JP3694833B2 - Eucentric tilted 3D X-ray CT and 3D image imaging method using the same - Google Patents

Eucentric tilted 3D X-ray CT and 3D image imaging method using the same Download PDF

Info

Publication number
JP3694833B2
JP3694833B2 JP2002135870A JP2002135870A JP3694833B2 JP 3694833 B2 JP3694833 B2 JP 3694833B2 JP 2002135870 A JP2002135870 A JP 2002135870A JP 2002135870 A JP2002135870 A JP 2002135870A JP 3694833 B2 JP3694833 B2 JP 3694833B2
Authority
JP
Japan
Prior art keywords
dimensional
ray
eucentric
image
rotation axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002135870A
Other languages
Japanese (ja)
Other versions
JP2003329616A (en
Inventor
雅樹 三澤
ティセアヌ イオン
龍介 平嶋
直浩 若林
和人 小泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2002135870A priority Critical patent/JP3694833B2/en
Publication of JP2003329616A publication Critical patent/JP2003329616A/en
Application granted granted Critical
Publication of JP3694833B2 publication Critical patent/JP3694833B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ユーセントリック型傾斜三次元X線CT(コンピュータ・トモグラフィ)及びそれによる三次元画像の撮影方法に関するものであり、更に具体的には、産業用X線CT装置や、半導体部品、プリント基板、ICチップ、半田接合部の検査、あるいは、機械部品、複合材料、プラスチック類の検査等に利用するのに適したユーセントリック型傾斜三次元X線CT及びそれによる撮影方法に関するものである。
【0002】
【従来の技術】
従来から知られている三次元X線CTでは、図3に示すように、X線源A、測定物D、検出器Bを同一平面上に配置し、回転軸Cの周りに回転する測定物Dに対して、X線源Aから、その回転軸Cに垂直な方向にX線を投射し、それに対向する位置に配置した検出器Bで投影データを収集している。この場合、平面面積の大きな測定物Dの一部を拡大撮影したくても、測定物の回転半径が大きく、X線源Aと測定物Dとが干渉するので、測定物DとX線源Aとを近づけて拡大率を上げることができない。また、測定物Dの回転軸Cに対して垂直方向から投影データを収集する場合、平面面積の大きい測定物では、平面方向にビームハードニング偽像が発生するという問題もある。
一方、測定物の回転軸に対して斜めから撮影する方法にラミノグラフィがあるが、出力されるのは二次元画像データ(図4参照)であり、三次元データではない。
【0003】
【発明が解決しようとする課題】
本発明が解決しようとする技術的課題は、平面面積の大きな平たい測定物の全体を撮影できるばかりでなく、一部の高拡大率三次元断層撮影も行えるようにしたユーセントリック型傾斜三次元X線CT及びそれによる三次元画像の撮影方法を提供することにある。
本発明の他の技術的課題は、X線が透過しにくい物質の断層撮影で発生するビームハードニングを低減できるようにした上記三次元X線CT及びそれによる撮影方法を提供することにある。
また、本発明の他の技術的課題は、X線が透過しにくい平たい物質の撮影で、低エネルギーX線を利用して画像のコントラストを改善するとともに、X線源の寿命を延長させること可能にした上記三次元X線CT及びそれによる撮影方法を提供することにある。
【0004】
【課題を解決するための手段】
上記課題を解決するための本発明のユーセントリック型傾斜三次元X線CTは、測定物を載置するための、回転軸を測定物の任意の位置に設定できるユーセントリックテーブルと、X線源とそれに対向配置されてユーセントリックテーブル上の測定物の投影像を検出する二次元検出器と、該二次元検出器により得られた投影像をその法線が測定物の回転軸に垂直になるように画像変換する画像変換手段と、この変換された投影像にX線焦点と測定物の回転軸との距離、投影像の画素座標、及び下記角度θに基づく数式からなる重み係数を掛けてデータ処理するデータ処理手段とを備え、上記X線源と上記二次元検出器とを、それらを結ぶ軸線が上記回転軸に対して90度より小さい角度θで交わるように配置し、90度より小さいあらゆる角度で三次元断層撮影を可能にしたことを特徴とするものである。
【0005】
上記ユーセントリック型傾斜三次元X線CTにおいては、X線源としてマイクロフォーカスX線源を用い、ユーセントリックテーブル上の測定物とX線源の位置関係を任意に調整可能とし、それによって測定物の任意部分の投影像を任意倍率で撮影可能にするのが有効である。
【0006】
また、上記課題を解決するための本発明のユーセントリック型傾斜三次元X線CTによる三次元画像の撮影方法は、回転軸を測定物の任意の位置に設定できるユーセントリックテーブル上に測定物を載置し、上記ユーセントリックテーブル上の測定物に対して、X線源とそれに対向配置されて投影像を検出する二次元検出器とを、それらを結ぶ軸線が上記回転軸に対して90度より小さい角度θで交わるように配置して、上記検出器により測定物の投影像を撮影し、この投影像の撮影を、ユーセントリックテーブルにより上記回転軸の周りに測定物を微小角度間隔で回転させて、各角度ステップごとに行い、各投影像をその法線が測定物の回転軸に垂直になるように画像変換し、この変換された投影像にX線焦点と測定物の回転軸との距離、投影像の画素座標、及び上記角度θに基づく数式からなる重み係数を掛けてデータ処理を行って測定物の三次元画像再構成を行い、1セットの撮影で複数の断層像を得ることを特徴とするものである。
【0007】
上記本発明の方法においては、検出器の検出面中心に立てた法線がX線源の焦点(すなわち、X線焦点)を向くように検出器を配置して得られた投影像を、その法線が測定物の回転軸に垂直になるように画像変換するステップ、この変換された投影像に、X線源の焦点を含む平面内に原点を持つ座標系から求めたX線焦点と測定物の回転軸との距離、投影像の画素座標、及び上記角度θに基づく数式からなる重み係数を掛けて重み付き投影データを作成するステップ、この重み付き投影データとフィルタ関数にフーリエ変換を施し、畳み込み演算を行うステップ、上記畳み込み演算の結果に基づき、三次元再構成グリッド上に逆投影して、三次元の吸収係数分布を求めるステップを有するアルゴリズムで上記投影像を処理するのが望ましい。
【0008】
上記構成を有するユーセントリック型傾斜三次元X線CT及びそれを用いた撮影方法においては、ユーセントリックテーブルの回転軸を任意の位置に設定できるので、測定物をテーブル上で移動させたりすることなく、面積の大きな平たい測定物の一部を拡大して三次元断層撮影することができ、特に、測定物の回転軸に対して斜めからX線を照射して投影データを収集するので、X線源と測定物が干渉することはなく、X線源を測定物の近くに配置して、高倍率の三次元断層撮影を行うことが可能となる。しかも、測定物の回転軸に対して斜めからX線を照射することにより、X線の測定物内の透過距離が短縮するので、ビームハードニングの影響を大きく低減させることができる。
【0009】
【発明の実施の形態】
図1は、本発明に係るユーセントリック型傾斜三次元X線CTの実施例を示している。この傾斜三次元X線CTは、回転軸を任意の位置に設定できるユーセントリックテーブルTを備えている。このユーセントリックテーブルTは、上記回転軸を図1では仮想回転軸Eとして示しているが、この仮想回転軸Eの位置をテーブルT上の測定物Dの任意の位置に設定でき、また、測定物DをテーブルT上で移動させる必要はなく、ユーセントリックテーブルTをその姿勢を保持したままで3次元的に移動させて調節でき、そのため、面積の大きな平たい測定物の一部を拡大して三次元断層撮影することもできる。
【0010】
X線源Aとそれに対向配置されてユーセントリックテーブルT上の測定物Dの投影像を検出する二次元検出器Bは、それらを結ぶ軸線が上記仮想回転軸Eに対して90度より小さい角度θで交差するように配置され、テーブルT上に載置された測定物Dに対して、X線源AからのX線コーンビームGを透過させ、その投影像を上記検出器Bで検出するようにしている。上記X線源としては、高倍率で鮮明な画像を得るため、焦点径の小さいマイクロフォーカスX線源が用いられる。大きな広がり角のX線コーンビームGの一部を利用する上記方式のほかに、X線源Aを検出器Bに正対させて配置させる、X線源A’の構成も可能である。
測定物Dの一部の拡大領域Fは、X線源Aと検出器Bを結ぶ軸線の角度θを変えることで、X線減衰が過度に大きくならないようなX線照射方向を選択することができ、また、測定物Dの一部の拡大率は、X線源Aと測定物Dの間の距離を、ユーセントリックテーブルTの高さ調節によって変えることで、任意に調整することができる。
【0011】
上記構成を有するユーセントリック型傾斜三次元X線CTを用いて、例えば、上記テーブルT上に置かれたプリント基板等の、平面面積が大きく、厚みの薄い測定物Dの一部の三次元画像を得るには、先ず、図1に示すように、ユーセントリックテーブルT上に置かれた測定物Dの一部に上記X線源AからのX線を透過させ、その投影像を二次元検出器Bで検出する。このとき、X線源と検出器とを結ぶ軸線が、仮想回転軸に対して角度θで交わっているのは勿論である。
【0012】
三次元CTを行うには、X線源Aと二次元検出器Bを固定し、ユーセントリックテーブルTの仮想回転軸Eのまわりに、測定物DをそのテーブルTとともに微小角度間隔で回転させ、各角度ステップごとに、検出器Bに投影された投影像をデータ収録用のデータ記録装置(パソコン)に記録する。
そして、記録された各投影像を使って、解析装置(パソコン)における傾斜三次元X線CTの計算コードにより、測定物Dの一部のみを画像再構成し、三次元画像を得る。
【0013】
上記三次元画像の撮影においては、次のようなステップを有するアルゴリズムで投影像を処理するのが望ましい。上記ステップとは、
(1).検出器の検出面中心に立てた法線がX線源の焦点を向くように検出器を配置して得られた投影像を、その法線が測定物の回転軸に垂直になるように画像変換するステップ、
(2).この変換された投影像に、X線源の焦点を含む平面内に原点を持つ座標系から求めたX線焦点と測定物の回転軸との距離、投影像の画素座標、及びX線源と二次元検出器とを結ぶ軸線と測定物の回転軸とが交わる角度θに基づく数式からなる重み係数を掛けて重み付き投影データを作成するステップ、
(3).この重み付き投影データとフィルタ関数にフーリエ変換を施し、畳み込み演算を行うステップ、
(4).上記畳み込み演算の結果に基づき、三次元再構成グリッド上に逆投影して、三次元の吸収係数分布を求めるステップ、
である。
【0014】
上記画像を得るに際し、測定物Dの一部の拡大率は、ユーセントリックテーブルTの高さによりX線源Aと測定物Dの間の距離を変えることで、任意に調整することができる。
また、仮想回転軸Eの位置は、すべてユーセントリックテーブルTの移動により測定物Dの任意の位置に設定でき、このとき、X線をとめたり、測定物Dを人が移動させる必要はない。
【0015】
先に図2を参照して説明したように、従来の三次元X線CTでは、X線源A、測定物D、検出器Bは同一平面上にあるので、測定物Dの一部を拡大断層撮影しようとすると、平面面積の大きな測定物Dが回転するときに、X線源Aと測定物Dが干渉し、測定物DをX線源Aに近づけて拡大率を大きくすることができないが、上述したユーセントリック型傾斜三次元X線CTによれば、図1からわかるように、平面面積の大きな測定物Dと同一平面上にX線源がないので、X線源Aを、拡大撮影したい領域の極近傍に接近させ、拡大率を大きくしたうえで、測定物Dを回転できるので、局所的な三次元X線CTが可能となる。
【0016】
更に、図1に示すような測定物DとX線源の位置関係では、測定物Dの平面方向にX線を透過させないため、X線の透過距離が短くなり、ビームハードニングの影響を大幅に低減できるとともに、よりコントラストの高い鮮明な画像を得ることができる。また、低エネルギーのX線を使用できるので、X線源の寿命も長くなる。
【0017】
図2に、実装後のプリント基板の一部を、45度の傾斜角度で拡大断層撮影し、三次元可視化した例を示す。半田接合部に発生したボイドの形状が三次元的に可視化されている。
一方、図4に、ラミノグラフィでプリント基板の一部を可視化した例を示す。これは、ある高さの位置の二次元平面表示であるため、二次元面は良好に見えるが高さ方向の分解能が悪く、厚み方向のボイドの様子はわからない。その結果、測定物の全体像がつかみにくい。
これらの対比により、本発明の三次元X線CTによれば、測定物の全体像がつかみにくいラミノグラフィに比して、三次元的な可視化によりボイドなどの構造も明確に把握できることがわかる。
【0018】
【発明の効果】
以上に詳述した本発明のユーセントリック型傾斜三次元X線CT及びそれを用いた撮影方法によれば、多層プリント基板内部や多数の半田ボールが平面状に分布したチップの接合部のように、平面面積の大きな平たい測定物の全体を撮影できるばかりでなく、一部の高拡大率三次元断層撮影も行うことができ、また、X線が透過しにくい物質の断層撮影で発生するビームハードニングを低減でき、更に、X線が透過しにくい平たい物質の撮影で、低エネルギーX線を利用して画像のコントラストを改善するとともに、X線源の寿命を延長させること可能にすることができる。
【図面の簡単な説明】
【図1】本発明に係るユーセントリック型三次元傾斜X線CTについて説明するための構成図である。
【図2】本発明のX線CTによるプリント基板の一部の拡大断層撮影例を示す図面代用写真である。
【図3】従来の三次元X線CTの概要を示す構成図である。
【図4】ラミノグラフィによる二次元断層撮影例を示す図面代用写真である。
【符号の説明】
A X線源
B 二次元検出器
D 測定物
E 仮想回転軸
F 拡大領域
T ユーセントリックテーブル
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a eucentric tilted three-dimensional X-ray CT (computer tomography) and a method for photographing a three-dimensional image thereby, and more specifically, an industrial X-ray CT apparatus, a semiconductor component, The present invention relates to a eucentric tilted three-dimensional X-ray CT suitable for use in inspection of printed circuit boards, IC chips, solder joints, or inspection of machine parts, composite materials, plastics, and the like, and an imaging method using the same. .
[0002]
[Prior art]
In the conventionally known three-dimensional X-ray CT, as shown in FIG. 3, the X-ray source A, the measurement object D, and the detector B are arranged on the same plane and rotate around the rotation axis C. For X, X-rays are projected from the X-ray source A in a direction perpendicular to the rotation axis C, and projection data is collected by a detector B arranged at a position facing it. In this case, even if it is desired to magnify a part of the measurement object D having a large planar area, the rotation radius of the measurement object is large and the X-ray source A and the measurement object D interfere with each other. The enlargement ratio cannot be increased by bringing A closer. Further, when the projection data is collected from the direction perpendicular to the rotation axis C of the measurement object D, there is a problem that a beam hardening false image is generated in the plane direction in the measurement object having a large plane area.
On the other hand, there is laminography as a method of taking an image with respect to the rotation axis of the measurement object, but the output is two-dimensional image data (see FIG. 4), not three-dimensional data.
[0003]
[Problems to be solved by the invention]
The technical problem to be solved by the present invention is that the centric tilted three-dimensional X not only can image a whole flat measurement object having a large plane area but also can perform a part of high magnification three-dimensional tomography. An object of the present invention is to provide a line CT and a method for photographing a three-dimensional image thereby.
Another technical problem of the present invention is to provide the above-described three-dimensional X-ray CT and an imaging method therefor, which can reduce beam hardening that occurs in tomography of a substance that hardly transmits X-rays.
Another technical problem of the present invention is to image a flat material that is difficult to transmit X-rays, and can improve the contrast of an image by using low-energy X-rays and extend the lifetime of the X-ray source. It is an object of the present invention to provide a three-dimensional X-ray CT and an imaging method using the same.
[0004]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the eucentric tilted three-dimensional X-ray CT of the present invention includes a eucentric table for placing a measurement object and an X-ray source capable of setting a rotation axis at an arbitrary position of the measurement object. And a two-dimensional detector that is disposed opposite to the object and detects a projection image of the measurement object on the eucentric table, and a normal line of the projection image obtained by the two-dimensional detector is perpendicular to the rotation axis of the measurement object In this way, the image conversion means for image conversion, and the converted projection image are multiplied by the distance between the X-ray focal point and the rotation axis of the object to be measured, the pixel coordinates of the projection image, and a weighting factor composed of a formula based on the angle θ below. Data processing means for processing data, and arranging the X-ray source and the two-dimensional detector so that an axis connecting them intersects at an angle θ smaller than 90 degrees with respect to the rotation axis, from 90 degrees Every small angle It is characterized by enabling 3D tomography.
[0005]
In the eucentric type inclined three-dimensional X-ray CT, using a microfocus X-ray source as X-ray source, and optionally adjustable positional relationship between the measurement object and the X-ray source on Eucentric table, whereby the workpiece It is effective to be able to take a projected image of an arbitrary portion of the image at an arbitrary magnification.
[0006]
Further, in order to solve the above-described problems, the method of photographing a three-dimensional image using the eucentric tilted three-dimensional X-ray CT of the present invention is to place a measurement object on a eucentric table whose rotational axis can be set at an arbitrary position of the measurement object. An X-ray source and a two-dimensional detector that is placed opposite to the X-ray source and detects a projected image are placed on the object to be measured on the eucentric table, and an axis line connecting them is 90 degrees with respect to the rotation axis. Arranged so that they intersect at a smaller angle θ , the projected image of the measurement object is photographed by the detector, and the projection object is photographed by rotating the measurement object around the rotation axis by a eucentric table at minute angular intervals. This is performed at each angle step, and each projection image is image-converted so that its normal is perpendicular to the rotation axis of the measurement object, and the X-ray focal point and the rotation axis of the measurement object are converted into the converted projection image. Distance, And characterized image of the pixel coordinates, and that performs a three-dimensional image reconstruction multiplied by a weighting factor consisting of formulas based on the angle θ data processing performed by the measurement object to obtain a plurality of tomographic images in a set photographing To do.
[0007]
In the method of the present invention, the projection image obtained by arranging the detector so that the normal line standing at the center of the detection surface of the detector faces the focal point of the X-ray source (that is, the X-ray focal point) The step of converting the image so that the normal line is perpendicular to the rotation axis of the object to be measured, and measuring the X-ray focal point obtained from the coordinate system having the origin in the plane including the focal point of the X-ray source. A step of creating weighted projection data by multiplying a weighting coefficient comprising a mathematical formula based on the distance from the rotation axis of the object, the pixel coordinates of the projection image , and the angle θ, and performing a Fourier transform on the weighted projection data and the filter function. Preferably, the projection image is processed by an algorithm having a step of performing a convolution operation and a step of obtaining a three-dimensional absorption coefficient distribution by performing back projection on a three-dimensional reconstruction grid based on the result of the convolution operation.
[0008]
In the eucentric tilted three-dimensional X-ray CT having the above-described configuration and the imaging method using the same, the rotation axis of the eucentric table can be set at an arbitrary position, so that the measurement object is not moved on the table. A part of a flat measurement object having a large area can be enlarged and three-dimensional tomographic imaging can be performed, and in particular, X-rays are collected by irradiating X-rays obliquely with respect to the rotation axis of the measurement object. The source and the measurement object do not interfere with each other, and the X-ray source can be arranged near the measurement object to perform high-magnification three-dimensional tomography. Moreover, by irradiating X-rays obliquely with respect to the rotation axis of the measurement object, the transmission distance of the X-rays in the measurement object is shortened, so that the influence of beam hardening can be greatly reduced.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows an embodiment of a eucentric tilted three-dimensional X-ray CT according to the present invention. The inclined three-dimensional X-ray CT includes a eucentric table T that can set the rotation axis at an arbitrary position. In this eucentric table T, the rotation axis is shown as a virtual rotation axis E in FIG. 1, but the position of the virtual rotation axis E can be set to an arbitrary position of the measuring object D on the table T, and the measurement can be performed. There is no need to move the object D on the table T, and the eucentric table T can be adjusted by moving it three-dimensionally while maintaining its posture, so that a part of a flat measured object with a large area can be enlarged. Three-dimensional tomography can also be performed.
[0010]
The two-dimensional detector B that detects the projected image of the measurement object D on the eucentric table T that is disposed opposite to the X-ray source A has an angle that makes the axis connecting them smaller than 90 degrees with respect to the virtual rotation axis E. The X-ray cone beam G from the X-ray source A is transmitted through the object D placed so as to intersect at θ and placed on the table T, and the projection image is detected by the detector B. I am doing so. As the X-ray source, a microfocus X-ray source having a small focal diameter is used in order to obtain a clear image with high magnification. In addition to the above-described method using a part of the X-ray cone beam G having a large divergence angle, an X-ray source A ′ can be configured in which the X-ray source A is arranged facing the detector B.
For the enlarged region F that is a part of the measurement object D, by changing the angle θ of the axis connecting the X-ray source A and the detector B, an X-ray irradiation direction that does not excessively increase X-ray attenuation can be selected. The magnification of a part of the measurement object D can be arbitrarily adjusted by changing the distance between the X-ray source A and the measurement object D by adjusting the height of the eucentric table T.
[0011]
Using the eucentric tilted three-dimensional X-ray CT having the above-described configuration, for example, a three-dimensional image of a part of the measurement object D having a large planar area and a small thickness, such as a printed board placed on the table T First, as shown in FIG. 1, the X-ray from the X-ray source A is transmitted through a part of the measurement object D placed on the eucentric table T, and the projection image is two-dimensionally detected. Detector B detects. At this time, of course, the axis connecting the X-ray source and the detector intersects the virtual rotation axis at an angle θ.
[0012]
In order to perform three-dimensional CT, the X-ray source A and the two-dimensional detector B are fixed, the measurement object D is rotated together with the table T around the virtual rotation axis E of the eucentric table T at a minute angle interval, At each angle step, the projection image projected on the detector B is recorded in a data recording device (personal computer) for data recording.
Then, using each of the recorded projection images, only a part of the measurement object D is reconstructed by using the calculation code of the inclined three-dimensional X-ray CT in the analyzer (personal computer) to obtain a three-dimensional image.
[0013]
In photographing the three-dimensional image, it is desirable to process the projected image with an algorithm having the following steps. What are the above steps?
(1). A projection image obtained by arranging the detector so that the normal line standing at the center of the detection surface of the detector faces the focal point of the X-ray source is displayed so that the normal line is perpendicular to the rotation axis of the object to be measured. Converting step,
(2). In this converted projection image, the distance between the X-ray focal point obtained from the coordinate system having the origin in the plane including the focal point of the X-ray source and the rotation axis of the measurement object, the pixel coordinates of the projection image , and the X-ray source A step of creating weighted projection data by multiplying a weighting factor consisting of a mathematical formula based on an angle θ at which the axis connecting the two-dimensional detector and the rotation axis of the measurement object intersect ;
(3). Performing a Fourier transform on the weighted projection data and the filter function to perform a convolution operation;
(4). Based on the result of the convolution operation, backprojecting onto a three-dimensional reconstruction grid to obtain a three-dimensional absorption coefficient distribution;
It is.
[0014]
In obtaining the image, the magnification of a part of the measurement object D can be arbitrarily adjusted by changing the distance between the X-ray source A and the measurement object D according to the height of the eucentric table T.
Further, the position of the virtual rotation axis E can be set to any position of the measuring object D by moving the eucentric table T. At this time, it is not necessary to stop the X-ray or move the measuring object D by a person.
[0015]
As described above with reference to FIG. 2, in the conventional three-dimensional X-ray CT, since the X-ray source A, the measurement object D, and the detector B are on the same plane, a part of the measurement object D is enlarged. When tomography is performed, when the measuring object D having a large plane area rotates, the X-ray source A and the measuring object D interfere with each other, and the measuring object D cannot be brought close to the X-ray source A to increase the magnification. However, according to the eucentric tilted three-dimensional X-ray CT described above, as shown in FIG. 1, there is no X-ray source on the same plane as the measurement object D having a large plane area. Since the object to be measured D can be rotated after being brought close to the very vicinity of the region to be imaged and the enlargement ratio increased, local three-dimensional X-ray CT can be performed.
[0016]
Further, in the positional relationship between the measurement object D and the X-ray source as shown in FIG. 1, since the X-ray is not transmitted in the plane direction of the measurement object D, the transmission distance of the X-ray is shortened, and the influence of beam hardening is greatly increased. And a clear image with higher contrast can be obtained. Further, since X-rays with low energy can be used, the life of the X-ray source is also extended.
[0017]
FIG. 2 shows an example in which a part of the printed circuit board after mounting is subjected to magnified tomography at a 45-degree tilt angle and visualized three-dimensionally. The shape of the void generated in the solder joint is visualized three-dimensionally.
On the other hand, FIG. 4 shows an example in which a part of the printed circuit board is visualized by laminography. Since this is a two-dimensional plane display at a certain height, the two-dimensional surface looks good, but the resolution in the height direction is poor, and the void in the thickness direction is not known. As a result, it is difficult to grasp the entire measurement object.
From these comparisons, it can be seen that according to the three-dimensional X-ray CT of the present invention, the structure such as voids can be clearly grasped by three-dimensional visualization, compared to laminography in which the whole image of the measurement object is difficult to grasp.
[0018]
【The invention's effect】
According to the eucentric tilted three-dimensional X-ray CT and imaging method using the same according to the present invention described in detail above, the inside of a multilayer printed circuit board or a chip joint in which a large number of solder balls are distributed in a planar shape. In addition to being able to image the entire flat measurement object with a large planar area, it is also possible to perform some high-magnification three-dimensional tomography, and beam hardware generated by tomography of materials that are difficult to transmit X-rays In addition, it is possible to improve the contrast of an image by using low energy X-rays and to extend the lifetime of the X-ray source when photographing a flat material that hardly transmits X-rays. .
[Brief description of the drawings]
FIG. 1 is a configuration diagram for explaining a eucentric three-dimensional tilted X-ray CT according to the present invention.
FIG. 2 is a drawing-substituting photograph showing an example of enlarged tomography of a part of a printed circuit board by X-ray CT of the present invention.
FIG. 3 is a configuration diagram showing an outline of a conventional three-dimensional X-ray CT.
FIG. 4 is a drawing-substituting photograph showing an example of two-dimensional tomography by laminography.
[Explanation of symbols]
A X-ray source B Two-dimensional detector D Measured object E Virtual rotation axis F Enlarged area T Eucentric table

Claims (5)

測定物を載置するための、回転軸を測定物の任意の位置に設定できるユーセントリックテーブルと、
X線源とそれに対向配置されてユーセントリックテーブル上の測定物の投影像を検出する二次元検出器と、
該二次元検出器により得られた投影像をその法線が測定物の回転軸に垂直になるように画像変換する画像変換手段と、
この変換された投影像にX線焦点と測定物の回転軸との距離、投影像の画素座標、及び下記角度θに基づく数式からなる重み係数を掛けてデータ処理するデータ処理手段とを備え、
上記X線源と上記二次元検出器とを、それらを結ぶ軸線が上記回転軸に対して90度より小さい角度θで交わるように配置し、90度より小さいあらゆる角度で三次元断層撮影を可能にした、
ことを特徴とするユーセントリック型傾斜三次元X線CT。
A eucentric table that can set the rotation axis to any position of the object to be measured;
A two-dimensional detector for detecting a projected image of an object to be measured on an eucentric table disposed opposite to the X-ray source;
Image conversion means for converting the projection image obtained by the two-dimensional detector so that the normal line is perpendicular to the rotation axis of the measurement object;
A data processing means for processing the converted projection image by multiplying the distance between the X-ray focal point and the rotation axis of the object to be measured, the pixel coordinates of the projection image, and a weighting factor based on the following angle θ ;
The X-ray source and the two-dimensional detector are arranged so that the axis connecting them intersects the rotation axis at an angle θ smaller than 90 degrees, and three-dimensional tomography can be performed at any angle smaller than 90 degrees. ,
A eucentric tilted three-dimensional X-ray CT.
X線源としてマイクロフォーカスX線源を用いる、
ことを特徴とする請求項1に記載のユーセントリック型傾斜三次元X線CT。
Using a microfocus X-ray source as the X-ray source,
The eucentric tilted three-dimensional X-ray CT according to claim 1.
ユーセントリックテーブル上の測定物とX線源の位置関係を任意に調整可能とし、それによって測定物の任意部分の投影像を任意倍率で撮影可能にした、
ことを特徴とする請求項1または2に記載のユーセントリック型傾斜三次元X線CT。
The positional relationship between the object to be measured on the eucentric table and the X-ray source can be arbitrarily adjusted, so that a projected image of an arbitrary part of the object to be measured can be taken at an arbitrary magnification.
The eucentric inclined three-dimensional X-ray CT according to claim 1 or 2.
回転軸を測定物の任意の位置に設定できるユーセントリックテーブル上に測定物を載置し、上記ユーセントリックテーブル上の測定物に対して、X線源とそれに対向配置されて投影像を検出する二次元検出器とを、それらを結ぶ軸線が上記回転軸に対して90度より小さい角度θで交わるように配置して、上記検出器により測定物の投影像を撮影し、
この投影像の撮影を、ユーセントリックテーブルにより上記回転軸の周りに測定物を微小角度間隔で回転させて、各角度ステップごとに行い、
各投影像をその法線が測定物の回転軸に垂直になるように画像変換し、
この変換された投影像にX線焦点と測定物の回転軸との距離、投影像の画素座標、及び上記角度θに基づく数式からなる重み係数を掛けてデータ処理を行って測定物の三次元画像再構成を行い、1セットの撮影で複数の断層像を得る、
ことを特徴とするユーセントリック型傾斜三次元X線CTによる三次元画像の撮影方法。
A measurement object is placed on a eucentric table whose rotation axis can be set at an arbitrary position of the measurement object, and an X-ray source and the projection image are detected with respect to the measurement object on the eucentric table. A two-dimensional detector is arranged so that an axis connecting them intersects at an angle θ smaller than 90 degrees with respect to the rotation axis, and a projected image of the measurement object is photographed by the detector,
The projection image is taken at each angle step by rotating the measurement object around the rotation axis by a eucentric table at a minute angle interval.
Each projected image is transformed so that its normal is perpendicular to the axis of rotation of the measurement object,
The converted projection image is subjected to data processing by multiplying the distance between the X-ray focal point and the rotation axis of the object to be measured, the pixel coordinates of the image to be measured, and a weighting coefficient based on the above-described angle θ, and performing data processing to obtain a three-dimensional object. Perform image reconstruction and obtain multiple tomographic images with one set of imaging.
A method of photographing a three-dimensional image by a eucentric tilted three-dimensional X-ray CT.
検出器の検出面中心に立てた法線がX線源の焦点を向くように検出器を配置して得られた投影像を、その法線が測定物の回転軸に垂直になるように画像変換するステップ、
この変換された投影像に、X線源の焦点を含む平面内に原点を持つ座標系から求めたX線焦点と測定物の回転軸との距離、投影像の画素座標、及び上記角度θに基づく数式からなる重み係数を掛けて重み付き投影データを作成するステップ、
この重み付き投影データとフィルタ関数にフーリエ変換を施し、畳み込み演算を行うステップ、
上記畳み込み演算の結果に基づき、三次元再構成グリッド上に逆投影して、三次元の吸収係数分布を求めるステップ、
を有するアルゴリズムで上記投影像を処理する、
ことを特徴とする請求項4に記載のユーセントリック型傾斜三次元X線CTによる三次元画像の撮影方法。
A projection image obtained by arranging the detector so that the normal line standing at the center of the detection surface of the detector faces the focal point of the X-ray source is displayed so that the normal line is perpendicular to the rotation axis of the object to be measured. Converting step,
In this converted projection image, the distance between the X-ray focal point obtained from the coordinate system having the origin in the plane including the focal point of the X-ray source and the rotation axis of the measurement object, the pixel coordinates of the projection image , and the angle θ Creating weighted projection data by multiplying by a weighting factor consisting of a mathematical formula based thereon,
Performing a Fourier transform on the weighted projection data and the filter function to perform a convolution operation;
Based on the result of the convolution operation, backprojecting onto a three-dimensional reconstruction grid to obtain a three-dimensional absorption coefficient distribution;
Processing the projected image with an algorithm comprising:
5. The method for photographing a three-dimensional image by using an eucentric tilted three-dimensional X-ray CT according to claim 4.
JP2002135870A 2002-05-10 2002-05-10 Eucentric tilted 3D X-ray CT and 3D image imaging method using the same Expired - Lifetime JP3694833B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002135870A JP3694833B2 (en) 2002-05-10 2002-05-10 Eucentric tilted 3D X-ray CT and 3D image imaging method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002135870A JP3694833B2 (en) 2002-05-10 2002-05-10 Eucentric tilted 3D X-ray CT and 3D image imaging method using the same

Publications (2)

Publication Number Publication Date
JP2003329616A JP2003329616A (en) 2003-11-19
JP3694833B2 true JP3694833B2 (en) 2005-09-14

Family

ID=29698080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002135870A Expired - Lifetime JP3694833B2 (en) 2002-05-10 2002-05-10 Eucentric tilted 3D X-ray CT and 3D image imaging method using the same

Country Status (1)

Country Link
JP (1) JP3694833B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104198505A (en) * 2014-06-18 2014-12-10 中国石油集团川庆钻探工程有限公司 Microfocus three-dimensional CT imaging detection method for polyethylene pipeline hot-melt welding quality
US9476844B2 (en) 2013-01-21 2016-10-25 Shimadzu Corporation Radiographic apparatus and an image processing method therefore
CN106198579A (en) * 2015-06-01 2016-12-07 中国石油化工股份有限公司 A kind of measure the method for the content of organic matter in shale
US9606072B2 (en) 2015-06-09 2017-03-28 Shimadzu Corporation Radiation inspecting apparatus

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4834373B2 (en) * 2005-10-24 2011-12-14 名古屋電機工業株式会社 X-ray inspection apparatus, X-ray inspection method, and X-ray inspection program
JP4728092B2 (en) * 2005-10-27 2011-07-20 名古屋電機工業株式会社 X-ray image output apparatus, X-ray image output method, and X-ray image output program
TWI394490B (en) 2008-09-10 2013-04-21 Omron Tateisi Electronics Co X-ray inspecting device and method for inspecting x ray
DE102013013344B4 (en) 2013-08-05 2021-08-19 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Arrangement for the tomographic acquisition of plate-shaped objects
US9791387B2 (en) 2014-09-26 2017-10-17 Test Research, Inc. Inspection system and method for controlling the same
JP2016205899A (en) * 2015-04-17 2016-12-08 株式会社ミツトヨ Control method and device of turntable
CN105115874B (en) * 2015-08-18 2018-02-02 中国石油天然气股份有限公司 Multi-component three-dimensional digital core construction method based on multi-source information fusion
JP6858372B2 (en) * 2017-06-22 2021-04-14 リョーエイ株式会社 Product X-ray CT inspection method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9476844B2 (en) 2013-01-21 2016-10-25 Shimadzu Corporation Radiographic apparatus and an image processing method therefore
CN104198505A (en) * 2014-06-18 2014-12-10 中国石油集团川庆钻探工程有限公司 Microfocus three-dimensional CT imaging detection method for polyethylene pipeline hot-melt welding quality
CN106198579A (en) * 2015-06-01 2016-12-07 中国石油化工股份有限公司 A kind of measure the method for the content of organic matter in shale
CN106198579B (en) * 2015-06-01 2019-03-26 中国石油化工股份有限公司 A kind of method of the content of organic matter in measurement shale
US9606072B2 (en) 2015-06-09 2017-03-28 Shimadzu Corporation Radiation inspecting apparatus

Also Published As

Publication number Publication date
JP2003329616A (en) 2003-11-19

Similar Documents

Publication Publication Date Title
JP3823150B2 (en) Inclined 3D X-ray CT
US7561659B2 (en) Method for reconstructing a local high resolution X-ray CT image and apparatus for reconstructing a local high resolution X-ray CT image
JP5444718B2 (en) Inspection method, inspection device, and inspection program
JP3694833B2 (en) Eucentric tilted 3D X-ray CT and 3D image imaging method using the same
JP2005021675A (en) Tomograph apparatus
JP2011232057A (en) Ct device and imaging method for ct device
JP2005087592A (en) X-rays measuring instrument
JP2010127810A (en) X-ray inspection apparatus and x-ray inspection method
JP5060862B2 (en) Tomography equipment
JP4129572B2 (en) Reconstruction method of tilted three-dimensional X-ray CT image
US6463116B1 (en) Radiographic apparatus
JP3926574B2 (en) Tomography equipment
JP2003159244A (en) Image reconstruction method and x-ray ct apparatus
JP2007198866A (en) General saddle cone beam ct system, and three-dimensional reconstitution method
JP3846576B2 (en) Computed tomography equipment
JP4078846B2 (en) Tomography equipment
JP4016265B2 (en) X-ray CT system
JP2009162596A (en) Method of supporting image confirmation work and substrate inspection apparatus utilizing x ray using the same
JP4788272B2 (en) X-ray tomographic imaging apparatus and X-ray tomographic imaging method
Zhang et al. A New CL Reconstruction Method Under the Displaced Sample Stage Scanning Mode
JP2009036575A (en) X-ray inspection device and x-ray inspection method
JP2005134213A (en) X-ray tomographic method and device
JP2799147B2 (en) X-ray CT system
JP2000193609A (en) Radiation tomograph
JP2013160710A (en) Radiographic imaging device and projection image processing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20031201

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20040114

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20040206

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040518

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050615

R150 Certificate of patent or registration of utility model

Ref document number: 3694833

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080708

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100708

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120708

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120708

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120708

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120708

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130708

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term