JP2012083277A - X-ray detector, x-ray ct apparatus using the same, and method for capturing x-ray ct - Google Patents

X-ray detector, x-ray ct apparatus using the same, and method for capturing x-ray ct Download PDF

Info

Publication number
JP2012083277A
JP2012083277A JP2010231083A JP2010231083A JP2012083277A JP 2012083277 A JP2012083277 A JP 2012083277A JP 2010231083 A JP2010231083 A JP 2010231083A JP 2010231083 A JP2010231083 A JP 2010231083A JP 2012083277 A JP2012083277 A JP 2012083277A
Authority
JP
Japan
Prior art keywords
ray
ray detector
detector
rays
imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010231083A
Other languages
Japanese (ja)
Inventor
Noriyuki Sadaoka
紀行 定岡
Atsushi Nukaga
淳 額賀
Yasushi Nagumo
靖 名雲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2010231083A priority Critical patent/JP2012083277A/en
Publication of JP2012083277A publication Critical patent/JP2012083277A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Measurement Of Radiation (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an X-ray detector for improving spatial resolution of an industrial X-ray CT apparatus; and to provide an X-ray CT apparatus using the same, and a method for capturing the X-ray CT.SOLUTION: An X-ray CT apparatus includes: an X-ray source for irradiating an X ray; an X-ray detector for detecting the X ray passing through an imaging-object subject; a driving mechanism for rotating and translating the imaging-object subject placed between the X-ray source and the X-ray detector; a signal processing circuit for quantifying an X-ray transmission amount measured by the X-ray detector; and an arithmetic device for reconstructing the image based on signals. The X-ray detector includes a plurality of semiconductor members 12 for detecting the transmission X ray disposed at known intervals apart so as to be buried in and supported by an FRP reinforced substrate 16 in a linear array state. This constitution can narrow the interval between the semiconductor members 12 so as to have a configuration of a dense array with a little detection blind zone.

Description

本発明は、X線検出器のX線検出密度を向上する技術及び、そのX線検出器を用いたX線CT装置並びにX線CT撮像方法に関する。   The present invention relates to a technique for improving the X-ray detection density of an X-ray detector, an X-ray CT apparatus using the X-ray detector, and an X-ray CT imaging method.

X線CT装置は、医療用の人体内部計測装置としての活用が広く普及しているが、工業用途においても対象物を切断することなく非破壊で内部状態が計測できるため、鋳造部品の内部欠陥計測、など非破壊検査として多くの用途に用いられている。   X-ray CT equipment is widely used as a medical human body internal measuring device. However, even in industrial applications, the internal state of cast parts can be measured because the internal state can be measured without cutting the object. It is used for many purposes as non-destructive inspection such as measurement.

X線CT装置では、X線源と検出器の間に撮像被検体を設置し、X線源から照射されるX線が被検体を透過し減衰した後のX線透過量を検出器で計測し、このX線の透過量分布から被検体内部の画像を再構成する。そのため、検出器サイズが画像の空間分解能に強く影響する。   In an X-ray CT apparatus, an imaging subject is placed between an X-ray source and a detector, and the amount of X-ray transmitted after the X-ray irradiated from the X-ray source passes through the subject and attenuates is measured by the detector. The image inside the subject is reconstructed from the X-ray transmission amount distribution. For this reason, the detector size strongly affects the spatial resolution of the image.

医療用と異なり工業用途のX線CT装置では、対象物が金属物の場合が多く人体に比較して透過能力の強いX線エネルギーが必要となる。X線を発生させるX線源としては、800kVまではX線管が使用可能であり、MV領域のエネルギーレベルでは線形加速器によるX線源が必要となる。   Unlike medical applications, industrial X-ray CT apparatuses often have metallic objects as objects, and require X-ray energy having a higher transmission capability than the human body. As an X-ray source for generating X-rays, an X-ray tube can be used up to 800 kV, and an X-ray source by a linear accelerator is required at an energy level in the MV region.

X線管では、エネルギーレベルの低い領域(〜225kV)では焦点サイズがミクロンオーダーのX線源が存在するが、透過能力が低いため厚い金属物の被検体は撮像不能となる。また、エネルギーレベルが比較的高い領域(320kV〜800kV)のX線管では、透過能力は増加するがX線発生源の焦点サイズはサブミリからミリオーダーに大きくなる。   In an X-ray tube, an X-ray source with a focus size of micron order exists in a low energy level region (˜225 kV), but a thick metal object cannot be imaged because of its low transmission capability. Further, in an X-ray tube having a relatively high energy level (320 kV to 800 kV), the transmission capability increases, but the focal point size of the X-ray generation source increases from submillimeter to millimeter order.

MV領域のX線エネルギーレベルが得られる線形加速器では、透過能力がさらに増加し、エネルギーレベルが比較的高い領域(320kV〜800kV)のX線管と同様、X線発生源の焦点サイズはサブミリからミリオーダーに大きくなる。これらのX線管,線形加速器からは通常、コーン状に、またX線発生直後にコリメートされファン状にX線が照射される。   In a linear accelerator that can obtain an X-ray energy level in the MV region, the transmission capability is further increased, and the focal point size of the X-ray source is from submillimeters as in an X-ray tube in a region with a relatively high energy level (320 kV to 800 kV). Grows on the order of millimeters. These X-ray tubes and linear accelerators are usually collimated and irradiated with X-rays in a fan shape immediately after the generation of X-rays.

X線源から照射され撮像被検体内部で減衰したX線の減衰量を計測するX線検出器には、シンチレータや化合物半導体、等の放射線検出器が用いられる(非特許文献1参照。)。これらのX線検出器は、撮像被検体を挟んでX線源と相対する位置に設置される。X線検出器は、一定間隔で離散的に配置されX線源から各検出器素子中心を結んだ直線上のX線透過量積算値を計測する。   A radiation detector such as a scintillator or a compound semiconductor is used as an X-ray detector that measures the amount of attenuation of X-rays irradiated from the X-ray source and attenuated inside the imaging subject (see Non-Patent Document 1). These X-ray detectors are installed at positions facing the X-ray source with the imaging subject interposed therebetween. The X-ray detector measures the integrated X-ray transmission amount on a straight line discretely arranged at regular intervals and connecting the center of each detector element from the X-ray source.

撮像被検体全体を撮像するには、X線源と検出器の間に設置された被検体をターンテーブルに乗せ回転させて、全体画像を再構成するために必要な投影データを取得する。または、撮像被検体は静止させ、X線源と検出器を被検体周囲に回転させ必要な投影データを取得する。   In order to capture the entire imaging subject, the subject placed between the X-ray source and the detector is placed on a turntable and rotated to acquire projection data necessary for reconstructing the entire image. Alternatively, the imaging subject is stopped, and the X-ray source and the detector are rotated around the subject to obtain necessary projection data.

Miyai H, Satoh K, Kitaguchi H, Izumi S. A high energy X-ray computed tomography using silicon semiconductor detectors. In:1996 Nuclear Science Symposium Conference Record, vol. 2, 1997. p. 816-21.Miyai H, Satoh K, Kitaguchi H, Izumi S. A high energy X-ray computed tomography using silicon semiconductor detectors. In: 1996 Nuclear Science Symposium Conference Record, vol. 2, 1997. p. 816-21.

上述した既存の産業用X線CT装置を用いた工業製品の非破壊検査における内部計測では、被検体の構造強度や性能特性に影響を与えるサイズの欠陥を検出する必要がある。鋳造物を対象とした場合は、これらの致命的な鋳造欠陥は既存のCT装置で検出可能であるが、さらに、これらの欠陥の周辺に存在するより小さい欠陥を検出するには、さらなる分解能の向上が必要となる。   In the internal measurement in the non-destructive inspection of industrial products using the above-described existing industrial X-ray CT apparatus, it is necessary to detect a defect having a size that affects the structural strength and performance characteristics of the subject. In the case of castings, these fatal casting defects can be detected with existing CT equipment, but to detect smaller defects around these defects, further resolution Improvement is needed.

従来の産業用X線CT装置では、X線検出器には、シンチレータや化合物半導体、等の放射線検出器が用いられてきたが、特に、非特許文献1に示されたように、半導体化合物材料を用いた検出器は、高エネルギーX線に対する感度が高く、シンチレータに比較して厚みを薄くすることが可能であり、検出器アレイにおける検出器間隔を狭く設定することが可能である。   In a conventional industrial X-ray CT apparatus, a radiation detector such as a scintillator or a compound semiconductor has been used as an X-ray detector. In particular, as shown in Non-Patent Document 1, a semiconductor compound material is used. Is high in sensitivity to high-energy X-rays, and can be made thinner than a scintillator, and the detector interval in the detector array can be set narrow.

検出器間隔の狭隘化により画像生成のための投影データのサンプリング間隔が小さくなり、高分解能画像が得られる。一方、非特許文献1に示された半導体X線検出器では、透過してきたX線を検出するための半導体部材の他に、X線検出器間の漏れ電子(クロストーク)を抑制するための遮蔽板が設置されていた。そのため検出器厚みを薄くし検出器アレイの稠密化に限界があった。そのため、X線CT装置としての分解能の向上にも限界がった。   By narrowing the detector interval, the sampling interval of projection data for image generation is reduced, and a high-resolution image is obtained. On the other hand, in the semiconductor X-ray detector shown in Non-Patent Document 1, in addition to the semiconductor member for detecting the transmitted X-ray, it is for suppressing leakage electrons (crosstalk) between the X-ray detectors. A shielding plate was installed. For this reason, there is a limit to the densification of the detector array by reducing the thickness of the detector. For this reason, there is a limit to improving the resolution as an X-ray CT apparatus.

従って、本発明の第1の目的は、稠密配置が可能なX線検出器を提供することにある。第2の目的は、X線検出器の配置を稠密化して高い空間分解能で撮像可能なX線CT装置を提供することにある。第3の目的は、X線検出器の配置を稠密化して高い空間分解能で撮像可能なX線CT撮像方法を提供することにある。   Accordingly, a first object of the present invention is to provide an X-ray detector capable of dense arrangement. The second object is to provide an X-ray CT apparatus capable of imaging with high spatial resolution by densifying the arrangement of X-ray detectors. The third object is to provide an X-ray CT imaging method capable of imaging with high spatial resolution by densifying the arrangement of X-ray detectors.

本発明の第1の目的を達成するための手段は、X線を検出するための半導体部材と、前記半導体部材と前記半導体部材の電極とが装着された基板とを備えたX線検出器において、前記半導体部材が埋設され、前記半導体部材を支持する補強基板を備えていることを特徴とするX線検出器である。   Means for achieving the first object of the present invention is an X-ray detector comprising a semiconductor member for detecting X-rays and a substrate on which the semiconductor member and electrodes of the semiconductor member are mounted. The X-ray detector is characterized in that the semiconductor member is embedded and a reinforcing substrate for supporting the semiconductor member is provided.

同じく第2目的を達成するための手段は、X線を照射するX線源と、撮像対象被検体を透過したX線を検出するX線検出器と、前記X線検出器で検出されたX線透過量を数値化する信号処理回路と、前記信号処理回路からの信号を元に画像データを作る演算装置と、前記演算装置による演算処理を経て得られた画像データに基づく画像を表示する画像表示装置を備えたX線CT装置において、前記X線検出器として前記第1の目的を達成するための手段に記載のX線検出器を備えていることを特徴とするX線CT装置である。   Similarly, means for achieving the second object include an X-ray source for irradiating X-rays, an X-ray detector for detecting X-rays transmitted through the subject to be imaged, and X detected by the X-ray detector. A signal processing circuit that digitizes the amount of line transmission, an arithmetic device that creates image data based on a signal from the signal processing circuit, and an image that displays an image based on image data obtained through arithmetic processing by the arithmetic device An X-ray CT apparatus having a display device, wherein the X-ray CT apparatus includes the X-ray detector described in the means for achieving the first object as the X-ray detector. .

同じく第3の目的を達成するための手段は、X線源から照射したX線を撮影対象被検査体に透過させ、前記透過してきたX線をX線検出器で検出し、その検出結果を信号処理装置にて数値化し、その数値化して得られた信号に基づいて演算装置で画像データを作り、その画像データに基づいた画像を画像表示装置にて可視化するX線CT撮像方法において、前記X線検出器として前記第1の目的を達成するための手段に記載のX線検出器を用いると共に、前記X線検出器を用いて取得した投影データから隣接するX線検出器からのノイズの影響を除去する処理を各検出器毎に行う信号処理プロセスを有することを特徴とするX線CT撮像方法である。   Similarly, a means for achieving the third object is to transmit X-rays irradiated from an X-ray source to an object to be imaged, detect the transmitted X-rays with an X-ray detector, and detect the detection result. In the X-ray CT imaging method for digitizing with a signal processing device, creating image data with an arithmetic device based on the signal obtained by the digitization, and visualizing an image based on the image data with an image display device, The X-ray detector described in the means for achieving the first object is used as an X-ray detector, and noise from an adjacent X-ray detector is obtained from projection data acquired by using the X-ray detector. It is an X-ray CT imaging method characterized by having a signal processing process for performing processing for removing the influence for each detector.

本発明のX線検出器によれば、X線検出器の半導体部分が他の部材に埋設されることにより、薄く構成され、X線検出器の配置の稠密化に貢献できる。   According to the X-ray detector of the present invention, the semiconductor portion of the X-ray detector is embedded in another member, so that the X-ray detector is thinned and can contribute to densification of the arrangement of the X-ray detector.

本発明のX線CT装置によれば、X線検出器の配置を稠密化して高い空間分解能で撮像可能な装置を提供できる。   According to the X-ray CT apparatus of the present invention, it is possible to provide an apparatus capable of imaging with high spatial resolution by densifying the arrangement of X-ray detectors.

本発明のX線CT撮像方法によれば、X線検出器の配置の稠密化による高い空間分解能による撮像をノイズが抑制された状態で可能とする。   According to the X-ray CT imaging method of the present invention, it is possible to perform imaging with high spatial resolution by densifying the arrangement of X-ray detectors in a state where noise is suppressed.

本発明の一実施例であるX線CT装置の一例を表した図である。It is a figure showing an example of the X-ray CT apparatus which is one Example of this invention. 従来のX線CT装置に用いられているX線検出器構造の一例を表した図である。It is a figure showing an example of the X-ray detector structure used for the conventional X-ray CT apparatus. 本発明の一実施例であるX線CT装置に用いるX線検出器構造の一例を示した図である。It is the figure which showed an example of the X-ray detector structure used for the X-ray CT apparatus which is one Example of this invention. 本発明の一実施例であるX線CT装置に用いるX線検出器構造の一例を示した図である。It is the figure which showed an example of the X-ray detector structure used for the X-ray CT apparatus which is one Example of this invention. 本発明の一実施例であるX線CT装置を用いて本発明の撮像方法で撮像する場合の処理フローの一例を示した図である。It is the figure which showed an example of the processing flow in the case of imaging with the imaging method of this invention using the X-ray CT apparatus which is one Example of this invention. 本発明の一実施例であるX線CT装置を用いて本発明の撮像方法で撮像する場合のシステム構成の一例を示した図である。It is the figure which showed an example of the system configuration in the case of imaging with the imaging method of this invention using the X-ray CT apparatus which is one Example of this invention.

本発明の実施例では、産業用X線CT装置において、X線検出器厚みを薄くして検出器アレイの稠密化を実現させることにより、高い空間分解能で撮像可能にするものである。   In an embodiment of the present invention, in an industrial X-ray CT apparatus, an X-ray detector is thinned to realize a dense detector array, thereby enabling imaging with high spatial resolution.

そのため、発明者は、X線検出器の半導体部材12を、その半導体部材12を支持するFRP(fiber reinforced plastics)製の補強基板16に埋設して薄型化したX線検出器を発案した。   Therefore, the inventor has devised a thin X-ray detector by embedding the semiconductor member 12 of the X-ray detector in a reinforcing substrate 16 made of FRP (fiber reinforced plastics) that supports the semiconductor member 12.

本発明の実施例による産業用X線CT装置では、X線を照射するX線源1と、撮像対象被検体8を透過したX線を検出するX線検出器2と、X線源1とX線検出器2の間に配置された撮像対象被検体を回転・並進させる機構(図1ではターンテーブル6を指す。)と、X線検出器で計測されたX線透過量を数値化する信号処理回路3とこれらの信号を元に画像化するためのデータを再構成する演算装置の画像再構成装置4とからなるX線CT装置において、前記X線検出器2として、上述の薄型化したX線検出器2の複数個を、断層画像を取得する水平面方向に一定間隔で配置して、アレイ化した構成を備えている。なお、符号9はX線源焦点サイズ調整機構を、符号10は信号伝送回路を示す。   In an industrial X-ray CT apparatus according to an embodiment of the present invention, an X-ray source 1 that irradiates X-rays, an X-ray detector 2 that detects X-rays transmitted through an object 8 to be imaged, and an X-ray source 1 A mechanism for rotating and translating the subject to be imaged arranged between the X-ray detectors 2 (referring to the turntable 6 in FIG. 1) and the amount of X-ray transmission measured by the X-ray detector is digitized. In the X-ray CT apparatus comprising the signal processing circuit 3 and the image reconstruction device 4 of the arithmetic device for reconstructing data for imaging based on these signals, the X-ray detector 2 is thinned as described above. A plurality of X-ray detectors 2 are arranged at regular intervals in a horizontal plane direction for acquiring a tomographic image, and are arranged in an array. Reference numeral 9 denotes an X-ray source focal point size adjusting mechanism, and reference numeral 10 denotes a signal transmission circuit.

また、本発明の実施例では、X線検出器2は、透過したX線を検出するための半導体部材12を、断層画像を取得する水平面方向と、その方向と直交する垂直(高さともいう。)面方向との直交二面の方向に一定間隔で複数個配置し、このように二次元以上の多次元に配置したそれらの複数の半導体部材12の全体を保持するためのFRP製補強基板16と、隣接しあうX線検出器間のいずれかの一方向におけるクロストーク(ノイズ)の影響を抑制する遮蔽板17からなり、複数層の投影データをX線検出器の高さ方向への機械的走査なくして取得する。   Further, in the embodiment of the present invention, the X-ray detector 2 has the semiconductor member 12 for detecting transmitted X-rays in a horizontal plane direction for acquiring a tomographic image and a perpendicular (also referred to as a height) perpendicular to that direction. .) FRP reinforcing substrate for arranging a plurality of semiconductor members 12 arranged in a multi-dimensional manner of two or more dimensions in this manner, a plurality of them being arranged at a constant interval in two orthogonal directions to the surface direction. 16 and a shielding plate 17 that suppresses the influence of crosstalk (noise) in any one direction between adjacent X-ray detectors, and projects projection data of a plurality of layers in the height direction of the X-ray detector. Acquired without mechanical scanning.

また、本発明の実施例では、隣接検出器間に発生するノイズ(クロストーク)を抑制するために、各投影データ毎にクロストーク量を除去する信号処理プロセスを含む。   Further, the embodiment of the present invention includes a signal processing process for removing the amount of crosstalk for each projection data in order to suppress noise (crosstalk) generated between adjacent detectors.

以下、本発明の実施例を具体的に説明する。本発明の一実施例である産業用X線CT装置の概要を図1に示す。産業用X線CT装置は、X線源1と、X線検出器2が対向されて設置され、両者の間に回転駆動機構であるターンテーブル6が置かれターンテーブル6上に撮像対象被検体8が設置される。ターンテーブル6の代わりに並進駆動機構を用いても良い。   Examples of the present invention will be specifically described below. An outline of an industrial X-ray CT apparatus which is an embodiment of the present invention is shown in FIG. In an industrial X-ray CT apparatus, an X-ray source 1 and an X-ray detector 2 are installed to face each other, and a turntable 6 that is a rotational drive mechanism is placed between the two, and an object to be imaged on the turntable 6. 8 is installed. Instead of the turntable 6, a translation drive mechanism may be used.

X線源1から照射されたX線7は撮像対象被検体8を透過して減衰し、対向する位置のX線検出器2に入射する。X線検出器2には、化合物半導体検出器やシンチレータが用いられる。   The X-rays 7 irradiated from the X-ray source 1 are transmitted through the imaging object 8 and attenuated, and enter the X-ray detector 2 at the opposite position. For the X-ray detector 2, a compound semiconductor detector or a scintillator is used.

これらのX線検出器2は、水平方向に一定間隔で各半導体部材12が並ぶラインアレイセンサまたは水平方向と垂直方向の2次元に一定間隔で各半導体部材12が並ぶ平面アレイセンサを用いる。これらのX線検出器2に入射したX線は、X線検出器2内で入射X線量に相当する電気信号に変換される。   These X-ray detectors 2 use a line array sensor in which the semiconductor members 12 are arranged at regular intervals in the horizontal direction or a planar array sensor in which the semiconductor members 12 are arranged in two dimensions in the horizontal and vertical directions. The X-rays incident on these X-ray detectors 2 are converted into electric signals corresponding to the incident X-ray dose in the X-ray detector 2.

得られた各X線検出器2の電気信号は、X線検出器2の電極15から検出器ピクセル積算処理機構5に伝送され、検出器ピクセル積算処理機構5により指定された各半導体部材12の素子数の信号を加算処理する。   The obtained electrical signal of each X-ray detector 2 is transmitted from the electrode 15 of the X-ray detector 2 to the detector pixel integration processing mechanism 5, and the electrical signal of each semiconductor member 12 designated by the detector pixel integration processing mechanism 5 is transmitted. The signal of the number of elements is added.

処理された信号は信号処理回路3に伝送され増幅,ビット変換された後、画像再構成装置4に伝送される。撮像被検体全体の画像を再構成するには、ターンテーブル6を回転させ一定角度ピッチ毎に全X線検出器2で検出されたX線透過量データ(投影データと呼ぶ)を1回転分収集する。   The processed signal is transmitted to the signal processing circuit 3, amplified and bit-converted, and then transmitted to the image reconstruction device 4. In order to reconstruct an image of the entire imaging subject, the turntable 6 is rotated and X-ray transmission amount data (called projection data) detected by all the X-ray detectors 2 is collected for one rotation at a constant angle pitch. To do.

一定角度ピッチ毎の投影データは順次、画像再構成装置4に伝送,格納され、1回転分が得られた時点で画像再構成演算を実行し、再構成画像を作成するための画像データが生成される。この生成にて得られた画像データは、CT画像表示装置11に伝送されデイスプレイ上に画像として表示されることにより可視化される。   Projection data for each fixed angle pitch is sequentially transmitted to and stored in the image reconstruction device 4, and when one rotation is obtained, image reconstruction calculation is executed to generate image data for creating a reconstructed image. Is done. The image data obtained by this generation is visualized by being transmitted to the CT image display device 11 and displayed as an image on the display.

また、本実施例のX線CT装置に用いたX線検出器2を図3に基づいて説明する。その際の比較のために従来のX線検出器の構造を図2に示した。その従来のX線検出器では、X線を検出する半導体部材12がFPC(Flexible printed circuits)基板13に装着され、これらに遮蔽板14が設けられている。図2(a)には、1個のX線検出器2を示し、図2(b)には、これらのX線検出器を撮像断層面方向の水平方向に一定間隔で並べてアレイ化したX線検出器アレイを示した。   The X-ray detector 2 used in the X-ray CT apparatus of the present embodiment will be described with reference to FIG. For comparison at that time, the structure of a conventional X-ray detector is shown in FIG. In the conventional X-ray detector, a semiconductor member 12 for detecting X-rays is mounted on an FPC (Flexible printed circuits) substrate 13 and a shielding plate 14 is provided on them. 2A shows one X-ray detector 2, and FIG. 2B shows an X-ray array in which these X-ray detectors are arrayed at regular intervals in the horizontal direction of the imaging tomographic plane. A line detector array is shown.

図3に示した本発明の実施例によるX線検出器2では、X線を検出する半導体部材12が、コの字型のFRP製の補強基板16の凹部に装着されることにより、その補強基板16に埋設されて支持される。これらにFPC基板13が設けられている。   In the X-ray detector 2 according to the embodiment of the present invention shown in FIG. 3, the semiconductor member 12 for detecting X-rays is mounted on the recess of the U-shaped FRP reinforcing substrate 16, thereby reinforcing the X-ray detector 2. It is embedded in and supported by the substrate 16. These are provided with an FPC board 13.

図3(a)には、1個のX線検出器2を示し、図3(b)には、これらのX線検出器2を水平方向に一定間隔で並べた検出器アレイを示した。図3(b)から分かるように、本発明の実施例によるX線検出器2の構造では従来の遮蔽板14が無いため、X線検出器2の厚みを従来より薄くすることが可能であり、X線検出器2をアレイ化した場合にX線検出器2間の間隔を狭くしてX線検出器2の配置を稠密化できる。   FIG. 3A shows one X-ray detector 2, and FIG. 3B shows a detector array in which these X-ray detectors 2 are arranged at regular intervals in the horizontal direction. As can be seen from FIG. 3B, the structure of the X-ray detector 2 according to the embodiment of the present invention does not have the conventional shielding plate 14, and therefore the thickness of the X-ray detector 2 can be made thinner than before. When the X-ray detectors 2 are arrayed, the interval between the X-ray detectors 2 can be narrowed to make the arrangement of the X-ray detectors 2 dense.

一方、本発明の実施例によるX線検出器2では、従来の遮蔽板14を無くすことにより隣接するX線検出器からのノイズ、いわゆるクロストークが入ってくる。そのため、本発明の実施例によるX線CT装置では、画像再構成処理において、各撮像断面で各X線検出器2で得られる投影データからクロストークによるノイズ成分を除去する処理を実施する。これらの処理プロセスを含んだX線CT装置を用いた撮像方法を図5に示した。   On the other hand, in the X-ray detector 2 according to the embodiment of the present invention, noise from the adjacent X-ray detectors, so-called crosstalk, is introduced by eliminating the conventional shielding plate 14. Therefore, in the X-ray CT apparatus according to the embodiment of the present invention, in the image reconstruction process, a process of removing noise components due to crosstalk from the projection data obtained by each X-ray detector 2 in each imaging section is performed. An imaging method using the X-ray CT apparatus including these processing processes is shown in FIG.

本発明の実施例における撮像方法では、まず、撮像高さ位置を設定18した後、設定高さ位置での水平断面撮像19を行う。このプロセスで設定高さ位置での水平断面の投影データ取得20を成す。その後、各X線検出器毎に、投影データのノイズ補正21を実施する。全X線検出器に対してノイズ補正を実施後、設定高さ位置での水平断面の補正投影データを用いて画像再構成22を実施する。これらの処理を指定した高さ位置で繰り返し、撮像を終了する。   In the imaging method according to the embodiment of the present invention, first, after setting the imaging height position 18, the horizontal section imaging 19 at the set height position is performed. In this process, the projection data acquisition 20 of the horizontal section at the set height position is performed. Thereafter, noise correction 21 of the projection data is performed for each X-ray detector. After performing noise correction on all X-ray detectors, image reconstruction 22 is performed using corrected projection data of a horizontal section at a set height position. These processes are repeated at the designated height position, and imaging is completed.

次に、本発明による産業用X線CT装置に用いるX線検出器2の第2の実施例を図4に基づいて説明する。本実施例では、1個のX線検出器2において、X線検出器2に透過したX線を検出するための半導体部材12を実施例1でいう水平方向とは直交すする垂直方向、即ち高さ方向に一定間隔で複数個配置し、それらの複数の半導体部材12の全てが実施例1と同様に補強基板16に埋設されて全体が補強基板16により保持されている。高さ方向の半導体部材12の間には水平方向に遮蔽板17を設ける。図4では、3個の半導体部材12からなるが、同一構造を高さ方向に積み上げることも可能である。図4(b)には、断層画像を取得する水平面方向にも一定間隔でX線検出器2をアレイ化した構造で二次元のX線検出面を展開してある。   Next, a second embodiment of the X-ray detector 2 used in the industrial X-ray CT apparatus according to the present invention will be described with reference to FIG. In this embodiment, in one X-ray detector 2, the semiconductor member 12 for detecting X-rays transmitted through the X-ray detector 2 is in a vertical direction perpendicular to the horizontal direction in the first embodiment, that is, A plurality of semiconductor members 12 are arranged at regular intervals in the height direction, and all of the plurality of semiconductor members 12 are embedded in the reinforcing substrate 16 as in the first embodiment, and the whole is held by the reinforcing substrate 16. A shielding plate 17 is provided between the semiconductor members 12 in the height direction in the horizontal direction. In FIG. 4, although it consists of the three semiconductor members 12, it is also possible to pile up the same structure in a height direction. In FIG. 4B, a two-dimensional X-ray detection surface is developed with a structure in which the X-ray detectors 2 are arrayed at regular intervals in the horizontal plane direction in which tomographic images are acquired.

本発明の第2の実施例のX線検出器2を用いた撮像では、撮像対象被検体8を1回転させるプロセスで複数の高さ位置の水平断面画像が得られ、複数断層の投影データが検出器を機械走査することなく迅速に得られる。そのため被検体全体高さの撮像を大幅に短縮することが可能である。   In the imaging using the X-ray detector 2 according to the second embodiment of the present invention, horizontal sectional images at a plurality of height positions are obtained by a process of rotating the imaging target object 8 once, and projection data of a plurality of tomograms are obtained. The detector can be obtained quickly without mechanical scanning. Therefore, it is possible to greatly shorten the imaging of the whole subject height.

また、高さ方向の撮像位置指定では、従来のX線検出器では、常に高さ方向の撮像移動間隔は一定であるが、本発明の第2の実施例のX線検出器2を用いた撮像では、一体化した高さ方向の半導体部材の数により高さ方向の撮像移動間隔を変動させる。   In addition, in the imaging position designation in the height direction, the conventional X-ray detector always has a constant imaging movement interval in the height direction, but the X-ray detector 2 of the second embodiment of the present invention is used. In imaging, the imaging movement interval in the height direction is changed depending on the number of integrated semiconductor members in the height direction.

図6には、本実施例の撮像方式を実現させるシステム構成を示した。入力手段C15より、それぞれの処理プロセスで必要となる条件を、全体撮像条件指定手段C9,ノイズ補正条件指定手段C10,検出器ピクセルサイズ指定手段C11,画像再構成計算条件指定手段C12により各処理プロセスに入力する。全体撮像条件は全体撮像条件記憶手段C2に格納され、ノイズ補正条件設定手段C3で設定されたノイズ補正条件およびX線源照射条件記憶手段C4と、実際の撮像による投影データ記憶手段C6を経て、画像再構成手段C7で画像が作成される。最終的に再構成画像D6が得られ再構成画像記憶手段C8に記録され、表示手段C16で表示される。   FIG. 6 shows a system configuration for realizing the imaging method of the present embodiment. Conditions necessary for each processing process are input from the input unit C15 by the whole imaging condition specifying unit C9, the noise correction condition specifying unit C10, the detector pixel size specifying unit C11, and the image reconstruction calculation condition specifying unit C12. To enter. The overall imaging conditions are stored in the overall imaging condition storage means C2, and after passing through the noise correction conditions and X-ray source irradiation condition storage means C4 set by the noise correction condition setting means C3, and the projection data storage means C6 by actual imaging, An image is created by the image reconstruction means C7. Finally, a reconstructed image D6 is obtained, recorded in the reconstructed image storage means C8, and displayed on the display means C16.

以上のように、本発明の各実施例によれば、産業用X線CT装置において検出器厚みを従来より薄くし検出器アレイの稠密化を実現させることにより、高い空間分解能で撮像可能な装置および撮像方法を提供できる。   As described above, according to each embodiment of the present invention, an apparatus capable of imaging with high spatial resolution by realizing a dense detector array by reducing the thickness of the detector in an industrial X-ray CT apparatus. And an imaging method can be provided.

本発明の各実施例では、産業用X線CT装置において撮像対象被検体の任意の指定された特定領域のみ高い空間分解能で撮像可能な装置および撮像方法を提供することができるので、本発明の各実施例の応用例として、撮像対象被検体の全体を粗い空間分解能で撮像し、特に詳しく検査したい必要領域のみ高分解能で撮像することが可能となり、高分解能の撮像を短い時間で撮像可能とし、得られる撮像データも必要最小限のサイズに抑制し演算および分析時間を短縮できる。   Each embodiment of the present invention can provide an apparatus and an imaging method capable of imaging only a specified specific region of an imaging subject to be imaged with high spatial resolution in an industrial X-ray CT apparatus. As an application example of each embodiment, the entire subject to be imaged can be imaged with a rough spatial resolution, and only a necessary area to be examined in detail can be imaged with a high resolution, and a high-resolution image can be imaged in a short time. The obtained imaging data can also be suppressed to the minimum necessary size, and the calculation and analysis time can be shortened.

このように、本発明は、工業用製品の内部の高精度で高率的な非破壊検査が可能となる。また、本発明は、産業用X線CT装置のみならず医療用X線CT装置にも適用可能である。   As described above, the present invention enables high-precision and high-efficiency nondestructive inspection inside industrial products. The present invention can be applied not only to industrial X-ray CT apparatuses but also to medical X-ray CT apparatuses.

本発明は検査する対象にX線を透過させてその対象内部を非破壊的に検査するX線CT装置に利用可能性がある。   The present invention is applicable to an X-ray CT apparatus that transmits X-rays to an object to be inspected and inspects the inside of the object nondestructively.

1 X線源
2 X線検出器
3 信号処理回路
4 画像再構成装置
5 検出器ピクセル積算処理機構
6 ターンテーブル
7 X線
8 撮像対象被検体
9 X線源焦点サイズ調整機構
10 信号伝送回路
11 CT画像表示装置
12 半導体部材
13 FPC基板
15 電極
16 補強基板
17 遮蔽板
DESCRIPTION OF SYMBOLS 1 X-ray source 2 X-ray detector 3 Signal processing circuit 4 Image reconstruction apparatus 5 Detector pixel integration processing mechanism 6 Turntable 7 X-ray 8 Subject to be imaged 9 X-ray source focus size adjustment mechanism 10 Signal transmission circuit 11 CT Image display device 12 Semiconductor member 13 FPC board 15 Electrode 16 Reinforcement board 17 Shielding plate

Claims (7)

X線を検出するための半導体部材と、
前記半導体部材と前記半導体部材の電極とが装着された基板とを備えたX線検出器において、
前記半導体部材が埋設され、前記半導体部材を支持する補強基板を備えていることを特徴とするX線検出器。
A semiconductor member for detecting X-rays;
In the X-ray detector comprising the semiconductor member and a substrate on which the electrode of the semiconductor member is mounted,
An X-ray detector, wherein the semiconductor member is embedded and a reinforcing substrate for supporting the semiconductor member is provided.
請求項1において、複数の前記半導体部材が水平方向へ並べられて一次元の配置を有することを特徴とするX線検出器。   2. The X-ray detector according to claim 1, wherein the plurality of semiconductor members are arranged in a horizontal direction and have a one-dimensional arrangement. 請求項2において、複数の前記半導体部材が垂直方向にも並べられて多次元の配置を有することを特徴とするX線検出器。   3. The X-ray detector according to claim 2, wherein the plurality of semiconductor members are arranged in a vertical direction and have a multidimensional arrangement. 請求項3において、前記垂直方向へ並べられた前記半導体部材の間にはX線を遮蔽する遮蔽板を備えていることを特徴とするX線検出器。   The X-ray detector according to claim 3, further comprising a shielding plate that shields X-rays between the semiconductor members arranged in the vertical direction. X線を照射するX線源と、
撮像対象被検体を透過したX線を検出するX線検出器と、
前記X線検出器で検出されたX線透過量を数値化する信号処理回路と、
前記信号処理回路からの信号を元に画像データを作る演算装置と、
前記演算装置による演算処理を経て得られた画像データに基づく画像を表示する画像表示装置を備えたX線CT装置において、
前記X線検出器として請求項1から請求項4のいずれか一項に記載のX線検出器を備えていることを特徴とするX線CT装置。
An X-ray source that emits X-rays;
An X-ray detector for detecting X-rays transmitted through the subject to be imaged;
A signal processing circuit for quantifying the amount of X-ray transmission detected by the X-ray detector;
An arithmetic unit for creating image data based on a signal from the signal processing circuit;
In an X-ray CT apparatus provided with an image display device for displaying an image based on image data obtained through arithmetic processing by the arithmetic device,
An X-ray CT apparatus comprising the X-ray detector according to any one of claims 1 to 4 as the X-ray detector.
請求項5において、前記X線検出器を用いて取得した投影データから隣接するX線検出器からのノイズの影響を除去する処理を各検出器毎に行う信号処理手段を備えることを特徴とするX線CT装置。   6. The signal processing unit according to claim 5, further comprising: a signal processing unit that performs, for each detector, processing for removing the influence of noise from an adjacent X-ray detector from projection data acquired using the X-ray detector. X-ray CT system. X線源から照射したX線を撮影対象被検査体に透過させ、前記透過してきたX線をX線検出器で検出し、その検出結果を信号処理装置にて数値化し、その数値化して得られた信号に基づいて演算装置で画像データを作り、その画像データに基づいた画像を画像表示装置にて可視化するX線CT撮像方法において、
前記X線検出器として請求項1から請求項4のいずれか一項に記載のX線検出器を用いると共に、前記X線検出器を用いて取得した投影データから隣接するX線検出器からのノイズの影響を除去する処理を各検出器毎に行う信号処理プロセスを有することを特徴とするX線CT撮像方法。
X-rays radiated from an X-ray source are transmitted through an object to be imaged, the transmitted X-rays are detected by an X-ray detector, and the detection results are digitized by a signal processing device and obtained by quantification. In an X-ray CT imaging method of creating image data with an arithmetic device based on the received signal and visualizing an image based on the image data with an image display device,
While using the X-ray detector as described in any one of Claims 1-4 as said X-ray detector, from the projection data acquired using the said X-ray detector from the adjacent X-ray detector. An X-ray CT imaging method comprising a signal processing process for performing processing for removing the influence of noise for each detector.
JP2010231083A 2010-10-14 2010-10-14 X-ray detector, x-ray ct apparatus using the same, and method for capturing x-ray ct Pending JP2012083277A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010231083A JP2012083277A (en) 2010-10-14 2010-10-14 X-ray detector, x-ray ct apparatus using the same, and method for capturing x-ray ct

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010231083A JP2012083277A (en) 2010-10-14 2010-10-14 X-ray detector, x-ray ct apparatus using the same, and method for capturing x-ray ct

Publications (1)

Publication Number Publication Date
JP2012083277A true JP2012083277A (en) 2012-04-26

Family

ID=46242289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010231083A Pending JP2012083277A (en) 2010-10-14 2010-10-14 X-ray detector, x-ray ct apparatus using the same, and method for capturing x-ray ct

Country Status (1)

Country Link
JP (1) JP2012083277A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013108776A (en) * 2011-11-18 2013-06-06 Hitachi Ltd X-ray detector and industrial x-ray ct apparatus using the same
JP2015035219A (en) * 2012-05-22 2015-02-19 パナソニック インテレクチュアル プロパティ コーポレーション オブアメリカPanasonic Intellectual Property Corporation of America Input/output method and electronic apparatus

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53101989A (en) * 1977-02-17 1978-09-05 Toshiba Corp Mltichannel type semiconductor radiation detector
JP2001324572A (en) * 2000-05-16 2001-11-22 Shimadzu Corp Radiation detector and its manufacturing method
JP2003084068A (en) * 2001-09-12 2003-03-19 Toshiba Corp Radiation detector, and manufacturing method therefor
JP2006068338A (en) * 2004-09-03 2006-03-16 Ge Medical Systems Global Technology Co Llc Radiographic equipment
JP2008268038A (en) * 2007-04-23 2008-11-06 Hitachi Ltd Semiconductor radiation detector and industrial x-ray ct apparatus
JP2008298556A (en) * 2007-05-31 2008-12-11 Ge Medical Systems Global Technology Co Llc X-ray detector and x-ray ct device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53101989A (en) * 1977-02-17 1978-09-05 Toshiba Corp Mltichannel type semiconductor radiation detector
JP2001324572A (en) * 2000-05-16 2001-11-22 Shimadzu Corp Radiation detector and its manufacturing method
JP2003084068A (en) * 2001-09-12 2003-03-19 Toshiba Corp Radiation detector, and manufacturing method therefor
JP2006068338A (en) * 2004-09-03 2006-03-16 Ge Medical Systems Global Technology Co Llc Radiographic equipment
JP2008268038A (en) * 2007-04-23 2008-11-06 Hitachi Ltd Semiconductor radiation detector and industrial x-ray ct apparatus
JP2008298556A (en) * 2007-05-31 2008-12-11 Ge Medical Systems Global Technology Co Llc X-ray detector and x-ray ct device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013108776A (en) * 2011-11-18 2013-06-06 Hitachi Ltd X-ray detector and industrial x-ray ct apparatus using the same
JP2015035219A (en) * 2012-05-22 2015-02-19 パナソニック インテレクチュアル プロパティ コーポレーション オブアメリカPanasonic Intellectual Property Corporation of America Input/output method and electronic apparatus

Similar Documents

Publication Publication Date Title
US20220254021A1 (en) Medical image diagnostic apparatus
KR101632046B1 (en) High-resolution computed tomography
KR101149000B1 (en) Limited angle portable industrial gamma ray tomographic scanner
US10521936B2 (en) Device and method for image reconstruction at different X-ray energies, and device and method for X-ray three-dimensional measurement
JP2008531107A (en) Computer tomography apparatus, method for inspecting an object of interest, computer-readable medium and program element
JP2008298762A (en) Laminography inspection system and its method
CN109791114B (en) Method for determining geometrical parameters and/or material state of object under investigation by means of radiography
JP2007300964A (en) Radiographic equipment and radiography method
JP2014009976A (en) Three-dimensional shape measurement x-ray ct device and three-dimensional shape measurement method by x-ray ct device
US9341582B2 (en) Method of getting tomogram used by X-ray computed tomography and X-ray computed tomography system based on its method
JP5487519B2 (en) Industrial X-ray CT apparatus and imaging method
JP2008232765A (en) Device of inspecting flaw in the vicinity of surface using back scattered radiation
JP2012083277A (en) X-ray detector, x-ray ct apparatus using the same, and method for capturing x-ray ct
JP2013079825A (en) X-ray ct image reconstruction method, and x-ray ct device
JP2009276285A (en) Apparatus and method for radiation tomographic photographing
Kurfiss et al. Digital laminography and computed tomography with 600 kV for aerospace applications
JP2013108776A (en) X-ray detector and industrial x-ray ct apparatus using the same
JPWO2016203954A1 (en) Radiation detector and X-ray CT apparatus provided with the same
WO2018092256A1 (en) Inline x-ray inspection system and imaging method for inline x-ray inspection system
JP2020003426A (en) Device and method for non-destructive inspection
JP2004045247A (en) Device for inspecting x-ray image
JPWO2019003329A1 (en) X-ray in-line inspection method and device
JP2013061154A (en) Radiation tomographic method and radiation tomographic device
JP2010185888A (en) Radiation nondestructive inspection system and piping inspection method
KR101450443B1 (en) High resolution tomographic imaging method and tomographic imaging apparatus

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120521

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131001

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140218