳造品での内部欠陥検査は、抜き取りによる破壊検査や打音による音響評価などにより実施されており、製造ライオンにおける全数検査までは実施されていない。また、実装回路基板のような製品では、製造ラインにX線を用いた欠陥検査が製品全数に対して実施されているが、製品厚みが量産鋳物部品に比較し格段に薄いため、X線エネルギーを高くする必要がなく、検出器間で発生する散乱線成分も小さく問題とならない。 Conventionally, internal defect inspections for mass-produced cast products have been carried out by destructive inspection by sampling and acoustic evaluation by hammering sound, etc., and not by 100% inspection by manufacturing lions. In addition, in products such as mounted circuit boards, defect inspection using X-rays on the production line is performed on all products, but the product thickness is much thinner than mass-produced cast parts, so X-ray energy The scattered radiation component generated between the detectors is small and does not cause a problem.
 一方、前述のように量産鋳造品のような金属製の製品ではX線を透過させるためX線エネルギーを高くする必要があると同時に短時間での撮像が必要となるため、2次元に検出素子を稠密に配列した平面型検出器を使用する必要がある。検出素子を稠密に配列した平面型検出器に高いエネルギーのX線を透過させる場合、検出素子間で発生する散乱線成分が増加し、内部欠陥検出精度を悪化させる。 On the other hand, as described above, in a metal product such as a mass-produced cast product, it is necessary to increase the X-ray energy in order to transmit X-rays, and at the same time, it is necessary to perform imaging in a short time. Need to be used. When high-energy X-rays are transmitted through a flat detector in which the detection elements are densely arranged, scattered ray components generated between the detection elements increase, and the internal defect detection accuracy is deteriorated.
 また、特許文献1には、実装回路基板のインライン検査においてX線管と2次元平面型検出器の組み合わせで対象製品の部分領域を透過像撮像し、全領域に対してX線管と2次元平面型検出器の組み合わせで移動させ対象製品の全領域を撮像するX線検査方法および検査装置が考案されているが、対象が金属製の量産鋳造品の場合、製品を透過させるために高いX線エネルギーが必要となる。その場合、2次元平面型検出器の検出素子間で発生する散乱線成分が増加し画像ノイズが高くなるため、本構成では金属製の量産鋳造品に対しては適用が難しい。 Further, in Patent Document 1, a partial image of a target product is captured by a combination of an X-ray tube and a two-dimensional planar detector in an in-line inspection of a mounted circuit board, and the X-ray tube and a two-dimensional image are taken for the entire region. An X-ray inspection method and an inspection apparatus have been devised that move by a combination of flat-type detectors to image the entire area of the target product. However, when the target is a metal mass-produced cast product, a high X is required to transmit the product. Line energy is required. In this case, since the scattered radiation component generated between the detection elements of the two-dimensional flat detector increases and the image noise becomes high, this configuration is difficult to apply to a metal mass production casting.
 そのため、本発明の目的は、上記のような事情を背景になされたものであり、量産鋳造品のような金属製の製品でX線を透過させるためX線エネルギーを高くすると同時に短時間での撮像を実現するため、2次元に検出素子を稠密に配列した平面型検出器を使用した場合に、検出素子間で発生する散乱線成分の増加による内部欠陥検出精度悪化を防止し、高精度なインラインX線検査を実現させるX線インライン検査システムを提供する事にある。 Therefore, the object of the present invention is made in the background as described above, and in order to transmit X-rays in a metal product such as a mass-produced cast product, the X-ray energy can be increased and at the same time. In order to realize imaging, when a planar detector in which detector elements are densely arranged in two dimensions is used, internal defect detection accuracy deterioration due to an increase in scattered ray components generated between detector elements is prevented, and high accuracy is achieved. An object of the present invention is to provide an X-ray in-line inspection system that realizes in-line X-ray inspection.
 上記目的のために本発明では、対象とする量産鋳造品が最初に製造ラインに流れてくる際に、遮蔽素子組み込み型2次元素子配列検出器および2次元素子配列検出器で其々、透過撮像し、両者の差分量を算出した後、製造ラインに流れてくる各量産鋳造品の透過像から前記差分量を差し引き、各鋳造品の透過像を生成する。また、前記の各プロセスにおける各画像を取得するために、検出系として遮蔽素子組み込み型2次元素子配列検出器からなる検出器ユニットと2次元素子配列検出器からなる検出器ユニットを同時に保有し、これら二つの検出器ユニットが、製造ラインで流れてくる鋳造品に対して透過像が撮像可能な位置に、それぞれ単独で相互に設置可能な機器位置構造を持つ。 For the above purpose, in the present invention, when the target mass production casting product first flows into the production line, the shielded element built-in type two-dimensional element array detector and the two-dimensional element array detector respectively perform transmission imaging. Then, after calculating the difference between the two, the difference is subtracted from the transmission image of each mass-produced cast product flowing in the production line to generate a transmission image of each cast product. In addition, in order to acquire each image in each of the above processes, a detector unit consisting of a two-dimensional element array detector and a detector unit including a shield element built-in type two-dimensional element array detector are simultaneously held as a detection system, These two detector units have equipment position structures that can be installed independently of each other at a position where a transmission image can be taken with respect to a cast product flowing on the production line.
 本発明によれば、量産鋳造品のような金属製の製品でX線を透過させるためX線エネルギーを高くすると同時に短時間での撮像を実現するため、2次元に検出素子を稠密に配列した平面型検出器を使用した場合に、検出素子間で発生する散乱線成分の増加による内部欠陥検出精度悪化を防止し、高精度なインラインX線検査を実現させるX線インライン検査システムを提供する事が可能となる。 According to the present invention, detection elements are densely arranged two-dimensionally in order to increase the X-ray energy in order to transmit X-rays in a metal product such as a mass-produced cast product and at the same time to realize imaging in a short time. To provide an X-ray in-line inspection system that prevents internal defect detection accuracy from deteriorating due to an increase in scattered radiation components generated between detection elements when a flat detector is used, and realizes high-precision in-line X-ray inspection. Is possible.
実施例1によるX線インライン検査システムの透過像撮像方法の手順を示すフロー図である。It is a flowchart which shows the procedure of the transmission image imaging method of the X-ray in-line inspection system by Example 1. FIG. 実施例1によるX線インライン検査システムの概略図である。1 is a schematic view of an X-ray in-line inspection system according to Embodiment 1. FIG. 実施例1によるX線インライン検査システムの量産鋳造品サンプルのインライン検査例である。2 is an example of in-line inspection of a mass-produced cast product sample of the X-ray in-line inspection system according to Example 1. FIG. 撮像対象の量産鋳造品サンプルを実施例1によるX線インライン検査システムで撮像した場合の透過画像例を示す図である。It is a figure which shows the example of a transmission image at the time of imaging the mass-production casting sample of imaging object with the X-ray in-line inspection system by Example 1. FIG. 実施例2によるX線インライン検査システムの透過像撮像方法の手順を示すフロー図である。It is a flowchart which shows the procedure of the transmission image imaging method of the X-ray in-line inspection system by Example 2. 実施例2によるX線インライン検査システムの概略図である。It is the schematic of the X-ray in-line inspection system by Example 2. 撮像対象の量産鋳造品サンプルを実施例2によるX線インライン検査システムで撮像した場合の透過像シミュレーション結果を示す図である。It is a figure which shows the transmission image simulation result at the time of imaging the mass-production casting product sample of imaging object with the X-ray in-line inspection system by Example 2. FIG. 実施例3によるX線インライン検査システムの透過像撮像方法の手順を示すフロー図である。FIG. 10 is a flowchart illustrating a procedure of a transmission image capturing method of the X-ray inline inspection system according to the third embodiment.
 以下、本発明を実施する上で好適な実施例について図面を用いて説明する。尚、下記はあくまでも実施例に過ぎず、発明の内容は下記態様に限定されるものでないことは言うまでもない。 Hereinafter, preferred embodiments for carrying out the present invention will be described with reference to the drawings. In addition, the following is only an Example, and it cannot be overemphasized that the content of invention is not limited to the following aspect.
 図1は、実施例1のX線インライン検査システムで製造ラインにおける対象製品の透過像を撮像するための透過像撮像方法の手順を示すフロー図であり、図2は本実施例のX線インライン検査システムの概要図であり、図3は本実施例のX線インライン検査システムでの量産鋳造品サンプルのインライン検査例であり、図4は図3の量産鋳造品サンプルを本発明の撮像方法で撮像した時の透過画像例を示している。 FIG. 1 is a flowchart showing a procedure of a transmission image capturing method for capturing a transmission image of a target product in a production line by the X-ray inline inspection system of the first embodiment, and FIG. 2 is an X-ray inline of the present embodiment. FIG. 3 is a schematic diagram of an inspection system, FIG. 3 is an example of in-line inspection of a mass production casting product sample in the X-ray in-line inspection system of the present embodiment, and FIG. 4 is an imaging method of the mass production casting product sample of FIG. An example of a transmission image when captured is shown.
 実施例1の撮像方法では、まず、S100において検査対象の製品の初めの1個を本検査システム装置のベルトコンベア4に設置する。次に、当該検査対象品は、ベルトコンベア4により移動させ、S101において遮蔽素子組み込み型2次元素子配列検出器ユニット2の位置に設定させる。この位置では、撮像する対象の量産鋳造品サンプル10に対してX線管1と相対する位置に設定する。図2に示したように実施例1の装置では、遮蔽素子組み込み型2次元素子配列検出器ユニット2と2次元素子配列検出器ユニット5の2種類の検出器ユニットを備え、これらの検出器ユニットが検出器ユニット支持構造7により、X線管1に対して相対する位置に設置された構造を持つ。撮像対象の量産鋳造品を透過させる放射線源としては、X線、γ線、中性子線が選択できる。X線源としては、電圧600kV以下ではX線管、1MV以上では線形加速器(LINAC)を用いる。 In the imaging method of the first embodiment, first, in S100, the first one of the products to be inspected is installed on the belt conveyor 4 of the present inspection system apparatus. Next, the inspection target product is moved by the belt conveyor 4 and is set at the position of the shielding element built-in type two-dimensional element array detector unit 2 in S101. At this position, it is set at a position facing the X-ray tube 1 with respect to the mass-produced cast product sample 10 to be imaged. As shown in FIG. 2, the apparatus according to the first embodiment includes two types of detector units, a shield element-embedded two-dimensional element array detector unit 2 and a two-dimensional element array detector unit 5, and these detector units. However, the detector unit support structure 7 has a structure installed at a position facing the X-ray tube 1. X-rays, γ-rays, and neutrons can be selected as a radiation source that transmits the mass-produced casting to be imaged. As the X-ray source, an X-ray tube is used at a voltage of 600 kV or less, and a linear accelerator (LINAC) is used at 1 MV or more.
 遮蔽素子組み込み型2次元素子配列検出器ユニット2は、正方格子状に配列された検出素子3とこれらの検出素子3とスタガード上に配置された遮蔽素子6から構成される。検出素子3は、Si、CdTeなどの半導体素子またはシンチレータ型検出器素子からなり素子に流入する放射線を検知する。一方、遮蔽素子6は鉛、タングステン等からなり各方向両隣の検出素子からの散乱線を遮蔽する。各検出素子3の前方にコリメータを備える。当該検査対象品をベルトコンベア4により移動させ、S101において遮蔽素子組み込み型2次元素子配列検出器ユニット2の位置に設定させた後、X線管1からX線を照射し、S102において対象製品の透過像データA101を取得する。この対象製品の透過像データA101の取得時には、各遮蔽素子位置での透過像データを取得するため、遮蔽素子6の縦横長さ分を移動させ、全面における透過像データを取得する。 Shielding element built-in type two-dimensional element array detector unit 2 includes detection elements 3 arranged in a square lattice shape, and these detection elements 3 and shielding elements 6 arranged on staggered. The detection element 3 is composed of a semiconductor element such as Si or CdTe or a scintillator type detector element, and detects radiation flowing into the element. On the other hand, the shielding element 6 is made of lead, tungsten, or the like, and shields scattered rays from detection elements adjacent to each direction. A collimator is provided in front of each detection element 3. The inspection object product is moved by the belt conveyor 4 and set at the position of the shielding element built-in type two-dimensional element array detector unit 2 in S101, and then irradiated with X-rays from the X-ray tube 1, and in S102 Transmission image data A101 is acquired. When acquiring the transmission image data A101 of the target product, in order to acquire transmission image data at each shielding element position, the vertical and horizontal lengths of the shielding element 6 are moved to acquire transmission image data on the entire surface.
 さらに実施例1でのX線インライン検査システム装置では、検出器で計測された放射線透過量を数値化する信号処理回路8と、下記に示す演算を行いさらにデータ保管や表示する撮像データ演算・保管・表示装置9を備えている。 Furthermore, in the X-ray in-line inspection system apparatus in the first embodiment, the signal processing circuit 8 that digitizes the radiation transmission amount measured by the detector, and the imaging data calculation / storage that performs the following calculation and further stores and displays the data. A display device 9 is provided.
 次に、図1のS103においてベルトコンベア4により量産鋳造品サンプル10を2次元素子配列検出器ユニット5の設置位置に移動させる。同時に、X線管1を撮像する対象の量産鋳造品サンプル10に対して2次元素子配列検出器ユニット5と相対する位置に設定する。図3に、設定した状態を示した。2次元素子配列検出器ユニット5は検出素子3が、2次元平面に正方格子状に配列された検出器ユニットである。遮蔽素子組み込み型2次元素子配列検出器ユニット2のように遮蔽素子6は設けられておらず、撮像対象とする量産鋳造品サンプル10の投影面を全て2次元素子配列検出素子で受光できるため、遮蔽素子組み込み型2次元素子配列検出器ユニット2のように遮蔽素子の縦横方向に検出器を移動する必要は無く、図1のS104において一度の撮像で全領域の透過像が取得できる。 Next, the mass production cast product sample 10 is moved to the installation position of the two-dimensional element array detector unit 5 by the belt conveyor 4 in S103 of FIG. At the same time, the mass production casting product sample 10 to be imaged with the X-ray tube 1 is set at a position facing the two-dimensional element array detector unit 5. FIG. 3 shows the set state. The two-dimensional element array detector unit 5 is a detector unit in which the detection elements 3 are arranged in a square lattice pattern on a two-dimensional plane. Since the shielding element 6 is not provided unlike the shielding element built-in type two-dimensional element array detector unit 2 and the projection surface of the mass-produced casting sample 10 to be imaged can be received by the two-dimensional element array detection element, Unlike the shielded element built-in type two-dimensional element array detector unit 2, it is not necessary to move the detector in the vertical and horizontal directions of the shield element, and in S104 of FIG.
 その後、図1のS105において、量産鋳造品サンプル10の透過像データA101と透過像データB102の差分量を計算する、図4に、透過像シミュレータを用いて、遮蔽素子組み込み型2次元素子配列検出器ユニット2による量産鋳造品サンプル10の透過像データA101と2次元素子配列検出器ユニット5による量産鋳造品サンプル10の透過像データB102を試し計算した透過画像例を示した。遮蔽素子組み込み型2次元素子配列検出器ユニット2による量産鋳造品サンプル10の透過像13では、検出素子3の周囲に設けられた遮蔽素子6により隣接する検出素子3からの散乱線がカットされるため、画像ノイズの少ない鮮明な透過像13が得られる。一方、2次元素子配列検出器ユニット5による鋳型領域の透過像14では、隣接する検出素子3からの散乱線が各検出素子3に入射するため、画像ノイズが多い透過像14が得られる。ただし、遮蔽素子組み込み型2次元素子配列検出器ユニット2による量産鋳造品サンプル10の透過像13の撮像では、遮蔽素子組み込み型2次元素子配列検出器ユニット2を遮蔽素子サイズ分縦横方向に移動させ全領域の透過像を撮像するため透過像撮像時間を必要とする。一方、2次元素子配列検出器ユニット5による鋳型領域の透過像14の撮像では、撮像対象の量産鋳造品サンプル10の投影面全領域に検出素子3が配列されているため、透過像は瞬時に得られる。 Thereafter, in S105 of FIG. 1, the difference amount between the transmission image data A101 and the transmission image data B102 of the mass-produced cast product sample 10 is calculated. In FIG. 4, a shielded element built-in type two-dimensional element array detection is performed using the transmission image simulator. An example of a transmission image obtained by trial calculation of the transmission image data A101 of the mass-produced cast product sample 10 by the vessel unit 2 and the transmission image data B102 of the mass-production cast product sample 10 by the two-dimensional element array detector unit 5 is shown. In the transmission image 13 of the mass-produced cast product sample 10 by the shield element built-in type two-dimensional element array detector unit 2, the scattered radiation from the adjacent detector element 3 is cut by the shield element 6 provided around the detector element 3. Therefore, a clear transmission image 13 with little image noise is obtained. On the other hand, in the transmission image 14 of the template region by the two-dimensional element array detector unit 5, since the scattered radiation from the adjacent detection elements 3 enters each detection element 3, a transmission image 14 with much image noise is obtained. However, when the transmission image 13 of the mass-produced cast product sample 10 is captured by the shielding element built-in type two-dimensional element array detector unit 2, the shielding element built-in type two-dimensional element array detector unit 2 is moved in the vertical and horizontal directions by the size of the shielding element. A transmission image capturing time is required to capture a transmission image of the entire region. On the other hand, when the transmission image 14 of the casting mold region is picked up by the two-dimensional element array detector unit 5, since the detection elements 3 are arrayed in the entire projection surface region of the mass-produced cast product sample 10 to be imaged, the transmission image is instantaneously generated. can get.
 前述のように、図1のS105において、2次元素子配列検出器ユニット5による量産鋳造品サンプル10の透過像データB102と遮蔽素子組み込み型2次元素子配列検出器ユニット2による量産鋳造品サンプル10の透過像データA101との差分量を計算する。ここで得られた各検収素子位置の差分量データC103が、2次元素子配列検出器ユニット5における各検出素子から隣接する検出素子に流入する散乱線の量となる。 As described above, in S105 of FIG. 1, the transmission image data B102 of the mass-produced cast product sample 10 by the two-dimensional element array detector unit 5 and the mass-produced cast product sample 10 by the shield element-embedded two-dimensional element array detector unit 2 are used. The amount of difference from the transmission image data A101 is calculated. The difference amount data C103 at each detection element position obtained here is the amount of scattered radiation that flows from each detection element to the adjacent detection element in the two-dimensional element array detector unit 5.
 さらにその次のステップでは、図1のS106として、2次元素子配列検出器ユニット5による量産鋳造品サンプル10の透過像データB102からS105で算出した各検収素子位置の差分量データC103を差し引く事により、各検出素子から隣接する検出素子に流入する散乱線成分を除去した透過像撮像データD104が得られる。 In the next step, as S106 in FIG. 1, by subtracting the difference amount data C103 of each inspection element position calculated in S105 from the transmission image data B102 of the mass-produced cast product sample 10 by the two-dimensional element array detector unit 5. The transmission image imaging data D104 from which the scattered radiation component flowing into the adjacent detection element from each detection element is removed is obtained.
 実施例1のシステムによるインライン検査では、この透過像撮像データD104を用いて、S107において1個目の量産鋳造品サンプル10の健全性を評価する。 In the in-line inspection by the system of Example 1, the soundness of the first mass-produced cast product sample 10 is evaluated in S107 using the transmission image data D104.
 次に、S108では、製造ラインで連続的に生産される量産鋳造品(2個目の量産鋳造品サンプル11、3個目の量産鋳造品サンプル12)が、連続的にベルトコンベア4に設置される。2個目以降の量産鋳造品は、遮蔽素子組み込み型2次元素子配列検出器ユニット2による撮像を省略し、S105の2次元素子配列検出器ユニット5による撮像のみ実施する(S109)。それにより、2回目以降の量産鋳造品の透過像データE105が得られる。 Next, in S108, a mass production casting product (second mass production casting sample 11, third mass production casting sample 12) continuously produced on the production line is continuously installed on the belt conveyor 4. The For the second and subsequent mass-produced cast products, imaging by the shielding element built-in type two-dimensional element array detector unit 2 is omitted, and only imaging by the two-dimensional element array detector unit 5 in S105 is performed (S109). Thereby, transmission image data E105 of the second and subsequent mass-produced cast products is obtained.
 次に、1個目で算出した各検収素子位置の差分量データC103を、2回目以降の量産鋳造品の透過像データE105から差し引き(S110)、2回目以降の量産鋳造品の散乱線成分を除去した透過像データF106を算出する。この透過像データF106を用いてS111において2個目の量産鋳造品サンプル11の健全性を評価する。S112において、連続的に投入される量産鋳造品の全個数に対してS108からS111までのプロセスを繰り返す。 Next, the difference amount data C103 of each inspection element position calculated in the first is subtracted from the transmission image data E105 of the second and subsequent mass production castings (S110), and the scattered radiation component of the second and subsequent mass production castings is obtained. The removed transmission image data F106 is calculated. Using this transmission image data F106, the soundness of the second mass-produced cast product sample 11 is evaluated in S111. In S112, the processes from S108 to S111 are repeated with respect to the total number of mass-produced castings that are continuously charged.
 以上、実施例1によれば、量産鋳造品のような金属製の製品でX線を透過させるためX線エネルギーを高くすると同時に短時間での撮像を実現するため、2次元に検出素子を稠密に配列した平面型検出器を使用した場合に、検出素子間で発生する散乱線成分の増加による内部欠陥検出精度悪化を防止し、高精度なインラインX線検査を実現させるX線インライン検査システムを提供する事が可能となる。 As described above, according to the first embodiment, in order to transmit X-rays in a metal product such as a mass-produced cast product, X-ray energy is increased, and at the same time, in order to realize imaging in a short time, the detection elements are densely arranged in two dimensions. An X-ray in-line inspection system that prevents internal defect detection accuracy from deteriorating due to an increase in scattered radiation components generated between detection elements and realizes high-precision in-line X-ray inspection when using a planar detector arranged in It can be provided.
 図5は、実施例2によるX線インライン検査システムの透過像撮像方法の手順を示すフローであり、X線インライン検査システム装置の概略図を図5に示す。 FIG. 5 is a flowchart showing a procedure of a transmission image capturing method of the X-ray inline inspection system according to the second embodiment, and a schematic diagram of the X-ray inline inspection system apparatus is shown in FIG.
 実施例2では、撮像対象品を移動させるベルトコンベア4のラインにおいて、遮蔽素子組み込み型2次元素子配列検出器ユニット2とX線管1が相対する位置に撮像対象品を回転させる回転テーブル15を設ける。また、2次元素子配列検出器ユニット5とX線管1が相対する位置に撮像対象品を回転させる回転テーブル16を設ける。実施例2では、図5の処理フロー図に示したようにS114において対象製品の照射角度θを図5の回転テーブル15により設定し、S101からS106のステップを設定した照射角度θ毎に繰り返す。図7には角度90度毎に、量産鋳造品サンプル10を透過像撮像した例を透過像シミュレーションで示した。図6には、それぞれ(a)照射角度θ=0度の透過画像17、(b)θ=90度の透過画像18、(c)θ=180度の透過画像19、(d)θ=270度の透過画像20を示している。 In the second embodiment, in the line of the belt conveyor 4 for moving the imaging target product, the rotary table 15 that rotates the imaging target product to a position where the shielding element built-in type two-dimensional element array detector unit 2 and the X-ray tube 1 face each other. Provide. In addition, a rotary table 16 for rotating the imaging target product is provided at a position where the two-dimensional element array detector unit 5 and the X-ray tube 1 face each other. In the second embodiment, as shown in the process flow diagram of FIG. 5, the irradiation angle θ of the target product is set by the rotary table 15 of FIG. 5 in S114, and the steps from S101 to S106 are repeated for each set irradiation angle θ. FIG. 7 shows a transmission image simulation in which a transmission image of the mass-produced cast product sample 10 is taken every 90 degrees. FIG. 6 shows (a) a transmission image 17 with an irradiation angle θ = 0 degrees, (b) a transmission image 18 with θ = 90 degrees, (c) a transmission image 19 with θ = 180 degrees, and (d) θ = 270. A transmission image 20 of the degree is shown.
 図5の処理フローで示したように、1個目の量産鋳造品サンプル10をS100からS114で処理した後は、連続的に生産されるNall個の量産鋳造品サンプルに対してS108からS112の処理を繰り返す。 As shown in the processing flow of FIG. 5, after the first mass-produced cast sample 10 is processed in S100 to S114, Null mass-produced cast samples that are continuously produced are processed in S108 to S112. Repeat the process.
 以上、実施例2によれば、一方向からでは取得できない量産鋳造品の内部欠陥に対してもより高精度な検査が可能となる。 As described above, according to the second embodiment, it is possible to inspect with higher accuracy even for internal defects of mass-produced castings that cannot be obtained from one direction.
 図8に実施例3によるX線インライン検査システムの透過像撮像方法の手順を示すフロー図を示す。 FIG. 8 is a flowchart showing the procedure of the transmission image capturing method of the X-ray in-line inspection system according to the third embodiment.
 実施例1、2では、透過像による健全性評価例を示したが、第3の実施例では、図5に示した装置構成で、遮蔽素子組み込み型2次元素子配列検出器ユニット2とX線管1が相対する位置に撮像対象品を回転させる回転テーブル15を用いて、対象製品1回転分の指定角度ピッチでの投影データを取得し、これらの投影データから画像再構成処理ステップS117により3次元CT像を作成する。また、2次元素子配列検出器ユニット5とX線管1が相対する位置に設けた撮像対象品を回転させる回転テーブル16位置でも同様の画像再構成処理ステップS118により3次元CT像を作成し、得られた3次元CT像から対象製品の健全性評価を実施する。 In the first and second embodiments, an example of soundness evaluation using a transmission image is shown. In the third embodiment, the shielding element-embedded two-dimensional element array detector unit 2 and the X-ray are configured in the apparatus configuration shown in FIG. Projection data at a specified angle pitch for one rotation of the target product is acquired using the rotary table 15 that rotates the imaging target product to a position where the tube 1 is opposed, and the image reconstruction processing step S117 is performed based on these projection data. Create a dimensional CT image. Also, a three-dimensional CT image is created by the same image reconstruction processing step S118 at the position of the rotary table 16 for rotating the imaging target product provided at the position where the two-dimensional element array detector unit 5 and the X-ray tube 1 face each other. The soundness of the target product is evaluated from the obtained three-dimensional CT image.
 以上、実施例3によれば、3次元CT像を作成するため、より内部欠陥の判定が分かりやすい画像データが得られる。 As described above, according to the third embodiment, since a three-dimensional CT image is created, it is possible to obtain image data that makes it easier to determine the internal defect.
 以上の説明のように、本発明によれば、量産鋳造品のような金属製の製品でX線を透過させるためX線エネルギーを高くすると同時に短時間での撮像を実現するため、2次元に検出素子を稠密に配列した平面型検出器を使用した場合に、検出素子間で発生する散乱線成分の増加による内部欠陥検出精度悪化を防止し、高精度なインラインX線検査を実現させるX線インライン検査システムを提供する事が可能となり、製造ラインにおける量産彫像品の品質向上に繋げる事ができる。また、鋳造品に限らず一般の機械部品でも内部構造の非破壊による可視化が製造ライン上で可能となるため、これらの機械部品の品質向上に繋げる事ができる。 As described above, according to the present invention, in order to transmit X-rays in a metal product such as a mass-produced cast product, X-ray energy is increased, and at the same time, imaging in a short time is realized in two dimensions. X-ray that realizes high-precision inline X-ray inspection by preventing deterioration of internal defect detection accuracy due to an increase in scattered radiation components generated between detection elements when a planar detector with densely arranged detection elements is used An in-line inspection system can be provided, which can lead to an improvement in the quality of mass-produced statues on the production line. Further, not only casting products but also general machine parts can be visualized on the production line by nondestructive internal structure, which can lead to improvement of the quality of these machine parts.
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 In addition, this invention is not limited to the above-mentioned Example, Various modifications are included. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Further, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.
1 X線管
2 遮蔽素子組み込み型2次元素子配列検出器ユニット
3 検出素子
4 ベルトコンベア
5 2次元素子配列検出器ユニット
6 遮蔽素子
7 検出器ユニット支持構造
8 信号処理回路
9 撮像データ演算・保管・表示装置
10 量産鋳造品サンプル
11 2個目の量産鋳造品サンプル
12 3個目の量産鋳造品サンプル
13 透過像
14 透過像
15 回転テーブル
16 回転テーブル
17 θ=0度の透過画像
18 θ=90度の透過画像
19 θ=180度の透過画像
20 θ=270度の透過画像
101 透過像データA
102 透過像データB
103 差分量データC
104 透過像撮像データD
105 透過像データE
106 透過像データF
DESCRIPTION OF SYMBOLS 1 X-ray tube 2 Shielding element built-in type two-dimensional element arrangement detector unit 3 Detection element 4 Belt conveyor 5 Two-dimensional element arrangement detector unit 6 Shielding element 7 Detector unit support structure 8 Signal processing circuit 9 Imaging data calculation, storage, Display device 10 Mass production cast sample 11 Second mass production cast sample 12 Third mass production cast sample 13 Transmission image 14 Transmission image 15 Rotary table 16 Rotary table 17 Transmission image 18 θ = 0 ° θ = 90 ° Transmission image 19 θ = 180 degrees transmission image 20 θ = 270 degrees transmission image 101 transmission image data A
102 Transmission image data B
103 Difference data C
104 Transmission image data D
105 Transmission image data E
106 Transmission image data F

Claims (9)

  1.  放射線を照射する放射線源と、
     撮像対象被検体を透過した放射線を検出する検出器と、
     前記放射線源と前記検出器の間に被検体を移動させる駆動機構と、
     前記検出器で計測された放射線透過量を数値化する信号処理回路と、
     これらの信号を元に画像を構成する演算装置からなるX線インライン検査装置システムにおいて、
     検出系として遮蔽素子を部分的に埋め込んだ2次元素子配列検出器ユニットと、2次元素素子配列検出器ユニットと、を保有し、
     同一被検体に対して前記遮蔽素子を部分的に埋め込んだ2次元素子配列検出器ユニットと前記2次元素素子配列検出器ユニットとで撮像した画像を用いて透過画像を作成することを特徴とするX線インライン検査システム。
    A radiation source that emits radiation;
    A detector for detecting radiation transmitted through the subject to be imaged;
    A drive mechanism for moving a subject between the radiation source and the detector;
    A signal processing circuit for quantifying the radiation transmission amount measured by the detector;
    In the X-ray in-line inspection system comprising an arithmetic unit that constructs an image based on these signals,
    A two-dimensional element array detector unit partially embedded with a shielding element as a detection system, and a secondary element element array detector unit;
    A transmission image is created using images captured by a two-dimensional element array detector unit in which the shielding element is partially embedded in the same subject and the secondary element element array detector unit. X-ray in-line inspection system.
  2.  請求項1に記載のX線インライン検査システムにおいて、
     前記遮蔽素子を部分的に埋め込んだ2次元素子配列検出器ユニットと前記2次元素子配列検出器ユニットの検出素子として、半導体検出器またはシンチレータ型検出器を用いることを特徴とするX線インライン検査システム。
    In the X-ray in-line inspection system according to claim 1,
    An X-ray in-line inspection system using a two-dimensional element array detector unit partially embedded with the shielding element and a semiconductor detector or a scintillator type detector as the detection element of the two-dimensional element array detector unit .
  3.  請求項2に記載のX線インライン検査システムにおいて、
     前記遮蔽素子を部分的に埋め込んだ2次元素子配列検出器ユニットは、2次元配列の検出素子の中にスタガード状に遮蔽素子が配置されていることを特徴とするX線インライン検査システム。
    The X-ray in-line inspection system according to claim 2,
    An X-ray in-line inspection system, wherein the two-dimensional element array detector unit in which the shielding elements are partially embedded has shielding elements arranged in a staggered manner in the two-dimensional array of detection elements.
  4.  請求項1に記載のX線インライン検査システムにおいて、
     前記演算装置は、前記遮蔽素子を部分的に埋め込んだ2次元素子配列検出器ユニットと前記2次元素子配列検出器ユニットで得られた画像の差分を求めて、前記差分を用いて、前記2次元素子配列検出器ユニットで得られた新たな画像から差分を差し引く機能を有することを特徴とするX線インライン検査システム。
    In the X-ray in-line inspection system according to claim 1,
    The arithmetic unit obtains a difference between a two-dimensional element array detector unit partially embedded with the shielding element and an image obtained by the two-dimensional element array detector unit, and uses the difference to determine the two-dimensional An X-ray in-line inspection system having a function of subtracting a difference from a new image obtained by an element array detector unit.
  5.  請求項1に記載のX線インライン検査システムにおいて、
     前記駆動機構は、被検体を回転させる回転テーブルを備えたことを特徴とするX線インライン検査システム。
    In the X-ray in-line inspection system according to claim 1,
    The X-ray in-line inspection system, wherein the drive mechanism includes a rotary table that rotates a subject.
  6.  放射線を照射する放射線源と、
     撮像対象被検体を透過した放射線を検出する検出器と、
     前記放射線源と前記検出器の間に被検体を移動させる駆動機構と、
     前記検出器で計測された放射線透過量を数値化する信号処理回路と、
     これらの信号を元に画像を構成する演算装置からなるX線インライン検査装置システムによる撮像方法において、
     前記検出器は遮蔽素子を部分的に埋め込んだ2次元素子配列検出器ユニットと2次元素素子配列検出器ユニットから構成され、
     連続的に投入される同一形状の製品の初期に投入される被検体に対して、前記遮蔽素子を部分的に埋め込んだ2次元素子配列検出器ユニットおよび前記2次元素素子配列検出器ユニットでそれぞれ独立に透過像撮像し、
     前記両画像データの差分量を算出し、
     連続的に投入される被検体に対して前記2次元素素子配列検出器ユニットで撮像した透過像から初期に投入される被検体で算出した差分量を差し引き、当該画像により健全性判定を実施することを特徴とするX線インライン検査装置システムの撮像方法。
    A radiation source that emits radiation;
    A detector for detecting radiation transmitted through the subject to be imaged;
    A drive mechanism for moving a subject between the radiation source and the detector;
    A signal processing circuit for quantifying the radiation transmission amount measured by the detector;
    In an imaging method by an X-ray in-line inspection apparatus system comprising an arithmetic unit that constructs an image based on these signals,
    The detector comprises a two-dimensional element array detector unit partially embedded with a shielding element and a secondary element element array detector unit,
    A two-dimensional element array detector unit in which the shielding element is partially embedded and a secondary element element array detector unit are respectively provided for an object to be input at the beginning of a product of the same shape that is continuously input. Take a transmission image independently,
    A difference amount between the two image data is calculated,
    Subtract the difference amount calculated by the subject initially input from the transmission image picked up by the secondary element element array detector unit for the continuously input subject, and perform soundness determination based on the image An imaging method for an X-ray in-line inspection system characterized by the above.
  7.  請求項6におけるX線インライン検査装置システムの撮像方法において、
     前記遮蔽素子を部分的に埋め込んだ2次元素子配列検出器ユニットは、2次元配列の検出素子の中にスタガード状に遮蔽素子が配置され、当該検出器ユニットでの透過像撮像では、遮蔽素子サイズの長さ分縦横にそれぞれ移動させ、全領域の透過像を取得することを特徴とする線インライン検査装置システムの撮像方法。
    In the imaging method of the X-ray in-line inspection apparatus system in Claim 6,
    In the two-dimensional element array detector unit in which the shield elements are partially embedded, the shield elements are arranged in a staggered manner in the two-dimensional array of detection elements. The line in-line inspection apparatus system is characterized in that a transmission image of the entire region is acquired by moving the image in the vertical and horizontal directions by the length of each line.
  8.  請求項6におけるX線インライン検査装置システムの撮像方法において、
     前記遮蔽素子を部分的に埋め込んだ2次元素子配列検出器ユニットと前記2次元素素子配列検出器ユニットでの透過像撮像時に被検体を回転させることを特徴とするX線インライン検査装置システムの撮像方法。
    In the imaging method of the X-ray in-line inspection apparatus system in Claim 6,
    Imaging of an X-ray in-line inspection apparatus system characterized in that a subject is rotated when a transmission image is captured by the two-dimensional element array detector unit in which the shielding element is partially embedded and the secondary element element array detector unit. Method.
  9.  請求項8におけるX線インライン検査装置システムの撮像方法において、
     前記透過像から、CT画像を再構成することを特徴とするX線インライン検査装置システムの撮像方法。
    In the imaging method of the X-ray inline inspection apparatus system in Claim 8,
    An imaging method of an X-ray in-line inspection apparatus system, wherein a CT image is reconstructed from the transmission image.
PCT/JP2016/084189 2016-11-18 2016-11-18 Inline x-ray inspection system and imaging method for inline x-ray inspection system WO2018092256A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/084189 WO2018092256A1 (en) 2016-11-18 2016-11-18 Inline x-ray inspection system and imaging method for inline x-ray inspection system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/084189 WO2018092256A1 (en) 2016-11-18 2016-11-18 Inline x-ray inspection system and imaging method for inline x-ray inspection system

Publications (1)

Publication Number Publication Date
WO2018092256A1 true WO2018092256A1 (en) 2018-05-24

Family

ID=62145109

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/084189 WO2018092256A1 (en) 2016-11-18 2016-11-18 Inline x-ray inspection system and imaging method for inline x-ray inspection system

Country Status (1)

Country Link
WO (1) WO2018092256A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020085812A (en) * 2018-11-30 2020-06-04 株式会社日立製作所 X-ray/neutron hybrid imaging device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02231554A (en) * 1989-03-03 1990-09-13 Shimadzu Corp Radiograph receiving device
JP2004157076A (en) * 2002-11-08 2004-06-03 Toyota Motor Corp X-ray inspection apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02231554A (en) * 1989-03-03 1990-09-13 Shimadzu Corp Radiograph receiving device
JP2004157076A (en) * 2002-11-08 2004-06-03 Toyota Motor Corp X-ray inspection apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020085812A (en) * 2018-11-30 2020-06-04 株式会社日立製作所 X-ray/neutron hybrid imaging device
JP7140656B2 (en) 2018-11-30 2022-09-21 株式会社日立製作所 X-ray/neutron hybrid imaging system

Similar Documents

Publication Publication Date Title
US10521936B2 (en) Device and method for image reconstruction at different X-ray energies, and device and method for X-ray three-dimensional measurement
JP2014009976A (en) Three-dimensional shape measurement x-ray ct device and three-dimensional shape measurement method by x-ray ct device
JP2019219267A (en) In-line internal defect inspection method and system
KR20140059012A (en) Nondestructive test system
Udod et al. State-of-the art and development prospects of digital radiography systems for nondestructive testing, evaluation, and inspection of objects: a review
JP2020071068A (en) Method for evaluating minute defect inside steel pipe
WO2021166295A1 (en) Radiation measurement device and radiation measurement method
WO2018092256A1 (en) Inline x-ray inspection system and imaging method for inline x-ray inspection system
KR101480968B1 (en) Inspection apparatus and inspection method using x-ray computed tomography and laser surface scanning
US20190025231A1 (en) A method of detection of defects in materials with internal directional structure and a device for performance of the method
JP2013079825A (en) X-ray ct image reconstruction method, and x-ray ct device
JP7140656B2 (en) X-ray/neutron hybrid imaging system
JP7051847B2 (en) X-ray in-line inspection method and equipment
WO2019130373A1 (en) X-ray in-line detection method and device
JP2012083277A (en) X-ray detector, x-ray ct apparatus using the same, and method for capturing x-ray ct
JP6411775B2 (en) X-ray imaging system and X-ray imaging method
JP4022385B2 (en) Radiation detector
JP7437337B2 (en) Internal state imaging device and internal state imaging method
JP7009230B2 (en) Non-destructive inspection equipment and non-destructive inspection method
JP2017044588A (en) X-ray detector and X-ray imaging system
JP2004045247A (en) Device for inspecting x-ray image
Scanavini et al. Computed tomography
Davis et al. High-energy x-ray and neutron modeling and digital imaging for nondestructive testing applications
JP2013108776A (en) X-ray detector and industrial x-ray ct apparatus using the same
KR101127568B1 (en) Outer surface contact type gamma tomography apparatus for industrial process diagnosis and its method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16921903

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16921903

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP