WO2018090597A1 - 逐点校正方法 - Google Patents

逐点校正方法 Download PDF

Info

Publication number
WO2018090597A1
WO2018090597A1 PCT/CN2017/086224 CN2017086224W WO2018090597A1 WO 2018090597 A1 WO2018090597 A1 WO 2018090597A1 CN 2017086224 W CN2017086224 W CN 2017086224W WO 2018090597 A1 WO2018090597 A1 WO 2018090597A1
Authority
WO
WIPO (PCT)
Prior art keywords
corrected
large screen
chromaticity
point
screen
Prior art date
Application number
PCT/CN2017/086224
Other languages
English (en)
French (fr)
Inventor
宗靖国
赵星梅
杨城
Original Assignee
西安诺瓦电子科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安诺瓦电子科技有限公司 filed Critical 西安诺瓦电子科技有限公司
Publication of WO2018090597A1 publication Critical patent/WO2018090597A1/zh
Priority to US16/388,893 priority Critical patent/US10726776B2/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F13/00Illuminated signs; Luminous advertising
    • G09F13/04Signs, boards or panels, illuminated from behind the insignia
    • G09F13/0413Frames or casing structures therefor
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/006Electronic inspection or testing of displays and display drivers, e.g. of LED or LCD displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/13336Combining plural substrates to produce large-area displays, e.g. tiled displays
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/02Composition of display devices
    • G09G2300/026Video wall, i.e. juxtaposition of a plurality of screens to create a display screen of bigger dimensions
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0693Calibration of display systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/46Colour picture communication systems
    • H04N1/56Processing of colour picture signals
    • H04N1/60Colour correction or control
    • H04N1/603Colour correction or control controlled by characteristics of the picture signal generator or the picture reproducer
    • H04N1/6052Matching two or more picture signal generators or two or more picture reproducers

Definitions

  • the present invention relates to the field of LED display correction technology, and in particular, to a point-by-point correction method.
  • the LED display rental industry has developed faster and faster, and the characteristics of the rental screen are as follows: 1) The length of use of the same batch of cabinets will bring different levels of cabinet-level bright chromaticity differences; 2) the same Adding orders to the batch box will bring about the difference in brightness between the new and old cabinets; 3) The replacement of the same batch of cabinets will bring about differences in the brightness of the panel-level brightness in the cabinet.
  • the rental screen body with the above characteristics, if the screen body is built in the leased factory and processed by the existing correction method, and then detached to the rental site, the interior of the cabinet will be uniform but the surface transition inconsistency between the cabinets will be inconsistent.
  • the industry's point-by-point correction for rental screens mainly has the following three processing methods: one is to record the cabinet correction number, and each time a rental site is constructed in strict accordance with the correction number sequence, this method is time-consuming and laborious and impossible.
  • General a full-screen calibration is performed after each LED site is built at a rental site. This method can ensure the uniformity of the screen color of each rental site, but the frequent correction is too troublesome.
  • the renters are Unacceptable; the third is to use high-precision bright color measurement instruments such as Minolta CS100A, CS2000, etc., to adjust and process each rental box with a bright colorimeter in the rental workshop.
  • This method is currently the mainstream method, but Expensive color measurement instruments are also unacceptable to renters. Therefore, it can be said that the rental screen body puts higher requirements on the point-by-point correction technology of the LED display.
  • the present invention provides a point-by-point correction method for the defects and deficiencies in the prior art.
  • a point-by-point correction method includes the following steps: (i) performing image acquisition on a sample box small screen to obtain a bright chromaticity value of the sample box small screen, wherein the sample box small screen It is formed by splicing at least three LED boxes selected as a sample box from a plurality of LED housings to be corrected; (ii) obtaining a ratio of deviation of the average chromaticity of the color between the sample cases; (iii) correcting the correction Performing image acquisition on the screen to obtain an original bright chromaticity value of the corrected large screen, wherein the corrected large screen is different from the sample box and the plurality of LED housings to be corrected except the sample box Part of the LED box or all of the LED boxes are spliced; (iv) adjusting the original brightness chromaticity value of the sample box in the corrected large screen by using the ratio of the brightness chromatic mean deviation between the sample boxes to obtain the Adjusting the adjusted bright chromaticity value of the large screen; (i) performing image acquisition on a sample box
  • the foregoing point-by-point correction method further comprises the step of: dividing the full-screen point-by-point correction coefficient of the corrected large screen into a plurality of box correction coefficient files and storing the same to the phase after the step (vi) Corresponding receiving card configured for the cabinet to be corrected.
  • the foregoing point-by-point correction method further comprises the steps of: keeping the sample box unchanged and replacing the LED box in other positions as part or all of the LED boxes in the remaining LED box to be corrected to obtain new Correcting a large screen, performing image acquisition on the new corrected large screen to obtain the original corrected chromaticity value of the new corrected large screen and performing step (iv), step (v) and step (v) again to obtain A new full-screen point-by-point correction factor for correcting large screens.
  • the foregoing step (v) includes: performing a polynomial surface fitting based on a least squares method on the adjusted bright chromaticity value of the corrected large screen and giving the sample in the corrected large screen
  • the adjusted bright chromaticity value of the box is greater than a weight coefficient to generate a curved surface of the corrected large screen to fit the curved surface.
  • the foregoing step (vi) includes: sacrificing a brightness percentage of the original bright chromaticity mean of the sample box in the corrected large screen as a percentage of the bright chromaticity target value.
  • the LED housing is an RGB full color LED housing.
  • One technical solution of the above technical solutions has the following advantages or beneficial effects: (a) avoiding the problem of inconsistent surface transition caused by re-free splicing after correction; (b) avoiding the lease site Record and find the cabinet number; (c) avoid the need for a full screen correction at each rental site; and (d) allow the rental provider to eliminate the need to purchase a bright color measurement instrument.
  • FIG. 1 is a schematic diagram of a small screen screen of a sample box constructed in an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a corrected large screen screen built in an embodiment of the present invention.
  • FIG. 3 is a flowchart of a point-by-point correction method capable of arbitrarily splicing an LED box according to an embodiment of the present invention.
  • the following embodiments of the present invention provide a point-by-point correction method capable of realizing arbitrary splicing of an LED box body in view of the current correction problem of the rental screen body.
  • the point-by-point correction method firstly, the image collection is performed by selecting a plurality of sample boxes from the to-be-corrected box to calculate the color chromaticity mean deviation ratio between the sample boxes, and then the sample box is built in the correction.
  • the position of the large screen fulcrum and other remaining to-be-corrected cabinets can be adjusted at any position of the large screen, and then the correction is large.
  • the screen is screened for image acquisition and the weight of the sample color of the sample box at the fulcrum position is increased during the calibration process to fit the surface correction, and finally the correction is based on the average of the bright chromaticity values of all sample cases at the fulcrum position.
  • the target value is used to calculate the point-by-point correction factor for correcting all boxes in the full screen of the large screen.
  • the point-by-point correction method can well solve the problem of any splicing of the LED housing of the rental screen body, and can ensure the free splicing effect of the LED box body in the screen body at the rental site, and can also ensure the LED box body in the screen body of the rental site. Bright chroma consistency effect.
  • an RGB full-color LED box body is taken as an example, and a point-by-point correction method capable of realizing arbitrary splicing of the LED box body is implemented as follows:
  • the sample box selection requirement is: the number of LED boxes selected as the sample box from the to-be-corrected box is not less than three, the difference between the sample box and the interior of the sample box is not obvious, and there may be a certain difference between the sample boxes. Brightness difference
  • sample box small screen construction requirements Take the six sample cabinets shown in Figure 1 as an example, which are typically spliced and constructed in a row and column arrangement, for example, 2*3 (two rows and three columns) or 3*2
  • the form is better, as far as possible to avoid the acquisition gradient of the image capture device such as the area array camera of the small screen left or right or the top and bottom of the sample box brought by the 1*6 or 6*1 form;
  • the small screen of the sample box can be displayed in a preset order to display monochrome images such as red, green and blue images.
  • the set gets red, green, and blue monochrome images, of course, the display order of each monochrome picture is not limited;
  • Extracting the red, green, and blue bright chromaticity values from the red, green, and blue monochrome images is an existing mature technology.
  • the specific steps can be as follows: first, position each monochrome image, and then count each monochrome by point by point. The brightness and chrominance components of the LED light point on the image, and then normalize the chromaticity value of each monochrome image (keeping the RGB component ratio unchanged), and finally combine the chromaticity values of each monochrome image (including the luminance component value). And chrominance component values); it is worth mentioning that if there are camera acquisition gradients for red, green, and blue chromaticity values, surface fitting is preferably performed to correct the gradient;
  • the average value of the bright chromaticity of each sample box is counted box by box, and then the deviation ratio of the average value of the bright chromaticity is calculated as follows:
  • ratio(i,j) represents the ratio of the chromaticity mean deviation of the jth sample box of the i-th component
  • averCom(i,j) represents the average chromaticity of the yth component of the jth sample box
  • averCom(i, 0) indicates the average value of the bright chromaticity of the 0th sample box of the i-th component (for example, the sample box No.
  • the RGB full-color LED cabinet is For example, a single LED spot (typically including red, green, and blue LEDs) has a total of 9 bright chromatic values (since each color corresponds to 1 luminance component and 2 chrominance components), so 0 ⁇ i ⁇ 8, and the small box of the sample box shown in Figure 1 has a total of 6 boxes, so 0 ⁇ j ⁇ 5, that is, the bright chromaticity component of each sample box and the bright color of the sample box No. 1 are calculated one by one bright chrominance components. Ratio of degrees of mean;
  • the correction large screen ensure that the sample box is at the specified position (referred to as the fulcrum position in this embodiment), and the remaining to-be-corrected box can be used to correct any other position of the large screen; the resolution for setting up the corrected large screen is relatively free, as long as it is not
  • the upper limit of the resolution of the screen can be corrected beyond the interval, for example, 4*4 spacers (for example only, not for limiting the invention), the upper limit of the resolution of the screen is 900*600, and the schematic diagram of the corrected large screen can be set up. As shown in FIG.
  • a part of the box or all the boxes in the remaining to-be-corrected box except the sample box may be included in the built-in calibration large screen;
  • the position of the sample box in the correction of the large screen is required to represent the entire plane as much as possible, that is, the bright chromaticity distribution surface fitted by the sample box can represent the bright chromaticity distribution surface of the large screen as much as possible;
  • Four of the six sample bins shown in Figure 1 are randomly selected to be placed at the four corners of the corrected large screen, and the remaining two sample bins are built in the center of the corrected large screen, and other positions in Fig.
  • the 4*4 spacer method requires red, green, and blue to be collected.
  • the monochrome images are respectively sixteen;
  • Extracting red, green, and blue bright chromaticity data from red, green, and blue monochrome images is a mature technology.
  • the specific steps may be: first, point positioning is performed for each monochrome image, and then each monochrome is counted point by point. The brightness and chrominance components of the LED light point on the image, and then normalize the chromaticity value of each monochrome image (keeping the RGB component ratio unchanged), and finally combine the chromaticity values of each monochrome image;
  • the original bright chromaticity value of each sample box in the correction large screen is adjusted according to the deviation ratio of the average color chromaticity between the sample boxes in the above step (2), as shown in the following formula:
  • the polynomial surface fitting method based on the least squares method belongs to the existing mature technology.
  • This embodiment defines a third-order fitting for correcting the relationship between the bright chromaticity value and the position coordinate of the large-screen full-screen LED lamp point (ie, the bright chromaticity distribution).
  • the equation is as follows:
  • f(x,y) c 1 +c 2 x+c 3 y+c 4 xy+c 5 x 2 +c 6 y 2 +c 7 xy 2 +c 8 x 2 y+c 9 x 3 +c 10 y 3
  • the front (k-1) LED lamp points represent the lamp points located inside the sample box in the correction large screen, and the weighting weight coefficient w(w>1) needs to be added, and the value w of this embodiment w is 10;
  • k+1) LED lamp points represent the lamp points located outside the sample box in the correction large screen; it can be understood here that it assumes the LEDs of all the to-corrected boxes (including the sample box) in the entire correction large screen.
  • the total number of lamp points is n, and the total number of LED lamp points in all sample cases is (k-1);
  • the front (k-1) LED lamp points represent the lamp points located inside the sample box in the correction large screen, and the weighting weight coefficient w (w>1) is added, and the value w of this embodiment w is 10; k+1) LED lamp points indicate the lamp points located outside the sample box in the correction large screen; adjustCom(*) in the fitting matrix Z indicates the mean value of the bright chromaticity between the (k-1) LED lamp points and the sample box The component value after the deviation ratio is adjusted, where * represents 1 to (k-1);
  • fitting coefficient matrix C is substituted into the fitting polynomial f(x, y) to calculate the fitting curve.
  • Surface data surface to obtain a weighted fitted surface; it can be understood here that each component of the bright chromaticity value corresponds to a weighted fitting surface;
  • originalCom(p,q) represents the qth LED spot original value of the pth component
  • amendCom(p,q) represents the qth LED spot fitting surface correction value of the pth component
  • surface(p,q) represents The p-th component of the p-th component is fitted to the surface data
  • AVER is the average value of the surface-fitted surface data of the full-screen correction of the p-th component
  • fulcrumAver(i) represents the mean of all sample bins of the i-th component
  • originCom(i,m) represents the mth sample box LED lamp point value of the i-th component
  • num represents the correction of the large-screen full screen at the fulcrum position.
  • the number of LED lamp points in the sample box, sum(originCom(i,m)) indicates that the ith component of the original bright chromaticity value of the total num LED lamp points on all sample bins is summed;
  • the target value is set according to the original bright chromaticity mean percentage of all the sample bins of the corrected large screen.
  • the brightness sacrifice 20% target value is set as follows:
  • gL (1-20%)*fulcrumAver(gL)
  • gC x 0.1700
  • gC y 0.7400
  • fulcrumAver (rL), fulcrumAver (gL), and fulcrumAver (bL) represent the mean values of all sample bins of red, green, and blue luminance components
  • rC x , rC y , gC x , gC y , bC x , bC y represent red, green, and blue degree target values
  • the chromaticity target value is a default value, that is, without sacrificing chromaticity; this embodiment is to correct a large screen full screen sample. Box brightness average value sacrifice percentage setting target value to ensure the consistency of bright color between multiple split screens;
  • the corrected large screen full screen illumination chrominance correction coefficient may be divided into a plurality of box correction coefficient files and stored to a corresponding to-corrected cabinet, for example, to a receiving card of its configuration.
  • the foregoing embodiments of the present invention can achieve one or more of the following beneficial effects: (a) avoiding the problem of inconsistent surface transitions caused by re-free splicing after correction; (b) avoiding rental site records, finding the cabinet number (c) avoid the need for a full screen correction at each rental site; and (d) allow the rental provider to dispense with the purchase of a bright color measurement instrument.
  • the disclosed system, apparatus, and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of units is only a logical function division.
  • multiple units or components may be combined or integrated. Go to another system, or some features can be ignored or not executed.
  • the coupling or direct coupling or communication connection shown to each other may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of hardware plus software functional units.
  • the above-described integrated unit implemented in the form of a software functional unit can be stored in a computer readable storage medium.
  • the above software functional unit is stored in a storage medium and includes a plurality of instructions for causing a computer device (which may be a personal computer, Servers, or network devices, etc.) perform part of the steps of the various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, and the program code can be stored. Medium.

Abstract

一种逐点校正方法,首先通过从待校正箱体中选取多个样本箱体搭建样箱小屏来进行图像采集并计算样本箱体间的亮色度均值偏差比例,其次将样本箱体搭建在校正大屏支点位置上且其它剩余待校正箱体可在校正大屏任意搭建位置,然后对校正大屏进行图像采集以得到整屏原始亮色度值、利用样本箱体间的亮色度均值偏差比例对整屏原始亮色度值中的样本箱体原始亮色度值进行调整以及利用调整后的整屏亮色度值生成亮色度分布拟合曲面来对整屏原始亮色度值进行修正,最后利用修正后的整屏亮色度值作为亮色度初始值结合设定的亮色度目标值得出校正大屏的整屏逐点校正系数,其能够实现校正后现场LED箱体任意拼接效果。

Description

逐点校正方法
相关申请案的交叉参考
本发明要求2016年11月17日递交的发明名称为“逐点校正方法”的申请号201611013396.9的在先中国专利申请优先权,上述在先中国专利申请的内容以引入的方式并入本文本中。
技术领域
本发明涉及LED显示校正技术领域,尤其涉及一种逐点校正方法。
背景技术
近年来LED显示屏的租赁行业发展越来越快,而租赁屏体的特点如下:1)同一批箱体的使用时间长短不一会带来不同程度的箱体级亮色度差异;2)同一批箱体追加订单会带来新、旧箱体间的亮色度差异;3)同一批箱体灯板更换会带来箱体内的灯板级亮色度差异等。针对具有上述特点的租赁屏体,如果在租赁厂房内搭建起屏体用现有校正方式处理完毕、再拆开到租赁现场任意拼接会出现箱体内部均匀但箱体间存在曲面过渡不一致问题。而目前行业内对于租赁屏体的逐点校正主要有以下三种处理方法:一是记录箱体校正编号,每到一个租赁现场都严格按照校正编号顺序搭建屏体,这种方式费时费力且无法通用;二是每到一个租赁现场搭建起LED显示屏后进行一次全屏校正,这种方式能够保证每个租赁现场的屏体亮色度均匀性,但是频繁的校正过于麻烦,租赁商们是 不能接受的;三是借助高精度亮色度测量仪器如美能达CS100A、CS2000等,在租赁厂房内用亮色度计逐箱标定来校正处理每个租赁箱体,这种方式目前是主流方式,但是价格昂贵的亮色度测量仪器也是租赁商们所难以接受的。因此可以说,租赁屏体对LED显示屏逐点校正技术提出了更高要求。
发明内容
因此,针对现有技术中的缺陷和不足,本发明实施例提供一种逐点校正方法。
具体地,本发明实施例提出的一种逐点校正方法,包括步骤:(i)对样箱小屏进行图像采集以得到所述样箱小屏的亮色度值,其中所述样箱小屏是由从多个待校正LED箱体中选取的至少三个作为样本箱体的LED箱体拼接而成;(ii)获取所述样本箱体间亮色度均值偏差比例;(iii)对校正大屏进行图像采集以得到所述校正大屏的原始亮色度值,其中所述校正大屏是由所述样本箱体和所述多个待校正LED箱体中除所述样本箱体之外的部分LED箱体或全部LED箱体拼接而成;(iv)利用所述样本箱体间亮色度均值偏差比例调整所述校正大屏中的所述样本箱体的原始亮色度值,以得到所述校正大屏的调整后亮色度值;(v)利用所述校正大屏的调整后亮色度值生成所述校正大屏的亮色度分布拟合曲面以及利用所述亮色度分布拟合曲面修正所述校正大屏的原始亮色度值以得到所述校正大屏的拟合曲面修正后亮色度值;以及(vi)基于所述校正大屏中的所述样本箱体的原始亮色度值均值设定亮色度目标值并将所述校正大屏的拟合曲面修正后亮色度值作为亮色度初始值以得到所述校正大屏的整 屏逐点校正系数。
在本发明的一个实施例中,前述逐点校正方法在步骤(vi)后还包括步骤:将所述校正大屏的整屏逐点校正系数分割成多个箱体校正系数文件并存储至相对应的待校正箱体配置的接收卡。
在本发明的一个实施例中,当所述校正大屏是由所述样本箱体和所述多个待校正LED箱体中除所述样本箱体之外的部分LED箱体而非全部LED箱体拼接而成时,前述逐点校正方法还包括步骤:保持所述样本箱体不变并更换其他位置的LED箱体为剩余待校正LED箱体中的部分或全部LED箱体以得到新的校正大屏,对所述新的校正大屏进行图像采集以得到所述新的校正大屏的原始亮色度值以及再次执行步骤(iv)、步骤(v)和步骤(v)以得到所述新的校正大屏的整屏逐点校正系数。
在本发明的一个实施例中,前述步骤(v)包括:对所述校正大屏的调整后亮色度值进行基于最小二乘法的多项式曲面拟合并给予所述校正大屏中的所述样本箱体的调整后亮色度值大于1的权重系数,以生成所述校正大屏的亮色度分布拟合曲面。
在本发明的一个实施例中,前述步骤(vi)包括:将所述校正大屏中的所述样本箱体的原始亮色度均值中的亮度均值牺牲一定百分比作为所述亮色度目标值中的亮度目标值,以及将所述亮色度目标值中的色度目标值设为默认值。
在本发明的一个实施例中,前述LED箱体为RGB全彩LED箱体。
上述技术方案中的一个技术方案具有如下优点或有益效果:(a)避免校正后拆开重新随意拼接出现的曲面过渡不一致问题;(b)避免租赁现场 记录、查找箱体编号;(c)避免每个租赁现场均需要一次全屏校正的麻烦;以及(d)可让租赁商省去购买亮色度测量仪器。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例中搭建的样箱小屏屏体示意图;
图2为本发明实施例中搭建的校正大屏屏体示意图;
图3为本发明实施例能够实现LED箱体任意拼接的逐点校正方法的流程图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明下述实施例针对目前租赁屏体的校正问题,提出一种能够实现LED箱体任意拼接的逐点校正方法。该逐点校正方法:首先通过从待校正箱体中选取多个样本箱体搭建样箱小屏来进行图像采集并计算样本箱体间的亮色度均值偏差比例,其次将样本箱体搭建在校正大屏支点位置上且其它剩余待校正箱体可在校正大屏任意搭建位置,然后对校正大 屏整屏进行图像采集并在校正过程中提高位于支点位置的样本箱体的亮色度值权重进行拟合曲面修正,以及最后以位于支点位置的所有样本箱体的亮色度均值为基准设定校正目标值来计算校正大屏整屏中所有箱体的逐点校正系数。该逐点校正方法可很好地解决租赁屏体LED箱体任意拼接问题,既可以保证租赁现场所搭建屏体内的LED箱体随意拼接效果,又可以保证租赁现场所搭建屏体内的LED箱体间的亮色度一致性效果。
具体地,本实施例以RGB全彩LED箱体为例,其提出的一种能够实现LED箱体任意拼接的逐点校正方法的实现方式如下:
(1)从待校正箱体中选取多个箱体作为样本箱体搭建样箱小屏
第一,样本箱体选取要求为:从待校正箱体中选取作为样本箱体的LED箱体个数不少于3个、样本箱体内部无明显亮色度差异以及样本箱体间可以存在一定亮色度差异;
第二,样箱小屏搭建要求:以图1所示6个样本箱体为例,其典型地以行列排布方式进行拼接搭建,例如以2*3(两行三列)或者3*2形式为佳,以尽可能避免1*6或者6*1形式带来的样箱小屏左右或上下的图像采集设备例如面阵相机的采集梯度;
(2)架设图像采集设备例如面阵相机进行图像采集、计算样本箱体间的亮色度均值偏差比例
第一,尽可能拉远面阵相机与样箱小屏间的距离,用较小焦距值采集红、绿、蓝单色图像,此处较小焦距值意味着样箱小屏成像相对于相机视窗占比较小,可减小相机采集梯度;进行图像采集时可以按照预设顺序控制样箱小屏显示红色画面、绿色画面和蓝色画面等单色画面以采 集得到红、绿、蓝单色图像,当然各个单色画面的显示顺序不做限制;
第二,提取样箱小屏的红(R)、绿(G)、蓝(B)亮色度值
从红、绿、蓝单色图像中提取红、绿、蓝亮色度值为现有成熟技术,其具体步骤可以如下:首先对每张单色图像进行点定位,其次逐点统计每张单色图像上LED灯点亮度分量及色度分量值,然后归一化每张单色图像亮色度值(保持RGB分量配比不变),最后合并每张单色图像亮色度值(包括亮度分量值和色度分量值);值得一提的是,若红、绿、蓝亮色度值存在相机采集梯度,优选地可进行曲面拟合来修正梯度;
第三,计算样本箱体间亮色度均值偏差比例
首先逐箱统计每个样本箱体的亮色度均值,进而计算亮色度均值偏差比例如下式所示:
Figure PCTCN2017086224-appb-000001
其中,ratio(i,j)表示第i分量第j个样本箱体的亮色度均值偏差比例,averCom(i,j)表示第i分量第j个样本箱体的亮色度均值,averCom(i,0)表示第i分量第0个样本箱体(例如1号样本箱体,当然也可以是其他样本箱体)的亮色度均值;此处值得一提的是,以RGB全彩LED箱体为例,单个LED灯点(典型地包括红、绿、蓝三色LED)的亮色度值共9个分量(因为每种颜色对应1个亮度分量和2个色度分量),故0≤i≤8,而图1所示样箱小屏共6个箱体,故0≤j≤5,也就是说,逐个亮色度分量计算每个样本箱体的亮色度均值与1号样本箱体的亮色度均值的比值;
(3)利用样本箱体和剩余待校正箱体拼接搭建校正大屏
搭建校正大屏时确保样本箱体在指定位置(本实施例称之为支点位置),而剩余待校正箱体可在校正大屏其他任意位置;搭建校正大屏的分辨率较为自由,只要不超过隔点校正屏体分辨率上限即可,例如4*4隔点(仅为举例,并非用来限制本发明)校正屏体分辨率上限900*600,搭建的校正大屏屏体示意图可如图2所示,也就是说搭建的校正大屏中除了位于支点位置的样本箱体之外,还会有除样本箱体之外的剩余待校正箱体中的部分箱体或全部箱体;一般而言,样本箱体在校正大屏中的位置要求能够尽量代表整个平面,即通过样本箱体拟合出来的亮色度分布曲面尽量能够代表校正大屏整屏的亮色度分布曲面;图2是从图1所示6个样本箱体中任意选取四个搭建在校正大屏的四个角落位置,剩下的两个样本箱体搭建在校正大屏的中央位置,图2中的其他位置放置剩余待校正箱体;当然,在其他情形例如选取3个样本箱体的情形下,可以将其中一个样本箱体搭建在校正大屏的上方中间位置且另外两个样本箱体分布搭建在校正大屏的左下角或右下角,简而言之,样本箱体在校正大屏中的位置并无非常严格限制,在校正大屏中尽量分散放置即可。
(4)架设图像采集设备例如面阵相机采集校正大屏整屏红、绿、蓝原始亮色度值
第一,选择合适的校正距离(或称图像采集距离)以隔点方式采集红、绿、蓝单色图像,以4*4隔点方式作为举例来说,则需要采集的红、绿、蓝单色图像分别为十六张;
第二,提取校正大屏整屏红、绿、蓝原始亮色度值
从红、绿、蓝单色图像中提取红、绿、蓝亮色度数据为现有成熟技术,其具体步骤可为:首先对每张单色图像进行点定位,其次逐点统计每张单色图像上LED灯点亮度分量及色度分量值,然后归一化每张单色图像亮色度值(保持RGB分量配比不变),最后合并每张单色图像亮色度值;
(5)校正大屏整屏红、绿、蓝原始亮色度值逐分量进行带权重的拟合曲面修正
第一,校正大屏中各样本箱体的原始亮色度值按前述步骤(2)中的样本箱体间亮色度均值偏差比例进行调整,如下式所示:
Figure PCTCN2017086224-appb-000002
其中,originCom(i,k)表示第i分量第k个LED灯点原始值,adjustCom(i,k)表示第i分量第k个LED灯点调整值,ratio(i,j)表示第i分量第j个样本箱体的亮色度均值偏差比例;此处的调整只针对处于校正大屏支点位置的样本箱体,其它位置的待校正箱体的LED灯点原始亮色度值不做调整,经调整后各个样本箱体亮色度均值将近似于相等;
第二,利用校正大屏整屏调整后亮色度值生成带权重的拟合曲面:
基于最小二乘法的多项式曲面拟合方法属于现有成熟技术,本实施例定义关于校正大屏整屏LED灯点的亮色度值与位置坐标间关系(也即亮色度分布)的三阶拟合方程如下式所示:
f(x,y)=c1+c2x+c3y+c4xy+c5x2+c6y2+c7xy2+c8x2y+c9x3+c10y3
首先,构造拟合矩阵B如下所示:
Figure PCTCN2017086224-appb-000003
其中,前(k-1)个LED灯点表示位于校正大屏中样本箱体内部的灯点,需要新增加权重系数w(w>1),本实施例w取值10;后(n-k+1)个LED灯点表示位于校正大屏中样本箱体外部的灯点;此处可以理解的是,其假设整个校正大屏中的所有待校正箱体(包括样本箱体)的LED灯点数量总计为n,所有样本箱体的LED灯点数量总计为(k-1);
其次,构造拟合矩阵Z如下所示:
Figure PCTCN2017086224-appb-000004
其中,前(k-1)个LED灯点表示位于校正大屏中样本箱体内部的灯点,要新增加权重系数w(w>1),本实施例w取值10;后(n-k+1)个LED灯点表示位于校正大屏中样本箱体外部的灯点;拟合矩阵Z中的adjustCom(*)表示(k-1)个LED灯点经样本箱体间亮色度均值偏差比例进行调整后的分量值,此处*表示1~(k-1);
然后,计算拟合系数矩阵C如下所示:
C=[BTB]-1[BTZ]
最后,将拟合系数矩阵C代入拟合多项式f(x,y)即可计算出拟合曲 面数据surface以得到带权重的拟合曲面;此处可以理解的是,亮色度值中的每一个分量对应一个带权重的拟合曲面;
第三,利用拟合曲面修正校正大屏整屏原始亮色度值
计算校正大屏整屏拟合曲面修正后亮色度值如下式所示:
Figure PCTCN2017086224-appb-000005
其中,originCom(p,q)表示第p分量第q个LED灯点原始值,amendCom(p,q)表示第p分量第q个LED灯点拟合曲面修正值,surface(p,q)表示第p分量第q个LED灯点拟合曲面数据,AVER表示第p分量校正大屏整屏拟合曲面数据均值;
(6)设定校正目标值计算校正大屏整屏逐点校正系数
第一,计算校正大屏整屏支点位置所有样本箱体的原始亮色度均值,如下式所示:
Figure PCTCN2017086224-appb-000006
其中,fulcrumAver(i)表示第i分量的所有样本箱体均值,originCom(i,m)表示第i分量第m个样本箱体LED灯点值,num表示校正大屏整屏位于支点位置的所有样本箱体的LED灯点个数,sum(originCom(i,m))表示对所有样本箱体上总计num个LED灯点的原始亮色度值的第i分量进行求和;
第二,按校正大屏整屏所有样本箱体的原始亮色度均值牺牲百分比设定目标值,例如亮度牺牲20%目标值设定如下:
rL=(1-20%)*fulcrumAver(rL) rCx=0.6900 rCy=0.3000
gL=(1-20%)*fulcrumAver(gL) gCx=0.1700 gCy=0.7400
bL=(1-20%)*fulcrumAver(bL) bCx=0.1300 bCy=0.0800
其中,rL、gL、bL表示红、绿、蓝亮度目标值,fulcrumAver(rL)、fulcrumAver(gL)、fulcrumAver(bL)表示红、绿、蓝亮度分量的所有样本箱体均值,rCx、rCy、gCx、gCy、bCx、bCy表示红、绿、蓝色度目标值,这里色度目标值为默认值,也即不牺牲色度;本实施例以校正大屏整屏样本箱体亮度均值牺牲百分比设定目标值可保证多个分屏间的亮色度一致性;
第三,计算校正大屏整屏所有LED像素点的校正系数(或称逐点校正系数),具体计算逐点校正系数如下式所示:
coefficient=target*origin-1
其中,origin表示亮色度初始值,也即校正大屏拟合曲面修正后亮色度值;而target表示亮色度目标值,coefficient表示逐点亮色度校正系数。后续可以将校正大屏整屏逐点亮色度校正系数分割成多个箱体校正系数文件并存储至相对应的待校正箱体例如存储至其配置的接收卡。
另外,需要说明的是,当待校正箱体数目较多时,搭建一块校正大屏可能无法一次全部校正,则需要进行分屏校正。分屏校正的校正大屏搭建原则是保持支点位置的样本箱体不变,只更换其它位置的待校正箱体进行前述整屏校正,直至所有除样本箱体之外的剩余待校正箱体均校正完毕;整个实现LED箱体任意拼接的逐点校正方法流程可参考图3所示。
综上所述,本发明前述实施例可以达成以下一个或多个有益效果:(a)避免校正后拆开重新随意拼接出现的曲面过渡不一致问题;(b)避免租赁现场记录、查找箱体编号;(c)避免每个租赁现场均需要一次全屏校正的麻烦;以及(d)可让租赁商省去购买亮色度测量仪器。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多路单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多路网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
上述以软件功能单元的形式实现的集成的单元,可以存储在一个计算机可读取存储介质中。上述软件功能单元存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服 务器,或者网络设备等)执行本发明各个实施例方法的部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,简称ROM)、随机存取存储器(Random Access Memory,简称RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (6)

  1. 一种逐点校正方法,其特征在于,包括步骤:
    (i)对样箱小屏进行图像采集以得到所述样箱小屏的亮色度值,其中所述样箱小屏是由从多个待校正LED箱体中选取的至少三个作为样本箱体的LED箱体拼接而成;
    (ii)获取所述样本箱体间亮色度均值偏差比例;
    (iii)对校正大屏进行图像采集以得到所述校正大屏的原始亮色度值,其中所述校正大屏是由所述样本箱体和所述多个待校正LED箱体中除所述样本箱体之外的部分LED箱体或全部LED箱体拼接而成;
    (iv)利用所述样本箱体间亮色度均值偏差比例调整所述校正大屏中的所述样本箱体的原始亮色度值,以得到所述校正大屏的调整后亮色度值;
    (v)利用所述校正大屏的调整后亮色度值生成所述校正大屏的亮色度分布拟合曲面以及利用所述亮色度分布拟合曲面修正所述校正大屏的原始亮色度值以得到所述校正大屏的拟合曲面修正后亮色度值;以及
    (vi)基于所述校正大屏中的所述样本箱体的原始亮色度值均值设定亮色度目标值并将所述校正大屏的拟合曲面修正后亮色度值作为亮色度初始值以得到所述校正大屏的整屏逐点校正系数。
  2. 如权利要求1所述的逐点校正方法,其特征在于,在步骤(vi)后还包括步骤:将所述校正大屏的整屏逐点校正系数分割成多个箱体校正系数文件并存储至相对应的待校正箱体配置的接收卡。
  3. 如权利要求1所述的逐点校正方法,其特征在于,当所述校正大屏是由所述样本箱体和所述多个待校正LED箱体中除所述样本箱体之外的部分LED箱体而非全部LED箱体拼接而成时,还包括步骤:保持所述样本箱体不变并更换其他位置的LED箱体为剩余待校正LED箱体中的部分或全部LED箱体以得到新的校正大屏,对所述新的校正大屏进行图像采集以得到所述新的校正大屏的原始亮色度值以及再次执行步骤(iv)、步骤(v)和步骤(v)以得到所述新的校正大屏的整屏逐点校正系数。
  4. 如权利要求1所述的逐点校正方法,其特征在于,步骤(v)包括:对所述校正大屏的调整后亮色度值进行基于最小二乘法的多项式曲面拟合并给予所述校正大屏中的所述样本箱体的调整后亮色度值大于1的权重系数,以生成所述校正大屏的亮色度分布拟合曲面。
  5. 如权利要求1所述的逐点校正方法,其特征在于,步骤(vi)包括:将所述校正大屏中的所述样本箱体的原始亮色度均值中的亮度均值牺牲一定百分比作为所述亮色度目标值中的亮度目标值,以及将所述亮色度目标值中的色度目标值设为默认值。
  6. 如权利要求1至5任意一项所述的逐点校正方法,其特征在于,所述LED箱体为RGB全彩LED箱体。
PCT/CN2017/086224 2016-11-17 2017-05-26 逐点校正方法 WO2018090597A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/388,893 US10726776B2 (en) 2016-11-17 2019-04-19 Pixel-by-pixel calibration method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611013396.9 2016-11-17
CN201611013396.9A CN108074517B (zh) 2016-11-17 2016-11-17 逐点校正方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/388,893 Continuation US10726776B2 (en) 2016-11-17 2019-04-19 Pixel-by-pixel calibration method

Publications (1)

Publication Number Publication Date
WO2018090597A1 true WO2018090597A1 (zh) 2018-05-24

Family

ID=62146010

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/086224 WO2018090597A1 (zh) 2016-11-17 2017-05-26 逐点校正方法

Country Status (3)

Country Link
US (1) US10726776B2 (zh)
CN (1) CN108074517B (zh)
WO (1) WO2018090597A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109658862A (zh) * 2018-12-28 2019-04-19 卡莱特(深圳)云科技有限公司 一种led箱体亮色度校正方法及校正系统
CN112150965A (zh) * 2019-06-27 2020-12-29 西安诺瓦星云科技股份有限公司 拼接亮暗线校正方法及拼接亮暗线校正系统
CN112634823A (zh) * 2020-12-29 2021-04-09 深圳Tcl数字技术有限公司 显示屏箱体边缘参数校正方法及装置、设备、存储介质

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108648689A (zh) * 2018-06-09 2018-10-12 厦门强力巨彩光电科技有限公司 一种基于相机的led显示屏自动修缝方法及系统
US11961484B2 (en) 2018-08-31 2024-04-16 Xi'an Novastar Tech Co., Ltd. Correction method, correction device and correction system for free full-screen splicing
CN110277048A (zh) * 2019-06-10 2019-09-24 惠州市华星光电技术有限公司 显示装置及调整显示装置色差的方法
CN111554233B (zh) * 2020-05-09 2021-07-23 深圳市洲明科技股份有限公司 Led显示屏校正的方法、终端及存储介质
CN112185300A (zh) * 2020-10-14 2021-01-05 西安诺瓦星云科技股份有限公司 显示屏的校正方法、装置、存储介质和处理器
CN112542132A (zh) * 2020-11-17 2021-03-23 长春希达电子技术有限公司 Led显示屏单箱校正光学参数一致化修正方法
CN112201203B (zh) * 2020-12-07 2021-02-19 卡莱特(深圳)云科技有限公司 一种led显示屏的亮度梯度误差确定方法及装置
CN112233570B (zh) * 2020-12-16 2021-04-02 卡莱特(深圳)云科技有限公司 弧形屏校正方法、装置、计算机设备和存储介质
CN113473114B (zh) * 2021-07-09 2023-05-05 中国人民解放军91550部队 一种用于校准分焦平面偏振相机像元非均匀性的方法
CN113889028A (zh) * 2021-09-23 2022-01-04 惠州市艾比森光电有限公司 显示屏箱体的校正方法及装置
CN114078426B (zh) * 2021-09-30 2022-12-27 卡莱特云科技股份有限公司 消除相机曲面对灯点图像影响的方法及显示屏校正方法
CN115050341B (zh) * 2022-08-15 2022-12-09 广州朗国电子科技股份有限公司 一种屏幕色彩调节均匀的方法、装置及存储介质
CN116741069B (zh) * 2023-08-11 2023-10-27 宜宾本色精密工业有限公司 一种曲面液晶显示优化方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011008002A (ja) * 2009-06-25 2011-01-13 Mitsubishi Electric Corp 映像表示装置、光度補正データ生成装置および光度補正データ生成方法
CN103824544A (zh) * 2014-02-28 2014-05-28 西安诺瓦电子科技有限公司 Led显示屏的校正方法、装置及系统
CN104464633A (zh) * 2014-12-25 2015-03-25 西安诺瓦电子科技有限公司 Led显示单元的校正方法及校正装置
CN104485068A (zh) * 2014-12-02 2015-04-01 西安诺瓦电子科技有限公司 一种led显示屏的亮色度校正方法及系统
CN105654894A (zh) * 2014-11-12 2016-06-08 西安诺瓦电子科技有限公司 Led亮色度校正方法
CN106023886A (zh) * 2016-08-16 2016-10-12 深圳市灵星雨科技开发有限公司 一种led逐点亮色度校正方法和系统

Family Cites Families (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5805117A (en) * 1994-05-12 1998-09-08 Samsung Electronics Co., Ltd. Large area tiled modular display system
US5734369A (en) * 1995-04-14 1998-03-31 Nvidia Corporation Method and apparatus for dithering images in a digital display system
US6456339B1 (en) * 1998-07-31 2002-09-24 Massachusetts Institute Of Technology Super-resolution display
US6310650B1 (en) * 1998-09-23 2001-10-30 Honeywell International Inc. Method and apparatus for calibrating a tiled display
JP2000298731A (ja) * 1999-04-15 2000-10-24 Oki Data Corp アウトラインフォント編集方法とその装置
US7006055B2 (en) * 2001-11-29 2006-02-28 Hewlett-Packard Development Company, L.P. Wireless multi-user multi-projector presentation system
US7190331B2 (en) * 2002-06-06 2007-03-13 Siemens Corporate Research, Inc. System and method for measuring the registration accuracy of an augmented reality system
US6881946B2 (en) * 2002-06-19 2005-04-19 Eastman Kodak Company Tiled electro-optic imaging device
US6999045B2 (en) * 2002-07-10 2006-02-14 Eastman Kodak Company Electronic system for tiled displays
JP2004080402A (ja) * 2002-08-19 2004-03-11 Nec Viewtechnology Ltd ダイナミックホワイトバランス調整回路及びマルチ画面表示装置
US7038727B2 (en) * 2002-10-30 2006-05-02 The University Of Chicago Method to smooth photometric variations across multi-projector displays
GB0227946D0 (en) * 2002-11-29 2003-01-08 Univ East Anglia Signal enhancement
WO2005015490A2 (en) * 2003-07-02 2005-02-17 Trustees Of Columbia University In The City Of New York Methods and systems for compensating an image projected onto a surface having spatially varying photometric properties
EP1501069B1 (en) * 2003-07-22 2005-11-09 Barco N.V. Method for controlling an organic light-emitting diode display, and display arranged to apply this method
WO2005011287A2 (en) * 2003-07-23 2005-02-03 Avid Technology, Inc. Display color calibration system
US7075552B2 (en) * 2003-08-25 2006-07-11 Integrated Color Solutions, Inc. System and method for display grid characterization, calibration, and verification
US20050134525A1 (en) * 2003-12-23 2005-06-23 Gino Tanghe Control system for a tiled large-screen emissive display
US7365720B2 (en) * 2003-12-23 2008-04-29 Barco N.V. Colour calibration of emissive display devices
US20050134526A1 (en) * 2003-12-23 2005-06-23 Patrick Willem Configurable tiled emissive display
US20070242240A1 (en) * 2006-04-13 2007-10-18 Mersive Technologies, Inc. System and method for multi-projector rendering of decoded video data
EP1879169A1 (en) * 2006-07-14 2008-01-16 Barco N.V. Aging compensation for display boards comprising light emitting elements
WO2008122978A2 (en) * 2007-04-05 2008-10-16 Itzhak Pomerantz Screen seaming device system and method
EP2023187B1 (en) * 2007-08-06 2012-10-31 Barco N.V. Seam hider for tiled displays
US20100020107A1 (en) * 2008-07-23 2010-01-28 Boundary Net, Incorporated Calibrating pixel elements
US20100019997A1 (en) * 2008-07-23 2010-01-28 Boundary Net, Incorporated Calibrating pixel elements
CN201868072U (zh) * 2009-09-01 2011-06-15 惠州市德赛智能科技有限公司 Led显示屏整屏现场逐点亮度色度校准系统
US20110216205A1 (en) * 2010-03-03 2011-09-08 Christie Digital Systems Usa, Inc. Automatic calibration of projection system using non-visible light
US20110298763A1 (en) * 2010-06-07 2011-12-08 Amit Mahajan Neighborhood brightness matching for uniformity in a tiled display screen
CN102402944B (zh) * 2011-12-20 2014-11-12 深圳市奥拓电子股份有限公司 一种led显示屏逐点校正系统及逐点校正方法
JP2014060545A (ja) * 2012-09-14 2014-04-03 Sharp Corp マルチディスプレイのキャリブレーションシステム及び記録媒体
KR20140070120A (ko) * 2012-11-30 2014-06-10 삼성전자주식회사 디스플레이 장치의 색 보정 장치 및 그 보정 방법
JP2016519330A (ja) * 2013-03-15 2016-06-30 スケーラブル ディスプレイ テクノロジーズ インコーポレイテッド 短焦点カメラを用いてディスプレイシステムを校正するためのシステム及び方法
KR20140126606A (ko) * 2013-04-23 2014-10-31 엘지전자 주식회사 비디오 월의 색좌표 또는 휘도의 보정장치 및 보정방법
JP5800946B2 (ja) * 2013-05-10 2015-10-28 キヤノン株式会社 画像表示装置及びその制御方法
CN103559864B (zh) * 2013-11-11 2015-09-09 西安诺瓦电子科技有限公司 Led显示模块的亮色度校正方法
US9059337B1 (en) * 2013-12-24 2015-06-16 Christie Digital Systems Usa, Inc. Method, system and apparatus for dynamically monitoring and calibrating display tiles
US9911176B2 (en) * 2014-01-11 2018-03-06 Userful Corporation System and method of processing images into sub-image portions for output to a plurality of displays such as a network video wall
CN103927980A (zh) * 2014-03-10 2014-07-16 深圳市奥拓电子股份有限公司 一种led显示屏的逐点校正方法及校正装置
TWI530927B (zh) * 2014-06-06 2016-04-21 瑞軒科技股份有限公司 顯示亮度的調校方法、畫面顯示方法以及顯示裝置
US9672768B2 (en) * 2014-06-24 2017-06-06 Xi'an Novastar Tech Co., Ltd. Luminance-chrominance calibration production line of LED display module
US9626145B1 (en) * 2014-06-27 2017-04-18 X Development Llc Tileable display with pixel-tape
TWI545554B (zh) * 2014-09-18 2016-08-11 宏正自動科技股份有限公司 視訊牆之自動安裝方法及其系統
KR102282369B1 (ko) * 2014-11-28 2021-07-27 삼성전자주식회사 비디오 월 제어 장치 및 비디오 월 제어 방법
US9477438B1 (en) * 2015-09-25 2016-10-25 Revolution Display, Llc Devices for creating mosaicked display systems, and display mosaic systems comprising same
US10217440B2 (en) * 2016-03-17 2019-02-26 Nanolumens Acquisition, Inc. In-situ display monitoring and calibration system and methods
WO2017190797A1 (en) * 2016-05-06 2017-11-09 Arcelik Anonim Sirketi System and method for correcting white luminescence in video wall display systems
US10798373B2 (en) * 2016-07-22 2020-10-06 Sharp Kabushiki Kaisha Display correction apparatus, program, and display correction system
WO2018155104A1 (ja) * 2017-02-23 2018-08-30 富士フイルム株式会社 感光性組成物、硬化膜、カラーフィルタ、固体撮像素子および画像表示装置
WO2018206088A1 (en) * 2017-05-09 2018-11-15 Arcelik Anonim Sirketi System and method for adjusting settings of a video wall display system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011008002A (ja) * 2009-06-25 2011-01-13 Mitsubishi Electric Corp 映像表示装置、光度補正データ生成装置および光度補正データ生成方法
CN103824544A (zh) * 2014-02-28 2014-05-28 西安诺瓦电子科技有限公司 Led显示屏的校正方法、装置及系统
CN105654894A (zh) * 2014-11-12 2016-06-08 西安诺瓦电子科技有限公司 Led亮色度校正方法
CN104485068A (zh) * 2014-12-02 2015-04-01 西安诺瓦电子科技有限公司 一种led显示屏的亮色度校正方法及系统
CN104464633A (zh) * 2014-12-25 2015-03-25 西安诺瓦电子科技有限公司 Led显示单元的校正方法及校正装置
CN106023886A (zh) * 2016-08-16 2016-10-12 深圳市灵星雨科技开发有限公司 一种led逐点亮色度校正方法和系统

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109658862A (zh) * 2018-12-28 2019-04-19 卡莱特(深圳)云科技有限公司 一种led箱体亮色度校正方法及校正系统
CN109658862B (zh) * 2018-12-28 2021-11-02 卡莱特云科技股份有限公司 一种led箱体亮色度校正方法及校正系统
CN112150965A (zh) * 2019-06-27 2020-12-29 西安诺瓦星云科技股份有限公司 拼接亮暗线校正方法及拼接亮暗线校正系统
CN112150965B (zh) * 2019-06-27 2022-03-22 西安诺瓦星云科技股份有限公司 拼接亮暗线校正方法及拼接亮暗线校正系统
CN112634823A (zh) * 2020-12-29 2021-04-09 深圳Tcl数字技术有限公司 显示屏箱体边缘参数校正方法及装置、设备、存储介质

Also Published As

Publication number Publication date
CN108074517B (zh) 2019-11-29
US10726776B2 (en) 2020-07-28
US20190244561A1 (en) 2019-08-08
CN108074517A (zh) 2018-05-25

Similar Documents

Publication Publication Date Title
WO2018090597A1 (zh) 逐点校正方法
CN110085166B (zh) 曲面屏幕的亮斑补偿方法及装置
US9135851B2 (en) Methods and systems for measuring and correcting electronic visual displays
US8267523B2 (en) Image projecting system, method, computer program and recording medium
JP5535431B2 (ja) 表示の形状及び色の自動較正及び修正のためのシステム及び方法
WO2020042153A1 (zh) 全屏任意拼接的校正方法、校正装置及校正系统
CN103220482B (zh) 一种全自由度调整投影画面位置及尺寸的方法
CN105185302B (zh) 单色图像间灯点位置偏差修正方法及其应用
CN107025881B (zh) 显示单元的校正方法及装置
CN111402825A (zh) 一种屏幕校正方法、装置、系统和逻辑板
CN111402827B (zh) 一种lcd拼接屏校正方法、装置和系统及控制系统
CN110322830B (zh) Led屏亮度校正方法及装置
CN113724652A (zh) OLED显示面板Mura的补偿方法、装置及可读介质
US20040263497A1 (en) Low resolution acquisition method and device for controlling a display screen
CN112185301A (zh) 显示装置的校正方法及装置、处理器
CN110992913A (zh) 一种液晶显示屏颜色补充校正方法
WO2019134317A1 (zh) Led显示屏的整屏校正方法、校正系统及存储介质
CN102117603A (zh) 背光值的提取方法及装置
US10971044B2 (en) Methods and systems for measuring electronic visual displays using fractional pixels
WO2024001502A1 (zh) 屏幕显示方法、屏幕显示装置、电子设备、程序及介质
US11837139B2 (en) Method for collection and correction of display unit
US7330580B2 (en) System and method for inspecting an LCD panel
CN116684563B (zh) 图像显示的光质量修正方法、系统及图像显示方法、系统
CN114677958B (zh) 一种led显示屏的校正方法、装置及系统
US20150187299A1 (en) Method for Collecting Full Grayscale Data of LCD Based On CCD Camera

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17872708

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17.10.2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17872708

Country of ref document: EP

Kind code of ref document: A1