JP4788272B2 - X-ray tomographic imaging apparatus and X-ray tomographic imaging method - Google Patents

X-ray tomographic imaging apparatus and X-ray tomographic imaging method Download PDF

Info

Publication number
JP4788272B2
JP4788272B2 JP2005288555A JP2005288555A JP4788272B2 JP 4788272 B2 JP4788272 B2 JP 4788272B2 JP 2005288555 A JP2005288555 A JP 2005288555A JP 2005288555 A JP2005288555 A JP 2005288555A JP 4788272 B2 JP4788272 B2 JP 4788272B2
Authority
JP
Japan
Prior art keywords
ray
inspected
focal point
imaging
degrees
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005288555A
Other languages
Japanese (ja)
Other versions
JP2007101247A (en
Inventor
達雄 宮澤
優 藤井
康雄 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2005288555A priority Critical patent/JP4788272B2/en
Publication of JP2007101247A publication Critical patent/JP2007101247A/en
Application granted granted Critical
Publication of JP4788272B2 publication Critical patent/JP4788272B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、X線等を用いて被検査体の内部構造データを検査するX線断層撮像装置及びX線断層撮像方法に関する。   The present invention relates to an X-ray tomographic imaging apparatus and an X-ray tomographic imaging method for inspecting internal structure data of an object to be examined using X-rays or the like.

従来、半導体素子等の研究開発分野などでは、微小被検査体内部に存在するひび割れや断線等を検査するため非破壊三次元分析が要求されている。その手法の一つとして、X線によるコンピュータ断層撮像装置(以下、X線断層撮像装置と称する。)を用いる方法がある。   Conventionally, non-destructive three-dimensional analysis is required in the field of research and development of semiconductor elements and the like in order to inspect cracks, breaks, and the like that exist inside a micro-inspection object. As one of the methods, there is a method using a computed tomography apparatus using X-rays (hereinafter referred to as an X-ray tomography apparatus).

X線断層撮像装置は、例えば、X線源(X線管等から構成されるX線発生装置)と、このX線源よりX線焦点を経て被検査体にコーンビーム状に照射されて透過したX線を検出する二次元検出手段と、この検出手段との間に被検査体を載置するとともにX線焦点からこの検出手段の検出面に降ろした垂線に直交する回転軸を備え設定に基づく角度変位で回転する回転基台部を有する。X線源より被検査体にX線を照射し、被検査体の透過X線投影像を二次元検出手段により撮像しディジタル化された各角度位相毎の複数の画像データとして処理し、これら各画像データより内部構造データを再構成することによって、被検査体内部の検査及び観察等を行い易くする。   The X-ray tomographic imaging apparatus is, for example, an X-ray source (an X-ray generator configured by an X-ray tube or the like) and an X-ray focus from this X-ray source to irradiate a subject to be examined in the form of a cone beam. A two-dimensional detection means for detecting the detected X-ray, and a rotation axis orthogonal to the perpendicular line dropped from the X-ray focal point to the detection surface of the detection means while being placed between the detection means and the detection means It has a rotating base that rotates with an angular displacement based on it. The X-ray source irradiates the object to be inspected with X-rays, the transmission X-ray projection image of the object to be inspected is picked up by the two-dimensional detection means, processed as a plurality of image data for each angle phase, By reconstructing the internal structure data from the image data, it becomes easier to inspect and observe the inside of the inspection object.

上述の内部構造データを再構成する計算において、被検査体の投影像が二次元検出手段の検出面の幅方向内に収まっていることが望ましく、拡大率を向上させるには幅広の二次元検出手段にて撮像することが要求される。   In the calculation for reconstructing the internal structure data described above, it is desirable that the projected image of the object to be inspected is within the width direction of the detection surface of the two-dimensional detection means. It is required to take an image by means.

例えば、有限な二次元検出手段の幅を擬似的に拡張する手段として、特許文献1に記載されている方法がある。   For example, as a means for artificially expanding the width of a finite two-dimensional detection means, there is a method described in Patent Document 1.

図10及び図11を用いて、特許文献1に記載されている、二次元検出手段の幅を擬似的に拡張する技術について、その概略を説明する。図10は、従来のX線二次元検出器を平行移動させて撮像する方法を説明する概略図(鳥瞰図)である。図11は、図10の上面図である。   An outline of a technique for artificially expanding the width of the two-dimensional detection means described in Patent Document 1 will be described with reference to FIGS. 10 and 11. FIG. 10 is a schematic diagram (bird's eye view) for explaining a method of imaging by moving a conventional X-ray two-dimensional detector in parallel. FIG. 11 is a top view of FIG.

図10及び図11に示すように、X線二次元検出器102の初期位置を、X線管101のX線焦点とX線二次元検出器102との間に配置された被検査体107の回転中心を通り、X線焦点からX線二次元検出器102の検出面に垂線を下ろした位置とする。X線二次元検出器102を検出面に平行な面内において、位置102a,102b,102cと平行移動させ、得られた複数の投影像を合成し、仮想的に幅広な投影像を得る。
特開平9−327453号公報
As shown in FIGS. 10 and 11, the initial position of the X-ray two-dimensional detector 102 is set at an inspected object 107 disposed between the X-ray focal point of the X-ray tube 101 and the X-ray two-dimensional detector 102. The position passes through the center of rotation and is perpendicular to the detection surface of the X-ray two-dimensional detector 102 from the X-ray focal point. The X-ray two-dimensional detector 102 is translated in parallel with the positions 102a, 102b, and 102c in a plane parallel to the detection surface, and a plurality of obtained projection images are synthesized to obtain a virtually wide projection image.
JP 9-327453 A

しかしながら、X線二次元検出器102はX線の漏洩を防ぐ装置(シールドカバー)内に載置されており、その平行移動量は装置のサイズに大きく制限される。さらにX線二次元検出器102の平行移動量が位置102a,102cのように大きくなると、X線焦点からX線二次元検出器102へ引いた垂線からの距離が次第に大きくなり、X線二次元検出器102で捕獲される投影像が十分な明るさが得られない。   However, the X-ray two-dimensional detector 102 is placed in a device (shield cover) that prevents X-ray leakage, and the amount of parallel movement is largely limited by the size of the device. Further, when the amount of parallel movement of the X-ray two-dimensional detector 102 increases as in the positions 102a and 102c, the distance from the perpendicular drawn from the X-ray focal point to the X-ray two-dimensional detector 102 gradually increases, and the X-ray two-dimensional The projection image captured by the detector 102 cannot obtain sufficient brightness.

本発明は斯かる点に鑑みてなされたものであり、限られた空間を持つ装置内に載置されたX線二次元検出器を用いて、投影像の輝度の減衰を抑えつつ、撮像して得られる投影像の拡大率を向上させることを目的とする。   The present invention has been made in view of such points, and uses an X-ray two-dimensional detector placed in an apparatus having a limited space to capture an image while suppressing the attenuation of the brightness of the projected image. The objective is to improve the magnification of the projected image obtained in this way.

上記課題を解決するため、発明は、コーンビーム状の照射野が得られるX線源と、被検査体の透過X線を撮像する平面な検出面を持つ二次元検出手段と、X線源のX線焦点と二次元検出手段との間に配置され被検査体を載置してX線焦点から二次元検出手段の検出面に降ろした垂線に直交する回転軸を中心に設定された角度変位で回転する回転手段と、各角度位相毎に撮像された投影像から再構成計算を行い、前記被検査体の内部構造データを再構成する制御を行う制御手段と、を有するX線断層撮像装置によりX線断層撮像を行うにあたって、
前記制御手段により、前記被検査体の一部分が前記二次元検出手段に撮像されるよう、前記X線源と前記二次元検出手段の相互の位置を固定したまま、前記回転手段に載置された被検査体の回転軸の位置を、前記被検査体の回転軸と平行で前記X線焦点を通る回転軸について、前記X線焦点から前記二次元検出手段の検出面に下ろした垂線と、前記X線焦点から前記被検査体の回転軸を結ぶ直線とのなす角がθ度、0度、−θ度の三つの撮像位置に、各々の撮像位置で所定枚数の投影像を撮像の都度、同一半径にて旋回移動させ、
各々の撮像位置において、前記被検査体の初期角度位相を各々−θ度、0度、θ度として各角度位相毎に前記所定枚数の投影像を撮像し、
各々の撮像位置で得られた投影像を、前記被検査体の回転軸と平行で前記X線焦点を通る回転軸を中心とし、半径を前記X線焦点から前記二次元検出手段に下ろした垂線の長さとする仮想的な円筒面に射影変換し、
射影変換した各々の撮像位置で撮像された順に同角度位相の投影像を合成し、各角度位相毎に合成した投影像から再構成計算を行い、前記被検査体の内部構造データを再構成する
ことを特徴とする。
In order to solve the above-described problems, the present invention provides an X-ray source capable of obtaining a cone beam-shaped irradiation field , a two-dimensional detection means having a flat detection surface for imaging transmitted X-rays of an object to be inspected, and an X-ray source. angle set around a rotation axis perpendicular to the perpendicular dropped to the test exit face of the deployed two-dimensional detector from X-ray focal point by placing the object to be tested between the X-ray focal point and the two-dimensional detection means X-ray tomographic imaging comprising: a rotating means that rotates by displacement ; and a control means that performs reconstruction calculation from a projection image captured for each angular phase and performs control to reconstruct the internal structure data of the object to be inspected In performing X-ray tomography with the device,
The X-ray source and the two-dimensional detection unit are placed on the rotation unit while the mutual positions of the X-ray source and the two-dimensional detection unit are fixed so that a part of the inspection object is imaged by the two-dimensional detection unit by the control unit . A vertical line that is lowered from the X-ray focal point to the detection surface of the two-dimensional detection unit with respect to a rotational axis that passes through the X-ray focal point in parallel with the rotational axis of the inspection object, The angle formed by the straight line connecting the rotation axis of the object to be inspected from the X-ray focal point is at three imaging positions of θ degrees, 0 degrees, and −θ degrees, and each time a predetermined number of projected images are captured at each imaging position, Swivel with the same radius,
At each imaging position, the initial angle phase of the object to be inspected is set to −θ degrees, 0 degrees, and θ degrees, respectively, and the predetermined number of projection images are captured for each angle phase;
Projected images obtained at the respective imaging positions are perpendicular to the rotation axis passing through the X-ray focal point in parallel with the rotation axis of the object to be inspected, and the radius is lowered from the X-ray focal point to the two-dimensional detection means. Projective transformation to a virtual cylindrical surface with the length of
The projection images of the same angle phase are synthesized in the order of imaging at the respective imaging positions subjected to the projective transformation, and the reconstruction calculation is performed from the projection images synthesized for each angle phase to reconstruct the internal structure data of the object to be inspected. It is characterized by that.

上記発明によれば、X線源と平面な検出面を持つ二次元検出手段の相互の位置を固定したまま、二次元検出手段を移動させる処理を必要としないので、X線断層撮像装置の構造の簡略化が図れ、装置サイズを小型化できる。また、X線源と二次元検出手段との距離は一定なので、投影像の輝度の減衰が防止される。また、X線焦点と二次元検出手段との位置関係を変化させずに撮像できるので、一度キャリブレーションしただけで、各撮像位置における撮像が可能となる。また、二次元検出手段を固定したまま、撮像を行える分、定盤が撓むことがなく幾何学的位置関係を保つことが容易となり、より高精度な撮像を実現できる。 According to the present invention, the X-ray source and the two-dimensional detection means having a flat detection surface do not require the process of moving the two-dimensional detection means while fixing the mutual position of the two-dimensional detection means. The structure can be simplified and the apparatus size can be reduced. Further, since the distance between the X-ray source and the two-dimensional detection means is constant, attenuation of the brightness of the projected image is prevented. In addition, since it is possible to capture an image without changing the positional relationship between the X-ray focal point and the two-dimensional detection means, it is possible to perform imaging at each imaging position only by performing calibration once. In addition, since the imaging can be performed while the two-dimensional detection unit is fixed, it is easy to maintain the geometric positional relationship without bending the surface plate, and higher-accuracy imaging can be realized.

本発明によれば、限られた空間内に載置されたX線二次元検出器を用いて、投影像の輝度の減衰を抑えつつ、撮像して得られる投影像の拡大率を向上させることを目的とする。   According to the present invention, by using an X-ray two-dimensional detector placed in a limited space, it is possible to improve the magnification of a projected image obtained by imaging while suppressing the attenuation of the brightness of the projected image. With the goal.

以下本発明を実施するための最良の形態の例を説明するが、本発明は以下の例に限定されるものではない。   Examples of the best mode for carrying out the present invention will be described below, but the present invention is not limited to the following examples.

すなわち、現在、断層撮像装置の中でも広く用いられているX線による断層撮像装置を例に説明するが、本発明は、X線その他の放射線等を多方向から物体に照射し、その投影像を撮像した複数の投影データより内部構造データを再構成計算する断層撮像装置に適用することができる。   That is, an X-ray tomographic imaging apparatus that is widely used among tomographic imaging apparatuses will be described as an example. However, the present invention irradiates an object with X-rays and other radiations from multiple directions, and displays a projection image thereof. The present invention can be applied to a tomographic imaging apparatus that reconstructs internal structure data from a plurality of captured projection data.

図1A,Bは、本発明に係るX線断層撮像装置の一実施の形態例を示す概略図であり、Aは正面図、Bは側面図を表す。図1A,Bにおいて、X線管1は例えばコーンビーム状のX線を発生するX線源として機能するX線発生装置である。このX線管1から被検査体7全体にX線を照射し、照射されるX線により被検査体7の投影像の撮像を行い、この被検査体7の透過X線を、二次元検出手段として機能するX線二次元検出器2で検出し投影像を得る。   1A and 1B are schematic views showing an embodiment of an X-ray tomographic imaging apparatus according to the present invention, in which A is a front view and B is a side view. 1A and 1B, an X-ray tube 1 is an X-ray generator that functions as an X-ray source that generates, for example, cone-beam X-rays. The X-ray tube 1 irradiates the entire inspection object 7 with X-rays, the projected image of the inspection object 7 is picked up by the irradiated X-rays, and the transmitted X-rays of the inspection object 7 are two-dimensionally detected. A projection image is obtained by detection with an X-ray two-dimensional detector 2 functioning as a means.

このX線管1から照射されるX線は、例えば焦点サイズ約1μm以下の極小のX線焦点を形成するよう構成されている。X線の焦点サイズは、X線断層撮像装置の分解能を決定する大きな要素であるため、この数値が小さいほど、より被検査体内部の微少サイズの損傷等を観察でき好ましい。   The X-rays irradiated from the X-ray tube 1 are configured to form a very small X-ray focal point having a focal size of about 1 μm or less, for example. Since the X-ray focal spot size is a large factor that determines the resolution of the X-ray tomographic imaging apparatus, the smaller the numerical value, the more preferable it is possible to observe a minute size of damage inside the object to be inspected.

X線二次元検出器2は、例えば、フラットパネルディテクタ(FPD)より構成され、X線管1のX線焦点から下ろした垂線がX線二次元検出器2の中心に照射されるよう、X線二次元検出器駆動機構14により、左右上下(XYZ方向)への動きを調節することができる。さらに、X線二次元検出器回転駆動機構15により、Z軸に平行な軸を中心にX線二次元検出器2を回転させることができる。   The X-ray two-dimensional detector 2 is composed of, for example, a flat panel detector (FPD), and the vertical line drawn from the X-ray focal point of the X-ray tube 1 is irradiated to the center of the X-ray two-dimensional detector 2. The line two-dimensional detector drive mechanism 14 can adjust the movement in the left and right and up and down directions (XYZ directions). Furthermore, the X-ray two-dimensional detector 2 can be rotated about the axis parallel to the Z-axis by the X-ray two-dimensional detector rotation drive mechanism 15.

FPDについては、一例として特開平6−342098号公報(以下、「文献1」という。)に開示されているようなものがある。このFPDは、被写体を透過したX線を光導電層で吸収してX線強度に応じた電荷を発生させ、その電荷量を画素毎に検知するものである。文献1に開示された方式のFPDでは、X線量を画素毎の電荷量に直接変換するため、FPDでの鮮鋭性の劣化が少なく、鮮鋭性に優れた画像が得られる。その他の方式のFPDの例としては、例えば特開平9−90048号公報に開示されているように、X線を増感紙等の蛍光体層に吸収させて蛍光を発生させ、その蛍光の強度を光電変換素子で検知するものなどがある。   An example of the FPD is disclosed in Japanese Patent Laid-Open No. 6-342098 (hereinafter referred to as “Document 1”). In this FPD, X-rays transmitted through a subject are absorbed by a photoconductive layer to generate charges corresponding to the X-ray intensity, and the amount of charges is detected for each pixel. In the FPD of the method disclosed in Document 1, since the X-ray dose is directly converted into the charge amount for each pixel, the sharpness degradation in the FPD is small and an image with excellent sharpness can be obtained. As an example of other types of FPDs, as disclosed in, for example, JP-A-9-90048, X-rays are absorbed in a phosphor layer such as an intensifying screen to generate fluorescence, and the intensity of the fluorescence Is detected by a photoelectric conversion element.

蛍光の検知手段としては他に、CCD(Charge Coupled Devices)やC−MOS(Complementary-Metal OXide Semiconductor)センサを用いる方法などもある。このように、本例のX線二次元検出器2は、被検査体の透過X線を検出し画素毎に処理して画像信号を得られるものであればよい。   As other fluorescence detection means, there is a method using a CCD (Charge Coupled Devices) or a C-MOS (Complementary-Metal Oxide Semiconductor) sensor. As described above, the X-ray two-dimensional detector 2 of this example may be anything that can detect the transmitted X-rays of the object to be inspected and process each pixel to obtain an image signal.

回転基台3は被検査体7を載置するとともに、その被検査体7を回転させる回転手段である。以降、回転基台部分を回転させるためのモータ及び後述する軸受け等より構成される回転基台部全体を含めて、回転基台と称する。この回転基台3を自身が回転する回転軸と平行方向、すなわち図1Bに示すように、Z軸方向に移動させるためのZ軸駆動機構3aを備えてなる。さらに、Y軸方向に被検査体7を移動させるためのY軸駆動機構6を備えてなる。被検査体7は回転基台上の保持冶具8にて保持、固定されるようになっている。   The rotation base 3 is a rotating means for placing the inspection object 7 and rotating the inspection object 7. Hereinafter, the entire rotation base portion including a motor for rotating the rotation base portion and a bearing described later is referred to as a rotation base. The rotary base 3 is provided with a Z-axis drive mechanism 3a for moving the rotary base 3 in the direction parallel to the rotation axis that rotates itself, that is, in the Z-axis direction as shown in FIG. 1B. Further, a Y-axis drive mechanism 6 for moving the device under test 7 in the Y-axis direction is provided. The inspected object 7 is held and fixed by a holding jig 8 on the rotary base.

上記回転基台3は、空気軸受け4によって支持されており、この空気軸受け4に同軸上に直結された例えば0.2分以下の角度位置決め精度を持つ図示しないサーボモータ、及び回転位相検出手段により、之等サーボモータ及び回転位相検出手段の分解能に応じた各角度変位において、再構成に必要な上記投影データの取り込み期間に同期して静止される。   The rotary base 3 is supported by an air bearing 4 and is directly connected to the air bearing 4 coaxially by a servo motor (not shown) having an angular positioning accuracy of, for example, 0.2 minutes or less, and a rotational phase detecting means. In each angular displacement corresponding to the resolution of the servo motor and the rotational phase detection means, the stationary motion is synchronized with the period of taking in the projection data necessary for reconstruction.

回転基台3を支持する軸受け4の回転軸は、X線管1の焦点からX線二次元検出器2中心付近へ降ろした垂線と直交している。本例ではこの軸受け4は回転基台3を微少角度変位制御できる空気軸受けよりなるが、これに限るものではなく、回転基台3を支持し滑らかに回転して微少角度変位制御できるものであればよい。   The rotation axis of the bearing 4 that supports the rotation base 3 is orthogonal to a perpendicular line that descends from the focal point of the X-ray tube 1 to the vicinity of the center of the X-ray two-dimensional detector 2. In this example, the bearing 4 is composed of an air bearing capable of controlling the rotational base 3 with a minute angular displacement. However, the bearing 4 is not limited to this. That's fine.

XYテーブル5は、搭載されたX線源のX線管1を、軸受け4の回転軸と直交する平面上で移動させるものである。被検査体7の旋回半径を適宜XYテーブル5にフィードバックし、必要に応じ被検査体7とXYテーブル5を極接近させた状態で投影データを取得することができる。拡大率を支配する一番上位の要素はX線焦点と回転基台3に保持された被検査体7との相互間距離であり、拡大率が大きければ、より微細な部位の内部構造を解析することが可能となる。   The XY table 5 moves the X-ray tube 1 of the mounted X-ray source on a plane orthogonal to the rotation axis of the bearing 4. The turning radius of the inspected object 7 is appropriately fed back to the XY table 5, and projection data can be acquired in a state where the inspected object 7 and the XY table 5 are in close proximity as necessary. The highest element that controls the enlargement ratio is the distance between the X-ray focal point and the object 7 to be inspected held on the rotating base 3. If the enlargement ratio is large, the internal structure of a finer part is analyzed. It becomes possible to do.

除振台10は、上述したX線断層像撮象装置を構成する全ての装置、部材等を載置し、X線照射位置に誤差が生じないよう振動を除去するものである。また、シールドカバー11は鉛等より構成され、X線断層撮像装置の外部にX線が漏れないよう装置全体を覆うものである。   The vibration isolation table 10 mounts all the devices, members, and the like that constitute the above-described X-ray tomographic imaging apparatus, and removes vibrations so that no error occurs in the X-ray irradiation position. The shield cover 11 is made of lead or the like, and covers the entire apparatus so that X-rays do not leak outside the X-ray tomographic imaging apparatus.

図2は、図1Aの要部の一例を示す図である。X線管1から放射されるX線12は中心部で輝度が大きく、X線焦点からX線二次元検出器2に下ろした垂線からの距離が遠くなるほど、輝度が減衰する。そのため、コーンビーム状X線12の中心付近のX線12aを使用して被検査体7の投影像を撮像することが望まれている。   FIG. 2 is a diagram illustrating an example of a main part of FIG. 1A. The X-ray 12 radiated from the X-ray tube 1 has a high luminance at the center, and the luminance is attenuated as the distance from the perpendicular drawn from the X-ray focal point to the X-ray two-dimensional detector 2 increases. Therefore, it is desired to capture a projection image of the inspection object 7 using the X-ray 12a near the center of the cone-beam X-ray 12.

次に、上述したX線断層撮像装置のブロック構成の一例について、図3を参照して説明する。   Next, an example of a block configuration of the above-described X-ray tomographic imaging apparatus will be described with reference to FIG.

まず、X線管1は、上述したように回転基台3上に載置された被検査体7に対してX線照射するものである。このとき照射されるX線の強度、線質等は、X線制御手段であるX線制御部20を通じて制御操作卓22により制御される。   First, the X-ray tube 1 irradiates the inspection object 7 placed on the rotating base 3 with X-rays as described above. The intensity and quality of the X-rays irradiated at this time are controlled by the control console 22 through the X-ray control unit 20 which is an X-ray control means.

上記被検査体7を載置する回転基台3の位置、回転角度変位、初期角度位相等は、回転基台3並びにXYステージ5の動きを制御する機構制御手段である機構制御部21を通じて、制御操作卓22により制御される。回転基台3に載置された被検査体7は制御操作卓22からの制御信号により指定された角度位相に回転され、その投影像はX線二次元検出器2により撮像される。また、制御操作卓22の指令に基づいて、機構制御部21がX線二次元検出器駆動機構14及びX線二次元検出器回転駆動機構15を制御し、X線二次元検出器2の駆動が制御される。   The position, rotation angle displacement, initial angle phase, and the like of the rotation base 3 on which the inspection object 7 is placed are passed through a mechanism control unit 21 that is a mechanism control means for controlling the movement of the rotation base 3 and the XY stage 5. It is controlled by the control console 22. The inspected object 7 placed on the rotating base 3 is rotated to an angle phase designated by a control signal from the control console 22, and the projection image is taken by the X-ray two-dimensional detector 2. Further, the mechanism control unit 21 controls the X-ray two-dimensional detector driving mechanism 14 and the X-ray two-dimensional detector rotation driving mechanism 15 based on a command from the control console 22 to drive the X-ray two-dimensional detector 2. Is controlled.

制御操作卓22は、キーボードやマウス等の入力手段、機器動作状態や入力値等を表示するGUI(Graphical User Interface)を備えた表示手段(図示略)が接続されている。また、入力手段からの入力操作信号の処理、及びROM(Read Only Memory)等の不揮発性メモリ(図示略)に格納されたプログラムに従い後述する断層撮像処理等の演算・制御を行うプロセッサ(制御手段)を備える。   The control console 22 is connected to input means such as a keyboard and a mouse, and display means (not shown) having a GUI (Graphical User Interface) for displaying device operation states and input values. Further, a processor (control means) that performs processing and control of tomographic imaging processing, which will be described later, in accordance with a program stored in a nonvolatile memory (not shown) such as a ROM (Read Only Memory), and processing of input operation signals from the input means ).

また、制御操作卓22は、X線管1より出射されるX線のX線強度等の情報を取り込んで表示手段に表示し、また、被検査体7の適切な位置出しを行うにあたり機構制御部21を通じて回転基台3に指令を出すなどする。   Further, the control console 22 takes in information such as the X-ray intensity of the X-rays emitted from the X-ray tube 1 and displays the information on the display means, and controls the mechanism for appropriately positioning the object 7 to be inspected. A command is issued to the rotary base 3 through the unit 21.

被検査体7を透過したX線は、X線二次元検出器2で検出される。X線二次元検出器2は、検出したX線の情報である投影像をデジタルデータ化し、デジタルデータである投影データを、大容量の磁気記録装置等からなり撮像記憶手段として機能する投影像記憶部23に送出する。   X-rays transmitted through the inspection object 7 are detected by the X-ray two-dimensional detector 2. The X-ray two-dimensional detector 2 converts the projection image, which is detected X-ray information, into digital data, and the projection data, which is digital data, includes a large-capacity magnetic recording device or the like and functions as an imaging storage unit. The data is sent to the unit 23.

送出された投影像は(制御操作卓22からの指示により、)、撮像時の角度位相や角度変位、初期角度位相、X線強度等の情報と対応して、投影像記憶部23に保存される。この投影像記憶部23は、投影データを記録できる記録容量を有するものであればこれに限るものではなく、光記録媒体や半導体メモリ等のリムーバブルな記録媒体などを含め、さまざまなものを適用することができる。   The sent projection image (according to an instruction from the control console 22) is stored in the projection image storage unit 23 in correspondence with information such as the angle phase, angular displacement, initial angle phase, and X-ray intensity at the time of imaging. The The projection image storage unit 23 is not limited to this as long as it has a recording capacity capable of recording projection data, and various projection image storage units such as an optical recording medium and a removable recording medium such as a semiconductor memory are applicable. be able to.

そして、投影像記憶部23に記憶された投影データは、これと接続された再構成手段として機能する再構成計算用計算機24に送出される。再構成計算用計算機24では入力された投影データより被検査体の内部構造データを再構成計算し、再構成した内部構造データ(再構成データ)を投影像記憶部23あるいは外部記録媒体等に記憶する。また、図示しない表示メモリを介して表示手段である再構成結果表示装置25に出力し、CRT(Cathode Ray Tube)モニタ等のディスプレイに表示する。   And the projection data memorize | stored in the projection image memory | storage part 23 are sent out to the computer 24 for a reconstruction calculation which functions as a reconstruction means connected with this. The reconstruction calculation computer 24 reconstructs the internal structure data of the object to be inspected from the input projection data, and stores the reconstructed internal structure data (reconstruction data) in the projection image storage unit 23 or an external recording medium. To do. Further, it is output to a reconstruction result display device 25 which is a display means via a display memory (not shown) and displayed on a display such as a CRT (Cathode Ray Tube) monitor.

再構成計算用計算機24は、投影データを収集して内部構造データを再構成できるとともに所定の制御を行なう演算・制御能力があればよく、投影像記憶部23ともに制御操作卓22内に構成してもよい。また、再構成結果表示装置25は制御操作卓22の表示手段と共用であってもよい。   The computer 24 for reconstruction calculation only needs to be able to collect projection data and reconstruct the internal structure data and have a calculation / control capability for performing predetermined control. The projection image storage unit 23 is configured in the control console 22. May be. The reconstruction result display device 25 may be shared with the display means of the control console 22.

以上のような構成により、被検査体7の内部構造データが再構成結果表示装置25に入力されて内部構造が表示される。オペレータ(作業者)は、再構成結果表示装置25に表示された内部構造により、多層膜板や微小な電子部品素子等の被検査体内部のひび割れ及び断線など、欠陥の有無もしくはその状態を視覚的に確認することができる。   With the above configuration, the internal structure data of the device under test 7 is input to the reconstruction result display device 25 and the internal structure is displayed. The operator (operator) can visually check the presence / absence of defects such as cracks and breaks in the object to be inspected, such as multilayer film plates and minute electronic component elements, by the internal structure displayed on the reconstruction result display device 25. Can be confirmed.

次に、上記構成のX線断層撮像装置により行われるX線断層撮像方法について説明する。   Next, an X-ray tomographic imaging method performed by the X-ray tomographic imaging apparatus having the above configuration will be described.

図4及び図5を参照して、X線二次元検出器2を、X線管1の焦点位置を通り、被検査体7の回転中心軸に平行な軸に関して旋回させた3箇所の位置に移動させながら撮像する方法について説明する。図4は、X線二次元検出器を旋回移動させて撮像する方法を説明する概略図(鳥瞰図)である。図5は、X線二次元検出器を旋回移動させて撮像する方法を説明する概略図(上面図)である。   4 and 5, the X-ray two-dimensional detector 2 passes through the focal position of the X-ray tube 1 and is rotated at three positions about an axis parallel to the rotation center axis of the inspection object 7. A method of imaging while moving will be described. FIG. 4 is a schematic diagram (bird's-eye view) illustrating a method of imaging by rotating the X-ray two-dimensional detector. FIG. 5 is a schematic diagram (top view) for explaining a method for imaging by rotating the X-ray two-dimensional detector.

図4及び図5において、3箇所の撮像位置31a,31b,31cは、X線管1の焦点位置を通り、被検査体7の回転中心軸に平行な軸に関して旋回させた位置である。また、平面30は、初期位置31bにあるときのX線二次元検出器2の検出面に平行な平面であり、X線管1のX線焦点とX線二次元検出器2との間に配置された被検査体7の回転中心を通り、X線焦点からX線二次元検出器2に引いた直線が検出面と直交する位置である。このとき、X線焦点から引いた直線が平面30と垂直に交わる点をO´とする。また、円筒面31は、X線管1の焦点位置を通り被検査体7の回転中心軸に平行な中心軸を持つ。   4 and 5, the three imaging positions 31 a, 31 b, and 31 c are positions that are rotated with respect to an axis that passes through the focal position of the X-ray tube 1 and is parallel to the rotation center axis of the inspection object 7. The plane 30 is a plane parallel to the detection surface of the X-ray two-dimensional detector 2 at the initial position 31b, and is between the X-ray focal point of the X-ray tube 1 and the X-ray two-dimensional detector 2. A straight line drawn through the X-ray focal point from the X-ray focal point to the X-ray two-dimensional detector 2 passes through the rotation center of the inspection object 7 arranged. At this time, a point where a straight line drawn from the X-ray focal point intersects the plane 30 perpendicularly is defined as O ′. The cylindrical surface 31 has a central axis that passes through the focal position of the X-ray tube 1 and is parallel to the rotational central axis of the device under test 7.

まず、X線二次元検出器2を位置31aに移動させ、被検査体7を指定された角度位相毎に回転させて、投影像を撮像していく。ここで位置31bに対する位置31aの旋回角41は、位置31bと位置31cでX線二次元検出器2の検出面が若干重なり合うように選ぶ。   First, the X-ray two-dimensional detector 2 is moved to the position 31a, and the inspected object 7 is rotated for each designated angular phase to capture a projected image. Here, the turning angle 41 of the position 31a with respect to the position 31b is selected so that the detection surfaces of the X-ray two-dimensional detector 2 slightly overlap at the positions 31b and 31c.

そして、X線二次元検出器2を位置31b、続いて位置31cに移動させ、位置31aにおける撮像と同様に投影像を撮像していく。位置31bに対する位置31cの旋回角も、旋回角41と同じ量である。被検査体7が同角度位相でX線二次元検出器2がそれぞれ位置31a、31b、31cで撮像された3枚の投影像を、その重なりを考慮しながら平面30、または円筒面31に射影し、仮想的に幅広の投影像を算出する。円筒面への射影は、X線源の焦点位置から照射され、被検査体7を透過したX線が平面検出器上に等間隔で配置された素子により獲得された画素情報を、X線源焦点を原点とした等角度の情報に変換することである。   Then, the X-ray two-dimensional detector 2 is moved to the position 31b and then to the position 31c, and a projected image is captured in the same manner as the imaging at the position 31a. The turning angle of the position 31c with respect to the position 31b is also the same amount as the turning angle 41. Projecting three projected images taken by the X-ray two-dimensional detector 2 at the positions 31a, 31b, and 31c onto the plane 30 or the cylindrical surface 31 with the same angle phase and the inspected object 7 in consideration of the overlap. Then, a virtually wide projection image is calculated. The projection onto the cylindrical surface is performed by using the X-ray source to obtain pixel information obtained by the elements that are irradiated from the focal position of the X-ray source and transmitted through the object to be inspected 7 and arranged at equal intervals on the flat detector. It is to convert the information into equiangular information with the focal point as the origin.

ここで、仮想的な幅広の投影像を算出する具体的方法を、円筒面31に投影する場合を例に説明する。図6は、本発明の一実施の形態例に係る、円筒面への射影変換を説明する図(XYZ座標系)である。また、図7は、本発明の一実施の形態例に係る、円筒面への射影変換を説明する図(XY座標系)である。   Here, a specific method for calculating a virtual wide projection image will be described by taking the case of projecting onto the cylindrical surface 31 as an example. FIG. 6 is a diagram (XYZ coordinate system) for explaining projective transformation to a cylindrical surface according to an embodiment of the present invention. FIG. 7 is a diagram (XY coordinate system) for explaining projective transformation to a cylindrical surface according to an embodiment of the present invention.

図6及び図7において、X線源の焦点位置をOとし、図1の装置概略図と同様なX軸、Y軸、Z軸を設定する。焦点位置OからX線二次元検出器2の中心線に下ろした垂線をNとする。X線二次元検出器2が焦点位置Oより距離|N|だけ離れ、角度φだけ旋回した位置にあるとした場合、
N=(Nx,Ny,0)
=(−Ncosφ,Nsinφ,0)
となる。
6 and 7, the focal position of the X-ray source is set to O, and the same X, Y, and Z axes as those in the apparatus schematic diagram of FIG. 1 are set. Let N be a perpendicular line drawn from the focal position O to the center line of the X-ray two-dimensional detector 2. If the X-ray two-dimensional detector 2 is at a position | N | away from the focal position O and turned by an angle φ,
N = (Nx, Ny, 0)
= (-Ncosφ, Nsinφ, 0)
It becomes.

ここで、X線二次元検出器2平面内にベクトルNに垂直な単位ベクトルU,Vを用意する。VはZ軸と平行かつZ軸と反対向きであるから、
V=(0,0,−1)
である。
ベクトルN,VからベクトルUを算出すると、

Figure 0004788272
となる。
これら3つのベクトルN,U,Vにより、X線二次元検出器2上の任意の点Qは、
N+αU+βV
として表せる。 Here, unit vectors U and V perpendicular to the vector N are prepared in the X-ray two-dimensional detector 2 plane. Since V is parallel to the Z axis and opposite to the Z axis,
V = (0, 0, -1)
It is.
When the vector U is calculated from the vectors N and V,
Figure 0004788272
It becomes.
With these three vectors N, U, and V, an arbitrary point Q on the X-ray two-dimensional detector 2 is
N + αU + βV
It can be expressed as

一方、円筒面31上に形成される仮想検出面上の任意の点をベクトルPで表す。
P=(−Rcos(mΔθ),Rsin(mΔθ),nΔZ)
ここで円筒面31上の仮想検出面のピクセルピッチをΔθ,ΔZと表し、各ピクセル位置を(m,n)、X線焦点位置Oから円筒面31上のベクトルPの終点までの距離をRとする。
On the other hand, an arbitrary point on the virtual detection surface formed on the cylindrical surface 31 is represented by a vector P.
P = (− Rcos (mΔθ), Rsin (mΔθ), nΔZ)
Here, the pixel pitch of the virtual detection surface on the cylindrical surface 31 is represented as Δθ and ΔZ, each pixel position is (m, n), and the distance from the X-ray focal point O to the end point of the vector P on the cylindrical surface 31 is R. And

ベクトルPの延長線上がX線二次元検出器2の検出面のどこに交わるかという問題は、
N+αU+βV=kP
のα,β,kを求める問題に帰着する。
The problem of where the extension line of the vector P intersects the detection surface of the X-ray two-dimensional detector 2 is
N + αU + βV = kP
This results in the problem of finding α, β, and k.

N+αU+βV=kP

Figure 0004788272
Figure 0004788272
N + αU + βV = kP
Figure 0004788272
Figure 0004788272

X線二次元検出器2のピクセルピッチをΔh、Δwとした場合、X線二次元検出器2の各ピクセル位置を(α´,β´)で表すと、
α´=αΔh
β´=βΔw
の関係が成り立ち、(m,n)と(α´,β´)の関係からX線二次元検出器2のピクセルと仮想円筒面31上のピクセルとの対応関係が得られ、X線二次元検出器2の投影像の円筒面上への射影を行なうことができる。
When the pixel pitch of the X-ray two-dimensional detector 2 is Δh and Δw, each pixel position of the X-ray two-dimensional detector 2 is represented by (α ′, β ′).
α ′ = αΔh
β ′ = βΔw
The relationship between the pixel of the X-ray two-dimensional detector 2 and the pixel on the virtual cylindrical surface 31 is obtained from the relationship of (m, n) and (α ′, β ′), and the two-dimensional X-ray The projection image of the detector 2 can be projected onto the cylindrical surface.

また、X線二次元検出器2の投影像の平面30上への射影変換は、上記円筒面31上への射影変換と同じ要領で実現できる。   Further, the projection conversion of the projection image of the X-ray two-dimensional detector 2 onto the plane 30 can be realized in the same manner as the projection conversion onto the cylindrical surface 31.

そして、X線二次元検出器2の各撮像位置(旋回位置又はポジションともいう。)における複数の投影像を各々平面30または円筒面31に射影変換した後、一つの幅広の投影像に合成する。あるいは、各撮像位置における複数の投影像を直接一つの幅広の円筒面31に射影変換して幅広の投影像を生成してもよい。   Then, a plurality of projection images at each imaging position (also referred to as a turning position or position) of the X-ray two-dimensional detector 2 are projectively transformed to the plane 30 or the cylindrical surface 31, respectively, and then combined into one wide projection image. . Alternatively, a wide projection image may be generated by projectively converting a plurality of projection images at each imaging position directly onto one wide cylindrical surface 31.

最後に、射影変換後に得られた複数の幅広の投影像に対し、再構成計算を行ない、被検査体の内部構造データを得ることができる。   Finally, reconstruction calculation can be performed on a plurality of wide projection images obtained after projective transformation to obtain internal structure data of the object to be inspected.

なお、射影する円筒面31の位置は、射影変換時にリサンプリングする都合上、元々のX線二次元検出器2の位置に近いほうが好ましいと考え、本例の円筒面31の場合、各撮像位置に旋回されたX線二次元検出器2の検出面に内接する面を選んだが、必ずしもそうである必要はない。   Note that the position of the cylindrical surface 31 to be projected is preferably close to the position of the original X-ray two-dimensional detector 2 for the convenience of resampling at the time of projective transformation. The surface that is inscribed in the detection surface of the X-ray two-dimensional detector 2 that has been swung to the right is selected, but this is not necessarily the case.

上述した実施の形態によれば、従来のX線二次元検出器を平行移動して幅広の投影像を合成する手法に比べ、さらに幾何学的な拡大率の向上が実現できる。
また、従来の手法で幅広の投影像を得ようとする場合、X線源と被検査体の中心を結ぶ直線から離れた位置になればなるほど、X線源とX線二次元検出器との距離が離れ、投影像の輝度が減衰するが、上述構成においてはX線源1とX線二次元検出器2との距離は一定なので、そのような問題は生じない。
また、X線二次元検出器2の投影像を円筒面31に射影する場合は、実際のX線二次元検出器2の検出面と仮想的な円筒面31との距離差が、仮想的平面30に射影することに比べて少なく、より変換誤差の少ない画像が得られることが期待できる。
According to the above-described embodiment, it is possible to realize further improvement in the geometric enlargement ratio as compared with the method of synthesizing a wide projection image by translating a conventional X-ray two-dimensional detector.
In addition, when trying to obtain a wide projection image by the conventional method, the further away from the straight line connecting the X-ray source and the center of the object to be inspected, the more the X-ray source and the X-ray two-dimensional detector are located. Although the distance is increased and the brightness of the projected image is attenuated, such a problem does not occur because the distance between the X-ray source 1 and the X-ray two-dimensional detector 2 is constant in the above-described configuration.
Further, when the projection image of the X-ray two-dimensional detector 2 is projected onto the cylindrical surface 31, the distance difference between the actual detection surface of the X-ray two-dimensional detector 2 and the virtual cylindrical surface 31 is the virtual plane. It can be expected that an image with less conversion error than that projected onto the image 30 can be obtained.

上述した一実施の形態例による撮像方法においては、X線二次元検出器2を位置31a,31b,31cへと旋回させたが、X線二次元検出器2を旋回させずに初期位置31bに載置したままで、X線二次元検出器2を旋回させたと同様な幾何学位置を保つように、被検査体7の位置、および初期角度位相を設定することにより、被検査体の撮像を行なう方法について説明する。   In the imaging method according to the above-described embodiment, the X-ray two-dimensional detector 2 is turned to the positions 31a, 31b, and 31c, but the X-ray two-dimensional detector 2 is not turned to the initial position 31b. By setting the position of the inspection object 7 and the initial angle phase so as to maintain the same geometric position as when the X-ray two-dimensional detector 2 is rotated while being placed, imaging of the inspection object is performed. The method of performing will be described.

図8は、本発明の他の実施の形態例に係る、X線二次元検出器を旋回移動させずに被検査体を移動させて、投影像を撮像する方法を説明する図(上面図)である。また図9は、図8の要部の拡大図である。   FIG. 8 is a diagram (top view) for explaining a method for capturing a projection image by moving the object to be inspected without rotating the X-ray two-dimensional detector according to another embodiment of the present invention. It is. FIG. 9 is an enlarged view of a main part of FIG.

図8において、X線源1の焦点位置を原点Oとし、X軸、Y軸を設定する。X線源1のX線焦点から被検査体7の初期位置7bにおける中心点までの距離をSとすれば、被検査体7の位置は(−S,0)と表される。   In FIG. 8, the focal position of the X-ray source 1 is the origin O, and the X axis and Y axis are set. If the distance from the X-ray focal point of the X-ray source 1 to the center point at the initial position 7b of the inspection object 7 is S, the position of the inspection object 7 is expressed as (−S, 0).

被検査体7を位置7bに載置したまま、X線二次元検出器2を位置31aに旋回角41でθ旋回させた場合を、状態Aとする。40はX線二次元検出器の投影領域の半角である。状態AにおけるX線源1のX線焦点と被検査体7とX線二次元検出器2の位置関係は、X線源1を動かさず、かつX線二次元検出器2を旋回させずに初期位置31bに載置した状態で、被検査体7の中心を位置7a、即ち(−Scosθ,−Ssinθ)の位置に移動し、さらに被検査体7の角度位相を−θ分オフセットさせる(状態Bとする)ことにより保たれる。したがって、状態Aで撮像した投影像と状態Bで撮像した投影像はほぼ同じ投影像が得られる。   A state A is defined when the X-ray two-dimensional detector 2 is turned by θ at the turning angle 41 to the position 31a while the inspection object 7 is placed at the position 7b. Reference numeral 40 denotes a half angle of the projection region of the X-ray two-dimensional detector. The positional relationship between the X-ray focal point of the X-ray source 1 in the state A, the inspected object 7 and the X-ray two-dimensional detector 2 does not move the X-ray source 1 and does not rotate the X-ray two-dimensional detector 2. While placed at the initial position 31b, the center of the inspection object 7 is moved to the position 7a, that is, the position of (−Scos θ, −Ssin θ), and the angular phase of the inspection object 7 is offset by −θ (state) B). Accordingly, the projection image captured in the state A and the projection image captured in the state B can obtain substantially the same projection image.

上記角度移相のオフセットは、図9に示すように、被検査体7を位置7aに移動後、X線焦点と被検査体7の中心を通る直線が被検査体7上の基準点7b1を通るように被検査体7を回転させることで行うことができる。   As shown in FIG. 9, the offset of the angle phase shift is such that a straight line passing through the X-ray focal point and the center of the inspection object 7 defines the reference point 7 b 1 on the inspection object 7 after moving the inspection object 7 to the position 7 a. This can be done by rotating the inspection object 7 so as to pass.

同様に、被検査体7を位置7c、即ち(−Scosθ,Ssinθ)の位置に移動させ、さらに被検査体7の角度位相をθ分オフセットさせることによって、被検査体7を位置7cに載置したまま、X線二次元検出器2を位置31cにθ旋回させて撮像した投影像とほぼ同じ投影像が得られる。   Similarly, the inspection subject 7 is placed at the position 7c by moving the inspection subject 7 to the position 7c, that is, the position of (−Scos θ, Ssin θ), and further offsetting the angular phase of the inspection subject 7 by θ. As it is, a projection image substantially the same as the projection image picked up by rotating the X-ray two-dimensional detector 2 to the position 31c by θ is obtained.

したがって、まず、X線二次元検出器2を位置31bに載置したまま、被検査体7を位置7aに移動させ、−θ分オフセットさせた上で指定された角度変位で回転させて、各角度位相の投影像を撮像していく。次に、被検査体7を位置7bに移動させ、指定された角度変位で回転させて、各角度位相の投影像を撮像する。   Therefore, first, while the X-ray two-dimensional detector 2 is placed at the position 31b, the object to be inspected 7 is moved to the position 7a, offset by −θ, and rotated by the specified angular displacement. An angle phase projection image is captured. Next, the object to be inspected 7 is moved to the position 7b and rotated by the designated angular displacement, and a projected image of each angular phase is captured.

そして、被検査体7を位置7cに移動させ、θ分オフセットさせた上で指定された角度変位で回転させて、各角度位相の投影像を撮像する。被検査体7が同角度位相で被検査体7の位置がそれぞれ7a,7b,7cの位置で撮像された3枚の投影像を、その重なりを考慮しながら平面30、または円筒面31に射影し、仮想的に幅広の投影像を算出する。得られた各角度位相の複数の幅広の投影像から再構成計算を経て被検査体7の内部構造データを得る。   Then, the object to be inspected 7 is moved to the position 7c, offset by θ, and rotated by the designated angular displacement, and a projected image of each angular phase is captured. Projecting three projected images taken with the inspected object 7 at the same angular phase and the inspected object 7 at the positions 7a, 7b and 7c onto the plane 30 or the cylindrical surface 31 in consideration of the overlap. Then, a virtually wide projection image is calculated. The internal structure data of the inspected object 7 is obtained from a plurality of wide projection images of each angular phase obtained through reconstruction calculation.

上記他の実施の形態例によれば、上述した一実施の形態例と同様の効果を奏するとともに、新たに次のような効果が得られる。   According to the other embodiment described above, the same effects as the above-described embodiment can be obtained, and the following effects can be newly obtained.

まず、X線二次元検出器2を旋回させずに被検査体7の位置を移動させて撮像する方法は、X線二次元検出器2を移動させる手段を必要としないので、X線断層撮像装置の構造の簡略化が図れ、装置サイズをコンパクトにすることが可能となる。
また、X線二次元検出器の中には、被検査体が何も映っていない白画像又は黒画像を元にキャリブレーションを行なう必要があるものがあり、このキャリブレーションはX線源の焦点位置とX線二次元検出器の位置関係が変化する度に行なう必要がある。しかし、上記他の実施の形態例では、X線二次元検出器2の位置を変化させずに撮像できるので、一度キャリブレーションしただけで、各ポジション(撮像位置)における撮像が可能となる。
また、X線二次元検出器2を固定したまま、撮像を行える分、定盤が撓むことがなく幾何学的位置関係を保つことが容易となり、より高精度な撮像を実現できるので、X線断層撮像装置の構成も簡潔なものとなる。
First, the method of moving the position of the inspection object 7 without rotating the X-ray two-dimensional detector 2 does not require a means for moving the X-ray two-dimensional detector 2, so X-ray tomographic imaging. The structure of the apparatus can be simplified, and the apparatus size can be reduced.
In addition, some X-ray two-dimensional detectors require calibration based on a white image or a black image in which nothing is shown, and this calibration is performed at the focus of the X-ray source. This must be done every time the positional relationship between the position and the X-ray two-dimensional detector changes. However, in the other embodiments described above, since it is possible to capture an image without changing the position of the X-ray two-dimensional detector 2, it is possible to perform imaging at each position (imaging position) with only one calibration.
In addition, since the imaging can be performed while the X-ray two-dimensional detector 2 is fixed, it is easy to maintain the geometric positional relationship without bending the surface plate, and more accurate imaging can be realized. The configuration of the line tomography apparatus is also simplified.

なお、上述実施の形態例において、回転基台3の回転角度は必ずしも360°である必要はなく、例えば270°等でもよい。   In the above embodiment, the rotation angle of the rotation base 3 is not necessarily 360 °, and may be 270 °, for example.

また、被検査体の投影像を捕獲する手段は、X線二次元検出器に限らず、ラインセンサー等の一次元検出器でもよい。   The means for capturing the projected image of the object to be inspected is not limited to the X-ray two-dimensional detector, but may be a one-dimensional detector such as a line sensor.

また、本発明のX線断層撮像方法を、被検査体の回転軸を傾斜させた状態で被検査体の投影像の撮像を行う場合に適用してもよい。   Further, the X-ray tomographic imaging method of the present invention may be applied when imaging a projection image of an inspection object with the rotation axis of the inspection object inclined.

また、本発明において、X線二次元検出器、および被検査体のポジション(撮像位置)を3ポジションとして説明しているが、4ポジション、5ポジションと増やすことも可能である。   In the present invention, the position (imaging position) of the X-ray two-dimensional detector and the object to be inspected is described as 3 positions, but it can be increased to 4 positions and 5 positions.

本発明は、上述した各実施の形態例に限定されるものではなく、その他本発明の要旨を逸脱しない範囲において、種々の変形、変更が可能であることは勿論である。   The present invention is not limited to the above-described embodiments, and various modifications and changes can be made without departing from the scope of the present invention.

本発明の一実施の形態例に係るX線断層撮像装置を示す概略図であり、Aは正面図、Bは側面図を表す。BRIEF DESCRIPTION OF THE DRAWINGS It is the schematic which shows the X-ray tomographic imaging apparatus which concerns on the example of 1 embodiment of this invention, A represents a front view, B represents a side view. 図1に示したX線断層撮像装置の要部の一例を示す図である。It is a figure which shows an example of the principal part of the X-ray tomographic imaging apparatus shown in FIG. 本発明の一実施の形態例に係るX線断層撮像装置のブロック構成図である。1 is a block configuration diagram of an X-ray tomographic imaging apparatus according to an embodiment of the present invention. 本発明の一実施の形態例に係る、X線二次元検出器を旋回移動させて撮像する方法を説明する概略図(鳥瞰図)である。It is the schematic (bird's-eye view) explaining the method of rotating the X-ray two-dimensional detector based on one embodiment of this invention, and imaging. 本発明の一実施の形態例に係る、X線二次元検出器を旋回移動させて撮像する方法を説明する概略図(上面図)である。It is the schematic (top view) explaining the method of revolving and moving the X-ray two-dimensional detector according to the embodiment of the present invention. 本発明の一実施の形態例に係る、円筒面への射影変換を説明する図(XYZ座標系)である。It is a figure (XYZ coordinate system) explaining the projective transformation to a cylindrical surface according to an embodiment of the present invention. 本発明の一実施の形態例に係る、円筒面への射影変換を説明する図(XY座標系)である。It is a figure (XY coordinate system) explaining the projective transformation to a cylindrical surface based on one embodiment of the present invention. 本発明の他の実施の形態例に係る、X線二次元検出器を旋回移動させずに被検査体を移動させて撮像する方法を説明する図(上面図)である。It is a figure (top view) explaining the method to move and image an to-be-inspected object, without rotating the X-ray two-dimensional detector based on the other embodiment of this invention. 図8に示したX線断層撮像装置の要部の一例を示す図である。It is a figure which shows an example of the principal part of the X-ray tomographic imaging apparatus shown in FIG. 従来のX線二次元検出器を平行移動させて撮像する方法を説明する概略図(鳥瞰図)である。It is the schematic (bird's-eye view) explaining the method to translate and image the conventional X-ray two-dimensional detector. 従来のX線二次元検出器を平行移動させて撮像する方法を説明する概略図(上面図)である。It is the schematic (top view) explaining the method to translate and image the conventional X-ray two-dimensional detector.

符号の説明Explanation of symbols

1…X線管、2…X線二次元検出器、3…回転基台、7…被検査体、7a,7b,7c…被検査体の移動位置、11…シールドカバー、15…回転中心軸、22…制御操作卓、23…投影像記憶部、24…再構成計算用計算機、25…再構成結果表示装置、30…仮想平面、31…仮想円筒面、31a,31b,31c…X線二次元検出器の移動位置、41…X線二次元検出器の旋回角

DESCRIPTION OF SYMBOLS 1 ... X-ray tube, 2 ... X-ray two-dimensional detector, 3 ... Rotation base, 7 ... Test object, 7a, 7b, 7c ... Moving position of test object, 11 ... Shield cover, 15 ... Rotation center axis , 22 ... control console, 23 ... projection image storage unit, 24 ... computer for reconstruction calculation, 25 ... reconstruction result display device, 30 ... virtual plane, 31 ... virtual cylindrical surface, 31a, 31b, 31c ... two X-rays Dimensional detector moving position, 41 ... Swivel angle of X-ray two-dimensional detector

Claims (2)

コーンビーム状の照射野が得られるX線源と、被検査体の透過X線を撮像する平面な検出面を持つ二次元検出手段と、前記X線源のX線焦点と前記二次元検出手段との間に配置され前記被検査体を載置して前記X線焦点から前記二次元検出手段の検出面に下ろした垂線に直交する回転軸を中心に設定された角度変位で回転する回転手段と、各角度位相毎に撮像された投影像から再構成計算を行い、前記被検査体の内部構造データを再構成する制御を行う制御手段と、を有するX線断層撮像装置において
前記制御手段は、前記被検査体の一部分が前記二次元検出手段に撮像されるよう、前記X線源と前記二次元検出手段の相互の位置を固定したまま、前記回転手段に載置された被検査体の回転軸の位置を、前記被検査体の回転軸と平行で前記X線焦点を通る回転軸について、前記X線焦点から前記二次元検出手段の検出面に下ろした垂線と、前記X線焦点から前記被検査体の回転軸を結ぶ直線とのなす角がθ度、0度、−θ度の三つの撮像位置に、各々の撮像位置で所定枚数の投影像を撮像の都度、同一半径にて旋回移動させ、
各々の撮像位置において、前記被検査体の初期角度位相を各々−θ度、0度、θ度として各角度位相毎に前記所定枚数の投影像を撮像し、
各々の撮像位置で得られた投影像を、前記被検査体の回転軸と平行で前記X線焦点を通る回転軸を中心とし、半径を前記X線焦点から前記二次元検出手段に下ろした垂線の長さとする仮想的な円筒面に射影変換し、
射影変換した各々の撮像位置で撮像された順に同角度位相の投影像を合成し、各角度位相毎に合成した投影像から再構成計算を行い、前記被検査体の内部構造データを再構成する
X線断層撮像装置。
An X-ray source capable of obtaining a cone-beam-like irradiation field , a two-dimensional detection means having a flat detection surface for imaging transmitted X-rays of an object to be inspected, an X-ray focal point of the X-ray source, and the two-dimensional detection means rotating means for rotating at arranged a rotating shaft angular displacement which is set around a perpendicular from the X-ray focal point by placing the inspection object on the perpendicular line to the test exit face of the two-dimensional detection means between the And an X-ray tomographic imaging apparatus having control means for performing reconstruction calculation from the projection image captured for each angular phase and performing control to reconstruct the internal structure data of the object to be inspected ,
The control means is placed on the rotating means while fixing the mutual position of the X-ray source and the two-dimensional detection means so that a part of the object to be inspected is imaged by the two-dimensional detection means. A vertical line that is lowered from the X-ray focal point to the detection surface of the two-dimensional detection unit with respect to a rotational axis that passes through the X-ray focal point in parallel with the rotational axis of the inspection object, The angle formed by the straight line connecting the rotation axis of the object to be inspected from the X-ray focal point is at three imaging positions of θ degrees, 0 degrees, and −θ degrees, and each time a predetermined number of projected images are captured at each imaging position, Swivel with the same radius,
At each imaging position, the initial angle phase of the object to be inspected is set to −θ degrees, 0 degrees, and θ degrees, respectively, and the predetermined number of projection images are captured for each angle phase;
Projected images obtained at the respective imaging positions are perpendicular to the rotation axis passing through the X-ray focal point in parallel with the rotation axis of the object to be inspected, and the radius is lowered from the X-ray focal point to the two-dimensional detection means. Projective transformation to a virtual cylindrical surface with the length of
The projection images of the same angle phase are synthesized in the order of imaging at the respective imaging positions subjected to the projective transformation, and the reconstruction calculation is performed from the projection images synthesized for each angle phase to reconstruct the internal structure data of the object to be inspected. X-ray tomographic imaging apparatus.
コーンビーム状の照射野が得られるX線源と、被検査体の透過X線を撮像する平面な検出面を持つ二次元検出手段と、前記X線源のX線焦点と前記二次元検出手段との間に配置され前記被検査体を載置して前記X線焦点から前記二次元検出手段の検出面に下ろした垂線に直交する回転軸を中心に設定された角度変位で回転する回転手段と、各角度位相毎に撮像された投影像から再構成計算を行い、前記被検査体の内部構造データを再構成する制御を行う制御手段と、を有するX線断層撮像装置のX線断層撮像方法において、
前記制御手段により、前記被検査体の一部分が前記二次元検出手段に撮像されるよう、前記X線源と前記二次元検出手段の相互の位置を固定したまま、前記回転手段に載置された被検査体の回転軸の位置を、前記被検査体の回転軸と平行で前記X線焦点を通る回転軸について、前記X線焦点から前記二次元検出手段の検出面に下ろした垂線と、前記X線焦点から前記被検査体の回転軸を結ぶ直線とのなす角がθ度、0度、−θ度の三つの撮像位置に、各々の撮像位置で所定枚数の投影像を撮像の都度、同一半径にて旋回移動させ、
各々の撮像位置において、前記被検査体の初期角度位相を各々−θ度、0度、θ度として各角度位相毎に前記所定枚数の投影像を撮像し、
各々の撮像位置で得られた投影像を、前記被検査体の回転軸と平行で前記X線焦点を通る回転軸を中心とし、半径を前記X線焦点から前記二次元検出手段に下ろした垂線の長さとする仮想的な円筒面に射影変換し、
射影変換した各々の撮像位置で撮像された順に同角度位相の投影像を合成し、各角度位相毎に合成した投影像から再構成計算を行い、前記被検査体の内部構造データを再構成する
X線断層撮像方法。
An X-ray source capable of obtaining a cone-beam-like irradiation field , a two-dimensional detection means having a flat detection surface for imaging transmitted X-rays of an object to be inspected, an X-ray focal point of the X-ray source, and the two-dimensional detection means rotating means for rotating at arranged a rotating shaft angular displacement which is set around a perpendicular from the X-ray focal point by placing the inspection object on the perpendicular line to the test exit face of the two-dimensional detection means between the X-ray tomographic imaging of an X-ray tomographic imaging apparatus comprising: and control means for performing reconstruction calculation from a projection image captured for each angle phase and reconstructing internal structure data of the object to be inspected In the method
The X-ray source and the two-dimensional detection unit are placed on the rotation unit while the mutual positions of the X-ray source and the two-dimensional detection unit are fixed so that a part of the inspection object is imaged by the two-dimensional detection unit by the control unit . A vertical line that is lowered from the X-ray focal point to the detection surface of the two-dimensional detection unit with respect to a rotational axis that passes through the X-ray focal point in parallel with the rotational axis of the inspection object, The angle formed by the straight line connecting the rotation axis of the object to be inspected from the X-ray focal point is at three imaging positions of θ degrees, 0 degrees, and −θ degrees, and each time a predetermined number of projected images are captured at each imaging position, Swivel with the same radius,
At each imaging position, the initial angle phase of the object to be inspected is set to −θ degrees, 0 degrees, and θ degrees, respectively, and the predetermined number of projection images are captured for each angle phase;
Projected images obtained at the respective imaging positions are perpendicular to the rotation axis passing through the X-ray focal point in parallel with the rotation axis of the object to be inspected, and the radius is lowered from the X-ray focal point to the two-dimensional detection means. Projective transformation to a virtual cylindrical surface with the length of
The projection images of the same angle phase are synthesized in the order of imaging at the respective imaging positions subjected to the projective transformation, and the reconstruction calculation is performed from the projection images synthesized for each angle phase to reconstruct the internal structure data of the object to be inspected. X-ray tomographic imaging method.
JP2005288555A 2005-09-30 2005-09-30 X-ray tomographic imaging apparatus and X-ray tomographic imaging method Expired - Fee Related JP4788272B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005288555A JP4788272B2 (en) 2005-09-30 2005-09-30 X-ray tomographic imaging apparatus and X-ray tomographic imaging method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005288555A JP4788272B2 (en) 2005-09-30 2005-09-30 X-ray tomographic imaging apparatus and X-ray tomographic imaging method

Publications (2)

Publication Number Publication Date
JP2007101247A JP2007101247A (en) 2007-04-19
JP4788272B2 true JP4788272B2 (en) 2011-10-05

Family

ID=38028358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005288555A Expired - Fee Related JP4788272B2 (en) 2005-09-30 2005-09-30 X-ray tomographic imaging apparatus and X-ray tomographic imaging method

Country Status (1)

Country Link
JP (1) JP4788272B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4840249B2 (en) * 2007-05-10 2011-12-21 株式会社島津製作所 X-ray inspection equipment
JP5138279B2 (en) * 2007-06-15 2013-02-06 東芝Itコントロールシステム株式会社 Computed tomography equipment
WO2011002442A1 (en) * 2009-06-30 2011-01-06 Analogic Corporation Efficient quasi-exact 3d image reconstruction algorithm for ct scanners

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61141346A (en) * 1984-12-13 1986-06-28 株式会社東芝 Tomographic method
US7108421B2 (en) * 2002-03-19 2006-09-19 Breakaway Imaging, Llc Systems and methods for imaging large field-of-view objects
JP4405836B2 (en) * 2004-03-18 2010-01-27 東芝Itコントロールシステム株式会社 Computed tomography equipment
JP4504740B2 (en) * 2004-06-10 2010-07-14 東芝Itコントロールシステム株式会社 Computed tomography equipment
JP4390060B2 (en) * 2004-06-15 2009-12-24 株式会社島津製作所 X-ray CT system

Also Published As

Publication number Publication date
JP2007101247A (en) 2007-04-19

Similar Documents

Publication Publication Date Title
US7099432B2 (en) X-ray inspection apparatus and X-ray inspection method
TW201012303A (en) X-ray inspecting device and method for inspecting X ray
JPWO2009078415A1 (en) X-ray inspection apparatus and method
JP4561990B2 (en) X-ray equipment
JP5060862B2 (en) Tomography equipment
JP6153105B2 (en) CT equipment
JP5056284B2 (en) X-ray tomographic imaging apparatus and X-ray tomographic imaging method
JP4788272B2 (en) X-ray tomographic imaging apparatus and X-ray tomographic imaging method
JP4894359B2 (en) X-ray tomographic imaging apparatus and X-ray tomographic imaging method
JP2006266754A (en) Method and system for x-ray tomographic imaging
JP2005134213A (en) X-ray tomographic method and device
JP5125297B2 (en) X-ray inspection apparatus and X-ray inspection method
JP2005292047A (en) X-ray tomographic imaging device, and x-ray tomographic imaging method
JPH11118736A (en) Apparatus and method for x-ray diagnosis
JP4926645B2 (en) Radiation inspection apparatus, radiation inspection method, and radiation inspection program
JP2006138869A (en) Computed tomograph, and method and program for determining rotation center position
JP4165319B2 (en) Computer tomography method and apparatus
JP4155866B2 (en) X-ray tomography system
JP5138279B2 (en) Computed tomography equipment
JP2010156607A (en) X-ray tomographic imaging apparatus and x-ray tomographic imaging method
JP2003344311A (en) Method and apparatus for x-ray tomography
JP4609643B2 (en) X-ray CT system
JP2004340630A (en) Computer tomography, and computer tomographic device
JP2006214879A (en) X-ray tomographic imaging method and x-ray tomographic imaging system
JP2005037158A (en) Imaging method and system for computerized tomography

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110621

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110704

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140729

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees