JPS62284250A - Industrial ct scanner - Google Patents

Industrial ct scanner

Info

Publication number
JPS62284250A
JPS62284250A JP61126354A JP12635486A JPS62284250A JP S62284250 A JPS62284250 A JP S62284250A JP 61126354 A JP61126354 A JP 61126354A JP 12635486 A JP12635486 A JP 12635486A JP S62284250 A JPS62284250 A JP S62284250A
Authority
JP
Japan
Prior art keywords
radiation
inspected
projection data
correction
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61126354A
Other languages
Japanese (ja)
Inventor
Kiichiro Uyama
喜一郎 宇山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61126354A priority Critical patent/JPS62284250A/en
Publication of JPS62284250A publication Critical patent/JPS62284250A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • G01N23/046Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material using tomography, e.g. computed tomography [CT]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/40Imaging
    • G01N2223/419Imaging computed tomograph

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pulmonology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

PURPOSE:To correct errors of a reconstituted image due to a shift in the position of an X-ray focus by placing a member for correction at a constant position and detecting the position shift of radiation projection data on this correcting member. CONSTITUTION:A cylindrical phantom 10 rotates together with a body 1 to be inspected and a synogram shown in a figure is obtained from X-ray projection data D on it. The center C between both edges A and B of the cylindrical phantom 10 is detected in the center channel of a radiation detector from the 1st projection data D1. When the edges A and B shift in position, the projection data D which causes the shifts is so shifted that the edge center C is positioned in the center channel. The quantity of position shifting of the focus S is calculated from the quantity of shifting. The calculated shift quantity in a direction thetaand the shift quantity in the X-ray irradiation direction are used as data for correction at the time of reconstitution processing.

Description

【発明の詳細な説明】 3、発明の詳細な説明 [発明の目的1 (産業上の利用分野)゛ 本発明は、例えば工業製品の非破壊検査装置として利用
される産業用CTスキャナに関する。
Detailed Description of the Invention 3. Detailed Description of the Invention [Object of the Invention 1 (Field of Industrial Application) The present invention relates to an industrial CT scanner used as a non-destructive testing device for industrial products, for example.

〈従来の技術) CTスキャナは、被検査体の特定断面に放射線を照射し
て、これら放射線の透過線量を測定することにより投影
データを得、この投影データから上記被検査体の特定断
面の断層像を得るものであって、この断層像撮影により
得られた各スライス位置の画像データからは、上記1!
I!倹査体の計測に関する情報、例えば被検査体の寸法
、断面形状および欠陥の有無等の情報を得ることができ
る。
(Prior art) A CT scanner obtains projection data by irradiating a specific cross section of an object to be inspected with radiation and measuring the transmitted dose of the radiation, and from this projection data, calculates the cross section of the specific cross section of the object to be inspected. The above-mentioned 1!
I! Information regarding the measurement of the object to be inspected, such as the dimensions, cross-sectional shape, and presence or absence of defects of the object to be inspected, can be obtained.

したがって、産業用または医療用として普及している。Therefore, it is popular for industrial or medical purposes.

ところで、CTスキャナは撮影方式の違いによって各世
代に分類されるが、第3世代のCTスキャナは、分解能
が高いために産業用CTスキャナとして製品内部の非破
壊検査等に広く利用されている。
By the way, CT scanners are classified into different generations depending on the imaging method, and the third generation CT scanner is widely used as an industrial CT scanner for non-destructive inspection of the inside of a product due to its high resolution.

第7図は従来の第3世代CTスキャナにおけるスキャナ
機構部の構成を示す模式図である。mt*査体1は回転
tlltf12によって回転可能な回転テーブル3上に
載置されており、この被検査体1を挟んでX線発生器4
とX線検出器5とが対向配置され、かつXllの拡がり
角度に上記被検査体1が内包されるように配置されてい
る。上記X線検出器4は前記被検査体1を透過し得るX
線をこの被検査体1の特定断面に沿いかつ所定の拡がり
角度を有する扇状をなして放射するものであり、放射さ
れたX線はコリメータ6により扇状のxmビーム7に変
換される。また、xm検出器5は到達するX線の強度を
検出するものであって、XIIビーム7をそれぞれ検出
可能な複数チャンネルのX線検出素子から構成されてい
る。そして、被検査体1を1回転させ、このときの投影
データを収集するものとなっている。
FIG. 7 is a schematic diagram showing the configuration of a scanner mechanism in a conventional third generation CT scanner. The mt* inspection object 1 is placed on a rotary table 3 that can be rotated by a rotation tlltf12, and the X-ray generator 4
and the X-ray detector 5 are arranged to face each other, and the object to be inspected 1 is arranged so as to be included in the spread angle of Xll. The X-ray detector 4 includes X-rays that can pass through the object 1 to be inspected.
X-rays are emitted along a specific cross section of the object to be inspected 1 in a fan shape having a predetermined spread angle, and the emitted X-rays are converted into a fan-shaped xm beam 7 by a collimator 6. Further, the xm detector 5 detects the intensity of arriving X-rays, and is composed of multiple channels of X-ray detection elements each capable of detecting the XII beam 7. Then, the object to be inspected 1 is rotated once, and projection data at this time is collected.

(発明が解決しようとする問題点) しかるに、上述した従来のCTスキャナにおいては、被
検査体1が1回転する間にX線発生器4のXra焦点が
変動してしまうと、この誤差が再構成画像の誤差となり
、解像度の低い画像しか得られなかった。特に、拡大撮
影が可能で産業用CTスキャナとして好適なマイクロC
Tスキャナは、回転テーブル3をxi無焦点近くに配置
する上、マイクロフォーカスXJIを用いるので、上述
した焦点ずれによる画@誤差は大きな問題となっていた
。また、X1m発生器4の設置には高精度なものが要求
されるので、スキャンへ構のシステム形成は大変繁雑な
(Y業であった。
(Problem to be Solved by the Invention) However, in the above-mentioned conventional CT scanner, if the Xra focus of the X-ray generator 4 fluctuates during one rotation of the object 1, this error may be caused again. This resulted in errors in the constituent images, and only images with low resolution were obtained. In particular, the micro-C is suitable for industrial CT scanners because it allows magnified imaging.
Since the T-scanner disposes the rotary table 3 near the xi non-focal point and uses microfocus XJI, the above-mentioned image error due to focus shift has become a big problem. In addition, since the installation of the X1m generator 4 requires high precision, the construction of the scanning system is very complicated (Y work).

そこで本発明は、X線焦点の位置ずれによる再構成画像
の誤差を補正することができ、W?像度の高い再構成画
像が得られる上、X線焦点位置の位I!精度の低減をは
かり得、スキャン機構を容易に形成できる産業用CTス
キャナを提供することを目的とする。
Therefore, the present invention can correct the error in the reconstructed image due to the positional shift of the X-ray focal point, and W? Not only can reconstructed images with high resolution be obtained, but the position of the X-ray focal point can also be improved! It is an object of the present invention to provide an industrial CT scanner in which accuracy can be reduced and a scanning mechanism can be easily formed.

[発明の構成] (問題点を解決するための手段) 本発明は、上記問題点を解決し目的を達成するために、
被検査体を透過し得る放射線を上記被検査体の特定断面
に沿いかつ所定の拡がり角度を有する扇状をなして放射
する放射線源と、この放射線源に対向し到達する放射線
の強度を検出する放射線検出器とを、前記被検査体を挟
みかつ前記放射線の拡がり角度に上記被検査体が内包さ
れるように配置し、かつ前記被検査体の近傍に予め位置
設定されている補正用部材を配置して、前記放IFl線
検出器により前記被検査体と補正用部材との多方向から
の放射m投影データをデータ収集手段により収集し、こ
の収束された前記補正用部材の放射線投影データの位置
ずれから前記放射線源の焦点位置ずれ量を算出し、この
算出された放射線源の焦点位置ずれ量に基いて前記デー
タ収集手段により一収集された被検査体の放射線投影デ
ータを補正し、この補正された前記被検査体の放射線投
影データに画像再構成処理を施して前記特定断面の放射
線透過度分布による断11mを得るようにしたものであ
る。
[Structure of the invention] (Means for solving the problems) In order to solve the above problems and achieve the purpose, the present invention has the following features:
A radiation source that emits radiation that can pass through the object to be inspected along a specific cross section of the object to be inspected in a fan shape having a predetermined spread angle, and a radiation source that opposes this radiation source and detects the intensity of the radiation that reaches it. and a detector are arranged so that the object to be inspected is sandwiched therebetween and the object to be inspected is included in the spread angle of the radiation, and a correction member that is preset in the vicinity of the object to be inspected is arranged. Then, the data collecting means collects radiation m projection data from multiple directions of the object to be inspected and the correction member using the radiation IF1 radiation detector, and determines the position of the converged radiation projection data of the correction member. Calculating the amount of focal position deviation of the radiation source from the deviation, correcting the radiation projection data of the inspected object collected by the data collection means based on the calculated amount of focal position deviation of the radiation source, and correcting this correction. Image reconstruction processing is applied to the radiographic projection data of the object to be inspected, thereby obtaining a cross section 11 m based on the radiation transmittance distribution of the specific cross section.

(作用) このような手段を講じたことにより、放射線源の焦点に
位置ずれが生じても画像再構成時にはこの位置ずれが補
正され、高糧度な再構成処理が行なわれる。
(Function) By taking such measures, even if a positional deviation occurs in the focus of the radiation source, this positional deviation is corrected during image reconstruction, and a highly accurate reconstruction process is performed.

(実施例) 第1図は本発明の一実施例のシステム構成を示す系統図
である。なお、第7図と同一部分には同一符号を付し、
詳しい説明は省略する。第1図において10は円筒状な
す補正用部材(以下円筒)1ントムという)であって、
回転テーブル3上に被検査体1を内包するように載置さ
れ、被検査体1と一体となって回転するものとなってい
る。
(Embodiment) FIG. 1 is a system diagram showing a system configuration of an embodiment of the present invention. The same parts as in Fig. 7 are given the same reference numerals.
Detailed explanation will be omitted. In FIG. 1, 10 is a cylindrical correction member (hereinafter referred to as cylinder),
It is placed on a rotary table 3 so as to enclose the object 1 to be inspected, and rotates together with the object 1 to be inspected.

なお、この円筒ファントム1oの半径rおよび中心位置
(x、y)は予め正確に測定されており、後述するCP
U12に対し補正用情報として入力されている。
Note that the radius r and center position (x, y) of this cylindrical phantom 1o have been accurately measured in advance, and the CP
This is input as correction information to U12.

データ収集部11は、X線検出器5の各検出素子にて検
出されたX線強度に基く投影データを前記被検査体1の
多方向にわたって収集する機能を有しており、収集され
た投影データはCPU12に送出される。このCPU1
2は、投影データを再構成アルゴリズムの入力データに
変換する前処理様能、および前処理されたデータにXF
J焦点位置ずれによる誤差を補正する補正機能等を有し
ており、補正されたデータは再構成処理部13に送出さ
れ、ここで再構成アルゴリズムにしたがって前記被検査
体1の特定断面のX11強度分布による断層像の再構成
が行なわれる。そして、再構成された断層−は前記CP
U、12の制御によりCRTディスプレイ14上に表示
されるものとなっている。
The data collection unit 11 has a function of collecting projection data based on the X-ray intensity detected by each detection element of the X-ray detector 5 in multiple directions of the object to be inspected 1. The data is sent to CPU12. This CPU1
2 is a preprocessing function that converts projection data into input data of a reconstruction algorithm, and an XF
It has a correction function for correcting errors caused by J focus position deviation, and the corrected data is sent to the reconstruction processing unit 13, where the X11 intensity of the specific cross section of the object to be inspected 1 is calculated according to the reconstruction algorithm. A tomographic image is reconstructed based on the distribution. Then, the reconstructed fault is the CP
It is displayed on the CRT display 14 under the control of U and 12.

一方、コンソール部15は、前記CPIJI2h’らの
指令に応じてX線制罪部16および機構制御部17に対
し動作指令を出力する機能を有しており、この動作指令
に応じて上記X線制御部16はxI!発生器4における
X線放射を制御し、他方、1構制御部17は回転機構2
および図示しないセクタl1lIllの駆動制御を行な
うものとなっている。
On the other hand, the console section 15 has a function of outputting operation commands to the X-ray control section 16 and mechanism control section 17 in accordance with commands from the CPIJI2h', etc. The control unit 16 is xI! The one-structure control section 17 controls the X-ray radiation in the generator 4, while the one-structure control section 17 controls the rotation mechanism 2.
It also controls the driving of sectors l1lIll (not shown).

第2図は前記CPtJ12におけるX線焦点の位置ずれ
補正手段を示す流れ図である。なお、投影データの収集
は従来と全く同様に行なわれており、この場合、被検査
体1と円筒ファントム10とが一体となったX線投影デ
ータが収集される。さて、CPU12は、ステップ1と
して先ずデータ収集部11にて収集された最初の投影デ
ータを入力し、ステップ2として上記投影データに基い
て円筒ファントム10の内周部におけるエツジ位置を検
出し、かつこのエツジ位置情報をCPU 12内のメモ
リに記憶する。次いで、ステップ3として次の投影デー
タを入力し、ステップ4として同様にして円筒ファント
ム10の内周エツジ位置を検出する。そして、ステップ
5として、ステップ4にて検出されたエツジ位置情報と
、ステップ2にてメモリに記憶された最初の投影データ
におけるエツジ位置情報(以下エツジ位置基準情報とい
う)とを比較する。そして、両エツジ位冒情報が一致し
たならばステップ6としてデータ収集部11にて収束さ
れた投影データを全て入力したか否かを判断し、次の投
影データが存在する場合にはステップ3に戻る。
FIG. 2 is a flowchart showing the X-ray focus position deviation correcting means in the CPtJ12. Note that the projection data is collected in exactly the same manner as conventionally, and in this case, X-ray projection data of the object to be inspected 1 and the cylindrical phantom 10 are collected. Now, as step 1, the CPU 12 first inputs the first projection data collected by the data collection unit 11, and as step 2, detects the edge position on the inner circumference of the cylindrical phantom 10 based on the projection data, and This edge position information is stored in memory within the CPU 12. Next, in step 3, the next projection data is input, and in step 4, the inner peripheral edge position of the cylindrical phantom 10 is similarly detected. Then, in step 5, the edge position information detected in step 4 is compared with the edge position information in the first projection data stored in the memory in step 2 (hereinafter referred to as edge position reference information). Then, if both edge position information match, it is determined in step 6 whether all the converged projection data has been input in the data collection unit 11, and if the next projection data exists, the process proceeds to step 3. return.

一方、ステップ5において両エツジ位置情報が不一致の
場合には、ステップ7としてエツジ位置基準情報に対す
るエツジ位置のずれ量を算出し、ステップ8としてエツ
ジずれを生じた投影データをずれ量に応じてずらす。次
いで、ステップ9として、投影データのずれ量に応じて
XS*焦点の位置ずれ烏を算出し記憶する。すなわち、
円筒ファントム10の半径rと円筒中心(x、y)とが
予め正確に測定され補正用ff!報として入力されてい
るので、検出された両エツジ位置と円筒内周とを結んだ
交点つまりXwA焦点位置を決定し、最初の投影データ
におけるX線焦点位置と位置ずらし処理部のX線焦点位
置とにより焦点位置ずれ置を算出する。しかして、ステ
ップ9の処理が終了したならば、ステップ6に移行し、
データ収集が終了したか否かを判断する。
On the other hand, if the edge position information does not match in step 5, step 7 calculates the deviation amount of the edge position with respect to the edge position reference information, and step 8 shifts the projection data in which the edge deviation has occurred according to the deviation amount. . Next, in step 9, the XS*focal position deviation is calculated and stored according to the amount of deviation of the projection data. That is,
The radius r and the center of the cylinder (x, y) of the cylindrical phantom 10 are accurately measured in advance and used for correction ff! Since the information is input as information, the intersection between the detected edge positions and the inner circumference of the cylinder, that is, the XwA focal position, is determined, and the X-ray focal position in the first projection data and the X-ray focal position of the position shift processing section are determined. The focal position shift position is calculated by When the process of step 9 is completed, the process moves to step 6,
Determine whether data collection is complete.

ステップ6において、データ収集部11にて収集された
投影データを全て入力したならば、各投影データを焦点
位置ずれ置に基いてそれぞれ補正し、この補正されたデ
ータを再構成処理部13に送出する。かくして、補正デ
ータに基いて再構成処理が施され、再構成画像が得られ
る。なお、上述したデータ補正は、具体的には算出され
たX線焦点位置に応じて再構成アルゴリズムの係数を決
定し、この再構成アルゴリズムにしたがって再構成処理
を行なうことにより、XI!焦点位置が補正された再構
成画像が得られる。
In step 6, once all the projection data collected by the data collection unit 11 has been input, each projection data is corrected based on the focal position shift position, and the corrected data is sent to the reconstruction processing unit 13. do. In this way, reconstruction processing is performed based on the correction data, and a reconstructed image is obtained. In addition, the data correction mentioned above specifically determines the coefficients of the reconstruction algorithm according to the calculated X-ray focal position, and performs the reconstruction process according to this reconstruction algorithm, thereby obtaining XI! A reconstructed image with the focal position corrected is obtained.

次に、上述したX線焦点の位置ずれ補正を具体的に説明
する。
Next, the correction of the positional deviation of the X-ray focal point mentioned above will be specifically explained.

今、第3図に示す如く、回転方向θに回転する被検査体
1と円筒ファントム10とのX線投影データDが順次収
集され、第4図に示すようなサイノブラムが得られたも
のとする。なお、第3図。
Now, as shown in FIG. 3, it is assumed that X-ray projection data D of the inspected object 1 and the cylindrical phantom 10 rotating in the rotational direction θ are sequentially collected, and a sinobram as shown in FIG. 4 is obtained. . In addition, Fig. 3.

第4図においてAおよびBは円筒ファントム10のエツ
ジ位置であり、Cは両エツジA、Bの中心である。そし
て、最初の投影データD1ではこのエツジ中心Cがt!
1射線検出器5のセンターチャンネルに検出されるもの
となっており、このときの焦点位Isを基準として以後
位置ずれを生じた焦点S′の補正を行なうものとする。
In FIG. 4, A and B are the edge positions of the cylindrical phantom 10, and C is the center of both edges A and B. In the first projection data D1, this edge center C is t!
It is detected by the center channel of the single ray detector 5, and the focal position Is at this time is used as a reference to thereafter correct the focal point S' which has caused a positional shift.

すなわち、エツジ位1fA、8がずれた場合にはこのず
れを生じた投影データDをエツジ中心Cがセンターチャ
ンネルに位置するようにずらす。このときの位置ずらし
@Gは、第5図において G−一 (Δ21 +Δnz/2) となる。なお、投影データDをずらしたときに生じる未
データ領域には空気データまたは水ファントムデータを
入れるようにすれば問題はない。
That is, when the edge positions 1fA and 8 are shifted, the projection data D that has caused this shift is shifted so that the edge center C is located in the center channel. The position shift @G at this time becomes G-1 (Δ21 +Δnz/2) in FIG. Note that there is no problem if air data or water phantom data is entered into the undata area that occurs when the projection data D is shifted.

投影データDをずれ量Gだけずらすと、それに応じて焦
点の位置ずれ量が算出される。すなわち、第5図から明
らかなようにθ方向のずれ最Δθ。
When the projection data D is shifted by the shift amount G, the focus position shift amount is calculated accordingly. That is, as is clear from FIG. 5, the maximum deviation in the θ direction is Δθ.

およびXwA照射方向のずれ量ΔR1はΔθ−−(ΔQ
s+Δβ2/2R2) ΔR1#Rt(ΔQ1−ΔQ2) /2R25in(ψc/2) となる。かくして、上記焦点位置ずれ量Δθ。
And the amount of deviation ΔR1 in the XwA irradiation direction is Δθ−−(ΔQ
s+Δβ2/2R2) ΔR1#Rt(ΔQ1−ΔQ2)/2R25in(ψc/2). Thus, the focus position shift amount Δθ.

ΔR1を再構成処理時の補正用データとして用いる。ΔR1 is used as correction data during reconstruction processing.

このように、本実施例においては、X1il焦点に位置
ずれが生じても、この位置ずれは補正される。
In this way, in this embodiment, even if a positional shift occurs in the X1il focus, this positional shift is corrected.

すなわち、xm焦点が左右にずれを生じた場合には投影
データの横ずらしが行なわれ、前後にずれが生じた場合
には拡大、縮小が行なわれる。そして、このxsa+焦
点位置が補正された投影データにより再構成処理が行な
われる。したがって、本実施例によれば、常にX線焦点
位置が安定した状態で得られた投影データにより再構成
処理が行なわれるので、解像度の高い再構成画像が得ら
れる。
That is, when the xm focal point shifts horizontally, the projection data is shifted laterally, and when it shifts back and forth, it is enlarged or reduced. Then, reconstruction processing is performed using the projection data in which the xsa+focal position has been corrected. Therefore, according to this embodiment, reconstruction processing is performed using projection data obtained with the X-ray focal position always stable, so a reconstructed image with high resolution can be obtained.

このことは、検査体1をX線発生器4の近傍に配置し、
マイクロフォーカスX線を用いて断層像撮影を行なうマ
イクロCTスキャナにおいて大きな効果を奏し得る。ま
た、円筒ファントム10が被検査体1と一体となって回
転するので、回転テーブル3の回転ずれも補正される。
This means that the inspection object 1 is placed near the X-ray generator 4,
A great effect can be achieved in a micro-CT scanner that performs tomographic imaging using microfocus X-rays. Further, since the cylindrical phantom 10 rotates together with the object to be inspected 1, rotational deviation of the rotary table 3 is also corrected.

さらに、最初の投影データが基準となり、順次X線焦点
の位置ずれが補正されるので、X線発生器4を配置する
際に轟精度な位置決めを必要としない。従来は焦点サイ
ズ(マイクロフォーカスX線の場合50μ〜20μ)の
数分の1の精度で設置する必要があったが、本実論例で
は500μ程度の精度で充分な解像度の再構成画像が得
られる。また、円筒ファントム10の円中心が回転テー
ブル3の回転中心に位置していなくても、この中心ずれ
は焦点の位置ずれとして自動的に補正されるので、円筒
ファントム10の位置精度も高いものが要求されない。
Furthermore, since the initial projection data serves as a reference and the positional deviation of the X-ray focus is corrected sequentially, highly accurate positioning is not required when arranging the X-ray generator 4. Conventionally, it was necessary to set the focal point with an accuracy of a fraction of the focal point size (50μ to 20μ in the case of microfocus X-rays), but in this practical example, a reconstructed image with sufficient resolution can be obtained with an accuracy of about 500μ. It will be done. Furthermore, even if the center of the circle of the cylindrical phantom 10 is not located at the center of rotation of the rotary table 3, this center deviation is automatically corrected as a positional deviation of the focal point, so the positioning accuracy of the cylindrical phantom 10 is high. Not required.

したがって、スキャン機構を容易に形成することができ
、設置場所等の制限も小さくなる。
Therefore, the scanning mechanism can be easily formed, and there are fewer restrictions on the installation location, etc.

なお、本発明は前記実施例に限定されるものではない。Note that the present invention is not limited to the above embodiments.

例えば、前記実施例では補正用部材として円筒ファント
ム1oを回転テーブル3上に被検査体1を内包するよう
に配置した場合を示したが、第3図に示すように、回転
テーブル3の外方に復数本(この場合2本)の棒状の補
正用部材、いわゆるピンファントム20.20を配置し
、これらピンファントム20.20の投影データからx
I!焦点位置ずれを測定するようにしてもよい。また、
この場合、ピンファントム20.20の投影データをI
Iカメラにより検出するようにしてもよい。
For example, in the embodiment described above, the cylindrical phantom 1o was arranged as a correction member so as to enclose the object 1 on the rotary table 3, but as shown in FIG. A number of (two in this case) rod-shaped correction members, so-called pin phantoms 20.20, are placed in the area, and from the projection data of these pin phantoms 20.20
I! The focal position shift may also be measured. Also,
In this case, the projection data of pin phantom 20.20 is
It may also be detected by an I camera.

なお、このとき、再構成処理は回転テーブル30回転中
心を中心として行なわれる。また、前記実施例ではX′
mにより投影データを得る産業用CTスキャナに適用し
た場合を示したが、X線以外の放射線を利用する産業用
CTスキャナであっても適用できるのは言うまでもない
。このほか、本発明の要旨を逸脱しない範囲で種々変形
実施可能であるのは勿論である。
Note that at this time, the reconstruction process is performed around the center of rotation of the rotary table 30. Furthermore, in the above embodiment, X'
Although the case where the present invention is applied to an industrial CT scanner that obtains projection data using m is shown, it goes without saying that the present invention can also be applied to an industrial CT scanner that uses radiation other than X-rays. It goes without saying that various other modifications can be made without departing from the spirit of the invention.

[発明の効果] 以上詳述したように、本発明によれば、X線焦点の位置
ずれによる再構成画像の誤差を補正することができ、解
像度の高い画像が得られる上、XI!焦点位置の位置精
度の低減をはかり骨、スキャン1構を容易に形成できる
産業用CTスキャナを提供できる。
[Effects of the Invention] As described in detail above, according to the present invention, it is possible to correct errors in reconstructed images due to positional deviations of the X-ray focus, obtain high-resolution images, and improve XI! It is possible to provide an industrial CT scanner that can easily form a single scan structure while reducing the positional accuracy of the focal position.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第5図は本発明の一実施例を示す図であっ
て、第1図はシステム構成を示す系統図、第2図はCP
UにおけるX線焦点の位置ずれ補正手段を示す流れ図、
第3図ないし第5図はX線焦点の位置ずれ補正を具体的
に説明するための図、第6図は本発明の他の実施例の主
要部構成を示す模式図、第7図は従来の産業用CTスキ
ャナにおけるスキャン別欄を示す模式図である。 1・・・被検査体、2・・・回転機構、3・・・回転テ
ーブル、4・・・X線発生器、5・・・X線検出器、1
0・・・円筒ファントム、11・・・データ収集部、1
2・・・。 CPU、13・・・再構成処理部、14・・・CRTデ
ィスプレイ、15・・・コンソール部、16・・・Xw
A制御部、17・・・機構制御部、20・・・ピンファ
ントム。 出願人代理人 弁理士 鈴江武彦 第1!!l 第4図 第5図 第7図
1 to 5 are diagrams showing one embodiment of the present invention, in which FIG. 1 is a system diagram showing the system configuration, and FIG. 2 is a system diagram showing the system configuration.
a flowchart showing a means for correcting the positional deviation of the X-ray focal point in U;
3 to 5 are diagrams for specifically explaining the correction of positional deviation of the X-ray focus, FIG. 6 is a schematic diagram showing the main part configuration of another embodiment of the present invention, and FIG. 7 is a conventional diagram. FIG. 2 is a schematic diagram showing columns by scan in the industrial CT scanner. DESCRIPTION OF SYMBOLS 1...Object to be inspected, 2...Rotating mechanism, 3...Rotary table, 4...X-ray generator, 5...X-ray detector, 1
0...Cylindrical phantom, 11...Data collection unit, 1
2... CPU, 13... Reconfiguration processing section, 14... CRT display, 15... Console section, 16... Xw
A control section, 17... Mechanism control section, 20... Pin phantom. Applicant's representative Patent attorney Takehiko Suzue No. 1! ! l Figure 4 Figure 5 Figure 7

Claims (3)

【特許請求の範囲】[Claims] (1)被検査体を透過し得る放射線を上記被検査体の特
定断面に沿いかつ所定の拡がり角度を有する扇状をなし
て放射する放射線源と、この放射線源に対向し到達する
放射線の強度を検出する放射線検出器と、前記被検査体
の近傍に予め位置設定されている補正用部材と、この補
正用部材と前記被検査体とを挟みかつ前記放射線の拡が
り角度に上記被検査体が内包されるように前記放射線源
と放射線検出器とを配置して、前記放射線検出器により
前記被検査体と補正用部材との多方向からの放射線投影
データを収集するデータ収集手段と、このデータ収集手
段により収集される前記補正用部材の放射線投影データ
の位置ずれから前記放射線源の焦点位置ずれ量を算出す
る焦点位置ずれ検出手段と、この焦点位置ずれ検出手段
により算出された放射線源の焦点位置ずれ量に基いて前
記データ収集手段により収集された被検査体の放射線投
影データを補正する補正手段と、この補正手段により補
正された前記被検査体の放射線投影データに画像再構成
処理を施して前記特定断面の放射線透過度分布による断
層像を得る画像再構成処理手段とを具備したことを特徴
とする産業用CTスキャナ。
(1) A radiation source that emits radiation capable of penetrating the object to be inspected along a specific cross section of the object to be inspected in a fan shape with a predetermined spread angle, and the intensity of the radiation that opposes and reaches this radiation source. A radiation detector to be detected, a correction member that is preset in the vicinity of the object to be inspected, the correction member and the object to be inspected being sandwiched therebetween, and the object to be inspected is included in the spread angle of the radiation. a data collecting means for arranging the radiation source and the radiation detector so as to collect radiation projection data from multiple directions of the object to be inspected and the correction member using the radiation detector; a focal position deviation detecting means for calculating a focal position deviation amount of the radiation source from a positional deviation of radiation projection data of the correction member collected by the means; and a focal position of the radiation source calculated by the focal position deviation detecting means. a correction means for correcting the radiation projection data of the object to be inspected collected by the data collection means based on the amount of deviation; and performing image reconstruction processing on the radiation projection data of the object to be inspected corrected by the correction means. An industrial CT scanner comprising: image reconstruction processing means for obtaining a tomographic image based on the radiation transmittance distribution of the specific cross section.
(2)前記データ収集手段により放射線投影データが収
集される補正用部材は、前記被検査体を内包する位置に
配置された円筒体であることを特徴とする特許請求の範
囲第(1)項記載の産業用CTスキャナ。
(2) Claim (1) characterized in that the correction member on which radiation projection data is collected by the data collection means is a cylindrical body disposed at a position containing the object to be inspected. The industrial CT scanner described.
(3)前記データ収集手段により放射線投影データが収
集される補正用部材は、前記被検査体の外方に配置され
た複数の棒体であることを特徴とする特許請求の範囲第
(1)項記載の産業用CTスキャナ。
(3) Claim (1) characterized in that the correction member whose radiation projection data is collected by the data collection means is a plurality of rods arranged outside the object to be inspected. The industrial CT scanner described in Section 1.
JP61126354A 1986-05-31 1986-05-31 Industrial ct scanner Pending JPS62284250A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61126354A JPS62284250A (en) 1986-05-31 1986-05-31 Industrial ct scanner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61126354A JPS62284250A (en) 1986-05-31 1986-05-31 Industrial ct scanner

Publications (1)

Publication Number Publication Date
JPS62284250A true JPS62284250A (en) 1987-12-10

Family

ID=14933106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61126354A Pending JPS62284250A (en) 1986-05-31 1986-05-31 Industrial ct scanner

Country Status (1)

Country Link
JP (1) JPS62284250A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004305349A (en) * 2003-04-04 2004-11-04 Ge Medical Systems Global Technology Co Llc Correction factor calculating method in x-ray ct apparatus, beam hardening post-treating method, and x-ray ct apparatus
JP2007000606A (en) * 2005-06-23 2007-01-11 Ge Medical Systems Global Technology Co Llc X-ray ct apparatus
JP2007195966A (en) * 2006-01-25 2007-08-09 General Electric Co <Ge> Method and apparatus for tomosynthesis image quality control
JP2009047424A (en) * 2007-08-13 2009-03-05 Hitachi-Ge Nuclear Energy Ltd Radiographic inspection device and piping inspection method using the device
US7912174B2 (en) 2005-10-13 2011-03-22 Agency For Science, Technology And Research Computed tomography system and method
JP2012107877A (en) * 2010-11-15 2012-06-07 Hitachi-Ge Nuclear Energy Ltd Radiation examination system
JP2013047644A (en) * 2011-08-29 2013-03-07 Shimadzu Corp Radiographing apparatus and tomographic image correction method
WO2019008620A1 (en) * 2017-07-03 2019-01-10 株式会社島津製作所 X-ray ct device
JP2020034278A (en) * 2018-08-27 2020-03-05 セメス株式会社Semes Co., Ltd. X-ray inspection device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004305349A (en) * 2003-04-04 2004-11-04 Ge Medical Systems Global Technology Co Llc Correction factor calculating method in x-ray ct apparatus, beam hardening post-treating method, and x-ray ct apparatus
JP2007000606A (en) * 2005-06-23 2007-01-11 Ge Medical Systems Global Technology Co Llc X-ray ct apparatus
US7912174B2 (en) 2005-10-13 2011-03-22 Agency For Science, Technology And Research Computed tomography system and method
JP2007195966A (en) * 2006-01-25 2007-08-09 General Electric Co <Ge> Method and apparatus for tomosynthesis image quality control
JP2009047424A (en) * 2007-08-13 2009-03-05 Hitachi-Ge Nuclear Energy Ltd Radiographic inspection device and piping inspection method using the device
JP2012107877A (en) * 2010-11-15 2012-06-07 Hitachi-Ge Nuclear Energy Ltd Radiation examination system
JP2013047644A (en) * 2011-08-29 2013-03-07 Shimadzu Corp Radiographing apparatus and tomographic image correction method
WO2019008620A1 (en) * 2017-07-03 2019-01-10 株式会社島津製作所 X-ray ct device
JP2020034278A (en) * 2018-08-27 2020-03-05 セメス株式会社Semes Co., Ltd. X-ray inspection device

Similar Documents

Publication Publication Date Title
RU2394494C2 (en) Scanning system x-kt
US7778383B2 (en) Effective dual-energy x-ray attenuation measurement
JP3377496B2 (en) Method and system for creating projection data in a CT system
JP4465062B2 (en) Computerized tomography system
CN101772324B (en) X-ray ct device
US8699659B2 (en) Systems and methods for focal spot motion correction
GB2054319A (en) Method of and device for determining the contour of a body by means of radiation scattered by the body
JP4993163B2 (en) Method and apparatus for reconstruction of tilted cone beam data
US6925141B2 (en) Method for imaging in the computer tomography of a periodically moved object to be examined and CT device for carrying out the method
JPH09285462A (en) Computer for computer type tomography system
JPS62284250A (en) Industrial ct scanner
JPS582695B2 (en) Inspection device using penetrating radiation
JP2015208601A (en) X-ray ct apparatus, image processor, and projection data generation method
TW200422607A (en) Precise x-ray inspection system utilizing multiple linear sensors
US20230404496A1 (en) Computed tomography apparatus, manufacturing method thereof and operating method thereof
EP0188782B2 (en) Sectional radiography display method and apparatus
US7101078B1 (en) Methods and systems for imaging system radiation source alignment
JPS6157840A (en) Radiation tomographic inspecting device
JP4064541B2 (en) Reference signal generating method and apparatus, and radiation tomography apparatus
JPS6251622B2 (en)
US6463117B1 (en) Methods and apparatus for tilted helical image reconstruction in CT imaging
JPH03286743A (en) Bone salt determination instrument
JP2001212132A (en) Inspection method and device, x-ray tomographic imaging device and recording medium
US20240057955A1 (en) System and method for incorporating lidar-based techniques with a computed tomography system
JPH1189825A (en) Radiation irradiating and detecting device and radiation tomographic apparatus