WO2021166295A1 - Radiation measurement device and radiation measurement method - Google Patents

Radiation measurement device and radiation measurement method Download PDF

Info

Publication number
WO2021166295A1
WO2021166295A1 PCT/JP2020/034292 JP2020034292W WO2021166295A1 WO 2021166295 A1 WO2021166295 A1 WO 2021166295A1 JP 2020034292 W JP2020034292 W JP 2020034292W WO 2021166295 A1 WO2021166295 A1 WO 2021166295A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiation
monochromatic
energy
inspected
photon
Prior art date
Application number
PCT/JP2020/034292
Other languages
French (fr)
Japanese (ja)
Inventor
克宜 上野
名雲 靖
裕人 中島
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2021166295A1 publication Critical patent/WO2021166295A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/20066Measuring inelastic scatter of gamma rays, e.g. Compton effect
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/24Measuring radiation intensity with semiconductor detectors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the present invention relates to a radiation measuring device and a radiation measuring method.
  • Technology for inspecting these social infrastructures includes a method of imaging the object to be inspected with a camera and evaluating the surface condition by image processing technology, and image processing by irradiating the object to be inspected with a laser and imaging the reflected light.
  • a method of evaluating the surface condition by technology a method of irradiating the object to be inspected with a radar and measuring the reflected wave to evaluate the internal state, and information on the internal density of the object to be inspected using an X-ray or ⁇ -ray source.
  • the method using a camera or a laser can inspect the surface condition of the object to be inspected, but it is difficult to grasp the internal condition. Although it is possible to grasp the internal state by the method using radar, it is difficult to measure the internal direction with high resolution.
  • Patent Document 1 an X-ray beam is irradiated to an inspected object, energy intensity information in the depth direction of Compton scattered X-rays generated from the inspected object is acquired by a plurality of CdTe semiconductor sensors, and two sets of disks are further obtained.
  • a radiation three-dimensional imaging device that detects the energy of Compton scattered X-rays by separating them into two energy bands, high and low, with a riminator and a counter, and obtains information on the structure and material of the inspected object using an image processing unit. ing.
  • Patent Document 2 reduces exposure when using a ⁇ -ray source by irradiating an inspected object with a laser inverse Compton photon having high directivity and monochromaticity and variable photon energy and measuring the transmitted photon.
  • a laser inverse Compton photon having high directivity and monochromaticity and variable photon energy
  • the slit plays the role of a so-called pinhole collimator, and the resolution in the internal direction is determined by the positional relationship between the pinhole collimator and the sensor.
  • the resolution in the internal direction can be improved.
  • it is difficult to increase the resolution in the internal direction because there are processing restrictions in order to reduce the sensor pitch.
  • the light source used is an X-ray source
  • the object to be inspected is generally irradiated with X-rays in a wide energy band. Therefore, even if the energy is measured by the radiation detector, it is difficult to convert the energy information of the Compton scattered photons into the information in the internal direction.
  • Patent Document 2 measures a transmitted image with an object to be inspected sandwiched by using a laser inverse Compton photon having high directivity and monochromaticity and variable photon energy. Since the transmitted light radiated to the object to be inspected is detected, it is difficult to measure the internal direction with high resolution.
  • the present invention has been made in view of such circumstances, and radiation capable of acquiring the internal state of an object to be inspected with high resolution in the internal direction and realizing advanced analysis and monitoring.
  • An object of the present invention is to provide a measuring device and a radiation measuring method.
  • the radiation measuring device of the present invention is a radiation measuring device that detects photons, and comprises a monochromatic photon source that controls the irradiation direction of a monochromatic photon or a quasi-monochromatic photon, and the monochromatic photon source.
  • a radiation detector that detects Compton scattered photons scattered from an object whose relative coordinates are known, an energy measuring device that measures the energy and intensity of the detected Compton scattered photons, and the relative coordinates and the Compton scattered photons.
  • a depth calculation device for calculating the Compton scattered photon intensity distribution in the depth direction of the object to be inspected and an output device for outputting the calculation result of the depth calculation device are provided based on the energy and intensity of the above. It is characterized by.
  • Other aspects of the present invention will be described in embodiments described below.
  • a radiation measuring device and a radiation measuring method capable of acquiring the internal state of an object to be inspected with high resolution in the internal direction and realizing advanced analysis and monitoring based on the result. Can be provided.
  • FIG. 1 is a diagram showing a configuration of a radiation measuring device according to the first embodiment of the present invention.
  • the radiation measuring device and the radiation measuring method of the present embodiment are examples applied to the non-destructive inspection device and the radiation measuring method for grasping the internal state of the object to be inspected with high resolution in the internal direction.
  • the radiation measuring device 100 includes a monochromatic photon source 101, a radiation detector 102, an energy measuring device 103, a depth calculation device 104, and a display device 105 (output device).
  • the monochromatic photon source 101 irradiates a monochromatic or quasi-monochromatic energy monochromatic photon 107 in an arbitrary irradiation direction.
  • the monochromatic photon source 101 controls the irradiation direction of a monochromatic photon or a quasi-monochromatic photon.
  • Monochromatic photons are obtained, for example, using radioactive isotopes (see below).
  • Semi-monochromatic photons are obtained using accelerated positrons (see below).
  • monochromatic photons or quasi-monochromatic photons are collectively referred to as monochromatic photons.
  • the monochromatic photon source 101 has an irradiation direction control function for irradiating photons in an arbitrary irradiation direction.
  • the monochromatic photon source 101 irradiates the inspected object 106 with the monochromatic photon 107.
  • the radiation detector 102 detects the scattered photons 108 that are Compton scattered by the object 106 to be inspected.
  • the radiation detector 102 includes semiconductor detectors such as Ge semiconductor, CdTe semiconductor, CdZnTe semiconductor, Si semiconductor, and CsPbCl 3 , CsPbBr 3 , and LiTaO 3 having a Perovskite structure as photon sensitive materials.
  • the radiation detector 102 may be a LaBr 3 scintillator, a CsBr 3 scintillator, a LYSO scintillator, an LSO scintillator, a GAGG scintillator, a CsI scintillator, a NaI scintillator, a BGO scintillator, a GSO scintillator, a GPS scintillator, a La-GPS scintillator, or a LuAG scintillator. , SrI scintillator and the like.
  • a general radiation detector capable of analyzing photon energy is mentioned here, any of the above semiconductor detectors or scintillation detectors can be used as long as it is a radiation detector equipped with a photon sensitive material capable of energy analysis. Is also applicable.
  • the energy measuring device 103 analyzes the signal output from the radiation detector 102, and calculates the energy spectrum given by the scattered photons 108 in the radiation detector 102 as a peak value spectrum.
  • the depth calculation device 104 inputs the relative positions of the monochromatic photon source 101 and the radiation detector 102, the irradiation vector of the photon emitted from the monochromatic photon source 101, and the peak value spectrum, and inputs the relative coordinates and the energy and intensity of the Compton scattered photon.
  • the intensity distribution of Compton scattered photons in the depth direction of the inspected object 106 is calculated from.
  • the display device 105 displays the intensity distribution of Compton scattered photons in the depth direction output from the depth arithmetic unit 104.
  • the display device 105 is an example of an output device, and the output is not limited to the display. That is, it suffices to output the intensity distribution of Compton scattered photons in the depth direction.
  • a printer that outputs the calculation result of the depth calculation device 104, a communication device that transmits the calculation result via a wireless or wired communication path, and a storage device that stores the calculation result are also included.
  • the radiation measuring device 100 knows the relative coordinates between the monochromatic photon source 101 that controls the irradiation direction of the monochromatic photon or the quasi-monochromatic photon and the monochromatic photon source 101, and compton scattering scattered from the inspected object 106.
  • the depth of the inspected object 106 based on the radiation detector 102 that detects photons, the energy measuring device 103 that measures the energy and intensity of the detected Compton scattered photons, and the relative coordinates and the energy and intensity of the Compton scattered photons. It includes a depth calculation device 104 that calculates the Compton scattered photon intensity distribution in the direction, and a display device 105 (output unit) that displays the calculation result.
  • FIG. 2 is a diagram showing the configuration of the monochromatic photon source 101.
  • the monochromatic photon source 101 includes a radioisotope 109 (radioisotope), a collimator 110, and a photon shutter 111.
  • the monochromatic photon source 101 is a laser inverse Compton scattered photon generator that emits a laser inverse Compton photon.
  • Radioisotope 109 has a very high monochromaticity. Radioisotopes 109 having monochromaticity include Cs-137, Zn-65, Be-7, Cr-51, Co-58, Mn-54, Hg-203, Sr-85, F-18, Ga-68. , Al-28, and K-42, at least one selected from the group.
  • X-rays or ⁇ -rays having an emission energy of less than 20 keV are set to be negligible in measuring the intensity distribution of Compton scattered photons in the depth direction inside the inspected object 106.
  • the radioisotope 109 emits photons isotropically, when the radioisotope 109 is used, a collimeter 110 for controlling the irradiation direction of the photons emitted from the radioisotope 109 is provided.
  • the material of the collimator 110 is selected based on the photon shielding efficiency, outer dimensions, weight, and the like. For example, relatively easily available metals such as lead, iron, stainless steel, tungsten, and aluminum are used.
  • the structure of the collimator 110 includes a pinhole type structure for irradiating the object to be inspected 106 with a pencil beam and a fan beam type structure (see FIG. 18).
  • the radioisotope 109 since the radioisotope 109 continuously emits photons, it is provided with a photon shutter 111 for controlling irradiation and non-irradiation.
  • a photon shutter 111 As the material of the photon shutter 111, similarly to the collimator 110, a relatively easily available metal such as lead, iron, stainless steel, tungsten, or aluminum is used.
  • the photon shutter 111 is arranged between the collimator 110 and the object to be inspected 106, or between the collimator 110 and the monochromatic photon source 101.
  • FIG. 2 shows, as an example, a configuration in which the photon shutter 111 is arranged between the collimator 110 and the object to be inspected 106. As shown by the arrow in FIG. 2, by moving the photon shutter 111 manually or automatically, it is possible to control the irradiation / non-irradiation of photons relatively easily.
  • FIG. 3 is a diagram showing the output of the energy measuring device 130.
  • the horizontal axis represents the peak value (applied energy) of the output signal of the radiation detector 102
  • the vertical axis represents the count value (intensity) of the output signal of the radiation detector 102.
  • the energy measuring device 103 processes the peak value of the output signal of the radiation detector 102 and outputs it as the peak value spectrum 112.
  • the energy measuring device 103 accumulates the crest value data for an arbitrary time and forms the crest value spectrum 112.
  • the depth calculation device 104 is based on the emitted energy Ein of the monochromatic photon source 101 and each energy Es of the peak value spectrum 112 acquired by the energy measuring device 103, and is inside the inspected object 106 according to the following equation (1).
  • the scattering angle ⁇ s of the generated Compton scattering is calculated.
  • Equation (1) is an equation showing the scattering angle ⁇ s of the scattered photons 108 generated by the Compton effect. Equation (1) shows that the scattering angle ⁇ s can be uniquely calculated if the photon energies before and after Compton scattering are known.
  • the depth arithmetic unit 104 uses the position coordinates of the radiation detector 102 (xdet, ydet, zdet), the position coordinates of the monochromatic photon source 101 (0,0, -zsource), and the scattering angle calculated by the equation (1). Based on ⁇ s, the scattering position corresponding to each energy Es, that is, the depth z (Es) is calculated according to the following equation (2).
  • the depth calculation device 104 calculates the intensity distribution of Compton scattered photons in the depth direction.
  • FIG. 4 is a diagram showing the intensity distribution of Compton scattered photons in the depth direction.
  • the horizontal axis represents the depth of Compton scattered photons, and the vertical axis represents the count value (intensity) of Compton scattered photons.
  • the intensity distribution 113 (see the solid line in FIG. 4) of the Compton scattered photons acquired in the inspected object whose internal state is known
  • the Compton acquired in the inspected object whose internal state is unknown The intensity distribution 114 of the scattered photons (see the dashed line in FIG. 4) is shown.
  • the depth arithmetic unit 104 is obtained in the depth direction of the inspected body whose internal state is known and the inspected body whose internal state is unknown and has the same specifications as the known inspected body. By comparing the intensity distributions of Compton scattered photons, changes in the internal state are observed.
  • FIG. 5 is a diagram showing a relative value (when a positive peak occurs) of the intensity distribution of Compton scattered photons in the depth direction.
  • the horizontal axis is the depth of Compton scattered photons
  • the vertical axis is the count value (relative value) of Compton scattered photons.
  • the count value relative value peak 116 in the positive direction is set at a certain depth. You can check. This suggests that the inside of the object to be inspected has a factor that tends to cause Compton scattering.
  • Compton cross-sectional area generally increases in proportion to the atomic number and density. This suggests that the depth at which the positive count value relative value peak 116 occurs includes a substance having an atomic number or a density higher than that of the object to be inspected whose internal state is known.
  • FIG. 6 is a diagram showing a relative value (when a negative peak occurs) of the intensity distribution of Compton scattered photons in the depth direction.
  • the horizontal axis is the depth of Compton scattered photons
  • the vertical axis is the count value (relative value) of Compton scattered photons.
  • the count value relative value peak 117 in the negative direction is set at a certain depth. You can check. This suggests that at a certain depth, the substance to be inspected whose internal state is known contains a substance having a lower atomic number or density.
  • the display device 105 includes input conditions of the depth calculation device 104 such as the peak value spectrum 112, the scattering angle ⁇ s of Compton scattering, the position coordinates of the radiation detector 102 and the monochromatic photon source 101, and the calculation result executed by the depth calculation device 104.
  • the intensity distribution of Compton scattered photons in the depth direction and their relative values are displayed.
  • the radiation measuring apparatus 100 has known relative coordinates between the monochromatic photon source 101 that controls the irradiation direction of the monochromatic photon or the quasi-monochromatic photon and the monochromatic photon source 101, and is to be inspected.
  • the energy measuring device 103 that measures the energy and intensity of the detected Compton scattered photons, and the relative coordinates and the energy and intensity of Compton scattered photons. It includes a depth calculation device 104 that calculates the Compton scattered photon intensity distribution in the depth direction of the inspected object 106, and a display device 105 that displays the calculation result.
  • the depth calculation device 104 uses the emitted energy Ein of the monochromatic photon source 101 and the respective energies Es of the peak value spectrum 112 acquired by the energy measuring device 103, and the inside of the inspected object 106 according to the equation (1).
  • the scattering angle ⁇ s of the Compton scattering generated in the above was calculated, then the position coordinates of the radiation detector 102 (xdet, ydet, zdet), the position coordinates of the monochromatic photon source 101 (0,0, -zsource), and the calculated scattering.
  • the depth z (Es) which is the scattering position corresponding to each energy Es, is calculated according to the equation (2).
  • the photon emitted from the photon source is irradiated to the inspected object 106, and the intensity distribution of the scattered photon in the depth direction of the inspected object 106 is acquired by measuring the photon scattered by Compton.
  • the internal state of the object to be inspected can be grasped with high resolution in the internal direction.
  • advanced analysis and monitoring can be realized.
  • a method of imaging the object to be inspected with a camera and evaluating the surface state by image processing technology, or irradiating the object to be inspected with a laser A method of imaging the reflected light and evaluating the surface state by image processing technology, a method of irradiating the object to be inspected with radiation and measuring the reflected wave to evaluate the internal state, using an X-ray or ⁇ -ray source.
  • This radiation measuring device 100 can be applied to a non-destructive inspection device and a radiation measuring method in place of or in combination with a conventional method such as a method of acquiring density information inside an object to be inspected. For example, in the inspection of social infrastructure such as roads, bridges, tunnels, water services, and power grids, it becomes possible for the public to use the social infrastructure with peace of mind while maintaining the safety and function of the inspected object.
  • the second embodiment is an example of a radiation measuring device and a radiation measuring method using a laser inverse Compton photon.
  • FIG. 7 is a diagram showing a configuration of a radiation measuring device according to a second embodiment of the present invention. The same components as those in FIG. 1 are designated by the same reference numerals, and the description of overlapping portions will be omitted.
  • the radiation measuring device 200 includes a laser inverse Compton scattered photon generator 118 and a laser reverse in addition to the radiation detector 102, the depth calculation device 104 and the display device 105 of the radiation measuring device 100 of FIG. It is configured to include a Compton scattered photon generation control device 119 and an energy measurement device 120 corresponding to the generation timing.
  • the laser inverse Compton scattered photon generator 118 uses an electron source and a laser generator to generate photons with high directivity and high monochromaticity.
  • the laser inverse Compton scattered photon generation control device 119 controls photon generation in the laser inverse Compton scattered photon generation device 118, its generation amount, energy, and irradiation direction, and transmits the photon generation timing to the generation timing corresponding energy measurement device 120.
  • the energy measurement device 120 corresponding to the generation timing controls the photon generation timing of the laser inverse Compton scattered photon generation control device 119 with high accuracy.
  • the generation timing corresponding energy measuring device 120 analyzes the signal output from the radiation detector 102, and calculates the energy spectrum given by the scattered photons 108 in the radiation detector 102 as the peak value spectrum.
  • the radiation measuring device 200 can arbitrarily control the photon generation amount, energy, and irradiation direction, it is possible to acquire the intensity distribution of Compton scattered photons in the depth direction of the inspected object 106 having various specifications. can. Since the internal state can be grasped with high accuracy, it is possible to realize advanced analysis and monitoring based on the result.
  • the third embodiment is an example of a radiation measuring device and a radiation measuring method that utilize a nuclear reaction between a neutron or a charged particle and a target substance.
  • FIG. 8 is a diagram showing a configuration of a radiation measuring device according to a third embodiment of the present invention. The same components as those in FIG. 1 are designated by the same reference numerals, and the description of overlapping portions will be omitted.
  • the radiation measuring device 300 shown in FIG. 8 includes a photon generation target 121, a particle generation source 122, and particles, in addition to the radiation detector 102, the depth calculation device 104, and the display device 105 of the radiation measuring device 100 of FIG.
  • the generation control device 123 and the energy measurement device 124 corresponding to the generation timing are provided.
  • the particle generation source 122 is a photon generator that utilizes a nuclear reaction between a neutron or a charged particle and a target substance.
  • the particle source 122 uses a neutron, a charged particle, or an electron source.
  • a nuclear reaction is generated, and the photons generated there are used.
  • the photon generation target 121 is set to C-12, and 4.4 MeV photons can be generated by irradiating with protons.
  • the radiation measuring device 300 can arbitrarily control the photon generation amount, energy, and irradiation direction, it is possible to acquire the intensity distribution of Compton scattered photons in the depth direction of the inspected object 106 having various specifications. can. Since the internal state of the object to be inspected 106 can be grasped with high accuracy, it is possible to realize advanced analysis and monitoring based on the result.
  • FIG. 9 is a diagram showing a configuration of a radiation measuring device according to a fourth embodiment of the present invention. The same components as those in FIG. 1 are designated by the same reference numerals, and the description of overlapping portions will be omitted.
  • the radiation measuring device 400 shown in FIG. 9 includes a linear arrangement type radiation detector 125, a linear arrangement compatible energy measuring device 126, and a linear arrangement in addition to the monochromatic photon source 101 and the display device 105 of the radiation measuring device 100 of FIG. It is configured to include a corresponding depth calculation device 127.
  • FIG. 10 is a diagram showing a detailed configuration of the linear arrangement type radiation detector 125 and the linear arrangement corresponding energy measuring device 126.
  • the linearly arranged radiation detector 125 is composed of a plurality of linearly arranged radiation detectors 102.
  • the plurality of radiation detectors 102 are arranged linearly in one direction with respect to the surface 106a of the object to be inspected 106.
  • the plurality of radiation detectors 102 are connected to the linear arrangement corresponding energy measuring device 126 corresponding to each output signal.
  • the linearly arranged energy measuring device 126 is composed of a plurality of energy measuring devices 103 linearly arranged corresponding to each radiation detector 102.
  • the peak value spectra of the plurality of radiation detectors 102 obtained by the linear arrangement compatible energy measuring device 126 are treated as input values of the linear arrangement compatible depth calculation device 127.
  • the radiation measuring device 400 can capture scattered photons with a plurality of radiation detectors 102, it is possible to acquire the intensity distribution of Compton scattered photons in the depth direction of the inspected object 106 with high sensitivity. can. Since the intensity distribution can be obtained with high sensitivity, the internal state of the object to be inspected 106 can be grasped with high accuracy, and advanced analysis and monitoring based on the result can be realized.
  • FIG. 11 is a diagram showing a configuration of a radiation measuring device according to a fifth embodiment of the present invention. The same components as those in FIG. 1 are designated by the same reference numerals, and the description of overlapping portions will be omitted.
  • the radiation measuring device 500 shown in FIG. 11 includes a two-dimensional arrangement type radiation detector 128, a two-dimensional arrangement compatible energy measurement device 129, and a two-dimensional arrangement compatible energy measurement device 129, in addition to the monochromatic photon source 101 and the display device 105 of the radiation measurement device 100 of FIG. It is configured to include a depth calculation device 130 corresponding to a two-dimensional arrangement.
  • FIG. 12 is a diagram showing a detailed configuration of the two-dimensional arrangement type radiation detector 128 and the two-dimensional arrangement corresponding energy measuring device 129.
  • the two-dimensional arrangement type radiation detector 128 is composed of a plurality of radiation detectors 102.
  • the plurality of radiation detectors 102 are arranged two-dimensionally (array arrangement) with respect to the surface of the object to be inspected 106.
  • the array arrangement of the radiation detector 102 shown in FIG. 12 is an example, and any arrangement may be used as long as it is a two-dimensional arrangement.
  • the two-dimensional arrangement of the radiation detector 102 may be a curved arrangement that matches the curved surface of the surface of the inspected object 106.
  • the plurality of radiation detectors 102 are connected to the energy measuring device 129 corresponding to the two-dimensional arrangement corresponding to each output signal.
  • the energy measuring device 129 corresponding to the two-dimensional arrangement is composed of a plurality of energy measuring devices 103 arranged two-dimensionally corresponding to each radiation detector 102.
  • the peak value spectra of the plurality of radiation detectors 102 obtained by the two-dimensional arrangement compatible energy measuring device 129 are treated as input values of the two-dimensional arrangement compatible depth calculation device 130.
  • the radiation measuring device 500 can capture scattered photons with a plurality of radiation detectors 102 obtained by the energy measuring device 129 corresponding to the two-dimensional arrangement, Compton scattering in the depth direction of the inspected object 106
  • the photon intensity distribution can be obtained with even higher sensitivity. Since the intensity distribution can be obtained with even higher sensitivity, the internal state of the object to be inspected 106 can be grasped with higher accuracy, and advanced analysis and monitoring based on the results can be realized.
  • the sixth embodiment is an example of a radiation measuring device and a radiation measuring method in which a plurality of radiation detectors are arranged in an annular shape.
  • FIG. 13 is a diagram showing a configuration of a radiation measuring device according to a sixth embodiment of the present invention. The same components as those in FIG. 1 are designated by the same reference numerals, and the description of overlapping portions will be omitted.
  • the radiation measuring device 600 shown in FIG. 13 includes, in addition to the monochromatic photon source 101 and the display device 105 of the radiation measuring device 100 of FIG. It is configured to include a depth calculation device 133 corresponding to an annular arrangement.
  • FIG. 14 is a diagram showing a detailed configuration of the ring-arranged radiation detector 131.
  • the annulus-arranged radiation detector 131 includes a plurality of radiation detectors 102 concentrically arranged in an annulus.
  • the plurality of radiation detectors 102 are arranged in an annulus with respect to the surface of the object to be inspected 106.
  • a plurality of radiation detectors 102 are arranged with a plurality of concentric rings at a pitch of 30 ° around the irradiation point 134.
  • the angular pitch at which the plurality of radiation detectors 102 are arranged and the diameter of the annulus are adjusted according to the size of the radiation detector 102 used, the detection efficiency of the intensity distribution of Compton scattered photons, and the like.
  • the plurality of radiation detectors 102 are connected to the energy measuring device 132 corresponding to the ring arrangement corresponding to each output signal (not shown in FIG. 14).
  • the peak value spectra of the plurality of radiation detectors 102 obtained by the energy measuring device 132 corresponding to the annulus arrangement are treated as input values of the depth arithmetic unit 133 corresponding to the annulus arrangement (not shown in FIG. 14).
  • the radiation measuring device 600 can capture scattered photons with a plurality of radiation detectors 102 in a plurality of rings, the intensity distribution of Compton scattered photons in the depth direction of the inspected object 106 can be further improved. Since it can be acquired with higher sensitivity and the internal state of the object to be inspected 106 can be grasped with higher accuracy, it is possible to realize advanced analysis and monitoring based on the result.
  • the radiation measuring device 600 is a radiation detector 102 on the same ring, it can be regarded as the same measurement because the relative coordinates of the monochromatic photon source 101 and the radiation detector 102 do not change. Therefore, in the depth calculation device 133 corresponding to the ring arrangement, the calculation can be shortened.
  • FIG. 15 is a diagram showing a configuration of a radiation measuring device according to a seventh embodiment of the present invention. The same components as those in FIG. 1 are designated by the same reference numerals, and the description of overlapping portions will be omitted.
  • the radiation measuring device 700 shown in FIG. 15 includes a slit collimator 135 in addition to the monochromatic photon source 101, the radiation detector 102, the depth calculation device 104, and the display device 105 of the radiation measuring device 100 of FIG. ..
  • FIG. 16 is a diagram showing a detailed configuration of the slit collimator 135.
  • the radiation measuring device 700 provides a slit collimator 135 between the radiation detector 102 and the object to be inspected 106. This reduces the incident on the radiation detector 102 by the multiple scattered photons 137 due to the multiple Compton scattering generated by the incident of the monochromatic photon 107 on the object to be inspected 106.
  • the scattered photons 108 due to Compton scattering in the field of view 136 are measured by the radiation detector 102.
  • the influence of the multiple scattering photons 137 can be reduced by providing the slit collimator 135 between the radiation detector 102 and the inspected object 106, the depth direction of the inspected object 106 can be reduced.
  • the intensity distribution of Compton scattered photons can be obtained with high accuracy.
  • the internal state of the object to be inspected 106 can be grasped with high accuracy, and advanced analysis and monitoring based on the result can be realized.
  • FIG. 17 is a diagram showing a configuration of a radiation measuring device according to an eighth embodiment of the present invention. The same components as those in FIG. 1 are designated by the same reference numerals, and the description of overlapping portions will be omitted.
  • the radiation measurement device 800 shown in FIG. 17 includes a fan beam type monochromatic photon source 138, a fan beam compatible radiation detector 139, a multi-channel energy measurement device 140, and many. It is configured to include a channel-compatible depth calculation device 141.
  • FIG. 18 is a diagram showing a detailed configuration of a fan beam type monochromatic photon source 138.
  • the fan beam type collimator 142 shown in FIG. 18 has a structure in which a radioactive isotope 109 is provided inside and can irradiate a monochromatic photon 107 in a one-dimensional direction.
  • the configuration in which the radioisotope 109 is provided inside the fan beam type collimator 142 is shown, but the laser inverse Compton scattered photon generator 118 shown in FIG. 2 and the photon generating target 121 shown in FIG. 3 are used. It may be provided.
  • FIG. 19 and 20 are views for explaining the arrangement of the fan beam compatible radiation detector 139, FIG. 19 shows a layout view seen from the side surface thereof, and FIG. 20 shows a layout view seen from above.
  • the detection unit 143 including the slit collimator 135 and the radiation detector 102 is arranged near the surface of the object to be inspected 106.
  • the detection unit 143 is set so that the visual field range 136 overlaps with the irradiation direction of the monochromatic photon 107.
  • a fan beam compatible radiation detector 139 composed of a plurality of detection unit units 143 is arranged horizontally with respect to the line direction of the irradiation line 144.
  • the fan beam compatible radiation detector 139 measures the irradiation line 144 of the monochromatic photon 107 irradiated by the fan beam type monochromatic photon source 138 (see FIG. 17).
  • each detector unit 143 is arranged so as to include the irradiation line 144 (see FIG. 20).
  • the radiation measuring device 800 can acquire the intensity distribution of Compton scattered photons in the depth direction of the object 106 at one time in a wide range at high speed. As a result, the internal state of the object to be inspected 106 can be grasped at a higher speed, and advanced analysis and monitoring based on the result can be realized.
  • FIG. 21 is a diagram showing a configuration of a radiation measuring device according to a ninth embodiment of the present invention. The same components as those in FIG. 1 are designated by the same reference numerals, and the description of overlapping portions will be omitted.
  • the radiation measuring device 900 shown in FIG. 21 includes a moving mechanism 145 and a moving position specifying mechanism 146 in addition to the monochromatic photon source 101, the radiation detector 102, the energy measuring device 103, and the display device 105 of the radiation measuring device 100 of FIG.
  • a movement control mechanism 147 and a scanning depth calculation device 148 are provided.
  • the moving mechanism 145 mounts a monochromatic photon source 101 and a radiation detector 102, and scans the vicinity of the surface 106a of the inspected object 106.
  • the moving position specifying mechanism 146 calculates the relative coordinates of the moving mechanism 145 and the object to be inspected 106.
  • the movement control mechanism 147 controls the scanning range of the movement mechanism 145. Specifically, the movement control mechanism 147 specifies the position of the movement mechanism 145 based on the relative coordinates calculated by the movement position identification mechanism 146, and controls the relative coordinates of the monochromatic photon source 101 and the radiation detector 102. ..
  • the scanning depth calculation device 148 uses the coordinates of the moving mechanism, that is, the surface coordinates of the inspected object as input values in addition to the peak value spectra and relative coordinates acquired at a plurality of irradiation points, in the depth direction in the scanning range. Calculate the intensity distribution of Compton scattered photons.
  • FIG. 22 is a flowchart showing a radiation measurement process of the radiation measurement device 900.
  • S indicates each step of the measurement flow.
  • the radiation measuring device 900 is set up and measurement is started.
  • the movement control mechanism 147 arranges the monochromatic photon source 101, the radiation detector 102, and the movement mechanism 147 at the initial measurement point.
  • the energy measuring device 103 records the positions of the monochromatic photon source 101 and the radiation detector 102.
  • step S13 the monochromatic photon source 101 irradiates the photon, and the energy measuring device 103 records the peak value spectrum.
  • step S14 the energy measuring device 103 determines whether or not the measurement is completed at the measurement point, and if the measurement is not completed (S14: No), the process returns to step S13.
  • the scanning depth calculation device 148 determines in step S15 whether or not the cross-section measurement is completed.
  • the movement control mechanism 147 arranges the monochromatic photon source 101, the radiation detector 102, and the movement mechanism 145 at the measurement point of the inspected object 106 in step S16, and proceeds to step S12. return.
  • the scanning depth calculation device 148 calculates the cross-sectional view of the inside of the object 106 to be inspected in step S17.
  • the display device 105 displays the calculation result.
  • the scanning depth calculation device 148 determines whether or not the cross-section calculation is completed. When the cross-section calculation is not completed (S19: No), the scanning depth calculation device 148 calculates the incomplete measurement point in step S20, and returns to step S16.
  • the scanning depth calculation device 148 determines in step S21 whether or not all the measurements and the calculation are completed. When all the measurements and calculations are not completed (S19: No), the movement control mechanism 147 moves to the next cross-section measurement position in step S22 and returns to step S12.
  • step S23 the display device 105 scans the peak value spectrum, the scattering angle ⁇ s of Compton scattering, the position coordinates of the radiation detector 102 and the monochromatic photon source 101, and the like.
  • the processing of this flow is completed by outputting the input conditions of the arithmetic device 148, the intensity distribution of Compton scattered photons in the depth direction, which is the calculation result executed by the scanning-compatible depth arithmetic device 148, and their relative values.
  • FIG. 23 is a flowchart showing the arithmetic processing of the Compton scattered photon intensity distribution.
  • FIG. 23 is a subroutine in step S14 of FIG. It is started by the subroutine call in step S14 of FIG. 22.
  • the monochromatic photon source 101 controls the irradiation direction of the monochromatic photon of the monochromatic photon source 101.
  • the radiation detector 102 detects Compton scattered photons scattered from the inspected object, whose coordinates relative to the monochromatic photon source 101 are known.
  • the energy measuring device 103 measures the energy and intensity of the detected Compton scattered photons.
  • step S104 the scan-compatible depth arithmetic unit 148 calculates the scattering angle ⁇ s of Compton scattering generated inside the inspected object based on the emission energy Ein of the monochromatic photon source and each energy Es of the acquired peak value spectrum. do.
  • step S105 the scanning depth calculation device 148 is based on the position coordinates of the radiation detector 102, the position coordinates of the monochromatic photon source 101, and the calculated scattering angle ⁇ s, and the scattering position corresponding to each energy Es, that is, the depth z. (Es) is calculated, and the process returns to step S14 in FIG.
  • the moving mechanism 145 mounts the monochromatic photon source 101 and the radiation detector 102, scans the vicinity of the surface 106a of the inspected object 106, and the moving control mechanism 147 identifies the moving position.
  • the position of the moving mechanism 145 is specified by the mechanism 146, and the relative coordinates of the monochromatic photon source 101 and the radiation detector 102 are controlled.
  • the scanning depth calculation device 148 calculates the intensity distribution of Compton scattered photons in the depth direction in the scanning range using the surface coordinates of the object 106 to be inspected as an input value.
  • FIG. 24 is a diagram showing a configuration of a radiation measuring device according to a tenth embodiment of the present invention. The same components as those in FIG. 1 are designated by the same reference numerals, and the description of overlapping portions will be omitted.
  • the radiation measuring device 1000 shown in FIG. 24 includes an optical camera 149 and an image analyzer 150 in addition to the monochromatic photon source 101, the radiation detector 102, the energy measuring device 103, and the display device 105 of the radiation measuring device 100 of FIG. , An image determination database 151, and an image superimposing device 152.
  • the optical camera 149 images the surface of the object to be inspected 106.
  • the image analyzer 150 uses the image determination database 151 to evaluate a state such as the presence or absence of a singular point on the surface of the object to be inspected 106 and its soundness. For state evaluation, machine learning composed of past achievements, experimentally obtained data, and data formed by analysis can be used.
  • the image superimposition device 152 superimposes the surface state of the object to be inspected 106 imaged by the optical camera 149 and the Compton scattered photon intensity distribution in the depth direction obtained by the depth calculation device 104.
  • images are superimposed in multiple dimensions.
  • the display device 105 displays the calculation result calculated by the image superimposing device.
  • the radiation measuring device 1000 visually expresses, for example, the state of the object to be inspected visually confirmed by the workers and the intensity distribution of Compton scattered photons in the depth direction according to the present invention. Can be done. This can contribute to higher efficiency of the entire work and higher accuracy of determination of the object to be inspected. It is possible to realize advanced analysis and monitoring based on the results.
  • the eleventh embodiment is an example of a radiation measuring device and a radiation measuring method having a function of measuring relative position coordinates of a monochromatic photon source, a radiation detector, and an object to be inspected.
  • FIG. 25 is a diagram showing a configuration of a radiation measuring device according to the eleventh embodiment of the present invention. The same components as those in FIG. 1 are designated by the same reference numerals, and the description of overlapping portions will be omitted.
  • the radiation measuring device 1100 shown in FIG. 25 includes a position calculation device 153 and a depth corresponding to position coordinates in addition to the monochromatic photon source 101, the radiation detector 102, the energy measuring device 103, and the display device 105 of the radiation measuring device 100 of FIG. It is configured to include an arithmetic device 154.
  • the position calculation device 153 measures the position coordinates of the monochromatic photon source 101, the radiation detector 102, and the object to be inspected 106.
  • the position calculation device 153 includes, for example, a distance measurement device that uses an optical camera, a laser, an ultrasonic wave, a radar, or the like after determining a certain initial value as a means for measuring the position coordinates.
  • the radiation measuring device 1100 places the monochromatic photon source 101 and the radiation detector 102 on a fixed jig and fixes the relative position coordinates of the monochromatic photon source 101 and the radiation detector 102, so that the radiation measuring device 1100 is relative to the inspected object 106.
  • the coordinates can be calculated relatively easily.
  • the relative position coordinates obtained by the position calculation device 153 are input to the position coordinate corresponding depth calculation device 154 using these coordinates as an input value.
  • the radiation measuring device 1100 can grasp the relative position coordinates with high accuracy, it is possible to acquire the intensity distribution of Compton scattered photons in the depth direction of the inspected object 106 with high accuracy. It is possible to grasp the internal state of the object to be inspected 106 with high accuracy and realize advanced analysis and monitoring based on the result.
  • [Modification example] (1) The radiation measuring apparatus and the radiation measuring method of the first to eleventh embodiments are combined and integrated. By integrating the radiation measuring device and the radiation measuring method according to each of the above embodiments, the intensity distribution of Compton scattered photons in the depth direction of the object to be inspected 106 (see, for example, FIG. 1) is optimized according to various execution environments. Can be executed. It is possible to grasp the internal state of the object to be inspected 106 with high accuracy, high speed, and high sensitivity, and to realize advanced analysis and monitoring based on the result.
  • the radiation measuring device of the first embodiment to the eleventh embodiment is a position coordinate measuring device (position calculation device) that measures the position coordinates of the monochromatic photon source 106 and the radiation detector 102 (see, for example, FIG. 1). ), The depth calculation device uses the position coordinates of the monochromatic photon source 101 and the radiation detector 102 obtained by the position calculation device as input values.
  • position calculation device position coordinate measuring device
  • the radiation measuring apparatus of the first embodiment to the eleventh embodiment executes machine learning including AI (Artificial Intelligence), a singular point database that accumulates singular points in the Compton scattered photon intensity distribution. It is equipped with a singular point extraction device.
  • the singular point extraction device uses a singular point database and machine learning to extract singular points in the Compton scattered photon intensity distribution in the depth direction.
  • the present invention is not limited to the configuration described in each of the above embodiments, and the configuration can be appropriately changed as long as it does not deviate from the gist of the present invention described in the claims.
  • Radiation measuring device 101 Monochromatic photon source 102 Radiation detector 103 Energy measuring device 104 Depth calculation device 105 Display device (output device) 106 Inspected object 107 Monochromatic photon 108 Scattered photon 109 Radioisotope (radioisotope) 110 Collimeter 111 Photon shutter 112 Peak spectrum 118 Laser inverse Compton scattered photon generator 119 Laser inverse Compton scattered photon generation control device 120 Generation timing compatible energy measurement device 121 Photon generation target 122 Particle generation source 123 Particle generation control device 124 Generation timing Corresponding energy measuring device 125 Linear arrangement type radiation detector 126 Linear arrangement compatible energy measuring device 127 Linear arrangement compatible depth calculation device 128 Two-dimensional arrangement type radiation detector 129 Two-dimensional arrangement compatible energy measurement device 130 Two-dimensional arrangement compatible depth calculation Equipment 131 Ring-arranged radiation detector 132 Ring-arranged energy measuring device 133 Ring-arranged depth calculation device 134 Irradiation point 135 Slit

Abstract

Provided are a radiation measurement device and a radiation measurement method that make it possible to acquire the internal state of a to-be-inspected subject at high resolution with respect to an internal direction, and to implement high-level analysis and monitoring. A radiation measurement device (100) comprising: a single-color photon source (101) that controls the emission direction of single-color photons or quasi-single-color photons; a radiation detector (102) that detects Compton scattering photons that have scattered from a to-be-inspected subject (106), the relative coordinates of the radiation detector (102) relative to the single-color photon source (101) being known; an energy measurement device (103) that measures the energy and intensity of the detected Compton scattering photons; a depth computation device (104) that, on the basis of the relative coordinates and the energy and intensity of the Compton scattering photons, computes the intensity distribution for the Compton scattering photons in the depth direction of the to-be-inspected subject (106); and a display device (105) that displays the result of computation.

Description

放射線計測装置および放射線計測方法Radiation measuring device and radiation measuring method
 本発明は、放射線計測装置および放射線計測方法に関する。 The present invention relates to a radiation measuring device and a radiation measuring method.
 道路や橋梁、トンネル、水道、電力網などの社会インフラの老朽化が加速度的に進んでいる。公衆が安心してこれらの社会インフラを使うためには、適切な検査と補修、修繕を継続的に実施することで、機能を維持していくことが必要である。これらの社会インフラを検査する技術には、カメラで被検査体を撮像して画像処理技術によって表面状態を評価する手法や、レーザを被検査体に照射してその反射光を撮像して画像処理技術によって表面状態を評価する手法、レーダを被検査体に照射してその反射波を計測して内部状態を評価する手法、X線やγ線源を利用した被検査体の内部の密度情報を取得する手法などがある。これらの手法のうち、カメラやレーザを利用した手法は、被検査体の表面状態を検査することは可能であるが、内部の状態を把握することは困難である。レーダを利用した手法では、内部の状態を把握することは可能であるが、内部方向を高い分解能で計測することは困難である。 Social infrastructure such as roads, bridges, tunnels, water services, and power grids is aging at an accelerating pace. In order for the public to use these social infrastructures with peace of mind, it is necessary to maintain their functions by continuously carrying out appropriate inspections, repairs and repairs. Technology for inspecting these social infrastructures includes a method of imaging the object to be inspected with a camera and evaluating the surface condition by image processing technology, and image processing by irradiating the object to be inspected with a laser and imaging the reflected light. A method of evaluating the surface condition by technology, a method of irradiating the object to be inspected with a radar and measuring the reflected wave to evaluate the internal state, and information on the internal density of the object to be inspected using an X-ray or γ-ray source. There is a method to acquire. Among these methods, the method using a camera or a laser can inspect the surface condition of the object to be inspected, but it is difficult to grasp the internal condition. Although it is possible to grasp the internal state by the method using radar, it is difficult to measure the internal direction with high resolution.
 X線やγ線源を利用した方式において被検査体を線源と検出器で挟み込む方式では、適用箇所が制限されてしまうことが実用範囲を狭める要因となっている。また、被検査体との相互作用で線源側にコンプトン散乱したX線やγ線を計測する方式では、いわゆるレントゲン画像を撮像することができる。しかし、内部方向の情報が重畳するために、内部方向を高い分解能で計測することは困難である。このため、被検査体の内部方向の情報を高い分解能で取得するための放射線計測装置および放射線計測方法が望まれている。 In the method using an X-ray or γ-ray source, in the method in which the object to be inspected is sandwiched between the radiation source and the detector, the application location is limited, which is a factor that narrows the practical range. In addition, a so-called X-ray image can be captured by a method of measuring X-rays and γ-rays scattered on the radiation source side by interaction with an inspected object. However, it is difficult to measure the internal direction with high resolution because the information in the internal direction is superimposed. Therefore, a radiation measuring device and a radiation measuring method for acquiring information on the internal direction of the object to be inspected with high resolution are desired.
 特許文献1には、被検査体にX線ビームを照射し、被検査体から発生するコンプトン散乱X線の深さ方向のエネルギー強度情報を複数のCdTe半導体センサで取得し、更に2組のディスクリミネータおよびカウンタでコンプトン散乱X線のエネルギーを高低2つのエネルギー帯に分離して検出し、画像処理部を用いて被検査体の構造および材料に関する情報を得る放射線三次元画像撮影装置が記載されている。 In Patent Document 1, an X-ray beam is irradiated to an inspected object, energy intensity information in the depth direction of Compton scattered X-rays generated from the inspected object is acquired by a plurality of CdTe semiconductor sensors, and two sets of disks are further obtained. Described is a radiation three-dimensional imaging device that detects the energy of Compton scattered X-rays by separating them into two energy bands, high and low, with a riminator and a counter, and obtains information on the structure and material of the inspected object using an image processing unit. ing.
 特許文献2には、指向性と単色性が高く、光子エネルギーが可変であるレーザ逆コンプトン光子を被検査体に照射し、透過した光子を計測することで、γ線源使用時の被ばくを低減し、数cmを超える厚さの金属やコンクリートなどの検査を実現する非破壊検査装置および方法が記載されている。 Patent Document 2 reduces exposure when using a γ-ray source by irradiating an inspected object with a laser inverse Compton photon having high directivity and monochromaticity and variable photon energy and measuring the transmitted photon. However, non-destructive inspection devices and methods that realize inspection of metals, concrete, etc. with a thickness exceeding several cm are described.
特開平5-212028号公報Japanese Unexamined Patent Publication No. 5-212028 特開2002-162371号公報Japanese Unexamined Patent Publication No. 2002-162371
 特許文献1の技術は、スリットがいわゆるピンホールコリメータの役割を担っており、ピンホールコリメータとセンサの位置関係によって、内部方向の分解能が決まる。スリットの幅を狭くし、センサピッチを小さくすることで内部方向の分解能を向上できる。しかし、センサピッチを小さくするためには加工上の制約があることから、内部方向の高分解能化は困難である。また、使用する光源はX線源であることから、一般的には広いエネルギー帯のX線を被検査体に照射することになる。このため、放射線検出器でエネルギーを測定したとしても、コンプトン散乱した光子のエネルギーの情報から内部方向の情報に換算することは困難である。 In the technology of Patent Document 1, the slit plays the role of a so-called pinhole collimator, and the resolution in the internal direction is determined by the positional relationship between the pinhole collimator and the sensor. By narrowing the width of the slit and reducing the sensor pitch, the resolution in the internal direction can be improved. However, it is difficult to increase the resolution in the internal direction because there are processing restrictions in order to reduce the sensor pitch. Further, since the light source used is an X-ray source, the object to be inspected is generally irradiated with X-rays in a wide energy band. Therefore, even if the energy is measured by the radiation detector, it is difficult to convert the energy information of the Compton scattered photons into the information in the internal direction.
 特許文献2の技術は、指向性と単色性が高く光子エネルギーが可変であるレーザ逆コンプトン光子を用いて、被検査体を挟んで透過像を測定する。被検査体へ照射した透過光を検出しているため、内部方向を高い分解能で計測することは困難である。 The technique of Patent Document 2 measures a transmitted image with an object to be inspected sandwiched by using a laser inverse Compton photon having high directivity and monochromaticity and variable photon energy. Since the transmitted light radiated to the object to be inspected is detected, it is difficult to measure the internal direction with high resolution.
 本発明は、このような事情に鑑みてなされたものであり、被検査体の内部の状態を内部方向に対して高い分解能で取得することができ、高度な分析や監視を実現可能にする放射線計測装置および放射線計測方法を提供することを課題とする。 The present invention has been made in view of such circumstances, and radiation capable of acquiring the internal state of an object to be inspected with high resolution in the internal direction and realizing advanced analysis and monitoring. An object of the present invention is to provide a measuring device and a radiation measuring method.
 上記課題を解決するために、本発明の放射線計測装置は、光子を検知する放射線計測装置であって、単色光子または準単色光子の照射方向を制御する単色光子源と、前記単色光子源との相対座標が既知であり、被検査体から散乱したコンプトン散乱光子を検出する放射線検出器と、検出した前記コンプトン散乱光子のエネルギーと強度を計測するエネルギー計測装置と、前記相対座標と前記コンプトン散乱光子のエネルギーと強度をもとに、前記被検査体の深さ方向のコンプトン散乱光子強度分布を演算する深さ演算装置と、前記深さ演算装置の演算結果を出力する出力装置と、を備えることを特徴とする。
 本発明のその他の態様については、後記する実施形態において説明する。
In order to solve the above problems, the radiation measuring device of the present invention is a radiation measuring device that detects photons, and comprises a monochromatic photon source that controls the irradiation direction of a monochromatic photon or a quasi-monochromatic photon, and the monochromatic photon source. A radiation detector that detects Compton scattered photons scattered from an object whose relative coordinates are known, an energy measuring device that measures the energy and intensity of the detected Compton scattered photons, and the relative coordinates and the Compton scattered photons. A depth calculation device for calculating the Compton scattered photon intensity distribution in the depth direction of the object to be inspected and an output device for outputting the calculation result of the depth calculation device are provided based on the energy and intensity of the above. It is characterized by.
Other aspects of the present invention will be described in embodiments described below.
 本発明によれば、被検査体の内部の状態を内部方向に対して高い分解能で取得することができ、その結果に基づく高度な分析や監視を実現可能にする放射線計測装置および放射線計測方法を提供することができる。 According to the present invention, a radiation measuring device and a radiation measuring method capable of acquiring the internal state of an object to be inspected with high resolution in the internal direction and realizing advanced analysis and monitoring based on the result. Can be provided.
本発明の第1の実施形態に係る放射線計測装置の構成を示す図である。It is a figure which shows the structure of the radiation measuring apparatus which concerns on 1st Embodiment of this invention. 本発明の第1の実施形態に係る放射線計測装置の単色光子源の構成を示す図である。It is a figure which shows the structure of the monochromatic photon source of the radiation measuring apparatus which concerns on 1st Embodiment of this invention. 本発明の第1の実施形態に係る放射線計測装置のエネルギー計測装置の出力を示す図である。It is a figure which shows the output of the energy measuring apparatus of the radiation measuring apparatus which concerns on 1st Embodiment of this invention. 本発明の第1の実施形態に係る放射線計測装置の深さ方向のコンプトン散乱光子の強度分布を示す図である。It is a figure which shows the intensity distribution of the Compton scattered photon in the depth direction of the radiation measuring apparatus which concerns on 1st Embodiment of this invention. 本発明の第1の実施形態に係る放射線計測装置の深さ方向のコンプトン散乱光子の強度分布の相対値(正方向ピーク発生時)を示す図である。It is a figure which shows the relative value (when the positive peak occurs) of the intensity distribution of the Compton scattered photon in the depth direction of the radiation measuring apparatus which concerns on 1st Embodiment of this invention. 本発明の第1の実施形態に係る放射線計測装置の深さ方向のコンプトン散乱光子の強度分布の相対値(負方向ピーク発生時)を示す図である。It is a figure which shows the relative value (when the negative peak occurs) of the intensity distribution of the Compton scattered photon in the depth direction of the radiation measuring apparatus which concerns on 1st Embodiment of this invention. 本発明の第2の実施形態に係る放射線計測装置の構成を示す図である。It is a figure which shows the structure of the radiation measuring apparatus which concerns on 2nd Embodiment of this invention. 本発明の第3の実施形態に係る放射線計測装置の構成を示す図である。It is a figure which shows the structure of the radiation measuring apparatus which concerns on 3rd Embodiment of this invention. 本発明の第4の実施形態に係る放射線計測装置の構成を示す図である。It is a figure which shows the structure of the radiation measuring apparatus which concerns on 4th Embodiment of this invention. 本発明の第4の実施形態に係る放射線計測装置の線形配置型放射線検出器および線形配置対応エネルギー計測装置の詳細構成を示す図である。It is a figure which shows the detailed structure of the linear arrangement type radiation detector and the linear arrangement correspondence energy measurement apparatus of the radiation measuring apparatus which concerns on 4th Embodiment of this invention. 本発明の第5の実施形態に係る放射線計測装置の構成を示す図である。It is a figure which shows the structure of the radiation measuring apparatus which concerns on 5th Embodiment of this invention. 本発明の第5の実施形態に係る放射線計測装置の二次元配置型放射線検出器および二次元配置対応エネルギー計測装置の詳細構成を示す図である。It is a figure which shows the detailed structure of the 2D arrangement type radiation detector of the radiation measuring apparatus which concerns on 5th Embodiment of this invention, and the energy measuring apparatus corresponding to 2D arrangement. 本発明の第6の実施形態に係る放射線計測装置の構成を示す図である。It is a figure which shows the structure of the radiation measuring apparatus which concerns on 6th Embodiment of this invention. 本発明の第6の実施形態に係る放射線計測装置の円環配置型放射線検出器の詳細構成を示す図である。It is a figure which shows the detailed structure of the ring arrangement type radiation detector of the radiation measuring apparatus which concerns on 6th Embodiment of this invention. 本発明の第7の実施形態に係る放射線計測装置の構成を示す図である。It is a figure which shows the structure of the radiation measuring apparatus which concerns on 7th Embodiment of this invention. 本発明の第7の実施形態に係る放射線計測装置のスリットコリメータの詳細構成を示す図である。It is a figure which shows the detailed structure of the slit collimator of the radiation measuring apparatus which concerns on 7th Embodiment of this invention. 本発明の第8の実施形態に係る放射線計測装置の構成を示す図である。It is a figure which shows the structure of the radiation measuring apparatus which concerns on 8th Embodiment of this invention. 本発明の第8の実施形態に係る放射線計測装置のファンビーム型単色光子源の詳細構成を示す図である。It is a figure which shows the detailed structure of the fan beam type monochromatic photon source of the radiation measuring apparatus which concerns on 8th Embodiment of this invention. 本発明の第8の実施形態に係る放射線計測装置のファンビーム対応放射線検出器の配置を説明する側面から見た配置図である。It is a layout drawing seen from the side explaining the arrangement of the fan beam corresponding radiation detector of the radiation measuring apparatus which concerns on 8th Embodiment of this invention. 本発明の第8の実施形態に係る放射線計測装置のファンビーム対応放射線検出器の配置を説明する上部から見た配置図である。It is a layout drawing seen from the upper part explaining the arrangement of the fan beam corresponding radiation detector of the radiation measuring apparatus which concerns on 8th Embodiment of this invention. 本発明の第9の実施形態に係る放射線計測装置の構成を示す図である。It is a figure which shows the structure of the radiation measuring apparatus which concerns on 9th Embodiment of this invention. 本発明の第9の実施形態に係る放射線計測装置の放射線計測処理を示すフローチャートである。It is a flowchart which shows the radiation measurement processing of the radiation measurement apparatus which concerns on 9th Embodiment of this invention. 本発明の第9の実施形態に係る放射線計測装置のコンプトン散乱光子強度分布の演算処理を示すフローチャートである。It is a flowchart which shows the calculation process of the Compton scattered photon intensity distribution of the radiation measuring apparatus which concerns on 9th Embodiment of this invention. 本発明の第10の実施形態に係る放射線計測装置の構成を示す図である。It is a figure which shows the structure of the radiation measuring apparatus which concerns on the tenth embodiment of this invention. 本発明の第11の実施形態に係る放射線計測装置の構成を示す図である。It is a figure which shows the structure of the radiation measuring apparatus which concerns on 11th Embodiment of this invention.
 以下、本発明の実施形態について図面を参照して詳細に説明する。
(第1の実施形態)
 図1は、本発明の第1の実施形態に係る放射線計測装置の構成を示す図である。本実施形態の放射線計測装置および放射線計測方法は、被検査体の内部の状態を内部方向に対して、高い分解能で把握する非破壊検査装置および放射線計測方法に適用した例である。
[放射線計測装置100]
 放射線計測装置100は、単色光子源101と、放射線検出器102と、エネルギー計測装置103と、深さ演算装置104と、表示装置105(出力装置)と、を備える。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
(First Embodiment)
FIG. 1 is a diagram showing a configuration of a radiation measuring device according to the first embodiment of the present invention. The radiation measuring device and the radiation measuring method of the present embodiment are examples applied to the non-destructive inspection device and the radiation measuring method for grasping the internal state of the object to be inspected with high resolution in the internal direction.
[Radiation measuring device 100]
The radiation measuring device 100 includes a monochromatic photon source 101, a radiation detector 102, an energy measuring device 103, a depth calculation device 104, and a display device 105 (output device).
 <単色光子源101>
 単色光子源101は、単色もしくは準単色のエネルギーの単色光子107を、任意の照射方向に対して照射する。
 単色光子源101は、単色光子(monochromatic photon)または準単色光子(quasi-monochromatic photon)の照射方向を制御する。単色光子は、例えば放射性同位体を用いて得られる(後記)。また、準単色光子は、加速陽電子を使って得られる(後記)。
 なお、以下の説明において、説明の便宜上、単色光子または準単色光子を総称して単色光子と表記する。
<Monochromatic photon source 101>
The monochromatic photon source 101 irradiates a monochromatic or quasi-monochromatic energy monochromatic photon 107 in an arbitrary irradiation direction.
The monochromatic photon source 101 controls the irradiation direction of a monochromatic photon or a quasi-monochromatic photon. Monochromatic photons are obtained, for example, using radioactive isotopes (see below). Semi-monochromatic photons are obtained using accelerated positrons (see below).
In the following description, for convenience of explanation, monochromatic photons or quasi-monochromatic photons are collectively referred to as monochromatic photons.
 単色光子源101は、任意の照射方向に対して光子を照射する照射方向の制御機能を備える。図1では、単色光子源101は、被検査体106に対して単色光子107を照射する。 The monochromatic photon source 101 has an irradiation direction control function for irradiating photons in an arbitrary irradiation direction. In FIG. 1, the monochromatic photon source 101 irradiates the inspected object 106 with the monochromatic photon 107.
 <放射線検出器102>
 放射線検出器102は、被検査体106でコンプトン散乱した散乱光子108を検出する。
 放射線検出器102は、光子有感材として、Ge半導体、CdTe半導体、CdZnTe半導体、Si半導体、Perovskite構造を有するCsPbCl,CsPbBr,LiTaO等の半導体検出器を備える。または、放射線検出器102は、LaBrシンチレータ(scintillator)、CsBrシンチレータ、LYSOシンチレータ、LSOシンチレータ、GAGGシンチレータ、CsIシンチレータ、NaIシンチレータ、BGOシンチレータ、GSOシンチレータ、GPSシンチレータ、La-GPSシンチレータ、LuAGシンチレータ、SrIシンチレータ等のシンチレーション検出器を備える。
 なお、ここでは光子エネルギーを分析可能な一般的な放射線検出器を挙げたが、エネルギー分析可能な光子有感材を備える放射線検出器であれば、上記半導体検出器またはシンチレーション検出器のうちいずれにも適用可能である。
<Radiation detector 102>
The radiation detector 102 detects the scattered photons 108 that are Compton scattered by the object 106 to be inspected.
The radiation detector 102 includes semiconductor detectors such as Ge semiconductor, CdTe semiconductor, CdZnTe semiconductor, Si semiconductor, and CsPbCl 3 , CsPbBr 3 , and LiTaO 3 having a Perovskite structure as photon sensitive materials. Alternatively, the radiation detector 102 may be a LaBr 3 scintillator, a CsBr 3 scintillator, a LYSO scintillator, an LSO scintillator, a GAGG scintillator, a CsI scintillator, a NaI scintillator, a BGO scintillator, a GSO scintillator, a GPS scintillator, a La-GPS scintillator, or a LuAG scintillator. , SrI scintillator and the like.
Although a general radiation detector capable of analyzing photon energy is mentioned here, any of the above semiconductor detectors or scintillation detectors can be used as long as it is a radiation detector equipped with a photon sensitive material capable of energy analysis. Is also applicable.
 <エネルギー計測装置103>
 エネルギー計測装置103は、放射線検出器102から出力した信号を分析し、放射線検出器102における散乱光子108による付与エネルギースペクトルを波高値スペクトルとして算出する。
<Energy measuring device 103>
The energy measuring device 103 analyzes the signal output from the radiation detector 102, and calculates the energy spectrum given by the scattered photons 108 in the radiation detector 102 as a peak value spectrum.
 <深さ演算装置104>
 深さ演算装置104は、単色光子源101と放射線検出器102の相対位置、単色光子源101から放出される光子の照射ベクトル、波高値スペクトルを入力し、相対座標とコンプトン散乱光子のエネルギーと強度から被検査体106の深さ方向のコンプトン散乱光子の強度分布を演算する。
<Depth arithmetic unit 104>
The depth calculation device 104 inputs the relative positions of the monochromatic photon source 101 and the radiation detector 102, the irradiation vector of the photon emitted from the monochromatic photon source 101, and the peak value spectrum, and inputs the relative coordinates and the energy and intensity of the Compton scattered photon. The intensity distribution of Compton scattered photons in the depth direction of the inspected object 106 is calculated from.
 <表示装置105>
 表示装置105は、深さ演算装置104から出力された深さ方向のコンプトン散乱光子の強度分布を表示する。
 なお、表示装置105は、出力装置の一例であり、出力は表示には限定されない。すなわち、深さ方向のコンプトン散乱光子の強度分布を出力するものであればよい。例えば、深さ演算装置104の演算結果を出力するプリンタ、無線または有線の通信路を介して演算結果を送信する通信装置、さらには演算結果を蓄積する記憶装置も含まれる。
<Display device 105>
The display device 105 displays the intensity distribution of Compton scattered photons in the depth direction output from the depth arithmetic unit 104.
The display device 105 is an example of an output device, and the output is not limited to the display. That is, it suffices to output the intensity distribution of Compton scattered photons in the depth direction. For example, a printer that outputs the calculation result of the depth calculation device 104, a communication device that transmits the calculation result via a wireless or wired communication path, and a storage device that stores the calculation result are also included.
 このように、放射線計測装置100は、単色光子または準単色光子の照射方向を制御する単色光子源101と、単色光子源101との相対座標が既知であり、被検査体106から散乱したコンプトン散乱光子を検出する放射線検出器102と、検出したコンプトン散乱光子のエネルギーと強度を計測するエネルギー計測装置103と、相対座標とコンプトン散乱光子のエネルギーと強度をもとに、被検査体106の深さ方向のコンプトン散乱光子強度分布を演算する深さ演算装置104と、演算結果を表示する表示装置105(出力部)と、を備える。 As described above, the radiation measuring device 100 knows the relative coordinates between the monochromatic photon source 101 that controls the irradiation direction of the monochromatic photon or the quasi-monochromatic photon and the monochromatic photon source 101, and compton scattering scattered from the inspected object 106. The depth of the inspected object 106 based on the radiation detector 102 that detects photons, the energy measuring device 103 that measures the energy and intensity of the detected Compton scattered photons, and the relative coordinates and the energy and intensity of the Compton scattered photons. It includes a depth calculation device 104 that calculates the Compton scattered photon intensity distribution in the direction, and a display device 105 (output unit) that displays the calculation result.
 図2は、単色光子源101の構成を示す図である。
 図2に示すように、単色光子源101は、放射性同位元素109(放射性同位体)と、コリメータ110と、光子シャッタ111と、を備える。
 単色光子源101は、レーザ逆コンプトン光子を発するレーザ逆コンプトン散乱光子発生装置である。
FIG. 2 is a diagram showing the configuration of the monochromatic photon source 101.
As shown in FIG. 2, the monochromatic photon source 101 includes a radioisotope 109 (radioisotope), a collimator 110, and a photon shutter 111.
The monochromatic photon source 101 is a laser inverse Compton scattered photon generator that emits a laser inverse Compton photon.
 放射性同位元素109は、非常に高い単色性を有している。単色性を有する放射性同位元素109には、Cs-137、Zn-65、Be-7、Cr-51、Co-58、Mn-54、Hg-203、Sr-85、F-18、Ga-68、Al-28、およびK-42からなる群より選択される少なくとも一つが挙げられる。
 なお、本明細書においては、放出エネルギー20keV未満のX線もしくはγ線は、被検査体106の内部の深さ方向のコンプトン散乱光子の強度分布を計測する上で無視できると設定する。
Radioisotope 109 has a very high monochromaticity. Radioisotopes 109 having monochromaticity include Cs-137, Zn-65, Be-7, Cr-51, Co-58, Mn-54, Hg-203, Sr-85, F-18, Ga-68. , Al-28, and K-42, at least one selected from the group.
In this specification, X-rays or γ-rays having an emission energy of less than 20 keV are set to be negligible in measuring the intensity distribution of Compton scattered photons in the depth direction inside the inspected object 106.
 放射性同位元素109は、等方的に光子を放出することから、上記放射性同位元素109を利用する場合には、放射性同位元素109から放出する光子の照射方向を制御するためのコリメータ110を備える。
 コリメータ110の材質は、光子の遮蔽効率や外寸、重量等に基づいて選定される。例えば、鉛や鉄、ステンレス、タングステン、アルミなどの比較的入手が容易な金属を利用する。図2に示すように、コリメータ110の構造には、被検査体106に対してペンシルビームで照射するためのピンホール型構造や、ファンビーム型構造(図18参照)がある。
Since the radioisotope 109 emits photons isotropically, when the radioisotope 109 is used, a collimeter 110 for controlling the irradiation direction of the photons emitted from the radioisotope 109 is provided.
The material of the collimator 110 is selected based on the photon shielding efficiency, outer dimensions, weight, and the like. For example, relatively easily available metals such as lead, iron, stainless steel, tungsten, and aluminum are used. As shown in FIG. 2, the structure of the collimator 110 includes a pinhole type structure for irradiating the object to be inspected 106 with a pencil beam and a fan beam type structure (see FIG. 18).
 また、一般的に、放射性同位元素109は、連続的に光子を放出することから、照射および非照射を制御するための光子シャッタ111を備える。光子シャッタ111の材質は、コリメータ110と同様に、鉛や鉄、ステンレス、タングステン、アルミなどの比較的入手が容易な金属を利用する。 Further, in general, since the radioisotope 109 continuously emits photons, it is provided with a photon shutter 111 for controlling irradiation and non-irradiation. As the material of the photon shutter 111, similarly to the collimator 110, a relatively easily available metal such as lead, iron, stainless steel, tungsten, or aluminum is used.
 光子シャッタ111は、コリメータ110と被検査体106の間、もしくはコリメータ110と単色光子源101に配置する。図2では、一例として、光子シャッタ111を、コリメータ110と被検査体106の間に配置する構成を示した。図2の矢印に示すように、光子シャッタ111を手動もしくは自動で移動させることで、比較的容易に光子の照射/非照射を制御することが可能となる。 The photon shutter 111 is arranged between the collimator 110 and the object to be inspected 106, or between the collimator 110 and the monochromatic photon source 101. FIG. 2 shows, as an example, a configuration in which the photon shutter 111 is arranged between the collimator 110 and the object to be inspected 106. As shown by the arrow in FIG. 2, by moving the photon shutter 111 manually or automatically, it is possible to control the irradiation / non-irradiation of photons relatively easily.
 以下、上述のように構成された放射線計測装置100の動作について説明する。
 <エネルギー計測装置103の出力>
 図3は、エネルギー計測装置130の出力を示す図である。横軸に放射線検出器102の出力信号の波高値(付与エネルギー)をとり、縦軸に放射線検出器102の出力信号の計数値(強度)をとる。
 まず、エネルギー計測装置103は、放射線検出器102の出力信号の波高値を処理し、波高値スペクトル112として出力する。エネルギー計測装置103は、任意の時間の間、波高値データを蓄積し、波高値スペクトル112を形成する。
Hereinafter, the operation of the radiation measuring device 100 configured as described above will be described.
<Output of energy measuring device 103>
FIG. 3 is a diagram showing the output of the energy measuring device 130. The horizontal axis represents the peak value (applied energy) of the output signal of the radiation detector 102, and the vertical axis represents the count value (intensity) of the output signal of the radiation detector 102.
First, the energy measuring device 103 processes the peak value of the output signal of the radiation detector 102 and outputs it as the peak value spectrum 112. The energy measuring device 103 accumulates the crest value data for an arbitrary time and forms the crest value spectrum 112.
 深さ演算装置104は、単色光子源101の放出エネルギーEinとエネルギー計測装置103が取得した波高値スペクトル112の各エネルギーEsとに基づいて、次式(1)に従って、被検査体106の内部で生じたコンプトン散乱の散乱角θsを算出する。 The depth calculation device 104 is based on the emitted energy Ein of the monochromatic photon source 101 and each energy Es of the peak value spectrum 112 acquired by the energy measuring device 103, and is inside the inspected object 106 according to the following equation (1). The scattering angle θs of the generated Compton scattering is calculated.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 式(1)は、コンプトン効果によって生じた散乱光子108の散乱角θsを示した式である。式(1)は、コンプトン散乱が発生する前後の光子エネルギーがわかれば、一義的に散乱角θsを算出できることを示している。 Equation (1) is an equation showing the scattering angle θs of the scattered photons 108 generated by the Compton effect. Equation (1) shows that the scattering angle θs can be uniquely calculated if the photon energies before and after Compton scattering are known.
 次に、深さ演算装置104は、放射線検出器102の位置座標(xdet,ydet,zdet)、単色光子源101の位置座標(0,0,-zsource)、式(1)で算出した散乱角θsに基づいて、次式(2)に従って、各エネルギーEsに対応する散乱位置、すなわち深さz(Es)を算出する。 Next, the depth arithmetic unit 104 uses the position coordinates of the radiation detector 102 (xdet, ydet, zdet), the position coordinates of the monochromatic photon source 101 (0,0, -zsource), and the scattering angle calculated by the equation (1). Based on θs, the scattering position corresponding to each energy Es, that is, the depth z (Es) is calculated according to the following equation (2).
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 ここでは、z軸上にペンシルビームで単色光子107を照射したものと設定する。また、ペンシルビームの広がり幅を考慮しない。
 このように、深さ演算装置104は、深さ方向のコンプトン散乱光子の強度分布を演算する。
Here, it is set that the monochromatic photon 107 is irradiated on the z-axis with a pencil beam. Also, the spread width of the pencil beam is not considered.
In this way, the depth calculation device 104 calculates the intensity distribution of Compton scattered photons in the depth direction.
 <深さ方向のコンプトン散乱光子の強度分布> <Intensity distribution of Compton scattered photons in the depth direction>
 図4は、深さ方向のコンプトン散乱光子の強度分布を示す図である。横軸にコンプトン散乱光子の深さをとり、縦軸にコンプトン散乱光子の計数値(強度)をとる。
 図4に示すように、内部状態が既知である被検査体で取得したコンプトン散乱光子の強度分布113(図4の実線参照)に対して、内部状態が未知である被検査体で取得したコンプトン散乱光子の強度分布114(図4の破線参照)が表わされている。
 これらの強度分布の相対値を取得することで、深さ方向における計数値の変化を強調して確認することができる。
FIG. 4 is a diagram showing the intensity distribution of Compton scattered photons in the depth direction. The horizontal axis represents the depth of Compton scattered photons, and the vertical axis represents the count value (intensity) of Compton scattered photons.
As shown in FIG. 4, with respect to the intensity distribution 113 (see the solid line in FIG. 4) of the Compton scattered photons acquired in the inspected object whose internal state is known, the Compton acquired in the inspected object whose internal state is unknown. The intensity distribution 114 of the scattered photons (see the dashed line in FIG. 4) is shown.
By acquiring the relative values of these intensity distributions, it is possible to emphasize and confirm the change in the count value in the depth direction.
 このように、深さ演算装置104は、内部状態が既知である被検査体と、内部状態が未知であり既知の被検査体と同等の仕様を有する被検査体で得られた深さ方向のコンプトン散乱光子の強度分布を比較することで、内部状態の変化を観測する。 As described above, the depth arithmetic unit 104 is obtained in the depth direction of the inspected body whose internal state is known and the inspected body whose internal state is unknown and has the same specifications as the known inspected body. By comparing the intensity distributions of Compton scattered photons, changes in the internal state are observed.
 図5は、深さ方向のコンプトン散乱光子の強度分布の相対値(正方向ピーク発生時)を示す図である。横軸にコンプトン散乱光子の深さをとり、縦軸にコンプトン散乱光子の計数値(相対値)をとる。
 図5に示すように、深さ方向のコンプトン散乱光子の強度分布の相対値115において、ある深さで正方向(図5破線に示す参照値Refより正方向)の計数値相対値ピーク116を確認することができる。これは被検査体の内部にコンプトン散乱が発生しやすい要因を備えていることを示唆するものである。コンプトン散乱の断面積(コンプトン断面積)は一般的に原子番号や密度に比例して高くなることが知られている。
 このことから、正方向の計数値相対値ピーク116が生じた深さには、内部状態が既知である被検査体に対して原子番号もしくは密度が大きい物質を含むことを示唆することになる。
FIG. 5 is a diagram showing a relative value (when a positive peak occurs) of the intensity distribution of Compton scattered photons in the depth direction. The horizontal axis is the depth of Compton scattered photons, and the vertical axis is the count value (relative value) of Compton scattered photons.
As shown in FIG. 5, at the relative value 115 of the intensity distribution of the Compton scattered photons in the depth direction, the count value relative value peak 116 in the positive direction (positive direction from the reference value Ref shown by the broken line in FIG. 5) is set at a certain depth. You can check. This suggests that the inside of the object to be inspected has a factor that tends to cause Compton scattering. It is known that the cross-sectional area of Compton scattering (Compton cross-sectional area) generally increases in proportion to the atomic number and density.
This suggests that the depth at which the positive count value relative value peak 116 occurs includes a substance having an atomic number or a density higher than that of the object to be inspected whose internal state is known.
 図6は、深さ方向のコンプトン散乱光子の強度分布の相対値(負方向ピーク発生時)を示す図である。横軸にコンプトン散乱光子の深さをとり、縦軸にコンプトン散乱光子の計数値(相対値)をとる。
 図6に示すように、深さ方向のコンプトン散乱光子の強度分布の相対値115において、ある深さで負方向(図6破線に示す参照値Refより負方向)の計数値相対値ピーク117を確認することができる。これはある深さにおいて、内部状態が既知である被検査体に対して原子番号もしくは密度が小さい物質を含むことを示唆することになる。
FIG. 6 is a diagram showing a relative value (when a negative peak occurs) of the intensity distribution of Compton scattered photons in the depth direction. The horizontal axis is the depth of Compton scattered photons, and the vertical axis is the count value (relative value) of Compton scattered photons.
As shown in FIG. 6, at the relative value 115 of the intensity distribution of the Compton scattered photons in the depth direction, the count value relative value peak 117 in the negative direction (negative direction from the reference value Ref shown by the broken line in FIG. 6) is set at a certain depth. You can check. This suggests that at a certain depth, the substance to be inspected whose internal state is known contains a substance having a lower atomic number or density.
 <放射線計測装置100の出力>
 表示装置105は、波高値スペクトル112やコンプトン散乱の散乱角θs、放射線検出器102や単色光子源101の位置座標などの深さ演算装置104の入力条件、深さ演算装置104で実行した演算結果である深さ方向のコンプトン散乱光子の強度分布やその相対値を表示する。
<Output of radiation measuring device 100>
The display device 105 includes input conditions of the depth calculation device 104 such as the peak value spectrum 112, the scattering angle θs of Compton scattering, the position coordinates of the radiation detector 102 and the monochromatic photon source 101, and the calculation result executed by the depth calculation device 104. The intensity distribution of Compton scattered photons in the depth direction and their relative values are displayed.
 以上説明したように、本実施形態に係る放射線計測装置100は、単色光子または準単色光子の照射方向を制御する単色光子源101と、単色光子源101との相対座標が既知であり、被検査体106から散乱したコンプトン散乱光子を検出する放射線検出器102と、検出したコンプトン散乱光子のエネルギーと強度を計測するエネルギー計測装置103と、相対座標とコンプトン散乱光子のエネルギーと強度をもとに、被検査体106の深さ方向のコンプトン散乱光子強度分布を演算する深さ演算装置104と、演算結果を表示する表示装置105と、を備える。 As described above, the radiation measuring apparatus 100 according to the present embodiment has known relative coordinates between the monochromatic photon source 101 that controls the irradiation direction of the monochromatic photon or the quasi-monochromatic photon and the monochromatic photon source 101, and is to be inspected. Based on the radiation detector 102 that detects Compton scattered photons scattered from the body 106, the energy measuring device 103 that measures the energy and intensity of the detected Compton scattered photons, and the relative coordinates and the energy and intensity of Compton scattered photons. It includes a depth calculation device 104 that calculates the Compton scattered photon intensity distribution in the depth direction of the inspected object 106, and a display device 105 that displays the calculation result.
 深さ演算装置104は、まず、単色光子源101の放出エネルギーEinとエネルギー計測装置103が取得した波高値スペクトル112の各エネルギーEsとに基づいて、式(1)に従って、被検査体106の内部で生じたコンプトン散乱の散乱角θsを算出し、次に、放射線検出器102の位置座標(xdet,ydet,zdet)、単色光子源101の位置座標(0,0,-zsource)、算出した散乱角θsに基づいて、式(2)に従って、各エネルギーEsに対応する散乱位置である深さz(Es)を算出する。 First, the depth calculation device 104 uses the emitted energy Ein of the monochromatic photon source 101 and the respective energies Es of the peak value spectrum 112 acquired by the energy measuring device 103, and the inside of the inspected object 106 according to the equation (1). The scattering angle θs of the Compton scattering generated in the above was calculated, then the position coordinates of the radiation detector 102 (xdet, ydet, zdet), the position coordinates of the monochromatic photon source 101 (0,0, -zsource), and the calculated scattering. Based on the angle θs, the depth z (Es), which is the scattering position corresponding to each energy Es, is calculated according to the equation (2).
 この構成により、光子源から照射される光子を被検査体106に照射し、コンプトン散乱した光子を計測することで被検査体106の深さ方向の散乱光子の強度分布を取得する。これにより、被検査体の内部の状態を内部方向に対して高い分解能で把握することができる。その結果、高度な分析や監視を実現することが可能となる。 With this configuration, the photon emitted from the photon source is irradiated to the inspected object 106, and the intensity distribution of the scattered photon in the depth direction of the inspected object 106 is acquired by measuring the photon scattered by Compton. As a result, the internal state of the object to be inspected can be grasped with high resolution in the internal direction. As a result, advanced analysis and monitoring can be realized.
 被検査体の内部の状態を内部方向に対して高い分解能で把握できるので、カメラで被検査体を撮像して画像処理技術によって表面状態を評価する手法や、レーザを被検査体に照射してその反射光を撮像して画像処理技術によって表面状態を評価する手法、レーダを被検査体に照射してその反射波を計測して内部状態を評価する手法、X線やγ線源を利用した被検査体の内部の密度情報を取得する手法などの従来の手法に代えて、あるいは併用して、本放射線計測装置100を非破壊検査装置および放射線計測方法に適用することができる。例えば、道路や橋梁、トンネル、水道、電力網などの社会インフラの検査において、被検査体の安全性と機能を維持して公衆が安心して社会インフラを使用することが可能になる。 Since the internal state of the object to be inspected can be grasped with high resolution in the internal direction, a method of imaging the object to be inspected with a camera and evaluating the surface state by image processing technology, or irradiating the object to be inspected with a laser. A method of imaging the reflected light and evaluating the surface state by image processing technology, a method of irradiating the object to be inspected with radiation and measuring the reflected wave to evaluate the internal state, using an X-ray or γ-ray source. This radiation measuring device 100 can be applied to a non-destructive inspection device and a radiation measuring method in place of or in combination with a conventional method such as a method of acquiring density information inside an object to be inspected. For example, in the inspection of social infrastructure such as roads, bridges, tunnels, water services, and power grids, it becomes possible for the public to use the social infrastructure with peace of mind while maintaining the safety and function of the inspected object.
(第2の実施形態)
 第2の実施形態は、レーザ逆コンプトン光子を利用する放射線計測装置および放射線計測方法の例である。
 図7は、本発明の第2の実施形態に係る放射線計測装置の構成を示す図である。図1と同一構成部分には同一符号を付して重複箇所の説明を省略する。
 図7に示すように、放射線計測装置200は、図1の放射線計測装置100の放射線検出器102、深さ演算装置104および表示装置105に加えて、レーザ逆コンプトン散乱光子発生装置118、レーザ逆コンプトン散乱光子発生制御装置119、発生タイミング対応エネルギー計測装置120と、を備えて構成される。
(Second Embodiment)
The second embodiment is an example of a radiation measuring device and a radiation measuring method using a laser inverse Compton photon.
FIG. 7 is a diagram showing a configuration of a radiation measuring device according to a second embodiment of the present invention. The same components as those in FIG. 1 are designated by the same reference numerals, and the description of overlapping portions will be omitted.
As shown in FIG. 7, the radiation measuring device 200 includes a laser inverse Compton scattered photon generator 118 and a laser reverse in addition to the radiation detector 102, the depth calculation device 104 and the display device 105 of the radiation measuring device 100 of FIG. It is configured to include a Compton scattered photon generation control device 119 and an energy measurement device 120 corresponding to the generation timing.
 レーザ逆コンプトン散乱光子発生装置118は、電子発生源とレーザ発生源を利用することで、高い指向性と高い単色性を有する光子を発生させる。 The laser inverse Compton scattered photon generator 118 uses an electron source and a laser generator to generate photons with high directivity and high monochromaticity.
 レーザ逆コンプトン散乱光子発生制御装置119は、レーザ逆コンプトン散乱光子発生装置118における光子発生やその発生量、エネルギー、照射方向を制御し、光子発生タイミングを発生タイミング対応エネルギー計測装置120に伝送する。 The laser inverse Compton scattered photon generation control device 119 controls photon generation in the laser inverse Compton scattered photon generation device 118, its generation amount, energy, and irradiation direction, and transmits the photon generation timing to the generation timing corresponding energy measurement device 120.
 以上の構成において、発生タイミング対応エネルギー計測装置120は、レーザ逆コンプトン散乱光子発生制御装置119の光子発生タイミングを高精度で制御する。発生タイミング対応エネルギー計測装置120は、放射線検出器102から出力した信号を分析し、放射線検出器102における散乱光子108による付与エネルギースペクトルを波高値スペクトルとして算出する。 In the above configuration, the energy measurement device 120 corresponding to the generation timing controls the photon generation timing of the laser inverse Compton scattered photon generation control device 119 with high accuracy. The generation timing corresponding energy measuring device 120 analyzes the signal output from the radiation detector 102, and calculates the energy spectrum given by the scattered photons 108 in the radiation detector 102 as the peak value spectrum.
 本実施形態に係る放射線計測装置200は、光子発生量やエネルギー、照射方向を任意に制御できることから、様々な仕様の被検査体106の深さ方向のコンプトン散乱光子の強度分布を取得することができる。内部状態を高精度に把握することができることから、その結果に基づく高度な分析や監視を実現することが可能となる。 Since the radiation measuring device 200 according to the present embodiment can arbitrarily control the photon generation amount, energy, and irradiation direction, it is possible to acquire the intensity distribution of Compton scattered photons in the depth direction of the inspected object 106 having various specifications. can. Since the internal state can be grasped with high accuracy, it is possible to realize advanced analysis and monitoring based on the result.
(第3の実施形態)
 第3の実施形態は、中性子もしくは荷電粒子とターゲット物質との核反応を利用する放射線計測装置および放射線計測方法の例である。
 図8は、本発明の第3の実施形態に係る放射線計測装置の構成を示す図である。図1と同一構成部分には同一符号を付して重複箇所の説明を省略する。
 図8に示す放射線計測装置300は、図1の放射線計測装置100の放射線検出器102、深さ演算装置104および表示装置105に加えて、光子発生用ターゲット121と、粒子発生源122と、粒子発生制御装置123と、発生タイミング対応エネルギー計測装置124と、を備えて構成される。
 粒子発生源122は、中性子もしくは荷電粒子とターゲット物質との核反応を利用した光子発生装置である。
(Third Embodiment)
The third embodiment is an example of a radiation measuring device and a radiation measuring method that utilize a nuclear reaction between a neutron or a charged particle and a target substance.
FIG. 8 is a diagram showing a configuration of a radiation measuring device according to a third embodiment of the present invention. The same components as those in FIG. 1 are designated by the same reference numerals, and the description of overlapping portions will be omitted.
The radiation measuring device 300 shown in FIG. 8 includes a photon generation target 121, a particle generation source 122, and particles, in addition to the radiation detector 102, the depth calculation device 104, and the display device 105 of the radiation measuring device 100 of FIG. The generation control device 123 and the energy measurement device 124 corresponding to the generation timing are provided.
The particle generation source 122 is a photon generator that utilizes a nuclear reaction between a neutron or a charged particle and a target substance.
 以上の構成において、粒子発生源122は、中性子や荷電粒子、電子発生源を利用する。粒子発生源122で生成した粒子を光子発生用ターゲット121に照射することで核反応を発生させ、そこで生じた光子を利用する。組合せの一例として、光子発生用ターゲット121をC-12とし、陽子を照射することで4.4MeVの光子を発生させることができる。 In the above configuration, the particle source 122 uses a neutron, a charged particle, or an electron source. By irradiating the photon generation target 121 with the particles generated by the particle generation source 122, a nuclear reaction is generated, and the photons generated there are used. As an example of the combination, the photon generation target 121 is set to C-12, and 4.4 MeV photons can be generated by irradiating with protons.
 本実施形態に係る放射線計測装置300は、光子発生量やエネルギー、照射方向を任意に制御できることから、様々な仕様の被検査体106の深さ方向のコンプトン散乱光子の強度分布を取得することができる。被検査体106の内部状態を高精度に把握することができることから、その結果に基づく高度な分析や監視を実現することが可能となる。 Since the radiation measuring device 300 according to the present embodiment can arbitrarily control the photon generation amount, energy, and irradiation direction, it is possible to acquire the intensity distribution of Compton scattered photons in the depth direction of the inspected object 106 having various specifications. can. Since the internal state of the object to be inspected 106 can be grasped with high accuracy, it is possible to realize advanced analysis and monitoring based on the result.
(第4の実施形態)
 第4の実施形態は、複数の放射線検出器を線形に備える放射線計測装置および放射線計測方法の例である。
 図9は、本発明の第4の実施形態に係る放射線計測装置の構成を示す図である。図1と同一構成部分には同一符号を付して重複箇所の説明を省略する。
 図9に示す放射線計測装置400は、図1の放射線計測装置100の単色光子源101、表示装置105に加えて、線形配置型放射線検出器125と、線形配置対応エネルギー計測装置126と、線形配置対応深さ演算装置127と、を備えて構成される。
(Fourth Embodiment)
A fourth embodiment is an example of a radiation measuring device and a radiation measuring method including a plurality of radiation detectors linearly.
FIG. 9 is a diagram showing a configuration of a radiation measuring device according to a fourth embodiment of the present invention. The same components as those in FIG. 1 are designated by the same reference numerals, and the description of overlapping portions will be omitted.
The radiation measuring device 400 shown in FIG. 9 includes a linear arrangement type radiation detector 125, a linear arrangement compatible energy measuring device 126, and a linear arrangement in addition to the monochromatic photon source 101 and the display device 105 of the radiation measuring device 100 of FIG. It is configured to include a corresponding depth calculation device 127.
 図10は、線形配置型放射線検出器125および線形配置対応エネルギー計測装置126の詳細構成を示す図である。
 線形配置型放射線検出器125は、線形配置された複数の放射線検出器102から構成される。複数の放射線検出器102は、被検査体106の表面106aに対して一方向に線形に配置する。
 複数の放射線検出器102は、それぞれの出力信号に対応した線形配置対応エネルギー計測装置126に接続される。線形配置対応エネルギー計測装置126は、各放射線検出器102に対応して線形配置された複数のエネルギー計測装置103から構成される。
FIG. 10 is a diagram showing a detailed configuration of the linear arrangement type radiation detector 125 and the linear arrangement corresponding energy measuring device 126.
The linearly arranged radiation detector 125 is composed of a plurality of linearly arranged radiation detectors 102. The plurality of radiation detectors 102 are arranged linearly in one direction with respect to the surface 106a of the object to be inspected 106.
The plurality of radiation detectors 102 are connected to the linear arrangement corresponding energy measuring device 126 corresponding to each output signal. The linearly arranged energy measuring device 126 is composed of a plurality of energy measuring devices 103 linearly arranged corresponding to each radiation detector 102.
 以上の構成において、線形配置対応エネルギー計測装置126で得られた複数の放射線検出器102の波高値スペクトルは、線形配置対応深さ演算装置127の入力値として取り扱われる。 In the above configuration, the peak value spectra of the plurality of radiation detectors 102 obtained by the linear arrangement compatible energy measuring device 126 are treated as input values of the linear arrangement compatible depth calculation device 127.
 本実施形態に係る放射線計測装置400は、複数の放射線検出器102で散乱光子を捉えることができることから、被検査体106の深さ方向のコンプトン散乱光子の強度分布を高感度に取得することができる。強度分布が高感度に取得できるので、被検査体106の内部状態を高精度に把握することができ、その結果に基づく高度な分析や監視を実現することが可能となる。 Since the radiation measuring device 400 according to the present embodiment can capture scattered photons with a plurality of radiation detectors 102, it is possible to acquire the intensity distribution of Compton scattered photons in the depth direction of the inspected object 106 with high sensitivity. can. Since the intensity distribution can be obtained with high sensitivity, the internal state of the object to be inspected 106 can be grasped with high accuracy, and advanced analysis and monitoring based on the result can be realized.
(第5の実施形態)
 第5の実施形態は、複数の放射線検出器を二次元に配置する放射線計測装置および放射線計測方法の例である。
 図11は、本発明の第5の実施形態に係る放射線計測装置の構成を示す図である。図1と同一構成部分には同一符号を付して重複箇所の説明を省略する。
 図11に示す放射線計測装置500は、図1の放射線計測装置100の単色光子源101、表示装置105に加えて、二次元配置型放射線検出器128と、二次元配置対応エネルギー計測装置129と、二次元配置対応深さ演算装置130と、を備えて構成される。
(Fifth Embodiment)
A fifth embodiment is an example of a radiation measuring device and a radiation measuring method in which a plurality of radiation detectors are arranged two-dimensionally.
FIG. 11 is a diagram showing a configuration of a radiation measuring device according to a fifth embodiment of the present invention. The same components as those in FIG. 1 are designated by the same reference numerals, and the description of overlapping portions will be omitted.
The radiation measuring device 500 shown in FIG. 11 includes a two-dimensional arrangement type radiation detector 128, a two-dimensional arrangement compatible energy measurement device 129, and a two-dimensional arrangement compatible energy measurement device 129, in addition to the monochromatic photon source 101 and the display device 105 of the radiation measurement device 100 of FIG. It is configured to include a depth calculation device 130 corresponding to a two-dimensional arrangement.
 図12は、二次元配置型放射線検出器128および二次元配置対応エネルギー計測装置129の詳細構成を示す図である。
 図12に示すように、二次元配置型放射線検出器128は、複数の放射線検出器102から構成される。複数の放射線検出器102は、被検査体106の表面に対して二次元に配置(アレイ配置)する。なお、図12に示す放射線検出器102のアレイ配置は、一例であり、二次元配置であれはどのような配置でもよい。また、被検査体106の表面が曲面であれば、放射線検出器102の二次元配置も当該被検査体106の表面の曲面に合わせた湾曲配置としてもよい。
FIG. 12 is a diagram showing a detailed configuration of the two-dimensional arrangement type radiation detector 128 and the two-dimensional arrangement corresponding energy measuring device 129.
As shown in FIG. 12, the two-dimensional arrangement type radiation detector 128 is composed of a plurality of radiation detectors 102. The plurality of radiation detectors 102 are arranged two-dimensionally (array arrangement) with respect to the surface of the object to be inspected 106. The array arrangement of the radiation detector 102 shown in FIG. 12 is an example, and any arrangement may be used as long as it is a two-dimensional arrangement. Further, if the surface of the inspected object 106 is a curved surface, the two-dimensional arrangement of the radiation detector 102 may be a curved arrangement that matches the curved surface of the surface of the inspected object 106.
 複数の放射線検出器102は、それぞれの出力信号に対応した二次元配置対応エネルギー計測装置129に接続される。二次元配置対応エネルギー計測装置129は、各放射線検出器102に対応して二次元配置された複数のエネルギー計測装置103から構成される。 The plurality of radiation detectors 102 are connected to the energy measuring device 129 corresponding to the two-dimensional arrangement corresponding to each output signal. The energy measuring device 129 corresponding to the two-dimensional arrangement is composed of a plurality of energy measuring devices 103 arranged two-dimensionally corresponding to each radiation detector 102.
 以上の構成において、二次元配置対応エネルギー計測装置129で得られた複数の放射線検出器102の波高値スペクトルは、二次元配置対応深さ演算装置130の入力値として取り扱われる。 In the above configuration, the peak value spectra of the plurality of radiation detectors 102 obtained by the two-dimensional arrangement compatible energy measuring device 129 are treated as input values of the two-dimensional arrangement compatible depth calculation device 130.
 本実施形態に係る放射線計測装置500は、二次元配置対応エネルギー計測装置129で得られた複数の放射線検出器102で散乱光子を捉えることができることから、被検査体106の深さ方向のコンプトン散乱光子の強度分布を、より一層高感度に取得することができる。強度分布がより一層高感度に取得できるので、被検査体106の内部状態をより一層高精度に把握することができ、その結果に基づく高度な分析や監視を実現することが可能となる。 Since the radiation measuring device 500 according to the present embodiment can capture scattered photons with a plurality of radiation detectors 102 obtained by the energy measuring device 129 corresponding to the two-dimensional arrangement, Compton scattering in the depth direction of the inspected object 106 The photon intensity distribution can be obtained with even higher sensitivity. Since the intensity distribution can be obtained with even higher sensitivity, the internal state of the object to be inspected 106 can be grasped with higher accuracy, and advanced analysis and monitoring based on the results can be realized.
(第6の実施形態)
 第6の実施形態は、複数の放射線検出器を円環状に配置する放射線計測装置および放射線計測方法の例である。
 図13は、本発明の第6の実施形態に係る放射線計測装置の構成を示す図である。図1と同一構成部分には同一符号を付して重複箇所の説明を省略する。
 図13に示す放射線計測装置600は、図1の放射線計測装置100の単色光子源101、表示装置105に加えて、円環配置型放射線検出器131と、円環配置対応エネルギー計測装置132と、円環配置対応深さ演算装置133と、を備えて構成される。
(Sixth Embodiment)
The sixth embodiment is an example of a radiation measuring device and a radiation measuring method in which a plurality of radiation detectors are arranged in an annular shape.
FIG. 13 is a diagram showing a configuration of a radiation measuring device according to a sixth embodiment of the present invention. The same components as those in FIG. 1 are designated by the same reference numerals, and the description of overlapping portions will be omitted.
The radiation measuring device 600 shown in FIG. 13 includes, in addition to the monochromatic photon source 101 and the display device 105 of the radiation measuring device 100 of FIG. It is configured to include a depth calculation device 133 corresponding to an annular arrangement.
 図14は、円環配置型放射線検出器131の詳細構成を示す図である。
 図14に示すように、円環配置型放射線検出器131は、同心状に円環に配置された複数の放射線検出器102を備える。複数の放射線検出器102は、被検査体106の表面に対して円環に配置する。
 一例として、照射ポイント134を中心に、30°ピッチで、且つ同心状の複数の円環で複数の放射線検出器102を配置する。複数の放射線検出器102を配置する角度ピッチや円環の直径は、使用する放射線検出器102のサイズや、コンプトン散乱光子の強度分布の検出効率等によって調整する。
FIG. 14 is a diagram showing a detailed configuration of the ring-arranged radiation detector 131.
As shown in FIG. 14, the annulus-arranged radiation detector 131 includes a plurality of radiation detectors 102 concentrically arranged in an annulus. The plurality of radiation detectors 102 are arranged in an annulus with respect to the surface of the object to be inspected 106.
As an example, a plurality of radiation detectors 102 are arranged with a plurality of concentric rings at a pitch of 30 ° around the irradiation point 134. The angular pitch at which the plurality of radiation detectors 102 are arranged and the diameter of the annulus are adjusted according to the size of the radiation detector 102 used, the detection efficiency of the intensity distribution of Compton scattered photons, and the like.
 以上の構成において、複数の放射線検出器102は、それぞれの出力信号に対応した円環配置対応エネルギー計測装置132に接続される(図14には図示無し)。円環配置対応エネルギー計測装置132で得られた複数の放射線検出器102の波高値スペクトルは、円環配置対応深さ演算装置133の入力値として取り扱われる(図14には図示無し)。 In the above configuration, the plurality of radiation detectors 102 are connected to the energy measuring device 132 corresponding to the ring arrangement corresponding to each output signal (not shown in FIG. 14). The peak value spectra of the plurality of radiation detectors 102 obtained by the energy measuring device 132 corresponding to the annulus arrangement are treated as input values of the depth arithmetic unit 133 corresponding to the annulus arrangement (not shown in FIG. 14).
 本実施形態に係る放射線計測装置600は、複数の円環で複数の放射線検出器102で散乱光子を捉えることができることから、被検査体106の深さ方向のコンプトン散乱光子の強度分布を、より一層高感度に取得することができ、被検査体106の内部状態をより一層高精度に把握することができることから、その結果に基づく高度な分析や監視を実現することが可能となる。 Since the radiation measuring device 600 according to the present embodiment can capture scattered photons with a plurality of radiation detectors 102 in a plurality of rings, the intensity distribution of Compton scattered photons in the depth direction of the inspected object 106 can be further improved. Since it can be acquired with higher sensitivity and the internal state of the object to be inspected 106 can be grasped with higher accuracy, it is possible to realize advanced analysis and monitoring based on the result.
 また、放射線計測装置600は、同一円環上の放射線検出器102であれば、単色光子源101と放射線検出器102との相対座標は変わらないことから、同一測定とみなすことができる。このため、円環配置対応深さ演算装置133においては、演算の短縮化が可能である。 Further, if the radiation measuring device 600 is a radiation detector 102 on the same ring, it can be regarded as the same measurement because the relative coordinates of the monochromatic photon source 101 and the radiation detector 102 do not change. Therefore, in the depth calculation device 133 corresponding to the ring arrangement, the calculation can be shortened.
(第7の実施形態)
 第7の実施形態は、放射線検出器と被検査体の間にスリットコリメータを備える放射線計測装置および放射線計測方法の例である。
 図15は、本発明の第7の実施形態に係る放射線計測装置の構成を示す図である。図1と同一構成部分には同一符号を付して重複箇所の説明を省略する。
 図15に示す放射線計測装置700は、図1の放射線計測装置100の単色光子源101、放射線検出器102、深さ演算装置104、表示装置105に加えて、スリットコリメータ135を備えて構成される。
(7th Embodiment)
A seventh embodiment is an example of a radiation measuring device and a radiation measuring method in which a slit collimator is provided between the radiation detector and the object to be inspected.
FIG. 15 is a diagram showing a configuration of a radiation measuring device according to a seventh embodiment of the present invention. The same components as those in FIG. 1 are designated by the same reference numerals, and the description of overlapping portions will be omitted.
The radiation measuring device 700 shown in FIG. 15 includes a slit collimator 135 in addition to the monochromatic photon source 101, the radiation detector 102, the depth calculation device 104, and the display device 105 of the radiation measuring device 100 of FIG. ..
 図16は、スリットコリメータ135の詳細構成を示す図である。
 図16に示すように、放射線計測装置700は、スリットコリメータ135を放射線検出器102と被検査体106の間に設ける。これにより、単色光子107の被検査体106への入射で生じる多重コンプトン散乱による多重散乱光子137が放射線検出器102に入射することを低減する。視野範囲136におけるコンプトン散乱による散乱光子108を放射線検出器102で測定する。
FIG. 16 is a diagram showing a detailed configuration of the slit collimator 135.
As shown in FIG. 16, the radiation measuring device 700 provides a slit collimator 135 between the radiation detector 102 and the object to be inspected 106. This reduces the incident on the radiation detector 102 by the multiple scattered photons 137 due to the multiple Compton scattering generated by the incident of the monochromatic photon 107 on the object to be inspected 106. The scattered photons 108 due to Compton scattering in the field of view 136 are measured by the radiation detector 102.
 本実施形態に係る放射線計測装置700は、スリットコリメータ135を放射線検出器102と被検査体106の間に設けることで、多重散乱光子137の影響を低減できることから、被検査体106の深さ方向のコンプトン散乱光子の強度分布を高精度に取得することができる。これにより、被検査体106の内部状態を高精度に把握することができ、その結果に基づく高度な分析や監視を実現することが可能となる。 In the radiation measuring device 700 according to the present embodiment, since the influence of the multiple scattering photons 137 can be reduced by providing the slit collimator 135 between the radiation detector 102 and the inspected object 106, the depth direction of the inspected object 106 can be reduced. The intensity distribution of Compton scattered photons can be obtained with high accuracy. As a result, the internal state of the object to be inspected 106 can be grasped with high accuracy, and advanced analysis and monitoring based on the result can be realized.
(第8の実施形態)
 第8の実施形態は、ファンビーム型単色光子源を備える放射線計測装置および放射線計測方法の例である。
 図17は、本発明の第8の実施形態に係る放射線計測装置の構成を示す図である。図1と同一構成部分には同一符号を付して重複箇所の説明を省略する。
 図17に示す放射線計測装置800は、図1の放射線計測装置100の表示装置105に加えて、ファンビーム型単色光子源138、ファンビーム対応放射線検出器139、多チャンネル対応エネルギー計測装置140、多チャンネル対応深さ演算装置141と、を備えて構成される。
(8th Embodiment)
The eighth embodiment is an example of a radiation measuring device and a radiation measuring method including a fan beam type monochromatic photon source.
FIG. 17 is a diagram showing a configuration of a radiation measuring device according to an eighth embodiment of the present invention. The same components as those in FIG. 1 are designated by the same reference numerals, and the description of overlapping portions will be omitted.
In addition to the display device 105 of the radiation measurement device 100 of FIG. 1, the radiation measurement device 800 shown in FIG. 17 includes a fan beam type monochromatic photon source 138, a fan beam compatible radiation detector 139, a multi-channel energy measurement device 140, and many. It is configured to include a channel-compatible depth calculation device 141.
 図18は、ファンビーム型単色光子源138の詳細構成を示す図である。
 図18に示すファンビーム型コリメータ142は、内部に放射性同位元素109を備え、一次元方向に単色光子107を照射可能な構造である。
 なお、本実施形態では、ファンビーム型コリメータ142の内部に放射性同位元素109を備える構成を示したが、図2で示すレーザ逆コンプトン散乱光子発生装置118や図3で示す光子発生用ターゲット121を備える構成でもよい。
FIG. 18 is a diagram showing a detailed configuration of a fan beam type monochromatic photon source 138.
The fan beam type collimator 142 shown in FIG. 18 has a structure in which a radioactive isotope 109 is provided inside and can irradiate a monochromatic photon 107 in a one-dimensional direction.
In the present embodiment, the configuration in which the radioisotope 109 is provided inside the fan beam type collimator 142 is shown, but the laser inverse Compton scattered photon generator 118 shown in FIG. 2 and the photon generating target 121 shown in FIG. 3 are used. It may be provided.
 図19および図20は、ファンビーム対応放射線検出器139の配置を説明する図であり、図19はその側面から見た配置図を示し、図20は上部から見た配置図を示す。
 図19に示すように、スリットコリメータ135と放射線検出器102から構成される検出部ユニット143を被検査体106の表面近傍に配置する。検出部ユニット143は、視野範囲136が単色光子107の照射方向と重畳するように設定する。
19 and 20 are views for explaining the arrangement of the fan beam compatible radiation detector 139, FIG. 19 shows a layout view seen from the side surface thereof, and FIG. 20 shows a layout view seen from above.
As shown in FIG. 19, the detection unit 143 including the slit collimator 135 and the radiation detector 102 is arranged near the surface of the object to be inspected 106. The detection unit 143 is set so that the visual field range 136 overlaps with the irradiation direction of the monochromatic photon 107.
 図20に示すように、複数の検出部ユニット143から構成されるファンビーム対応放射線検出器139を照射ライン144のライン方向に対して水平に配置する。ファンビーム対応放射線検出器139は、ファンビーム型単色光子源138(図17参照)により照射される単色光子107の照射ライン144を測定する。 As shown in FIG. 20, a fan beam compatible radiation detector 139 composed of a plurality of detection unit units 143 is arranged horizontally with respect to the line direction of the irradiation line 144. The fan beam compatible radiation detector 139 measures the irradiation line 144 of the monochromatic photon 107 irradiated by the fan beam type monochromatic photon source 138 (see FIG. 17).
 各検出器ユニット143の視野範囲136(図19参照)は、照射ライン144(図20参照)を含むように配置する。 The field of view range 136 (see FIG. 19) of each detector unit 143 is arranged so as to include the irradiation line 144 (see FIG. 20).
 本実施形態に係る放射線計測装置800は、広い範囲で一度に被検査体106の深さ方向のコンプトン散乱光子の強度分布を高速に取得することができる。これにより、被検査体106の内部状態をより一層高速に把握することができ、その結果に基づく高度な分析や監視を実現することが可能となる。 The radiation measuring device 800 according to the present embodiment can acquire the intensity distribution of Compton scattered photons in the depth direction of the object 106 at one time in a wide range at high speed. As a result, the internal state of the object to be inspected 106 can be grasped at a higher speed, and advanced analysis and monitoring based on the result can be realized.
(第9の実施形態)
 第9の実施形態は、移動機構を備える放射線計測装置および放射線計測方法の例である。
 図21は、本発明の第9の実施形態に係る放射線計測装置の構成を示す図である。図1と同一構成部分には同一符号を付して重複箇所の説明を省略する。
 図21に示す放射線計測装置900は、図1の放射線計測装置100の単色光子源101、放射線検出器102、エネルギー計測装置103、表示装置105に加えて、移動機構145と、移動位置特定機構146と、移動制御機構147と、走査対応深さ演算装置148と、を備えて構成される。
(9th Embodiment)
A ninth embodiment is an example of a radiation measuring device and a radiation measuring method including a moving mechanism.
FIG. 21 is a diagram showing a configuration of a radiation measuring device according to a ninth embodiment of the present invention. The same components as those in FIG. 1 are designated by the same reference numerals, and the description of overlapping portions will be omitted.
The radiation measuring device 900 shown in FIG. 21 includes a moving mechanism 145 and a moving position specifying mechanism 146 in addition to the monochromatic photon source 101, the radiation detector 102, the energy measuring device 103, and the display device 105 of the radiation measuring device 100 of FIG. A movement control mechanism 147 and a scanning depth calculation device 148 are provided.
 移動機構145は、単色光子源101と放射線検出器102を搭載し、被検査体106の表面106a近傍を走査する。
 移動位置特定機構146は、移動機構145と被検査体106の相対座標を演算する。
 移動制御機構147は、移動機構145の走査範囲を制御する。具体的には、移動制御機構147は、移動位置特定機構146が演算した相対座標をもとに、移動機構145の位置を特定し、単色光子源101と放射線検出器102の相対座標を制御する。
The moving mechanism 145 mounts a monochromatic photon source 101 and a radiation detector 102, and scans the vicinity of the surface 106a of the inspected object 106.
The moving position specifying mechanism 146 calculates the relative coordinates of the moving mechanism 145 and the object to be inspected 106.
The movement control mechanism 147 controls the scanning range of the movement mechanism 145. Specifically, the movement control mechanism 147 specifies the position of the movement mechanism 145 based on the relative coordinates calculated by the movement position identification mechanism 146, and controls the relative coordinates of the monochromatic photon source 101 and the radiation detector 102. ..
 走査対応深さ演算装置148は、複数の照射ポイントで取得した波高値スペクトルと相対座標に加えて、移動機構の座標、つまり被検査体の表面座標を入力値として、走査範囲における深さ方向のコンプトン散乱光子の強度分布を演算する。 The scanning depth calculation device 148 uses the coordinates of the moving mechanism, that is, the surface coordinates of the inspected object as input values in addition to the peak value spectra and relative coordinates acquired at a plurality of irradiation points, in the depth direction in the scanning range. Calculate the intensity distribution of Compton scattered photons.
 図22は、放射線計測装置900の放射線計測処理を示すフローチャートである。図中、Sは測定フローの各ステップを示す。
 まず、放射線計測装置900をセットアップして測定を開始する。
 ステップS11で移動制御機構147は、単色光子源101と放射線検出器102と移動機構147とを初期の測定ポイントに配置する。
 ステップS12でエネルギー計測装置103は、単色光子源101と放射線検出器102の位置を記録する。
FIG. 22 is a flowchart showing a radiation measurement process of the radiation measurement device 900. In the figure, S indicates each step of the measurement flow.
First, the radiation measuring device 900 is set up and measurement is started.
In step S11, the movement control mechanism 147 arranges the monochromatic photon source 101, the radiation detector 102, and the movement mechanism 147 at the initial measurement point.
In step S12, the energy measuring device 103 records the positions of the monochromatic photon source 101 and the radiation detector 102.
 ステップS13で単色光子源101は、光子を照射し、エネルギー計測装置103は波高値スペクトルを記録する。
 ステップS14でエネルギー計測装置103は、測定ポイントでの測定完了か否かを判定し、測定未完了の場合(S14:No)、ステップS13に戻る。
In step S13, the monochromatic photon source 101 irradiates the photon, and the energy measuring device 103 records the peak value spectrum.
In step S14, the energy measuring device 103 determines whether or not the measurement is completed at the measurement point, and if the measurement is not completed (S14: No), the process returns to step S13.
 測定ポイントで測定完了の場合(S14:Yes)、ステップS15で走査対応深さ演算装置148は、断面測定完了か否かを判定する。
 断面測定が未完了の場合(S15:No)、ステップS16で移動制御機構147は、単色光子源101と放射線検出器102と移動機構145を被検査体106の測定ポイントに配置してステップS12に戻る。
When the measurement is completed at the measurement point (S14: Yes), the scanning depth calculation device 148 determines in step S15 whether or not the cross-section measurement is completed.
When the cross-section measurement is not completed (S15: No), the movement control mechanism 147 arranges the monochromatic photon source 101, the radiation detector 102, and the movement mechanism 145 at the measurement point of the inspected object 106 in step S16, and proceeds to step S12. return.
 断面測定が完了の場合(S15:Yes)、ステップS17で走査対応深さ演算装置148は、被検査体106の内部の断面図を演算する。
 ステップS18で表示装置105は、演算結果を表示する。
 ステップS19で走査対応深さ演算装置148は、断面演算完了か否かを判定する。
 断面演算が未完了の場合(S19:No)、ステップS20で走査対応深さ演算装置148は、未完了の測定ポイントを算出し、ステップS16に戻る。
When the cross-sectional measurement is completed (S15: Yes), the scanning depth calculation device 148 calculates the cross-sectional view of the inside of the object 106 to be inspected in step S17.
In step S18, the display device 105 displays the calculation result.
In step S19, the scanning depth calculation device 148 determines whether or not the cross-section calculation is completed.
When the cross-section calculation is not completed (S19: No), the scanning depth calculation device 148 calculates the incomplete measurement point in step S20, and returns to step S16.
 断面演算が完了の場合(S19:Yes)、ステップS21で走査対応深さ演算装置148は、全測定および演算完了か否かを判定する。
 全測定および演算が未完了の場合(S19:No)、ステップS22で移動制御機構147は、次断面測定位置に移動して、ステップS12に戻る。
When the cross-section calculation is completed (S19: Yes), the scanning depth calculation device 148 determines in step S21 whether or not all the measurements and the calculation are completed.
When all the measurements and calculations are not completed (S19: No), the movement control mechanism 147 moves to the next cross-section measurement position in step S22 and returns to step S12.
 全測定および演算が完了の場合(S21:Yes)、ステップS23で表示装置105は、波高値スペクトルやコンプトン散乱の散乱角θs、放射線検出器102や単色光子源101の位置座標などの走査対応深さ演算装置148の入力条件、走査対応深さ演算装置148で実行した演算結果である深さ方向のコンプトン散乱光子の強度分布やその相対値を出力して本フローの処理を完了する。 When all measurements and calculations are completed (S21: Yes), in step S23, the display device 105 scans the peak value spectrum, the scattering angle θs of Compton scattering, the position coordinates of the radiation detector 102 and the monochromatic photon source 101, and the like. The processing of this flow is completed by outputting the input conditions of the arithmetic device 148, the intensity distribution of Compton scattered photons in the depth direction, which is the calculation result executed by the scanning-compatible depth arithmetic device 148, and their relative values.
 図23は、コンプトン散乱光子強度分布の演算処理を示すフローチャートである。図23は、図22のステップS14のサブルーチンである。
 図22のステップS14のサブルーチンコールにより開始する。
 ステップS101で単色光子源101は、単色光子源101の単色光子の照射方向を制御する。
 ステップS102で放射線検出器102は、単色光子源101との相対座標が既知であり、被検査体から散乱したコンプトン散乱光子を検出する。
 ステップS103でエネルギー計測装置103は、検出したコンプトン散乱光子のエネルギーと強度を計測する。
FIG. 23 is a flowchart showing the arithmetic processing of the Compton scattered photon intensity distribution. FIG. 23 is a subroutine in step S14 of FIG.
It is started by the subroutine call in step S14 of FIG. 22.
In step S101, the monochromatic photon source 101 controls the irradiation direction of the monochromatic photon of the monochromatic photon source 101.
In step S102, the radiation detector 102 detects Compton scattered photons scattered from the inspected object, whose coordinates relative to the monochromatic photon source 101 are known.
In step S103, the energy measuring device 103 measures the energy and intensity of the detected Compton scattered photons.
 ステップS104で走査対応深さ演算装置148は、単色光子源の放出エネルギーEinと取得した波高値スペクトルの各エネルギーEsとに基づいて、被検査体の内部で生じたコンプトン散乱の散乱角θsを算出する。
 ステップS105で走査対応深さ演算装置148は、放射線検出器102の位置座標、単色光子源101の位置座標、算出した散乱角θsに基づいて、各エネルギーEsに対応する散乱位置、すなわち深さz(Es)を算出して図22のステップS14に戻る。
In step S104, the scan-compatible depth arithmetic unit 148 calculates the scattering angle θs of Compton scattering generated inside the inspected object based on the emission energy Ein of the monochromatic photon source and each energy Es of the acquired peak value spectrum. do.
In step S105, the scanning depth calculation device 148 is based on the position coordinates of the radiation detector 102, the position coordinates of the monochromatic photon source 101, and the calculated scattering angle θs, and the scattering position corresponding to each energy Es, that is, the depth z. (Es) is calculated, and the process returns to step S14 in FIG.
 本実施形態に係る放射線計測装置900は、移動機構145が、単色光子源101と放射線検出器102を搭載し、被検査体106の表面106a近傍を走査し、移動制御機構147が、移動位置特定機構146によって移動機構145の位置を特定し、単色光子源101と放射線検出器102の相対座標を制御する。走査対応深さ演算装置148は、被検査体106の表面座標を入力値として、走査範囲における深さ方向のコンプトン散乱光子の強度分布を演算する。 In the radiation measuring device 900 according to the present embodiment, the moving mechanism 145 mounts the monochromatic photon source 101 and the radiation detector 102, scans the vicinity of the surface 106a of the inspected object 106, and the moving control mechanism 147 identifies the moving position. The position of the moving mechanism 145 is specified by the mechanism 146, and the relative coordinates of the monochromatic photon source 101 and the radiation detector 102 are controlled. The scanning depth calculation device 148 calculates the intensity distribution of Compton scattered photons in the depth direction in the scanning range using the surface coordinates of the object 106 to be inspected as an input value.
 この構成により、広範囲の深さ方向のコンプトン散乱光子の強度分布を取得することができる。二次元もしくは三次元の座標情報に基づいて内部状態を可視化することが可能となるので、その結果に基づく高度な分析や監視を実現することが可能となる。 With this configuration, it is possible to obtain the intensity distribution of Compton scattered photons in a wide range of depth directions. Since it is possible to visualize the internal state based on two-dimensional or three-dimensional coordinate information, it is possible to realize advanced analysis and monitoring based on the result.
(第10の実施形態)
 第10の実施形態は、光学カメラと演算を用いて表面状態を評価する機能を備える放射線計測装置および放射線計測方法の例である。
 図24は、本発明の第10の実施形態に係る放射線計測装置の構成を示す図である。図1と同一構成部分には同一符号を付して重複箇所の説明を省略する。
 図24に示す放射線計測装置1000は、図1の放射線計測装置100の単色光子源101、放射線検出器102、エネルギー計測装置103、表示装置105に加えて、光学カメラ149と、画像分析装置150と、画像判定データベース151と、画像重畳装置152と、を備えて構成される。
(10th Embodiment)
A tenth embodiment is an example of a radiation measuring device and a radiation measuring method having a function of evaluating a surface state by using an optical camera and calculation.
FIG. 24 is a diagram showing a configuration of a radiation measuring device according to a tenth embodiment of the present invention. The same components as those in FIG. 1 are designated by the same reference numerals, and the description of overlapping portions will be omitted.
The radiation measuring device 1000 shown in FIG. 24 includes an optical camera 149 and an image analyzer 150 in addition to the monochromatic photon source 101, the radiation detector 102, the energy measuring device 103, and the display device 105 of the radiation measuring device 100 of FIG. , An image determination database 151, and an image superimposing device 152.
 光学カメラ149は、被検査体106の表面を撮像する。
 画像分析装置150は、画像判定データベース151を利用して、被検査体106の表面の特異点の有無や健全性などの状態を評価する。状態評価には、過去の実績や実験的に得られたデータ、解析で形成されたデータで構成された機械学習を利用することができる。
The optical camera 149 images the surface of the object to be inspected 106.
The image analyzer 150 uses the image determination database 151 to evaluate a state such as the presence or absence of a singular point on the surface of the object to be inspected 106 and its soundness. For state evaluation, machine learning composed of past achievements, experimentally obtained data, and data formed by analysis can be used.
 画像重畳装置152は、光学カメラ149で撮像した被検査体106の表面状態と、深さ演算装置104で得られた深さ方向のコンプトン散乱光子強度分布とを重畳する。
 ここで、図21で示した手法で二次元もしくは三次元データを取得した場合には、多次元で画像を重畳する。表示装置105は、画像重畳装置で演算された演算結果を表示する。
The image superimposition device 152 superimposes the surface state of the object to be inspected 106 imaged by the optical camera 149 and the Compton scattered photon intensity distribution in the depth direction obtained by the depth calculation device 104.
Here, when two-dimensional or three-dimensional data is acquired by the method shown in FIG. 21, images are superimposed in multiple dimensions. The display device 105 displays the calculation result calculated by the image superimposing device.
 本実施形態に係る放射線計測装置1000は、例えば作業員らが目視で確認した被検査体の状態と、本発明による深さ方向のコンプトン散乱光子の強度分布とを視覚的に合わせて表現することができる。これにより、作業全体の高効率化や被検査体の判定の高精度化に寄与することができる。その結果に基づく高度な分析や監視を実現することが可能となる。 The radiation measuring device 1000 according to the present embodiment visually expresses, for example, the state of the object to be inspected visually confirmed by the workers and the intensity distribution of Compton scattered photons in the depth direction according to the present invention. Can be done. This can contribute to higher efficiency of the entire work and higher accuracy of determination of the object to be inspected. It is possible to realize advanced analysis and monitoring based on the results.
(第11の実施形態)
 第11の実施形態は、単色光子源と放射線検出器と被検査体との相対位置座標の測定機能を備える放射線計測装置および放射線計測方法の例である。
 図25は、本発明の第11の実施形態に係る放射線計測装置の構成を示す図である。図1と同一構成部分には同一符号を付して重複箇所の説明を省略する。
 図25に示す放射線計測装置1100は、図1の放射線計測装置100の単色光子源101、放射線検出器102、エネルギー計測装置103、表示装置105に加えて、位置算出装置153と、位置座標対応深さ演算装置154と、を備えて構成される。
(11th Embodiment)
The eleventh embodiment is an example of a radiation measuring device and a radiation measuring method having a function of measuring relative position coordinates of a monochromatic photon source, a radiation detector, and an object to be inspected.
FIG. 25 is a diagram showing a configuration of a radiation measuring device according to the eleventh embodiment of the present invention. The same components as those in FIG. 1 are designated by the same reference numerals, and the description of overlapping portions will be omitted.
The radiation measuring device 1100 shown in FIG. 25 includes a position calculation device 153 and a depth corresponding to position coordinates in addition to the monochromatic photon source 101, the radiation detector 102, the energy measuring device 103, and the display device 105 of the radiation measuring device 100 of FIG. It is configured to include an arithmetic device 154.
 位置算出装置153は、単色光子源101と放射線検出器102、被検査体106の位置座標を測定する。位置算出装置153は、位置座標を測定するための手段として、例えば、ある初期値を定めた上で、光学カメラやレーザ、超音波、レーダなどを利用した距離計測装置を備える。
 放射線計測装置1100は、単色光子源101と放射線検出器102を固定冶具に載置して、単色光子源101と放射線検出器102の相対位置座標を固定することで、被検査体106との相対座標を比較的容易に演算することができる。
 位置算出装置153で得られた相対位置座標は、この座標を入力値とする位置座標対応深さ演算装置154に入力される。
The position calculation device 153 measures the position coordinates of the monochromatic photon source 101, the radiation detector 102, and the object to be inspected 106. The position calculation device 153 includes, for example, a distance measurement device that uses an optical camera, a laser, an ultrasonic wave, a radar, or the like after determining a certain initial value as a means for measuring the position coordinates.
The radiation measuring device 1100 places the monochromatic photon source 101 and the radiation detector 102 on a fixed jig and fixes the relative position coordinates of the monochromatic photon source 101 and the radiation detector 102, so that the radiation measuring device 1100 is relative to the inspected object 106. The coordinates can be calculated relatively easily.
The relative position coordinates obtained by the position calculation device 153 are input to the position coordinate corresponding depth calculation device 154 using these coordinates as an input value.
 本実施形態に係る放射線計測装置1100は、相対位置座標を高精度に把握することができることから、被検査体106の深さ方向のコンプトン散乱光子の強度分布を高精度に取得することができる。被検査体106の内部状態を高精度に把握して、その結果に基づく高度な分析や監視を実現することが可能となる。 Since the radiation measuring device 1100 according to the present embodiment can grasp the relative position coordinates with high accuracy, it is possible to acquire the intensity distribution of Compton scattered photons in the depth direction of the inspected object 106 with high accuracy. It is possible to grasp the internal state of the object to be inspected 106 with high accuracy and realize advanced analysis and monitoring based on the result.
[変形例]
 (1)第1の実施形態~第11の実施形態の放射線計測装置および放射線計測方法を組み合わせて統合する。
 上記各実施形態に係る放射線計測装置および放射線計測方法を統合することで、様々な実行環境に応じて被検査体106(例えば、図1参照)の深さ方向のコンプトン散乱光子の強度分布を最適に実行することができる。被検査体106の内部状態を高精度・高速・高感度に把握して、その結果に基づく高度な分析や監視を実現することが可能となる。
[Modification example]
(1) The radiation measuring apparatus and the radiation measuring method of the first to eleventh embodiments are combined and integrated.
By integrating the radiation measuring device and the radiation measuring method according to each of the above embodiments, the intensity distribution of Compton scattered photons in the depth direction of the object to be inspected 106 (see, for example, FIG. 1) is optimized according to various execution environments. Can be executed. It is possible to grasp the internal state of the object to be inspected 106 with high accuracy, high speed, and high sensitivity, and to realize advanced analysis and monitoring based on the result.
 (2)第1の実施形態~第11の実施形態の放射線計測装置は、単色光子源106および放射線検出器102(例えば、図1参照)の位置座標を測定する位置座標測定機(位置算出装置)を備え、深さ演算装置は、位置算出装置で得られた単色光子源101および放射線検出器102の位置座標を入力値とする。 (2) The radiation measuring device of the first embodiment to the eleventh embodiment is a position coordinate measuring device (position calculation device) that measures the position coordinates of the monochromatic photon source 106 and the radiation detector 102 (see, for example, FIG. 1). ), The depth calculation device uses the position coordinates of the monochromatic photon source 101 and the radiation detector 102 obtained by the position calculation device as input values.
 (3)第1の実施形態~第11の実施形態の放射線計測装置は、コンプトン散乱光子強度分布における特異点を蓄積する特異点データベース、AI(Artificial Intelligence)を含む機械学習(Machine learning)を実行する特異点抽出装置を備える。特異点抽出装置は、特異点データベース、機械学習を用いて前記深さ方向のコンプトン散乱光子強度分布における特異点を抽出する。 (3) The radiation measuring apparatus of the first embodiment to the eleventh embodiment executes machine learning including AI (Artificial Intelligence), a singular point database that accumulates singular points in the Compton scattered photon intensity distribution. It is equipped with a singular point extraction device. The singular point extraction device uses a singular point database and machine learning to extract singular points in the Compton scattered photon intensity distribution in the depth direction.
 なお、本発明は、上記各実施形態に記載した構成に限定されるものではなく、特許請求の範囲に記載した本発明の要旨を逸脱しない限りにおいて、適宜その構成を変更することができる。 The present invention is not limited to the configuration described in each of the above embodiments, and the configuration can be appropriately changed as long as it does not deviate from the gist of the present invention described in the claims.
 上記した各実施形態例は本発明をわかりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態例の構成の一部を他の実施形態例の構成に置き換えることが可能であり、また、ある実施形態例の構成に他の実施形態例の構成を加えることも可能である。また、各実施形態例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 Each of the above-described embodiments has been described in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to those having all the described configurations. Further, it is possible to replace a part of the configuration of one embodiment with the configuration of another embodiment, and it is also possible to add the configuration of another embodiment to the configuration of one embodiment. .. Further, it is possible to add / delete / replace a part of the configuration of each embodiment with another configuration.
 100、200、300、400、500、600、700、800、900、1000、1100 放射線計測装置
 101 単色光子源
 102 放射線検出器
 103 エネルギー計測装置
 104 深さ演算装置
 105 表示装置(出力装置)
 106 被検査体
 107 単色光子
 108 散乱光子
 109 放射性同位元素(放射性同位体)
 110 コリメータ
 111 光子シャッタ
 112 波高値スペクトル
 118 レーザ逆コンプトン散乱光子発生装置
 119 レーザ逆コンプトン散乱光子発生制御装置
 120 発生タイミング対応エネルギー計測装置
 121 光子発生用ターゲット
 122 粒子発生源
 123 粒子発生制御装置
 124 発生タイミング対応エネルギー計測装置
 125 線形配置型放射線検出器
 126 線形配置対応エネルギー計測装置
 127 線形配置対応深さ演算装置
 128 二次元配置型放射線検出器
 129 二次元配置対応エネルギー計測装置
 130 二次元配置対応深さ演算装置
 131 円環配置型放射線検出器
 132 円環配置対応エネルギー計測装置
 133 円環配置対応深さ演算装置
 134 照射ポイント
 135 スリットコリメータ
 138 ファンビーム型単色光子源
 139 ファンビーム対応放射線検出器
 140 多チャンネル対応エネルギー計測装置
 141 多チャンネル対応深さ演算装置
 142 ファンビーム型コリメータ
 143 検出部ユニット
 144 照射ライン
 145 移動機構
 146 移動位置特定機構
 147 移動制御機構
 148 走査対応深さ演算装置
 149 光学カメラ
 150 画像分析装置
 151 画像判定データベース
 152 画像重畳装置
 153 位置算出装置
 154 位置座標対応深さ演算装置
 S101 単色光子源の単色光子または準単色光子の照射方向を制御するステップ
 S102 被検査体から散乱したコンプトン散乱光子を検出するステップ
 S103 検出したコンプトン散乱光子のエネルギーと強度を計測するステップ
 S13、S104、S105 被検査体の深さ方向のコンプトン散乱光子強度分布を演算する演算ステップ
 S23 演算結果を出力するステップ
100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1100 Radiation measuring device 101 Monochromatic photon source 102 Radiation detector 103 Energy measuring device 104 Depth calculation device 105 Display device (output device)
106 Inspected object 107 Monochromatic photon 108 Scattered photon 109 Radioisotope (radioisotope)
110 Collimeter 111 Photon shutter 112 Peak spectrum 118 Laser inverse Compton scattered photon generator 119 Laser inverse Compton scattered photon generation control device 120 Generation timing compatible energy measurement device 121 Photon generation target 122 Particle generation source 123 Particle generation control device 124 Generation timing Corresponding energy measuring device 125 Linear arrangement type radiation detector 126 Linear arrangement compatible energy measuring device 127 Linear arrangement compatible depth calculation device 128 Two-dimensional arrangement type radiation detector 129 Two-dimensional arrangement compatible energy measurement device 130 Two-dimensional arrangement compatible depth calculation Equipment 131 Ring-arranged radiation detector 132 Ring-arranged energy measuring device 133 Ring-arranged depth calculation device 134 Irradiation point 135 Slit collimeter 138 Fan beam type monochromatic photon source 139 Fan beam compatible radiation detector 140 Multi-channel compatible Energy measurement device 141 Multi-channel depth calculation device 142 Fan beam type collimeter 143 Detection unit unit 144 Irradiation line 145 Movement mechanism 146 Movement position identification mechanism 147 Movement control mechanism 148 Scanning support depth calculation device 149 Optical camera 150 Image analyzer 151 Image judgment database 152 Image superimposition device 153 Position calculation device 154 Position coordinate compatible depth calculation device S101 Steps to control the irradiation direction of monochromatic or quasi-monochromatic photons of a monochromatic photon source S102 Detect Compton scattered photons scattered from an inspected object Step S103 Measure the energy and intensity of the detected Compton scattered photon S13, S104, S105 Calculation step to calculate the Compton scattered photon intensity distribution in the depth direction of the inspected object S23 Step to output the calculation result

Claims (15)

  1.  光子を検知する放射線計測装置であって、
     単色光子または準単色光子の照射方向を制御する単色光子源と、
     前記単色光子源との相対座標が既知であり、被検査体から散乱したコンプトン散乱光子を検出する放射線検出器と、
     検出した前記コンプトン散乱光子のエネルギーと強度を計測するエネルギー計測装置と、
     前記相対座標と前記コンプトン散乱光子のエネルギーと強度をもとに、前記被検査体の深さ方向のコンプトン散乱光子強度分布を演算する深さ演算装置と、
     前記深さ演算装置の演算結果を出力する出力装置と、を備える
     ことを特徴とする放射線計測装置。
    A radiation measuring device that detects photons
    A monochromatic photon source that controls the irradiation direction of monochromatic or quasi-monochromatic photons,
    A radiation detector whose relative coordinates to the monochromatic photon source are known and which detects Compton scattered photons scattered from the inspected object, and
    An energy measuring device that measures the energy and intensity of the detected Compton scattered photons,
    A depth calculation device that calculates the Compton scattered photon intensity distribution in the depth direction of the inspected object based on the relative coordinates and the energy and intensity of the Compton scattered photons.
    A radiation measuring device including an output device that outputs a calculation result of the depth calculation device.
  2.  前記単色光子源は、放射性同位体を有し、
     前記放射性同位体は、Cs-137、Zn-65、Be-7、Cr-51、Co-58、Mn-54、Hg-203、Sr-85、F-18、Ga-68、Al-28、およびK-42からなる群より選択される少なくとも一つを用いる
     ことを特徴とする請求項1に記載の放射線計測装置。
    The monochromatic photon source has a radioactive isotope and
    The radioactive isotopes are Cs-137, Zn-65, Be-7, Cr-51, Co-58, Mn-54, Hg-203, Sr-85, F-18, Ga-68, Al-28, The radiation measuring apparatus according to claim 1, wherein at least one selected from the group consisting of K-42 and K-42 is used.
  3.  前記単色光子源は、レーザ逆コンプトン光子を発するレーザ逆コンプトン散乱光子発生装置である
     ことを特徴とする請求項1または請求項2に記載の放射線計測装置。
    The radiation measuring apparatus according to claim 1 or 2, wherein the monochromatic photon source is a laser inverse Compton scattered photon generator that emits a laser inverse Compton photon.
  4.  前記単色光子源は、中性子または荷電粒子とターゲット物質との核反応を利用した光子発生装置である
     ことを特徴とする請求項1に記載の放射線計測装置。
    The radiation measuring apparatus according to claim 1, wherein the monochromatic photon source is a photon generator utilizing a nuclear reaction between a neutron or a charged particle and a target substance.
  5.  前記単色光子源は、前記放射性同位体から放出する光子の照射方向を制御するコリメータを備える
     ことを特徴とする請求項2に記載の放射線計測装置。
    The radiation measuring apparatus according to claim 2, wherein the monochromatic photon source includes a collimator that controls an irradiation direction of photons emitted from the radioisotope.
  6.  前記コリメータと前記被検査体の間、または前記コリメータと前記単色光子源の間に光子シャッタを備える
     ことを特徴とする請求項5に記載の放射線計測装置。
    The radiation measuring apparatus according to claim 5, further comprising a photon shutter between the collimator and the object to be inspected, or between the collimator and the monochromatic photon source.
  7.  前記放射線検出器は、Ge半導体、CdTe半導体、CdZnTe半導体、Si半導体、Perovskite構造半導体、LaBr3シンチレータ、CsBr3シンチレータ、LYSOシンチレータ、LSOシンチレータ、GAGGシンチレータ、CsIシンチレータ、NaIシンチレータ、BGOシンチレータ、GSOシンチレータ、GPSシンチレータ、La-GPSシンチレータ、LuAGシンチレータ、およびSrIシンチレータからなる群より選択される少なくとも一つを用いる放射線有感材を備える
     ことを特徴とする請求項1に記載の放射線計測装置。
    The radiation detector includes Ge semiconductor, CdTe semiconductor, CdZnTe semiconductor, Si semiconductor, Perovskite structure semiconductor, LaBr3 scintillator, CsBr3 scintillator, LYSO scintillator, LSO scintillator, GAGG scintillator, CsI scintillator, NaI scintillator, BGO scintillator, and SO. The radiation measuring apparatus according to claim 1, further comprising a radiation sensitive material using at least one selected from the group consisting of a scintillator, a La-GPS scintillator, a LuAG scintillator, and an SrI scintillator.
  8.  前記放射線検出器は、前記被検査体の表面に対して一方向に線形に配置する線形配置、前記被検査体の表面に対して二次元に配置するアレイ配置、または前記単色光子源の前記被検査体の表面における照射ポイントを中心に円環状に配置する円環配置のいずれか一つで配置される
     ことを特徴とする請求項1に記載の放射線計測装置。
    The radiation detector is arranged linearly in one direction with respect to the surface of the object to be inspected, an array arrangement arranged two-dimensionally with respect to the surface of the object to be inspected, or the subject of the monochromatic photon source. The radiation measuring apparatus according to claim 1, wherein the radiation measuring apparatus is arranged in any one of the ring arrangements arranged in an annular shape around the irradiation point on the surface of the inspection body.
  9.  前記放射線検出器と前記被検査体の間にスリット状のコリメータを備える
     ことを特徴とする請求項1に記載の放射線計測装置。
    The radiation measuring apparatus according to claim 1, further comprising a slit-shaped collimator between the radiation detector and the object to be inspected.
  10.  前記深さ演算装置における演算の入力値を、前記単色光子源の放出エネルギーと、前記エネルギー計測装置で取得した波高値スペクトルと、前記単色光子源の照射方向ベクトルを含む二次元平面において前記単色光子源と前記放射線検出器の相対座標とするとともに、
     前記深さ演算装置における演算の出力値を、前記単色光子源から照射した単色光子の散乱角と、前記散乱角と前記相対座標から前記単色光子が散乱した深さ位置とする
     ことを特徴とする請求項1に記載の放射線計測装置。
    The input value of the calculation in the depth calculation device is the monochromatic photon in a two-dimensional plane including the emission energy of the monochromatic photon source, the peak value spectrum acquired by the energy measuring device, and the irradiation direction vector of the monochromatic photon source. The coordinates are relative to the source and the radiation detector, and
    The output value of the calculation in the depth arithmetic unit is the scattering angle of the monochromatic photon irradiated from the monochromatic photon source and the depth position where the monochromatic photon is scattered from the scattering angle and the relative coordinates. The radiation measuring device according to claim 1.
  11.  前記深さ演算装置は、前記単色光子源の放出エネルギーEinと前記エネルギー計測装置が取得した波高値スペクトルの各エネルギーEsとに基づいて、式(1)に従って、前記被検査体の内部で生じたコンプトン散乱の散乱角θsを算出するとともに、
    Figure JPOXMLDOC01-appb-M000001
     前記放射線検出器の位置座標(xdet,ydet,zdet)、前記単色光子源の位置座標(0,0,-zsource)、算出した前記散乱角θsに基づいて、式(2)に従って、各エネルギーEsに対応する散乱位置である深さz(Es)を算出する
    Figure JPOXMLDOC01-appb-M000002
     ことを特徴とする請求項1に記載の放射線計測装置。
    The depth calculation device is generated inside the object to be inspected according to the equation (1) based on the emitted energy Ein of the monochromatic photon source and each energy Es of the peak value spectrum acquired by the energy measuring device. While calculating the scattering angle θs of Compton scattering,
    Figure JPOXMLDOC01-appb-M000001
    Based on the position coordinates of the radiation detector (xdet, ydet, zdet), the position coordinates of the monochromatic photon source (0,0, -zsource), and the calculated scattering angle θs, each energy Es according to equation (2). Calculate the depth z (Es), which is the scattering position corresponding to
    Figure JPOXMLDOC01-appb-M000002
    The radiation measuring apparatus according to claim 1.
  12.  前記単色光子源および前記放射線検出器を搭載して前記被検査体の表面を走査する移動機構と、
     前記移動機構と前記被検査体の相対座標を演算する移動位置特定機構と、
     前記移動位置特定機構が演算した前記相対座標をもとに、前記移動機構を制御する移動制御機構と、を備える
     ことを特徴とする請求項1に記載の放射線計測装置。
    A moving mechanism equipped with the monochromatic photon source and the radiation detector to scan the surface of the object to be inspected,
    A moving position specifying mechanism that calculates the relative coordinates of the moving mechanism and the object to be inspected,
    The radiation measuring apparatus according to claim 1, further comprising a movement control mechanism that controls the movement mechanism based on the relative coordinates calculated by the movement position specifying mechanism.
  13.  前記出力装置は、光学カメラで撮像した前記被検査体の表面状態と前記深さ演算装置で得られた前記深さ方向のコンプトン散乱光子強度分布とを重畳して表示するとともに、前記被検査体の状態を三次元表示する
     ことを特徴とする請求項1に記載の放射線計測装置。
    The output device superimposes and displays the surface state of the inspected object imaged by the optical camera and the Compton scattered photon intensity distribution in the depth direction obtained by the depth arithmetic unit, and also displays the inspected object. The radiation measuring apparatus according to claim 1, wherein the state of the above is displayed in three dimensions.
  14.  光子を検知する放射線計測装置の放射線計測方法であって、
     単色光子源の単色光子または準単色光子の照射方向を制御するステップと、
     前記単色光子源との相対座標が既知であり、被検査体から散乱したコンプトン散乱光子を検出するステップと、
     検出した前記コンプトン散乱光子のエネルギーと強度を計測するステップと、
     前記相対座標と前記コンプトン散乱光子のエネルギーと強度をもとに、前記被検査体の深さ方向のコンプトン散乱光子強度分布を演算する演算ステップと、
     演算結果を出力するステップと、を実行する
     ことを特徴とする放射線計測方法。
    It is a radiation measurement method of a radiation measuring device that detects photons.
    Steps to control the irradiation direction of monochromatic or quasi-monochromatic photons from a monochromatic photon source,
    A step of detecting Compton scattered photons scattered from an inspected object whose coordinates relative to the monochromatic photon source are known, and
    Steps to measure the energy and intensity of the detected Compton scattered photons,
    A calculation step for calculating the Compton scattered photon intensity distribution in the depth direction of the inspected object based on the relative coordinates and the energy and intensity of the Compton scattered photon.
    A radiation measurement method characterized by performing a step of outputting a calculation result and a step of executing.
  15.  前記演算ステップでは、
     まず、前記単色光子源の放出エネルギーEinと取得した波高値スペクトルの各エネルギーEsとに基づいて、式(1)に従って、前記被検査体の内部で生じたコンプトン散乱の散乱角θsを算出し、
    Figure JPOXMLDOC01-appb-M000003
     次に、放射線検出器の位置座標(xdet,ydet,zdet)、前記単色光子源の位置座標(0,0,-zsource)、算出した前記散乱角θsに基づいて、式(2)に従って、各エネルギーEsに対応する散乱位置である深さz(Es)を算出する
    Figure JPOXMLDOC01-appb-M000004
     ことを特徴とする請求項14に記載の放射線計測方法。
    In the calculation step,
    First, based on the emission energy Ein of the monochromatic photon source and each energy Es of the acquired peak value spectrum, the scattering angle θs of Compton scattering generated inside the inspected object is calculated according to the equation (1).
    Figure JPOXMLDOC01-appb-M000003
    Next, based on the position coordinates of the radiation detector (xdet, ydet, zdet), the position coordinates of the monochromatic photon source (0,0, -zsource), and the calculated scattering angle θs, each according to the equation (2). Calculate the depth z (Es), which is the scattering position corresponding to the energy Es.
    Figure JPOXMLDOC01-appb-M000004
    The radiation measurement method according to claim 14, wherein the radiation measurement method is characterized.
PCT/JP2020/034292 2020-02-20 2020-09-10 Radiation measurement device and radiation measurement method WO2021166295A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020026737A JP7340476B2 (en) 2020-02-20 2020-02-20 Radiation measurement device and radiation measurement method
JP2020-026737 2020-02-20

Publications (1)

Publication Number Publication Date
WO2021166295A1 true WO2021166295A1 (en) 2021-08-26

Family

ID=77390571

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/034292 WO2021166295A1 (en) 2020-02-20 2020-09-10 Radiation measurement device and radiation measurement method

Country Status (2)

Country Link
JP (1) JP7340476B2 (en)
WO (1) WO2021166295A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113984815A (en) * 2021-10-29 2022-01-28 北京师范大学 Efficient Compton scattering imaging system based on inverse Compton scattering X-ray source

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7449821B2 (en) 2020-08-26 2024-03-14 株式会社日立製作所 Internal condition inspection system and internal condition inspection method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008002940A (en) * 2006-06-22 2008-01-10 Ihi Corp Remote x-ray fluoroscopic device and method
JP2009503506A (en) * 2005-07-27 2009-01-29 フィジカル・オプティクス・コーポレーション Lobster eye X-ray image processing system and manufacturing method thereof
JP2009135018A (en) * 2007-11-30 2009-06-18 National Institute Of Advanced Industrial & Technology X-ray generator and x-ray generation method
JP2012032220A (en) * 2010-07-29 2012-02-16 Japan Atomic Energy Agency Nuclide analysis method and nuclide analyzer
JP2017096724A (en) * 2015-11-20 2017-06-01 キヤノン株式会社 Radiation detector
JP2018013439A (en) * 2016-07-22 2018-01-25 国立大学法人 東京大学 Radiation measuring device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009503506A (en) * 2005-07-27 2009-01-29 フィジカル・オプティクス・コーポレーション Lobster eye X-ray image processing system and manufacturing method thereof
JP2008002940A (en) * 2006-06-22 2008-01-10 Ihi Corp Remote x-ray fluoroscopic device and method
JP2009135018A (en) * 2007-11-30 2009-06-18 National Institute Of Advanced Industrial & Technology X-ray generator and x-ray generation method
JP2012032220A (en) * 2010-07-29 2012-02-16 Japan Atomic Energy Agency Nuclide analysis method and nuclide analyzer
JP2017096724A (en) * 2015-11-20 2017-06-01 キヤノン株式会社 Radiation detector
JP2018013439A (en) * 2016-07-22 2018-01-25 国立大学法人 東京大学 Radiation measuring device

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
SABHARWAL, A.D. ; SINGH, B. ; SANDHU, B.S.: "Investigations of multiple back scattering and albedos of 1.12 MeV gamma photons in elements and alloys", NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH. SECTION B: BEAM INTERACTIONS WITH MATERIALS AND ATOMS, vol. 267, no. 1, 1 January 2009 (2009-01-01), NL, pages 151 - 156, XP025880855, ISSN: 0168-583X, DOI: 10.1016/j.nimb. 2008.10.07 2 *
SUZUKI KOSUKE , SAKURAI HIROSHI: "In- operando Three-Dimensional Measurement of Quantum State in the Practical Devices Using High-energy X-ray Compton Scattering Spectroscopy", VACUUM AND SURFACE SCIENCE, vol. 61, no. 12, 10 December 2018 (2018-12-10), pages 790 - 796, XP055849883, ISSN: 2433-5835, DOI: 10.1380/vss.61.790 *
TERASAKA AYUMU: "Operand Measurement of Electrode Reaction in Lithium-Ion Secondary Batteries that have Degraded due to Compton Scattering", DOCTORAL THESIS, 14 March 2019 (2019-03-14), JP, pages 1 - 44, XP009530747 *
TOYOKAWA HIROYUKI: "Development of Back Scattering X-Ray Inspection Device Intended for Infrastructure Assessment", 25 September 2013 (2013-09-25), JP, pages 1 - 15, XP009532039, Retrieved from the Internet <URL:https://www2.kek.jp/accl/legacy/seminar/file/130925_Toyokawa_new.pdf> *
YAZAWA, Y.: "Compton Scattering and the Klein-Nishina Formula", BACHELOR THESIS, 15 February 2016 (2016-02-15), JP, pages 1 - 19, XP009530751 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113984815A (en) * 2021-10-29 2022-01-28 北京师范大学 Efficient Compton scattering imaging system based on inverse Compton scattering X-ray source
CN113984815B (en) * 2021-10-29 2023-09-05 北京师范大学 High-efficiency Compton scattering imaging system based on inverse Compton scattering X-ray source

Also Published As

Publication number Publication date
JP2021131308A (en) 2021-09-09
JP7340476B2 (en) 2023-09-07

Similar Documents

Publication Publication Date Title
RU2305829C1 (en) Method and device for recognition of materials by means of quick neutrons and continuous spectral x-ray radiation
Kis et al. NIPS–NORMA station—A combined facility for neutron-based nondestructive element analysis and imaging at the Budapest Neutron Centre
KR101378757B1 (en) Radiation imaging equipment and method available to obtain element date of material and select dimensions of image
Priyada et al. Intercomparison of gamma scattering, gammatography, and radiography techniques for mild steel nonuniform corrosion detection
WO2021166295A1 (en) Radiation measurement device and radiation measurement method
RU2598396C2 (en) Method and system of combined radiation nondestructive control
Craft et al. Characterization of a neutron beam following reconfiguration of the Neutron Radiography Reactor (NRAD) core and addition of new fuel elements
Glière Sindbad: From CAD model to synthetic radiographs
JP2006258553A (en) Flow evaluation method, flow evaluation device, and flow evaluation program of medium having flow behavior
Udod et al. State-of-the art and development prospects of digital radiography systems for nondestructive testing, evaluation, and inspection of objects: a review
KR20140059012A (en) Nondestructive test system
CZ201527A3 (en) Method of three-dimensional scanning using fluorescence induced by electromagnetic radiation and apparatus for making the same
JP2009175065A (en) Simultaneous three-dimensional distribution-visualization observation-measurement method of a plurality of elements by neutron prompt gamma-ray analysis, and device thereof
US20190025231A1 (en) A method of detection of defects in materials with internal directional structure and a device for performance of the method
JP6981998B2 (en) Surface defect detection and analysis system using prompt gamma rays generated and emitted by pulsed neutrons
US20140205062A1 (en) System and Method For Imaging Defects
Szentmiklósi et al. Integration of Neutron-Based Elemental Analysis and Imaging to Characterize Complex Cultural Heritage Objects
Bernardi et al. Nuclear waste drum characterization with 2 MeV x-ray and gamma-ray tomography
JP2004108912A (en) Detecting apparatus using neutron and its method
JP2002162371A (en) Nondestructive inspection method and its device utilizing inverse compton scattered light
JP5030056B2 (en) Nondestructive inspection method and apparatus
Sharma et al. A gamma ray tomographic densitometer system for the investigation of concrete structures
JP7437337B2 (en) Internal state imaging device and internal state imaging method
Kasal et al. Radiography
JP7449821B2 (en) Internal condition inspection system and internal condition inspection method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20920708

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20920708

Country of ref document: EP

Kind code of ref document: A1