WO2018090867A1 - 制备钛渣的系统和方法 - Google Patents

制备钛渣的系统和方法 Download PDF

Info

Publication number
WO2018090867A1
WO2018090867A1 PCT/CN2017/110261 CN2017110261W WO2018090867A1 WO 2018090867 A1 WO2018090867 A1 WO 2018090867A1 CN 2017110261 W CN2017110261 W CN 2017110261W WO 2018090867 A1 WO2018090867 A1 WO 2018090867A1
Authority
WO
WIPO (PCT)
Prior art keywords
zone
feeding
titanium slag
feeding zone
electric furnace
Prior art date
Application number
PCT/CN2017/110261
Other languages
English (en)
French (fr)
Inventor
李曰荣
徐小锋
Original Assignee
中国恩菲工程技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国恩菲工程技术有限公司 filed Critical 中国恩菲工程技术有限公司
Publication of WO2018090867A1 publication Critical patent/WO2018090867A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/10Obtaining titanium, zirconium or hafnium
    • C22B34/12Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08
    • C22B34/1204Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 preliminary treatment of ores or scrap to eliminate non- titanium constituents, e.g. iron, without attacking the titanium constituent
    • C22B34/1209Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 preliminary treatment of ores or scrap to eliminate non- titanium constituents, e.g. iron, without attacking the titanium constituent by dry processes, e.g. with selective chlorination of iron or with formation of a titanium bearing slag
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B11/00Making pig-iron other than in blast furnaces
    • C21B11/10Making pig-iron other than in blast furnaces in electric furnaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D17/00Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
    • F27D17/004Systems for reclaiming waste heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D17/00Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
    • F27D17/008Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases cleaning gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D17/00Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
    • F27D17/004Systems for reclaiming waste heat
    • F27D2017/006Systems for reclaiming waste heat using a boiler
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention is in the field of chemical engineering, and in particular, the present invention relates to a system and method for preparing titanium slag.
  • Titanium slag is one of the basic raw materials of titanium industry. It is the main raw material for producing titanium dioxide, titanium sponge and electric welding rod with artificial rutile and natural rutile. It is dominant in the world's titanium-rich material production.
  • the production method of titanium slag is mainly an electric furnace smelting method, which is a pyrometallurgical process for enriching titanium by reducing the iron oxide in the titanium concentrate into a metal iron by using a reducing agent.
  • the world's advanced production technologies include Canada QIT, South Africa RBM and Norwegian TTI. Among them, QIT has 9 rectangular electric furnaces to produce titanium slag. The annual output of titanium slag is above 1 million tons. RBM uses two 105MVA large rectangular electric furnaces. It is one of the largest titanium slag electric furnaces in the world.
  • China's titanium slag smelting characteristics are small electric furnaces, large electric furnaces, circular electric furnaces, rectangular electric furnaces, intermittent feeding and smelting, continuous smelting less, these domestic titanium slag smelting characteristics determine the scale of China's titanium slag production, low efficiency.
  • China's titanium slag smelting technology level has improved, but it still has a certain gap with foreign advanced technology and cannot meet large-scale industry.
  • the production of a particularly chlorinated titanium dioxide process is required.
  • an object of the present invention is to provide a system and method for preparing titanium slag, which realizes continuous smelting and high-efficiency smelting of iron-bearing ore, thereby achieving the purpose of adjusting the composition of titanium slag and improving labor production. Efficiency, reducing the power consumption per unit of titanium slag (reduced by 31.8%).
  • the invention provides a system for preparing titanium slag.
  • the system comprises:
  • a mixing device having a perovskite inlet, a reducing agent inlet, and a mixture outlet;
  • silos being connected to the mixture outlet;
  • a rectangular electric furnace comprising:
  • a rectangular electric furnace body wherein the bottom of the rectangular electric furnace body forms a molten iron layer region, a mixed layer region and a titanium slag layer region from bottom to top;
  • the first charging zone is located in the rectangular electric furnace body, and the first feeding zone is surrounded by the outer circumference of the electrode, and the first feeding zone is connected to the silo;
  • the second feeding zone is located in the rectangular electric furnace body, and the second feeding zone is jacketed on the first feeding zone, and the second feeding zone is spaced apart from the first feeding zone Opening, the second feeding zone is connected to the silo;
  • the third feeding zone is located in the rectangular electric furnace body, and the third feeding zone is jacketed on the second feeding zone, and the third feeding zone is spaced apart from the second feeding zone Opening, the third feeding zone is connected to the silo;
  • the molten iron outlet being disposed in the molten iron zone
  • titanium slag outlet wherein the titanium slag outlet is disposed in the titanium slag layer region
  • the gas outlet being disposed at a top end of the rectangular electric furnace body
  • waste heat boiler being connected to the gas outlet
  • the bag filter is connected to the waste heat boiler.
  • the system for preparing titanium slag smelts a mixture containing iron-containing ore and a reducing agent by using a rectangular electric furnace having a first charging zone, a second feeding zone, and a third feeding zone, Continuous smelting and high-efficiency smelting of iron-bearing ore are realized by means of continuous feeding, thereby achieving the purpose of adjusting the composition of titanium slag, improving labor production efficiency and reducing power consumption per unit titanium slag (reduced by 31.8%). Moreover, the investment in unit products is reduced, the working conditions are improved, and the waste heat in the gas obtained in the rectangular electric furnace is effectively recovered by the waste heat boiler, thereby maximizing the utilization of resources.
  • system for preparing titanium slag may further have the following additional technical features:
  • the system for preparing titanium slag includes first to sixth electrodes disposed in a row at a vertical interval, and the titanium slag outlet is disposed adjacent to the first electrode, the molten iron The outlet is adjacent to the sixth electrode outlet.
  • the first feed zone includes a first feed zone, a secondary feed zone, and a tertiary feed zone, the primary feed zone surrounding the outer periphery of the first electrode and the second electrode,
  • the secondary feed zone surrounds the outer circumferences of the third electrode and the fourth electrode, and the tertiary feed zone surrounds the outer circumferences of the fifth electrode and the sixth electrode.
  • the first feeding zone, the second feeding zone and the third feeding zone are independently uniformly arranged with a plurality of feeding ports, and the feeding port is connected to the silo .
  • the present invention provides a method of preparing titanium slag using the above system for preparing titanium slag. According to an embodiment of the invention, the method comprises:
  • the cooled gas is supplied to the bag filter to collect dust to obtain purified gas.
  • the method for preparing titanium slag according to the embodiment of the present invention can realize continuous smelting and high-efficiency smelting of iron-bearing ore, thereby achieving the purpose of adjusting the composition of titanium slag, improving labor production efficiency, and reducing power consumption per unit titanium slag. (reduced by 31.8%), and reduced the investment of unit products, improved labor conditions, and the waste heat boiler effectively recovered the waste heat in the gas obtained in the rectangular electric furnace, thereby maximizing the utilization of resources.
  • the method of preparing titanium slag according to the above embodiment of the present invention may further have the following additional technical features:
  • the iron-bearing ore-containing is at least one selected from the group consisting of titanium concentrate and ilmenite.
  • the reducing agent is at least one selected from the group consisting of coke and coal.
  • the mass ratio of the mixed material added in the first feed zone, the second feed zone, and the third feed zone is (40-70): (20-40): (1 ⁇ 10).
  • the mass of the reducing agent added to the mixed material of the primary feed zone is greater than the reducing agent added to the mixed material in the secondary feed zone and the tertiary feed zone. More than 10 to 20%. Thereby, continuous smelting containing iron ore can be achieved, thereby improving labor productivity.
  • FIG. 1 is a schematic structural view of a system for preparing titanium slag according to an embodiment of the present invention
  • FIG. 2 is a cross-sectional view showing a cross section of a rectangular electric furnace in a system for preparing titanium slag according to still another embodiment of the present invention
  • FIG. 3 is a cross-sectional view showing a cross section of a rectangular electric furnace in a system for preparing titanium slag according to still another embodiment of the present invention
  • FIG. 4 is a schematic flow chart of a method of preparing titanium slag according to an embodiment of the present invention.
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” or “second” may include at least one of the features, either explicitly or implicitly.
  • the meaning of "a plurality” is at least two, such as two, three, etc., unless specifically defined otherwise.
  • the terms “installation”, “connected”, “connected”, “fixed” and the like shall be understood broadly, and may be either a fixed connection or a detachable connection, unless explicitly stated and defined otherwise. , or integrated; can be mechanical or electrical connection; can be directly connected, or indirectly connected through an intermediate medium, can be the internal communication of two elements or the interaction of two elements, unless otherwise specified Limited.
  • the specific meanings of the above terms in the present invention can be understood on a case-by-case basis.
  • the first feature "on” or “under” the second feature may be a direct contact of the first and second features, or the first and second features may be indirectly through an intermediate medium, unless otherwise explicitly stated and defined. contact.
  • the first feature "above”, “above” and “above” the second feature may be that the first feature is directly above or above the second feature, or merely that the first feature level is higher than the second feature.
  • the first feature “below”, “below” and “below” the second feature may be that the first feature is directly below or obliquely below the second feature, or merely that the first feature level is less than the second feature.
  • the invention provides a system for preparing titanium slag.
  • the system includes a mixing device 100, a silo 200, a rectangular electric furnace 300, a waste heat boiler 400, and a baghouse dust collector 500.
  • the mixing device 100 has a perovskite-containing inlet 101, a reducing agent inlet 102, and a mixture outlet 103, and is adapted to mix the perovskite-containing reducing agent with a reducing agent to obtain a mixed material.
  • the iron-containing ore may be at least one selected from the group consisting of titanium concentrate and ilmenite
  • the reducing agent may be at least one selected from the group consisting of coke and coal. It should be noted that those skilled in the art can select the particle size of the iron-containing ore and the reducing agent and the mixing ratio of the two according to actual needs.
  • the silo 200 is connected to the mixture outlet 103 and is adapted to store the mixture obtained in the mixing device.
  • the silo 200 may be multiple, and the control unit may be disposed on the silo 200 (not Shown) to achieve quantitative dosing of the mixed material in the silo.
  • a rectangular electric furnace 300 includes a rectangular electric furnace body 31, an electrode 32, a first charging zone 33, a second feeding zone 34, a third feeding zone 35, a molten iron outlet 301, and a titanium slag outlet. And a gas outlet 303, and is adapted to supply the mixture to the first feed zone, the second feed zone and the third feed zone in the rectangular electric furnace through a plurality of silos for smelting treatment to obtain molten iron, titanium slag and gas.
  • the hearth in the rectangular electric furnace body 31 forms a molten iron layer 36, a mixed layer region 37, and a titanium slag layer region 38 in this order from bottom to top.
  • the iron oxide in the iron-bearing ore is reduced to iron element by the action of the reducing agent, the iron element is melted into molten iron and located at the bottom of the furnace bottom, and part of the titanium slag obtained after the reduction is mixed with the molten iron to form a mixed layer.
  • the zone is located above the molten iron zone, and the remaining titanium slag forms the titanium slag zone above the mixed zone zone.
  • the plurality of electrodes 32 may be plural, and a plurality of electrodes 32 extend from the top end of the rectangular electric furnace body 31 into the titanium slag layer region 38.
  • a plurality of electrodes may be respectively connected to a transformer, and a person skilled in the art may control the power of the electrodes through a transformer according to actual needs.
  • the electrode 32 may include a first electrode 1, a second electrode 2, a third electrode 3, a fourth electrode 4, a fifth electrode 5, and a sixth electrode 6, and first The electrodes 1 to 6 are disposed in a vertical interval in a row.
  • the first charging zone 33 may be located in the rectangular electric furnace body 31, and the first charging zone 33 may surround the outer circumference of the electrode 32, and the first charging zone 33 is connected to the silo 200.
  • a plurality of feeding ports 304 are evenly arranged in the first feeding zone 33, and the feeding port 304 is connected to the silo 200, so that the mixing material in the silo can be continuously and quantitatively supplied to the first feeding material through the feeding port. Area.
  • the first feeding zone 33 may include a first feeding zone 331, a secondary feeding zone 332 and a tertiary feeding zone 333, and the primary feeding zone 331 surrounds the first electrode 1 and The outer circumference of the second electrode 2, the secondary feeding zone 332 surrounds the outer circumference of the third electrode 3 and the fourth electrode 4, and the tertiary feeding zone 333 surrounds the outer circumferences of the fifth electrode 5 and the sixth electrode 6.
  • the amount of the reducing agent added to the mixed material in the primary feed zone is 10 to 20% greater than the reducing agent added to the mixed material in the secondary feed zone and the tertiary feed zone.
  • the inventors have found that by adding more reducing agent in the primary feed zone to achieve an increase in the carbon content of the material in this zone, the grade of the titanium slag can be effectively increased, and at this stage, the FeO in the slag can be further reduced to The required content can achieve the purpose of enriching TiO2 and producing high-grade titanium slag, and the excessive addition of reducing agent will result in the formation of Ti low-oxide oxide, which leads to thickening of slag and worsening of furnace condition; Insufficient will result in higher FeO content in the slag and lower product quality.
  • those skilled in the art can select different mixing devices for mixing according to actual needs, and then separately supply the mixed materials to the primary feeding zone, the secondary feeding zone and the tertiary feeding zone through different silos.
  • the second charging zone 34 is located within the rectangular electric furnace body 31, And the second feed zone 34 is jacketed on the first feed zone 33, the second feed zone 34 is spaced apart from the first feed zone 33, and the second feed zone 34 is connected to the bin 200.
  • a plurality of feeding ports 304 are evenly arranged in the second feeding zone 34, and the feeding port 304 is connected to the silo 200, so that the mixing material in the silo can be continuously and quantitatively supplied to the second feeding material through the feeding port. Area.
  • the third feed zone 35 is located within the rectangular electric furnace body 31, and the third feed zone 35 is jacketed on the second feed zone 34, and the third feed zone 35 is spaced apart from the second feed zone 34,
  • the third feed zone 35 is connected to the silo 200.
  • a plurality of feeding ports 304 are evenly arranged in the third feeding zone 35, and the feeding port 304 is connected to the silo 200, so that the mixing material in the silo can be continuously and quantitatively supplied to the third feeding material through the feeding port. Area.
  • the mass ratio of the mixed material added in the first charging zone, the second feeding zone, and the third feeding zone is (40 to 70): (20 to 40): (1 to 10).
  • the inventors have found that the first feeding zone is close to the electrode, and most of the electric energy is converted into heat energy in this area to melt more material.
  • the second feeding zone and the third feeding zone are farther away from the electrode, and the melting rate of the charging material is also stepwise. Slow down, the required amount of material is reduced accordingly, and different feeding and feeding speeds need to be controlled in different areas to match the speed of the material, and the amount of material is too much, so that the material accumulation cannot be melted in time on the material surface.
  • the use of the feed ratio of the present application can increase the yield of titanium slag while reducing energy consumption.
  • the rectangular electric furnace adopts a thin layer continuous smelting operation to ensure that the internal material of the furnace bottom matches the feeding speed.
  • the molten iron outlet 301 is disposed in the molten iron layer zone 36 and is adapted to periodically discharge the molten iron generated in the rectangular electric furnace body. According to a particular embodiment of the invention, the molten iron outlet 301 is disposed adjacent to the sixth electrode 6.
  • the titanium slag outlet 302 is disposed in the titanium slag layer region 38 and is adapted to periodically discharge the titanium slag generated in the rectangular electric furnace body. According to a particular embodiment of the invention, the titanium slag outlet 302 is disposed adjacent to the first electrode 1.
  • the gas outlet 303 is provided at the top end of the rectangular electric furnace body 31, and is adapted to discharge the gas generated in the rectangular electric furnace body.
  • the gas outlets may be two, and the two gas outlets are symmetrically disposed at the top end of the rectangular electric furnace body.
  • the inventors have found that by using a rectangular electric furnace having a first charging zone, a second feeding zone and a third feeding zone, the mixture containing the iron-bearing ore and the reducing agent is subjected to smelting treatment, and continuous feeding is carried out to realize Continuous smelting and high-efficiency smelting of iron-titanium has achieved the purpose of adjusting the composition of titanium slag, improving labor productivity, reducing electricity consumption per unit of titanium slag (reduced by 31.8%), and reducing investment in unit products, improving Working conditions.
  • the waste heat boiler 400 is connected to the gas outlet 303 and is adapted to recover waste heat from the gas generated in the rectangular electric furnace to obtain a cooling gas.
  • the bag filter 500 is connected to the waste heat boiler 400 and is adapted to be used for the waste heat pot
  • the cooled gas in the furnace is subjected to dust collection treatment to obtain purified gas.
  • the system for preparing titanium slag smelts a mixture containing iron-containing ore and a reducing agent by using a rectangular electric furnace having a first charging zone, a second feeding zone, and a third feeding zone, and adopts continuous
  • the feeding method realizes continuous smelting and high-efficiency smelting of iron-bearing ore, thereby achieving the purpose of adjusting the composition of titanium slag, improving labor production efficiency, reducing the power consumption per unit of titanium slag (reduced by 31.8%), and reducing
  • the investment in unit products has improved the working conditions.
  • the waste heat boiler effectively recovers the waste heat from the gas obtained in the rectangular electric furnace, thereby maximizing the utilization of resources, thereby solving the problem that the existing titanium slag smelting processing in China has small power and large fluctuations in operation. , low degree of automation, and low efficiency and high energy consumption caused by intermittent feeding and intermittent operation.
  • the present invention provides a method of preparing titanium slag using the above system for preparing titanium slag.
  • the method includes:
  • the iron-bearing ore-containing and reducing agent are supplied to the mixing device for mixing to obtain a mixed material.
  • the iron-containing ore may be at least one selected from the group consisting of titanium concentrate and ilmenite
  • the reducing agent may be at least one selected from the group consisting of coke and coal. It should be noted that those skilled in the art can select the particle size of the iron-containing ore and the reducing agent and the mixing ratio of the two according to actual needs.
  • the mixture obtained in the above mixing device is stored in a plurality of silos, and the mixture is separately supplied to the first feeding zone and the second feeding zone in the rectangular electric furnace through a plurality of silos.
  • the third feeding zone is smelted, the iron oxide in the iron-bearing ore is reduced to iron element by the action of the reducing agent, the iron element is melted into molten iron and is located at the bottom of the furnace bottom, and part of the titanium slag obtained after the reduction
  • the mixed layer is mixed with molten iron to form a mixed layer region above the molten iron layer region, and the remaining titanium slag is formed to be located above the mixed layer region.
  • the inventors have found that by using a rectangular electric furnace having a first charging zone, a second feeding zone and a third feeding zone, the mixture containing the iron-bearing ore and the reducing agent is subjected to smelting treatment, and continuous feeding is carried out to realize Continuous smelting and high-efficiency smelting of iron-titanium has achieved the purpose of adjusting the composition of titanium slag, improving labor productivity, reducing electricity consumption per unit of titanium slag (reduced by 31.8%), and reducing investment in unit products, improving Working conditions.
  • the amount of the reducing agent added to the mixed material in the primary feed zone is 10 to 20% greater than the reducing agent added to the mixed material in the secondary feed zone and the tertiary feed zone.
  • the inventors have found that by adding more reducing agent in the primary feed zone to achieve an increase in the carbon content of the material in this zone, the grade of the titanium slag can be effectively increased, and at this stage, the FeO in the slag can be further reduced to The required content can achieve the purpose of enriching TiO2 and producing high-grade titanium slag, and the excessive addition of reducing agent will result in the formation of Ti low-oxide oxide, which leads to thickening of slag and worsening of furnace condition; Insufficient will result in higher FeO content in the slag and lower product quality.
  • skill The technicians in the field can select different mixing devices for mixing according to actual needs, and then supply the mixed materials to the primary feeding zone, the secondary feeding zone and the tertiary feeding zone through different silos.
  • the mass ratio of the mixture to be added in the first feed zone, the second feed zone, and the third feed zone is (40 to 70): (20 to 40): (1 to 10).
  • the inventors have found that the first feeding zone is close to the electrode, and most of the electric energy is converted into heat energy in this area to melt more material.
  • the second feeding zone and the third feeding zone are farther away from the electrode, and the melting rate of the charging material is also stepwise. Slow down, the required amount of material is reduced accordingly, and different feeding and feeding speeds need to be controlled in different areas to match the speed of the material, and the amount of material is too much, so that the material accumulation cannot be melted in time on the material surface.
  • the use of the feed ratio of the present application can increase the yield of titanium slag while reducing energy consumption.
  • the rectangular electric furnace adopts a thin layer continuous smelting operation to ensure that the internal material of the furnace bottom matches the feeding speed.
  • the gas generated by the smelting in the rectangular electric furnace is supplied to a waste heat boiler for preheating recovery to obtain a temperature-reducing gas.
  • the gas cooled in the waste heat boiler is subjected to dust collection treatment to obtain purified gas.
  • the method for preparing titanium slag according to the embodiment of the present invention can realize continuous smelting and high-efficiency smelting of iron-bearing ore, thereby achieving the purpose of adjusting the composition of titanium slag, improving labor production efficiency, and reducing power consumption per unit titanium slag (reduced 31.8%), and reduced the investment of unit products, improved the working conditions, and effectively recovered the waste heat in the gas obtained from the rectangular electric furnace by using the waste heat boiler, thereby realizing the maximization of resources and solving the existing titanium slag smelting in China.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Manufacturing & Machinery (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

一种制备钛渣的系统和方法,该系统包括:混料装置(100),混料装置(100)具有含铁钛矿入口(101)、还原剂入口(102)和混合物料出口(103);多个料仓(200),料仓(200)与混合物料出口(103)相连;矩形电炉(300),矩形电炉(300)包括:矩形电炉本体(31)、多个电极(32)、第一加料区(33)、第二加料区(34)、第三加料区(35)、铁水出口(301)、钛渣出口(302)和煤气出口(303);余热锅炉(400),余热锅炉(400)与煤气出口(303)相连;以及布袋收尘器(500),布袋收尘器(500)与余热锅炉(400)相连。该方法包括:将含铁钛矿与还原剂供给至混料装置(100)中进行混合得到混合物料;将混合物料存储在多个料仓(200)中,并由料仓(200)分别供给至矩形电炉中的第一加料区(33)、第二加料区(34)和第三加料区(35)进行熔炼处理,以便得到铁水、钛渣以及煤气;将煤气供给至余热锅炉(400)中进行预热回收,得到降温煤气;将降温煤气供给至布袋收尘器(500)中进行收尘,以便得到净化煤气。

Description

制备钛渣的系统和方法 技术领域
本发明属于化工技术领域,具体而言,本发明涉及一种制备钛渣的系统和方法。
背景技术
钛渣是钛工业的基础性原料之一,其与人造金红石、天然金红石都是生产钛白粉、海绵钛和电焊条的主要原料,在世界富钛料生产中占主导地位。
钛渣的生产方法主要是电炉熔炼法,是采用还原剂将钛精矿中铁的氧化物还原成金属铁分离出去,从而富集钛的火法冶金工艺。
世界上先进的生产技术包括加拿大QIT、南非RBM和挪威TTI等公司,其中QIT有9台矩形电炉生产钛渣,年产钛渣保持在100万t以上的水平,RBM采用两台105MVA大型矩形电炉,是世界上最大的钛渣电炉之一。
我国钛渣冶炼特点是小型电炉多、大型电炉少,圆形电炉多、矩形电炉少,间断加料冶炼多、连续冶炼少,这些国内钛渣冶炼特点决定了我国钛渣生产规模小,效率低。2006年我国从国外引进了25.5MVA钛渣电炉冶炼工艺,经过国内企业的技术改进后,我国的钛渣冶炼技术水平有所提高,但是仍与国外先进技术有一定的差距,不能满足大规模工业生产特别是氯化法钛白粉工艺生产的需要。
因此,现有的制备钛渣的技术有待进一步改进。
发明内容
本发明旨在至少在一定程度上解决相关技术中的技术问题之一。为此,本发明的一个目的在于提出一种制备钛渣的系统和方法,采用该系统实现了含铁钛矿的连续熔炼和高效熔炼,从而达到了调整钛渣成分的目的,提高了劳动生产效率,降低了单位钛渣电耗(降低了31.8%)。
在本发明的一个方面,本发明提出了一种制备钛渣的系统。根据本发明的实施例,所述系统包括:
混料装置,所述混料装置具有含铁钛矿入口、还原剂入口和混合物料出口;
多个料仓,所述料仓与所述混合物料出口相连;
矩形电炉,所述矩形电炉包括:
矩形电炉本体,所述矩形电炉本体内的炉底自下而上依次形成铁水层区、混合层区和钛渣层区;
多个电极,所述电极从所述矩形电炉本体的顶端伸入至所述钛渣层区;
第一加料区,所述第一加料区位于所述矩形电炉本体内,并且所述第一加料区环绕在所述电极外周,所述第一加料区与所述料仓相连;
第二加料区,所述第二加料区位于所述矩形电炉本体内,并且所述第二加料区外套在所述第一加料区上,所述第二加料区与所述第一加料区间隔开,所述第二加料区与所述料仓相连;
第三加料区,所述第三加料区位于所述矩形电炉本体内,并且所述第三加料区外套在所述第二加料区上,所述第三加料区与所述第二加料区间隔开,所述第三加料区与所述料仓相连;
铁水出口,所述铁水出口设置在所述铁水层区;
钛渣出口,所述钛渣出口设置在所述钛渣层区;
煤气出口,所述煤气出口设置在所述矩形电炉本体的顶端;
余热锅炉,所述余热锅炉与所述煤气出口相连;以及
布袋收尘器,所述布袋收尘器与所述余热锅炉相连。
由此,根据本发明实施例的制备钛渣的系统通过采用具有第一加料区、第二加料区和第三加料区的矩形电炉对含有含铁钛矿和还原剂的混合物料进行熔炼处理,并且采用连续加料的方式,实现了含铁钛矿的连续熔炼和高效熔炼,从而达到了调整钛渣成分的目的,提高了劳动生产效率,降低了单位钛渣电耗(降低了31.8%),并且降低了单位产品的投资,改善了劳动条件,同时采用余热锅炉有效回收了矩形电炉中所得煤气中的余热,从而实现资源的最大化利用。
另外,根据本发明上述实施例的制备钛渣的系统还可以具有如下附加的技术特征:
在本发明的一些实施例中,所述制备钛渣的系统包括呈一排依次竖直间隔设置的第一至第六电极,并且所述钛渣出口邻近所述第一电极设置,所述铁水出口邻近所述第六电极出口。由此,可以显著提高含铁钛矿的熔炼效率。
在本发明的一些实施例中,所述第一加料区包括一级加料区、二级加料区和三级加料区,所述一级加料区环绕在所述第一电极和第二电极外周,所述二级加料区环绕在所述第三电极和第四电极外周,所述三级加料区环绕在所述第五电极和第六电极的外周。由此,可以进一步提高含铁钛矿的熔炼效率。
在本发明的一些实施例中,所述第一加料区、所述第二加料区和所述第三加料区分别独立地均匀布置有多个加料口,所述加料口与所述料仓相连。由此,可以在实现含铁钛矿连续熔炼的同时降低熔炼能耗。
在本发明的再一个方面,本发明提出了一种采用上述制备钛渣的系统制备钛渣的方法。 根据本发明的实施例,所述方法包括:
(1)将含铁钛矿与还原剂供给至所述混合装置中进行混合,以便得到混合物料;
(2)将所述混合物料存储在所述多个料仓中,并将所述混合物料经所述多个料仓分别供给至所述矩形电炉中的第一加料区、第二加料区和第三加料区进行熔炼处理,以便得到铁水、钛渣以及煤气;
(3)将所述煤气供给至所述余热锅炉中进行预热回收,以便得到降温煤气;
(4)将所述降温煤气供给至所述布袋收尘器中进行收尘,以便得到净化煤气。
由此,根据本发明实施例的制备钛渣的方法可以实现含铁钛矿的连续熔炼和高效熔炼,从而达到了调整钛渣成分的目的,提高了劳动生产效率,降低了单位钛渣电耗(降低了31.8%),并且降低了单位产品的投资,改善了劳动条件,同时采用余热锅炉有效回收了矩形电炉中所得煤气中的余热,从而实现资源的最大化利用。
另外,根据本发明上述实施例的制备钛渣的方法还可以具有如下附加的技术特征:
在本发明的一些实施例中,所述含铁钛矿为选自钛精矿和钛铁矿中的至少一种。
在本发明的一些实施例中,所述还原剂为选自焦炭和煤中的至少一种。
在本发明的一些实施例中,所述第一加料区、所述第二加料区和所述第三加料区中加入的混合物料的质量比为(40~70):(20~40):(1~10)。由此,可以在实现含铁钛矿连续熔炼和高效熔炼的同时降低熔炼能耗。
在本发明的一些实施例中,加入到所述一级加料区的混合物料中的还原剂的质量比加入到所述二级加料区和所述三级加料区中的混合物料中的还原剂多10~20%。由此,可以实现含铁钛矿的连续熔炼,从而提高了劳动生产率。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是根据本发明一个实施例的制备钛渣的系统结构示意图;
图2是根据本发明再一个实施例的制备钛渣的系统中矩形电炉横截面的剖视图;
图3是根据本发明又一个实施例的制备钛渣的系统中矩形电炉横截面的剖视图;
图4是根据本发明一个实施例的制备钛渣的方法流程示意图。
发明详细描述
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本发明的一个方面,本发明提出了一种制备钛渣的系统。根据本发明的实施例,参考图1,该系统包括混料装置100、料仓200、矩形电炉300、余热锅炉400和布袋收尘器500。
根据本发明的实施例,混料装置100具有含铁钛矿入口101、还原剂入口102和混合物料出口103,且适于将含铁钛矿与还原剂进行混合,以便得到混合物料。具体的,含铁钛矿可以为选自钛精矿和钛铁矿中的至少一种,还原剂可以为选自焦炭和煤中的至少一种。需要说明的是,本领域技术人员可以根据实际需要对含铁钛矿和还原剂的粒径以及二者的混合比例进行选择。
根据本发明的实施例,料仓200与混合物料出口103相连,且适于存储混料装置中得到的混合物料。具体的,料仓200可以为多个,并且料仓200上可以设置有控制单元(未 示出),用以实现料仓中混合物料的定量下料。
根据本发明的实施例,参考图1和2,矩形电炉300包括矩形电炉本体31、电极32、第一加料区33、第二加料区34、第三加料区35、铁水出口301、钛渣出口302和煤气出口303,且适于将混合物料经多个料仓分别供给至矩形电炉中的第一加料区、第二加料区和第三加料区进行熔炼处理,得到铁水、钛渣和煤气。
根据本发明的一个实施例,矩形电炉本体31内的炉底自下而上依次形成铁水层36、混合层区37和钛渣层区38。具体的,含铁钛矿中的铁氧化物在还原剂的作用下被还原为铁单质,铁单质熔化为铁水而位于炉底的底部,而还原后得到的部分钛渣与铁水混合形成混合层区位于铁水层区的上面,而剩余的钛渣形成钛渣曾区位于混合层区的上面。
根据本发明的再一个实施例,电极32可以为多个,并且多个电极32从矩形电炉本体31的顶端伸入至钛渣层区38。具体的,多个电极可以分别连接有变压器,并且本领域技术人员可以根据实际需要通过变压器来控制电极的功率。
根据本发明的一个具体实施例,参考图2,电极32可以包括第一电极1、第二电极2、第三电极3、第四电极4、第五电极5和第六电极6,并且第一电极1至第六电极6呈一排竖直间隔设置。
根据本发明的一个实施例,参考图2,第一加料区33可以位于矩形电炉本体31内,并且第一加料区33可以环绕在电极32的外周,第一加料区33与料仓200相连,具体的,第一加料区33中均匀布置有多个加料口304,该加料口304与料仓200相连,从而通过该加料口可以将料仓中的混合物料连续定量定点的供给至第一加料区。
根据本发明的一个具体实施例,参考图3,第一加料区33可以包括一级加料区331、二级加料区332和三级加料区333,一级加料区331环绕在第一电极1和第二电极2的外周,二级加料区332环绕在第三电极3和第四电极4的外周,三级加料区333环绕在第五电极5和第六电极6的外周。
根据本发明的再一个具体实施例,加入到一级加料区的混合物料中的还原剂的质量比加入到二级加料区和三级加料区中的混合物料中的还原剂多10~20%。发明人发现,在一级加料区通过添加更多的还原剂,以实现此区域物料中碳含量的提高,从而可以有效地提高钛渣品位,并且在此阶段,可以将渣中FeO进一步还原至要求的含量,实现达到富集TiO2、生产高品位钛渣的目的,而还原剂加入量过高将会造成Ti低价氧化物的形成,导致渣变稠,恶化炉况;而还原剂加入量不足则会导致渣中FeO含量较高,降低产品品质。具体的,本领域技术人员可以根据实际需要选择不同的混料装置进行混料,然后通过不同的料仓分别将混合物料供给至一级加料区、二级加料区和三级加料区。
根据本发明的又一个实施例,参考图2和3,第二加料区34位于矩形电炉本体31内, 并且第二加料区34外套在第一加料区33上,第二加料区34与第一加料区33间隔开,第二加料区34与料仓200相连。具体的,第二加料区34中均匀布置有多个加料口304,该加料口304与料仓200相连,从而通过该加料口可以将料仓中的混合物料连续定量定点的供给至第二加料区。
根据本发明的又一个实施例,第三加料区35位于矩形电炉本体31内,并且第三加料区35外套在第二加料区34上,第三加料区35与第二加料区34间隔开,第三加料区35与料仓200相连。具体的,第三加料区35中均匀布置有多个加料口304,该加料口304与料仓200相连,从而通过该加料口可以将料仓中的混合物料连续定量定点的供给至第三加料区。
根据本发明的又一个实施例,第一加料区、第二加料区和第三加料区中加入的混合物料的质量比为(40~70):(20~40):(1~10)。发明人发现,第一加料区靠近电极,大部分的电能在此区域转化为热能进而熔化更多的物料,第二加料区和第三加料区距离电极逐级靠远,炉料熔化速度也逐级放慢,需要的料量相应减少,并且在不同区域需要控制不同的加料量和加料速度,使之与化料速度相匹配,物料量过多,导致物料堆积在料面上不能得到及时熔化,会造成渣面结壳、塌料等恶化冶炼制度的现象;物料量过少,电能转化的热能不能有效利用于化料,会导致熔池和炉顶温度过高,使能耗增大并缩短电炉寿命。由此,采用本申请的加料比例可以在降低能耗的同时提高钛渣的产率。具体的,矩形电炉内采取薄料层连续熔炼操作,确保炉底内化料与加料速度相匹配。
根据本发明的又一个实施例,铁水出口301设置在铁水层区36,且适于将矩形电炉本体内生成的铁水定期排出。根据本发明的具体实施例,铁水出口301邻近第六电极6设置。
根据本发明的又一个实施例,钛渣出口302设置在钛渣层区38,且适于将矩形电炉本体内生成的钛渣定期排出。根据本发明的具体实施例,钛渣出口302邻近第一电极1设置。
根据本发明的又一个实施例,煤气出口303设置在矩形电炉本体31的顶端,且适于将矩形电炉本体内产生的煤气排出。具体的,煤气出口303可以有多个,例如如图1所示,煤气出口可以为两个,并且两个煤气出口对称设置在矩形电炉本体的顶端。
发明人发现,通过采用具有第一加料区、第二加料区和第三加料区的矩形电炉对含有含铁钛矿和还原剂的混合物料进行熔炼处理,并且采用连续加料的方式,实现了含铁钛矿的连续熔炼和高效熔炼,从而达到了调整钛渣成分的目的,提高了劳动生产效率,降低了单位钛渣电耗(降低了31.8%),并且降低了单位产品的投资,改善了劳动条件。
根据本发明的又一个实施例,余热锅炉400与煤气出口303相连,且适于对矩形电炉内产生的煤气进行余热回收,得到降温煤气。
根据本发明的又一个实施例,布袋收尘器500与余热锅炉400相连,且适于将余热锅 炉内得到降温后的煤气进行收尘处理,以便得到净化煤气。
根据本发明实施例的制备钛渣的系统通过采用具有第一加料区、第二加料区和第三加料区的矩形电炉对含有含铁钛矿和还原剂的混合物料进行熔炼处理,并且采用连续加料的方式,实现了含铁钛矿的连续熔炼和高效熔炼,从而达到了调整钛渣成分的目的,提高了劳动生产效率,降低了单位钛渣电耗(降低了31.8%),并且降低了单位产品的投资,改善了劳动条件,同时采用余热锅炉有效回收了矩形电炉中所得煤气中的余热,从而实现资源的最大化利用,进而解决了我国现有钛渣冶炼处理功率小、操作波动大、自动化程度低、以及间断加料、间断操作引起的效率低、能耗高等问题。
在本发明的再一个方面,本发明提出了一种采用上述制备钛渣的系统制备钛渣的方法。根据本发明的实施例,参考图4,该方法包括:
S100:将含铁钛矿与还原剂供给至混料装置中进行混合
该步骤中,具体的,将含铁钛矿与还原剂供给至混料装置中进行混合,以便得到混合物料。具体的,含铁钛矿可以为选自钛精矿和钛铁矿中的至少一种,还原剂可以为选自焦炭和煤中的至少一种。需要说明的是,本领域技术人员可以根据实际需要对含铁钛矿和还原剂的粒径以及二者的混合比例进行选择。
S200:将混合物料存储在多个料仓中,并将混合物料经多个料仓分别供给至矩形电炉中的第一加料区、第二加料区和第三加料区进行熔炼处理
该步骤中,具体的,将上述混料装置中得到的混合物料存储在多个料仓中,并将混合物料经多个料仓分别供给至矩形电炉中的第一加料区、第二加料区和第三加料区进行熔炼处理,含铁钛矿中的铁氧化物在还原剂的作用下被还原为铁单质,铁单质熔化为铁水而位于炉底的底部,而还原后得到的部分钛渣与铁水混合形成混合层区位于铁水层区的上面,而剩余的钛渣形成钛渣曾区位于混合层区的上面。发明人发现,通过采用具有第一加料区、第二加料区和第三加料区的矩形电炉对含有含铁钛矿和还原剂的混合物料进行熔炼处理,并且采用连续加料的方式,实现了含铁钛矿的连续熔炼和高效熔炼,从而达到了调整钛渣成分的目的,提高了劳动生产效率,降低了单位钛渣电耗(降低了31.8%),并且降低了单位产品的投资,改善了劳动条件。
根据本发明的一个实施例,加入到一级加料区的混合物料中的还原剂的质量比加入到二级加料区和三级加料区中的混合物料中的还原剂多10~20%。发明人发现,在一级加料区通过添加更多的还原剂,以实现此区域物料中碳含量的提高,从而可以有效地提高钛渣品位,并且在此阶段,可以将渣中FeO进一步还原至要求的含量,实现达到富集TiO2、生产高品位钛渣的目的,而还原剂加入量过高将会造成Ti低价氧化物的形成,导致渣变稠,恶化炉况;而还原剂加入量不足则会导致渣中FeO含量较高,降低产品品质。具体的,本领 域技术人员可以根据实际需要选择不同的混料装置进行混料,然后通过不同的料仓分别将混合物料供给至一级加料区、二级加料区和三级加料区。
根据本发明的再一个实施例,第一加料区、第二加料区和第三加料区中加入的混合物料的质量比为(40~70):(20~40):(1~10)。发明人发现,第一加料区靠近电极,大部分的电能在此区域转化为热能进而熔化更多的物料,第二加料区和第三加料区距离电极逐级靠远,炉料熔化速度也逐级放慢,需要的料量相应减少,并且在不同区域需要控制不同的加料量和加料速度,使之与化料速度相匹配,物料量过多,导致物料堆积在料面上不能得到及时熔化,会造成渣面结壳、塌料等恶化冶炼制度的现象;物料量过少,电能转化的热能不能有效利用于化料,会导致熔池和炉顶温度过高,使能耗增大并缩短电炉寿命。由此,采用本申请的加料比例可以在降低能耗的同时提高钛渣的产率。具体的,矩形电炉内采取薄料层连续熔炼操作,确保炉底内化料与加料速度相匹配。
S300:将煤气供给至余热锅炉中进行预热回收
该步骤中,具体的,将上述矩形电炉内熔炼产生的煤气供给至余热锅炉中进行预热回收,得到降温煤气。
S400:将降温煤气供给至布袋收尘器中进行收尘
该步骤中,具体的,将上述余热锅炉内得到降温后的煤气进行收尘处理,以便得到净化煤气。
根据本发明实施例的制备钛渣的方法可以实现含铁钛矿的连续熔炼和高效熔炼,从而达到了调整钛渣成分的目的,提高了劳动生产效率,降低了单位钛渣电耗(降低了31.8%),并且降低了单位产品的投资,改善了劳动条件,同时采用余热锅炉有效回收了矩形电炉中所得煤气中的余热,从而实现资源的最大化利用,进而解决了我国现有钛渣冶炼处理功率小、操作波动大、自动化程度低、以及间断加料、间断操作引起的效率低、能耗高等问题。需要说明的是,上述针对制备钛渣的系统所描述的特征和优点同样适用于该制备钛渣的方法,此处不再赘述。
以上详细描述了本发明的优选实施方式,但是,本发明并不限于上述实施方式中的具体细节,在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,这些简单变型均属于本发明的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本发明对各种可能的组合方式不再另行说明。
此外,本发明的各种不同的实施方式之间也可以进行任意组合,只要其不违背本发明 的思想,其同样应当视为本发明所公开的内容。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (9)

  1. 一种制备钛渣的系统,其特征在于,包括:
    混料装置,所述混料装置具有含铁钛矿入口、还原剂入口和混合物料出口;
    多个料仓,所述料仓与所述混合物料出口相连;
    矩形电炉,所述矩形电炉包括:
    矩形电炉本体,所述矩形电炉本体内的炉底自下而上依次形成铁水层区、混合层区和钛渣层区;
    多个电极,所述电极从所述矩形电炉本体的顶端伸入至所述钛渣层区;
    第一加料区,所述第一加料区位于所述矩形电炉本体内,并且所述第一加料区环绕在所述电极外周,所述第一加料区与所述料仓相连;
    第二加料区,所述第二加料区位于所述矩形电炉本体内,并且所述第二加料区外套在所述第一加料区上,所述第二加料区与所述第一加料区间隔开,所述第二加料区与所述料仓相连;
    第三加料区,所述第三加料区位于所述矩形电炉本体内,并且所述第三加料区外套在所述第二加料区上,所述第三加料区与所述第二加料区间隔开,所述第三加料区与所述料仓相连;
    铁水出口,所述铁水出口设置在所述铁水层区;
    钛渣出口,所述钛渣出口设置在所述钛渣层区;
    煤气出口,所述煤气出口设置在所述矩形电炉本体的顶端;
    余热锅炉,所述余热锅炉与所述煤气出口相连;以及
    布袋收尘器,所述布袋收尘器与所述余热锅炉相连。
  2. 根据权利要求1所述的系统,其特征在于,包括呈一排依次竖直间隔设置的第一至第六电极,并且所述钛渣出口邻近所述第一电极设置,所述铁水出口邻近所述第六电极设置。
  3. 根据权利要求2所述的系统,其特征在于,所述第一加料区包括一级加料区、二级加料区和三级加料区,所述一级加料区环绕在所述第一电极和第二电极外周,所述二级加料区环绕在所述第三电极和第四电极外周,所述三级加料区环绕在所述第五电极和第六电极的外周。
  4. 根据权利要求1-3任一项所述的系统,其特征在于,所述第一加料区、所述第二加料区和所述第三加料区分别独立地均匀布置有多个加料口,所述加料口与所述料仓相连。
  5. 一种采用权利要求1-4中任一项所述的系统制备钛渣的方法,其特征在于,包括:
    (1)将含铁钛矿与还原剂供给至所述混料装置中进行混合,以便得到混合物料;
    (2)将所述混合物料存储在所述多个料仓中,并将所述混合物料经所述多个料仓分别供给至所述矩形电炉中的第一加料区、第二加料区和第三加料区进行熔炼处理,以便得到铁水、钛渣以及煤气;
    (3)将所述煤气供给至所述余热锅炉中进行预热回收,以便得到降温煤气;
    (4)将所述降温煤气供给至所述布袋收尘器中进行收尘,以便得到净化煤气。
  6. 根据权利要求5所述的方法,其特征在于,所述含铁钛矿为选自钛精矿和钛铁矿中的至少一种。
  7. 根据权利要求5或6所述的方法,其特征在于,所述还原剂为选自焦炭和煤中的至少一种。
  8. 根据权利要求5-7中任一项所述的方法,其特征在于,所述第一加料区、所述第二加料区和所述第三加料区中加入的混合物料的质量比为(40~70):(20~40):(1~10)。
  9. 根据权利要求8所述的方法,其特征在于,加入到所述一级加料区的混合物料中的还原剂的质量比加入到所述二级加料区和所述三级加料区中的混合物料中的还原剂多10~20%。
PCT/CN2017/110261 2016-11-21 2017-11-09 制备钛渣的系统和方法 WO2018090867A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611049147.5 2016-11-21
CN201611049147.5A CN106756115B (zh) 2016-11-21 2016-11-21 制备钛渣的系统和方法

Publications (1)

Publication Number Publication Date
WO2018090867A1 true WO2018090867A1 (zh) 2018-05-24

Family

ID=58910506

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/110261 WO2018090867A1 (zh) 2016-11-21 2017-11-09 制备钛渣的系统和方法

Country Status (2)

Country Link
CN (1) CN106756115B (zh)
WO (1) WO2018090867A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109943714A (zh) * 2019-03-06 2019-06-28 赛能杰高新技术股份有限公司 钒钛磁铁矿的冶炼工艺及冶炼系统
CN114086005A (zh) * 2021-11-26 2022-02-25 攀钢集团攀枝花钢钒有限公司 一种促进熔融含钛型炉渣碳化冶炼的还原剂加入方法
CN114703381A (zh) * 2022-06-07 2022-07-05 中国恩菲工程技术有限公司 钛渣烧结碳化装置及方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106756115B (zh) * 2016-11-21 2019-02-01 中国恩菲工程技术有限公司 制备钛渣的系统和方法
CN111705227B (zh) * 2020-06-29 2022-03-22 攀钢集团攀枝花钢铁研究院有限公司 两步法冶炼钛渣的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6456832A (en) * 1987-08-28 1989-03-03 Shinko Electric Co Ltd Device for producing high-melting point and high-toughness metal
AU2055095A (en) * 1995-06-08 1996-12-19 Anglo American Corporation Of South Africa Limited Process
CN1975305A (zh) * 2006-12-14 2007-06-06 攀枝花市永兴钛业有限责任公司 密闭电炉及钛渣冶炼工艺
CN101349503A (zh) * 2008-08-28 2009-01-21 攀钢集团钛业有限责任公司 用于冶炼钛渣的电炉
CN106756115A (zh) * 2016-11-21 2017-05-31 中国恩菲工程技术有限公司 制备钛渣的系统和方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9211052D0 (en) * 1992-05-23 1992-07-08 Univ Birmingham Synthetic rutile production
CN101348845B (zh) * 2008-08-20 2010-07-28 攀钢集团钛业有限责任公司 电炉冶炼钛渣的方法
CN202792915U (zh) * 2012-09-06 2013-03-13 攀枝花金江钛业有限公司 用于冶炼钛渣的电弧炉的炉盖
CN203190785U (zh) * 2013-04-18 2013-09-11 甘肃山丹腾达西铁冶金有限责任公司 一种用于多种特种合金冶炼的炉内热兑式电弧冶金设备
CN203837495U (zh) * 2014-04-22 2014-09-17 攀钢集团工程技术有限公司 一种水冷式钛渣电炉料嘴
CN104087710B (zh) * 2014-07-24 2016-05-25 攀钢集团攀枝花钢铁研究院有限公司 电炉冶炼预还原球团制备钛渣的方法
CN104313230B (zh) * 2014-10-31 2017-06-20 江苏省冶金设计院有限公司 燃气熔分炉和炼铁装置以及它们的还原工艺
CN105256153B (zh) * 2015-10-28 2017-09-08 攀钢集团攀枝花钢铁研究院有限公司 氧化钛精矿冶炼钛渣的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6456832A (en) * 1987-08-28 1989-03-03 Shinko Electric Co Ltd Device for producing high-melting point and high-toughness metal
AU2055095A (en) * 1995-06-08 1996-12-19 Anglo American Corporation Of South Africa Limited Process
CN1975305A (zh) * 2006-12-14 2007-06-06 攀枝花市永兴钛业有限责任公司 密闭电炉及钛渣冶炼工艺
CN101349503A (zh) * 2008-08-28 2009-01-21 攀钢集团钛业有限责任公司 用于冶炼钛渣的电炉
CN106756115A (zh) * 2016-11-21 2017-05-31 中国恩菲工程技术有限公司 制备钛渣的系统和方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109943714A (zh) * 2019-03-06 2019-06-28 赛能杰高新技术股份有限公司 钒钛磁铁矿的冶炼工艺及冶炼系统
CN114086005A (zh) * 2021-11-26 2022-02-25 攀钢集团攀枝花钢钒有限公司 一种促进熔融含钛型炉渣碳化冶炼的还原剂加入方法
CN114703381A (zh) * 2022-06-07 2022-07-05 中国恩菲工程技术有限公司 钛渣烧结碳化装置及方法
CN114703381B (zh) * 2022-06-07 2022-08-12 中国恩菲工程技术有限公司 钛渣烧结碳化装置及方法

Also Published As

Publication number Publication date
CN106756115A (zh) 2017-05-31
CN106756115B (zh) 2019-02-01

Similar Documents

Publication Publication Date Title
WO2018090867A1 (zh) 制备钛渣的系统和方法
CN101348845B (zh) 电炉冶炼钛渣的方法
CN107663588B (zh) 一种连续冶炼碳化渣的方法
CN105219953B (zh) 一种高铁锰矿粉烧结配矿的方法
CN201713555U (zh) 杂铜再生浇铸阳极板连续生产组合式精炼炉
CN103896275A (zh) 一种冶金法太阳能多晶硅等离子精炼提纯炉
CN106521139A (zh) 一种低温还原分离含钛铁矿物制备高钛渣的方法
CN106996695A (zh) 一种冶金炉
CN103205584B (zh) 一氧化锰矿粉的生产装置及其生产方法
CN203964657U (zh) 一种冶炼铁合金的专用感应炉
CN105293494B (zh) 氧电联合电石熔炼方法
CN104944765A (zh) 一种实现玄武岩连续纤维拉丝的装置
CN201455266U (zh) 转移弧直流等离子锌粉电炉
CN205133692U (zh) 用于氧化焙烧提取铼的沸腾炉装置
CN204661545U (zh) 一种玄武岩连续纤维拉丝装置
CN107354259A (zh) 一种煤基直接还原竖炉及采用该竖炉进行冶炼的方法
CN210104036U (zh) 钒钛磁铁矿的冶炼系统
CN105293496B (zh) 氧电联合电石熔炼炉及系统
CN112080649A (zh) 一种红土镍矿经矿热炉高功率下冶炼镍铁的工艺
CN106222349B (zh) 一种利用熔池熔炼炉处理含铁原料的方法及装置
CN214406946U (zh) 生产大结晶电熔镁砂的预热式矿热炉
CN206828604U (zh) 一种综合利用含铁物料和含锗褐煤的系统
CN204185534U (zh) 一种直径40米转底炉-熔分炉联合生产线
CN217131861U (zh) 一种矿热炉炉料预热装置
CN204151392U (zh) 竖式含TiO2炉渣还原焙烧装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17871331

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17871331

Country of ref document: EP

Kind code of ref document: A1