JP2010204060A - X-ray inspection device, and inspection method of the same - Google Patents

X-ray inspection device, and inspection method of the same Download PDF

Info

Publication number
JP2010204060A
JP2010204060A JP2009052798A JP2009052798A JP2010204060A JP 2010204060 A JP2010204060 A JP 2010204060A JP 2009052798 A JP2009052798 A JP 2009052798A JP 2009052798 A JP2009052798 A JP 2009052798A JP 2010204060 A JP2010204060 A JP 2010204060A
Authority
JP
Japan
Prior art keywords
detector
inspection
ray
ray source
inspection object
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009052798A
Other languages
Japanese (ja)
Inventor
Atsushi Nukaga
淳 額賀
Yasushi Nagumo
靖 名雲
Noriyuki Sadaoka
紀行 定岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi GE Nuclear Energy Ltd
Original Assignee
Hitachi GE Nuclear Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi GE Nuclear Energy Ltd filed Critical Hitachi GE Nuclear Energy Ltd
Priority to JP2009052798A priority Critical patent/JP2010204060A/en
Publication of JP2010204060A publication Critical patent/JP2010204060A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve a problem of an inspection device for obtaining transparent data of an inspecting object from various angles by moving a radiation source and a detector in parallel and for obtaining a tomographic image of the inspecting object by reconstituting this data wherein an image cannot be reconstituted when geometric arrangement of the segments for connecting the radiation source to respective detecting elements of the detector is not previously accurately recognized, and information on image reconstitution depends on obtaining of data and an error occurs when vibration occurs in a device under inspection. <P>SOLUTION: In this inspection device including the radiation source and the detector, phantom for calibration is installed between the radiation source and the detector, and a transmission image of a thin line included in the phantom for calibration is obtained synchronously with obtaining of transmission data of a specimen. Using the transmission image of the thin line, the position of the radiation source during data obtaining and the distance between the radiation source and detector are derived. In an imaging data correction method and the inspection device, a correction data of a transmission route is calculated based on the geometric arrangement, and the image reconstitution is executed using this. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、X線検査装置及びX線検査方法に関する。   The present invention relates to an X-ray inspection apparatus and an X-ray inspection method.

発電所等で長期間使用されている配管は、内部減肉が生じる。内部減肉は、配管内部を流れる流体が配管の内壁面に繰り返し衝突することにより、表面が機械的に損傷を受け、その一部が脱離する現象(エロージョン)と、化学的作用による腐食(コロージョン)との相互作用により発生する。特に、曲がり個所,オリフィスなど流体の流れに乱れが生じる個所に、内部減肉は多く発生する。この減肉量が限界値を超えると、運転時の圧力に配管が耐えられず配管損傷が生じ、重大事故が発生する。   Pipes that have been used for a long time at power plants, etc., cause internal thinning. Internal thinning is a phenomenon in which the fluid flowing inside the pipe repeatedly collides with the inner wall surface of the pipe, causing the surface to be mechanically damaged and partly detaching (erosion) and corrosion due to chemical action ( It is generated by interaction with (corrosion). In particular, many internal thinnings occur at places where the flow of fluid is disturbed, such as bent places and orifices. If the amount of thinning exceeds the limit value, the pipe cannot withstand the operating pressure, resulting in damage to the pipe and a serious accident.

このような事故を未然に防止するため、配管検査が定期的に実施されている。従来の配管検査は、超音波探傷器等で配管に探触子を直接接触させて試験を実施していた。しかし、配管は外部が保温材にて被覆されていることが多い。そのため、超音波探傷は、被覆材を外して試験しなければならなかった。被覆材の撤去や再装着作業に時間と費用がかかり、さらには被覆材の廃棄処理費用が必要になる問題もあった。   In order to prevent such accidents, piping inspections are regularly performed. In the conventional pipe inspection, an ultrasonic flaw detector or the like is used to perform a test by bringing a probe into direct contact with the pipe. However, piping is often covered with a heat insulating material on the outside. Therefore, ultrasonic flaw detection had to be tested with the coating material removed. The removal and remounting of the covering material takes time and expense, and further there is a problem that the disposal cost of the covering material is required.

これに対し、放射線源と検出器の組合せによる配管内部検査は、配管に保温材が被覆された状態でも内部状況検査が可能であり、検査の効率化に有効な手段である(特許文献1)。しかし、透過撮像は、三次元物体の情報が二次元平面上に投影されるため、減肉の位置や形状を把握したり、減肉を定量評価することが困難である。   On the other hand, the pipe internal inspection by the combination of the radiation source and the detector is an effective means for improving the inspection efficiency because the internal state inspection is possible even when the heat insulating material is coated on the pipe (Patent Document 1). . However, in transmission imaging, since information on a three-dimensional object is projected on a two-dimensional plane, it is difficult to grasp the position and shape of the thinning and to quantitatively evaluate the thinning.

そこで、配管内部情報を立体的に得るための有効な方法の一つに、CT(Computed Tomography)がある。CTは放射線源と検出器を検査対象物の周囲で回転させることにより、検査対象物の全周方向から透過データを取得し、画像再構成演算により断面像を得る方法である。これにより、ミリメートル以下の分解能を持つ画像が得られる。しかし、発電所などのプラントは、配管周囲に放射線源と検出器を回転させ得る空間がない場合も多い。そこで、放射線源と検出器を平行移動させることで検査対象物の断層像を求め、立体情報を得るCL(Computed Laminography)方式による検査手法が開発されている(非特許文献1)。   Therefore, CT (Computed Tomography) is one of effective methods for obtaining the pipe internal information three-dimensionally. CT is a method for obtaining transmission data from the entire circumference of an inspection object by rotating a radiation source and a detector around the inspection object and obtaining a cross-sectional image by image reconstruction calculation. As a result, an image having a resolution of millimeters or less can be obtained. However, a plant such as a power plant often does not have a space around which a radiation source and a detector can be rotated. In view of this, an inspection method based on a CL (Computed Laminography) method has been developed in which a tomographic image of an inspection object is obtained by translating a radiation source and a detector to obtain three-dimensional information (Non-Patent Document 1).

特開平9−89810号公報JP-A-9-89810

S.Gondrom, S.Schropfer :“Digital computed laminography and tomosynthesis - functional principles and industrial applications”Proceedings BB 67-CD, Computerized Tomography for Industrial Applications and Image Processing in Radiography (1999)S. Gondrom, S. Schropfer: “Digital computed laminography and tomosynthesis-functional principles and industrial applications” Proceedings BB 67-CD, Computerized Tomography for Industrial Applications and Image Processing in Radiography (1999)

上記CL方式は、放射線源と検出器を平行移動することで、検査対象物の様々な角度からの撮像データを得る。この撮像データを再構成することで、検査対象物の断層像を得る。しかしながら、CL方式は通常のCT方式と異なり、回転動作によるデータ取得を行っていない。CT方式は回転中心が求まれば、各検出素子と放射線源とを結ぶ線分と回転中心軸との距離及び角度により、各検出素子が検出した撮像データを再配置することが可能である。一方、CL方式は回転中心がないため、放射線源と検出器の各検出素子とを結ぶ線分の幾何配置を正確に把握しなければ、画像再構成ができない。また、検査中に振動が生じた場合、画像を再構成するために必要な情報が撮像時点ごとに異なり、誤差が生じる。この誤差により、再構成画像の精度が低下するという問題もあった。   The CL method obtains imaging data from various angles of the inspection object by moving the radiation source and the detector in parallel. By reconstructing this imaging data, a tomographic image of the inspection object is obtained. However, unlike the normal CT method, the CL method does not acquire data by rotating operation. In the CT method, if the rotation center is obtained, the imaging data detected by each detection element can be rearranged according to the distance and angle between the line segment connecting each detection element and the radiation source and the rotation center axis. On the other hand, since the CL method does not have a rotation center, image reconstruction cannot be performed unless the geometrical arrangement of line segments connecting the radiation source and each detector element of the detector is accurately grasped. In addition, when vibration occurs during inspection, information necessary for reconstructing an image differs at each imaging time point, and an error occurs. Due to this error, there is a problem that the accuracy of the reconstructed image is lowered.

そこで本発明は、画像の再構成をより高精度にすることを目的とする。   Accordingly, an object of the present invention is to make the reconstruction of an image more accurate.

本発明は、X線源が照射するX線の照射領域に設置された校正用ファントムと、検査対象物及び校正用ファントムの透過像に基づいて検査対象物の撮像データを補正する補正手段とを備えることを特徴とする。   The present invention includes a calibration phantom installed in an X-ray irradiation area irradiated by an X-ray source, and a correction unit that corrects imaging data of the inspection object based on the inspection object and a transmission image of the calibration phantom. It is characterized by providing.

本発明によれば、画像の再構成をより高精度にすることができる。   According to the present invention, the reconstruction of an image can be made with higher accuracy.

実施例1の機器構成を示す図である。1 is a diagram illustrating a device configuration of Example 1. FIG. 検査装置の画像再構成領域を示した模式図である。It is the schematic diagram which showed the image reconstruction area | region of the test | inspection apparatus. 垂直細線の透過像からX線源の位置を導出する原理を示す模式図である。It is a schematic diagram which shows the principle which derives | leads-out the position of an X-ray source from the transmission image of a perpendicular | vertical thin line. 校正用ファントムの配置場所の一例を示す模式図である。It is a schematic diagram which shows an example of the arrangement place of the calibration phantom. 垂直細線の透過像を用いてX線源と検出器間の距離を導出する原理を示す模式図である。It is a schematic diagram which shows the principle which derives | leads-out the distance between an X-ray source and a detector using the transmission image of a perpendicular | vertical thin line. 水平細線の透過像を用いてX線源と検出器間の距離を導出する原理を示す模式図である。It is a schematic diagram which shows the principle which derives | leads-out the distance between an X-ray source and a detector using the transmission image of a horizontal fine line. 水平細線の透過像において、細線径方向のX線減衰量を示す模式図である。It is a schematic diagram which shows the X-ray attenuation amount of a fine wire diameter direction in the transmission image of a horizontal fine wire. 配管の透過像を示す模式図である。It is a schematic diagram which shows the permeation | transmission image of piping. 本実施例の検査装置による配管検査方法を示す図である。It is a figure which shows the piping inspection method by the inspection apparatus of a present Example. 校正用ファントムの製作方法を示す模式図である。It is a schematic diagram which shows the manufacturing method of the phantom for calibration. 実施例3の機器構成を示す模式図である。FIG. 6 is a schematic diagram illustrating a device configuration of Example 3. 実施例4の機器構成を示す模式図である。FIG. 6 is a schematic diagram illustrating a device configuration of Example 4.

以下、実施例を説明する。   Examples will be described below.

図1は、本実施例の構成を示す。CL方式のX線検査装置1は、X線源201を内部に有したX線管球202と、二次元検出素子である検出器203とを備える。X線源201と検出器203は、検査対象物230を挟んで対向するように配置している。X線源201と検出器203は、支持部材231により相対位置を固定され、移動機構232により検査対象物230に対して移動する。本例において、検査対象物230は配管であり、X線検査装置1は配管長手方向に移動する。   FIG. 1 shows the configuration of this embodiment. The CL-type X-ray inspection apparatus 1 includes an X-ray tube 202 having an X-ray source 201 therein and a detector 203 that is a two-dimensional detection element. The X-ray source 201 and the detector 203 are arranged so as to face each other with the inspection object 230 interposed therebetween. The relative position of the X-ray source 201 and the detector 203 is fixed by the support member 231, and the X-ray source 201 and the detector 203 are moved with respect to the inspection object 230 by the moving mechanism 232. In this example, the inspection object 230 is a pipe, and the X-ray inspection apparatus 1 moves in the pipe longitudinal direction.

検出器203は、シンチレータやシリコンなどの薄膜であり、X線を検出して可視光を出す。そして、フォトダイオードは、この可視光を電気信号へ変換する。フォトダイオードを含む電子回路221は、検出器下部に配置されている。検出面を保護するカバー材220は、検出器上面に設けられている。   The detector 203 is a thin film such as a scintillator or silicon, and detects X-rays to emit visible light. The photodiode then converts this visible light into an electrical signal. An electronic circuit 221 including a photodiode is disposed below the detector. A cover material 220 that protects the detection surface is provided on the upper surface of the detector.

校正用ファントム101はX線源202と検出器203の間に配置される。校正用ファントム101は、アクリルなどのように剛性が高く、かつ比較的放射線の減衰率が小さい部材と、タングステンなどのように放射線の減衰率が大きい材質で製作された細線102,103a,103bを備える。細線102は、部材の内部に垂直に配置されている。2本の細線103aは、部材の上面に水平かつ平行に配置される。2本の細線103bは、部材の下面に水平かつ平行に配置されている。部材の上面と下面は、平滑かつ平行な面となっていることが望ましい。また、校正用ファントム101は、検出器203の検出面と平行となる位置であり、かつX線源から放射されたX線204によってファントム内部の垂直細線102や水平細線103a,103bの透過像が検出器203で検出できるX線の照射領域にあることが望ましい。また、校正用ファントム101は、垂直細線102や水平細線103a,103bが、配管などX線の減衰量が大きい物体を透過する経路以外の位置に設置することが望ましい。   The calibration phantom 101 is disposed between the X-ray source 202 and the detector 203. The calibration phantom 101 includes a member having high rigidity, such as acrylic, and a relatively low radiation attenuation rate, and fine wires 102, 103a, 103b made of a material having a high radiation attenuation rate, such as tungsten. Prepare. The thin wire | line 102 is arrange | positioned perpendicularly | vertically inside the member. The two thin wires 103a are disposed horizontally and parallel to the upper surface of the member. The two thin wires 103b are disposed horizontally and parallel to the lower surface of the member. The upper and lower surfaces of the member are preferably smooth and parallel surfaces. The calibration phantom 101 is in a position parallel to the detection surface of the detector 203, and X-rays 204 emitted from the X-ray source cause transmission images of the vertical fine lines 102 and the horizontal fine lines 103a and 103b inside the phantom. It is desirable to be in an X-ray irradiation region that can be detected by the detector 203. Further, it is desirable that the calibration phantom 101 be installed at a position other than the path through which the vertical thin wire 102 and the horizontal thin wires 103a and 103b transmit an object having a large amount of X-ray attenuation such as piping.

X線管球202は、高圧電源205と冷却器206に接続されており、X線管システム制御部207により常に安定した管電圧と管電流を実現する。検出器制御部208は、検出器203の電子回路221からデータを取り込むタイミングを調整したり、データ収集を行う。X線管システム制御部207,検出器制御部208は、中央制御部209に接続されている。中央制御部209は、各機器の動作タイミングの調整を行う。また、中央制御部209の内部にある演算装置は、データ処理を行う。モニタ210は、装置の動作状態や、検査結果を表示する。   The X-ray tube 202 is connected to a high-voltage power source 205 and a cooler 206, and the X-ray tube system control unit 207 always realizes a stable tube voltage and tube current. The detector control unit 208 adjusts the timing for fetching data from the electronic circuit 221 of the detector 203 and collects data. The X-ray tube system control unit 207 and the detector control unit 208 are connected to the central control unit 209. The central control unit 209 adjusts the operation timing of each device. In addition, the arithmetic device inside the central control unit 209 performs data processing. The monitor 210 displays the operation state of the apparatus and the inspection result.

本実施例のX線検査装置は、X線管球202と検出器203を同時、あるいはいずれか一方のみを配管の長さ方向に並進させ、検査対象物の撮像データを取得し、撮像データを再構成し、断層像を得る。図2は、画像再構成領域を格子301に区切った例を示す。本実施例のように、CL方式の検査装置は、通常のCT装置のような回転運動を行わない。そのため、CL方式の検査装置が装置の幾何配置を導出する時、回転中心から相対位置を算出することができない。画像再構成は、X線源201と検出器203の各検出素子とを結ぶ線分が画像再構成領域の格子301と交差する位置、格子301を通過する線分の長さ、及び、画像再構成領域における検査対象物230の位置を算出しなければならない。そのため、X線源201と検出器203の位置と距離,検査対象物230の位置、及び並進時の装置振動による位置変化を算出する検査フローを説明する。   In the X-ray inspection apparatus of this embodiment, the X-ray tube 202 and the detector 203 are simultaneously translated, or only one of them is translated in the length direction of the pipe, the imaging data of the inspection object is acquired, and the imaging data is obtained. Reconstruct and obtain a tomogram. FIG. 2 shows an example in which the image reconstruction area is divided into grids 301. As in the present embodiment, the CL-type inspection apparatus does not perform a rotational movement unlike a normal CT apparatus. Therefore, when the CL inspection apparatus derives the geometric arrangement of the apparatus, the relative position cannot be calculated from the rotation center. Image reconstruction consists of the position where the line segment connecting the X-ray source 201 and each detector element of the detector 203 intersects the grid 301 in the image reconstruction area, the length of the line segment passing through the grid 301, and the image reconstruction. The position of the inspection object 230 in the configuration area must be calculated. Therefore, an inspection flow for calculating the position and distance between the X-ray source 201 and the detector 203, the position of the inspection object 230, and the position change due to the apparatus vibration during translation will be described.

図9は、本実施例の検査フローを示した図である。まず装置(校正用ファントムを除く)を現地で組み立てる(手順801)。次に、校正用ファントム101を検出器203のカバー材220に取り付ける。ここで、校正用ファントムの透過像が配管投影領域以外の場所に投影されるように、検出器の前面に校正用ファントムを設置し、検出器に対する校正用ファントムの角度を調整する(手順802)。また、校正用ファントムの垂直細線と水平細線が、それぞれ検出器に対して垂直,水平となるように、校正用ファントムを取り付ける。   FIG. 9 is a diagram showing an inspection flow of this embodiment. First, the device (except for the calibration phantom) is assembled locally (procedure 801). Next, the calibration phantom 101 is attached to the cover material 220 of the detector 203. Here, the calibration phantom is installed on the front surface of the detector so that the transmission image of the calibration phantom is projected to a place other than the pipe projection region, and the angle of the calibration phantom with respect to the detector is adjusted (step 802). . In addition, the calibration phantom is attached so that the vertical and horizontal fine wires of the calibration phantom are perpendicular and horizontal to the detector, respectively.

検出器に校正用ファントムを取り付けた後、X線源201は、配管及び校正用ファントムにX線照射を開始する。検出器制御部208は、校正用ファントム及び配管などの検査対象物230の撮像データを取得する(手順803)。中央制御部209は、校正用ファントムの撮像データからX線源201と検出器203の幾何配置を導出する。また、配管の撮像データに基づき、配管透過像の特徴量を抽出し、この特徴量を初期値とする(手順804)。   After the calibration phantom is attached to the detector, the X-ray source 201 starts X-ray irradiation on the piping and the calibration phantom. The detector control unit 208 acquires imaging data of the inspection object 230 such as a calibration phantom and piping (step 803). The central control unit 209 derives the geometric arrangement of the X-ray source 201 and the detector 203 from the imaging data of the calibration phantom. Further, a feature value of the pipe transmission image is extracted based on the imaging data of the pipe, and this feature value is set as an initial value (procedure 804).

X線源と検出器を平行移動させながら、検出器が配管と校正用ファントムの撮像データを一定の時間間隔ごとに取得する(手順805)。手順805は、各撮像時点において、配管と校正用ファントムの撮像データを取得する。校正用ファントムの撮像データに基づき、手順804と同様の方法によって、各撮像時点におけるX線源201と検出器203との幾何配置を算出する。また、各撮像時点におけるX線源201と検出器203に対する配管位置の変化量も、配管特徴量の変化量に基づき導出する。このように、X線源と検出器の幾何配置、及びX線源と検出器に対する配管位置の変化量に基づき、X線源201,検出器203及び配管230の相対位置を各撮像時点ごとに導出する(手順806)。各撮像時点において、相対位置情報から配管の撮像データを補正し、補正透過データを作成する(手順807)。補正透過データから画像再構成を実施し、配管断層像を得る(手順808)。   While moving the X-ray source and the detector in parallel, the detector acquires imaging data of the piping and the calibration phantom at regular time intervals (step 805). In step 805, imaging data of the piping and the calibration phantom is acquired at each imaging time point. Based on the imaging data of the calibration phantom, the geometric arrangement of the X-ray source 201 and the detector 203 at each imaging time is calculated by the same method as in the procedure 804. Also, the amount of change in the piping position with respect to the X-ray source 201 and the detector 203 at each imaging time point is derived based on the amount of change in the piping feature amount. As described above, the relative positions of the X-ray source 201, the detector 203, and the pipe 230 are determined for each imaging time point based on the geometric arrangement of the X-ray source and the detector and the amount of change in the pipe position with respect to the X-ray source and the detector. Derived (procedure 806). At each imaging time point, the imaging data of the pipe is corrected from the relative position information, and corrected transmission data is created (step 807). Image reconstruction is performed from the corrected transmission data, and a pipe tomogram is obtained (procedure 808).

次に、校正用ファントムの撮像データに基づき、各撮像時点におけるX線源と検出器の幾何配置を算出する方法を説明する。図3は、垂直細線102の透過像を示した図である。本実施例の検出器203は二次元検出面を有しているため、検出器203は平面透過像を検出する。図3は、垂直細線102が4本の場合である。X線源201は1mm未満の微小な大きさであり、X線を放射状に照射する。そのため、垂直細線102の透過像401は、垂直細線102からX線源201を見込んだ方向の反対側に投影される。よって、図3に示すように、それぞれの垂直細線102の透過像401a,401b,401c,401dを延長した線分402a,402b,402c,402dの交点403は、X線源201の平面位置を示す。X線源201は、交点403の上部に位置する。   Next, a method for calculating the geometric arrangement of the X-ray source and the detector at each imaging time point based on the imaging data of the calibration phantom will be described. FIG. 3 is a view showing a transmission image of the vertical thin line 102. Since the detector 203 of this embodiment has a two-dimensional detection surface, the detector 203 detects a planar transmission image. FIG. 3 shows a case where there are four vertical thin wires 102. The X-ray source 201 has a minute size of less than 1 mm and radiates X-rays radially. Therefore, the transmission image 401 of the vertical thin line 102 is projected on the opposite side of the direction in which the X-ray source 201 is viewed from the vertical thin line 102. Therefore, as shown in FIG. 3, an intersection 403 of line segments 402a, 402b, 402c, and 402d obtained by extending the transmission images 401a, 401b, 401c, and 401d of the respective vertical thin lines 102 indicates a planar position of the X-ray source 201. . The X-ray source 201 is located above the intersection point 403.

垂直細線102は、少なくとも2本以上あればX線源201の位置を導出できる。但し、2本の場合、2本の垂直細線102を結ぶ線分上にX線源201が位置しないことが必要条件となる。また、透過像によりX線源201の位置を導出するため、像の幅は極力細い方が誤差を小さくできる。透過像の幅は検出器203の素子程度が望ましい。よって、垂直細線102の径も同様に検出器203の素子大きさと同程度とすることが望ましい。垂直細線102の数を増加することで、X線源の位置精度が向上する。細線の数をn本とした場合、統計誤差は1/√nで減少する。   If there are at least two vertical thin lines 102, the position of the X-ray source 201 can be derived. However, in the case of two, it is a necessary condition that the X-ray source 201 is not located on a line segment connecting the two vertical thin wires 102. Further, since the position of the X-ray source 201 is derived from the transmission image, the error can be reduced if the width of the image is as narrow as possible. The width of the transmission image is desirably about the element of the detector 203. Therefore, it is desirable that the diameter of the vertical thin wire 102 is also approximately the same as the element size of the detector 203. Increasing the number of vertical thin wires 102 improves the positional accuracy of the X-ray source. When the number of thin lines is n, the statistical error decreases by 1 / √n.

図4は、校正用ファントム101の細線と検査対象物230との関係を示す。細線は、配管などX線の減衰率が大きい物体を透過するX線経路と重ならない位置に設置することが望ましい。検出器203において配管と細線の透過像が重ならず、細線の透過像を精度良く検出することが可能となる。   FIG. 4 shows the relationship between the fine line of the calibration phantom 101 and the inspection object 230. It is desirable that the fine line be installed at a position that does not overlap with an X-ray path that passes through an object having a large X-ray attenuation rate such as a pipe. In the detector 203, the transmission image of the fine line does not overlap with the pipe, and the transmission image of the fine line can be detected with high accuracy.

図5は、垂直配線102によりX線源201と検出器203との距離を導出する概念図を示す。任意の垂直細線102を2本選択し、細線の下端間の距離をL1、上端間の距離をL2とする。また、細線の高さをDとする。これら3つの数値は、校正用ファントム製作時に精密に制御可能である。また、X線源201から垂直細線102下端部までの距離をZ1、上端部までの距離をZ2とし、X線源201と検出器203の検出面までの距離をHとする。これら3つの数値は未知数である。さらに、検出器203で得られた垂直細線の透過像において、下端部透過像の距離をL1′、上端部透過像の距離をL2′とする。   FIG. 5 is a conceptual diagram for deriving the distance between the X-ray source 201 and the detector 203 by the vertical wiring 102. Two arbitrary vertical thin lines 102 are selected, and the distance between the lower ends of the thin lines is L1, and the distance between the upper ends is L2. The height of the fine line is D. These three numerical values can be precisely controlled when the calibration phantom is manufactured. Further, the distance from the X-ray source 201 to the lower end of the vertical thin line 102 is Z1, the distance to the upper end is Z2, and the distance from the X-ray source 201 to the detection surface of the detector 203 is H. These three numbers are unknown. Further, in the transmission image of the vertical thin line obtained by the detector 203, the distance of the lower end transmission image is L1 ′, and the distance of the upper end transmission image is L2 ′.

透過像の拡大率を下端部でr1、上端部でr2とすると、それぞれ下式のように表される。   When the enlargement ratio of the transmission image is r1 at the lower end and r2 at the upper end, they are respectively expressed by the following equations.

Figure 2010204060
Figure 2010204060

Figure 2010204060
Figure 2010204060

これらを変形すると、   When these are transformed,

Figure 2010204060
Figure 2010204060

Figure 2010204060
Figure 2010204060

細線高さDはZ1とZ2の差であるから Because the fine wire height D is the difference between Z1 and Z2.

Figure 2010204060
Figure 2010204060

これにより、既知の数値からX線源201と検出器203の検出面間の距離Hが導出される。 Thereby, the distance H between the X-ray source 201 and the detection surface of the detector 203 is derived from known numerical values.

図6(a)は、水平細線103a,103bによりX線源201と検出器203との距離を導出する概念図を示す。図6(b)に示すように、平行に配置した細線の透過像間隔からL1′,L2′を導出する場合、平行線の複数個所から導出した数値を平均化してL1′とL2′を算出できる。そのため、L1′とL2′の誤差が減少する。   FIG. 6A is a conceptual diagram for deriving the distance between the X-ray source 201 and the detector 203 using the horizontal thin lines 103a and 103b. As shown in FIG. 6B, when L1 ′ and L2 ′ are derived from the transmission image intervals of the thin lines arranged in parallel, the numerical values derived from a plurality of parallel lines are averaged to calculate L1 ′ and L2 ′. it can. Therefore, the error between L1 ′ and L2 ′ is reduced.

なお、透過像(X線減衰量)はボケを有している。これはX線の透過距離や、X線源の大きさに由来する。垂直細線の場合、細線端部の透過像を使用するため、撮像データの減衰曲線が急激、かつ不均一に変化する。そのため、垂直細線によって精度よくL1′とL2′を導出することが難しい。それに対し、水平細線103a,103bの場合、細線径方向にボケが現れる。そして、X線減衰量は細線中心から縁部に向けて連続的に減少し、X線減衰量は滑らかに変化する(図7)。それゆえ、透過像の細線中央部を高精度に導出可能となり、細線透過像の平行間隔L1′,L2′を高精度に導くことができる。このL1′,L2′を上式(1)から(5)に適用して距離Hを求めることが可能である。   The transmission image (X-ray attenuation amount) has blur. This is derived from the X-ray transmission distance and the size of the X-ray source. In the case of a vertical thin line, since a transmission image at the end of the thin line is used, the attenuation curve of the imaging data changes suddenly and non-uniformly. For this reason, it is difficult to derive L1 ′ and L2 ′ with high accuracy using the vertical thin wire. On the other hand, in the case of the horizontal thin wires 103a and 103b, blur appears in the thin wire diameter direction. The X-ray attenuation continuously decreases from the center of the thin line toward the edge, and the X-ray attenuation changes smoothly (FIG. 7). Therefore, the central portion of the fine line of the transmission image can be derived with high accuracy, and the parallel intervals L1 ′ and L2 ′ of the fine transmission image can be derived with high accuracy. The distance H can be obtained by applying these L1 'and L2' to the above equations (1) to (5).

以上のように、校正用ファントムの垂直細線又は水平細線により、X線源と検出器との距離を求めることができ、検出器の各検出素子とX線源との幾何配置、及び初期のX線透過経路を決定できる。   As described above, the distance between the X-ray source and the detector can be obtained by the vertical thin line or horizontal thin line of the calibration phantom, the geometric arrangement of each detector element of the detector and the X-ray source, and the initial X A line transmission path can be determined.

次に、検査対象物及び校正用ファントムの透過像に基づいて、検査対象物の撮像データを補正する方法を説明する。図8は、検査対象物の透過像を示す。手順804は、検査対象物の透過像形状から特徴量を抽出し、この特徴量を初期値とする。本実施例では、特徴量を配管幅とする。これに対し、手順806は検査対象物を一定の時間間隔ごとに撮像して、各撮像時点における透過像の特徴量を抽出し、初期値と比較する。特徴量が配管幅の場合、幅の変化量が正になった場合、配管230がX線源201側に移動したことを示す。また、配管幅の変化量が負の場合、配管230が検出器203側に移動したことを示す。そして、配管幅の変化率は、X線源201と検出器203間の距離HとX線源201と配管間の距離Mの比に比例する。更に、手順806は各撮像時点の校正用ファントムも撮像しているため、各撮像時刻におけるX線源201と検出器230の配置も分かる。そのため、各撮像時点において、X線源201と検出器203,配管230の相対位置情報を算出できる。   Next, a method for correcting the imaging data of the inspection object based on the transmission image of the inspection object and the calibration phantom will be described. FIG. 8 shows a transmission image of the inspection object. In step 804, a feature amount is extracted from the transmission image shape of the inspection object, and this feature amount is set as an initial value. In this embodiment, the feature amount is the pipe width. On the other hand, in step 806, the inspection object is imaged at regular time intervals, the feature amount of the transmission image at each imaging time is extracted, and compared with the initial value. When the feature amount is the pipe width, when the amount of change in the width becomes positive, it indicates that the pipe 230 has moved to the X-ray source 201 side. Further, when the amount of change in the pipe width is negative, it indicates that the pipe 230 has moved to the detector 203 side. The change rate of the pipe width is proportional to the ratio of the distance H between the X-ray source 201 and the detector 203 and the distance M between the X-ray source 201 and the pipe. Furthermore, since the procedure 806 also captures the calibration phantom at each imaging time, the arrangement of the X-ray source 201 and the detector 230 at each imaging time is also known. Therefore, relative position information of the X-ray source 201, the detector 203, and the pipe 230 can be calculated at each imaging time point.

具体的には、各撮像時刻において、上式(1)から(5)で導出されるX線源201と検出器203の検出面間の距離HをH(t)とすると、X線源201と検出器203間の距離HとX線源201と配管間の距離Mの比はH(t)/Mとなり、これは配管の透過像の拡大率と等しくなる。ここで、拡大率とは実際の配管幅に対する透過像の配管幅との比率を言うものである。初期の拡大率に対してある時刻t1の拡大率が10%増加した場合には、X線源201と配管間の距離MのH(t)に対する比率が10%小さくなっていることを示している。これにより各時刻におけるX線源201と検出器203の距離H(t)、X線源201と配管230間の距離Mが決定され、それぞれの相対位置が決定される。この相対位置を基に画像再構成領域における配管座標を逐次設定して画像再構成を実施する。   Specifically, at each imaging time, when the distance H between the X-ray source 201 derived from the above equations (1) to (5) and the detection surface of the detector 203 is H (t), the X-ray source 201 The ratio of the distance H between the detector 203 and the distance M between the X-ray source 201 and the pipe is H (t) / M, which is equal to the magnification of the transmission image of the pipe. Here, the enlargement ratio means the ratio of the transmission image pipe width to the actual pipe width. When the enlargement ratio at a certain time t1 increases by 10% with respect to the initial enlargement ratio, the ratio of the distance M between the X-ray source 201 and the pipe to H (t) is reduced by 10%. Yes. Thereby, the distance H (t) between the X-ray source 201 and the detector 203 at each time and the distance M between the X-ray source 201 and the pipe 230 are determined, and the relative positions thereof are determined. Based on this relative position, pipe coordinates in the image reconstruction area are sequentially set to perform image reconstruction.

このように、X線源と検出器を有する検査装置において、X線源が照射するX線の領域に設置された校正用ファントムと、検査対象物及び校正用ファントムの透過像に基づいて検査対象物の撮像データを補正する。また、検査対象物及び校正用ファントムの撮像データを同期して取得しているため、検査中の振動により装置の位置がずれても、撮像データを補正することが可能である。この補正された撮像データに基づき画像再構成を実施することで、画像の再構成をより高精度にすることができる。   As described above, in an inspection apparatus having an X-ray source and a detector, an inspection object is based on a calibration phantom installed in an X-ray region irradiated by the X-ray source, and transmission images of the inspection object and the calibration phantom. Correct imaging data of objects. Further, since the imaging data of the inspection object and the calibration phantom are acquired in synchronization, the imaging data can be corrected even if the position of the apparatus is shifted due to vibration during the inspection. By performing image reconstruction based on the corrected imaging data, the image reconstruction can be made more accurate.

図10は、校正用ファントムの製作方法を示す。細線を保持するための構造部材を分割し、細線を設置する箇所にスリットを設け、このスリットに細線を設置する。細線設置後、構造部材を結合してファントムを形成する。こうすることで、細線の位置精度や、角度精度が保持できる。   FIG. 10 shows a method for manufacturing a calibration phantom. The structural member for holding the fine wire is divided, and a slit is provided at a place where the fine wire is to be installed, and the fine wire is installed in the slit. After installing the thin wire, the structural members are joined to form a phantom. By doing so, the position accuracy and angle accuracy of the thin line can be maintained.

図11は実施例3の装置構成を示すものである。検出器203上部にカバー材220が取り付けていない構造となっている。この場合、L1=L1′となり、式(5)が   FIG. 11 shows an apparatus configuration of the third embodiment. The cover member 220 is not attached to the top of the detector 203. In this case, L1 = L1 ′, and equation (5) becomes

Figure 2010204060
Figure 2010204060

と表される。 It is expressed.

図12は実施例4の装置構成を示すものであり、校正用ファントムをX線源201の前面に設置した場合を示している。この場合、校正ファントムがコンパクトになり、X線源201に常設することが可能となり装置設置時間の短縮が図れる。   FIG. 12 shows an apparatus configuration of the fourth embodiment, and shows a case where a calibration phantom is installed in front of the X-ray source 201. In this case, the calibration phantom becomes compact and can be permanently installed in the X-ray source 201, so that the apparatus installation time can be shortened.

本発明は放射線を用いた配管検査装置に利用でき、プラントにおける配管の減肉検査や三次元形状データ取得に活用できる。   The present invention can be used for a pipe inspection apparatus using radiation, and can be used for pipe thinning inspection and three-dimensional shape data acquisition in a plant.

101 校正用ファントム
201 X線源
203 検出器
209 中央制御部
101 Calibration Phantom 201 X-ray Source 203 Detector 209 Central Control Unit

Claims (3)

検査対象物にX線を照射するX線源と、該検査対象物を透過したX線を検出する検出器と、該検出器が出力する撮像データを処理する制御部とを有したX線検査装置において、
前記X線源が照射するX線の照射領域に設置された校正用ファントムと、
前記検査対象物及び前記校正用ファントムの透過像に基づいて前記検査対象物の前記撮像データを補正する補正手段とを備えることを特徴とするX線検査装置。
X-ray inspection having an X-ray source for irradiating an inspection object with X-rays, a detector for detecting X-rays transmitted through the inspection object, and a control unit for processing imaging data output by the detector In the device
A calibration phantom installed in an X-ray irradiation area irradiated by the X-ray source;
An X-ray inspection apparatus comprising: correction means for correcting the imaging data of the inspection object based on the inspection object and a transmission image of the calibration phantom.
請求項1のX線検査装置において、校正用ファントムの細線は、前記検査対象物を透過するX線経路と重ならない位置に設置することを特徴とするX線検査装置。   2. The X-ray inspection apparatus according to claim 1, wherein the fine line of the calibration phantom is installed at a position that does not overlap an X-ray path that passes through the inspection object. 検査対象物にX線を照射するX線源と、該検査対象物を透過したX線を検出する検出器と、該検出器が出力する撮像データを処理する制御部とを有したX線検査装置の検査方法において、
前記X線源から照射されたX線により、校正用ファントム及び前記検査対象物を撮像し、前記校正用ファントム及び前記検査対象物の撮像データを取得し、
前記校正用ファントムの撮像データに基づき、前記X線源と前記検出器の幾何配置を算出し、
前記検査対象物の撮像データに基づき、前記検査対象物の位置変化量を算出し、
前記幾何配置及び前記位置変化量に基づき、撮像時点ごとの前記X線源,前記検出器,前記検査対象物の相対位置情報を算出し、
前記相対位置情報に基づき、前記撮像データを補正し、
補正された前記撮像データに基づき画像再構成を行うことを特徴とするX線検査装置の検査方法。
X-ray inspection having an X-ray source for irradiating an inspection object with X-rays, a detector for detecting X-rays transmitted through the inspection object, and a control unit for processing imaging data output by the detector In the inspection method of the device,
With the X-rays irradiated from the X-ray source, the calibration phantom and the inspection object are imaged, and imaging data of the calibration phantom and the inspection object are acquired,
Based on the imaging data of the calibration phantom, calculate the geometric arrangement of the X-ray source and the detector,
Based on the imaging data of the inspection object, to calculate a position change amount of the inspection object,
Based on the geometric arrangement and the position change amount, the relative position information of the X-ray source, the detector, and the inspection object for each imaging time point is calculated.
Based on the relative position information, the imaging data is corrected,
An inspection method for an X-ray inspection apparatus, wherein image reconstruction is performed based on the corrected imaging data.
JP2009052798A 2009-03-06 2009-03-06 X-ray inspection device, and inspection method of the same Pending JP2010204060A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009052798A JP2010204060A (en) 2009-03-06 2009-03-06 X-ray inspection device, and inspection method of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009052798A JP2010204060A (en) 2009-03-06 2009-03-06 X-ray inspection device, and inspection method of the same

Publications (1)

Publication Number Publication Date
JP2010204060A true JP2010204060A (en) 2010-09-16

Family

ID=42965673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009052798A Pending JP2010204060A (en) 2009-03-06 2009-03-06 X-ray inspection device, and inspection method of the same

Country Status (1)

Country Link
JP (1) JP2010204060A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016048088A1 (en) * 2014-09-26 2016-03-31 Samsung Electronics Co., Ltd. Medical imaging apparatus and control method thereof
WO2016190218A1 (en) * 2015-05-26 2016-12-01 株式会社島津製作所 Measuring method and radiation photography apparatus
WO2018190092A1 (en) * 2017-04-11 2018-10-18 東芝Itコントロールシステム株式会社 X-ray inspection device
JP2020515830A (en) * 2017-03-27 2020-05-28 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft Calculating the posture of the X-ray unit with respect to the object based on the digital model of the object
CN113474642A (en) * 2019-02-28 2021-10-01 富士胶片株式会社 Correction method, correction device, radiographic imaging system, and correction program

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016048088A1 (en) * 2014-09-26 2016-03-31 Samsung Electronics Co., Ltd. Medical imaging apparatus and control method thereof
US10052080B2 (en) 2014-09-26 2018-08-21 Samsung Electronics Co., Ltd. Medical imaging apparatus and control method thereof
WO2016190218A1 (en) * 2015-05-26 2016-12-01 株式会社島津製作所 Measuring method and radiation photography apparatus
JP2020515830A (en) * 2017-03-27 2020-05-28 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft Calculating the posture of the X-ray unit with respect to the object based on the digital model of the object
JP7065869B2 (en) 2017-03-27 2022-05-12 シーメンス アクチエンゲゼルシヤフト Calculation of the attitude of the X-ray unit with respect to the object based on the digital model of the object
US11662320B2 (en) 2017-03-27 2023-05-30 Siemens Aktiengesellschaft Ascertaining the pose of an x-ray unit relative to an object on the basis of a digital model of the object
WO2018190092A1 (en) * 2017-04-11 2018-10-18 東芝Itコントロールシステム株式会社 X-ray inspection device
CN113474642A (en) * 2019-02-28 2021-10-01 富士胶片株式会社 Correction method, correction device, radiographic imaging system, and correction program
CN113474642B (en) * 2019-02-28 2024-05-03 富士胶片株式会社 Correction method, correction device, radiographic imaging system, and storage medium

Similar Documents

Publication Publication Date Title
US6925145B2 (en) High speed digital radiographic inspection of piping
US8699659B2 (en) Systems and methods for focal spot motion correction
KR101149000B1 (en) Limited angle portable industrial gamma ray tomographic scanner
CN109791114B (en) Method for determining geometrical parameters and/or material state of object under investigation by means of radiography
EP2679989A2 (en) X-ray CT system for measuring three dimensional shapes and measuring method of three dimensional shapes by X-ray CT system
JPWO2019008620A1 (en) X-ray CT system
JP2010204060A (en) X-ray inspection device, and inspection method of the same
JP5011085B2 (en) Inspection device, inspection device alignment method, and calibration phantom manufacturing method
JPWO2018083930A1 (en) Imaging magnification calibration method of radiation tomography apparatus
JP5400704B2 (en) Piping inspection device and piping inspection method
US9341582B2 (en) Method of getting tomogram used by X-ray computed tomography and X-ray computed tomography system based on its method
JP5022820B2 (en) Radiation inspection apparatus and piping inspection method using the same
JP2009276142A (en) Radiographic inspection system and imaging method of radiographic inspection
CN104132950B (en) CL scanning means projection rotating center scaling method based on original projection information
US9772259B2 (en) Method for calibrating an X-ray testing system for a tire type and method for checking the position of cords in a tire
JPS62284250A (en) Industrial ct scanner
JP2004037267A (en) Computed tomography
JP2012037345A (en) Radiographic inspection device and alignment method thereof
JP2011122930A (en) Industrial x-ray ct system and imaging method
JP2004061256A (en) Computerized tomography
JP2013079825A (en) X-ray ct image reconstruction method, and x-ray ct device
JP7051847B2 (en) X-ray in-line inspection method and equipment
JP5492634B2 (en) Radiation tomography method and radiation tomography apparatus
WO2016190218A1 (en) Measuring method and radiation photography apparatus
JP2013061154A (en) Radiation tomographic method and radiation tomographic device