JP2004037267A - Computed tomography - Google Patents

Computed tomography Download PDF

Info

Publication number
JP2004037267A
JP2004037267A JP2002195024A JP2002195024A JP2004037267A JP 2004037267 A JP2004037267 A JP 2004037267A JP 2002195024 A JP2002195024 A JP 2002195024A JP 2002195024 A JP2002195024 A JP 2002195024A JP 2004037267 A JP2004037267 A JP 2004037267A
Authority
JP
Japan
Prior art keywords
ray
center axis
rotation
axis
projection position
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002195024A
Other languages
Japanese (ja)
Other versions
JP3846576B2 (en
Inventor
Taketo Kishi
岸 武人
Shinichi Utsunomiya
宇都宮 真一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2002195024A priority Critical patent/JP3846576B2/en
Publication of JP2004037267A publication Critical patent/JP2004037267A/en
Application granted granted Critical
Publication of JP3846576B2 publication Critical patent/JP3846576B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a computed tomography for always accurately estimating a projection position in the rotary center axis of a specimen without using any exclusive phantom or the like and hence without being affected by the manufacturing precision of the phantom. <P>SOLUTION: By using X-ray transmission data for 360° in an arbitrary specimen W and by utilizing that the degree of matching of data that differ by 180° is high at a projecting position in the rotation axis, an element corresponding to the projection position onto the light reception surface of an X-ray detector 2 in the rotary axis Ra of the specimen W is obtained. By using the X-ray transmission data for 360° with an arbitrary object as the specimen, the projection position of the rotational center axis can be estimated stably and accurately, thus eliminating an estimation error in the projection position of the rotational center axis caused by manufacturing errors in such a component as the phantom and achieving stable high quality in sectional images. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明はコンピュータ断層撮影装置に関し、更に詳しくは、被検体をX線源とX線検出器の間で回転させる方式のコンピュータ断層撮影装置に関する。
【0002】
【従来の技術】
例えば産業用の被破壊検査などに用いられるX線CT装置、つまりX線を用いたコンピュータ断層撮影装置においては、一般に、少なくとも一方向に広がりを持つX線(ファンビームもしくはコーンビーム)を発生するX線源と、そのX線源に対向して、X線の広がり方向に複数の素子が配列されたX線検出器を配置し、これらの間に、被検体を搭載してX線の光軸方向とX線検出器の素子の配列方向の双方に直交する回転軸の回りに回転させるターンテーブルを配置した構成が採用されている。
【0003】
また、被検体を回転させる代わりに、静止した被検体の回りに、X線源とそれに対向するX線検出器とを一体的に回転させる構成もある。
【0004】
そして、被検体を回転させつつ、あるいはX線源とX線検出器を回転させつつ、所定の微小角度ごとに被検体を透過したX線の強度データを360度分にわたってX線検出器の各素子出力から採取し、そのX線透過データを用いて、回転軸に直交する平面に沿った被検体の断層像を再構成演算を行う。
【0005】
ここで、X線透過データを用いて断層像を再構成するに当たっては、被検体の回転中心軸のX線検出器の受光面上への投影位置(以下、回転中心軸投影位置と称する)を正確に推定しなければ、得られる断層像の高品質化を達成することはできない。
【0006】
回転中心軸投影位置を推定する手法として、従来、例えばアクリルパイプ内にタングステンなどのX線吸収率の高い材質からなるワイヤを通す等の構造を有する専用のファントムを用意し、そのファントムをターンテーブル試料台上に搭載して回転を与え、あるいは静止した試料台上にそのファントムを搭載してX線源およびX線検出器を回転させ、そのファントムを透過したX線をX線検出器で検出して得た360度分のX線透過データから、ワイヤが最も左に寄った点と右に寄った点を検出し、これらの2点間の中心点を回転軸中心軸投影位置として推定していた。
【0007】
【発明が解決しようとする課題】
しかしながら、上記した従来の回転中心軸投影位置の推定手法によると、専用のファントムの製造誤差が、そのまま回転中心軸投影位置の推定結果に影響を及ぼすため、その出来具合に応じて断層像の品質が左右されるという問題があった。
【0008】
本発明はこのような実情に鑑みてなされたもので、専用のファントム等を用いることなく、任意の物体をターンテーブル上に搭載して回転を与え、もしくはX線源とX線検出器を回転させてX線透過データを採取することにより、回転中心軸投影位置を正確に推定することができ、もってファントムの出来具合等によって断層像の品質が左右されるといった不具合を生じることなく、常に高品質の断層像を得ることのできるコンピュータ断層撮影装置の提供を目的としている。
【0009】
【課題を解決するための手段】
上記の目的を達成するため、本発明のコンピュータ断層撮影装置は、X線源と、そのX線源に対向配置され、当該X線源からのX線光軸に直交する方向に複数の素子が配列されたX線検出器と、そのX線源とX線検出器の間に配置された被検体を当接するための試料台と、その試料台上の被検体が、上記X線光軸および上記素子に対して、当該X線光軸および素子の配列方向の双方に直交する回転軸を中心として相対回転するよう、上記試料台を回転させるか、もくしは上記X線源とX線検出器とを回転させる回転駆動手段と、その回転駆動手段を駆動しつつX線を照射して検出した透過X線データを用いて、上記回転軸に直交する面で被検体をスライスした断層像を再構成する再構成演算手段を備えたコンピュータ断層撮影装置において、任意の被検体の360度分のX線透過データを用いて、回転中心軸に相当する素子では、回転角度が180度相違するデータどうしの一致度が高いことを利用した回転中心軸推定手段を有することによって特徴づけられる。
【0010】
本発明は、被検体がX線源とX線検出器に対して相対的に180度回転したとき、被検体上の任意の位置にある点のX線検出器の受光面上での投影位置が、回転軸の投影位置を中心として回転前後で反対側に移動し、回転軸の投影位置に対応する素子についてのみ、180度相違するX線透視データどうしが完全に一致することを利用したものである。
【0011】
すなわち、回転軸の投影位置から離れた位置にある素子には、被検体がX線源およびX線検出器に対して相対的に180度回転したとき、回転前に投影されていた被検体上の部位が移動して回転後には投影されなくなるのに対し、回転軸の投影位置に対応する素子には、被検体が相対的に180度回転したとき、回転前に投影されていた被検体上の部位がそのまま投影される(X線が回転前と反対側から透過するのみ)。
【0012】
従って、各素子ごとに、被検体の回転角度が互いに180度相違するX線透過データどうしの一致度(つまりX線強度が一致している度合い)を算出し、その一致度が最大値ないしは極大値を呈する素子を求めることにより、回転軸の投影位置を正確に推定することができる。
【0013】
そして、このような本発明の手法によると、回転中心軸投影位置を推定するために用いる被検体としては、専用のファントムなどを用いる必要がなく、従って任意の被検体を用いることができ、ファントムの製造誤差に起因する断層像の品質低下が生じることない。
【0014】
【発明の実施の形態】
以下、図面を参照しつつ本発明の実施の形態について説明する。
図1は本発明の実施の形態の構成図で、要部の機械的構成を表す模式図と、電気的な機能構成を表すブロック図とを併記して示す図である。
【0015】
X線源1で発生したX線はコリメータ11を介してファン状のビームBとなり、対向配置されているX線検出器2側に向かう方向(x方向)に照射される。X線検出器2は、X線の広がり方向(y方向)に複数の素子が円弧状に配列された構造を有している。
【0016】
X線源1とX線検出器2の間には、X線の光軸方向であるx方向とX線検出器2の素子の配列方向であるy方向の双方に直交する方向(z方向)に沿った回転軸Raを中心として回転するターンテーブル3が配置されており、被検体Wはこのターンテーブル3上に搭載されて回転が与えられる。なお、ターンテーブル3は、x,y,z方向に移動可能なx−y−zテーブル31上に載せられている。
【0017】
X線検出器2の各素子の出力は、ターンテーブル3により被検体Wが微小角度回転するごとに、データサンプリング回路4によりデジタル化されたうえで、演算装置5に取り込まれる。すなわち、演算装置5には、X線検出器2の各素子ごとに、被検体Wの360度分のX線透過データが取り込まれる。演算装置5は、データサンプリング回路4からのX線透過データのガンマ補正、画像歪み補正、更には各素子の感度補正や、対数変換などを行う前処理部51と、その前処理後のX線透過データを用いて断層像の再構成演算を行って表示器6等に出力する再構成演算部52のほか、回転中心軸推定部53を備えており、この回転中心軸推定部53により、ターンテーブル3の回転軸RaのX線検出器2の受光面上への投影位置が推定演算され、その推定結果は再構成演算部52における断層像の再構成演算に供される。
【0018】
回転中心軸推定部53では、X線検出器2の各素子からの360度分のX線透過データを用いた下記の演算により、回転軸RaのX線検出器2の受光面上への投影位置を推定する。
【0019】
図2に例示するように、横軸にX線検出器2の各素子(以下、チャンネルと称する)ナンバーi(i=1〜n)を取るとともに、縦軸にターンテーブル3の回転角φ(0°〜360°)を取って、全チャンネルの360度分の投影データPを並べたサイノグラムを考える。図2は、前記したアクリルパイプ中にタングステン等のX線吸収率の高い素材のワイヤを通したような被検体の場合のサイノグラムを例示している。このようなサイノグラムにおいて、各チャンネルi=1〜nについて、P[i,φ]とP[n,φ+180°]の比(どちらか大きい方を分母として1.0を越えないようにする)をφ=0°〜180°までの範囲で算出し、その平均値Q[i]を求める。
【0020】
サイノグラムが図2に例示したものであれば、平均値Q[i]の計算結果は図3に示す通りとなる。これは、回転軸Raが投影されるチャンネルに限り、180度相違するX線透過データは被検体Wを表と裏からX線が透過したものとなるが故にQの値はほぼ1.0になるのに対し、その回転軸Raの投影位置から離れるに従ってQの値は1.0よりも次第に小さくなる。ただし、被検体Wの存在しない部位に対応する両端部のチャンネル群におけるQの値は、ターンテーブル3が360°回転する間、常時空気のみを透過したX線が入射するため、一様に1.0に近い値となる。
【0021】
従って、各チャンネルi=1〜nについてQ[i]を算出して、一端側のチャンネルからQが一旦下がった後極大値を迎えてもう一度下がる場所を検出すれば、Qの値が極大値を示したチャンネルが回転軸Raが投影されているチャンネルであると認識することができる。また、サブピクセルオーダーまで回転中心軸投影位置を求める必要のある場合は、Q[i]の値を用いて補間計算を行うことも可能である。
【0022】
以上の回転中心軸投影位置の推定手法によると、被検体Wとして上記のようなアクリルパイプ中にタングステンワイヤ等を通したファントムを用いた場合、その製造誤差が回転中心軸投影位置の推定結果に影響を及ぼすことがなく、更には被検体として任意の物体を用いても回転中心軸の投影位置を正確に推定することができ、例えば実際に断層像を得ようとする被検体のX線透過データを用いて回転中心軸の投影位置を推定することも可能となる。
【0023】
再構成演算部52では、以上のようにして回転中心軸推定部53によって推定された回転中心軸投影位置を用いて再構成演算を行うため、常に正確な回転中心軸投影位置を基にした断層像を再構成するので、得られる断層像の品質は常に高いものとなる。
【0024】
なお、以上の実施の形態においては、各チャンネルごとの180度相違するX線透過データどうしの一致度の計算のために、各チャンネルごとに180度相違するデータの比の平均値Qを用いたが、各比の標準偏差を用いたり、あるいは単に積算値を用いることも可能であることは勿論である。
【0025】
また、以上の実施の形態では、X線検出器としてラインセンサを用い、ファン状のX線ビームを照射するタイプのCT装置に本発明を適用した例を示したが、X線検出器として2次元センサを用いるとともに、コーン状のX線ビームを照射する、いわゆるコーンビームCT装置にも本発明を応用することができる。
【0026】
更に、以上の実施の形態においては、X線源1とX線検出器2を固定し、これの間に被検体を搭載するターンテーブル3を配置した例を示したが、被検体を固定された試料台上に載せるとともに、その試料台を挟んで両側に配置されるX線源とX線検出器を一体的に回転させるタイプのCT装置にも本発明を等しく適用し得ることは勿論である。
【0027】
【発明の効果】
以上のように、本発明によれば、X線検出器の各素子ごとに、被検体の360度分のX線透過データのうち、被検体のX線源並びにX線検出器に対する相対回転角度が互いに180度相違するデータどうしの一致度が高いことを利用して被検体の回転中心軸の投影位置に対応する素子として推定するので、任意の物体、例えば断層像を得ようとする被検体のX線透過データからその回転中心軸の投影位置を推定することも可能となり、従来のように専用のファントムを用いる必要がなく、しかもそのファントムの製造誤差に起因する回転中心軸の推定誤差を生じる恐れがなくなり、常に安定して回転中心軸の推定位置を高精度に求めることが可能となり、ひいては断層像を安定して高品質なものとすることができる。
【図面の簡単な説明】
【図1】本発明の実施の形態の構成図で、要部の機械的構成を表す模式図と、電気的な機能構成を表すブロック図とを併記して示す図である。
【図2】本発明の実施の形態における回転中心軸推定部53で行う回転中心軸の投影位置の推定演算に用いるX線透視データの例を示すサイノグラムである。
【図3】同じく回転中心軸推定部53で行う回転中心軸の投影位置の推定演算に用いる各チャンネルごとの180度相違データの一致度の計算結果の例を示すグラフである。
【符号の説明】
1 X線源
2 X線検出器
3 ターンテーブル
4 データサンプリング回路
5 演算装置
51 前処理部
52 再構成演算部
53 回転中心軸推定部
6 表示器
W 被検体
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a computer tomography apparatus, and more particularly, to a computer tomography apparatus that rotates an object between an X-ray source and an X-ray detector.
[0002]
[Prior art]
For example, in an X-ray CT apparatus used for industrial destructive inspection, that is, a computed tomography apparatus using X-rays, generally, an X-ray (fan beam or cone beam) having at least one direction is generated. An X-ray source and an X-ray detector in which a plurality of elements are arranged in the direction in which the X-ray spreads are arranged opposite to the X-ray source. A configuration is adopted in which a turntable that rotates around a rotation axis that is orthogonal to both the axial direction and the arrangement direction of the X-ray detector elements is employed.
[0003]
There is also a configuration in which an X-ray source and an X-ray detector facing the X-ray source are integrally rotated around a stationary subject instead of rotating the subject.
[0004]
Then, while rotating the subject, or rotating the X-ray source and the X-ray detector, the intensity data of the X-rays transmitted through the subject at predetermined small angles are converted into the X-ray detector data for 360 degrees. A tomographic image of the subject along a plane orthogonal to the rotation axis is reconstructed using the X-ray transmission data obtained from the element output.
[0005]
Here, in reconstructing a tomographic image using the X-ray transmission data, the projection position of the rotation center axis of the subject on the light receiving surface of the X-ray detector (hereinafter referred to as the rotation center axis projection position) is used. Without accurate estimation, high quality of the obtained tomographic image cannot be achieved.
[0006]
Conventionally, as a method of estimating the rotation center axis projection position, a dedicated phantom having a structure such as passing a wire made of a material having a high X-ray absorptivity such as tungsten in an acrylic pipe is prepared, and the phantom is turned on a turntable. Mount on the sample stage to give rotation, or mount the phantom on the stationary sample stage, rotate the X-ray source and X-ray detector, and detect X-rays transmitted through the phantom with the X-ray detector From the X-ray transmission data for 360 degrees obtained as a result, the point where the wire is shifted leftmost and the point shifted right are detected, and the center point between these two points is estimated as the rotation axis center axis projection position. I was
[0007]
[Problems to be solved by the invention]
However, according to the conventional method of estimating the rotation center axis projection position described above, the manufacturing error of the dedicated phantom directly affects the estimation result of the rotation center axis projection position. There is a problem that is affected.
[0008]
The present invention has been made in view of such a situation, and an arbitrary object is mounted on a turntable to give rotation, or an X-ray source and an X-ray detector are rotated without using a dedicated phantom or the like. By collecting the X-ray transmission data in this way, it is possible to accurately estimate the projected position of the rotation center axis, and thus to prevent the quality of the tomographic image from being affected by the quality of the phantom, etc. It is an object of the present invention to provide a computer tomography apparatus capable of obtaining a high quality tomographic image.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, a computed tomography apparatus of the present invention includes an X-ray source and a plurality of elements arranged in a direction orthogonal to an X-ray optical axis from the X-ray source. An arrayed X-ray detector, a sample stage for abutting an object arranged between the X-ray source and the X-ray detector, and an object on the sample stage, the X-ray optical axis and The sample stage is rotated or the X-ray source and the X-ray detector are rotated so as to rotate relative to the element about a rotation axis orthogonal to both the X-ray optical axis and the arrangement direction of the elements. Tomographic images obtained by slicing a subject on a plane perpendicular to the rotation axis using rotational driving means for rotating the device and transmitted X-ray data detected by irradiating X-rays while driving the rotational driving means. In a computed tomography apparatus having a reconstruction operation means for reconstructing, By using 360-degree X-ray transmission data of a desired subject, a rotation center axis estimating unit utilizing the fact that the degree of coincidence between data having a rotation angle difference of 180 degrees is high in an element corresponding to the rotation center axis is described. Characterized by having.
[0010]
According to the present invention, when an object is rotated by 180 degrees relative to an X-ray source and an X-ray detector, a projection position of a point at an arbitrary position on the object on a light receiving surface of the X-ray detector Moves on the opposite side before and after the rotation about the projection position of the rotation axis, and uses only the element corresponding to the projection position of the rotation axis to completely match the X-ray fluoroscopic data that differs by 180 degrees. It is.
[0011]
That is, when the subject is rotated by 180 degrees relative to the X-ray source and the X-ray detector, an element located at a position distant from the projection position of the rotation axis has a position on the subject that has been projected before the rotation. The element corresponding to the projected position of the rotation axis has an element corresponding to the projected position of the rotation axis on the object that has been projected before the rotation when the object is relatively rotated by 180 degrees. Is projected as it is (only X-rays pass from the opposite side from before rotation).
[0012]
Therefore, for each element, the degree of coincidence (that is, the degree of coincidence of X-ray intensities) between X-ray transmission data in which the rotation angles of the subject are different from each other by 180 degrees is calculated, and the degree of coincidence is maximized or maximized. By determining an element exhibiting a value, the projected position of the rotation axis can be accurately estimated.
[0013]
According to such a method of the present invention, it is not necessary to use a dedicated phantom or the like as an object used for estimating the projected position of the rotation center axis, so that any object can be used. The quality of the tomographic image is not degraded due to the manufacturing error.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a configuration diagram of an embodiment of the present invention, in which a schematic diagram showing a mechanical configuration of a main part and a block diagram showing an electrical functional configuration are shown together.
[0015]
The X-rays generated by the X-ray source 1 are converted into a fan-shaped beam B via the collimator 11 and emitted in the direction (x direction) toward the X-ray detector 2 which is disposed opposite. The X-ray detector 2 has a structure in which a plurality of elements are arranged in an arc shape in the X-ray spreading direction (y-direction).
[0016]
Between the X-ray source 1 and the X-ray detector 2, a direction (z-direction) orthogonal to both the x-direction, which is the optical axis direction of the X-ray, and the y-direction, which is the arrangement direction of the elements of the X-ray detector 2. A turntable 3 that rotates about a rotation axis Ra along the axis is arranged, and the subject W is mounted on the turntable 3 and is rotated. The turntable 3 is mounted on an xyz table 31 that can move in the x, y, and z directions.
[0017]
The output of each element of the X-ray detector 2 is digitized by the data sampling circuit 4 every time the subject W is rotated by a small angle by the turntable 3, and is taken into the arithmetic unit 5. That is, the arithmetic unit 5 captures 360-degree X-ray transmission data of the subject W for each element of the X-ray detector 2. The arithmetic unit 5 includes a preprocessing unit 51 that performs gamma correction, image distortion correction, sensitivity correction of each element, logarithmic conversion, and the like of the X-ray transmission data from the data sampling circuit 4, and an X-ray after the preprocessing. In addition to a reconstruction operation unit 52 that performs a reconstruction operation of a tomographic image using transmission data and outputs the result to the display 6 or the like, a rotation center axis estimation unit 53 is provided. The projection position of the rotation axis Ra of the table 3 on the light receiving surface of the X-ray detector 2 is estimated and calculated, and the estimation result is used for a reconstruction calculation of a tomographic image in the reconstruction calculation unit 52.
[0018]
The rotation center axis estimating unit 53 projects the rotation axis Ra on the light receiving surface of the X-ray detector 2 by the following calculation using 360-degree X-ray transmission data from each element of the X-ray detector 2. Estimate the position.
[0019]
As illustrated in FIG. 2, each element (hereinafter, referred to as a channel) number i (i = 1 to n) of the X-ray detector 2 is taken on the horizontal axis, and the rotation angle φ ( (0 ° to 360 °), and consider a sinogram in which projection data P for 360 degrees of all channels are arranged. FIG. 2 illustrates a sinogram in the case of a subject in which a wire made of a material having a high X-ray absorptivity such as tungsten is passed through the above-mentioned acrylic pipe. In such a sinogram, for each channel i = 1 to n, the ratio of P [i, φ] to P [n, φ + 180 °] (do not exceed 1.0 using the larger one as the denominator) Calculation is performed in the range of φ = 0 ° to 180 °, and the average value Q [i] is obtained.
[0020]
If the sinogram is as illustrated in FIG. 2, the calculation result of the average value Q [i] is as shown in FIG. This is because the X-ray transmission data differing by 180 degrees is obtained by transmitting X-rays from the front and back of the subject W only for the channel on which the rotation axis Ra is projected. On the other hand, the value of Q gradually decreases from 1.0 as the rotation axis Ra moves away from the projection position. However, the value of Q in the channel group at both ends corresponding to the portion where the subject W does not exist is uniformly set to 1 because X-rays that always transmit only air are incident while the turntable 3 rotates 360 °. It becomes a value close to 0.0.
[0021]
Therefore, Q [i] is calculated for each channel i = 1 to n, and if a point where Q once drops from the channel on one end side reaches a local maximum value and is detected again is detected, the value of Q becomes the local maximum value. It can be recognized that the indicated channel is a channel on which the rotation axis Ra is projected. When it is necessary to obtain the rotation center axis projection position up to the sub-pixel order, interpolation calculation can be performed using the value of Q [i].
[0022]
According to the above-described method of estimating the rotation center axis projection position, when a phantom in which a tungsten wire or the like is passed through the above-described acrylic pipe as the subject W is used, a manufacturing error is caused by the estimation result of the rotation center axis projection position. Without any influence, the projection position of the rotation center axis can be accurately estimated even if an arbitrary object is used as the object. For example, the X-ray transmission of the object to actually obtain a tomographic image It is also possible to estimate the projection position of the rotation center axis using the data.
[0023]
Since the reconstruction calculation unit 52 performs the reconstruction calculation using the rotation center axis projection position estimated by the rotation center axis estimation unit 53 as described above, the tomography based on the accurate rotation center axis projection position is always performed. Since the image is reconstructed, the quality of the obtained tomographic image is always high.
[0024]
In the above-described embodiment, the average value Q of the ratio of data that differs by 180 degrees for each channel is used for calculating the degree of coincidence between X-ray transmission data that differs by 180 degrees for each channel. However, it is of course possible to use the standard deviation of each ratio or simply use the integrated value.
[0025]
Further, in the above embodiment, an example is shown in which the present invention is applied to a fan type X-ray beam irradiation type CT apparatus using a line sensor as the X-ray detector. The present invention can be applied to a so-called cone beam CT apparatus that uses a dimensional sensor and irradiates a cone-shaped X-ray beam.
[0026]
Further, in the above embodiment, the X-ray source 1 and the X-ray detector 2 are fixed, and the turntable 3 on which the subject is mounted is arranged between them, but the subject is fixed. Of course, the present invention can equally be applied to a CT apparatus of a type in which the X-ray source and the X-ray detector arranged on both sides of the sample table are integrally rotated while being placed on the sample table. is there.
[0027]
【The invention's effect】
As described above, according to the present invention, for each element of the X-ray detector, the relative rotation angle of the subject with respect to the X-ray source and the X-ray detector among the 360-degree X-ray transmission data of the subject. Is estimated as an element corresponding to the projected position of the rotation center axis of the subject by using the fact that the degree of coincidence between data that is 180 degrees different from each other is high. It is also possible to estimate the projection position of the rotation center axis from the X-ray transmission data of the above, and it is not necessary to use a dedicated phantom as in the past, and furthermore, the estimation error of the rotation center axis due to the manufacturing error of the phantom is reduced. This eliminates the possibility of occurrence, and makes it possible to constantly and stably obtain the estimated position of the rotation center axis with high accuracy, and thus, tomographic images can be stably made of high quality.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of an embodiment of the present invention, in which a schematic diagram showing a mechanical configuration of a main part and a block diagram showing an electrical functional configuration are shown together.
FIG. 2 is a sinogram showing an example of X-ray fluoroscopic data used for a calculation operation of estimating a projection position of a rotation center axis performed by a rotation center axis estimation unit 53 according to the embodiment of the present invention.
FIG. 3 is a graph showing an example of a calculation result of the degree of coincidence of 180-degree difference data for each channel used in the calculation for estimating the projection position of the rotation center axis performed by the rotation center axis estimation unit 53;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 X-ray source 2 X-ray detector 3 Turntable 4 Data sampling circuit 5 Computing device 51 Preprocessing unit 52 Reconstruction computing unit 53 Rotation center axis estimating unit 6 Display W Subject

Claims (1)

X線源と、そのX線源に対向配置され、当該X線源からのX線光軸に直交する方向に複数の素子が配列されたX線検出器と、そのX線源とX線検出器の間に配置された被検体を当接するための試料台と、その試料台上の被検体が、上記X線光軸および上記素子に対して、当該X線光軸および素子の配列方向の双方に直交する回転軸を中心として相対回転するよう、上記試料台を回転させるか、もくしは上記X線源とX線検出器とを回転させる回転駆動手段と、その回転駆動手段を駆動しつつX線を照射して検出した透過X線データを用いて、上記回転軸に直交する面で被検体をスライスした断層像を再構成する再構成演算手段を備えたコンピュータ断層撮影装置において、
任意の被検体の360度分のX線透過データを用いて、回転中心軸に相当する素子では、回転角度が180度相違するデータどうしの一致度が高いことを利用した回転中心軸推定手段を有することを特徴とするコンピュータ断層撮影装置。
An X-ray source, an X-ray detector arranged to face the X-ray source, and having a plurality of elements arranged in a direction orthogonal to an X-ray optical axis from the X-ray source; and an X-ray source and an X-ray detector. A sample stage for abutting an object arranged between the vessels, and the object on the sample stage is arranged such that the X-ray optical axis and the element are aligned with the X-ray optical axis and the array direction of the element. The sample stage is rotated so as to rotate relative to a rotation axis orthogonal to both sides, or the X-ray source and the X-ray detector are rotated, and the rotation drive unit is driven. A computed tomography apparatus comprising reconstruction calculation means for reconstructing a tomographic image obtained by slicing a subject on a plane orthogonal to the rotation axis using transmitted X-ray data detected by irradiating X-rays,
Using X-ray transmission data for 360 degrees of an arbitrary subject, a rotation center axis estimating unit utilizing the fact that the degree of coincidence between data having rotation angles differing by 180 degrees is high in an element corresponding to the rotation center axis is described. A computed tomography apparatus, comprising:
JP2002195024A 2002-07-03 2002-07-03 Computed tomography equipment Expired - Lifetime JP3846576B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002195024A JP3846576B2 (en) 2002-07-03 2002-07-03 Computed tomography equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002195024A JP3846576B2 (en) 2002-07-03 2002-07-03 Computed tomography equipment

Publications (2)

Publication Number Publication Date
JP2004037267A true JP2004037267A (en) 2004-02-05
JP3846576B2 JP3846576B2 (en) 2006-11-15

Family

ID=31703567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002195024A Expired - Lifetime JP3846576B2 (en) 2002-07-03 2002-07-03 Computed tomography equipment

Country Status (1)

Country Link
JP (1) JP3846576B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005233760A (en) * 2004-02-19 2005-09-02 Toshiba It & Control Systems Corp Tomosynthesis device
JP2006003200A (en) * 2004-06-17 2006-01-05 Toshiba It & Control Systems Corp Computerized tomograph
WO2007043974A1 (en) * 2005-10-13 2007-04-19 Agency For Science, Technology & Research Computed tomography system and method
US20070274456A1 (en) * 2006-05-23 2007-11-29 Bio-Imaging Research, Inc. Method and apparatus to facilitate determination of a parameter that corresponds to a scanning geometry characteristic
WO2009131544A1 (en) * 2008-04-25 2009-10-29 Agency For Science, Technology And Research Computed tomography method and apparatus for centre-of-rotation determination
JP2010066157A (en) * 2008-09-11 2010-03-25 Shimadzu Corp Cone beam x-ray ct device
JP2011069650A (en) * 2009-09-24 2011-04-07 Shimadzu Corp Radiation tomographic image photographing system
CN103606144A (en) * 2013-10-17 2014-02-26 中国科学院过程工程研究所 Method and apparatus for determining center of rotation of projection of computed tomography (CT)
US8777485B2 (en) 2010-09-24 2014-07-15 Varian Medical Systems, Inc. Method and apparatus pertaining to computed tomography scanning using a calibration phantom

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005233760A (en) * 2004-02-19 2005-09-02 Toshiba It & Control Systems Corp Tomosynthesis device
JP4537090B2 (en) * 2004-02-19 2010-09-01 東芝Itコントロールシステム株式会社 Tomosynthesis equipment
JP4504743B2 (en) * 2004-06-17 2010-07-14 東芝Itコントロールシステム株式会社 Computed tomography equipment
JP2006003200A (en) * 2004-06-17 2006-01-05 Toshiba It & Control Systems Corp Computerized tomograph
WO2007043974A1 (en) * 2005-10-13 2007-04-19 Agency For Science, Technology & Research Computed tomography system and method
US7912174B2 (en) 2005-10-13 2011-03-22 Agency For Science, Technology And Research Computed tomography system and method
US20070274456A1 (en) * 2006-05-23 2007-11-29 Bio-Imaging Research, Inc. Method and apparatus to facilitate determination of a parameter that corresponds to a scanning geometry characteristic
US9052265B2 (en) * 2006-05-23 2015-06-09 Varian Medical Systems, Inc. Method and apparatus to facilitate determination of a parameter that corresponds to a scanning geometry characteristic
WO2009131544A1 (en) * 2008-04-25 2009-10-29 Agency For Science, Technology And Research Computed tomography method and apparatus for centre-of-rotation determination
US8259897B2 (en) 2008-04-25 2012-09-04 Agency For Science, Technology And Research Computed tomography method and apparatus for centre-of-rotation determination
JP2010066157A (en) * 2008-09-11 2010-03-25 Shimadzu Corp Cone beam x-ray ct device
JP2011069650A (en) * 2009-09-24 2011-04-07 Shimadzu Corp Radiation tomographic image photographing system
US8777485B2 (en) 2010-09-24 2014-07-15 Varian Medical Systems, Inc. Method and apparatus pertaining to computed tomography scanning using a calibration phantom
CN103606144A (en) * 2013-10-17 2014-02-26 中国科学院过程工程研究所 Method and apparatus for determining center of rotation of projection of computed tomography (CT)

Also Published As

Publication number Publication date
JP3846576B2 (en) 2006-11-15

Similar Documents

Publication Publication Date Title
US7186023B2 (en) Slice image and/or dimensional image creating method
US20070116175A1 (en) System and method for reconstructing image by using straight-line trajectory scan
US7139363B2 (en) Oblique-view cone-beam CT system
US7912174B2 (en) Computed tomography system and method
US7801264B2 (en) Method for calibrating a dual -spectral computed tomography (CT) system
US20180192967A1 (en) Tiled detector arrangement for differential phase contrast ct
JP2006505336A (en) CT device and method using three-dimensional backprojection
WO2005120354A1 (en) Coherent-scatter computer tomograph
US20120328076A1 (en) Systems and methods for focal spot motion correction
JPH0838467A (en) Method of determining detector channel gain calibration coefficient
JP2012511950A (en) Semi-circular reverse offset scan for enlarged 3D field of view
US6876718B2 (en) Scatter correction methods and apparatus
JP2005087592A (en) X-rays measuring instrument
JP5060862B2 (en) Tomography equipment
JP2004037267A (en) Computed tomography
KR20150126556A (en) Microchip x-ray computed tomography system and inspection method using the same
JP3694833B2 (en) Eucentric tilted 3D X-ray CT and 3D image imaging method using the same
JP4537090B2 (en) Tomosynthesis equipment
JPH04198840A (en) Ct apparatus
JP5011085B2 (en) Inspection device, inspection device alignment method, and calibration phantom manufacturing method
JP3846577B2 (en) Computed tomography equipment
JP2010204060A (en) X-ray inspection device, and inspection method of the same
Yang et al. A review of geometric calibration for different 3-D X-ray imaging systems
JP2011064662A (en) Ct apparatus with table for fluoroscopic observation
JP4016265B2 (en) X-ray CT system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060411

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060815

R150 Certificate of patent or registration of utility model

Ref document number: 3846576

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090901

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130901

Year of fee payment: 7

EXPY Cancellation because of completion of term