WO2019130373A1 - X-ray in-line detection method and device - Google Patents

X-ray in-line detection method and device Download PDF

Info

Publication number
WO2019130373A1
WO2019130373A1 PCT/JP2017/046300 JP2017046300W WO2019130373A1 WO 2019130373 A1 WO2019130373 A1 WO 2019130373A1 JP 2017046300 W JP2017046300 W JP 2017046300W WO 2019130373 A1 WO2019130373 A1 WO 2019130373A1
Authority
WO
WIPO (PCT)
Prior art keywords
ray
imaging
detector
image
line inspection
Prior art date
Application number
PCT/JP2017/046300
Other languages
French (fr)
Japanese (ja)
Inventor
定岡 紀行
中野 博之
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2017/046300 priority Critical patent/WO2019130373A1/en
Publication of WO2019130373A1 publication Critical patent/WO2019130373A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • G01N23/046Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material using tomography, e.g. computed tomography [CT]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • G01N23/05Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material using neutrons

Definitions

  • the present invention relates to an X-ray in-line inspection method and apparatus for continuously nondestructively imaging an internal state in a production line of a complex-shaped mass production machine component.
  • the target object may be placed between the X-ray source and the detector, and the internal state measurement evaluation without contact can be performed on the target object.
  • the internal state measurement evaluation without contact can be performed on the target object.
  • not only internal defect measurement but also internal complicated three-dimensional shape and dimension measurement that can not be measured from the outside can be evaluated from the captured image.
  • the presence or absence of internal defects can be determined, the detailed characteristics of internal defects such as the three-dimensional shape, volume, and three-dimensional position of the generated defect can be quantitatively evaluated only from the limited transmission image. difficult.
  • the in-line inspection at the time of manufacture if the detailed characteristics of the generated defect can be evaluated in addition to the presence or absence of the internal defect of the target object, the adjustment optimization of the casting process conditions becomes possible in line. In this case, by detecting the occurrence of internal defects at the initial stage of occurrence and adjusting and optimizing the casting process conditions, it becomes possible to prevent the continuous occurrence of internal defects in the manufacturing line.
  • three-dimensional CT imaging is performed, characteristics such as the three-dimensional shape, volume, etc. of internal defects can be evaluated, but a projection image at a detailed angular pitch for performing three-dimensional CT image reconstruction is required. .
  • 3600 projected images are taken at a pitch of 0.1 degree, it takes 300 times more time than in the case of taking 12 transmission images, which can not be realized on a production line.
  • Patent Document 1 there is provided a transport path for transporting an object, and a radiation source for emitting fan beam radiation having a narrow predetermined spread angle along a predetermined plane so as to face via the transport path.
  • a plurality of multi-channel detectors having a two-dimensional resolution for detecting the fan beam radiation, and a plurality of pedestals for performing the traverse scan while holding the radiation source and the detectors are arranged side by side on a conveyance path via a predetermined interval, and the conveyance path is intermittently traveled at a predetermined pitch, and the gantry is traversed and scanned when the travel is stopped.
  • Radiation transmission data is collected, and when the object passes through each gantry, transmission data by radiation projection from each direction in the cross section of the object is obtained, and these are subjected to image reconstruction
  • the radiation tomography apparatus is described for use.
  • an angular range portion of a part of the entire circumferential direction of the subject is one radiation detector unit integrated with a gantry and a multi-channel detector having two-dimensional resolution for detecting fan beam radiation. Get only projection data. Therefore, the projected images in the entire circumference are not aligned unless all the imaging units arranged in series in the transport path pass, and three-dimensional image reconstruction is possible only after all the imaging units have passed. Therefore, in the case of determining the presence or absence of the internal defect of the subject, the determination can be made after all of the plurality of imaging units have passed. Further, in the configuration of the same apparatus, the radiation transmission region needs to transmit not only the object but also the transport path member itself.
  • the object of the present invention is made against the background as described above, and in the in-line internal defect inspection of mass-produced cast products, presence or absence of internal defect and internal defect of target object within manufacturing tact time X-ray in-line inspection method and apparatus for realizing measurement evaluation of detailed information such as three-dimensional shape, volume, position, etc., when there exist.
  • a plurality of imaging units consisting of a two-dimensional detector and an X-ray source are continuously arranged.
  • a pedestal for holding a rotary table for rotating the subject, and a transport mechanism for moving between these imaging units, the imaging unit comprising the respective two-dimensional detector and the X-ray source, rotating the subject with the rotary table
  • the projection image of fixed angle pitch is acquired, the initial imaging start position in the circumferential direction in each imaging unit is moved by a fixed angle pitch, and the projection images obtained by each imaging unit are sequentially added to reconstruct a three-dimensional image To determine the presence or absence of internal defects.
  • the present invention in the in-line internal defect inspection of a mass-produced cast product, if there is an internal defect and an internal defect of the target object within the manufacturing tact time, the three-dimensional shape, volume, position, etc. It becomes possible to provide an X-ray in-line inspection method and apparatus for realizing measurement and evaluation of detailed information.
  • FIG. 1 is an entire configuration diagram of an X-ray in-line inspection apparatus according to a first embodiment.
  • FIG. 6 is a bird's-eye view of each imaging unit of the X-ray in-line inspection apparatus according to the first embodiment.
  • FIG. 2 is an imaging flowchart of the X-ray in-line inspection apparatus according to the first embodiment. It is an example of the imaging transmission image by the X-ray in-line inspection apparatus by Example 1.
  • FIG. It is an example of the projection image imaging start axis by the X-ray in-line inspection apparatus according to the first embodiment.
  • FIG. 7 is an entire configuration diagram of an X-ray in-line inspection apparatus according to a second embodiment.
  • FIG. 1 is an entire configuration diagram of an X-ray in-line inspection apparatus according to a first embodiment for imaging a target product on a manufacturing line and evaluating internal defects with an X-ray in-line inspection method and apparatus.
  • Fig. 6 shows a bird's-eye view of each imaging unit of the X-ray in-line inspection apparatus according to the first embodiment, showing an X-ray imaging implementation part of the apparatus;
  • FIG. 3 shows an imaging flow diagram of the X-ray in-line inspection apparatus according to the first embodiment showing a processing flow of imaging, image reconstruction, and internal defect determination using the apparatus of the embodiment shown in FIGS. ing.
  • a mechanism for moving the transport pedestal 6 on which the rotary table 5 for installing and rotating the target subject 4 is installed on the rectangular transport path 8 have.
  • a plurality of subjects 4 to be examined are placed on the preparation stage 15.
  • One subject 4 is placed on the rotary table 5 on the transport pedestal 6 waiting on the transport path 8 from the loading preparation stage 15 by the loading robot 12 of the subject 4.
  • the subject 4 installed on the transport pedestal 6 moves on the transport path 8 together with the transport pedestal 6 to a position where the X-ray source 1-a (radiation source) and the two-dimensional detector 2-a face each other. , There pause for CT imaging.
  • An X-ray source 1-a for generating X-rays and a two-dimensional detector 2-a for detecting X-rays transmitted through the object 4 are provided on one of the long side portions of the rectangular conveyance path 8 It is arranged at the opposite position across 8. After stopping, cone beam X-rays are emitted from the X-ray source 1-a, and the irradiated X-rays pass through the inside of the subject 4 and are attenuated to be opposed to the X-ray source 1-a. The light is incident on the detection element of the detector 2-a and converted into a digital signal by the signal processing circuit 3-a.
  • the X-rays generated by the cone beam pass through the entire region of the subject 4, and the X-ray attenuation amount reflecting the shape, material, and internal condition of the subject 4 is measured by each detection element of the two-dimensional detector 2-a.
  • a projected image of one angle is obtained.
  • a projection image is taken at a constant angular pitch in the circumferential direction.
  • a full 360 ° rotation is performed to capture a projected image in all directions.
  • the obtained projection image is sent to the image reconstruction computer 10, where a three-dimensional image reconstruction processing operation is performed to generate a CT image of the object 4 to be examined. From the obtained CT image, the presence or absence of an internal defect is determined.
  • the subject 4 determined to have an internal defect is taken out from the rotary table 5 and paid out from the transport path 8 as an NG product.
  • the start angle position in the circumferential direction on the rotary table at the start of imaging was shifted by a fixed angle from the position when imaged by the X-ray source 1-a and the two-dimensional detector 2-a in front Start imaging from the position.
  • cone beam X-rays are emitted from the X-ray source 1-b, and the irradiated X-rays are transmitted through the inside of the subject 4 and attenuated to be opposed to the X-ray source 1-b 2
  • the light is incident on the detection element of the dimensional detector 2-b and converted into a digital signal by the signal processing circuit 3-b.
  • the X-ray generated by the cone beam passes through the entire region of the subject 4 and the X-ray attenuation amount reflecting the shape, material and internal condition of the subject 4 is measured by each detection element of the two-dimensional detector 2-b. A projected image of one angle is obtained. While the rotary table 5 makes a round, a projection image is taken at a constant angular pitch in the circumferential direction.
  • projection image data obtained by the imaging unit comprising the X-ray source 1-a and the two-dimensional detector 2-a in the previous stage is composed of the X-ray source 1-b and the two-dimensional detector 2-b.
  • An image reconstruction process is performed by adding to the projection image data obtained by the imaging unit to generate a CT image. From the obtained CT image, the presence or absence of an internal defect is determined. As a result of the determination, the subject 4 determined to have an internal defect is taken out from the rotary table 5 and paid out from the transport path 8 as an NG product.
  • the product moves on the transport path 8 along with the transport pedestal 6 while being installed on the transport pedestal 6, and the X-ray source 1-c And the two-dimensional detector 2-c move to the opposite position, where it is paused again for CT imaging.
  • the start angle position in the circumferential direction on the rotary table at the start of imaging is further shifted by a fixed angle from the position when imaged by the X-ray source 1-b and the two-dimensional detector 2-b in front.
  • cone beam X-rays are emitted from the X-ray source 1-c, and the irradiated X-rays are transmitted through the inside of the subject 4 and attenuated to be opposed to the X-ray source 1-c 2
  • the light is incident on the detection element of the dimensional detector 2-c and is converted into a digital signal by the signal processing circuit 3-c.
  • the X-ray generated by the cone beam passes through the entire region of the subject 4 and the X-ray attenuation amount reflecting the shape, material and internal condition of the subject 4 is measured by each detection element of the two-dimensional detector 2-c. A projected image of one angle is obtained. While the rotary table 5 makes a round, a projection image is taken at a constant angular pitch in the circumferential direction.
  • Image reconstruction processing is performed by adding the projection image data obtained by the imaging unit and the projection image data obtained by the imaging unit consisting of the X-ray source 1-c and the two-dimensional detector 2-c. And generate a CT image. From the obtained CT image, the presence or absence of an internal defect is determined. As a result of the determination, the subject 4 determined to have an internal defect is taken out from the rotary table 5 and paid out from the transport path 8 as an NG product.
  • the start angle position in the circumferential direction on the rotary table at the start of imaging is further shifted by a fixed angle from the positions when imaged by the X-ray source 1-c and the two-dimensional detector 2-c in front.
  • cone beam X-rays are emitted from the X-ray source 1-d, and the irradiated X-rays are transmitted through the inside of the subject 4 and attenuated to be opposed to the X-ray source 1-d 2
  • the light is incident on the detection element of the dimensional detector 2-d and converted into a digital signal by the signal processing circuit 3-d.
  • the X-ray generated by the cone beam passes through the entire region of the subject 4 and the X-ray attenuation amount reflecting the shape, material, and internal condition of the subject 4 is measured by each detection element of the two-dimensional detector 2-d. A projected image of one angle is obtained. While the rotary table 5 makes a round, a projection image is taken at a constant angular pitch in the circumferential direction.
  • projection image data obtained by the imaging unit consisting of the X-ray sources 1-a, 1-b, 1-c and the two-dimensional detectors 2-a, 2-b, 2-c up to that point are An image reconstruction process is performed by adding to the projection image data obtained by the imaging unit including the X-ray source 1-d and the two-dimensional detector 2-d described above, and a CT image is generated.
  • the subject 4 whose imaging has been completed moves on the transport path 8 along with the transport pedestal 6 to the OK product / NG product final dispensing position while being placed on the transport pedestal 6.
  • an OK product is classified into an OK product stage 13 and an NG product into an NG product stage 14 based on the determination result based on the captured CT image by the final dispensing robot 11.
  • the series of operations described above are continuously executed continuously.
  • the imaging units comprising the X-ray sources 1-a, 1-b, 1-c and 1-d and the two-dimensional detectors 2-a, 2-b, 2-c and 2-d operate in synchronization with each other.
  • CT imaging is performed by simultaneously irradiating a cone beam X-ray of four subjects 4 with each imaging unit. Therefore, shield plates 9-a, 9-b and 9-c are provided between the imaging units in order to prevent scattered radiation from the adjacent X-ray guns.
  • the shielding plates 9-a, 9-b, 9-c have a gate-shaped structure, and a space through which the transport pedestal 6 on which the subject 4 is installed can pass through the transport path 8.
  • the shutter is raised only when the transport pedestal 6 on the transport path 8 moves, and a passable space appears.
  • the shutter is closed to prevent scattered radiation.
  • positioning pins 7-a and 7-b are provided on these transfer pedestals 6 in order to align the projected images of the respective imaging units. In these processes, the projection images of the respective units are added on the basis of the projection images of the positioning pins 7-a and 7-b in the process of adding the encircling question in each imaging unit.
  • FIG. 2 shows a bird's-eye view of an X-ray imaging implementation portion of the X-ray in-line inspection system apparatus in the present embodiment.
  • shielding plates 9-a, 9-b and 9-c are provided between the imaging units in order to prevent the inflow of scattered radiation from the adjacent X-ray tube.
  • the shielding plates 9-a, 9-b, 9-c are provided with through holes for passing the subject on the belt conveyor.
  • positioning pins 7-a and 7-b are provided on the transport pedestal 6 for imaging the subject with each imaging unit, so as to be reflected in the projected images of the subject.
  • FIG. 3 shows the processing flow of the imaging method using the present embodiment.
  • the robot subjects the subject to be inspected to the loading table on the transport pedestal 6 on the apparatus.
  • step S101 with the subject 4 of the product to be inspected installed on the rotary table 5 of the transport pedestal 6, the entire transport pedestal 6 is moved on the belt conveyor 8 to the first imaging unit position.
  • the first imaging unit position is an intermediate position where the X-ray source 1-a and the two-dimensional detection element array unit 2-a are opposed to each other, and the subject 4 installed on the rotary table 5 of the transport pedestal 6 is the X-ray source
  • the entire area is included within the cone beam irradiation angle range of 1-a.
  • S102 the subject on the rotary table 5 is rotated for a whole week at a constant angle pitch to obtain a projection image at a constant angle pitch.
  • FIG. 3 900 projected images are obtained at a pitch of 0.4 degrees.
  • constant angle pitch projection data (1) 101 is obtained.
  • FIGS. 4A, 4B, 4C, and 4D show examples of acquired projected images at angle pitches of 0 degrees, 90 degrees, 180 degrees, and 270 degrees, respectively.
  • the obtained three-dimensional CT image of the subject 4 is compared with the CT image of the healthy subject 4 having no internal defect, and the soundness evaluation is performed based on the presence or absence of the internal defect. If it is determined in S105 that there is no internal defect, the movement to the next adjacent imaging unit position in S107 is performed. If it is determined in S105 that there is an internal defect, in S118, internal defect characteristic quantities such as the three-dimensional shape, volume, position, etc. of the internal defect are calculated from the three-dimensional CT image. Thereafter, the target product is discharged from the belt conveyor 8 in S119, and the subject 4 does not move to the next imaging unit adjacent to the target conveyor unit, and the empty rotary table 5 and the transfer pedestal 6 in which the subject 4 is not installed. Only move to the adjacent imaging unit.
  • the X-ray source 1-b and the two-dimensional detection element array unit 2-b are placed on the rotary table 5 of the transport pedestal 6 at an intermediate position facing each other.
  • the subject 4 is temporarily fixed at a position including the entire area within the cone beam irradiation angle range of the X-ray source 2-a.
  • the rotation table is rotated by a designated angle as a projection image acquisition start position setting in S108. In this embodiment, it is rotated in the direction of 0.1 degree division to be a projection image acquisition start position.
  • FIG. 4B shows the projection image acquisition start position at the second imaging unit position and the imaging projection image angle at a constant angle pitch after that.
  • the projection image acquisition start axis 20 in the first imaging unit is rotated by 0.1 degree to the projection image acquisition start instruction in the second imaging unit, and the axis 22 of the projection image income start position in the second imaging unit
  • the projection image is acquired at a pitch of 0.5 degrees from the axis 22 of the projection image income start position in this second imaging unit. Therefore, while the projection image acquisition angle at the first imaging unit is 0 degrees, 0.5 degrees, 1.0 degrees, 1.5 degrees,...,
  • the projection at the second imaging unit The image acquisition angles are 0.1 degrees, 0.6 degrees, 1.1 degrees, 1.6 degrees, and so on.
  • three-dimensional image reconstruction is performed by adding the first projection image angle pitch data (1) of 101 to the constant angle pitch projection data by the second imaging unit of 102. Therefore, in the three-dimensional image reconstruction here, 0 degrees, 0.1 degrees, 0.5 degrees, 0.6 degrees, 1.0 degrees, 1.1 degrees, 1.5 degrees, 1.6 degrees ... and the reconstruction is performed from the total of 1,800 projected images. By this reconstruction process, a three-dimensional CT image of the subject 4 is generated. In S111, the obtained three-dimensional CT image of the subject 4 is compared with the CT image of the healthy subject 4 having no internal defect, and the soundness evaluation is performed based on the presence or absence of the internal defect.
  • the movement to the next adjacent imaging unit position in S107 is performed. If it is determined in S113 that there is an internal defect, in S120, internal defect characteristic quantities such as the three-dimensional shape, volume, position, etc. of the internal defect are calculated from the three-dimensional CT image. After that, the target product is dispensed from the belt conveyor 8 in S121, and the subject 4 is not moved to the next imaging unit adjacent to it, and the empty rotary table 5 and the transport pedestal 6 in which the subject 4 is not installed. Only move to the adjacent imaging unit.
  • FIG. 5C shows the projection image pickup start axis 24 in the N-th image pickup unit and the projection image pickup axis 25 at a constant angular pitch thereafter.
  • image reconstruction is performed with a total of 2700 projected images
  • the fourth imaging unit a total of 3600 projected images.
  • image reconstruction is performed using 3600 projected images at a pitch of 0.1 degree in the circumferential direction.
  • four imaging units are configured, but if a plurality of N are arranged, it is possible to increase the projected image imaging pitch in one imaging unit and shorten the imaging time.
  • the second embodiment will be described with reference to FIG. Even if not only X-rays but also neutrons are used as a radiation source for acquiring a projection image of the subject 4, similar effects can be obtained with the same configuration.
  • small neutron sources 26-a, 26-b, 26-c, 26-d (radiation sources) and 2D detectors 27-a, 27-b, 27- for neutron detection are used instead of the X-ray source.
  • 2D detectors 27-a, 27-b, 27- for neutron detection are used instead of the X-ray source.
  • An example using c, 27-d is shown.
  • the present invention in the in-line internal defect inspection of a mass-produced cast product, if there is an internal defect and an internal defect of the target object within the manufacturing tact time, the three-dimensional shape, volume, position, etc. It is possible to provide an X-ray in-line inspection method and apparatus for realizing measurement and evaluation of detailed information. Further, not only cast products but also general machine parts can be visualized on a production line by nondestructive visualization of the internal structure, which can lead to quality improvement of these machine parts.
  • the present invention is not limited to the embodiments described above, but includes various modifications.
  • the embodiments described above are described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the configurations described.
  • part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.

Abstract

The purpose of the present invention is to provide an in-line detection method and device with which a measurement evaluation of detailed information such as the three-dimensional shape, volume, and position of an internal defect can be realized when performing in-line detection of an internal defect of a mass-produced cast product. The present invention is configured such that a plurality of imaging units each comprising an X-ray source and a two-dimensional detector are continuously disposed (1-a,2-a) (1-b,2-b) (1-c,2-c) (1-d,2-d). A conveyance mechanism (8) moves a pedestal (6), which holds a rotation table (5) that rotates a specimen (4), between the imaging units. At each imaging unit, the specimen (4) is rotated by the rotation table (5) to acquire a projection image at a fixed angular pitch, an initial image capture start position in the circumferential direction at each imaging unit is moved by an amount equivalent to the fixed angular pitch, and the projection images obtained by each imaging unit are sequentially added so as to perform three-dimensional image reconstruction, and thereby the presence of an internal defect is determined.

Description

X線インライン検査方法および装置X-ray in-line inspection method and apparatus
 本発明は、複雑形状の量産機械部品の製造ラインにおける内部状態を非破壊で連続的に撮像するX線インライン検査方法および装置に関する。 The present invention relates to an X-ray in-line inspection method and apparatus for continuously nondestructively imaging an internal state in a production line of a complex-shaped mass production machine component.
 自動車用鋳物部品に代表される量産機械部品の製造ラインにおける健全性、品質検査では、信頼性を高めるために全数検査が求められている。量産機械部品の検査では、寸法形状計測が主な評価項目になるが、量産鋳造品では、寸法検査の他に、鋳造プロセス時に発生する事がある内部欠陥の検出が重要になる。製品外側の寸法形状計測では、レーザー距離計やカメラに代表される光学系撮像画像からの計測が可能であるが、量産鋳造品における内部欠陥の評価では、製品内部を非破壊で計測する必要がある。製品内部の非破壊検査で最も有効である計測手段はX線による透過像およびCT像計測である。超音波でも内部欠陥の有無はある程度計測可能であるが、探触子を製品自体に接触させる必要があるため、鋳物部品のような3次元複雑形状品に対しては取り扱いが難しい。 In the soundness and quality inspection in the production line of mass-produced machine parts represented by automobile casting parts, 100% inspections are required in order to enhance the reliability. In the inspection of mass production machine parts, dimension and shape measurement are the main evaluation items. However, in mass production cast products, in addition to the dimensional inspection, it is important to detect internal defects that may occur during the casting process. Although it is possible to measure from an optical system captured image represented by a laser range finder or a camera in dimension shape measurement on the outside of the product, it is necessary to measure the inside of the product nondestructively in the evaluation of internal defects in mass-produced castings. is there. The most effective measurement means for nondestructive inspection inside the product is X-ray transmission image and CT image measurement. Although the presence or absence of internal defects can be measured to some extent even by ultrasonic waves, it is difficult to handle a three-dimensional complex shaped article such as a cast part since it is necessary to bring the probe into contact with the product itself.
 X線による透過像およびCT像計測では、X線源と検出器の間に対象被検体を設置すればよく、対象とする被検体には非接触での内部状態計測評価が可能である。また、X線による透過像およびCT像計測では、内部欠陥計測だけでなく、外部からは計測できない内部の複雑な3次元形状および寸法計測が、撮像画像から評価可能である。 In the X-ray transmission image and CT image measurement, the target object may be placed between the X-ray source and the detector, and the internal state measurement evaluation without contact can be performed on the target object. In the X-ray transmission image and CT image measurement, not only internal defect measurement but also internal complicated three-dimensional shape and dimension measurement that can not be measured from the outside can be evaluated from the captured image.
 量産鋳造品以外でも、アセンブリ製品では、外側のケーシングを外すことなく内部状態の健全性を評価する事が必要となる場合が出てくる。この場合も、X線による透過像およびCT像計測が有効な計測手段となる。 In addition to mass-produced castings, in assembly products, it may be necessary to evaluate the soundness of the internal state without removing the outer casing. Also in this case, X-ray transmission image and CT image measurement become effective measurement means.
 これらの製造ラインにおける全数検査では、製品が短時間で連続的に製造されるため、短い時間間隔で継続的に健全性評価に必要な物理量を計測し、健全性の有無を判定する必要がある。X線による透過像撮像により内部欠陥の有無を連続的に短時間で評価するためには、対象被検体を360度回転させ、大きな角度ピッチで最小限の透過像枚数で判定する必要がある。例えば30度ピッチとすると、12枚の投影像から被検体内部の欠陥有無を判定する。この場合、内部欠陥の有無は判定できる確率が高いが、内部欠陥の3次元形状や体積、位置を定量評価するには情報が少なく難しい。一方、量産鋳造品の製造ラインでは、発生内部欠陥の形状や体積や位置等の特性を定量的にインラインで評価できれば、鋳造条件の調整最適化がインラインで可能となりロスコストの大幅削減に結び付けられる可能性がある。 In 100% inspection in these production lines, products are produced continuously in a short time, so it is necessary to measure the physical quantity necessary for soundness evaluation continuously at short time intervals to determine the presence or absence of soundness . In order to evaluate the presence or absence of an internal defect continuously and in a short time by X-ray transmission image imaging, it is necessary to rotate the object to be examined 360 degrees and to determine with a large angle pitch and the minimum number of transmission images. For example, assuming that the pitch is 30 degrees, the presence or absence of a defect inside the object is determined from 12 projected images. In this case, there is a high probability that the presence or absence of an internal defect can be determined, but it is difficult to quantitatively evaluate the three-dimensional shape, volume, and position of an internal defect with little information. On the other hand, in the production line of mass-produced castings, if it is possible to quantitatively evaluate the shape, volume, position and other characteristics of the generated internal defects inline, optimization of casting conditions can be performed inline, leading to significant loss cost reduction There is sex.
特開昭60-73443号公報Japanese Patent Application Laid-Open No. 60-73443
 従来、量産鋳造品での内部欠陥検査は、抜き取りによる破壊検査や打音による音響評価などにより実施されており、製造ラインにおける全数検査を実施する場合は、限定された角度での透過像撮像により内部欠陥の有無を画像の目視から判定している。例えば、アルミ製の小型自動車部品では、対象被検体をX線源と2次元検出器の間のターンテーブルに設置し、360度全周回転させる間に30度毎に12枚の透過像を撮像し、これらの透過画像から内部欠陥の有無を目視で判定する。限定された少ない角度ピッチでの透過像撮像のため、撮像時間が短縮され大量製造ラインで活用可能となっている。 Conventionally, internal defect inspection in mass-produced castings has been carried out by destructive inspection by extraction, acoustic evaluation by tapping sound, etc., and when performing 100% inspection in a production line, transmission image imaging at a limited angle is performed The presence or absence of internal defects is determined by visual inspection of the image. For example, in a small automobile part made of aluminum, a target object is placed on a turntable between an X-ray source and a two-dimensional detector, and 12 transmission images are taken every 30 degrees while being rotated 360 degrees all around The presence or absence of internal defects is visually determined from these transmission images. The imaging time is reduced and can be used in mass production lines because of transmission image imaging with a limited small angular pitch.
 この場合、内部欠陥の有無は判定可能であるが、発生欠陥の3次元形状、体積および3次元位置等の内部欠陥の詳細特性は、限定された透過画像のみからでは、定量的な評価までは難しい。一方、製造時のインライン検査において、対象被検体の内部欠陥の有無に加えて発生欠陥の詳細特性が評価できれば、インラインで鋳造プロセス条件の調整最適化が可能となる。この場合、内部欠陥の発生を発生開始初期に検出し、鋳造プロセス条件を調整最適化する事により、製造ラインでの連続的な内部欠陥発生を防止する事が可能となる。 In this case, although the presence or absence of internal defects can be determined, the detailed characteristics of internal defects such as the three-dimensional shape, volume, and three-dimensional position of the generated defect can be quantitatively evaluated only from the limited transmission image. difficult. On the other hand, in the in-line inspection at the time of manufacture, if the detailed characteristics of the generated defect can be evaluated in addition to the presence or absence of the internal defect of the target object, the adjustment optimization of the casting process conditions becomes possible in line. In this case, by detecting the occurrence of internal defects at the initial stage of occurrence and adjusting and optimizing the casting process conditions, it becomes possible to prevent the continuous occurrence of internal defects in the manufacturing line.
 3次元CT撮像を実施すれば、内部欠陥の3次元形状、体積等の特性が評価可能となるが、3次元CT画像再構成を実施するための詳細な角度ピッチでの投影像が必要となる。例えば、0.1度ピッチで3600枚の投影像を撮像すると12枚の透過像撮像の場合に比較して300倍の時間が必要となり製造ラインでは実現できない。 If three-dimensional CT imaging is performed, characteristics such as the three-dimensional shape, volume, etc. of internal defects can be evaluated, but a projection image at a detailed angular pitch for performing three-dimensional CT image reconstruction is required. . For example, when 3600 projected images are taken at a pitch of 0.1 degree, it takes 300 times more time than in the case of taking 12 transmission images, which can not be realized on a production line.
 また、特許文献1には、被検体を搬送する搬送路を設け、この搬送路を介して対向するように所定平面に沿う幅狭の所定の広がり角を有するファンビーム放射線を曝射する放射線源と、このファンビーム放射線を検出する2次元分解能を有する多チャンネルの検出器を有するとともに、この放射線源と検出器とを保持してトラバース走査する架台を複数台各々被検体に対する放射線源の放射線方向を異ならせ、且つ所定間隔を介して搬送路上に並設して構成し、前記搬送路を所定のピッチで間欠的に走行させると共に、この走行の休止時に前記架台をトラバース走査して被検体断面の放射線透過データを収集し、被検体が各架台を通過した時点で被検体の断面における各方向からの放射線投影による透過データを得て、これらを画像再構成に用いる放射線断層投影装置が記載されている。 Further, in Patent Document 1, there is provided a transport path for transporting an object, and a radiation source for emitting fan beam radiation having a narrow predetermined spread angle along a predetermined plane so as to face via the transport path. And a plurality of multi-channel detectors having a two-dimensional resolution for detecting the fan beam radiation, and a plurality of pedestals for performing the traverse scan while holding the radiation source and the detectors Are arranged side by side on a conveyance path via a predetermined interval, and the conveyance path is intermittently traveled at a predetermined pitch, and the gantry is traversed and scanned when the travel is stopped. Radiation transmission data is collected, and when the object passes through each gantry, transmission data by radiation projection from each direction in the cross section of the object is obtained, and these are subjected to image reconstruction The radiation tomography apparatus is described for use.
 上記文献1の装置では、架台で一体化された放射線源とファンビーム放射線を検出する2次元分解能を有する多チャンネルの検出器のユニット1個で、被検体の全周方向の一部分の角度範囲部分のみの投影データを取得する。そのため、搬送路に直列に配置されたこれらの撮像ユニットの全てを通過しなければ全周での投影像は揃わず、撮像ユニットの全てを通過後に初めて3次元画像再構成が可能となる。そのため、被検体の内部欠陥の有無を判定する場合は、複数の撮像ユニットの全てを通過後に判定可能となる。また、同装置の構成では、放射線の透過領域が、被検体だけでなく搬送路部材自体も透過する必要がある。そのため、被検体を透過するのみならず搬送路構成部材も同時に透過する強い放射線源が必要となる。さらには、搬送路構成部材も同時に透過するために、これらの領域で発生する散乱線が画像ノイズとなり画像再構成後の内部欠陥判定精度が悪化する。 In the apparatus of the above-mentioned document 1, an angular range portion of a part of the entire circumferential direction of the subject is one radiation detector unit integrated with a gantry and a multi-channel detector having two-dimensional resolution for detecting fan beam radiation. Get only projection data. Therefore, the projected images in the entire circumference are not aligned unless all the imaging units arranged in series in the transport path pass, and three-dimensional image reconstruction is possible only after all the imaging units have passed. Therefore, in the case of determining the presence or absence of the internal defect of the subject, the determination can be made after all of the plurality of imaging units have passed. Further, in the configuration of the same apparatus, the radiation transmission region needs to transmit not only the object but also the transport path member itself. Therefore, a strong radiation source that transmits not only the subject but also the transport path components at the same time is required. Furthermore, since the transport path component is also transmitted simultaneously, the scattered radiation generated in these areas becomes image noise, and the internal defect determination accuracy after image reconstruction is degraded.
 そのため、本発明の目的は、上記のような事情を背景になされたものであり、量産鋳造品のインラインでの内部欠陥検査において、製造タクトタイム内に対象被検体の内部欠陥の有無および内部欠陥が存在する場合に、その3次元形状、体積、位置等の詳細情報の計測評価を実現させるX線インライン検査方法および装置を提供する事にある。 Therefore, the object of the present invention is made against the background as described above, and in the in-line internal defect inspection of mass-produced cast products, presence or absence of internal defect and internal defect of target object within manufacturing tact time X-ray in-line inspection method and apparatus for realizing measurement evaluation of detailed information such as three-dimensional shape, volume, position, etc., when there exist.
 上記目的のために本発明では、2次元検出器とX線源と搬送機構を用いたX線インライン検査方法において、2次元検出器とX線源からなる撮像ユニットを複数、連続して配置し、被検体を回転させる回転テーブルを保持する台座を、これらの撮像ユニット間を移動させる搬送機構を持ち、それぞれの2次元検出器とX線源からなる撮像ユニットにおいて、被検体を回転テーブルで回転させ一定角度ピッチの投影像を取得し、それぞれの撮像ユニットにおける周方向の初期撮像開始位置を一定角度ピッチ分移動させ、それぞれの撮像ユニットで得られる投影像を順次加算して3次元画像再構成を実施する事により内部欠陥の有無を判定する。 For the above purpose, in the present invention, in the X-ray in-line inspection method using a two-dimensional detector, an X-ray source and a transport mechanism, a plurality of imaging units consisting of a two-dimensional detector and an X-ray source are continuously arranged. A pedestal for holding a rotary table for rotating the subject, and a transport mechanism for moving between these imaging units, the imaging unit comprising the respective two-dimensional detector and the X-ray source, rotating the subject with the rotary table The projection image of fixed angle pitch is acquired, the initial imaging start position in the circumferential direction in each imaging unit is moved by a fixed angle pitch, and the projection images obtained by each imaging unit are sequentially added to reconstruct a three-dimensional image To determine the presence or absence of internal defects.
 本発明によれば、量産鋳造品のインラインでの内部欠陥検査において、製造タクトタイム内に対象被検体の内部欠陥の有無および内部欠陥が存在する場合に、その3次元形状、体積、位置等の詳細情報の計測評価を実現させるX線インライン検査方法および装置を提供する事が可能となる。 According to the present invention, in the in-line internal defect inspection of a mass-produced cast product, if there is an internal defect and an internal defect of the target object within the manufacturing tact time, the three-dimensional shape, volume, position, etc. It becomes possible to provide an X-ray in-line inspection method and apparatus for realizing measurement and evaluation of detailed information.
実施例1によるX線インライン検査装置の全体構成図である。FIG. 1 is an entire configuration diagram of an X-ray in-line inspection apparatus according to a first embodiment. 実施例1によるX線インライン検査装置の各撮像ユニットの鳥瞰図である。FIG. 6 is a bird's-eye view of each imaging unit of the X-ray in-line inspection apparatus according to the first embodiment. 実施例1によるX線インライン検査装置の撮像フロー図である。FIG. 2 is an imaging flowchart of the X-ray in-line inspection apparatus according to the first embodiment. 実施例1によるX線インライン検査装置による撮像透過像の例である。It is an example of the imaging transmission image by the X-ray in-line inspection apparatus by Example 1. FIG. 実施例1によるX線インライン検査装置による投影像撮像開始軸の例である。It is an example of the projection image imaging start axis by the X-ray in-line inspection apparatus according to the first embodiment. 実施例2によるX線インライン検査装置の全体構成図である。FIG. 7 is an entire configuration diagram of an X-ray in-line inspection apparatus according to a second embodiment.
 以下、本発明の実施例を、図面を用いて説明する。 Hereinafter, embodiments of the present invention will be described using the drawings.
 図1は、X線インライン検査方法および装置で製造ラインにおいて対象製品を撮像し、内部欠陥を評価する、実施例1によるX線インライン検査装置の全体構成図であり、図2はX線インライン検査装置のX線による撮像実施部分を表した、実施例1によるX線インライン検査装置の各撮像ユニットの鳥瞰図を示している。また、図3は、図1、2に示した実施例の装置を用いた撮像および画像再構成、内部欠陥判定の処理フローを表した実施例1によるX線インライン検査装置の撮像フロー図を示している。 FIG. 1 is an entire configuration diagram of an X-ray in-line inspection apparatus according to a first embodiment for imaging a target product on a manufacturing line and evaluating internal defects with an X-ray in-line inspection method and apparatus. Fig. 6 shows a bird's-eye view of each imaging unit of the X-ray in-line inspection apparatus according to the first embodiment, showing an X-ray imaging implementation part of the apparatus; Further, FIG. 3 shows an imaging flow diagram of the X-ray in-line inspection apparatus according to the first embodiment showing a processing flow of imaging, image reconstruction, and internal defect determination using the apparatus of the embodiment shown in FIGS. ing.
 図1に示したように本実施例のX線インライン検査装置では、対象被検体4を設置し回転させる回転テーブル5を設置した搬送用台座6を、長方形型の搬送路8上を移動する機構を持つ。 As shown in FIG. 1, in the X-ray in-line inspection apparatus of the present embodiment, a mechanism for moving the transport pedestal 6 on which the rotary table 5 for installing and rotating the target subject 4 is installed on the rectangular transport path 8 have.
 検査対象となる複数の被検体4が、まず、投入準備ステージ15に配置される。被検体4の投入用ロボット12により、1個の被検体4が、投入準備ステージ15から搬送路8上に待ち受けている搬送用台座6上の回転テーブル5に設置される。搬送用台座6上に設置された被検体4は、搬送用台座6とともに搬送路8上を、X線源1-a(放射線源)と2次元検出器2-aが対向する位置まで移動し、そこでCT撮像のため一時停止する。 First, a plurality of subjects 4 to be examined are placed on the preparation stage 15. One subject 4 is placed on the rotary table 5 on the transport pedestal 6 waiting on the transport path 8 from the loading preparation stage 15 by the loading robot 12 of the subject 4. The subject 4 installed on the transport pedestal 6 moves on the transport path 8 together with the transport pedestal 6 to a position where the X-ray source 1-a (radiation source) and the two-dimensional detector 2-a face each other. , There pause for CT imaging.
 長方形型の搬送路8の長辺部分の一方には、X線を発生させるX線源1-aと対象被検体4を透過したX線を検出する2次元検出器2-aが、搬送路8を挟んで対向した位置に配置される。停止後、X線源1-aからコーンビーム状のX線が照射され、照射されたX線は、披検体4内部を透過し減衰されX線源1-aと対向する位置にある2次元検出器2-aの検出素子に入射し信号処理回路3-aによりデジタル信号に変換される。コーンビームで発生されるX線が披検体4の全領域を透過し披検体4の形状、材質、内部状況を反映したX線減衰量が2次元検出器2-aの各検出素子により計測され1角度分の投影像が得られる。さらに、回転テーブル5を一周させる間に、周方向の一定角度ピッチ毎の投影像を撮像する。360度全周回転し全方向の投影像を撮像する。得られた投影像は画像再構成計算機10に送信され、ここで3次元画像再構成処理演算を実施し、対象被検体4のCT像を生成する。得られたCT像から、内部欠陥の有無を判定する。判定の結果、内部欠陥あり、と判定された被検体4は、回転テーブル5上から取り出され、NG品として搬送路8から払い出しされる。 An X-ray source 1-a for generating X-rays and a two-dimensional detector 2-a for detecting X-rays transmitted through the object 4 are provided on one of the long side portions of the rectangular conveyance path 8 It is arranged at the opposite position across 8. After stopping, cone beam X-rays are emitted from the X-ray source 1-a, and the irradiated X-rays pass through the inside of the subject 4 and are attenuated to be opposed to the X-ray source 1-a. The light is incident on the detection element of the detector 2-a and converted into a digital signal by the signal processing circuit 3-a. The X-rays generated by the cone beam pass through the entire region of the subject 4, and the X-ray attenuation amount reflecting the shape, material, and internal condition of the subject 4 is measured by each detection element of the two-dimensional detector 2-a. A projected image of one angle is obtained. Furthermore, while the rotary table 5 is made to go around, a projection image is taken at a constant angular pitch in the circumferential direction. A full 360 ° rotation is performed to capture a projected image in all directions. The obtained projection image is sent to the image reconstruction computer 10, where a three-dimensional image reconstruction processing operation is performed to generate a CT image of the object 4 to be examined. From the obtained CT image, the presence or absence of an internal defect is determined. As a result of the determination, the subject 4 determined to have an internal defect is taken out from the rotary table 5 and paid out from the transport path 8 as an NG product.
 欠陥なし、とのOK品と判定された場合は、その後、搬送用台座6上に設置された状態のままに、搬送用台座6とともに搬送路8上を、移動し、X線源1-bと2次元検出器2-bが対向する位置まで移動し、そこでCT撮像のため再度一時停止する。 If it is judged as an OK product with no defect, then it moves on the transport path 8 together with the transport pedestal 6 while being installed on the transport pedestal 6, and the X-ray source 1-b And the two-dimensional detector 2-b move to the opposite position where it is paused again for CT imaging.
 この位置では、撮像開始時の回転テーブル上の円周方向の開始角度位置を、手前のX線源1-aと2次元検出器2-aで撮像した時の位置より、一定角度分ずらした位置から撮像を開始する。撮像開始とともに、X線源1-bからコーンビーム状のX線が照射され、照射されたX線は、披検体4内部を透過し減衰されX線源1-bと対向する位置にある2次元検出器2-bの検出素子に入射し信号処理回路3-bによりデジタル信号に変換される。コーンビームで発生されるX線が披検体4の全領域を透過し披検体4の形状、材質、内部状況を反映したX線減衰量が2次元検出器2-bの各検出素子により計測され1角度分の投影像が得られる。回転テーブル5が一周する間に、周方向の一定角度ピッチ毎の投影像を撮像する。 At this position, the start angle position in the circumferential direction on the rotary table at the start of imaging was shifted by a fixed angle from the position when imaged by the X-ray source 1-a and the two-dimensional detector 2-a in front Start imaging from the position. At the start of imaging, cone beam X-rays are emitted from the X-ray source 1-b, and the irradiated X-rays are transmitted through the inside of the subject 4 and attenuated to be opposed to the X-ray source 1-b 2 The light is incident on the detection element of the dimensional detector 2-b and converted into a digital signal by the signal processing circuit 3-b. The X-ray generated by the cone beam passes through the entire region of the subject 4 and the X-ray attenuation amount reflecting the shape, material and internal condition of the subject 4 is measured by each detection element of the two-dimensional detector 2-b. A projected image of one angle is obtained. While the rotary table 5 makes a round, a projection image is taken at a constant angular pitch in the circumferential direction.
 ここで、前段のX線源1-aと2次元検出器2-aからなる撮像ユニットで得られた投影像データを、上記のX線源1-bと2次元検出器2-bからなる撮像ユニットで得られた投影像データに加算して画像再構成処理を実施し、CT像を生成する。得られたCT像から、内部欠陥の有無を判定する。判定の結果、内部欠陥あり、と判定された被検体4は、回転テーブル5上から取り出され、NG品として搬送路8から払い出しされる。欠陥なし、とのOK品と判定された場合は、その後、搬送用台座6上に設置された状態のままに、搬送用台座6とともに搬送路8上を、移動し、X線源1-cと2次元検出器2-cが対向する位置まで移動し、そこでCT撮像のため再度一時停止する。 Here, projection image data obtained by the imaging unit comprising the X-ray source 1-a and the two-dimensional detector 2-a in the previous stage is composed of the X-ray source 1-b and the two-dimensional detector 2-b. An image reconstruction process is performed by adding to the projection image data obtained by the imaging unit to generate a CT image. From the obtained CT image, the presence or absence of an internal defect is determined. As a result of the determination, the subject 4 determined to have an internal defect is taken out from the rotary table 5 and paid out from the transport path 8 as an NG product. If it is determined that the product is an OK product with no defect, then it moves on the transport path 8 along with the transport pedestal 6 while being installed on the transport pedestal 6, and the X-ray source 1-c And the two-dimensional detector 2-c move to the opposite position, where it is paused again for CT imaging.
 この位置では、撮像開始時の回転テーブル上の円周方向の開始角度位置を、手前のX線源1-bと2次元検出器2-bで撮像した時の位置より、さらに一定角度分ずらした位置から撮像を開始する。撮像開始とともに、X線源1-cからコーンビーム状のX線が照射され、照射されたX線は、披検体4内部を透過し減衰されX線源1-cと対向する位置にある2次元検出器2-cの検出素子に入射し信号処理回路3-cによりデジタル信号に変換される。コーンビームで発生されるX線が披検体4の全領域を透過し披検体4の形状、材質、内部状況を反映したX線減衰量が2次元検出器2-cの各検出素子により計測され1角度分の投影像が得られる。回転テーブル5が一周する間に、周方向の一定角度ピッチ毎の投影像を撮像する。 At this position, the start angle position in the circumferential direction on the rotary table at the start of imaging is further shifted by a fixed angle from the position when imaged by the X-ray source 1-b and the two-dimensional detector 2-b in front. Start imaging from the new position. At the start of imaging, cone beam X-rays are emitted from the X-ray source 1-c, and the irradiated X-rays are transmitted through the inside of the subject 4 and attenuated to be opposed to the X-ray source 1-c 2 The light is incident on the detection element of the dimensional detector 2-c and is converted into a digital signal by the signal processing circuit 3-c. The X-ray generated by the cone beam passes through the entire region of the subject 4 and the X-ray attenuation amount reflecting the shape, material and internal condition of the subject 4 is measured by each detection element of the two-dimensional detector 2-c. A projected image of one angle is obtained. While the rotary table 5 makes a round, a projection image is taken at a constant angular pitch in the circumferential direction.
 ここで、前々段のX線源1-aと2次元検出器2-aからなる撮像ユニットで得られた投影像データおよび前段のX線源1-bと2次元検出器2-bからなる撮像ユニットで得られた投影像データとを、上記のX線源1-cと2次元検出器2-cからなる撮像ユニットで得られた投影像データに加算して画像再構成処理を実施し、CT像を生成する。得られたCT像から、内部欠陥の有無を判定する。判定の結果、内部欠陥あり、と判定された被検体4は、回転テーブル5上から取り出され、NG品として搬送路8から払い出しされる。欠陥なし、とのOK品と判定された場合は、その後、搬送用台座6上に設置された状態のままに、搬送用台座6とともに搬送路8上を、移動し、X線源1-dと2次元検出器2-dが対向する位置まで移動し、そこでCT撮像のため再度一時停止する。 Here, from the projection image data obtained by the imaging unit consisting of the X-ray source 1-a at the second preceding stage and the two-dimensional detector 2-a, and from the X-ray source 1-b at the former stage and the two-dimensional detector 2-b Image reconstruction processing is performed by adding the projection image data obtained by the imaging unit and the projection image data obtained by the imaging unit consisting of the X-ray source 1-c and the two-dimensional detector 2-c. And generate a CT image. From the obtained CT image, the presence or absence of an internal defect is determined. As a result of the determination, the subject 4 determined to have an internal defect is taken out from the rotary table 5 and paid out from the transport path 8 as an NG product. If it is judged as an OK product with no defect, then it moves on the transport path 8 together with the transport pedestal 6 while being installed on the transport pedestal 6, and the X-ray source 1-d And the two-dimensional detector 2-d move to the opposite position where it is paused again for CT imaging.
 この位置では、撮像開始時の回転テーブル上の円周方向の開始角度位置を、手前のX線源1-cと2次元検出器2-cで撮像した時の位置より、さらに一定角度分ずらした位置から撮像を開始する。撮像開始とともに、X線源1-dからコーンビーム状のX線が照射され、照射されたX線は、披検体4内部を透過し減衰されX線源1-dと対向する位置にある2次元検出器2-dの検出素子に入射し信号処理回路3-dによりデジタル信号に変換される。コーンビームで発生されるX線が披検体4の全領域を透過し披検体4の形状、材質、内部状況を反映したX線減衰量が2次元検出器2-dの各検出素子により計測され1角度分の投影像が得られる。回転テーブル5が一周する間に、周方向の一定角度ピッチ毎の投影像を撮像する。 At this position, the start angle position in the circumferential direction on the rotary table at the start of imaging is further shifted by a fixed angle from the positions when imaged by the X-ray source 1-c and the two-dimensional detector 2-c in front. Start imaging from the new position. At the start of imaging, cone beam X-rays are emitted from the X-ray source 1-d, and the irradiated X-rays are transmitted through the inside of the subject 4 and attenuated to be opposed to the X-ray source 1-d 2 The light is incident on the detection element of the dimensional detector 2-d and converted into a digital signal by the signal processing circuit 3-d. The X-ray generated by the cone beam passes through the entire region of the subject 4 and the X-ray attenuation amount reflecting the shape, material, and internal condition of the subject 4 is measured by each detection element of the two-dimensional detector 2-d. A projected image of one angle is obtained. While the rotary table 5 makes a round, a projection image is taken at a constant angular pitch in the circumferential direction.
 ここで、それまでのX線源1-a、1-b、1-cと2次元検出器2-a、2-b、2-cからなる撮像ユニットで得られた投影像データとを、上記のX線源1-dと2次元検出器2-dからなる撮像ユニットで得られた投影像データに加算して画像再構成処理を実施し、CT像を生成する。撮像を終了した被検体4は、搬送用台座6上に設置された状態のままに、搬送用台座6とともに搬送路8上を、OK品/NG品最終払い出し位置に移動する。この位置では、最終払い出し用ロボット11により、撮像したCT像に基づく判定結果からOK品をOK品ステージ13、NG品をNG品ステージ14に区分けする。被検体4が払い出された搬送用台座6は再び、被検体4投入位置に移動し、投入用ロボット12により、次の被検体4が、投入準備ステージ15から搬送路8上の待ち受け位置に移動した搬送用台座6上の回転テーブル5に設置される。 Here, projection image data obtained by the imaging unit consisting of the X-ray sources 1-a, 1-b, 1-c and the two-dimensional detectors 2-a, 2-b, 2-c up to that point are An image reconstruction process is performed by adding to the projection image data obtained by the imaging unit including the X-ray source 1-d and the two-dimensional detector 2-d described above, and a CT image is generated. The subject 4 whose imaging has been completed moves on the transport path 8 along with the transport pedestal 6 to the OK product / NG product final dispensing position while being placed on the transport pedestal 6. At this position, an OK product is classified into an OK product stage 13 and an NG product into an NG product stage 14 based on the determination result based on the captured CT image by the final dispensing robot 11. The transport base 6 from which the subject 4 has been dispensed again moves to the subject 4 loading position, and the next robot 4 places the next subject 4 from the loading preparation stage 15 to the standby position on the transport path 8 by the loading robot 12. It is installed on the rotating table 5 on the moved transfer pedestal 6.
 前述までの一連の動作を連続して継続実行する。X線源1-a、1-b、1-c、1-dと2次元検出器2-a、2-b、2-c、2-dからなる各撮像ユニットは、同期して作動し本実施例では、4個の被検体4が同時に各撮像ユニットでコーンビームX線が照射されCT撮像が実施される。そのため、各撮像ユニット間には、隣接するX線ガンからの散乱線を防止するため、遮蔽版9-a、9-b、9-cが設置される。図2に示した様に、遮蔽版9-a、9-b、9-cは門型の構造からなり、搬送路8上には被検体4を設置した搬送用台座6が通過可能な空間を有し、搬送路8上の搬送用台座6が移動時のみシャッターが上昇し通過可能な空間を出現させる。X線源1-a、1-b、1-c、1-dがX線を照射している撮像時には、同シャターは閉じた状態になり散乱線を防止する。また、これらの搬送用台座6には、各撮像ユニット毎の投影像を位置あわせするために、位置決めピン7-a、7-bを設置する。これらは、各撮像ユニットでの問う円蔵を加算するプロセスにおいて、位置決めピン7-a、7-bの投影像を基準にして各ユニットの投影像を加算してゆく。 The series of operations described above are continuously executed continuously. The imaging units comprising the X-ray sources 1-a, 1-b, 1-c and 1-d and the two-dimensional detectors 2-a, 2-b, 2-c and 2-d operate in synchronization with each other. In the present embodiment, CT imaging is performed by simultaneously irradiating a cone beam X-ray of four subjects 4 with each imaging unit. Therefore, shield plates 9-a, 9-b and 9-c are provided between the imaging units in order to prevent scattered radiation from the adjacent X-ray guns. As shown in FIG. 2, the shielding plates 9-a, 9-b, 9-c have a gate-shaped structure, and a space through which the transport pedestal 6 on which the subject 4 is installed can pass through the transport path 8. The shutter is raised only when the transport pedestal 6 on the transport path 8 moves, and a passable space appears. During imaging in which the X-ray sources 1-a, 1-b, 1-c, 1-d are emitting X-rays, the shutter is closed to prevent scattered radiation. Further, positioning pins 7-a and 7-b are provided on these transfer pedestals 6 in order to align the projected images of the respective imaging units. In these processes, the projection images of the respective units are added on the basis of the projection images of the positioning pins 7-a and 7-b in the process of adding the encircling question in each imaging unit.
 図2には、本実施例におけるX線インライン検査システム装置のX線による撮像実施部分の鳥瞰図を示した。隣接してX線源を設置し照射するため、各撮像ユニット間には、隣接X線管からの散乱線流入を防止するために遮蔽版9-a、9-b、9-cを設ける。遮蔽版9-a、9-b、9-cには、ベルトコンベア上の被検体を通過させるための貫通孔を設ける。また、被検体を各撮像ユニットで撮像するための搬送用台座6には、被検体の各投影像に写りこむように位置決めピン7-a、7-bが設けられる。各撮像ユニットでの各投影像を加算する際には、この位置決めピン撮像位置を基準として投影像データを読み込んでゆく。 FIG. 2 shows a bird's-eye view of an X-ray imaging implementation portion of the X-ray in-line inspection system apparatus in the present embodiment. In order to install and irradiate an X-ray source adjacent to each other, shielding plates 9-a, 9-b and 9-c are provided between the imaging units in order to prevent the inflow of scattered radiation from the adjacent X-ray tube. The shielding plates 9-a, 9-b, 9-c are provided with through holes for passing the subject on the belt conveyor. Further, positioning pins 7-a and 7-b are provided on the transport pedestal 6 for imaging the subject with each imaging unit, so as to be reflected in the projected images of the subject. When adding each projection image in each imaging unit, projection image data is read with reference to the positioning pin imaging position.
 図3には本実施例を用いた撮像方法の処理フローを示した。本実施例では、まず、S100においてロボットにより検査対象の被検体を本装置上の搬送用台座6の回転テーブル上に投入する。次にS101において、検査対象の製品の被検体4を、搬送用台座6の回転テーブル5上に設置した状態で、搬送用台座6全体をベルトコンベア8上で移動させ、始めの撮像ユニット位置に設置する。始めの撮像ユニット位置は、X線源1-aと2次元検出素子配列ユニット2-aが相対する中間位置で、搬送台座6の回転テーブル5上に設置された被検体4が、X線源1-aのコーンビーム照射角度範囲内に全領域含まれる位置とする。次にS102において、回転テーブル5上の被検体を一定角度ピッチで全週回転させることにより、一定角度ピッチでの投影像を取得する。 FIG. 3 shows the processing flow of the imaging method using the present embodiment. In the present embodiment, first, at S100, the robot subjects the subject to be inspected to the loading table on the transport pedestal 6 on the apparatus. Next, in step S101, with the subject 4 of the product to be inspected installed on the rotary table 5 of the transport pedestal 6, the entire transport pedestal 6 is moved on the belt conveyor 8 to the first imaging unit position. Install. The first imaging unit position is an intermediate position where the X-ray source 1-a and the two-dimensional detection element array unit 2-a are opposed to each other, and the subject 4 installed on the rotary table 5 of the transport pedestal 6 is the X-ray source The entire area is included within the cone beam irradiation angle range of 1-a. Next, in S102, the subject on the rotary table 5 is rotated for a whole week at a constant angle pitch to obtain a projection image at a constant angle pitch.
 図3の本実施例では、0.4度ピッチで全周900枚の投影像を取得する。これにより一定角度ピッチ投影データ(1)101が得られる。図4の(a)(b)(c)(d)には、それぞれ、角度ピッチ0度、90度、180度、270度での取得投影像例を示した。 In the present embodiment shown in FIG. 3, 900 projected images are obtained at a pitch of 0.4 degrees. Thus, constant angle pitch projection data (1) 101 is obtained. FIGS. 4A, 4B, 4C, and 4D show examples of acquired projected images at angle pitches of 0 degrees, 90 degrees, 180 degrees, and 270 degrees, respectively.
 次にS103において、一定角度ピッチ投影データ(1)101を用いて3次元画像再構成演算を実施する。この再構成処理により、被検体4の3次元CT像が生成される。 Next, in S103, a three-dimensional image reconstruction calculation is performed using the constant angle pitch projection data (1) 101. By this reconstruction process, a three-dimensional CT image of the subject 4 is generated.
 S104において、得られた被検体4の3次元CT像と内部欠陥のない健全な被検体4のCT撮像画像とを比較し、内部欠陥の有無による健全性評価を実施する。S105において内部欠陥なし、と判定された場合は、S107の隣接する次の撮像ユニット位置への移動を実施する。また、S105において内部欠陥あり、と判定された場合は、S118において3次元CT像から内部欠陥の3次元形状、体積、位置等の内部欠陥特性量を計算する。その後、対象製品はS119においてベルトコンベア8から払い出され、隣接された次の撮像ユニットには被検体4は移動せず、被検体4が設置されていない空の回転テーブル5と搬送用台座6のみが隣接する撮像ユニットに移動してゆく。 In S104, the obtained three-dimensional CT image of the subject 4 is compared with the CT image of the healthy subject 4 having no internal defect, and the soundness evaluation is performed based on the presence or absence of the internal defect. If it is determined in S105 that there is no internal defect, the movement to the next adjacent imaging unit position in S107 is performed. If it is determined in S105 that there is an internal defect, in S118, internal defect characteristic quantities such as the three-dimensional shape, volume, position, etc. of the internal defect are calculated from the three-dimensional CT image. Thereafter, the target product is discharged from the belt conveyor 8 in S119, and the subject 4 does not move to the next imaging unit adjacent to the target conveyor unit, and the empty rotary table 5 and the transfer pedestal 6 in which the subject 4 is not installed. Only move to the adjacent imaging unit.
 S107において隣接する次の撮像ユニット位置へ移動した後、X線源1-bと2次元検出素子配列ユニット2-bが相対する中間位置で、搬送台座6の回転テーブル5上に設置された被検体4が、X線源2-aのコーンビーム照射角度範囲内に全領域含まれる位置で一時固定される。この2番目の撮像ユニット位置に設定された後、S108において投影像取得開始位置設定として回転テーブルを指定角度分、回転させる。本実施例では、0.1度分周方向に回転し投影像取得開始位置とする。図4の(b)に、2番目の撮像ユニット位置での投影像取得開始位置とその後の一定角度ピッチでの撮像投影像角度を示した。 After moving to the next imaging unit position adjacent in S107, the X-ray source 1-b and the two-dimensional detection element array unit 2-b are placed on the rotary table 5 of the transport pedestal 6 at an intermediate position facing each other. The subject 4 is temporarily fixed at a position including the entire area within the cone beam irradiation angle range of the X-ray source 2-a. After the second imaging unit position is set, the rotation table is rotated by a designated angle as a projection image acquisition start position setting in S108. In this embodiment, it is rotated in the direction of 0.1 degree division to be a projection image acquisition start position. FIG. 4B shows the projection image acquisition start position at the second imaging unit position and the imaging projection image angle at a constant angle pitch after that.
 1番目の撮像ユニットでの投影像取得開始軸20を2番目の撮像ユニットでの投影像取得開始指示には、0.1度回転させ2番目の撮像ユニットでの投影像所得開始位置の軸22を設定する、この2番目の撮像ユニットでの投影像所得開始位置の軸22から0.5度のピッチで投影像を取得してゆく。そのため、1番目の撮像ユニットでの投影像取得角度は、0度、0.5度、1.0度、1.5度・・・・となるのに対し、2番目の撮像ユニットでの投影像取得角度は、0.1度、0.6度、1.1度、1.6度・・・・となる。次に、S109において指定した角度ピッチ間隔、本実施例では0.5度、で全周の投影像を取得し、総数900枚の投影像になる。これにより102の2番目の撮像ユニットによる一定角度ピッチ投影データが得られる。 The projection image acquisition start axis 20 in the first imaging unit is rotated by 0.1 degree to the projection image acquisition start instruction in the second imaging unit, and the axis 22 of the projection image income start position in the second imaging unit The projection image is acquired at a pitch of 0.5 degrees from the axis 22 of the projection image income start position in this second imaging unit. Therefore, while the projection image acquisition angle at the first imaging unit is 0 degrees, 0.5 degrees, 1.0 degrees, 1.5 degrees,..., The projection at the second imaging unit The image acquisition angles are 0.1 degrees, 0.6 degrees, 1.1 degrees, 1.6 degrees, and so on. Next, a projection image of the entire circumference is acquired at the angular pitch interval designated in S109, which is 0.5 degrees in this embodiment, and a total of 900 projection images are obtained. As a result, constant angle pitch projection data from the second imaging unit 102 is obtained.
 次に、S110において、101の1番目の投影像角度ピッチデータ(1)を102の2番目の撮像ユニットによる一定角度ピッチ投影データに加えて、3次元画像再構成を実施する。そのため、ここでの3次元画像再構成では、0度、0.1度、0.5度、0.6度、1.0度、1.1度、1.5度、1.6度・・・・となり総数1800枚の投影像から再構成を実施する。この再構成処理により、被検体4の3次元CT像が生成される。S111において、得られた被検体4の3次元CT像と内部欠陥のない健全な被検体4のCT撮像画像とを比較し、内部欠陥の有無による健全性評価を実施する。 Next, in S110, three-dimensional image reconstruction is performed by adding the first projection image angle pitch data (1) of 101 to the constant angle pitch projection data by the second imaging unit of 102. Therefore, in the three-dimensional image reconstruction here, 0 degrees, 0.1 degrees, 0.5 degrees, 0.6 degrees, 1.0 degrees, 1.1 degrees, 1.5 degrees, 1.6 degrees ... and the reconstruction is performed from the total of 1,800 projected images. By this reconstruction process, a three-dimensional CT image of the subject 4 is generated. In S111, the obtained three-dimensional CT image of the subject 4 is compared with the CT image of the healthy subject 4 having no internal defect, and the soundness evaluation is performed based on the presence or absence of the internal defect.
 S112において内部欠陥なし、と判定された場合は、S107の隣接する次の撮像ユニット位置への移動を実施する。また、S113において内部欠陥あり、と判定された場合は、S120において3次元CT像から内部欠陥の3次元形状、体積、位置等の内部欠陥特性量を計算する。その後、対象製品はS121においてベルトコンベア8から払い出され、隣接された次の撮像ユニットには被検体4は移動せず、被検体4が設置されていない空の回転テーブル5と搬送用台座6のみが隣接する撮像ユニットに移動してゆく。 If it is determined in S112 that there is no internal defect, the movement to the next adjacent imaging unit position in S107 is performed. If it is determined in S113 that there is an internal defect, in S120, internal defect characteristic quantities such as the three-dimensional shape, volume, position, etc. of the internal defect are calculated from the three-dimensional CT image. After that, the target product is dispensed from the belt conveyor 8 in S121, and the subject 4 is not moved to the next imaging unit adjacent to it, and the empty rotary table 5 and the transport pedestal 6 in which the subject 4 is not installed. Only move to the adjacent imaging unit.
 このS107からS114の操作を、本実施例では、2番目、3番目、4番目の撮像ユニットで繰り返す。図5の(c)には、N番目の撮像ユニットにおける投影像撮像開始軸24およびそれ以降の一定角度ピッチでの投影像撮像軸25を示した。3番目の撮像ユニット後は、総数2700枚の投影像、4番目の撮像ユニット後は、総数3600枚の投影像で画像再構成を実施する。1番目から4番目の全ての撮像ユニットで撮像した被検体4に対しては、周方向0.1度ピッチで3600枚の投影像で画像再構成を実施する事になる。本実施例では、4個の撮像ユニットから構成されているが、複数N個を配列すれば、1個の撮像ユニットでの投影像撮像ピッチを大きくし撮像時間を短縮可能となる。 The operations from S107 to S114 are repeated in the second, third and fourth imaging units in this embodiment. FIG. 5C shows the projection image pickup start axis 24 in the N-th image pickup unit and the projection image pickup axis 25 at a constant angular pitch thereafter. After the third imaging unit, image reconstruction is performed with a total of 2700 projected images, and after the fourth imaging unit, a total of 3600 projected images. For the subject 4 imaged by all of the first to fourth imaging units, image reconstruction is performed using 3600 projected images at a pitch of 0.1 degree in the circumferential direction. In the present embodiment, four imaging units are configured, but if a plurality of N are arranged, it is possible to increase the projected image imaging pitch in one imaging unit and shorten the imaging time.
 また、本実施例では、各撮像ユニット毎に再構成を実施し内部欠陥判定を実施するために、相対的に大きな内部欠陥に対しては、複数の撮像ユニットの初期の段階で判定が可能となるために、撮像データを必要最小限に抑制する事が可能となる。 Further, in the present embodiment, in order to carry out the reconstruction for each imaging unit and to carry out the internal defect determination, it is possible to determine the relatively large internal defect at the initial stage of the plurality of imaging units. Therefore, it is possible to suppress imaging data to the necessary minimum.
 図6を用いて実施例2について説明すえる。被検体4の投影像を取得する放射線源としてX線だけでなく中性子を用いても同様の構成で同様の効果が得られる。図6にはX線源の替わりに小型中性子源26-a、26-b、26-c、26-d(放射線源)および中性子検出用の2D検出器27-a、27-b、27-c、27-dを用いた例を示した。 The second embodiment will be described with reference to FIG. Even if not only X-rays but also neutrons are used as a radiation source for acquiring a projection image of the subject 4, similar effects can be obtained with the same configuration. In FIG. 6, instead of the X-ray source, small neutron sources 26-a, 26-b, 26-c, 26-d (radiation sources) and 2D detectors 27-a, 27-b, 27- for neutron detection are used. An example using c, 27-d is shown.
 本発明によれば、量産鋳造品のインラインでの内部欠陥検査において、製造タクトタイム内に対象被検体の内部欠陥の有無および内部欠陥が存在する場合に、その3次元形状、体積、位置等の詳細情報の計測評価を実現させるX線インライン検査方法および装置を提供する事ができる。また、鋳造品に限らず一般の機械部品でも内部構造の非破壊による可視化が製造ライン上で可能となるため、これらの機械部品の品質向上に繋げる事ができる。 According to the present invention, in the in-line internal defect inspection of a mass-produced cast product, if there is an internal defect and an internal defect of the target object within the manufacturing tact time, the three-dimensional shape, volume, position, etc. It is possible to provide an X-ray in-line inspection method and apparatus for realizing measurement and evaluation of detailed information. Further, not only cast products but also general machine parts can be visualized on a production line by nondestructive visualization of the internal structure, which can lead to quality improvement of these machine parts.
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 The present invention is not limited to the embodiments described above, but includes various modifications. For example, the embodiments described above are described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the configurations described. Also, part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. In addition, with respect to a part of the configuration of each embodiment, it is possible to add, delete, and replace other configurations.
1-a、1-b、1-c、1-d:X線源
2-a、2-b、2-c、2-d:2次元検出器
3-a、3-b、3-c、3-d:信号処理回路
4:被検査帯
5:回転テーブル
6:搬送用台座
7-a、7-b:位置決めピン
8:ベルトコンベア
9-a、9-b、9-c:遮蔽版
10:画像再構成計算機
11:払い出し用ロボット
12:投入用ロボット
13:OK品ステージ
14:NG品ステージ
15:投入準備ステージ
16:実施例1の装置構成による2次元素子配列検出器ユニット使用時の透過像シミュレーション画像(照射角度θ=0度)
17:実施例1の装置構成による2次元素子配列検出器ユニット使用時の透過像シミュレーション画像(照射角度θ=90度)
18:実施例1の装置構成による2次元素子配列検出器ユニット使用時の透過像シミュレーション画像(照射角度θ=180度)
19:実施例1の装置構成による2次元素子配列検出器ユニット使用時の透過像シミュレーション画像(照射角度θ=270度)
20:実施例1の装置構成による1番目の撮像ユニットでの投影像撮像開始位置の軸
21:実施例1の装置構成による1番目の撮像ユニットでの一定角度ピッチでの投影像撮像の軸
22:実施例1の装置構成による2番目の撮像ユニットでの投影像撮像開始位置の軸
23:実施例1の装置構成による2番目の撮像ユニットでの一定角度ピッチでの投影像撮像の軸
24:実施例1の装置構成によるN番目の撮像ユニットでの投影像撮像開始位置の軸
25:実施例1の装置構成によるN番目の撮像ユニットでの一定角度ピッチでの投影像撮像の軸
26-a、26-b、26-c、26-d:小型中性子源
27-a、27-b、27-c、27-d:中性子検出用の2D検出器
1-a, 1-b, 1-c, 1-d: X-ray source 2-a, 2-b, 2-c, 2-d: two-dimensional detector 3-a, 3-b, 3-c , 3-d: signal processing circuit 4: inspection zone 5: rotation table 6: transfer base 7-a, 7-b: positioning pin 8: belt conveyor 9-a, 9-b, 9-c: shield plate 10: Image reconstruction computer 11: Dispensing robot 12: Entry robot 13: OK stage 14: NG stage 15: entry preparation stage 16: 2D element array detector unit according to the first embodiment is used Transmission image simulation image (irradiation angle θ = 0 degrees)
17: Transmission image simulation image (irradiation angle θ = 90 degrees) when using the two-dimensional element array detector unit according to the apparatus configuration of the first embodiment
18: Transmission image simulation image (irradiation angle θ = 180 degrees) when using the two-dimensional element array detector unit according to the apparatus configuration of the first embodiment
19: Transmission image simulation image (irradiation angle θ = 270 degrees) when using the two-dimensional element array detector unit according to the apparatus configuration of the first embodiment
20: Axis 21 of projection image imaging start position in the first imaging unit according to the apparatus configuration of the first embodiment: Axis 22 of projection image imaging at a constant angular pitch in the first imaging unit according to the apparatus configuration of the first embodiment Axis 23 of projection image imaging start position in the second imaging unit according to the apparatus configuration of Embodiment 1 Axis 24 of projection image imaging at a constant angular pitch in the second imaging unit according to the apparatus configuration of Embodiment 1: Axis 25 of projection image imaging start position in the Nth imaging unit according to the apparatus configuration of the first embodiment: axis 26-a of projection image imaging at a constant angular pitch in the Nth imaging unit according to the apparatus configuration of the first embodiment , 26-b, 26-c, 26-d: compact neutron source 27-a, 27-b, 27-c, 27-d: 2D detector for neutron detection

Claims (5)

  1.  放射線を照射する放射線源と、
     撮像対象である被検体を透過した前記放射線を検出する検出器と、
     前記放射線源と前記検出器の間に前記被検体を移動させる駆動機構と、
     前記検出器で計測された放射線透過量を数値化する信号処理回路と、
     前記信号処理回路の信号を元に画像を構成する演算装置からなるX線インライン検査装置におけるX線インライン検査方法において、
     前記放射線源と前記検出器からなる撮像ユニットを複数、連続して構成配置し、各撮像ユニット毎に撮像対象被検体の撮像開始周方向位置を一定角度間隔で移動させ、各撮像ユニット毎に撮像投影像を順次加算して画像再構成し、内部欠陥形状を算出し内部欠陥の有無を判定することを特徴とするX線インライン検査方法。
    A radiation source for emitting radiation;
    A detector for detecting the radiation transmitted through a subject to be imaged;
    A drive mechanism for moving the object between the radiation source and the detector;
    A signal processing circuit that digitizes the amount of radiation transmission measured by the detector;
    In an X-ray in-line inspection method in an X-ray in-line inspection apparatus comprising an arithmetic device which forms an image based on a signal of the signal processing circuit,
    A plurality of imaging units including the radiation source and the detector are continuously arranged, and the imaging start circumferential direction position of the imaging target object is moved at a constant angular interval for each imaging unit, and imaging is performed for each imaging unit An X-ray in-line inspection method comprising: sequentially adding a projected image to reconstruct an image; calculating an internal defect shape; and determining the presence or absence of an internal defect.
  2.  放射線を照射する放射線源と、
     撮像対象である被検体を透過した前記放射線を検出する検出器と、
     前記放射線源と前記検出器の間に前記被検体を移動させる駆動機構と、
     前記検出器で計測された放射線透過量を数値化する信号処理回路と、
     前記信号処理回路の信号を元に画像を構成する演算装置からなるX線インライン検査装置において、
     前記放射線源と前記検出器からなる撮像ユニットは複数、連続して構成配置されており、
     前記駆動機構は、各撮像ユニット毎に撮像対象被検体の撮像開始周方向位置を一定角度間隔で移動させ、
     前記演算装置は、各撮像ユニット毎に撮像投影像を順次加算して画像再構成し、内部欠陥形状を算出し内部欠陥の有無を判定することを特徴とするX線インライン検査装置。
    A radiation source for emitting radiation;
    A detector for detecting the radiation transmitted through a subject to be imaged;
    A drive mechanism for moving the object between the radiation source and the detector;
    A signal processing circuit that digitizes the amount of radiation transmission measured by the detector;
    In an X-ray in-line inspection apparatus comprising an arithmetic device which forms an image based on a signal of the signal processing circuit,
    A plurality of imaging units comprising the radiation source and the detector are continuously arranged.
    The drive mechanism moves the imaging start circumferential direction position of the imaging target object for each imaging unit at a constant angular interval,
    The X-ray in-line inspection apparatus according to claim 1, wherein the arithmetic unit reconstructs an image by sequentially adding captured and projected images for each imaging unit, calculates an internal defect shape, and determines the presence or absence of an internal defect.
  3.  請求項2に記載のX線インライン検査装置において、
     隣接する各撮像ユニット間に散乱線防止板を有し、
     前記駆動機構は搬送用台座上に回転テーブルを設けた移動台座を有し、
     前記搬送用台座には投影像加算時に座標位置合わせの指標となる位置決めピンを有する事を特徴とするX線インライン検査装置。
    In the X-ray in-line inspection apparatus according to claim 2,
    It has a scattered radiation prevention plate between adjacent imaging units,
    The drive mechanism has a movable pedestal provided with a rotary table on a conveyance pedestal,
    The X-ray in-line inspection apparatus according to the present invention, wherein the transfer base has a positioning pin which is an index of coordinate alignment at the time of projection image addition.
  4.  請求項2に記載のX線インライン検査装置において、
     前記検出器は、検出素子として2次元素子配列を用い、半導体検出器又はシンチレータ型検出器を用いる事を特徴とするX線インライン検査装置。
    In the X-ray in-line inspection apparatus according to claim 2,
    The detector uses a two-dimensional element array as a detection element, and uses a semiconductor detector or a scintillator detector.
  5.  請求項2に記載のX線インライン検査装置において、
     前記放射線源として小型中性子源を用いる事を特徴とするX線インライン検査装置。
    In the X-ray in-line inspection apparatus according to claim 2,
    An X-ray in-line inspection apparatus characterized by using a small neutron source as the radiation source.
PCT/JP2017/046300 2017-12-25 2017-12-25 X-ray in-line detection method and device WO2019130373A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/046300 WO2019130373A1 (en) 2017-12-25 2017-12-25 X-ray in-line detection method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/046300 WO2019130373A1 (en) 2017-12-25 2017-12-25 X-ray in-line detection method and device

Publications (1)

Publication Number Publication Date
WO2019130373A1 true WO2019130373A1 (en) 2019-07-04

Family

ID=67066850

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/046300 WO2019130373A1 (en) 2017-12-25 2017-12-25 X-ray in-line detection method and device

Country Status (1)

Country Link
WO (1) WO2019130373A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6073443A (en) * 1983-09-30 1985-04-25 Toshiba Corp Radiation tomographic device
US20160334535A1 (en) * 2014-01-16 2016-11-17 Smiths Heimann Gmbh Method and x-ray inspection system, in particular for non-destructively inspecting objects
JP2017142217A (en) * 2016-02-12 2017-08-17 国立大学法人京都工芸繊維大学 Imaging apparatus and imaging method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6073443A (en) * 1983-09-30 1985-04-25 Toshiba Corp Radiation tomographic device
US20160334535A1 (en) * 2014-01-16 2016-11-17 Smiths Heimann Gmbh Method and x-ray inspection system, in particular for non-destructively inspecting objects
JP2017142217A (en) * 2016-02-12 2017-08-17 国立大学法人京都工芸繊維大学 Imaging apparatus and imaging method

Similar Documents

Publication Publication Date Title
US4415980A (en) Automated radiographic inspection system
JP2019219267A (en) In-line internal defect inspection method and system
US10024808B2 (en) Collection of tomographic inspection data using compton scattering
KR20010081097A (en) Computerized tomography for non-destructive testing
US20210181125A1 (en) Radiation transmission inspection method and device, and method of manufacturing microporous film
US7197830B2 (en) Alignment quality indicator
JP2014009976A (en) Three-dimensional shape measurement x-ray ct device and three-dimensional shape measurement method by x-ray ct device
Syryamkin et al. Digital X-ray Tomography: Edited by VI Syryamkin
CN109791115B (en) Neutron radiography method and device for implementing same
KR101862692B1 (en) Inspection devices, inspection methods and inspection systems
KR101480968B1 (en) Inspection apparatus and inspection method using x-ray computed tomography and laser surface scanning
WO2019130373A1 (en) X-ray in-line detection method and device
US8199878B2 (en) Methods and systems for performing differential radiography
JP5965799B2 (en) X-ray tomography method and X-ray tomography apparatus
US20190025231A1 (en) A method of detection of defects in materials with internal directional structure and a device for performance of the method
JP5799107B2 (en) Method and evaluation apparatus for determining the position of a structure located within an inspection object by means of an X-ray computed tomograph
WO2018092256A1 (en) Inline x-ray inspection system and imaging method for inline x-ray inspection system
JP2010204060A (en) X-ray inspection device, and inspection method of the same
US11604152B2 (en) Fast industrial computed tomography for large objects
JP7051847B2 (en) X-ray in-line inspection method and equipment
JP2013079825A (en) X-ray ct image reconstruction method, and x-ray ct device
RU2718406C1 (en) Method for x-ray inspection of article internal structure
US20130244142A1 (en) Method and Apparatus for Inspecting a Mask Substrate for Defects, Method of Manufacturing a Photomask, and Method of Manufacturing a Semiconductor Device
KR100781393B1 (en) Radiographic control of an object having a crystal lattice
JP7140656B2 (en) X-ray/neutron hybrid imaging system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17935953

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17935953

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP