WO2018088079A1 - 化合物、薄膜形成用原料、薄膜の製造方法及びアミジン化合物 - Google Patents

化合物、薄膜形成用原料、薄膜の製造方法及びアミジン化合物 Download PDF

Info

Publication number
WO2018088079A1
WO2018088079A1 PCT/JP2017/036318 JP2017036318W WO2018088079A1 WO 2018088079 A1 WO2018088079 A1 WO 2018088079A1 JP 2017036318 W JP2017036318 W JP 2017036318W WO 2018088079 A1 WO2018088079 A1 WO 2018088079A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
compound
group
carbon atoms
alkyl group
Prior art date
Application number
PCT/JP2017/036318
Other languages
English (en)
French (fr)
Inventor
智晴 吉野
奈奈 杉浦
章浩 西田
敦史 山下
Original Assignee
株式会社Adeka
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Adeka filed Critical 株式会社Adeka
Priority to EP17868933.7A priority Critical patent/EP3539973A4/en
Priority to CN201780068589.0A priority patent/CN109923119B/zh
Priority to US16/346,724 priority patent/US11161867B2/en
Priority to KR1020197015045A priority patent/KR102503603B1/ko
Priority to JP2018550070A priority patent/JP7075891B2/ja
Priority to IL266365A priority patent/IL266365B2/en
Publication of WO2018088079A1 publication Critical patent/WO2018088079A1/ja
Priority to US17/490,227 priority patent/US11618762B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/06Cobalt compounds
    • C07F15/065Cobalt compounds without a metal-carbon linkage
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C251/00Compounds containing nitrogen atoms doubly-bound to a carbon skeleton
    • C07C251/02Compounds containing nitrogen atoms doubly-bound to a carbon skeleton containing imino groups
    • C07C251/04Compounds containing nitrogen atoms doubly-bound to a carbon skeleton containing imino groups having carbon atoms of imino groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C251/06Compounds containing nitrogen atoms doubly-bound to a carbon skeleton containing imino groups having carbon atoms of imino groups bound to hydrogen atoms or to acyclic carbon atoms to carbon atoms of a saturated carbon skeleton
    • C07C251/08Compounds containing nitrogen atoms doubly-bound to a carbon skeleton containing imino groups having carbon atoms of imino groups bound to hydrogen atoms or to acyclic carbon atoms to carbon atoms of a saturated carbon skeleton being acyclic
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C257/00Compounds containing carboxyl groups, the doubly-bound oxygen atom of a carboxyl group being replaced by a doubly-bound nitrogen atom, this nitrogen atom not being further bound to an oxygen atom, e.g. imino-ethers, amidines
    • C07C257/10Compounds containing carboxyl groups, the doubly-bound oxygen atom of a carboxyl group being replaced by a doubly-bound nitrogen atom, this nitrogen atom not being further bound to an oxygen atom, e.g. imino-ethers, amidines with replacement of the other oxygen atom of the carboxyl group by nitrogen atoms, e.g. amidines
    • C07C257/14Compounds containing carboxyl groups, the doubly-bound oxygen atom of a carboxyl group being replaced by a doubly-bound nitrogen atom, this nitrogen atom not being further bound to an oxygen atom, e.g. imino-ethers, amidines with replacement of the other oxygen atom of the carboxyl group by nitrogen atoms, e.g. amidines having carbon atoms of amidino groups bound to acyclic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/18Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metallo-organic compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45553Atomic layer deposition [ALD] characterized by the use of precursors specially adapted for ALD

Definitions

  • the present invention relates to a novel compound, a thin film forming material containing the compound, a method for producing a thin film using the thin film forming material, and a novel amidine compound.
  • Thin film materials containing metallic elements are applied to various applications because they exhibit electrical properties, optical properties, and the like.
  • copper and copper-containing thin films are applied as wiring materials for LSIs because of their properties of high conductivity, high electromigration resistance, and high melting point.
  • Nickel and nickel-containing thin films are mainly used as members of electronic parts such as resistive films and barrier films, members for recording media such as magnetic films, and members for thin film solar cells such as electrodes.
  • Cobalt and cobalt-containing thin films are used for electrode films, resistance films, adhesive films, magnetic tapes, cemented carbide tools and the like.
  • Examples of the method for producing the above-mentioned thin film include a sputtering method, an ion plating method, a coating thermal decomposition method, a MOD method such as a sol-gel method, and a chemical vapor deposition method.
  • a sputtering method an ion plating method
  • a coating thermal decomposition method a coating thermal decomposition method
  • a MOD method such as a sol-gel method
  • a chemical vapor deposition method since it has many advantages such as excellent composition controllability, step coverage, suitable for mass production, and hybrid integration, atomic layer deposition (hereinafter referred to simply as ALD (Atomic Layer) Chemical vapor deposition (hereinafter, also simply referred to as CVD) including the method sometimes referred to as “deposition” is an optimal manufacturing process.
  • ALD Atomic Layer
  • CVD Chemical vapor deposition
  • Patent Document 1 discloses a method of forming a thin film containing metal using volatile metal amidinate.
  • Patent Document 2 discloses a diazadiene-based metal compound that can be used for a chemical vapor deposition method or an atomic layer deposition method. Patent Document 1 and Patent Document 2 do not describe the compound of the present invention at all.
  • the material for forming a thin film which has a high vapor pressure, a low melting point and can produce a high quality metal-containing thin film Is required. None of the conventionally known raw materials for thin film formation show such physical properties. Among them, in order to improve the productivity, it is necessary to improve the transportability of the thin film forming material, and therefore, a material having a low melting point has been strongly demanded.
  • the present invention provides a compound represented by the following general formula (1), a raw material for forming a thin film containing the compound, and a method for producing a thin film using the raw material.
  • R 1 represents a linear or branched alkyl group having 1 to 5 carbon atoms
  • R 2 represents hydrogen or a linear or branched alkyl group having 1 to 5 carbon atoms
  • R 3 And R 4 each independently represents a linear or branched alkyl group having 1 to 5 carbon atoms
  • A represents an alkanediyl group having 1 to 4 carbon atoms
  • M represents copper, iron, nickel, cobalt or Represents manganese.
  • the present invention also provides an amidine compound represented by the following general formula (2).
  • R 5 represents a linear or branched alkyl group having 1 to 5 carbon atoms
  • R 6 represents hydrogen or a linear or branched alkyl group having 1 to 5 carbon atoms
  • R 7 And R 8 each independently represents a linear or branched alkyl group having 1 to 5 carbon atoms
  • L represents an alkanediyl group having 1 to 4 carbon atoms, provided that R 5 is an ethyl group and
  • R 6 is hydrogen, L is a branched alkanediyl group having 3 carbon atoms, or an alkanediyl group having 4 carbon atoms, and R 5 is an ethyl group or a tertiary butyl group and R 6
  • L is a methyl group
  • L is an alkanediyl group having 3 or 4 carbon atoms.
  • the present invention it is possible to obtain a compound having a high vapor pressure, and a low melting point which becomes liquid at normal pressure of 30 ° C. or slight heating.
  • the compound is particularly suitable as a raw material for forming a metal-containing thin film by the CVD method, and can be preferably used as a raw material for forming a metal-containing thin film by the ALD method.
  • the cobalt-containing compound of the present invention is used as a raw material for thin film formation by the ALD method, since the cobalt-containing thin film is not formed on the surfaces of the silicon substrate and the silicon oxide substrate, the silicon substrate and the oxide are oxidized.
  • a cobalt-containing thin film can be selectively formed only on a pattern of a copper layer or a ruthenium layer. Further, according to the present invention, an amidine compound which can be used to synthesize the above-mentioned compound can be obtained.
  • FIG. 1 is a schematic view showing an example of an apparatus for chemical vapor deposition used in the method for producing a thin film according to the present invention.
  • FIG. 2 is a schematic view showing another example of the apparatus for chemical vapor deposition used in the method for producing a thin film according to the present invention.
  • FIG. 3 is a schematic view showing another example of the apparatus for chemical vapor deposition used in the method for producing a thin film according to the present invention.
  • FIG. 4 is a schematic view showing another example of the apparatus for chemical vapor deposition used in the method for producing a thin film according to the present invention.
  • the compound of the present invention is a compound represented by the above general formula (1), which is suitable as a precursor of a thin film production method having a vaporization process such as a CVD method, and a thin film is formed by using the ALD method. You can also.
  • the compounds of the present invention are low melting point compounds which are liquid at normal pressure of 30 ° C. or liquid at slight heating.
  • a compound having a low melting point is suitable as a precursor of a thin film production method having a vaporization step such as a CVD method because the compound has good transportability.
  • Examples of the linear or branched alkyl group having 1 to 5 carbon atoms represented by R 1 , R 2 , R 3 and R 4 in the above general formula (1) include, for example, methyl group, ethyl group, propyl Groups, isopropyl group, butyl group, isobutyl group, secondary butyl group, tertiary butyl group, pentyl group, isopentyl group and the like.
  • Examples of the alkanediyl group having 1 to 4 carbon atoms represented by A in the general formula (1) include a methylene group, an ethylene group, a propane-1,3-diyl group, a propane-1,2-diyl group. Groups, butylene group, butane-1,3-diyl group, butane-2,3-diyl group, butane-1,2-diyl group and the like.
  • M represents copper, iron, nickel, cobalt or manganese.
  • a compound in which M is copper, cobalt or nickel is preferable because it can form a thin film having a low melting point and a low residual carbon content by the ALD method, and in particular a compound in which M is cobalt, high quality cobalt atom containing It is preferable from the ability to form a thin film.
  • R 1 is a secondary or tertiary alkyl group having 3 to 5 carbon atoms are preferable because of their low melting points, and R 1 is preferably a tertiary alkyl having 3 to 5 carbon atoms.
  • Compounds which are groups are particularly preferred.
  • Compounds of the above general formula (1) in which R 2 is hydrogen, a methyl group or an ethyl group are preferable because they have a low melting point and a high vapor pressure. Among them, compounds in which R 2 is a methyl group are particularly preferable.
  • a compound in which R 3 and R 4 are a methyl group or an ethyl group is preferable because of its low melting point and high vapor pressure.
  • compounds in which R 3 and R 4 are methyl groups are particularly preferable.
  • Compounds of the above general formula (1) in which A is an ethylene group, a propane-1,3-diyl group or a propane-1,2-diyl group are preferable because they have a low melting point and a high vapor pressure.
  • compounds in which A is a propane-1,2-diyl group are particularly preferable.
  • R 1 to R 4 and A can be appropriately selected depending on the solubility in the solvent used, the thin film formation reaction and the like.
  • Preferred specific examples of the compound in which M is cobalt in the above general formula (1) include, for example, the compounds No. 1 and 2 below. 1 to No. 18 can be mentioned.
  • compound No. 1 As preferable specific examples of the compound in which M is copper in the above general formula (1), for example, compound No. 1 below can be used. 19 to No. 36 can be mentioned. In addition, the following compound No. 19 to No. In 36, “Me” represents a methyl group, “Et” represents an ethyl group, and “tBu” represents a tertiary butyl group.
  • compound No. 1 As a preferable specific example of a compound in which M is nickel in the above general formula (1), for example, compound No. 1 below can be used. 37 to No. 54 can be mentioned. In addition, the following compound No. 37 to No. In 54, “Me” represents a methyl group, “Et” represents an ethyl group, and “tBu” represents a tertiary butyl group.
  • the compound of the present invention is not particularly limited by the method for producing it, and is produced by applying well-known reactions.
  • the amidine compound of the structure corresponding to cobalt (II) chloride is made to react in normal butyl lithium presence.
  • the raw material for thin film formation of the present invention is a precursor of the thin film formed by using the compound of the present invention described above as a precursor of the thin film, and the form differs depending on the manufacturing process to which the raw material for thin film formation is applied.
  • the raw material for thin film formation of the present invention does not contain metal compounds other than the above compounds. It is.
  • the raw material for forming a thin film of the present invention is a compound containing a desired metal and / or a metalloid (in addition to the above compounds Hereinafter, it is also referred to as other precursors).
  • the thin film forming material of the present invention may further contain an organic solvent and / or a nucleophile, as described later.
  • the physical properties of the compound which is a precursor are suitable for the CVD method and the ALD method, and particularly the raw material for chemical vapor deposition (hereinafter sometimes referred to as a raw material for CVD) Useful as.
  • the raw material for thin film formation of this invention is a raw material for chemical vapor deposition
  • the form is suitably selected by methods, such as a transport supply method of the CVD method to be used.
  • the CVD raw material is vaporized into a vapor by heating and / or depressurizing in a container (hereinafter, also simply referred to as a raw material container) in which the raw material is stored.
  • a container hereinafter, also simply referred to as a raw material container
  • Gas transport method for introducing the vapor into a film forming chamber (hereinafter also referred to as a deposition reaction unit) in which a substrate is installed, together with a carrier gas such as argon, nitrogen, or helium used accordingly
  • a carrier gas such as argon, nitrogen, or helium used accordingly
  • the raw material is transported in the form of liquid or solution to a vaporization chamber, vaporized by heating and / or depressurization in the vaporization chamber to turn into a vapor, and the vapor is introduced into the deposition chamber.
  • the compound represented by the above general formula (1) can be used as a raw material for CVD.
  • the compound represented by the above general formula (1) or a solution in which the compound is dissolved in an organic solvent can be used as a raw material for CVD.
  • These CVD materials may further contain other precursors, nucleophilic reagents and the like.
  • the method of vaporizing and supplying the raw materials for CVD independently for each component (hereinafter sometimes referred to as single source method) and the multi-component raw material were mixed in advance with a desired composition.
  • a method of vaporizing and supplying the mixed material (hereinafter sometimes referred to as a cocktail source method).
  • a cocktail source method a mixture of the compound of the present invention and another precursor or a mixed solution of the mixture in an organic solvent can be used as a raw material for CVD.
  • the mixture or mixed solution may further contain a nucleophile or the like.
  • organic solvents are not particularly limited, and known organic solvents can be used.
  • the organic solvent include acetic acid esters such as ethyl acetate, butyl acetate and methoxyethyl acetate; tetrahydrofuran, tetrahydropyran, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, dibutyl ether, ethers such as dioxane; methyl Ketones such as butyl ketone, methyl isobutyl ketone, ethyl butyl ketone, dipropyl ketone, diisobutyl ketone, methyl amyl ketone, cyclohexanone and methyl cyclohexanone; hexane, cyclohexane, methylcyclohexane, dimethylcyclohexane, dimethylcyclohexane, ethylcyclohexan
  • organic solvents may be used alone or in combination of two or more, depending on the solubility of the solute, the relationship between the operating temperature and the boiling point, the flash point, and the like.
  • the total amount of the precursor in the raw material for CVD which is a solution in which the precursor is dissolved in the organic solvent, is 0.01 to 2.0 mol / l, particularly 0.05 to 1.0 mol / l. It is preferable to use a liter.
  • the amount of the entire precursor is the amount of the compound of the present invention when the raw material for forming a thin film of the present invention does not contain a metal compound and a semimetal compound other than the compound of the present invention.
  • the raw material contains a compound containing another metal in addition to the compound and / or a compound containing a metalloid (other precursor), it is the total amount of the compound of the present invention and the other precursor.
  • the other precursors mentioned above are known in the art and their methods of preparation are also known.
  • the inorganic salt of the metal described above or the hydrate thereof is reacted with an alkali metal alkoxide of the alcohol compound, for example.
  • a precursor can be produced.
  • metal inorganic salts or hydrates thereof include metal halides, nitrates and the like
  • alkali metal alkoxides include sodium alkoxide, lithium alkoxide, potassium alkoxide and the like.
  • the other precursor mentioned above is preferably a compound having a similar thermal and / or oxidative degradation behavior to the compound of the present invention in the case of the single source method, and in the case of the cocktail source method, the thermal and / or oxidative degradation In addition to their similar behavior, those which do not cause deterioration due to chemical reaction or the like during mixing are preferred.
  • examples of the precursor containing titanium, zirconium or hafnium include compounds represented by the following formulas (II-1) to (II-5).
  • R c represents an alkyl group having 1 to 8 carbon atoms
  • R d represents an alkylene group having 2 to 18 carbon atoms which may be branched
  • R e and R f each independently represent
  • R g , R h , R k and R j each independently represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms
  • p is 0
  • q represents 0 or 2
  • r represents an integer of 0 to 3
  • s represents an integer of 0 to 4
  • t represents an integer of 1 to 4.
  • alkyl group having 1 to 8 carbon atoms represented by R c a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, a secondary butyl group, a tertiary butyl group, a tertiary butyl group, an isobutyl group, a pentyl group , Isopentyl group, neopentyl group, tertiary pentyl group, hexyl group, 1-ethylpentyl group, cyclohexyl group, 1-methylcyclohexyl group, heptyl group, isoheptyl group, tertiary heptyl group, n-octyl group, isooctyl group, Examples thereof include trioctyl group and 2-ethylhexyl group.
  • a branched alkylene group having 2 to 18 carbon atoms represented by R d is a group given by a glycol, and examples of the glycol include 1,2-ethanediol, 1, 2 -Propanediol, 1,3-propanediol, 1,3-butanediol, 2,4-hexanediol, 2,2-dimethyl-1,3-propanediol, 2,2-diethyl-1,3-propanediol , 2,2-diethyl-1,3-butanediol, 2-ethyl-2-butyl-1,3-propanediol, 2,4-pentanediol, 2-methyl-1,3-propanediol, 1-methyl And -2,4-pentanediol and the like.
  • examples of the alkyl group having 1 to 3 carbon atoms represented by R e and R f include a methyl group, an ethyl group, a propyl group and a 2-propyl group.
  • examples of the alkyl group having 1 to 4 carbon atoms represented by R g , R h , R j and R k include methyl, ethyl, propyl, isopropyl, butyl, butyl, sec-butyl and tert-butyl And isobutyl group.
  • precursors containing a rare earth element include compounds represented by the following formulas (III-1) to (III to 3).
  • M 2 represents a rare earth atom, and each of R a and R b may be independently substituted with a halogen atom, and may contain an oxygen atom in the chain, and an alkyl group having 1 to 20 carbon atoms.
  • R c represents an alkyl group having 1 to 8 carbon atoms
  • R e and R f each independently represent a hydrogen atom or an alkyl group having 1 to 3 carbon atoms
  • R g and R j each represent Independently, it represents an alkyl group having 1 to 4 carbon atoms
  • p ′ represents an integer of 0 to 3
  • r ′ represents an integer of 0 to 2.
  • rare earth atoms represented by M 2 in the above-mentioned precursors containing rare earth elements scandium, yttrium, lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, Ytterbium and lutetium can be mentioned.
  • Examples of the group represented by R a , R b , R c , R e , R f , R g and R j include the groups exemplified for the above-mentioned precursor containing titanium.
  • the raw material for forming a thin film of the present invention may optionally contain a nucleophile in order to impart the stability of the compound of the present invention and other precursors.
  • a nucleophile ethylene glycol ethers such as glyme, diglyme, triglyme, tetraglyme, 18-crown-6, dicyclohexyl-18-crown-6, 24-crown-8, dicyclohexyl-24-crown-8 Crown ethers such as dibenzo-24-crown-8, ethylenediamine, N, N'-tetramethylethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, 1,1,4,7,7- Polyamines such as pentamethyldiethylenetriamine, 1,1,4,7,10,10-hexamethyltriethylenetetramine, triethoxytriethyleneamine, cyclic polyamines such as cyclam and cyclen, pyr
  • the raw material for thin film formation of the present invention is made to contain as much as possible impurity metal elements other than the components constituting the film, impurity halogens such as impurity chlorine, and impurity organic components.
  • the impurity metal element content is preferably 100 ppb or less, more preferably 10 ppb or less, and 1 ppm or less in total, and more preferably 100 ppb or less in each element.
  • the film is used as a gate insulating film, gate film or barrier layer of LSI, it is necessary to reduce the content of alkali metal elements and alkaline earth metal elements which affect the electric characteristics of the obtained thin film.
  • the total amount of the organic impurities is preferably 500 ppm or less, more preferably 50 ppm or less, and most preferably 10 ppm or less.
  • the precursor, the organic solvent, and the nucleophile for reducing the respective water content It is better to remove water as much as possible before use.
  • the water content of each of the precursor, the organic solvent and the nucleophile is preferably 10 ppm or less, more preferably 1 ppm or less.
  • the raw material for thin film formation of the present invention is preferably made to contain particles as little as possible.
  • the number of particles larger than 0.3 ⁇ m is preferably 100 or less in 1 mL of liquid phase, and larger than 0.2 ⁇ m
  • the number of particles is more preferably 1000 or less in 1 mL of liquid phase, and most preferably the number of particles larger than 0.2 ⁇ m is 100 or less in 1 mL of liquid phase.
  • a vapor obtained by vaporizing the raw material for thin film deposition of the present invention and a reactive gas used as needed Is introduced into a deposition chamber in which the precursor is placed, and then the precursor is decomposed and / or chemically reacted on the substrate to grow and deposit a metal-containing thin film on the substrate surface.
  • a vapor obtained by vaporizing the raw material for thin film deposition of the present invention and a reactive gas used as needed Is introduced into a deposition chamber in which the precursor is placed, and then the precursor is decomposed and / or chemically reacted on the substrate to grow and deposit a metal-containing thin film on the substrate surface.
  • Examples of the reactive gas to be used according to the above requirements include oxygen, ozone, nitrogen dioxide, nitrogen monoxide, water vapor, hydrogen peroxide, formic acid, acetic acid, acetic anhydride and the like as an oxidizing gas.
  • Examples of reducing substances include hydrogen
  • examples of producing nitrides include organic amine compounds such as monoalkylamines, dialkylamines, trialkylamines, alkylenediamines, hydrazine, ammonia and the like, Can be used alone or in combination of two or more.
  • thermal CVD to react a raw material gas or a raw material gas with a reactive gas by heat alone to deposit a thin film
  • plasma CVD using heat and plasma photo CVD using heat and light
  • thermal And photoplasma CVD using light and plasma thermal And photoplasma CVD using light and plasma
  • ALD in which the deposition reaction of CVD is divided into elementary processes and deposition is performed stepwise at the molecular level.
  • the material of the substrate is, for example, silicon; silicon oxide such as quartz; silicon nitride, titanium nitride, tantalum nitride, titanium oxide, titanium nitride, titanium nitride, ruthenium oxide, zirconium oxide, hafnium oxide, ceramics such as lanthanum oxide; Metals such as ruthenium can be mentioned.
  • silicon and silicon oxide have the property that a cobalt-containing thin film is not formed.
  • a cobalt-containing thin film can be selectively formed only on the pattern of a copper layer, a ruthenium layer or the like.
  • the shape of the substrate may be plate-like, spherical, fibrous or scaly.
  • the substrate surface may be flat or may have a three-dimensional structure such as a trench structure.
  • the above-mentioned production conditions include a reaction temperature (substrate temperature), a reaction pressure, a deposition rate and the like.
  • the reaction temperature is preferably 100 ° C. or higher at which the compound of the present invention sufficiently reacts, and more preferably 150 ° C. to 400 ° C. C. to 250.degree. C. are particularly preferred as the compounds of the present invention can be pyrolyzed below 250.degree.
  • the reaction pressure is preferably atmospheric pressure to 10 Pa in the case of thermal CVD or optical CVD, and is preferably 2000 Pa to 10 Pa in the case of using plasma.
  • the deposition rate can be controlled by the supply conditions of the raw material (evaporation temperature, evaporation pressure), reaction temperature, and reaction pressure.
  • the deposition rate is preferably 0.01 to 100 nm / min, and more preferably 1 to 50 nm / min because a high deposition rate may deteriorate the properties of the obtained thin film, and a small deposition rate may cause problems in productivity.
  • the number of cycles is controlled to obtain a desired film thickness.
  • the above-mentioned production conditions further include the temperature and pressure at the time of vaporizing the thin film forming material to form a vapor.
  • the step of vaporizing the thin film forming material into vapor may be performed in the material container or in the vaporizing chamber. In any case, it is preferable to evaporate the material for thin film formation of the present invention at 0 to 150 ° C.
  • the pressure in the material container and the pressure in the vaporization chamber are preferably each 1 to 10000 Pa.
  • the thin film production method of the present invention adopts the ALD method, and the raw material for thin film formation is vaporized into vapor by the above-mentioned transport supply method, and the raw material introduction step of introducing the vapor into the film forming chamber, A precursor thin film forming step of forming a precursor thin film on the surface of the substrate by the compound in the vapor; an exhausting step of exhausting an unreacted compound gas; and a chemical reaction of the precursor thin film with a reactive gas, You may have the metal containing thin film formation process of forming the thin film containing the said metal in the surface of this base
  • a thin film containing at least one atom selected from a copper atom, an iron atom, a nickel atom, a cobalt atom and a manganese atom by the ALD method, first, the raw material introduction step described above is performed. The preferable temperature and pressure when using the thin film forming material as a vapor are the same as those described above. Next, a precursor thin film is formed on the substrate surface by the compound introduced into the deposition reaction part (precursor thin film formation step). At this time, the substrate may be heated or the deposition reaction part may be heated to apply heat.
  • the precursor thin film formed in this step is a thin film formed from the compound of the present invention, or a thin film formed by decomposition and / or reaction of a part of the compound of the present invention, and the target metal-containing It has a different composition from the thin film.
  • Room temperature to 500 ° C. is preferable, and 150 to 350 ° C. is more preferable for the substrate temperature when this step is performed.
  • the pressure of the system (in the deposition chamber) when this step is performed is preferably 1 to 10000 Pa, and more preferably 10 to 1000 Pa.
  • unreacted compound gas and by-produced gas are exhausted from the deposition reaction unit (exhaust process).
  • Unreacted compound gas and by-produced gas are ideally exhausted completely from the deposition reaction part, but they do not necessarily have to be exhausted completely.
  • an exhaust method a method of purging the inside of the system with an inert gas such as nitrogen, helium, argon, a method of exhausting by depressurizing the inside of the system, a method combining these, and the like can be mentioned.
  • the degree of reduced pressure when reducing the pressure is preferably 0.01 to 300 Pa, and more preferably 0.01 to 100 Pa.
  • a reactive gas is introduced into the deposition reaction part, and the target metal-containing thin film is obtained from the precursor thin film obtained in the precursor thin film forming step described above by the action of the reactive gas or the action of the reactive gas and heat.
  • Metal-containing thin film forming step Room temperature to 500 ° C. is preferable, and 150 to 350 ° C. is more preferable as a temperature when heat is applied in this step.
  • the pressure of the system (in the deposition chamber) when this step is performed is preferably 1 to 10000 Pa, and more preferably 10 to 1000 Pa. Since the compound of the present invention has good reactivity with the reactive gas, a high quality metal-containing thin film with a low residual carbon content can be obtained.
  • thin film deposition by a series of operations including the above-mentioned raw material introducing step, precursor thin film forming step, exhausting step and metal containing thin film forming step
  • One cycle may be repeated several times until a thin film having a required film thickness is obtained.
  • energy such as plasma, light, voltage or the like may be applied, or a catalyst may be used.
  • the time of applying the energy and the time of using the catalyst are not particularly limited.
  • the exhaust process At the time of evacuation in the system, it may be at the time of reactive gas introduction in the metal-containing thin film formation step, or may be between the above-mentioned respective steps.
  • annealing may be performed in an inert atmosphere, in an oxidizing atmosphere, or in a reducing atmosphere to obtain better electrical characteristics. If embedding is required, a reflow process may be provided.
  • the temperature in this case is 200 to 1000 ° C., preferably 250 to 500 ° C.
  • the apparatus for manufacturing a thin film using the raw material for thin film formation of the present invention can use a known apparatus for chemical vapor deposition.
  • the apparatus include an apparatus capable of bubbling a precursor as shown in FIG. 1 and an apparatus having a vaporization chamber as shown in FIG. Further, as shown in FIG. 3 and FIG. 4, an apparatus capable of performing plasma processing on a reactive gas can be mentioned. Not limited to the single-wafer apparatus as shown in FIGS. 1 to 4, an apparatus capable of simultaneously processing multiple wafers using a batch furnace can also be used.
  • the thin film produced using the raw material for thin film formation of the present invention can be formed of a desired kind of metal, oxide ceramic, nitride ceramic, glass or the like by appropriately selecting other precursors, reactive gases and production conditions. It can be a thin film.
  • the thin film is known to exhibit various electrical and optical properties and the like, and is applied to various applications.
  • copper and copper-containing thin films are applied as wiring materials for LSIs because of their properties of high conductivity, high electromigration resistance, and high melting point.
  • Nickel and nickel-containing thin films are mainly used as members of electronic parts such as resistive films and barrier films, members for recording media such as magnetic films, and members for thin film solar cells such as electrodes.
  • Cobalt and cobalt-containing thin films are used for electrode films, resistance films, adhesive films, magnetic tapes, cemented carbide tools and the like.
  • the amidine compound of the present invention is a compound represented by the following general formula (2), and is a compound particularly suitable as a ligand of a precursor used in a thin film production method having a vaporization process such as a CVD method.
  • R 5 represents a linear or branched alkyl group having 1 to 5 carbon atoms
  • R 6 represents hydrogen or a linear or branched alkyl group having 1 to 5 carbon atoms
  • R 7 And R 8 each independently represents a linear or branched alkyl group having 1 to 5 carbon atoms
  • L represents an alkanediyl group having 1 to 4 carbon atoms, provided that R 5 is an ethyl group and
  • R 6 is hydrogen, L is a branched alkanediyl group having 3 carbon atoms, or an alkanediyl group having 4 carbon atoms, and R 5 is an ethyl group or a tertiary butyl group and R 6
  • L is a methyl group
  • L is an alkanediyl group having 3 or 4 carbon atoms.
  • Examples of the linear or branched alkyl group having 1 to 5 carbon atoms represented by R 5 , R 6 , R 7 and R 8 in the above general formula (2) include, for example, a methyl group, an ethyl group, and a propyl group.
  • Examples of the alkanediyl group having 1 to 4 carbon atoms represented by L in the general formula (2) include a methylene group, an ethylene group, a propane-1,3-diyl group, a propane-1,2-diyl group. Groups, butylene group, butane-1,3-diyl group, butane-2,3-diyl group, butane-1,2-diyl group and the like.
  • R 5 is preferably an isopropyl group, an isobutyl group, a secondary butyl group or a tertiary butyl group.
  • an amidine compound in which R 5 is a tertiary butyl group is preferable because of its good stability.
  • an amidine compound in which R 6 is hydrogen, a methyl group or an ethyl group is preferably a metal complex compound having a high vapor pressure when it is used as a ligand of the metal complex compound.
  • an amidine compound in which L is an ethylene group, propane-1,3-diyl group or propane-1,2-diyl group has a melting point when it is a ligand of a metal complex compound. It is preferable because a metal complex compound having a low vapor pressure and a high vapor pressure is obtained. Among them, amidine compounds in which L is a propane-1,2-diyl group are particularly preferable.
  • an amidine compound in which R 7 and R 8 are a methyl group or an ethyl group gives a metal complex compound having a low melting point and a high vapor pressure when used as a ligand of a metal complex compound. It is preferable from being Among them, amidine compounds in which R 7 and R 8 are methyl groups are particularly preferable.
  • amidine compound represented by the above general formula (2) include, for example, the following compound No. 1; 55-156.
  • compound No. 1 represents a methyl group
  • Et represents an ethyl group
  • iPr represents an isopropyl group
  • sBu represents a sec-butyl group
  • tBu is a tert-butyl group Represents a group.
  • the amidine compound of the present invention is not particularly limited by the production method thereof, and can be produced by applying a known reaction.
  • a carbodiimide compound is synthesized as an intermediate by reacting with trialkylamine and p-toluenesulfonic acid chloride using dichloromethane or the like as a solvent.
  • the product can be produced by purifying an alkyllithium dialkyl ether reacted thereto by a method such as distillation.
  • the amidine compound of the present invention can be used as a ligand of a metal complex compound used as a thin film forming material or the like.
  • the amidine compound of the present invention can also be used for applications such as solvents, perfumes, pesticides, medicines, synthetic raw materials such as various polymers, and the like.
  • Example 1 Compound No. 1 Preparation of 151 In a 2 L four-necked flask, 21.3 g (0.215 mol) of tertbutyl isocyanate and 131.7 g of diethyl ether were charged, and stirred under water cooling. To this solution was added dropwise a solution of 22.1 g (0.216 mol) of N, N-dimethylpropane-1,2-diamine and 55.6 g of diethyl ether. After dropping, the mixture was returned to room temperature and stirred for 3 hours. Thereafter, the solvent was removed under slight pressure at an oil bath of 60 ° C.
  • Example 2 Compound No. Preparation of 2 In a 500 mL four-necked flask, 8.60 g (0.066 mol) of cobalt (II) chloride and 69.5 g of tetrahydrofuran were charged and stirred at room temperature. Among them, the compound No. 151 A solution prepared by 24.4 g (0.132 mol), 85.6 g of normal hexane, and 57.6 g (0.132 mol) of nBuLi is added dropwise with ice cooling, and after the addition, the solution is returned to room temperature and stirred for 17 hours, followed by filtration.
  • the solvent was removed from the obtained filtrate, and the residue was distilled at a bath temperature of 160 ° C., a pressure of 77 Pa and an overhead temperature of 132 ° C. to obtain the desired product as a dark green liquid.
  • the yield was 20.0 g, 66%.
  • Example 3 Compound No. 3 Preparation of 1 In a 300 mL three-necked flask, 5.31 g (0.041 mol) of cobalt (II) chloride and 74.9 g of tetrahydrofuran were charged and stirred at room temperature. A solution prepared from 15.30 g (0.083 mol) of a known compound A, 65.9 g of normal hexane and 35.2 g (0.082 mol) of nBuLi is added dropwise thereto under ice cooling, and the solution is returned to room temperature and stirred for 19 hours And filtered. The solvent was removed from the obtained filtrate, and the residue was purified by Kugelrohr at a temperature of 130 ° C. and a pressure of 57 Pa to obtain a dark green solid.
  • Example 4 Compound No. 4 Preparation of 157 18.8 g (0.190 mol) of tert butyl isocyanate and 129.7 g of diethyl ether were charged in a 2 L four-necked flask and stirred under water cooling. To this solution was added dropwise a solution of 19.4 g (0.190 mol) of N, N-dimethyl-1,3-propanediamine and 45.4 g of diethyl ether. After dropping, the mixture was returned to room temperature and stirred for 3 hours. Thereafter, solvent removal was carried out under a slightly reduced pressure of an oil bath at 70 ° C.
  • Example 5 Compound No. 5 Preparation of 158
  • 1.72 g (0.013 mol) of cobalt (II) chloride and 23.9 g of tetrahydrofuran were charged and stirred at room temperature.
  • the compound No. A solution prepared from 5.20 g (0.026 mol) of 157, 20.9 g of normal hexane, and 11.4 g (0.026 mol) of nBuLi is added dropwise under ice cooling, and after returning to room temperature it is returned to room temperature and stirred for 16 hours and filtered.
  • the solvent was removed from the obtained filtrate, and the residue was purified by Kugelrohr at a temperature of 145 ° C. and a pressure of 59 Pa to obtain a dark green liquid (Compound No. 158 shown below).
  • the yield was 0.51 g, 8%.
  • Example 6 Compound No. 6 Preparation of 159 In a 500 mL four-necked flask, 10.0 g (0.055 mol) of a carbodiimide compound A and 78.6 g of diethyl ether were charged, and stirred under ice-cooling. To this solution was added dropwise 230 ml (0.115 mol) of an ethyllithium benzenecyclohexane solution. After dropping, the mixture was returned to room temperature and stirred for 48 hours, and then heated to reflux for 23 hours. After cooling to room temperature, water was added dropwise under ice-cooling to complete the reaction, the organic layer was extracted and partitioned, sodium sulfate was added, and dehydration and filtration were performed.
  • Example 7 Compound No. 7 Preparation of 8 In a 200 mL four-necked flask, 2.66 g (0.020 mol) of cobalt (II) chloride and 25.0 g of tetrahydrofuran were charged and stirred at room temperature. Among them, the compound No. A solution prepared from 9.20 g (0.040 mol) of 159, 23.3 g of normal hexane and 20.2 g (0.047 mol) of nBuLi is added dropwise with ice cooling, and after returning to the room temperature, it is returned to room temperature and stirred for 16 hours and filtered.
  • the solvent was removed from the obtained filtrate, and the residue was distilled at a bath temperature of 170 ° C., a pressure of 26 Pa, and an overhead temperature of 122 ° C. to obtain a dark green liquid.
  • the yield was 4.0 g, 40%.
  • Example 8 Compound No. Preparation of 127
  • 24.1 g (0.237 mol) of isopropyl isothiocyanate and 385.8 g of diethyl ether were charged and stirred under water cooling.
  • To this solution was added dropwise a solution of 26.9 g (0.263 mol) of N, N-dimethylpropane-1,2-diamine and 119.8 g of diethyl ether. After dropping, the mixture was returned to room temperature and stirred for 14 hours. Thereafter, solvent removal was carried out under a slightly reduced pressure of an oil bath at 65 ° C.
  • Example 9 Preparation of 160 In a 200 mL four-necked flask, 2.34 g (0.018 mol) of cobalt (II) chloride and 22.7 g of tetrahydrofuran were charged and stirred at room temperature. Among them, the compound No. 127 A solution prepared by 6.50 g (0.035 mol), 21.6 g of normal hexane and 15.6 g (0.035 mol) of nBuLi was added dropwise under ice-cooling, and the solution was returned to room temperature and stirred for 16 hours, followed by filtration. .
  • Example 10 Compound No. Preparation of 139 25.1 g (0.218 mol) of sec-butyl isothiocyanate and 165.9 g of diethyl ether were charged in a 2 L four-necked flask and stirred under water cooling. To this solution was added dropwise a solution of 24.3 g (0.238 mol) of N, N-dimethylpropane-1,2-diamine and 83.6 g of diethyl ether. After dropping, the temperature was returned to room temperature and stirred for 19 hours. Thereafter, solvent removal was carried out under slightly reduced pressure of an oil bath at 75 ° C.
  • Example 11 Compound No. Preparation of 161 In a 200 mL four-necked flask, 1.71 g (0.013 mol) of cobalt (II) chloride and 15.1 g of tetrahydrofuran were charged, and stirred at room temperature. Among them, the compound No. A solution prepared from 5.25 g (0.026 mol) of 139, 17.1 g of normal hexane and 11.2 g (0.026 mol) of nBuLi was added dropwise under ice-cooling, and after the addition, the solution was returned to room temperature and stirred for 21 hours, followed by filtration. .
  • the solvent was removed from the obtained filtrate, and the residue was distilled at a bath temperature of 165 ° C., a pressure of 40 Pa, and an overhead temperature of 127 ° C. to obtain a dark green liquid (Compound No. 161 shown below).
  • the yield was 3.5 g, 59%.
  • Comparative Compound 1 was a compound having a melting point of 105 ° C. It turned out that 2, 8, 158, 160 and 161 are compounds which are liquid under conditions of normal pressure 30 ° C. The material for thin film formation having a low melting point is a material for thin film formation which can improve productivity because it is easy to transport. Further, from the results of reduced pressure TG-DTA, it was found that compound No. It was found that although 1, 2, 8, 158, 160 and 161 had a temperature slightly reduced by 50% by mass compared with Comparative Compound 1, they exhibited a sufficient vapor pressure as a raw material for chemical vapor deposition.
  • Example 12 Production of metallic cobalt thin film by ALD method
  • the metal cobalt thin film was manufactured on a ruthenium (Ru) substrate by ALD method of the following conditions using the apparatus for chemical vapor deposition shown in FIG. 1 by using 2 as a raw material for chemical vapor deposition.
  • the obtained thin film was subjected to film thickness measurement by X-ray reflectance method, X-ray diffraction method and X-ray photoelectron spectroscopy to confirm the thin film structure and thin film composition, and the film thickness was 1 to 3 nm. Is metallic cobalt (confirmed by Co2p peak by XPS analysis), and the residual carbon content in the thin film was less than the detection limit of 0.1 atom%.
  • the film thickness obtained per cycle was 0.01 to 0.03 nm.
  • Example 13 Production of Metallic Cobalt Thin Film by ALD Method
  • a metallic cobalt thin film was produced in the same manner as in Example 12 except that 1 was used as a raw material for chemical vapor deposition.
  • the film thickness was 0.5 to 1.5 nm
  • the film composition was metallic cobalt (confirmed by Co2p peak by XPS analysis), and the residual carbon content in the thin film was 0.5 atom%.
  • the film thickness obtained per cycle was 0.005 to 0.015 nm.
  • Example 12 Compound No.
  • Metallic cobalt thin films were produced in the same manner as in Example 12, except that each of 8, 158, 160 and 161 was used as a chemical vapor deposition material.
  • the obtained thin film was subjected to film thickness measurement by X-ray reflectance method, X-ray diffraction method and X-ray photoelectron spectroscopy to confirm the thin film structure and thin film composition, and the film thickness was 1 to 2 nm.
  • Is metallic cobalt confirmeded by Co2p peak by XPS analysis
  • the film thickness obtained per cycle was 0.01 to 0.02 nm.
  • Comparative Example 1 Using the comparative compound 1 as a raw material for chemical vapor deposition and using the apparatus for chemical vapor deposition shown in FIG. 1, a metallic cobalt thin film was produced on a Ru substrate by the ALD method under the following conditions.
  • the thin film obtained on Ru substrate when the thin film structure and thin film composition were confirmed by film thickness measurement by X-ray reflectance method, X-ray diffraction method and X-ray photoelectron spectroscopy, the film thickness was 1 to 2 nm
  • the film composition was metallic cobalt (confirmed by Co2p peak by XPS analysis), and the residual carbon content in the thin film was 5 atom% or more.
  • the film thickness obtained per cycle was 0.01 to 0.02 nm.
  • Reaction temperature (substrate temperature); 200 ° C, reactive gas; hydrogen gas (process)
  • the source material for chemical vapor deposition vaporized under the conditions of 100 Pa is introduced into a film forming chamber and deposited for 30 seconds at a system pressure of 100 Pa.
  • Reactive gas is introduced into the film forming chamber and reacted for 30 seconds at a system pressure of 100 Pa.
  • Example 14 Production of Metallic Cobalt Thin Film by ALD Method
  • a thin film was formed only on the Ru layer.
  • the film thickness was 1 to 3 nm
  • the film composition was metallic cobalt (confirmed by Co2p peak by XPS analysis), and the residual carbon content in the thin film was less than the detection lower limit of 0.1 atom%.
  • the film thickness obtained per cycle was 0.01 to 0.03 nm.
  • metallic cobalt was not detected from the exposed portion of SiO 2 of the substrate.
  • Example 15 Production of Metallic Cobalt Thin Film by ALD Method
  • a metallic cobalt thin film was produced in the same manner as in Example 14 except that 1 was used as a raw material for chemical vapor deposition. As a result, a thin film was formed only on the part of the Ru layer.
  • the thin film structure and thin film composition were confirmed by the film thickness measurement by the X-ray reflectance method, the X-ray diffraction method and the X-ray photoelectron spectroscopy, The film composition was metallic cobalt (confirmed by Co2p peak by XPS analysis), and the residual carbon content in the thin film was 0.5 atom%.
  • the film thickness obtained per cycle was 0.005 to 0.015 nm.
  • Example 14 Compound No.
  • Metallic cobalt thin films were produced in the same manner as in Example 14 except that each of 8, 158, 160 and 161 was used as a chemical vapor deposition material. As a result, a thin film was formed only on the part of the Ru layer.
  • the thin film obtained on the Ru layer was subjected to film thickness measurement by X-ray reflectance method, X-ray diffraction method and X-ray photoelectron spectroscopy to confirm the thin film structure and the thin film composition.
  • the film composition was metallic cobalt (confirmed by Co2p peak by XPS analysis), and the residual carbon content in the thin film was 0.2 atom%.
  • the film thickness obtained per cycle was 0.01 to 0.02 nm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Vapour Deposition (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

下記一般式(1):(式中、R1は炭素原子数1~5の直鎖又は分岐状のアルキル基を表し、R2は水素又は炭素原子数1~5の直鎖又は分岐状のアルキル基を表し、R3及びR4は各々独立に炭素原子数1~5の直鎖又は分岐状のアルキル基を表し、Aは炭素原子数1~4のアルカンジイル基を表し、Mは銅、鉄、ニッケル、コバルト又はマンガンを表す。)で表される化合物を含有してなる薄膜形成用原料。

Description

化合物、薄膜形成用原料、薄膜の製造方法及びアミジン化合物
 本発明は、新規な化合物、該化合物を含有してなる薄膜形成用原料、該薄膜形成用原料を用いた薄膜の製造方法及び新規なアミジン化合物に関する。
 金属元素を含む薄膜材料は、電気特性及び光学特性等を示すことから、種々の用途に応用されている。例えば、銅及び銅含有薄膜は、高い導電性、高エレクトロマイグレーション耐性、高融点という特性から、LSIの配線材料として応用されている。また、ニッケル及びニッケル含有薄膜は、主に抵抗膜、バリア膜等の電子部品の部材や、磁性膜等の記録メディア用の部材や、電極等の薄膜太陽電池用部材等に用いられている。また、コバルト及びコバルト含有薄膜は、電極膜、抵抗膜、接着膜、磁気テープ、超硬工具部材等に用いられている。
 上記の薄膜の製造法としては、スパッタリング法、イオンプレーティング法、塗布熱分解法やゾルゲル法等のMOD法、化学気相成長法等が挙げられる。なかでも、組成制御性、段差被覆性に優れること、量産化に適すること、ハイブリッド集積が可能であること等の多くの長所を有しているので、原子層堆積(以下、単にALD(Atomic Layer Deposition)と記載することもある)法を含む化学気相成長(以下、単にCVDと記載することもある)法が最適な製造プロセスである。
 化学気相成長法に用いられる金属供給源として、様々な原料が多数報告されている。例えば、特許文献1には、揮発性金属アミジナートを用いた金属を含む薄膜の形成方法が開示されている。また、特許文献2には、化学気相蒸着法又は原子層蒸着法に使用することができるジアザジエン系金属化合物が開示されている。特許文献1及び特許文献2には、本発明の化合物について何ら記載がない。
特表2006-511716号公報 特表2013-545755号公報
 化学気相成長用原料等を気化させて基体表面に金属を含有する薄膜を形成する場合、蒸気圧が高く、融点が低く、且つ高品質な金属含有薄膜を製造することができる薄膜形成用原料が求められている。従来知られた薄膜形成用原料には、このような物性を示すものは無かった。なかでも、生産性を向上させるために、薄膜形成用原料の輸送性を高める必要があることから、融点が低い材料が強く求められていた。
 本発明者等は、検討を重ねた結果、特定の化合物が上記課題を解決し得ることを知見し、本発明に到達した。
 本発明は、下記一般式(1)で表される化合物、これを含有してなる薄膜形成用原料及び該原料を用いた薄膜の製造方法を提供するものである。
Figure JPOXMLDOC01-appb-C000004
(式中、R1は炭素原子数1~5の直鎖又は分岐状のアルキル基を表し、R2は水素又は炭素原子数1~5の直鎖若しくは分岐状のアルキル基を表し、R3及びR4は各々独立に炭素原子数1~5の直鎖又は分岐状のアルキル基を表し、Aは炭素原子数1~4のアルカンジイル基を表し、Mは銅、鉄、ニッケル、コバルト又はマンガンを表す。)
また、本発明は、下記一般式(2)で表されるアミジン化合物を提供するものである。
Figure JPOXMLDOC01-appb-C000005
(式中、R5は炭素原子数1~5の直鎖又は分岐状のアルキル基を表し、R6は水素又は炭素原子数1~5の直鎖若しくは分岐状のアルキル基を表し、R7及びR8は各々独立に炭素原子数1~5の直鎖又は分岐状のアルキル基を表し、Lは炭素原子数1~4のアルカンジイル基を表す。ただし、R5がエチル基であり且つR6が水素である場合は、Lは分岐状の炭素原子数3のアルカンジイル基、又は炭素原子数4のアルカンジイル基であり、R5がエチル基又は第三ブチル基であり且つR6がメチル基である場合は、Lは炭素原子数3又は炭素原子数4のアルカンジイル基である。)
 本発明によれば、蒸気圧が高く、常圧30℃もしくはわずかな加温により液体になる低融点な化合物を得ることができる。該化合物は、CVD法による金属含有薄膜形成用原料として特に適しており、なかでもALD法による金属含有薄膜形成用原料として好ましく使用することができる。また、本発明のコバルト含有化合物をALD法による薄膜形成用原料として使用した場合、シリコン基体及び酸化ケイ素基体の表面にはコバルト含有薄膜が形成されない特異的な性質があることから、シリコン基体及び酸化ケイ素基体上にあらかじめ銅層やルテニウム層等のパターンを形成しておくことで、銅層やルテニウム層等のパターン上にのみ選択的にコバルト含有薄膜を形成することができる。
 また、本発明によれば、上記の化合物を合成するために用いることができるアミジン化合物を得ることができる。
図1は、本発明に係る薄膜の製造方法に用いられる化学気相成長用装置の一例を示す概要図である。 図2は、本発明に係る薄膜の製造方法に用いられる化学気相成長用装置の別の例を示す概要図である。 図3は、本発明に係る薄膜の製造方法に用いられる化学気相成長用装置の別の例を示す概要図である。 図4は、本発明に係る薄膜の製造方法に用いられる化学気相成長用装置の別の例を示す概要図である。
 本発明の化合物は、上記一般式(1)で表されるものであり、CVD法等の気化工程を有する薄膜製造方法のプレカーサとして好適なものであり、ALD法を用いて薄膜を形成することもできる。本発明の化合物は、常圧30℃で液体又はわずかな加温で液体となる低融点な化合物である。融点が低い化合物は輸送性がよいことから、CVD法等の気化工程を有する薄膜製造方法のプレカーサとして好適である。
 上記一般式(1)において、R1、R2、R3及びR4で表される炭素原子数1~5の直鎖又は分岐状のアルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、第二ブチル基、第三ブチル基、ペンチル基、イソペンチル基等が挙げられる。
 上記一般式(1)において、Aで表される炭素原子数1~4のアルカンジイル基としては、例えば、メチレン基、エチレン基、プロパン-1,3-ジイル基、プロパン-1,2-ジイル基、ブチレン基、ブタン-1,3-ジイル基、ブタン-2,3-ジイル基、ブタン-1,2-ジイル基等が挙げられる。
 上記一般式(1)において、Mは銅、鉄、ニッケル、コバルト又はマンガンを表す。なかでも、Mが銅、コバルト又はニッケルである化合物は、融点が低く、ALD法によって残留炭素含有量が少ない薄膜を形成できることから好ましく、特にMがコバルトである化合物は、高品質なコバルト原子含有薄膜を形成できることから好ましい。
 上記一般式(1)において、R1が炭素原子数3~5の2級又は3級アルキル基である化合物は、融点が低いことから好ましく、R1が炭素原子数3~5の3級アルキル基である化合物は特に好ましい。上記一般式(1)において、R2が水素、メチル基又はエチル基である化合物は、融点が低く且つ蒸気圧が高いことから好ましい。なかでも、R2がメチル基である化合物は特に好ましい。上記一般式(1)において、R3及びR4がメチル基又はエチル基である化合物は、融点が低く且つ蒸気圧が高いことから好ましい。なかでも、R3及びR4がメチル基である化合物は特に好ましい。上記一般式(1)において、Aが、エチレン基、プロパン-1,3-ジイル基又はプロパン-1,2-ジイル基である化合物は、融点が低く且つ蒸気圧が高いことから好ましい。なかでも、Aがプロパン-1,2-ジイル基である化合物は特に好ましい。気化工程を伴わないMOD法による薄膜の製造方法の場合は、R1~R4及びAは、使用される溶媒に対する溶解性、薄膜形成反応等によって適宜選択することができる。
 上記一般式(1)において、Mがコバルトある化合物の好ましい具体例としては、例えば、下記化合物No.1~No.18が挙げられる。なお、下記化合物No.1~No.18において、「Me」はメチル基を表し、「Et」はエチル基を表し、「tBu」は第三ブチル基を表す。
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
 上記一般式(1)において、Mが銅である化合物の好ましい具体例としては、例えば、下記化合物No.19~No.36が挙げられる。なお、下記化合物No.19~No.36において、「Me」はメチル基を表し、「Et」はエチル基を表し、「tBu」は第三ブチル基を表す。
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
 上記一般式(1)において、Mがニッケルである化合物の好ましい具体例としては、例えば、下記化合物No.37~No.54が挙げられる。なお、下記化合物No.37~No.54において、「Me」はメチル基を表し、「Et」はエチル基を表し、「tBu」は第三ブチル基を表す。
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
 本発明の化合物は、その製造方法により特に制限されることはなく、周知の反応を応用して製造される。
 上記一般式(1)で表される化合物のうち、Mがコバルトである化合物を製造する場合には、例えば、塩化コバルト(II)に対応する構造のアミジン化合物をノルマルブチルリチウム存在下で反応させることで製造することができる。Mが銅、鉄、ニッケル又はマンガンである化合物を製造する場合には、出発原料として各金属の塩化物を使用すること以外は上記の製造方法と同様の方法で製造することができる。
 本発明の薄膜形成用原料とは、上記で説明した本発明の化合物を薄膜のプレカーサとしたものであり、その形態は、該薄膜形成用原料が適用される製造プロセスによって異なる。例えば、銅原子、鉄原子、ニッケル原子、コバルト原子及びマンガン原子から選ばれる1種の原子のみを含む薄膜を製造する場合、本発明の薄膜形成用原料は、上記化合物以外の金属化合物を非含有である。一方、2種類以上の金属及び/又は半金属を含む薄膜を製造する場合、本発明の薄膜形成用原料は、上記化合物に加えて、所望の金属を含む化合物及び/又は半金属を含む化合物(以下、他のプレカーサともいう)を含有する。本発明の薄膜形成用原料は、後述するように、更に、有機溶剤及び/又は求核性試薬を含有してもよい。本発明の薄膜形成用原料は、上記説明のとおり、プレカーサである化合物の物性がCVD法、ALD法に好適であるので、特に化学気相成長用原料(以下、CVD用原料ということもある)として有用である。
 本発明の薄膜形成用原料が化学気相成長用原料である場合、その形態は使用されるCVD法の輸送供給方法等の手法により適宜選択されるものである。
 上記の輸送供給方法としては、CVD用原料を該原料が貯蔵される容器(以下、単に原料容器と記載することもある)中で加熱及び/又は減圧することにより気化させて蒸気とし、必要に応じて用いられるアルゴン、窒素、ヘリウム等のキャリアガスと共に、該蒸気を基体が設置された成膜チャンバー内(以下、堆積反応部と記載することもある)へと導入する気体輸送法、CVD用原料を液体又は溶液の状態で気化室まで輸送し、気化室で加熱及び/又は減圧することにより気化させて蒸気とし、該蒸気を成膜チャンバー内へと導入する液体輸送法がある。気体輸送法の場合は、上記一般式(1)で表される化合物そのものをCVD用原料とすることができる。液体輸送法の場合は、上記一般式(1)で表される化合物そのもの又は該化合物を有機溶剤に溶かした溶液をCVD用原料とすることができる。これらのCVD用原料は更に他のプレカーサや求核性試薬等を含んでいてもよい。
 また、多成分系のCVD法においては、CVD用原料を各成分独立で気化、供給する方法(以下、シングルソース法と記載することもある)と、多成分原料を予め所望の組成で混合した混合原料を気化、供給する方法(以下、カクテルソース法と記載することもある)がある。カクテルソース法の場合、本発明の化合物と他のプレカーサとの混合物若しくは該混合物を有機溶剤に溶かした混合溶液をCVD用原料とすることができる。この混合物や混合溶液は更に求核性試薬等を含んでいてもよい。
 上記の有機溶剤としては、特に制限を受けることはなく周知一般の有機溶剤を用いることができる。該有機溶剤としては、例えば、酢酸エチル、酢酸ブチル、酢酸メトキシエチル等の酢酸エステル類;テトラヒドロフラン、テトラヒドロピラン、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテル、ジブチルエーテル、ジオキサン等のエーテル類;メチルブチルケトン、メチルイソブチルケトン、エチルブチルケトン、ジプロピルケトン、ジイソブチルケトン、メチルアミルケトン、シクロヘキサノン、メチルシクロヘキサノン等のケトン類;ヘキサン、シクロヘキサン、メチルシクロヘキサン、ジメチルシクロヘキサン、エチルシクロヘキサン、ヘプタン、オクタン、トルエン、キシレン等の炭化水素類;1-シアノプロパン、1-シアノブタン、1-シアノヘキサン、シアノシクロヘキサン、シアノベンゼン、1,3-ジシアノプロパン、1,4-ジシアノブタン、1,6-ジシアノヘキサン、1,4-ジシアノシクロヘキサン、1,4-ジシアノベンゼン等のシアノ基を有する炭化水素類;ピリジン、ルチジン等が挙げられる。これらの有機溶剤は、溶質の溶解性、使用温度と沸点、引火点の関係等により、単独で用いてもよいし、又は二種類以上を混合して用いてもよい。これらの有機溶剤を使用する場合、プレカーサを有機溶剤に溶かした溶液であるCVD用原料中におけるプレカーサ全体の量が0.01~2.0モル/リットル、特に0.05~1.0モル/リットルとなるようにするのが好ましい。プレカーサ全体の量とは、本発明の薄膜形成用原料が、本発明の化合物以外の金属化合物及び半金属化合物を非含有である場合、本発明の化合物の量であり、本発明の薄膜形成用原料が、該化合物に加えて他の金属を含む化合物及び/又は半金属を含む化合物(他のプレカーサ)を含有する場合、本発明の化合物及び他のプレカーサの合計量である。
 また、多成分系のCVD法の場合において、本発明の化合物と共に用いられる他のプレカーサとしては、特に制限を受けず、CVD用原料に用いられている周知一般のプレカーサを用いることができる。
 上記の他のプレカーサとしては、水素化物、水酸化物、ハロゲン化物、アジ化物、アルキル、アルケニル、シクロアルキル、アリール、アルキニル、アミノ、ジアルキルアミノアルキル、モノアルキルアミノ、ジアルキルアミノ、ジアミン、ジ(シリル-アルキル)アミノ、ジ(アルキル-シリル)アミノ、ジシリルアミノ、アルコキシ、アルコキシアルキル、ヒドラジド、ホスフィド、ニトリル、ジアルキルアミノアルコキシ、アルコキシアルキルジアルキルアミノ、シロキシ、ジケトナート、シクロペンタジエニル、シリル、ピラゾレート、グアニジネート、ホスホグアニジネート、アミジナート、ケトイミナート、ジケチミナート、カルボニル及びホスホアミジナートを配位子として有する化合物からなる群から選択される一種類又は二種類以上のケイ素や金属の化合物が挙げられる。
 プレカーサの金属種としては、マグネシウム、カルシウム、ストロンチウム、バリウム、ラジウム、スカンジウム、イットリウム、チタン、ジルコニウム、ハフニウム、バナジウム、ニオブ、タンタル、クロム、モリブデン、タングステン、オスミウム、ロジウム、イリジウム、パラジウム、白金、銅、銀、金、亜鉛、カドミウム、アルミニウム、ガリウム、インジウム、ゲルマニウム、スズ、鉛、アンチモン、ビスマス、ランタン、セリウム、プラセオジム、ネオジム、プロメチウム、サマリウム、ユウロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウムが挙げられる。
 上記の他のプレカーサは、当該技術分野において公知のものであり、その製造方法も公知である。製造方法の一例を挙げれば、例えば、有機配位子としてアルコール化合物を用いた場合には、先に述べた金属の無機塩又はその水和物と、該アルコール化合物のアルカリ金属アルコキシドとを反応させることによって、プレカーサを製造することができる。ここで、金属の無機塩又はその水和物としては、金属のハロゲン化物、硝酸塩等を挙げることができ、アルカリ金属アルコキシドとしては、ナトリウムアルコキシド、リチウムアルコキシド、カリウムアルコキシド等を挙げることができる。
 上記の他のプレカーサは、シングルソース法の場合は、本発明の化合物と、熱及び/又は酸化分解の挙動が類似している化合物が好ましく、カクテルソース法の場合は、熱及び/又は酸化分解の挙動が類似していることに加え、混合時に化学反応等による変質を起こさないものが好ましい。
 上記の他のプレカーサのうち、チタン、ジルコニウム又はハフニウムを含むプレカーサとしては、下記式(II-1)~(II-5)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000015
(式中、M1は、チタン、ジルコニウム又はハフニウムを表し、Ra及びRbは各々独立に、ハロゲン原子で置換されてもよく、鎖中に酸素原子を含んでもよい炭素原子数1~20のアルキル基を表し、Rcは炭素原子数1~8のアルキル基を表し、Rdは炭素原子数2~18の分岐してもよいアルキレン基を表し、Re及びRfは各々独立に、水素原子又は炭素原子数1~3のアルキル基を表し、Rg、Rh、Rk及びRjは各々独立に、水素原子又は炭素原子数1~4のアルキル基を表し、pは0~4の整数を表し、qは0又は2を表し、rは0~3の整数を表し、sは0~4の整数を表し、tは1~4の整数を表す。)
 上記式(II-1)~(II-5)において、Ra及びRbで表される、ハロゲン原子で置換されてもよく、鎖中に酸素原子を含んでもよい炭素原子数1~20のアルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、第二ブチル基、第三ブチル基、イソブチル基、ペンチル基、イソペンチル基、ネオペンチル基、第三ペンチル基、ヘキシル基、シクロヘキシル基、1-メチルシクロヘキシル基、ヘプチル基、3-ヘプチル基、イソヘプチル基、第三ヘプチル基、n-オクチル基、イソオクチル基、第三オクチル基、2-エチルヘキシル基、トリフルオロメチル基、パーフルオロヘキシル基、2-メトキシエチル基、2-エトキシエチル基、2-ブトキシエチル基、2-(2-メトキシエトキシ)エチル基、1-メトキシ-1,1-ジメチルメチル基、2-メトキシ-1,1-ジメチルエチル基、2-エトキシ-1,1-ジメチルエチル基、2-イソプロポキシ-1,1-ジメチルエチル基、2-ブトキシ-1,1-ジメチルエチル基、2-(2-メトキシエトキシ)-1,1-ジメチルエチル基等が挙げられる。また、Rcで表される炭素原子数1~8のアルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、第二ブチル基、第三ブチル基、イソブチル基、ペンチル基、イソペンチル基、ネオペンチル基、第三ペンチル基、ヘキシル基、1-エチルペンチル基、シクロヘキシル基、1-メチルシクロヘキシル基、ヘプチル基、イソヘプチル基、第三ヘプチル基、n-オクチル基、イソオクチル基、第三オクチル基、2-エチルヘキシル基等が挙げられる。また、Rdで表される炭素原子数2~18の分岐してもよいアルキレン基とは、グリコールにより与えられる基であり、該グリコールとしては、例えば、1,2-エタンジオール、1,2-プロパンジオール、1,3-プロパンジオール、1,3-ブタンジオール、2,4-ヘキサンジオール、2,2-ジメチル-1,3-プロパンジオール、2,2-ジエチル-1,3-プロパンジオール、2,2-ジエチル-1,3-ブタンジオール、2-エチル-2-ブチル-1,3-プロパンジオール、2,4-ペンタンジオール、2-メチル-1,3-プロパンジオール、1-メチル-2,4-ペンタンジオール等が挙げられる。また、Re及びRfで表される炭素原子数1~3のアルキル基としては、メチル基、エチル基、プロピル基、2-プロピル基等が挙げられる。Rg、Rh、Rj及びRkで表される炭素原子数1~4のアルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、第二ブチル基、第三ブチル基、イソブチル基等が挙げられる。
 具体的にはチタンを含むプレカーサとして、テトラキス(エトキシ)チタニウム、テトラキス(2-プロポキシ)チタニウム、テトラキス(ブトキシ)チタニウム、テトラキス(第二ブトキシ)チタニウム、テトラキス(イソブトキシ)チタニウム、テトラキス(第三ブトキシ)チタニウム、テトラキス(第三ペンチル)チタニウム、テトラキス(1-メトキシ-2-メチル-2-プロポキシ)チタニウム等のテトラキスアルコキシチタニウム類;テトラキス(ペンタン-2,4-ジオナト)チタニウム、(2,6-ジメチルヘプタン-3,5-ジオナト)チタニウム、テトラキス(2,2,6,6-テトラメチルヘプタン-3,5-ジオナト)チタニウム等のテトラキスβ-ジケトナトチタニウム類;ビス(メトキシ)ビス(ペンタン-2,4-ジオナト)チタニウム、ビス(エトキシ)ビス(ペンタン-2,4-ジオナト)チタニウム、ビス(第三ブトキシ)ビス(ペンタン-2,4-ジオナト)チタニウム、ビス(メトキシ)ビス(2,6-ジメチルヘプタン-3,5-ジオナト)チタニウム、ビス(エトキシ)ビス(2,6-ジメチルヘプタン-3,5-ジオナト)チタニウム、ビス(2-プロポキシ)ビス(2,6-ジメチルヘプタン-3,5-ジオナト)チタニウム、ビス(第三ブトキシ)ビス(2,6-ジメチルヘプタン-3,5-ジオナト)チタニウム、ビス(第三アミロキシ)ビス(2,6-ジメチルヘプタン-3,5-ジオナト)チタニウム、ビス(メトキシ)ビス(2,2,6,6-テトラメチルヘプタン-3,5-ジオナト)チタニウム、ビス(エトキシ)ビス(2,2,6,6-テトラメチルヘプタン-3,5-ジオナト)チタニウム、ビス(2-プロポキシ)ビス(2,6,6,6-テトラメチルヘプタン-3,5-ジオナト)チタニウム、ビス(第三ブトキシ)ビス(2,2,6,6-テトラメチルヘプタン-3,5-ジオナト)チタニウム、ビス(第三アミロキシ)ビス(2,2,6,6-テトラメチルヘプタン-3,5-ジオナト)チタニウム等のビス(アルコキシ)ビス(βジケトナト)チタニウム類;(2-メチルペンタンジオキシ)ビス(2,2,6,6-テトラメチルヘプタン-3,5-ジオナト)チタニウム、(2-メチルペンタンジオキシ)ビス(2,6-ジメチルヘプタン-3,5-ジオナト)チタニウム等のグリコキシビス(βジケトナト)チタニウム類;(メチルシクロペンタジエニル)トリス(ジメチルアミノ)チタニウム、(エチルシクロペンタジエニル)トリス(ジメチルアミノ)チタニウム、(シクロペンタジエニル)トリス(ジメチルアミノ)チタニウム、(メチルシクロペンタジエニル)トリス(エチルメチルアミノ)チタニウム、(エチルシクロペンタジエニル)トリス(エチルメチルアミノ)チタニウム、(シクロペンタジエニル)トリス(エチルメチルアミノ)チタニウム、(メチルシクロペンタジエニル)トリス(ジエチルアミノ)チタニウム、(エチルシクロペンタジエニル)トリス(ジエチルアミノ)チタニウム、(シクロペンタジエニル)トリス(ジエチルアミノ)チタニウム等の(シクロペンタジエニル)トリス(ジアルキルアミノ)チタニウム類;(シクロペンタジエニル)トリス(メトキシ)チタニウム、(メチルシクロペンタジエニル)トリス(メトキシ)チタニウム、(エチルシクロペンタジエニル)トリス(メトキシ)チタニウム、(プロピルシクロペンタジエニル)トリス(メトキシ)チタニウム、(イソプロピルシクロペンタジエニル)トリス(メトキシ)チタニウム、(ブチルシクロペンタジエニル)トリス(メトキシ)チタニウム、(イソブチルシクロペンタジエニル)トリス(メトキシ)チタニウム、第三ブチルシクロペンタジエニル)トリス(メトキシ)チタニウム、(ペンタメチルシクロペンタジエニル)トリス(メトキシ)チタニウム等の(シクロペンタジエニル)トリス(アルコキシ)チタニウム類等が挙げられる。ジルコニウムを含むプレカーサ又はハフニウムを含むプレカーサとしては、上記チタンを含むプレカーサとして例示した化合物におけるチタンを、ジルコニウム又はハフニウムに置き換えた化合物が挙げられる。
 希土類元素を含むプレカーサとしては、下記式(III-1)~(III~3)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000016
(式中、M2は、希土類原子を表し、Ra及びRbは各々独立に、ハロゲン原子で置換されてもよく、鎖中に酸素原子を含んでもよい炭素原子数1~20のアルキル基を表し、Rcは炭素原子数1~8のアルキル基を表し、Re及びRfは各々独立に、水素原子又は炭素原子数1~3のアルキル基を表し、Rg及びRjは各々独立に、炭素原子数1~4のアルキル基を表し、p’は0~3の整数を表し、r’は0~2の整数を表す。)
 上記の希土類元素を含むプレカーサにおいて、M2で表される希土類原子としては、スカンジウム、イットリウム、ランタン、セリウム、プラセオジム、ネオジム、プロメチウム、サマリウム、ユウロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム、ルテチウムが挙げられる。Ra、Rb、Rc、Re、Rf、Rg及びRjで表される基としては、前記のチタンを含むプレカーサで例示した基が挙げられる。
 また、本発明の薄膜形成用原料には、必要に応じて、本発明の化合物及び他のプレカーサの安定性を付与するため、求核性試薬を含有してもよい。該求核性試薬としては、グライム、ジグライム、トリグライム、テトラグライム等のエチレングリコールエーテル類、18-クラウン-6、ジシクロヘキシル-18-クラウン-6、24-クラウン-8、ジシクロヘキシル-24-クラウン-8、ジベンゾ-24-クラウン-8等のクラウンエーテル類、エチレンジアミン、N,N’-テトラメチルエチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ペンタエチレンヘキサミン、1,1,4,7,7-ペンタメチルジエチレントリアミン、1,1,4,7,10,10-ヘキサメチルトリエチレンテトラミン、トリエトキシトリエチレンアミン等のポリアミン類、サイクラム、サイクレン等の環状ポリアミン類、ピリジン、ピロリジン、ピペリジン、モルホリン、N-メチルピロリジン、N-メチルピペリジン、N-メチルモルホリン、テトラヒドロフラン、テトラヒドロピラン、1,4-ジオキサン、オキサゾール、チアゾール、オキサチオラン等の複素環化合物類、アセト酢酸メチル、アセト酢酸エチル、アセト酢酸-2-メトキシエチル等のβ-ケトエステル類又はアセチルアセトン、2,4-ヘキサンジオン、2,4-ヘプタンジオン、3,5-ヘプタンジオン、ジピバロイルメタン等のβ-ジケトン類が挙げられる。これらの求核性試薬の使用量は、プレカーサ全体の量1モルに対して0.1モル~10モルの範囲が好ましく、1~4モルの範囲がより好ましい。
 本発明の薄膜形成用原料には、これを構成する成分以外の不純物金属元素分、不純物塩素等の不純物ハロゲン分、及び不純物有機分が極力含まれないようにする。不純物金属元素分は、元素毎では100ppb以下が好ましく、10ppb以下がより好ましく、総量では、1ppm以下が好ましく、100ppb以下がより好ましい。特に、LSIのゲート絶縁膜、ゲート膜、バリア層として用いる場合は、得られる薄膜の電気的特性に影響のあるアルカリ金属元素及びアルカリ土類金属元素の含有量を少なくすることが必要である。不純物ハロゲン分は、100ppm以下が好ましく、10ppm以下がより好ましく、1ppm以下が最も好ましい。不純物有機分は、総量で500ppm以下が好ましく、50ppm以下がより好ましく、10ppm以下が最も好ましい。また、水分は、化学気相成長用原料中でのパーティクル発生や、薄膜形成中におけるパーティクル発生の原因となるので、プレカーサ、有機溶剤及び求核性試薬については、それぞれの水分の低減のために、使用の際にあらかじめできる限り水分を取り除いた方がよい。プレカーサ、有機溶剤及び求核性試薬それぞれの水分量は、10ppm以下が好ましく、1ppm以下がより好ましい。
 また、本発明の薄膜形成用原料は、形成される薄膜のパーティクル汚染を低減又は防止するために、パーティクルが極力含まれないようにするのが好ましい。具体的には、液相での光散乱式液中粒子検出器によるパーティクル測定において、0.3μmより大きい粒子の数が液相1mL中に100個以下であることが好ましく、0.2μmより大きい粒子の数が液相1mL中に1000個以下であることがより好ましく、0.2μmより大きい粒子の数が液相1mL中に100個以下であることが最も好ましい。
 本発明の薄膜形成用原料を用いて薄膜を製造する本発明の薄膜の製造方法としては、本発明の薄膜形成用原料を気化させた蒸気、及び必要に応じて用いられる反応性ガスを、基体が設置された成膜チャンバー内に導入し、次いで、プレカーサを基体上で分解及び/又は化学反応させて金属を含有する薄膜を基体表面に成長、堆積させるCVD法によるものである。原料の輸送供給方法、堆積方法、製造条件、製造装置等については、特に制限を受けるものではなく、周知一般の条件及び方法を用いることができる。
 上記の必要に応じて用いられる反応性ガスとしては、例えば、酸化性のものとしては酸素、オゾン、二酸化窒素、一酸化窒素、水蒸気、過酸化水素、ギ酸、酢酸、無水酢酸等が挙げられ、還元性のものとしては水素が挙げられ、また、窒化物を製造するものとしては、モノアルキルアミン、ジアルキルアミン、トリアルキルアミン、アルキレンジアミン等の有機アミン化合物、ヒドラジン、アンモニア等が挙げられ、これらは1種類又は2種類以上使用することができる。
 また、上記の輸送供給方法としては、前述した気体輸送法、液体輸送法、シングルソース法、カクテルソース法等が挙げられる。
 また、上記の堆積方法としては、原料ガス又は原料ガスと反応性ガスを熱のみにより反応させ薄膜を堆積させる熱CVD、熱とプラズマを使用するプラズマCVD、熱と光を使用する光CVD、熱、光及びプラズマを使用する光プラズマCVD、CVDの堆積反応を素過程に分け、分子レベルで段階的に堆積を行うALDが挙げられる。
 上記基体の材質としては、例えば、シリコン;石英等の酸化ケイ素;窒化ケイ素、窒化チタン、窒化タンタル、酸化チタン、窒化チタン、酸化ルテニウム、酸化ジルコニウム、酸化ハフニウム、酸化ランタン等のセラミックス;ガラス;金属ルテニウム等の金属が挙げられる。特に、上記一般式(1)におけるMがコバルトである化合物をALD法による薄膜形成用原料として使用した場合、シリコン及び酸化ケイ素の表面にはコバルト含有薄膜が形成されないという性質があることから、シリコン基体及び酸化ケイ素基体上にあらかじめ銅層やルテニウム層等のパターンを形成しておくことで、銅層やルテニウム層等のパターン上にのみ選択的にコバルト含有薄膜を形成することができる。基体の形状としては、板状、球状、繊維状、鱗片状が挙げられる。基体表面は、平面であってもよく、トレンチ構造等の三次元構造となっていてもよい。
 また、上記の製造条件としては、反応温度(基体温度)、反応圧力、堆積速度等が挙げられる。反応温度については、本発明の化合物が充分に反応する温度である100℃以上が好ましく、150℃~400℃がより好ましい。本発明の化合物は250℃未満で熱分解させることができるので、150℃~250℃が特に好ましい。また、反応圧力は、熱CVD又は光CVDの場合、大気圧~10Paが好ましく、プラズマを使用する場合、2000Pa~10Paが好ましい。
 また、堆積速度は、原料の供給条件(気化温度、気化圧力)、反応温度、反応圧力によりコントロールすることができる。堆積速度は、大きいと得られる薄膜の特性が悪化する場合があり、小さいと生産性に問題を生じる場合があるので、0.01~100nm/分が好ましく、1~50nm/分がより好ましい。また、ALD法の場合は、所望の膜厚が得られるようにサイクルの回数でコントロールされる。
 上記の製造条件として更に、薄膜形成用原料を気化させて蒸気とする際の温度や圧力が挙げられる。薄膜形成用原料を気化させて蒸気とする工程は、原料容器内で行ってもよく、気化室内で行ってもよい。いずれの場合においても、本発明の薄膜形成用原料は0~150℃で蒸発させることが好ましい。また、原料容器内又は気化室内で薄膜形成用原料を気化させて蒸気とする場合に原料容器内の圧力及び気化室内の圧力はいずれも1~10000Paであることが好ましい。
 本発明の薄膜の製造方法は、ALD法を採用して、上記の輸送供給方法により、薄膜形成用原料を気化させて蒸気とし、該蒸気を成膜チャンバー内へ導入する原料導入工程のほか、該蒸気中の上記化合物により上記基体の表面に前駆体薄膜を形成する前駆体薄膜成膜工程、未反応の化合物ガスを排気する排気工程及び該前駆体薄膜を反応性ガスと化学反応させて、該基体の表面に上記金属を含有する薄膜を形成する金属含有薄膜形成工程を有していてもよい。
 以下では、上記の各工程について詳しく説明する。銅原子、鉄原子、ニッケル原子、コバルト原子及びマンガン原子から選ばれる少なくとも1種の原子を含有する薄膜をALD法により形成する場合は、まず、前記で説明した原料導入工程を行う。薄膜形成用原料を蒸気とする際の好ましい温度や圧力は上記で説明したものと同様である。次に、堆積反応部に導入した化合物により、基体表面に前駆体薄膜を成膜させる(前駆体薄膜成膜工程)。このときに、基体を加熱するか、堆積反応部を加熱して、熱を加えてもよい。この工程で成膜される前駆体薄膜は、本発明の化合物から生成した薄膜であるか、又は本発明の化合物の一部が分解及び/又は反応して生成した薄膜であり、目的の金属含有薄膜とは異なる組成を有する。本工程が行われる際の基体温度は、室温~500℃が好ましく、150~350℃がより好ましい。本工程が行われる際の系(成膜チャンバー内)の圧力は1~10000Paが好ましく、10~1000Paがより好ましい。
 次に、未反応の化合物ガスや副生したガスを堆積反応部から排気する(排気工程)。未反応の化合物ガスや副生したガスは、堆積反応部から完全に排気されるのが理想的であるが、必ずしも完全に排気される必要はない。排気方法としては、窒素、ヘリウム、アルゴン等の不活性ガスにより系内をパージする方法、系内を減圧することで排気する方法、これらを組み合わせた方法等が挙げられる。減圧する場合の減圧度は、0.01~300Paが好ましく、0.01~100Paがより好ましい。
 次に、堆積反応部に反応性ガスを導入し、該反応性ガスの作用又は反応性ガス及び熱の作用により、先の前駆体薄膜成膜工程で得た前駆体薄膜から目的の金属含有薄膜を形成する(金属含有薄膜形成工程)。本工程において熱を作用させる場合の温度は、室温~500℃が好ましく、150~350℃がより好ましい。本工程が行われる際の系(成膜チャンバー内)の圧力は1~10000Paが好ましく、10~1000Paがより好ましい。本発明の化合物は、反応性ガスとの反応性が良好であるため、残留炭素含有量が少ない高品質な金属含有薄膜を得ることができる。
 本発明の薄膜の製造方法において、上記のようにALD法を採用した場合、上記の原料導入工程、前駆体薄膜成膜工程、排気工程及び金属含有薄膜形成工程からなる一連の操作による薄膜堆積を1サイクルとし、このサイクルを必要な膜厚の薄膜が得られるまで複数回繰り返してもよい。この場合、1サイクル行った後、上記排気工程と同様にして、堆積反応部から未反応の化合物ガス及び反応性ガス、更に副成したガスを排気した後、次の1サイクルを行うことが好ましい。
 また、薄膜のALD法による形成においては、プラズマ、光、電圧等のエネルギーを印加してもよく、触媒を用いてもよい。該エネルギーを印加する時期及び触媒を用いる時期は、特には限定されず、例えば、原料導入工程における化合物ガス導入時、前駆体薄膜成膜工程又は金属含有薄膜形成工程における加温時、排気工程における系内の排気時、金属含有薄膜形成工程における反応性ガス導入時でもよく、上記の各工程の間でもよい。
 また、本発明の薄膜の製造方法においては、薄膜堆積の後に、より良好な電気特性を得るために不活性雰囲気下、酸化性雰囲気下又は還元性雰囲気下でアニール処理を行ってもよく、段差埋め込みが必要な場合には、リフロー工程を設けてもよい。この場合の温度は、200~1000℃であり、250~500℃が好ましい。
 本発明の薄膜形成用原料を用いて薄膜を製造する装置は、周知の化学気相成長法用装置を用いることができる。具体的な装置の例としては図1のようなプレカーサをバブリング供給することのできる装置や、図2のように気化室を有する装置が挙げられる。また、図3及び図4のように反応性ガスに対してプラズマ処理を行うことのできる装置が挙げられる。図1~図4のような枚葉式装置に限らず、バッチ炉を用いた多数枚同時処理可能な装置を用いることもできる。
 本発明の薄膜形成用原料を用いて製造される薄膜は、他のプレカーサ、反応性ガス及び製造条件を適宜選択することにより、メタル、酸化物セラミックス、窒化物セラミックス、ガラス等の所望の種類の薄膜とすることができる。該薄膜は種々の電気特性及び光学特性等を示すことが知られており、種々の用途に応用されている。例えば、銅及び銅含有薄膜は、高い導電性、高エレクトロマイグレーション耐性、高融点という特性から、LSIの配線材料として応用されている。また、ニッケル及びニッケル含有薄膜は、主に抵抗膜、バリア膜等の電子部品の部材や、磁性膜等の記録メディア用の部材や、電極等の薄膜太陽電池用部材等に用いられている。また、コバルト及びコバルト含有薄膜は、電極膜、抵抗膜、接着膜、磁気テープ、超硬工具部材等に用いられている。
 本発明のアミジン化合物は、下記一般式(2)で表されるものであり、CVD法等の気化工程を有する薄膜製造方法で用いられるプレカーサの配位子として特に好適な化合物である。
Figure JPOXMLDOC01-appb-C000017
(式中、R5は炭素原子数1~5の直鎖又は分岐状のアルキル基を表し、R6は水素又は炭素原子数1~5の直鎖若しくは分岐状のアルキル基を表し、R7及びR8は各々独立に炭素原子数1~5の直鎖又は分岐状のアルキル基を表し、Lは炭素原子数1~4のアルカンジイル基を表す。ただし、R5がエチル基であり且つR6が水素である場合は、Lは分岐状の炭素原子数3のアルカンジイル基、又は炭素原子数4のアルカンジイル基であり、R5がエチル基又は第三ブチル基であり且つR6がメチル基である場合は、Lは炭素原子数3又は炭素原子数4のアルカンジイル基である。)
 上記一般式(2)において、R5、R6、R7及びR8で表される炭素原子数1~5の直鎖又は分岐状のアルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、第二ブチル基、第三ブチル基、ペンチル基、イソペンチル基等が挙げられる。
 上記一般式(2)において、Lで表される炭素原子数1~4のアルカンジイル基としては、例えば、メチレン基、エチレン基、プロパン-1,3-ジイル基、プロパン-1,2-ジイル基、ブチレン基、ブタン-1,3-ジイル基、ブタン-2,3-ジイル基、ブタン-1,2-ジイル基等が挙げられる。
 上記一般式(2)において、R5はイソプロピル基、イソブチル基、第二ブチル基又は第三ブチル基であることが好ましい。なかでも、R5が第三ブチル基であるアミジン化合物は、安定性が良好であることから好ましい。
 上記一般式(2)において、R6が水素、メチル基又はエチル基であるアミジン化合物は、金属錯体化合物の配位子とした場合に、蒸気圧が高い金属錯体化合物が得られることから好ましい。
 上記一般式(2)において、Lがエチレン基、プロパン-1,3-ジイル基又はプロパン-1,2-ジイル基であるアミジン化合物は、金属錯体化合物の配位子とした場合に、融点が低く、蒸気圧が高い金属錯体化合物が得られることから好ましい。なかでも、Lがプロパン-1,2-ジイル基であるアミジン化合物は特に好ましい。上記一般式(2)において、R7及びR8がメチル基又はエチル基であるアミジン化合物は、金属錯体化合物の配位子とした場合に、融点が低く、蒸気圧が高い金属錯体化合物が得られることから好ましい。なかでも、R7及びR8がメチル基であるアミジン化合物は特に好ましい。
 上記一般式(2)で表されるアミジン化合物の好ましい具体例としては、例えば、下記化合物No.55~156が挙げられる。なお、下記化合物No.55~156において、「Me」はメチル基を表し、「Et」はエチル基を表し、「iPr」はイソプロピル基を表し、「sBu」は第二ブチル基を表し、「tBu」は第三ブチル基を表す。
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
 本発明のアミジン化合物は、その製造方法により特に限定されることはなく、周知の反応を応用することで製造することができる。例えば、周知一般の方法を用いて対応する構造のウレアを合成した後、ジクロロメタン等を溶媒として用いて、トリアルキルアミン、p-トルエンスルホン酸クロリドと反応させることで、中間体としてカルボジイミド化合物を合成し、ここにアルキルリチウムジアルキルエーテルを反応させたものを、蒸留等の方法で精製することで製造することができる。
 本発明のアミジン化合物は、薄膜形成用原料等に用いられる金属錯体化合物の配位子として用いることができる。また、本発明のアミジン化合物は、溶媒、香料、農薬、医薬、各種ポリマー等の合成原料等の用途にも用いることができる。
 以下、実施例及び評価例をもって本発明を更に詳細に説明する。しかしながら、本発明は以下の実施例等によって何ら制限を受けるものではない。
[実施例1]化合物No.151の製造
 2L4つ口フラスコにtertブチルイソシアネート21.3g(0.215mol)とジエチルエーテル131.7gを仕込み、水冷下で撹拌した。この溶液にN,N-ジメチルプロパン-1,2-ジアミン22.1g(0.216mol)とジエチルエーテル55.6gの溶液を滴下した。滴下後、室温に戻し3時間撹拌した。その後、微減圧下オイルバス60℃で脱溶媒を行い、無色オイル状の1-(tertブチル)-3-(1-ジメチルアミノプロパン-2-イル)ウレアを得た。この中にジクロロメタン419.0gとトリエチルアミン97.8g(0.966mol)を仕込み、氷冷下で撹拌した。この溶液にp-トルエンスルホン酸クロリド83.7g(0.439mol)とジクロロメタン641.4gの溶液を滴下した。滴下後、室温に戻し14時間撹拌し、次いで4時間加熱還流させた。室温に戻した後、40%炭酸カリウム水溶液で反応を完結させ、有機層を抽出・分液し、硫酸ナトリウムを加えて脱水・ろ過を行った。微減圧下オイルバス60℃で脱溶媒を行い、溶媒留去後、微減圧下オイルバス85℃で蒸留を行うことで無色透明のカルボジイミド化合物Aを収量26.9g、収率69%で得た。500mL4つ口フラスコにカルボジイミド化合物A26.0g(0.141mol)とジエチルエーテル51.1gを仕込み、氷冷下で撹拌した。この溶液にメチルリチウムジエチルエーテル溶液130mL(0.143mol)を滴下した。滴下後、室温に戻し15時間撹拌した。その後、氷冷下で水を滴下し反応を完結させ、有機層を抽出・分液し、硫酸ナトリウムを加えて脱水・ろ過を行った。微減圧下オイルバス70℃で脱溶媒を行い、溶媒留去後、微減圧下オイルバス85℃で蒸留を行うことで無色透明の目的物を収量24.6g、収率87%で得た。
(分析値)
(1)GC-MS m/z: 199(M+)
(2)1NMR(溶媒:重ベンゼン)(ケミカルシフト:多重度:H数)
(1.28~1.30:d:3)(1.38:s:3)(1.39:s:9)(2.19:s:6)(2.27~2.32:m:1)(3.05:br:1)(3.43:br:1)
[実施例2]化合物No.2の製造
 500mL4つ口フラスコに、塩化コバルト(II)8.60g(0.066mol)とテトラヒドロフラン69.5gを仕込み、室温下で撹拌した。その中に、化合物No.151 24.4g(0.132mol)、ノルマルヘキサン85.6g及びnBuLi57.6g(0.132mol)により調製した溶液を氷冷下で滴下し、滴下後、室温に戻し17時間攪拌し、濾過を行った。得られた濾液から溶媒を除去し、残渣をバス温度160℃、圧力77Pa、塔頂温度132℃で蒸留を行い、濃緑色液体である目的物を得た。収量は20.0g、収率は66%であった。
(分析値)
(1)常圧TG-DTA
 質量50%減少温度:236℃(Ar流量:100ml/分、昇温10℃/分、サンプル量:9.496mg)
(2)元素分析(金属分析:ICP-AES、CHN分析:CHN分析装置)
 コバルト含有量:13.0質量%(理論値:12.94質量%)
 C:57.9質量%(理論値:58.00質量%)、H:10.5質量%(理論値:10.62質量%)、N:18.6質量%(理論値:18.45質量%)
[製造例]公知化合物Aの製造
 1L4つ口フラスコにtertブチルイソシアネート10.2g(0.103mol)とジエチルエーテル73.0gを仕込み、水冷下で撹拌した。この溶液にN,N-ジメチルエチレンジアミン8.90g(0.101mol)とジエチルエーテル34.9gの溶液を滴下した。滴下後、室温に戻し3時間撹拌した。その後、オイルバス60℃微減圧下で脱溶媒を行い、無色オイル状の1-(tertブチル)-3-(2-ジメチルアミノエチル)ウレアを得た。この中にジクロロメタン275.3gとトリエチルアミン45.6g(0.460mol)を仕込み、氷冷下で撹拌した。この溶液にp-トルエンスルホン酸クロリド38.8g(0.203mol)とジクロロメタン284.5gの溶液を滴下した。滴下後、室温に戻し2時間撹拌し、40%炭酸カリウム水溶液で反応を完結させ、有機層を抽出・分液し、硫酸ナトリウムを加えて脱水・ろ過を行った。微減圧下オイルバス55℃で脱溶媒を行い、溶媒留去後、オイルバス80℃微減圧下で蒸留を行うことで無色透明のカルボジイミド化合物Bを収量9.75g、収率55.7%で得た。200mL4つ口フラスコにカルボジイミド化合物B10.5g(0.062mol)とジエチルエーテル42.9gを仕込み、氷冷下で撹拌した。この溶液にメチルリチウムジエチルエーテル溶液62ml(0.062mol)を滴下した。滴下後、室温に戻し16時間撹拌した。その後、氷冷下で水を滴下し反応を完結させ、有機層を抽出・分液し、硫酸ナトリウムを加えて脱水・ろ過を行った。微減圧下オイルバス75℃で脱溶媒を行い、溶媒留去後、オイルバス75℃微減圧下で蒸留を行うことで無色透明の目的物(下記に示す公知化合物A)を収量9.67g、収率84%で得た。
(分析値)
(1)GC-MS m/z: 185(M+)
(2)1NMR(溶媒:重ベンゼン)(ケミカルシフト:多重度:H数)
(1.31:s:3)(1.39:s:9)(2.23:s:6)(2.65:m:2)(3.36~3.40:t:2)
Figure JPOXMLDOC01-appb-C000027
[実施例3]化合物No.1の製造
 300mL3つ口フラスコに、塩化コバルト(II)5.31g(0.041mol)、テトラヒドロフラン74.9gを仕込み、室温下で撹拌した。その中に、公知化合物A 15.30g(0.083mol)、ノルマルヘキサン65.9g及びnBuLi35.2g(0.082mol)により調製した溶液を氷冷下で滴下し、滴下後室温に戻し19時間攪拌し、濾過を行った。得られた濾液から溶媒を除去し、残渣をクーゲルロールにて温度130℃、圧力57Paで精製し、濃緑色固体を得た。
(分析値)
(1)常圧TG-DTA
 質量50%減少温度:224℃(Ar流量:100ml/分、昇温10℃/分、サンプル量:8.619mg)
(2)元素分析(金属分析:ICP-AES、CHN分析:CHN分析装置)
 コバルト含有量:13.7質量%(理論値:13.78質量%)
 C:56.4質量%(理論値:56.19質量%)、H:10.3質量%(理論値:10.37質量%)、N:19.6質量%(理論値:19.66質量%)
[実施例4]化合物No.157の製造
 2L4つ口フラスコにtertブチルイソシアネート18.8g(0.190mol)とジエチルエーテル129.7gを仕込み、水冷下で撹拌した。この溶液にN,N-ジメチル-1,3-プロパンジアミン19.4g(0.190mol)とジエチルエーテル45.4gの溶液を滴下した。滴下後、室温に戻し3時間撹拌した。その後、オイルバス70℃微減圧下で脱溶媒を行い、無色オイル状の1-(tertブチル)-3-(3-ジメチルアミノプロピル)ウレアを得た。この中にジクロロメタン304.2gとトリエチルアミン83.2g(0.822mol)を仕込み、氷冷下で撹拌した。この溶液にp-トルエンスルホン酸クロリド71.4g(0.374mol)とジクロロメタン534.4gの溶液を滴下した。滴下後、室温に戻し14時間撹拌し、40%炭酸カリウム水溶液で反応を完結させ、有機層を抽出・分液し、硫酸ナトリウムを加えて脱水・ろ過を行った。微減圧下オイルバス80℃で脱溶媒を行い、溶媒留去後、オイルバス95℃微減圧下で蒸留を行うことで無色透明のカルボジイミド化合物Cを収量6.16g、収率18%で得た。200mL4つ口フラスコにカルボジイミド化合物C5.05g(0.027mol)とジエチルエーテル41.9gを仕込み、氷冷下で撹拌した。この溶液にメチルリチウムジエチルエーテル溶液25ml(0.027mol)を滴下した。滴下後、室温に戻し3時間撹拌した。その後、氷冷下で水を滴下し反応を完結させ、有機層を抽出・分液し、硫酸ナトリウムを加えて脱水・ろ過を行った。微減圧下オイルバス80℃で脱溶媒を行い、溶媒留去後、オイルバス100℃微減圧下で蒸留を行うことで無色透明の目的物(下記に示す化合物No.157)を収量5.20g、収率80%で得た。
(分析値)
(1)GC-MS m/z: 199(M+)
(2)1NMR(溶媒:重ベンゼン)(ケミカルシフト:多重度:H数)
(1.34:s:3)(1.39:s:9)(1.86~1.90:t:2)(2.17:s:6)(2.43~2.47:t:2)(3.23~3.26:t:2)
Figure JPOXMLDOC01-appb-C000028
[実施例5]化合物No.158の製造
 100mL3つ口フラスコに、塩化コバルト(II)1.72g(0.013mol)、テトラヒドロフラン23.9gを仕込み、室温下で撹拌した。その中に、化合物No.157を5.20g(0.026mol)、ノルマルヘキサン20.9g及びnBuLi11.4g(0.026mol)により調製した溶液を氷冷下で滴下し、滴下後室温に戻し16時間攪拌し、濾過を行った。得られた濾液から溶媒を除去し、残渣をクーゲルロールにて温度145℃、圧力59Paで精製し、濃緑色液体(下記に示す化合物No.158)を得た。収量は0.51g、収率は8%であった。
(分析値)
(1)常圧TG-DTA
 質量50%減少温度:249℃(Ar流量:100ml/分、昇温10℃/分、サンプル量:10.121mg)
(2)元素分析(金属分析:ICP-AES、CHN分析:CHN分析装置)
 コバルト含有量:13.0質量%(理論値:12.94質量%)
 C:58.1質量%(理論値:58.00質量%)、H:10.5質量%(理論値:10.62質量%)、N:18.4質量%(理論値:18.45質量%)
Figure JPOXMLDOC01-appb-C000029
[実施例6]化合物No.159の製造
 500mL4つ口フラスコにカルボジイミド化合物A10.0g(0.055mol)とジエチルエーテル78.6gを仕込み、氷冷下で撹拌した。この溶液にエチルリチウムベンゼンシクロヘキサン溶液230ml(0.115mol)を滴下した。滴下後、室温に戻し48時間撹拌し、次いで23時間加熱還流させた。室温に戻した後、氷冷下で水を滴下し反応を完結させ、有機層を抽出・分液し、硫酸ナトリウムを加えて脱水・ろ過を行った。微減圧下オイルバス70℃で脱溶媒を行い、溶媒留去後、オイルバス90℃微減圧下で蒸留を行うことで無色透明の目的物(下記に示す化合物No.159)を収量8.2g、収率66%で得た。
(分析値)
(1)GC-MS m/z: 227(M+)
(2)1NMR(溶媒:重ベンゼン)(ケミカルシフト:多重度:H数)
(0.88~0.92:t:3)(1.30~1.32:d:3)(1.41:s:9)(1.75~1.79:m:2)(2.19:s:6)(2.26~2.30:m:1)(3.11:br:1)(3.51:br:1)
Figure JPOXMLDOC01-appb-C000030
[実施例7]化合物No.8の製造
 200mL4つ口フラスコに、塩化コバルト(II)2.66g(0.020mol)、テトラヒドロフラン25.0gを仕込み、室温下で撹拌した。その中に、化合物No.159を9.20g(0.040mol)、ノルマルヘキサン23.3g及びnBuLi20.2g(0.047mol)により調製した溶液を氷冷下で滴下し、滴下後室温に戻し16時間攪拌し、濾過を行った。得られた濾液から溶媒を除去し、残渣をバス温度170℃、圧力26Pa、塔頂温度122℃で蒸留を行い、濃緑色液体を得た。収量は4.0g、収率は40%であった。
(分析値)
(1)常圧TG-DTA
 質量50%減少温度:244℃(Ar流量:100ml/分、昇温10℃/分、サンプル量:10.122mg)
(2)元素分析(金属分析:ICP-AES、CHN分析:CHN分析装置)
 コバルト含有量:12.3質量%(理論値:12.18質量%)
 C:59.4質量%(理論値:59.60質量%)、H:11.0質量%(理論値:10.84質量%)、N:17.3質量%(理論値:17.38質量%)
[実施例8]化合物No.127の製造
 2L4つ口フラスコにイソプロピルイソチオシアネート24.1g(0.237mol)とジエチルエーテル385.8gを仕込み、水冷下で撹拌した。この溶液にN,N-ジメチルプロパン-1,2-ジアミン26.9g(0.263mol)とジエチルエーテル119.8gの溶液を滴下した。滴下後、室温に戻し14時間撹拌した。その後、オイルバス65℃微減圧下で脱溶媒を行い、無色オイル状の1-(1-ジメチルアミノプロパン-2-イル)-3-イソプロピルチオウレアを得た。この中にジクロロメタン507.8gとトリエチルアミン85.0g(0.840mol)を仕込み、-40℃に冷却し撹拌した。この溶液にN-ブロモスクシンイミド46.3g(0.260mol)とジクロロメタン847.6gの溶液を滴下した。滴下後、室温に戻し16時間撹拌した。40%炭酸カリウム水溶液で反応を完結させ、有機層を抽出・分液し、硫酸ナトリウムを加えて脱水・ろ過を行った。微減圧下オイルバス80℃で脱溶媒を行い、溶媒留去後、オイルバス90℃微減圧下で蒸留を行うことで無色透明のカルボジイミド化合物Dを収量19.2g、収率48%で得た。500mL4つ口フラスコにカルボジイミド化合物D19.2g(0.113mol)とジエチルエーテル63.9gを仕込み、氷冷下で撹拌した。この溶液にメチルリチウムジエチルエーテル溶液113ml(0.113mol)を滴下した。滴下後、室温に戻し15時間撹拌した。その後、氷冷下で水を滴下し反応を完結させ、有機層を抽出・分液し、硫酸ナトリウムを加えて脱水・ろ過を行った。微減圧下オイルバス70℃で脱溶媒を行い、溶媒留去後、オイルバス90℃微減圧下で蒸留を行うことで無色透明の目的物を収量14.3g、収率69%で得た。
(分析値)
(1)GC-MS m/z: 185(M+)
(2)元素分析(CHN分析装置)
 C:64.5質量%(理論値:64.81質量%)、H:12.8質量%(理論値:12.51質量%)、N:22.7質量%(理論値:22.68質量%)
[実施例9]化合物No.160の製造
 200mL4つ口フラスコに、塩化コバルト(II)2.34g(0.018mol)、テトラヒドロフラン22.7gを仕込み、室温下で撹拌した。その中に、化合物No.127 6.50g(0.035mol)、ノルマルヘキサン21.6g及びnBuLi15.6g(0.035mol)により調製した溶液を氷冷下で滴下し、滴下後室温に戻し16時間攪拌し、濾過を行った。得られた濾液から溶媒を除去し、残渣をバス温度150℃、圧力40Pa、塔頂温度115℃で蒸留を行い、濃緑色液体(下記に示す化合物No.160)を得た。収量は3.6g、収率は48%であった。
(分析値)
(1)常圧TG-DTA
 質量50%減少温度:229℃(Ar流量:100ml/分、昇温10℃/分、サンプル量:9.637mg)
(2)元素分析(金属分析:ICP-AES、CHN分析:CHN分析装置)
 コバルト含有量:13.6質量%(理論値:13.78質量%)
 C:56.3質量%(理論値:56.19質量%)、H:10.2%(理論値:10.37質量%)、N:19.9質量%(理論値:19.66質量%)
Figure JPOXMLDOC01-appb-C000031
[実施例10]化合物No.139の製造
 2L4つ口フラスコにsecブチルイソチオシアネート25.1g(0.218mol)とジエチルエーテル165.9gを仕込み、水冷下で撹拌した。この溶液にN,N-ジメチルプロパン-1,2-ジアミン24.3g(0.238mol)とジエチルエーテル83.6gの溶液を滴下した。滴下後、室温に戻し19時間撹拌した。その後、オイルバス75℃微減圧下で脱溶媒を行い、無色オイル状の1-(sec-ブチル)-3-(1-ジメチルアミノプロパン-2-イル)チオウレアを得た。この中にジクロロメタン409.0gとトリエチルアミン81.3g(0.803mol)を仕込み、-30℃に冷却し撹拌した。この溶液にN-ブロモスクシンイミド40.9g(0.230mol)とジクロロメタン695.3gの溶液を滴下した。滴下後、室温に戻し18時間撹拌した。40%炭酸カリウム水溶液で反応を完結させ、有機層を抽出・分液し、硫酸ナトリウムを加えて脱水・ろ過を行った。微減圧下オイルバス80℃で脱溶媒を行い、溶媒留去後、オイルバス95℃微減圧下で蒸留を行うことで無色透明のカルボジイミド化合物Eを収量9.9g、収率25%で得た。200mL4つ口フラスコにカルボジイミド化合物E9.9g(0.054mol)とジエチルエーテル37.6gを仕込み、氷冷下で撹拌した。この溶液にメチルリチウムジエチルエーテル溶液54ml(0.054mol)を滴下した。滴下後、室温に戻し2時間撹拌した。その後、氷冷下で水を滴下し反応を完結させ、有機層を抽出・分液し、硫酸ナトリウムを加えて脱水・ろ過を行った。微減圧下オイルバス70℃で脱溶媒を行い、溶媒留去後、オイルバス85℃微減圧下で蒸留を行うことで無色透明の目的物を収量7.2g、収率67%で得た。
(分析値)
(1)GC-MS m/z: 199(M+)
(2)元素分析(CHN分析装置)
 C:66.5質量%(理論値:66.28質量%)、H:12.2質量%(理論値:12.64質量%)、N:21.3質量%(理論値:21.08質量%)
[実施例11]化合物No.161の製造
 200mL4つ口フラスコに、塩化コバルト(II)1.71g(0.013mol)、テトラヒドロフラン15.1gを仕込み、室温下で撹拌した。その中に、化合物No.139 5.25g(0.026mol)、ノルマルヘキサン17.1g及びnBuLi11.2g(0.026mol)により調製した溶液を氷冷下で滴下し、滴下後室温に戻し21時間攪拌し、濾過を行った。得られた濾液から溶媒を除去し、残渣をバス温度165℃、圧力40Pa、塔頂温度127℃で蒸留を行い、濃緑色液体(下記に示す化合物No.161)を得た。収量は3.5g、収率は59%であった。
(分析値)
(1)常圧TG-DTA
 質量50%減少温度:245℃(Ar流量:100ml/分、昇温10℃/分、サンプル量:9.605mg)
(2)元素分析(金属分析:ICP-AES、CHN分析:CHN分析装置)
 コバルト含有量:12.9質量%(理論値:12.94質量%)
C:58.1質量%(理論値:58.00質量%)、H:10.5質量%(理論値:10.62質量%)、N:18.5質量%(理論値:18.45質量%)
Figure JPOXMLDOC01-appb-C000032
[評価例1]コバルト化合物の物性評価
 化合物No.2、1、158、8、160、161及び下記に示す比較化合物1について、目視によって常圧30℃における各化合物の状態を観察し、固体化合物については微小融点測定装置を用いて融点を測定した。また、化合物No.2及び比較化合物1について、TG-DTAを用いて減圧下で重量が50%減少した際の温度を測定した。結果を表1に示す。
(減圧TG-DTA測定条件)
 10Torr、Ar流量:50mL/分、昇温速度:10℃/分、サンプル量:9.181mg(化合物No.2、比較化合物1)、8.587mg(化合物No.1)、10.754mg(化合物No.158)、9.527mg(化合物No.8)、9.919mg(化合物No.160)、9.847mg(化合物No.161)
Figure JPOXMLDOC01-appb-C000033
 なお、上記した公知化合物A、化合物No.157~161及び比較化合物1において、「Me」はメチル基を表し、「Et」はエチル基を表し、「iPr」はイソプロピル基を表し、「sBu」は第二ブチル基を表し、「tBu」は第三ブチル基を表す。
Figure JPOXMLDOC01-appb-T000034
 上記表1より、比較化合物1は融点105℃の化合物であることに対して、化合物No.2、8、158、160及び161は常圧30℃の条件下で液体である化合物であることがわかった。融点が低い薄膜形成用原料は輸送が容易であることから、生産性を向上させることができる薄膜形成用原料である。また、減圧TG-DTAの結果から、化合物No.1、2、8、158、160及び161は、比較化合物1よりも50質量%減少時の温度が若干高いものの、化学気相成長用原料として十分な蒸気圧を示すことがわかった。
[実施例12]ALD法による金属コバルト薄膜の製造
 化合物No.2を化学気相成長用原料とし、図1に示す化学気相成長用装置を用いて以下の条件のALD法により、ルテニウム(Ru)基板上に金属コバルト薄膜を製造した。得られた薄膜について、X線反射率法による膜厚測定、X線回折法及びX線光電子分光法による薄膜構造及び薄膜組成の確認を行ったところ、膜厚は1~3nmであり、膜組成は金属コバルト(XPS分析によるCo2pピークで確認)であり、薄膜中の残留炭素含有量は検出下限である0.1atom%よりも少なかった。1サイクル当たりに得られる膜厚は、0.01~0.03nmであった。
(条件)
 反応温度(基板温度);200℃、反応性ガス;水素ガス
(工程)
 下記(1)~(4)からなる一連の工程を1サイクルとして、100サイクル繰り返した。
 (1)原料容器加熱温度:110℃、原料容器内圧力:100Paの条件で気化させた化学気相成長用原料を成膜チャンバーに導入し、系圧力:100Paで30秒間堆積させる。
 (2)15秒間のアルゴンパージにより、未反応原料及び副生ガスを除去する。
 (3)反応性ガスを成膜チャンバーに導入し、系圧力:100Paで30秒間反応させる。
 (4)15秒間のアルゴンパージにより、未反応原料及び副生ガスを除去する。
[実施例13]ALD法による金属コバルト薄膜の製造
 化合物No.1を化学気相成長用原料としたこと以外は、実施例12と同様の方法で金属コバルト薄膜を製造した。得られた薄膜について、X線反射率法による膜厚測定、X線回折法及びX線光電子分光法による薄膜構造及び薄膜組成の確認を行ったところ、膜厚は0.5~1.5nmであり、膜組成は金属コバルト(XPS分析によるCo2pピークで確認)であり、薄膜中の残留炭素含有量は0.5atom%であった。1サイクル当たりに得られる膜厚は、0.005~0.015nmであった。
 化合物No.8、158、160及び161それぞれを化学気相成長用原料としたこと以外は、実施例12と同様の方法で、各々金属コバルト薄膜を製造した。得られた薄膜について、X線反射率法による膜厚測定、X線回折法及びX線光電子分光法による薄膜構造及び薄膜組成の確認を行ったところ、膜厚は1~2nmであり、膜組成は金属コバルト(XPS分析によるCo2pピークで確認)であり、薄膜中の残留炭素含有量は0.2atom%であった。1サイクル当たりに得られる膜厚は、0.01~0.02nmであった。
[比較例1]
 比較化合物1を化学気相成長用原料とし、図1に示す化学気相成長用装置を用いて以下の条件のALD法により、Ru基板上に金属コバルト薄膜を製造した。Ru基板上に得られた薄膜について、X線反射率法による膜厚測定、X線回折法及びX線光電子分光法による薄膜構造及び薄膜組成の確認を行ったところ、膜厚は1~2nmであり、膜組成は金属コバルト(XPS分析によるCo2pピークで確認)であり、薄膜中の残留炭素含有量は5atom%以上であった。1サイクル当たりに得られる膜厚は、0.01~0.02nmであった。
(条件)
 反応温度(基板温度);200℃、反応性ガス;水素ガス
(工程)
 下記(1)~(4)からなる一連の工程を1サイクルとして、100サイクル繰り返した。
 (1)原料容器加熱温度:80℃、原料容器内圧力:100Paの条件で気化させた化学気相成長用原料を成膜チャンバーに導入し、系圧力:100Paで30秒間堆積させる。
 (2)15秒間のアルゴンパージにより、未反応原料及び副生ガスを除去する。
 (3)反応性ガスを成膜チャンバーに導入し、系圧力:100Paで30秒間反応させる。
 (4)15秒間のアルゴンパージにより、未反応原料及び副生ガスを除去する。
 以上の結果より、化合物No.1、2、8、158、160及び161をALD法による薄膜形成用原料として用いることで、品質の良い金属コバルト薄膜を製造することができることがわかった。中でも、化合物No.2は、非常に品質の良い金属コバルト薄膜を製造することができた。一方、比較化合物1をALD法による薄膜形成用原料として用いた場合には、薄膜中の残留炭素含有量が多い金属コバルト薄膜が得られたことから、品質の良い金属コバルトを製造することが難しいことがわかった。
[実施例14]ALD法による金属コバルト薄膜の製造
 化合物No.2を化学気相成長用原料とし、図1に示す化学気相成長用装置を用いて以下の条件のALD法により、SiO2基板表面の半分の面積にルテニウム(Ru)層を形成した基板に各々金属コバルト薄膜の形成を試みた。この結果、Ru層の部分にのみ薄膜が成膜された。Ru層上に得られた薄膜について、X線反射率法による膜厚測定、X線回折法及びX線光電子分光法による薄膜構造及び薄膜組成の確認を行ったところ、膜厚は1~3nmであり、膜組成は金属コバルト(XPS分析によるCo2pピークで確認)であり、薄膜中の残留炭素含有量は検出下限である0.1atom%よりも少なかった。1サイクル当たりに得られる膜厚は、0.01~0.03nmであった。一方、基板のSiO2が露出している部分上からは金属コバルトが検出されなかった。
(条件)
 反応温度(基板温度);150℃、反応性ガス;水素ガス
(工程)
 下記(1)~(4)からなる一連の工程を1サイクルとして、100サイクル繰り返した。
 (1)原料容器加熱温度:110℃、原料容器内圧力:100Paの条件で気化させた化学気相成長用原料を成膜チャンバーに導入し、系圧力:100Paで30秒間堆積させる。
 (2)15秒間のアルゴンパージにより、未反応原料及び副生ガスを除去する。
 (3)反応性ガスを成膜チャンバーに導入し、系圧力:100Paで30秒間反応させる。
 (4)15秒間のアルゴンパージにより、未反応原料及び副生ガスを除去する。
[実施例15]ALD法による金属コバルト薄膜の製造
 化合物No.1を化学気相成長用原料としたこと以外は、実施例14と同様の方法で金属コバルト薄膜を製造した。この結果、Ru層の部分にのみ薄膜が成膜された。Ru層上に得られた薄膜について、X線反射率法による膜厚測定、X線回折法及びX線光電子分光法による薄膜構造及び薄膜組成の確認を行ったところ、膜厚は0.5~1.5nmであり、膜組成は金属コバルト(XPS分析によるCo2pピークで確認)であり、薄膜中の残留炭素含有量は0.5atom%であった。1サイクル当たりに得られる膜厚は、0.005~0.015nmであった。
 化合物No.8、158、160及び161それぞれを化学気相成長用原料としたこと以外は、実施例14と同様の方法で、各々金属コバルト薄膜を製造した。この結果、Ru層の部分にのみ薄膜が成膜された。Ru層上に得られた薄膜について、X線反射率法による膜厚測定、X線回折法及びX線光電子分光法による薄膜構造及び薄膜組成の確認を行ったところ、膜厚は1~2nmであり、膜組成は金属コバルト(XPS分析によるCo2pピークで確認)であり、薄膜中の残留炭素含有量は0.2atom%であった。1サイクル当たりに得られる膜厚は、0.01~0.02nmであった。
 実施例14及び15の結果より、化合物No.1、2、8、158、160及び161をALD法による薄膜形成用原料として用いた場合、基板の種類によって選択的に金属コバルト薄膜を形成させることができることがわかった。中でも、化合物No.2は、非常に品質の良い金属コバルト薄膜を製造することができた。
 なお、本国際出願は、2016年11月8日に出願した日本国特許出願第2016-217749号に基づく優先権を主張するものであり、この日本国特許出願の全内容を本国際出願に援用する。

Claims (5)

  1.  下記一般式(1)で表される化合物。
    Figure JPOXMLDOC01-appb-C000001
    (式中、R1は炭素原子数1~5の直鎖又は分岐状のアルキル基を表し、R2は水素又は炭素原子数1~5の直鎖若しくは分岐状のアルキル基を表し、R3及びR4は各々独立に炭素原子数1~5の直鎖又は分岐状のアルキル基を表し、Aは炭素原子数1~4のアルカンジイル基を表し、Mは銅、鉄、ニッケル、コバルト又はマンガンを表す。)
  2.  請求項1に記載の化合物を含有してなる薄膜形成用原料。
  3.  請求項2に記載の薄膜形成用原料を気化させて得られる化合物を含有する蒸気を、基体が設置された成膜チャンバー内に導入し、該化合物を分解及び/又は化学反応させて該基体の表面に銅原子、鉄原子、ニッケル原子、コバルト原子及びマンガン原子から選ばれる少なくとも1種の原子を含有する薄膜を形成する薄膜の製造方法。
  4.  下記一般式(1):
    Figure JPOXMLDOC01-appb-C000002
    (式中、R1は炭素原子数1~5の直鎖又は分岐状のアルキル基を表し、R2は水素又は炭素原子数1~5の直鎖若しくは分岐状のアルキル基を表し、R3及びR4は各々独立に炭素原子数1~5の直鎖又は分岐状のアルキル基を表し、Aは炭素原子数1~4のアルカンジイル基を表し、Mはコバルトを表す。)で表される化合物を含有してなる薄膜形成用原料を気化させて得られる化合物を含有する蒸気を、表面の少なくとも一部に銅層又はルテニウム層が形成されたシリコン基体又は酸化ケイ素基体が設置された成膜チャンバー内に導入し、該化合物を分解及び/又は化学反応させて該シリコン基体又は該酸化ケイ素基体の該銅層又は該ルテニウム層上にコバルト含有薄膜を選択的に形成する薄膜の製造方法。
  5.  下記一般式(2)で表されるアミジン化合物。
    Figure JPOXMLDOC01-appb-C000003
    (式中、R5は炭素原子数1~5の直鎖又は分岐状のアルキル基を表し、R6は水素又は炭素原子数1~5の直鎖若しくは分岐状のアルキル基を表し、R7及びR8は各々独立に炭素原子数1~5の直鎖又は分岐状のアルキル基を表し、Lは炭素原子数1~4のアルカンジイル基を表す。ただし、R5がエチル基であり且つR6が水素である場合は、Lは分岐状の炭素原子数3のアルカンジイル基、又は炭素原子数4のアルカンジイル基であり、R5がエチル基又は第三ブチル基であり且つR6がメチル基である場合は、Lは炭素原子数3又は炭素原子数4のアルカンジイル基である。)
PCT/JP2017/036318 2016-11-08 2017-10-05 化合物、薄膜形成用原料、薄膜の製造方法及びアミジン化合物 WO2018088079A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP17868933.7A EP3539973A4 (en) 2016-11-08 2017-10-05 COMPOUND, STARTING MATERIAL FOR THIN FILM FORMATION, METHOD FOR PRODUCING THIN FILM, AND AMIDINE COMPOUND
CN201780068589.0A CN109923119B (zh) 2016-11-08 2017-10-05 化合物、薄膜形成用原料、薄膜的制造方法和脒化合物
US16/346,724 US11161867B2 (en) 2016-11-08 2017-10-05 Compound, raw material for forming thin film, method for manufacturing thin film, and amidine compound
KR1020197015045A KR102503603B1 (ko) 2016-11-08 2017-10-05 화합물, 박막 형성용 원료, 박막의 제조 방법 및 아미딘 화합물
JP2018550070A JP7075891B2 (ja) 2016-11-08 2017-10-05 化合物、薄膜形成用原料及び薄膜の製造方法
IL266365A IL266365B2 (en) 2016-11-08 2017-10-05 Compound, raw material for forming a thin layer, method for producing a thin layer and amidine compound
US17/490,227 US11618762B2 (en) 2016-11-08 2021-09-30 Compound, raw material for forming thin film, method for manufacturing thin film, and amidine compound

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-217749 2016-11-08
JP2016217749 2016-11-08

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/346,724 A-371-Of-International US11161867B2 (en) 2016-11-08 2017-10-05 Compound, raw material for forming thin film, method for manufacturing thin film, and amidine compound
US17/490,227 Continuation US11618762B2 (en) 2016-11-08 2021-09-30 Compound, raw material for forming thin film, method for manufacturing thin film, and amidine compound

Publications (1)

Publication Number Publication Date
WO2018088079A1 true WO2018088079A1 (ja) 2018-05-17

Family

ID=62109142

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/036318 WO2018088079A1 (ja) 2016-11-08 2017-10-05 化合物、薄膜形成用原料、薄膜の製造方法及びアミジン化合物

Country Status (8)

Country Link
US (2) US11161867B2 (ja)
EP (1) EP3539973A4 (ja)
JP (1) JP7075891B2 (ja)
KR (1) KR102503603B1 (ja)
CN (1) CN109923119B (ja)
IL (1) IL266365B2 (ja)
TW (1) TWI760376B (ja)
WO (1) WO2018088079A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021205958A1 (ja) 2020-04-10 2021-10-14 株式会社Adeka アミジナート化合物、その二量体化合物、薄膜形成用原料及び薄膜の製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102618630B1 (ko) 2019-10-10 2023-12-26 삼성에스디아이 주식회사 박막 증착용 조성물, 박막 증착용 조성물을 이용한 박막의 제조 방법, 박막 증착용 조성물로부터 제조된 박막, 및 박막을 포함하는 반도체 소자

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1209997A (en) * 1967-05-30 1970-10-28 Agripat Sa Antifungal compositions
JP2004002306A (ja) * 2002-02-13 2004-01-08 Basf Ag イミノヒドロキサム酸の金属錯体
JP2006511716A (ja) 2002-11-15 2006-04-06 プレジデント・アンド・フェロウズ・オブ・ハーバード・カレッジ 金属アミジナートを用いる原子層の析出
JP2008502680A (ja) * 2004-06-16 2008-01-31 アドバンスド テクノロジー マテリアルズ,インコーポレイテッド 銅薄膜の堆積前駆体として有用な銅(i)化合物
JP2009504913A (ja) * 2005-08-08 2009-02-05 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 表面活性化剤および選択されたルテニウム錯体を用いるルテニウム含有フィルムの原子層蒸着
WO2009094262A1 (en) * 2008-01-24 2009-07-30 Praxair Technology, Inc. Organometallic compounds, processes and methods of use
WO2009094263A1 (en) * 2008-01-24 2009-07-30 Praxair Technology, Inc. Organometallic compounds, processes and methods of use
WO2009105668A1 (en) * 2008-02-20 2009-08-27 President And Fellows Of Harvard College Bicyclic guanidines, metal complexes thereof and their use in vapor deposition
JP2013104100A (ja) * 2011-11-14 2013-05-30 Taiyo Nippon Sanso Corp 金属薄膜の成膜方法および金属薄膜成膜用原料
JP2013545755A (ja) 2010-11-17 2013-12-26 ユーピー ケミカル カンパニー リミテッド ジアザジエン系金属化合物、これの製造方法及びこれを利用した薄膜形成方法
JP2014511380A (ja) * 2011-02-25 2014-05-15 ウミコレ・アーゲー・ウント・コ・カーゲー N−アミノアミジナート配位子を有する金属錯体
JP2016217749A (ja) 2015-05-14 2016-12-22 善郎 水野 センサ固定システム

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1209997A (en) * 1967-05-30 1970-10-28 Agripat Sa Antifungal compositions
JP2004002306A (ja) * 2002-02-13 2004-01-08 Basf Ag イミノヒドロキサム酸の金属錯体
JP2006511716A (ja) 2002-11-15 2006-04-06 プレジデント・アンド・フェロウズ・オブ・ハーバード・カレッジ 金属アミジナートを用いる原子層の析出
JP2008502680A (ja) * 2004-06-16 2008-01-31 アドバンスド テクノロジー マテリアルズ,インコーポレイテッド 銅薄膜の堆積前駆体として有用な銅(i)化合物
JP2009504913A (ja) * 2005-08-08 2009-02-05 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 表面活性化剤および選択されたルテニウム錯体を用いるルテニウム含有フィルムの原子層蒸着
WO2009094262A1 (en) * 2008-01-24 2009-07-30 Praxair Technology, Inc. Organometallic compounds, processes and methods of use
WO2009094263A1 (en) * 2008-01-24 2009-07-30 Praxair Technology, Inc. Organometallic compounds, processes and methods of use
WO2009105668A1 (en) * 2008-02-20 2009-08-27 President And Fellows Of Harvard College Bicyclic guanidines, metal complexes thereof and their use in vapor deposition
JP2013545755A (ja) 2010-11-17 2013-12-26 ユーピー ケミカル カンパニー リミテッド ジアザジエン系金属化合物、これの製造方法及びこれを利用した薄膜形成方法
JP2014511380A (ja) * 2011-02-25 2014-05-15 ウミコレ・アーゲー・ウント・コ・カーゲー N−アミノアミジナート配位子を有する金属錯体
JP2013104100A (ja) * 2011-11-14 2013-05-30 Taiyo Nippon Sanso Corp 金属薄膜の成膜方法および金属薄膜成膜用原料
JP2016217749A (ja) 2015-05-14 2016-12-22 善郎 水野 センサ固定システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3539973A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021205958A1 (ja) 2020-04-10 2021-10-14 株式会社Adeka アミジナート化合物、その二量体化合物、薄膜形成用原料及び薄膜の製造方法
KR20220167299A (ko) 2020-04-10 2022-12-20 가부시키가이샤 아데카 아미디네이트 화합물, 그 2 량체 화합물, 박막 형성용 원료 및 박막의 제조 방법

Also Published As

Publication number Publication date
IL266365B1 (en) 2023-08-01
US20200055887A1 (en) 2020-02-20
CN109923119B (zh) 2022-03-18
KR102503603B1 (ko) 2023-02-23
IL266365A (en) 2019-06-30
IL266365B2 (en) 2023-12-01
JP7075891B2 (ja) 2022-05-26
US11618762B2 (en) 2023-04-04
JPWO2018088079A1 (ja) 2019-09-26
US11161867B2 (en) 2021-11-02
US20220017554A1 (en) 2022-01-20
EP3539973A4 (en) 2020-05-06
EP3539973A1 (en) 2019-09-18
KR20190082248A (ko) 2019-07-09
CN109923119A (zh) 2019-06-21
TWI760376B (zh) 2022-04-11
TW201829823A (zh) 2018-08-16

Similar Documents

Publication Publication Date Title
JP6465699B2 (ja) ジアザジエニル化合物、薄膜形成用原料、薄膜の製造方法及びジアザジエン化合物
JP6184030B2 (ja) アルミニウム化合物、薄膜形成用原料及び薄膜の製造方法
JP6200429B2 (ja) 金属アルコキシド化合物、薄膜形成用原料、薄膜の製造方法及びアルコール化合物
KR102541122B1 (ko) 신규 화합물, 박막 형성용 원료 및 박막의 제조 방법
IL263665A (en) Vanadium compound, a raw material for creating a thin layer and a method for producing a thin layer
US11618762B2 (en) Compound, raw material for forming thin film, method for manufacturing thin film, and amidine compound
KR102375179B1 (ko) 알콕사이드 화합물, 박막 형성용 원료, 박막의 제조방법 및 알코올 화합물
EP3505511B1 (en) Diazadienyl compound, raw material for forming thin film, and method for producing thin film
WO2013105310A1 (ja) アルミニウム化合物、薄膜形成用原料及び薄膜の製造方法
JP2014005242A (ja) アルミニウム化合物、薄膜形成用原料及び薄膜の製造方法
JP6662779B2 (ja) アルコキシド化合物、薄膜形成用原料、薄膜の形成方法及びアルコール化合物
JP6408178B2 (ja) アルコキシド化合物

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018550070

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17868933

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197015045

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017868933

Country of ref document: EP

Effective date: 20190611