JP2004150851A - METHOD FOR MEASURING POSITRON ANNIHILATION gamma-RAY SPECTROSCOPY BY PHOTON INDUCTION AND SHORT-LIVED ATOMIC NUCLEUS LEVEL - Google Patents

METHOD FOR MEASURING POSITRON ANNIHILATION gamma-RAY SPECTROSCOPY BY PHOTON INDUCTION AND SHORT-LIVED ATOMIC NUCLEUS LEVEL Download PDF

Info

Publication number
JP2004150851A
JP2004150851A JP2002313878A JP2002313878A JP2004150851A JP 2004150851 A JP2004150851 A JP 2004150851A JP 2002313878 A JP2002313878 A JP 2002313878A JP 2002313878 A JP2002313878 A JP 2002313878A JP 2004150851 A JP2004150851 A JP 2004150851A
Authority
JP
Japan
Prior art keywords
sample
rays
positron
positron annihilation
short
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002313878A
Other languages
Japanese (ja)
Other versions
JP4189836B2 (en
Inventor
Tetsuya Hiraide
哲也 平出
Hiroyuki Toyokawa
弘之 豊川
Ryoichi Suzuki
良一 鈴木
Toshiyuki Ohira
俊行 大平
Hideaki Ogaki
英明 大垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Japan Atomic Energy Agency
Original Assignee
Japan Atomic Energy Research Institute
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Research Institute, National Institute of Advanced Industrial Science and Technology AIST filed Critical Japan Atomic Energy Research Institute
Priority to JP2002313878A priority Critical patent/JP4189836B2/en
Publication of JP2004150851A publication Critical patent/JP2004150851A/en
Application granted granted Critical
Publication of JP4189836B2 publication Critical patent/JP4189836B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Measurement Of Radiation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To perform positron annihilation γ-ray spectroscopy in the depth of the interior of a specimen by generating positrons from the interior of the specimen by using laser inverse-Compton high-energy X rays having high transmissivity. <P>SOLUTION: According to a positron annihilation γ-ray spectroscopic analysis method for a specimen using X rays by laser inverse-Compton, the X rays are pulsed into time widths shorter than the life of generated positrons or the life of short-lived nuclides and guided into the specimen, and the γ-ray spectroscopy is performed on elements in the specimen, thereby measuring the positron annihilation life of the elements in the specimen and/or the level of short-lived atomic nuclei. Or else, CT images on the invisible internal state of the specimen are acquired by positron emission tomography (PET) by utilizing the fact that the efficiency of electron pair generation caused by high-energy X rays generated by the inverse-Compton varies according to the composition of the specimen, and that the heavier an element is, the higher the efficiency is. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、基本的には、レーザー逆コンプトン高エネルギーX線による陽電子・電子対生成を陽電子消滅γ線分光分析に結びつけたものであり、従来の陽電子を試料外部から導入していた手法では陽電子を試料内部まで導入する事は不可能であったが、透過性の高いレーザー逆コンプトン高エネルギーX線を用い、試料内部から陽電子を生成させる事により、試料内部深いところでの陽電子消滅γ線分光を行うことが可能である。
【0002】
このことにより、従来の陽電子消滅γ線分光では不可能であった、非破壊による構造体内部の測定を可能とし、また、内部の3次元情報までも得られるというメリットがある。また、試料を真空中に置く陽電子ビームによる手法では難しかった揮発性の高い試料や、放射性同位元素の蒸発による飛散が懸念される高温で測定する必要性がある試料に関しても、容易に安全に測定を行えるというメリットがある。
【0003】
さらに、レーザー逆コンプトン高エネルギーX線は直進性に優れ、ビームの広がりはほとんどない。レーザー逆コンプトンによって生成された10MeV程度以上のX線が試料に照射された際に、試料からの散乱X線は電子対生成によるものがほとんどである。このことからX線のビーム径から外れて出てくるX線は試料内部で散乱されたものであり、この散乱X線の検出は試料内部での対生成を示している。この散乱X線との同時計測を行う事で、陽電子消滅γ線分光におけるS/N比の向上や陽電子消滅寿命測定などへ利用できる。つまり、従来行われてきた手法で、陽電子の試料中への入射の情報を、散乱X線の検出により行えるメリットがある。
【0004】
また、レーザー逆コンプトン高エネルギーX線の極れた直進性により、不要なX線の放出はなく、大掛かりな遮蔽は必要ない。
【0005】
【従来の技術】
従来行われてきた陽電子消滅γ線分光分析法は、放射性同位元素から直接得られる陽電子を用いるか、放射性同位元素や高エネルギー放射線による電子対生成によって得られる陽電子を引出し、輸送あるいは蓄積し、陽電子ビームとして用いるものであった。これらの手法はどれも、試料外部から陽電子を試料内部に入射する事により試料の分析を行う方法である。
【0006】
しかし、陽電子は透過性が悪く、試料の深い部分の測定を行う事は不可能であり、非破壊で構造体内部の分析を行う事は不可能であった。また陽電子の試料内部への導入も、真空中で陽電子ビームを形成して入射させるか、試料表面に放射性同位元素を密着させ、直接試料内部へ陽電子を導入させる必要があった。これらの方法では試料を真空中に置くか、試料温度を上昇させると同時に放射性同位元素も同様に温度上昇させる必要性があった。
【0007】
また、構造体内部の見えない部分の状態を知る方法としては高エネルギーX線による透過像による方法があるが、この方法では3次元構造を知る事は不可能である。
【0008】
従来、試料深部の陽電子消滅γ線分光を行うため、高エネルギーのX線を得る方法としては、電子線をターゲットにぶつけることによる制動X線や高エネルギーγ線を放出する核種の利用などがあるが、それらはどれもレーザー逆コンプトン高エネルギーX線に比べ、高エネルギーX線・γ線が放出される立体角が広く、多くのX線が無駄になり遮蔽も必要となる。また直進性も悪く、離れた場所での測定は不可能であり、対生成の情報、特に時間情報を得ることは難しい。
【0009】
【発明が解決しようとする課題】
試料内部深くの陽電子消滅γ線分光分析を行うことは、陽電子を試料外部から導入すると困難であり、試料の表面近傍(数mm程度)の分析しか行えないので、試料内部の深い部分を非破壊で陽電子消滅γ線分光分析を行う事は不可能である。
【0010】
また、従来の陽電子消滅γ線分光では、放射性同位元素を用いるか、陽電子ビームを用いる必要がある。放射性同位元素を用いる場合、放射性同位元素を試料内部に置く必要があり、例えば、高温での測定の際には放射性同位元素の蒸発による飛散の危険性があり、容易には行えない。陽電子ビームを用いる際には陽電子を真空中を輸送する必要があり、そのために試料を真空中に置く必要がある。その結果、揮発性が高い試料では測定が難しく、やはり高温での測定には限界がある。
【0011】
一方、構造体の二次元透過像は従来得ることが出来ているが、三次元像を得る手法を利用することは難しかった。
【0012】
【課題を解決するための手段】
本発明では、試料内部から陽電子を発生させ、しかもこの陽電子発生のために透過性に優れたレーザー逆コンプトン高エネルギーX線を用いているので、試料内部深くの測定が可能となる。レーザー逆コンプトンX線を1mmまで細くすることは可能であり、陽電子分光に使う消滅γ線をコリメートする(線束を平行にする)ことにより、試料内部の1mmオーダーの微細な部分の測定を行うことも可能である。同様に、他の実験手法、例えば、試料に負荷をかけながらその場で陽電子消滅γ線分光を行うことは困難であったが、この方法では容易に行うことができる。
【0013】
また、試料が空気中やガス中に置かれても問題なくレーザー逆コンプトンX線を試料に誘導できるため測定が容易に行える。
一方、試料から放出されるγ線は、ほとんど陽電子・電子の2光子対消滅により放出される511keVの消滅γ線であり、これは従来からポジトロン・エミッション・トモグラフィー(PET)により3次元情報を取り出すのに用いられている。試料内部でのレーザー逆コンプトンX線による陽電子・電子対生成はそれぞれの部位の元素に依存し、重い元素ほど効率は高くなる傾向があり、構造体の見えない部分の3次元情報を得ることも可能である。
【0014】
【発明の実施の形態】
レーザー逆コンプトン光エネルギーX線のビーム上に試料を設置することにより、内部に陽電子が生成される。他はほぼ通常の陽電子消滅γ線分光と同じ方法でドップラー広がり法、同時計測ドップラー広がり法等の測定が可能である。
【0015】
陽電子消滅寿命測定に関しては二つの方法が考えられ、1)レーザー逆コンプトン高エネルギーX線をサブピコ秒までパルス化し、パルスの信号と消滅γ線の時刻情報を得ることで寿命測定を行う。その時刻情報は、パルス化された前記X線が陽電子を生成させ、その陽電子が消滅する際に発生するγ線の時刻情報である。2)レーザー逆コンプトン高エネルギーX線のビーム軌道からわずかにずれた外部で、陽電子・電子対生成時に散乱されたX線を検知し、その時刻情報と、消滅γ線の時刻情報により陽電子消滅寿命を測定する、と言うものである。
【0016】
陽電子消滅γ線分光の位置依存性を測定するにはビームをコリメートし、消滅γ線もコリメートする事で可能である。
構造体の3次元画像を得るには、試料をレーザー逆コンプトン高エネルギーX線ビーム上に置き、通常のPETによる手法で陽電子の消滅した部位を知り、その情報を蓄積する事で構造体内部の画像を得ることができる。
【0017】
本発明において用いられるレーザー逆コンプトン高エネルギーX線、短寿命原子核準位、電子対生成、及び陽子・電子の2光子対消滅について説明する。
(1)レーザー逆コンプトン高エネルギーX線について
コンプトン散乱では、電子に高エネルギーX線が衝突し、電子が弾き飛ばされると共に、X線が散乱する。高エネルギーX線は、持っていたエネルギーの一部を電子に与えるため、散乱後のエネルギーは小さくなる。そこで、レーザー逆コンプトン散乱とは、この現象とは逆で、高速で運動する電子からレーザー光がエネルギーを得て、高エネルギーX線となる現象である。その特長は、高輝度、エネルギー可変、準単色、高指向性で、物質を介在しないで生成される。その結果、放射化などがなく極めてクリーンな光源であり、指向性が良いことから遮蔽なども大掛かりな必要がない。
【0018】
(2)短寿命原子核準位について
一般的に、γ線を吸収することによって、原子核は、その原子核に固有の状態(振動数)が変化する。この状態が励起状態であるが、これは原子核固有の、かつ、不連続な値となる。したがって、この振動数を準位と呼び、通常、エネルギーの単位で表される。また、ある準位から異なる準位へ移行することを遷移という。基底状態とは最もエネルギーが低い準位であり、通常、準位とは基底状態からどれだけエネルギーが高い状態にあるかを示している。そこで、励起状態にある原子核は、ある時間経つと、自然に基底状態に遷移する。これは確率的な現象で、通常、励起状態に存在する時間を「寿命」といい、「短寿命」とはこの時間が著しく短いことである。
【0019】
(3)陽電子・電子対生成について
陽電子と電子の対が作られる過程をいい、高エネルギーのX線又はγ線が物質にぶつかる時にエネルギーが物質に変ったものと考えられる。アインシュタインの式E=mcでエネルギーと質量が換算できるが、電荷等の物理の保存量を満たした状態で高エネルギーX線、γ線又は高速粒子のエネルギーから電子と陽子の対が生成される。
【0020】
(3)陽子、電子の2光子対消滅について
上記アインシュタインの式でエネルギーが物質に変換される過程で、陽電子・電子の対生成が起こるが、これとは逆の過程で物質がエネルギーにも変換される。一つの光子(γ線やX線)から対生成が起こったが、この際、運動量を保存するために外部の原子核等に運動量を与えないと対生成が起こらない。しかし、その逆の対消滅の場合は、複数の光子(消滅γ線)を放出することが可能であり、その結果、運動量を保存して消滅することが可能である。光子(消滅γ線)の数は少ないほど消滅の確率は高く(寿命が短い)、その結果、物質中ではほとんどが2つの光子(消滅γ線)を放出して陽電子・電子の対消滅が起こる。この場合、放出される光子は、運動量を保存するため、ほぼ反対方向に放出され、ポジトロン・エミッション・トモグラフィー(PET)では、この2つの光子を観測することで、消滅した部分の情報を得ることができる。これを3次元化することにより、試料の3次元情報を得ることができる。
【0021】
【実施例】
ドップラー広がり測定をステンレス製ボルトについて行った。図3に示されるように、ステンレス製のボルトをレーザー逆コンプトン高エネルギーX線ビーム上に置き、その直角方向から半導体検出器(Geディテクター)により陽電子消滅γ線のエネルギーを測定した。半導体検出器周辺はほとんどバックグランドがなく、遮蔽もまったく置かずに測定を行った。
【0022】
その結果を図1(レーザー逆コンプトン光エネルギーX線による陽電子消滅γ線ピークの測定)に示す。今までの陽電子消滅γ線分光法では、このような部品の内部の陽電子消滅γ線のドップラー広がりを測定する事はできなかった。
【0023】
又、図2(レーザー逆コンプトン光エネルギーX線による陽電子消滅γ線2光子同時計測によるピークの測定)には、放出される2つの消滅γ線を同時計測する事により、S/N比を改善した場合の実施例も示す。
【0024】
図1では、陽電子が試料内部で形成され、消滅していることを示しており、又検出器周辺に特別な遮蔽等を施さずに得られた信号の周囲に雑音となる信号が無いことを示している。この信号自体、いろいろな情報を含んでおり、この信号の形からいろいろなことが議論でき、既に実用可能なものである。
【0025】
図2は、陽電子消滅時に放出される2光子両方のエネルギー測定を行い、それを2次元化することで、バックグランドを著しく減少させ、信号の裾野まで見ることを可能にすることで、元素分析なども可能となる。
【0026】
上記S/N比(Signal−to−Noise ratio)とは、有効な信号成分に対するノイズ成分の割合を示し、その値が大きいほどノイズが少ない良好な信号であることを意味している。
【0027】
このS/N比については、実際に観測したいイベントが起きた場合、即ち、電子対生成又は原子核の励起が起きた場合は、X線が光軸から外れて散乱されてくるので、その散乱X線を検出することで、観測対象のイベントが起こったことを知り、その時だけ検出器に入って来た信号を取り込む(ゲートを開く)ことができるようにゲートを制御する。これに対し、観測したくない信号が(ノイズ)が来た時はゲートを閉めて取り込まないようにするためにゲートを制御する。その結果、ノイズ部分が減り、SN比の改善につながることになる。
【0028】
【発明の効果】
従来、放射性同位元素や、陽電子ビームにより行われてきた陽電子消滅γ線分光は金属、半導体などの欠陥、ボイドなどに非常に敏感であり、多くの研究に利用されてきた。しかし、陽電子を試料内部深くに導入する事が困難であり、実際に使われる構造物に応用する事が出来なかった。
【0029】
今回発明された手法で陽電子を試料内部から生成すると、試料内部の陽電子消滅γ線分光が可能となる。また、レーザー逆コンプトン高エネルギーX線は透過性、直進性に優れ、比較的離れた場所まで誘導でき、ビームの散乱は空気中ではほとんどなく、遮蔽を必要としない。そのため、例えば航空機の金属疲労の診断などにも利用が可能となる。
【図面の簡単な説明】
【図1】レーザー逆コンプトン光エネルギーX線による陽電子消滅γ線ピークの測定例を示す図である。
【図2】レーザー逆コンプトン光エネルギーX線による陽電子消滅γ線2光子同時計測によるピークの測定例を示す図である。
【図3】ステンレスボルト内部の陽電子消滅γ線エネルギーの測定例を示す図(上から見た図)である。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention basically combines positron-electron pair generation by laser inverse Compton high energy X-rays with positron annihilation γ-ray spectroscopy. Although it was impossible to introduce neutrons into the sample, positron annihilation γ-ray spectroscopy was performed deep inside the sample by generating positrons from the inside of the sample using laser-transverse Compton high-energy X-rays with high transparency. It is possible to do.
[0002]
As a result, there is a merit that non-destructive measurement inside the structure, which is impossible with conventional positron annihilation γ-ray spectroscopy, and even three-dimensional information inside can be obtained. In addition, easily and safely measure highly volatile samples, which were difficult with the positron beam method in which the sample is placed in a vacuum, and samples that need to be measured at high temperatures where there is a concern that the radioisotope may be scattered by evaporation. There is a merit that can be performed.
[0003]
Further, laser-inverse Compton high energy X-rays have excellent straightness and little beam spread. When an X-ray of about 10 MeV or more generated by a laser inverse Compton is irradiated on a sample, most of the X-ray scattered from the sample is generated by an electron pair. Therefore, the X-rays coming out of the beam diameter of the X-rays are scattered inside the sample, and the detection of the scattered X-rays indicates the generation of a pair inside the sample. By performing simultaneous measurement with this scattered X-ray, it can be used for improving the S / N ratio in positron annihilation γ-ray spectroscopy and measuring the positron annihilation lifetime. In other words, there is a merit that the information on the incidence of the positron into the sample can be detected by the detection of the scattered X-rays by the conventionally performed method.
[0004]
Also, due to the extreme straightness of the laser inverted Compton high energy X-rays, there is no unnecessary emission of X-rays, and there is no need for extensive shielding.
[0005]
[Prior art]
Conventional positron annihilation γ-ray spectroscopy uses positrons obtained directly from radioisotopes, or extracts, transports, or accumulates positrons obtained by the generation of electron pairs by radioisotopes or high-energy radiation. It was used as a beam. Each of these methods is a method of analyzing a sample by injecting a positron into the sample from outside the sample.
[0006]
However, the positron has poor permeability, making it impossible to measure the deep part of the sample, and it is impossible to analyze the inside of the structure in a non-destructive manner. The introduction of positrons into the sample also requires forming a positron beam in vacuum and injecting the positrons, or bringing the radioisotope into close contact with the sample surface and introducing the positrons directly into the sample. In these methods, it was necessary to place the sample in a vacuum or to raise the temperature of the sample and simultaneously raise the temperature of the radioisotope.
[0007]
Further, as a method of knowing the state of the invisible portion inside the structure, there is a method using a transmission image using high-energy X-rays. However, it is impossible to know a three-dimensional structure by this method.
[0008]
Conventionally, methods for obtaining high-energy X-rays for performing positron annihilation γ-ray spectroscopy in the deep part of a sample include the use of nuclides that emit high-energy γ-rays or damped X-rays by hitting an electron beam against a target. However, each of them has a wider solid angle at which high-energy X-rays and γ-rays are emitted than laser-inverse Compton high-energy X-rays, wastes many X-rays, and requires shielding. Further, the straightness is poor, so that measurement at a remote place is impossible, and it is difficult to obtain information on pair generation, particularly time information.
[0009]
[Problems to be solved by the invention]
It is difficult to perform positron annihilation gamma-ray spectroscopy deep inside the sample if positrons are introduced from the outside of the sample, and only analysis near the surface of the sample (about several mm) can be performed. It is impossible to perform positron annihilation gamma-ray spectroscopy at
[0010]
Further, in conventional positron annihilation γ-ray spectroscopy, it is necessary to use a radioisotope or a positron beam. When a radioisotope is used, it is necessary to place the radioisotope inside the sample. For example, at the time of measurement at a high temperature, there is a risk of scattering due to evaporation of the radioisotope, which cannot be easily performed. When using a positron beam, it is necessary to transport the positron in a vacuum, and therefore, the sample must be placed in a vacuum. As a result, it is difficult to measure a sample having high volatility, and there is a limit to the measurement at a high temperature.
[0011]
On the other hand, a two-dimensional transmission image of a structure has been conventionally obtained, but it has been difficult to use a method of obtaining a three-dimensional image.
[0012]
[Means for Solving the Problems]
In the present invention, since positrons are generated from the inside of the sample, and a laser inverted Compton high-energy X-ray having excellent transparency is used for the generation of the positrons, it is possible to measure deep inside the sample. It is possible to thin the laser Compton X-ray to 1 mm, (collimates the flux) annihilation γ-rays collimating used in positron spectroscopy by, to measure the fine portion of the sample inside of 1 mm 3 orders It is also possible. Similarly, it was difficult to perform positron annihilation γ-ray spectroscopy in-situ while applying a load to the sample, but it can be easily performed by this method.
[0013]
In addition, even if the sample is placed in the air or gas, laser reverse Compton X-rays can be guided to the sample without any problem, so that measurement can be performed easily.
On the other hand, the γ-rays emitted from the sample are almost 511 keV annihilation γ-rays emitted by the annihilation of two photon pairs of positrons and electrons, which conventionally extract three-dimensional information by positron emission tomography (PET). It is used for Positron / electron pair generation by laser inverse Compton X-ray inside the sample depends on the element at each site, and the efficiency tends to be higher for heavier elements, and it is possible to obtain three-dimensional information on the invisible part of the structure. It is possible.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
By placing the sample on the beam of the laser Compton light energy X-ray, a positron is generated inside. Other than that, it is possible to measure by the same method as ordinary positron annihilation γ-ray spectroscopy, such as the Doppler spread method and the simultaneous measurement Doppler spread method.
[0015]
Two methods can be considered for positron annihilation lifetime measurement. 1) Laser inverse Compton high-energy X-rays are pulsed to subpicoseconds, and the lifetime is measured by obtaining a pulse signal and time information of annihilation γ-rays. The time information is time information of γ-rays generated when the pulsed X-rays generate positrons and the positrons disappear. 2) Detects X-rays scattered during positron-electron pair generation outside the laser inverse Compton high-energy X-ray beam slightly deviated from its trajectory. The positron annihilation lifetime is obtained based on the time information and the annihilation γ-ray time information. Is measured.
[0016]
To measure the position dependence of positron annihilation gamma ray spectroscopy, it is possible to collimate the beam and collimate the annihilation gamma rays.
In order to obtain a three-dimensional image of the structure, the sample is placed on a laser inverse Compton high-energy X-ray beam, the site where the positrons have disappeared is determined by a normal PET method, and the information is accumulated to obtain the inside of the structure. Images can be obtained.
[0017]
The laser inverse Compton high energy X-rays, short-lived nuclear levels, electron pair generation, and two-photon annihilation of protons and electrons used in the present invention will be described.
(1) Laser Compton high-energy X-rays In Compton scattering, high-energy X-rays collide with electrons, causing the electrons to be repelled and the X-rays to be scattered. High-energy X-rays give a part of the energy they have to electrons, so that the energy after scattering is small. Therefore, the laser inverse Compton scattering is a phenomenon opposite to this phenomenon, in which a laser beam obtains energy from electrons moving at high speed and becomes high-energy X-rays. Its features are high brightness, variable energy, quasi-monochromatic, and high directivity, and are produced without intervening substances. As a result, the light source is an extremely clean light source without activation or the like, and since it has good directivity, there is no need for a large-scale shielding or the like.
[0018]
(2) Short-Lived Nuclear Level Generally, the state (frequency) of a nucleus changes by absorbing γ-rays. This state is an excited state, which is a nucleus-specific and discontinuous value. Therefore, this frequency is called a level, and is usually expressed in units of energy. A transition from one level to another level is called transition. The ground state is a level having the lowest energy, and the level generally indicates how much energy is higher than the ground state. Thus, the nucleus in the excited state naturally transitions to the ground state after a certain time. This is a stochastic phenomenon. Usually, the time that exists in the excited state is called “lifetime”, and “short life” means that this time is extremely short.
[0019]
(3) Positron-electron pair generation A process in which a positron-electron pair is formed. It is considered that when high-energy X-rays or γ-rays collide with a substance, the energy is changed to a substance. While the formula E = mc 2 Einstein can be converted energy and mass, high energy X-rays, pairs from the energy of the electron and proton γ-rays or fast particles are produced in a state filled with storage amount of physical charge such .
[0020]
(3) Two-photon pair annihilation of protons and electrons A pair of positrons and electrons is generated in the process of converting energy into a substance according to the above Einstein's equation, but the substance is also converted into energy in the reverse process. Is done. Pair generation occurs from one photon (γ-ray or X-ray). At this time, no pair generation occurs unless momentum is given to an external nucleus or the like in order to conserve momentum. However, in the case of the opposite pair annihilation, a plurality of photons (annihilation gamma rays) can be emitted, and as a result, the annihilation can be performed while preserving the momentum. The smaller the number of photons (annihilation gamma rays), the higher the probability of annihilation (short lifetime). As a result, most of the material emits two photons (annihilation gamma rays) and the positron-electron annihilation occurs. . In this case, the emitted photons are emitted in almost the opposite direction in order to conserve momentum, and positron emission tomography (PET) provides information on the disappeared portion by observing these two photons. Can be. By making this three-dimensional, three-dimensional information of the sample can be obtained.
[0021]
【Example】
Doppler spread measurements were performed on stainless steel bolts. As shown in FIG. 3, a stainless steel bolt was placed on a laser inverted Compton high energy X-ray beam, and the energy of the positron annihilation γ-ray was measured by a semiconductor detector (Ge detector) from a perpendicular direction. The measurement was performed without any background around the semiconductor detector and without any shielding.
[0022]
The results are shown in FIG. 1 (measurement of positron annihilation γ-ray peak by laser Compton light energy X-ray). Until now, positron annihilation γ-ray spectroscopy could not measure the Doppler spread of positron annihilation γ-rays inside such parts.
[0023]
Also, in Figure 2 (measurement of peaks by simultaneous measurement of two positron annihilation gamma rays by laser Compton light energy X-rays), the S / N ratio is improved by measuring two emitted annihilation gamma rays simultaneously. An example in which this is done is also shown.
[0024]
FIG. 1 shows that positrons are formed and disappear inside the sample, and that there is no noise signal around the signal obtained without any special shielding around the detector. Is shown. This signal itself contains various information, and various things can be discussed from the form of this signal, and it is already practical.
[0025]
Fig. 2 shows the elemental analysis by measuring the energy of both two photons emitted when the positron annihilates, and making it two-dimensional, so that the background can be significantly reduced and the bottom of the signal can be seen. And so on.
[0026]
The S / N ratio (Signal-to-Noise ratio) indicates a ratio of a noise component to an effective signal component, and a larger value indicates a better signal with less noise.
[0027]
Regarding this S / N ratio, when an event to be actually observed occurs, that is, when electron pair generation or nuclear excitation occurs, X-rays are scattered off the optical axis. By detecting the line, it is known that an event to be observed has occurred, and the gate is controlled so that the signal that has entered the detector can be captured (open the gate) only at that time. On the other hand, when a signal (noise) that is not desired to be observed comes, the gate is controlled so as to close the gate and prevent the signal from being captured. As a result, the noise portion is reduced, which leads to an improvement in the SN ratio.
[0028]
【The invention's effect】
Conventionally, positron annihilation γ-ray spectroscopy performed with radioisotopes and positron beams is very sensitive to defects such as metals and semiconductors, voids, and the like, and has been used in many studies. However, it was difficult to introduce the positron deep inside the sample, and it was not possible to apply it to the structures actually used.
[0029]
When positrons are generated from inside the sample by the method invented this time, positron annihilation gamma ray spectroscopy inside the sample becomes possible. In addition, the laser inverted Compton high energy X-ray has excellent transparency and straightness, can be guided to a relatively distant place, has almost no scattering of the beam in the air, and does not require shielding. Therefore, it can be used for diagnosis of metal fatigue of an aircraft, for example.
[Brief description of the drawings]
FIG. 1 is a diagram showing an example of measurement of a positron annihilation γ-ray peak by laser inverse Compton light energy X-ray.
FIG. 2 is a diagram illustrating an example of peak measurement by simultaneous positron annihilation γ-ray two-photon measurement using laser inverse Compton light energy X-rays.
FIG. 3 is a diagram showing a measurement example of positron annihilation γ-ray energy inside a stainless steel bolt (a diagram viewed from above).

Claims (7)

レーザー逆コンプトンによるX線を使用した試料の陽電子消滅γ線分光分析方法、或いは短寿命原子核準位を測定する方法であって、前記X線を、発生陽電子の寿命あるいは短寿命核種の寿命よりも短い時間幅にパルス化して試料中に導入し、試料内元素の陽電子消滅γ線又は短寿命原子核から放出されるγ線の分光を行う事により、試料内元素の陽電子消滅寿命又は短寿命原子核準位を測定する方法。A method of positron annihilation γ-ray spectroscopy of a sample using X-rays by laser inverse Compton, or a method of measuring a short-lived nuclear level, wherein the X-rays are irradiated more than the lifetime of a generated positron or the lifetime of a short-lived nuclide. The sample is pulsed into a short time width, introduced into the sample, and the positron annihilation γ-rays of the elements in the sample or γ-rays emitted from short-lived nuclei are analyzed. How to measure the position. レーザー逆コンプトンによって生成された数MeVのX線のほとんどが電子対生成でエネルギーを試料に付与することにより、その際に散乱されたX線を検出し、試料内部に陽電子が形成した時間情報を得る事により陽電子消滅寿命の測定を行う方法。Most of the X-rays of several MeV generated by laser inverse Compton apply energy to the sample by electron pair generation, detect X-rays scattered at that time, and obtain the time information when positrons are formed inside the sample. How to measure the positron annihilation lifetime by obtaining. 散乱されたX線を検出し、それによって陽電子消滅γ線分光或いは短寿命原子核準位測定を行う際のゲートを制御する事により、陽電子消滅寿命又は短寿命原子核準位を高いS/N比で測定する請求項1又は請求項2記載の方法。By detecting the scattered X-rays and thereby controlling the gate when performing positron annihilation gamma ray spectroscopy or short-lived nuclear level measurement, the positron annihilation lifetime or short-lived nuclear level can be increased with a high S / N ratio. The method according to claim 1 or 2, wherein the measurement is performed. レーザー逆コンプトンによって生成された高エネルギーのX線により起こる電子対生成は試料の組成によって効率が異なり、重い元素では効率は高いことを利用することにより、従来のポジトロン・エミッション・トモグラフィー(PET)を併用することにより試料内部の状態のCT画像を得る方法。Electron pair generation caused by high-energy X-rays generated by laser inverse Compton differs in efficiency depending on the composition of the sample, and by utilizing the high efficiency of heavy elements, conventional positron emission tomography (PET) can be used. A method of obtaining a CT image of the state inside a sample by using the method together. 試料内部のクラックなどを検出する請求項4記載の方法。The method according to claim 4, wherein a crack or the like inside the sample is detected. 透過性の高い直進性の良いレーザー逆コンプトン高エネルギーX線により試料内部から陽電子を発生させることにより、試料外部からの陽電子ビームによる方法のように高真空を必要とせずに、又被爆防止の遮蔽も大掛かりなものを必要とせずに、大気中の試料及び高い蒸気圧をもつ試料を測定することからなる方法。By generating positrons from the inside of the sample using a high-energy X-ray that is highly transmissive and highly rectilinear, the laser does not require a high vacuum unlike the method using a positron beam from the outside of the sample. A method comprising measuring a sample in the atmosphere and a sample having a high vapor pressure without requiring a large scale. 入射するX線をコリメートし、陽電子消滅γ線も検出器前でコリメートすることにより、試料の陽電子消滅γ線分光の3次元情報を得る方法。A method of obtaining three-dimensional information of positron annihilation gamma ray spectroscopy of a sample by collimating incident X-rays and also collimating positron annihilation gamma rays in front of a detector.
JP2002313878A 2002-10-29 2002-10-29 Photon-induced positron annihilation gamma-ray spectroscopy and measurement of short-lived nuclear levels Expired - Lifetime JP4189836B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002313878A JP4189836B2 (en) 2002-10-29 2002-10-29 Photon-induced positron annihilation gamma-ray spectroscopy and measurement of short-lived nuclear levels

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002313878A JP4189836B2 (en) 2002-10-29 2002-10-29 Photon-induced positron annihilation gamma-ray spectroscopy and measurement of short-lived nuclear levels

Publications (2)

Publication Number Publication Date
JP2004150851A true JP2004150851A (en) 2004-05-27
JP4189836B2 JP4189836B2 (en) 2008-12-03

Family

ID=32458352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002313878A Expired - Lifetime JP4189836B2 (en) 2002-10-29 2002-10-29 Photon-induced positron annihilation gamma-ray spectroscopy and measurement of short-lived nuclear levels

Country Status (1)

Country Link
JP (1) JP4189836B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004219187A (en) * 2003-01-14 2004-08-05 Japan Atom Energy Res Inst Isotope analysis method in high precision, high s/n, and high efficiency by nuclear isomer generation using laser inverse compton gamma ray
JP2008002940A (en) * 2006-06-22 2008-01-10 Ihi Corp Remote x-ray fluoroscopic device and method
JP2009008560A (en) * 2007-06-28 2009-01-15 National Institute Of Advanced Industrial & Technology Nondestructive inspection method and apparatus
CN106371132A (en) * 2016-09-23 2017-02-01 中国科学院高能物理研究所 Method for positron annihilation lifetime spectrum measurement, system and scintillation detector
CN110146524A (en) * 2019-04-10 2019-08-20 清华大学 CT scan and method for reconstructing and imaging system based on inverse Compton scattering source
CN113008922A (en) * 2021-02-09 2021-06-22 中国工程物理研究院激光聚变研究中心 Single-shot gamma induction positron annihilation lifetime spectrum system based on super-strong laser

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0590900U (en) * 1982-09-07 1993-12-10 イメージング サイエンス アソシエイツ リミテッド パートナーシップ X-ray generator
JP2001345503A (en) * 2000-05-31 2001-12-14 Toshiba Corp Laser reverse compton light-generating apparatus
JP2002014061A (en) * 2000-06-30 2002-01-18 Central Res Inst Of Electric Power Ind Apparatus and method for evaluating defect
JP2002107499A (en) * 2000-09-27 2002-04-10 Central Res Inst Of Electric Power Ind Method of generating high-energy particles and radioactivation analysis method using the same, high- energy particle generator, and radioactivation analyzer
JP2002162371A (en) * 2000-11-24 2002-06-07 National Institute Of Advanced Industrial & Technology Nondestructive inspection method and its device utilizing inverse compton scattered light
JP2002237642A (en) * 2001-02-08 2002-08-23 National Institute Of Advanced Industrial & Technology Multipath laser reverse compton scattered light generator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0590900U (en) * 1982-09-07 1993-12-10 イメージング サイエンス アソシエイツ リミテッド パートナーシップ X-ray generator
JP2001345503A (en) * 2000-05-31 2001-12-14 Toshiba Corp Laser reverse compton light-generating apparatus
JP2002014061A (en) * 2000-06-30 2002-01-18 Central Res Inst Of Electric Power Ind Apparatus and method for evaluating defect
JP2002107499A (en) * 2000-09-27 2002-04-10 Central Res Inst Of Electric Power Ind Method of generating high-energy particles and radioactivation analysis method using the same, high- energy particle generator, and radioactivation analyzer
JP2002162371A (en) * 2000-11-24 2002-06-07 National Institute Of Advanced Industrial & Technology Nondestructive inspection method and its device utilizing inverse compton scattered light
JP2002237642A (en) * 2001-02-08 2002-08-23 National Institute Of Advanced Industrial & Technology Multipath laser reverse compton scattered light generator

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
豊川弘之,他4名: ""レーザー逆コンプトン散乱を利用した新しいX線源の開発"", 1999年秋季 第60回応用物理学会学術講演会予稿集 第0分冊, JPN6007004478, 1999, pages 22, ISSN: 0000918473 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004219187A (en) * 2003-01-14 2004-08-05 Japan Atom Energy Res Inst Isotope analysis method in high precision, high s/n, and high efficiency by nuclear isomer generation using laser inverse compton gamma ray
JP2008002940A (en) * 2006-06-22 2008-01-10 Ihi Corp Remote x-ray fluoroscopic device and method
JP2009008560A (en) * 2007-06-28 2009-01-15 National Institute Of Advanced Industrial & Technology Nondestructive inspection method and apparatus
CN106371132A (en) * 2016-09-23 2017-02-01 中国科学院高能物理研究所 Method for positron annihilation lifetime spectrum measurement, system and scintillation detector
CN106371132B (en) * 2016-09-23 2019-03-15 中国科学院高能物理研究所 Method, system and scintillation detector for positron annihilation lifetime measurement
CN110146524A (en) * 2019-04-10 2019-08-20 清华大学 CT scan and method for reconstructing and imaging system based on inverse Compton scattering source
CN110146524B (en) * 2019-04-10 2021-09-28 清华大学 CT scanning and reconstruction method based on inverse Compton scattering source and imaging system
CN113008922A (en) * 2021-02-09 2021-06-22 中国工程物理研究院激光聚变研究中心 Single-shot gamma induction positron annihilation lifetime spectrum system based on super-strong laser

Also Published As

Publication number Publication date
JP4189836B2 (en) 2008-12-03

Similar Documents

Publication Publication Date Title
Tremsin et al. Non-destructive studies of fuel pellets by neutron resonance absorption radiography and thermal neutron radiography
Priyada et al. Intercomparison of gamma scattering, gammatography, and radiography techniques for mild steel nonuniform corrosion detection
Nico et al. Observation of the radiative decay mode of the free neutron
JP2015121547A (en) Dual isotope notch observer for isotope identification, assay and imaging with mono-energetic gamma-ray sources
Barzilov et al. Study of Doppler broadening of gamma-ray spectra in 14-MeV neutron activation analysis
Selim et al. Bremsstrahlung-induced highly penetrating probes for nondestructive assay and defect analysis
JP4189836B2 (en) Photon-induced positron annihilation gamma-ray spectroscopy and measurement of short-lived nuclear levels
Selim et al. Development of accelerator-based γ-ray-induced positron annihilation spectroscopy technique
Balamesh et al. Feasibility of a new moving collimator for industrial backscatter imaging
US20140205062A1 (en) System and Method For Imaging Defects
Szentmiklósi et al. Characterizing nuclear materials hidden in lead containers by neutron-tomography-driven prompt gamma activation imaging (PGAI-NT)
Harding et al. Photon-induced positron annihilation radiation (PIPAR)—A novel gamma-ray imaging technique for radiographically dense materials
Derbin et al. Search for resonant absorption of solar axions emitted in an M 1 transition in 57 Fe nuclei
JP5414033B2 (en) Nuclear analysis method and nuclear analyzer
JP2023034808A (en) Imaging device of magnetic field structure and imaging method of magnetic field structure
JP2013130418A (en) Nuclear material detection device and nuclear material detection method
Gilboy et al. Industrial radiography with cosmic-ray muons: A progress report
Dryzek Positron Profilometry: Probing Material Depths for Enhanced Understanding
Sharma et al. A gamma ray tomographic densitometer system for the investigation of concrete structures
Xiong et al. A compact, high signal-to-noise ratio line-detector array Compton scatter imaging system based on silicon photomultipliers
Sabharwal et al. Investigations of energy dependence of saturation thickness of multiply backscattered gamma photons in elements and alloys-an inverse matrix approach
Adams et al. A 2D pixelated stilbene scintillator detector array for simultaneous radiography with fast neutrons and gammas
Miceli An experimental and theoretical approach to correct for the scattered radiation in an X-ray computer tomography system for industrial applications
JP2013120123A (en) Nuclide composition analyzer, and nuclide composition analysis method
Vartsky et al. Detectors for the gamma-ray resonant absorption (GRA) method of explosives detection in cargo: a comparative study

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050720

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080513

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080807

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080905

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4189836

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120926

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130926

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term