JP2002162371A - Nondestructive inspection method and its device utilizing inverse compton scattered light - Google Patents

Nondestructive inspection method and its device utilizing inverse compton scattered light

Info

Publication number
JP2002162371A
JP2002162371A JP2000357003A JP2000357003A JP2002162371A JP 2002162371 A JP2002162371 A JP 2002162371A JP 2000357003 A JP2000357003 A JP 2000357003A JP 2000357003 A JP2000357003 A JP 2000357003A JP 2002162371 A JP2002162371 A JP 2002162371A
Authority
JP
Japan
Prior art keywords
photon
quasi
inverse compton
monochromatic
scattered light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000357003A
Other languages
Japanese (ja)
Inventor
Hiroyuki Toyokawa
弘之 豊川
Hideaki Ogaki
英明 大垣
Tatsushi Shima
達志 嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2000357003A priority Critical patent/JP2002162371A/en
Publication of JP2002162371A publication Critical patent/JP2002162371A/en
Pending legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a perspective diagram or a cross section diagram showing inside a rather thicker inspected object which has ever been impossible to be imaged by conventional X-ray, X-ray radiography or CT. SOLUTION: By using laser inverse Compton photon, take advantage of high-directivity, quasi-monochromaticity, energy variability, etc., contained in this photon to conduct destructive inspection for physical matters.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】 本願発明は、X線及びγ線
等を用いた非破壊検査、ラジオグラフィー、トモグラフ
ィー等に関し、特に光子の発生部にレーザ逆コンプトン
散乱を利用したエネルギー可変準単色光子発生装置を備
えた装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to nondestructive inspection using X-rays and γ-rays, radiography, tomography, and the like, and in particular, energy-variable quasi-monochromatic photon generation using laser inverse Compton scattering at a photon generation part. The present invention relates to a device provided with a device.

【0002】[0002]

【従来の技術】 人体内の検査には、レントゲン撮影の
ようにX線を用いたラジオグラフィーやX線CT装置などが
用いられ、投影図や断面図が得られている。また、工業
用の非破壊検査には、線源として137Csや60Coなどのγ
線を放出する放射性同位元素が用いられ、X線ラジオグ
ラフィーやX線CTと同様の手法で投影図や断面図が得ら
れている。
2. Description of the Related Art For examination of the inside of a human body, radiography using an X-ray or an X-ray CT apparatus, such as an X-ray photography, is used, and a projection view or a sectional view is obtained. For industrial nondestructive inspection, γ such as 137 Cs or 60 Co is used as a radiation source.
X-ray emitting radioisotopes are used, and projections and cross-sections have been obtained in the same manner as X-ray radiography and X-ray CT.

【0003】これらの手法には、人体、人体と同程度の
大きさの物質、あるいは数cm程度以下の金属であれば、
その投影や断層を調べることができるという利点があ
る。
[0003] In these methods, if the human body, a substance of the same size as the human body, or a metal of about several cm or less,
There is an advantage that the projection and the slice can be examined.

【0004】[0004]

【発明が解決しようとする課題】 しかし、通常、X線
ラジオグラフィーやCTなどの装置には、数10 keV〜百数
10 keV程度の比較的エネルギーの低いX線が使用される
ため、人体より大きな物体や原子番号の高い元素から構
成される物質を検査することは困難であるという課題が
あった。
However, devices such as X-ray radiography and CT usually require several tens of keV
Since X-rays with relatively low energy of about 10 keV are used, there is a problem that it is difficult to inspect an object larger than a human body or a substance composed of an element having a higher atomic number.

【0005】また、工業用の非破壊検査装置には、放射
性同位元素から放出される数100 keV〜数MeVのエネルギ
ーの高いγ線が用いられている。このγ線は、X線より
透過力が高く、数cm程度以下の厚さの金属やコンクリー
トであれば数%は透過するため、薄い金属に覆われた材
料や、薄いコンクリートや金属内部の投影像を得ること
によりその内部欠陥を調べることができる。しかし、γ
線源は、四方八方に放射線を放出するため、対象とする
非検査体に十分な強度のγ線を照射するためには非常に
強度の高い線源を使用しなくてはならない。このため作
業者が被爆する事故が発生しており、作業の実施が危険
であるという課題があった。
[0005] In industrial nondestructive inspection equipment, high energy γ-rays of several hundred keV to several MeV emitted from radioisotopes are used. This γ-ray has a higher penetrating power than X-rays, and transmits several percent of metal or concrete with a thickness of about several cm or less, so it is possible to project materials covered with thin metal or thin concrete or metal inside. By obtaining an image, its internal defects can be examined. However, γ
Since the radiation source emits radiation in all directions, a very high-intensity radiation source must be used to irradiate the target non-inspected body with gamma rays of sufficient intensity. For this reason, there has been a problem that an accident has occurred in which the worker is exposed to the bomb, and it is dangerous to perform the work.

【0006】また、通常のγ線源のエネルギー範囲では
数cmを超える厚さの金属やコンクリートなどの検査には
使用できないという課題があった。
Another problem is that it cannot be used for inspection of metal or concrete having a thickness exceeding several cm in the energy range of a normal γ-ray source.

【0007】[0007]

【課題を解決するための手段】 上記従来の課題を解決
するために、本願発明は、レーザ逆コンプトン光子を利
用し、この光子が有する高指向性、準単色性、エネルギ
ー可変性などの利点を利用することとした。
Means for Solving the Problems In order to solve the above-mentioned conventional problems, the present invention utilizes a laser inverse Compton photon to take advantage of the high directivity, quasi-monochromaticity, energy variability, and the like of the photons. I decided to use it.

【0008】また、本願発明には、測定系として通常の
ラジオグラフィーやCTの技術、および装置が使用でき
る。レーザ逆コンプトン光子のように、数MeV以上のγ
線でCTを行うメリットは、ほとんどすべての物質との相
互作用が電子対生成であることが挙げられる。光電効果
は原子番号の4 〜 5乗に、コンプトン効果は原子番号
に、電子対生成は原子番号の約1/2乗に比例する。した
がって、数MeV以上では、光電効果による散乱の寄与が
ほとんど無いため、透過型CTで得られた結果は、物質の
原子密度を反映している。また、光電効果に比べて反応
の断面積が小さいため、厚みのある物でも容易に透過す
ることができる。例えば、厚さ10 cmの鉄を検査する場
合に、100 keVのX線、1MeVのCo-60ガンマ線、10 MeVレ
ーザーコンプトン光を用いた場合に、第一近似で同一の
画質が得られるまでの時間は、X線を1秒とすると、Co-6
0では100 ns、10 MeVレーザーコンプトン光では2 nsと
なる。Co-60に比べても約1/50であり、多方向から
数多の照射を行うCTにおいても、極めて短時間での測
定が可能となる。
Further, in the present invention, ordinary radiography and CT techniques and apparatuses can be used as a measurement system. Like a laser inverse Compton photon, γ of several MeV or more
The advantage of performing CT with X-rays is that the interaction with almost all substances is electron pair generation. The photoelectric effect is proportional to the 4th to 5th power of the atomic number, the Compton effect is proportional to the atomic number, and the electron pair generation is proportional to about 1/2 power of the atomic number. Therefore, above a few MeV, there is almost no contribution of scattering due to the photoelectric effect, and the result obtained by the transmission type CT reflects the atomic density of the substance. Further, since the cross-sectional area of the reaction is smaller than that of the photoelectric effect, even a thick object can be easily transmitted. For example, when inspecting a 10 cm thick iron, using 100 keV X-ray, 1 MeV Co-60 gamma ray, and 10 MeV laser Compton light, the same image quality can be obtained by the first approximation. Assuming that X-ray is 1 second, Co-6
It is 100 ns at 0 and 2 ns at 10 MeV laser Compton light. It is about 1/50 as compared with Co-60, and it is possible to perform measurement in an extremely short time even in CT in which several irradiations are performed from multiple directions.

【0009】また、レーザーコンプトン光は、放射光と
同程度の高指向性を有する。発散角は1 mrad程度であ
る。現在の装置では、光子発生源から14 mの地点で直径
数cm程度のビームを利用できる。ほぼ平行なビームであ
りながら、高エネルギー、高指向性であるため画像化に
はまたとない線源である。実際シンクロトロン放射光に
よるイメージング、転写などが顕著な成果を上げてい
る。レーザーコンプトン光は、優れた指向性を有する光
であるため、照射部分以外の線量はゼロであり、大線量
RIを用いた非破壊検査時に発生する被曝事故の可能性が
極めて低い安全な線源である。
[0009] Laser Compton light has a high directivity comparable to that of emitted light. The divergence angle is about 1 mrad. With current equipment, a beam several centimeters in diameter can be used at 14 m from the photon source. Although it is a substantially parallel beam, it has a high energy and a high directivity, so it is a source that is not suitable for imaging. Actually, imaging and transfer using synchrotron radiation have achieved remarkable results. Since the laser Compton light has excellent directivity, the dose other than the irradiated part is zero, and the large dose
This is a safe radiation source with extremely low possibility of exposure accidents that occur during nondestructive inspection using RI.

【0010】さらに、8 MeV以上のRI線源は、全て中性
子を発生する。したがって、CTの検出器部分に半導体を
用いた場合、放射線損傷が顕著である。これに対し、レ
ーザーコンプトン光は、線源自体からは全く中性子を発
生しない極めてクリーンな線源であるため、検出器に与
えるダメージが極めて小さい。また、中性子は、周辺の
構造材から二次ガンマ線を発生させるため、非検査体や
検出器を大がかりに遮蔽する必要があるが、レーザーコ
ンプトン光においてはほとんど遮蔽の必要はない。
[0010] Further, all RI sources of 8 MeV or more generate neutrons. Therefore, when a semiconductor is used for the detector part of CT, radiation damage is remarkable. On the other hand, laser Compton light is an extremely clean radiation source that does not generate any neutrons from the radiation source itself, so that damage to the detector is extremely small. In addition, since neutrons generate secondary gamma rays from surrounding structural materials, it is necessary to largely shield non-inspection objects and detectors, but laser Compton light requires almost no shielding.

【0011】このように本願発明によると、エネルギー
可変準単色光子発生装置を使用することで、X線あるい
はγ線のエネルギーを準単色で所望の値にし、かつ、細
いビームとすることが可能となり、大きな非検査体でも
全体として少ない線量で解像度良く被検査体内部の画像
を得ることができる。
As described above, according to the present invention, the use of the energy-variable quasi-monochromatic photon generator makes it possible to set the energy of X-rays or γ-rays to a desired value in a quasi-monochromatic and to form a narrow beam. Even with a large non-inspection object, an image of the inside of the inspection object can be obtained with high resolution with a small dose as a whole.

【0012】[0012]

【実施例】図1は、本願発明の第一の実施例の概略図で
ある。光子発生器1は、電子加速器2及びレーザ3より構
成され、レーザ逆コンプトン散乱によってエネルギー可
変光子を発生する。この光子束は、その中心において、
最もエネルギーが高く、周辺部で低い分布をしている。
したがって、この光子束をコリメータ4に通し、直径数m
mに絞ることによって準単色及びペンシルビームとする
ことができる。この準単色光子5をY-Z-θ移動ステージ6
に載せた被検査体7に照射し、透過光の強度を光子検出
器8及び光子強度モニター9で測定することによって内部
を非破壊検査する。被検査体を順次移動することによっ
て投影図あるいは断面図を得ることができる。
FIG. 1 is a schematic diagram of a first embodiment of the present invention. The photon generator 1 includes an electron accelerator 2 and a laser 3, and generates an energy-variable photon by laser inverse Compton scattering. This photon flux, at its center,
It has the highest energy and a low distribution at the periphery.
Therefore, this photon flux passes through the collimator 4 and has a diameter of several meters.
By narrowing down to m, a quasi-monochromatic and pencil beam can be obtained. The quasi-monochromatic photon 5 is transferred to the YZ-θ moving stage 6
A non-destructive inspection of the inside is performed by irradiating the inspection object 7 placed on the substrate and measuring the intensity of transmitted light with the photon detector 8 and the photon intensity monitor 9. A projection view or a sectional view can be obtained by sequentially moving the object to be inspected.

【0013】図2は、本願発明の第2の実施例の概略図で
ある。光子発生器1は電子加速器2及びレーザ3より構成
され、レーザ逆コンプトン散乱によってエネルギー可変
光子5を発生する。これをコリメートすることなくY-Z-
θ移動ステージ6に載せた被検査体7に照射し、透過光の
強度を複数の光子検出器8及び光子強度モニター9で測定
することによって内部を非破壊検査する。この方法は、
非検査体の質量減衰係数がエネルギーにあまり依存しな
い場合にのみ有効であるが、極めて短時間で高分解能の
画像を得ることができる方法である。そして、照射され
る領域は、数cmとなる。
FIG. 2 is a schematic diagram of a second embodiment of the present invention. The photon generator 1 includes an electron accelerator 2 and a laser 3, and generates an energy-variable photon 5 by laser inverse Compton scattering. YZ- without collimating this
A non-destructive inspection is performed by irradiating the inspection object 7 placed on the θ moving stage 6 and measuring the intensity of transmitted light with a plurality of photon detectors 8 and photon intensity monitors 9. This method
This method is effective only when the mass attenuation coefficient of the non-test object does not depend much on the energy, but is a method capable of obtaining a high-resolution image in a very short time. The area to be irradiated is several cm.

【0014】[0014]

【発明の効果】以上説明したように、本手法及び装置を
用いることによって、従来のX線、γ線ラジオグラフィ
ーやCTでは不可能であった、厚みのある被検査体内部の
透視図あるいは断面図を高分解能で得ることができる。
As described above, by using the present method and apparatus, a perspective view or a cross section inside a thick test object, which was impossible with conventional X-ray and γ-ray radiography or CT, was obtained. Figures can be obtained with high resolution.

【図面の簡単な説明】[Brief description of the drawings]

【図1】第1実施態様のガンマ線CTおよび非破壊検査装
置の全体概略図。
FIG. 1 is an overall schematic diagram of a gamma ray CT and a nondestructive inspection apparatus according to a first embodiment.

【図2】第2実施態様のガンマ線CTおよび非破壊検査装
置の全体概略図。
FIG. 2 is an overall schematic diagram of a gamma ray CT and a nondestructive inspection apparatus according to a second embodiment.

【符号の説明】[Explanation of symbols]

1 光子発生器 2 電子加速器 3 レーザ 4 コリメータ 5 準単色光子 6 Y−Z−θ移動ステージ 7 被検査体 8 光子検出器 9 光子強度モニター REFERENCE SIGNS LIST 1 photon generator 2 electron accelerator 3 laser 4 collimator 5 quasi-monochromatic photon 6 YZ-θ moving stage 7 object 8 photon detector 9 photon intensity monitor

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2G001 AA01 AA02 BA11 CA01 CA02 JA07 KA03 KA20 NA16 PA11 PA12 SA02  ──────────────────────────────────────────────────続 き Continued on the front page F-term (reference) 2G001 AA01 AA02 BA11 CA01 CA02 JA07 KA03 KA20 NA16 PA11 PA12 PA02

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 逆コンプトン散乱により生じた光子を被
検査体へ照射し、その透過光を検出することにより、被
検査体内部の物質の組成及び密度分布に関する情報を得
る非破壊検査方法。
1. A non-destructive inspection method for irradiating a test object with photons generated by inverse Compton scattering and detecting transmitted light to obtain information on the composition and density distribution of a substance inside the test object.
【請求項2】 逆コンプトン散乱により生じた光子から
準単色光子を取り出し、該準単色光子を被検査体へ照射
し、その透過光を検出することにより、被検査体内部の
物質の組成及び密度分布に関する情報を得る非破壊検査
方法。
2. A quasi-monochromatic photon is extracted from photons generated by inverse Compton scattering, and the quasi-monochromatic photon is irradiated on the object to be inspected, and the transmitted light is detected, whereby the composition and density of the substance inside the object to be inspected are detected. Non-destructive inspection method to obtain information about distribution.
【請求項3】 逆コンプトン散乱光発生装置、被検査体
へ該準単色光子を照射する装置及び光子検出器から成る
ことを特徴とする非破壊検査装置。
3. A nondestructive inspection device comprising: an inverse Compton scattered light generator, a device for irradiating the object to be inspected with the quasi-monochromatic photons, and a photon detector.
【請求項4】 逆コンプトン散乱光発生装置、該装置に
おいて発生した散乱光から準単色光子を取り出す装置、
該準単色光子を被検査体へ照射する装置及び光子検出器
から成ることを特徴とする非破壊検査装置。
4. An inverse Compton scattered light generator, a device for extracting quasi-monochromatic photons from scattered light generated in the device,
A non-destructive inspection device comprising: a device for irradiating the inspection object with the quasi-monochromatic photons; and a photon detector.
【請求項5】 請求項4において、準単色光子を取り出
す装置は、コリメータであることを特徴とする非破壊検
査装置。
5. The nondestructive inspection device according to claim 4, wherein the device for extracting quasi-monochromatic photons is a collimator.
JP2000357003A 2000-11-24 2000-11-24 Nondestructive inspection method and its device utilizing inverse compton scattered light Pending JP2002162371A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000357003A JP2002162371A (en) 2000-11-24 2000-11-24 Nondestructive inspection method and its device utilizing inverse compton scattered light

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000357003A JP2002162371A (en) 2000-11-24 2000-11-24 Nondestructive inspection method and its device utilizing inverse compton scattered light

Publications (1)

Publication Number Publication Date
JP2002162371A true JP2002162371A (en) 2002-06-07

Family

ID=18829139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000357003A Pending JP2002162371A (en) 2000-11-24 2000-11-24 Nondestructive inspection method and its device utilizing inverse compton scattered light

Country Status (1)

Country Link
JP (1) JP2002162371A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004150851A (en) * 2002-10-29 2004-05-27 Japan Atom Energy Res Inst METHOD FOR MEASURING POSITRON ANNIHILATION gamma-RAY SPECTROSCOPY BY PHOTON INDUCTION AND SHORT-LIVED ATOMIC NUCLEUS LEVEL
JP2004219187A (en) * 2003-01-14 2004-08-05 Japan Atom Energy Res Inst Isotope analysis method in high precision, high s/n, and high efficiency by nuclear isomer generation using laser inverse compton gamma ray
JP2007248081A (en) * 2006-03-14 2007-09-27 Kyoto Univ Device and method for generating photon beam
JP2009008560A (en) * 2007-06-28 2009-01-15 National Institute Of Advanced Industrial & Technology Nondestructive inspection method and apparatus
CN110146524A (en) * 2019-04-10 2019-08-20 清华大学 CT scan and method for reconstructing and imaging system based on inverse Compton scattering source
CN113984815A (en) * 2021-10-29 2022-01-28 北京师范大学 Efficient Compton scattering imaging system based on inverse Compton scattering X-ray source
CN118149919A (en) * 2024-05-08 2024-06-07 成都洋湃科技有限公司 Mixed-phase fluid mass flow measuring method and throttling type light quantum mixed-phase flowmeter

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004150851A (en) * 2002-10-29 2004-05-27 Japan Atom Energy Res Inst METHOD FOR MEASURING POSITRON ANNIHILATION gamma-RAY SPECTROSCOPY BY PHOTON INDUCTION AND SHORT-LIVED ATOMIC NUCLEUS LEVEL
JP2004219187A (en) * 2003-01-14 2004-08-05 Japan Atom Energy Res Inst Isotope analysis method in high precision, high s/n, and high efficiency by nuclear isomer generation using laser inverse compton gamma ray
JP2007248081A (en) * 2006-03-14 2007-09-27 Kyoto Univ Device and method for generating photon beam
JP2009008560A (en) * 2007-06-28 2009-01-15 National Institute Of Advanced Industrial & Technology Nondestructive inspection method and apparatus
CN110146524A (en) * 2019-04-10 2019-08-20 清华大学 CT scan and method for reconstructing and imaging system based on inverse Compton scattering source
CN110146524B (en) * 2019-04-10 2021-09-28 清华大学 CT scanning and reconstruction method based on inverse Compton scattering source and imaging system
CN113984815A (en) * 2021-10-29 2022-01-28 北京师范大学 Efficient Compton scattering imaging system based on inverse Compton scattering X-ray source
CN113984815B (en) * 2021-10-29 2023-09-05 北京师范大学 High-efficiency Compton scattering imaging system based on inverse Compton scattering X-ray source
CN118149919A (en) * 2024-05-08 2024-06-07 成都洋湃科技有限公司 Mixed-phase fluid mass flow measuring method and throttling type light quantum mixed-phase flowmeter

Similar Documents

Publication Publication Date Title
Casali X-ray and neutron digital radiography and computed tomography for cultural heritage
US4124804A (en) Compton scatter scintillation camera system
Yamaguchi et al. Imaging of monochromatic beams by measuring secondary electron bremsstrahlung for carbon-ion therapy using a pinhole x-ray camera
Estre et al. High-energy X-ray imaging applied to non destructive characterization of large nuclear waste drums
KR101378757B1 (en) Radiation imaging equipment and method available to obtain element date of material and select dimensions of image
US10832826B2 (en) Inspection of nuclear waste
Priyada et al. Intercomparison of gamma scattering, gammatography, and radiography techniques for mild steel nonuniform corrosion detection
Craft et al. Characterization of a neutron beam following reconfiguration of the Neutron Radiography Reactor (NRAD) core and addition of new fuel elements
Glière Sindbad: From CAD model to synthetic radiographs
Udod et al. State-of-the art and development prospects of digital radiography systems for nondestructive testing, evaluation, and inspection of objects: a review
Tremsin et al. On the possibility to investigate irradiated fuel pins non-destructively by digital neutron radiography with a neutron-sensitive microchannel plate detector with Timepix readout
WO2021166295A1 (en) Radiation measurement device and radiation measurement method
JP2002162371A (en) Nondestructive inspection method and its device utilizing inverse compton scattered light
Udod et al. State of the art and development trends of the digital radiography systems for cargo inspection
Ahmed et al. Material identification approach based on the counting technique and beam hardening correction under industrial X-ray computed tomography: a simulation study
Bernardi et al. Nuclear waste drum characterization with 2 MeV x-ray and gamma-ray tomography
JP2013130418A (en) Nuclear material detection device and nuclear material detection method
US20090080613A1 (en) Arrangement for the taking of X-ray scatter images and/or gamma ray scatter images
Jahanbakhsh et al. Industrial scattering densitometry using a mCi gamma-ray source
JP5030056B2 (en) Nondestructive inspection method and apparatus
JP2020094906A (en) Nuclear material quantity measuring apparatus and nuclear material quantity measuring method
Naito et al. Novel X-ray backscatter technique for detecting crack below deposit
Davis et al. High-energy x-ray and neutron modeling and digital imaging for nondestructive testing applications
Iancu et al. Brilliant gamma beams for industrial applications: new opportunities, new challenges
Ali et al. Experimental Demonstration of Selective Isotope CT-Imaging Based on Nuclear Resonance Fluorescence Absorption Method