WO2018087402A1 - Neuartiger c/c verbundwerkstoff - Google Patents

Neuartiger c/c verbundwerkstoff Download PDF

Info

Publication number
WO2018087402A1
WO2018087402A1 PCT/EP2017/079237 EP2017079237W WO2018087402A1 WO 2018087402 A1 WO2018087402 A1 WO 2018087402A1 EP 2017079237 W EP2017079237 W EP 2017079237W WO 2018087402 A1 WO2018087402 A1 WO 2018087402A1
Authority
WO
WIPO (PCT)
Prior art keywords
fibers
composite
complex
composite body
resin
Prior art date
Application number
PCT/EP2017/079237
Other languages
English (en)
French (fr)
Inventor
Bodo Benitsch
Eugen Pfitzmaier
Original Assignee
Sgl Carbon Se
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sgl Carbon Se filed Critical Sgl Carbon Se
Publication of WO2018087402A1 publication Critical patent/WO2018087402A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B18/00Layered products essentially comprising ceramics, e.g. refractory products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/522Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/573Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained by reaction sintering or recrystallisation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • C04B35/83Carbon fibres in a carbon matrix
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5248Carbon, e.g. graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/526Fibers characterised by the length of the fibers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/614Gas infiltration of green bodies or pre-forms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/616Liquid infiltration of green bodies or pre-forms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/38Fiber or whisker reinforced
    • C04B2237/385Carbon or carbon composite
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2200/00Materials; Production methods therefor
    • F16D2200/0034Materials; Production methods therefor non-metallic
    • F16D2200/0039Ceramics
    • F16D2200/0047Ceramic composite, e.g. C/C composite infiltrated with Si or B, or ceramic matrix infiltrated with metal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2200/00Materials; Production methods therefor
    • F16D2200/006Materials; Production methods therefor containing fibres or particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D65/00Parts or details
    • F16D65/02Braking members; Mounting thereof
    • F16D65/12Discs; Drums for disc brakes
    • F16D65/125Discs; Drums for disc brakes characterised by the material used for the disc body
    • F16D65/126Discs; Drums for disc brakes characterised by the material used for the disc body the material being of low mechanical strength, e.g. carbon, beryllium; Torque transmitting members therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D69/00Friction linings; Attachment thereof; Selection of coacting friction substances or surfaces
    • F16D69/02Composition of linings ; Methods of manufacturing
    • F16D69/023Composite materials containing carbon and carbon fibres or fibres made of carbonizable material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D1/00Casings; Linings; Walls; Roofs
    • F27D1/0003Linings or walls
    • F27D1/0006Linings or walls formed from bricks or layers with a particular composition or specific characteristics
    • F27D1/0009Comprising ceramic fibre elements

Definitions

  • the present invention relates to a novel composite material, a process for its production and the use of this composite material.
  • Composite materials of carbon fiber-reinforced carbon comprising 2- or 3-dimensional textile structures made of carbon fibers are known, for example, from EP 0466962. These composites consist of two- or three-dimensional carbon fiber structures and a carbon matrix containing a carbonized resin pitch mixture consisting of a coke residue specified phenolic resin and a pitch specified in terms of melting point, coke residue and grain fineness consists.
  • Carbon structures in the examples according to the invention are a fabric such as a roving fabric or a structure of graphitized carbon fibers having a fiber length between 40 and 60 mm.
  • the produced composite materials of a fabric may have a flexural strength of greater than 100 MPa and a modulus of elasticity greater than 25 GPa.
  • a disadvantage of the method according to EP 0466962 is that it is complex due to the use of a very specific synthetic resin pitch mixture. In addition, it is necessary to use a fabric to obtain flexural strengths of greater than 100 MPa and elastic moduli greater than 25 GPa of the composite. The production of a fabric requires additional work steps again.
  • DE 600 06 804 T2 generally describes a round fleece whose structure consists of fibers (roving) whose arrangement is provided up to 100% of aligned chords.
  • a disadvantage of this embodiment is that in order to achieve a planar isotropy extremely many such directed chords have to be combined, which in addition to a large industrial effort especially preferably allows only round semi-finished products.
  • this object has been achieved by a method for producing a composite body (composite material) comprising the following steps:
  • step b) impregnating the complex from step a) with a resin
  • step c) hot pressing the impregnated complex from step b) into semi-finished products, d) carbonizing the semi-finished products from step c) and
  • the isotropic carbon fiber complex according to step a) can be present for example in the form of a nonwoven.
  • the carbon fibers from which the carbon fiber complex is made may preferably comprise carbon fibers comprising at least one fiber selected from the group consisting of pitch based fibers, polyacrylonitrile based fibers or viscose based fibers, advantageously fibers based on Polyacrylonitrile, contains.
  • the carbon fiber complex comprises fibers in the form of single and bundle fibers. It is particularly preferred that these fibers are in the form of recycled fibers.
  • the preparation of the carbon-fiber complexes can be carried out, for example, according to DE 10 2014 10 2079.
  • a fiber-based support structure of the aforementioned types of fibers is used, which has a high and controllable impregnability with viscous liquids and powders and at the same time can deposit high amounts of these substances in the interior evenly within the impregnation
  • said carbon fiber complex in which at least 10%, but not more than 90% of the fibers used remain as un-fiberized bundles, thus ensuring a prepreg with a homogeneous matrix distribution so that a corresponding composite body can be realized which has an optimized pore system, which is crucial for success the subsequent carbonization and corresponding Nachverdichtungsuzeen is particularly advantageous.
  • the fibers of the carbon fiber complex are short fibers which have a length of 0.3 to 100 mm, preferably a length from 10 to 80 mm, more preferably a length of 20 to 60 mm, particularly preferably a length of 30 to 50 mm.
  • the resin with which the carbon fiber complex is impregnated according to step b) of the process according to the invention is advantageously a phenolic resin.
  • the resin is preferably used at 40-80% by mass, more preferably at 50-70% by mass.
  • the impregnation of the carbon fiber complex can also be carried out by means of chemical vapor infiltration (CVI).
  • CVI chemical vapor infiltration
  • a carbon-containing gas such as natural gas, methane or propane gas is preferably used for chemical vapor deposition.
  • the chemical vapor infiltration is used for impregnation, it is advantageous if additional layers of the isotropic carbon fiber complex are needled before the corresponding impregnation takes place.
  • step c hot pressing into a semifinished product takes place in step c), which takes place at pressures of 2 to 100 N / cm 2 , preferably 5 to 80 N / cm 2 , and a temperature of 130 to 290 ° C he follows.
  • This step of hot pressing does not take place when chemical vapor infiltration is used for impregnation; In this case, the carbonization of the semifinished product and then the graphitization takes place directly after the impregnation, whereby the embodiments mentioned below can be used for the carbonization and graphitization.
  • the semi-finished products produced may have a plate shape, disc shape, a wave plate shape or an L or U profile.
  • the shape of the semifinished product depends on the intended use.
  • the carbonation according to step d) of the process can be carried out at a temperature of 700 to 1800 ° C, preferably from 800 to 1200 ° C, and the graphitization according to step e) of the process at a temperature of 900 to 2800 ° C, preferably from 1900 to 2200 ° C, more preferably from 1950 to 2050 ° C, take place.
  • the carbonation step d) and the graphitization step e) at least one recompacting step with pitch, resin, preferably phenolic resin, or preceramic polymers or mixtures thereof, or by means of the CVI method.
  • a maximum of 5 Nachverdichtungs intimide advantageously 2 or 3 Nachverdichtungsenfine, with pitch, resin, preferably phenolic resin, or preceramic polymers, or mixtures thereof.
  • carbonaceous gases such as natural gas, methane gas or propane gas, or mixtures thereof, or preceramic gases, or mixtures thereof can be used.
  • These densification steps have, inter alia, the advantage that they positively influence properties (characteristic numbers) of the composite, such as, for example, the flexural strength or the modulus of elasticity, that is, higher coefficients can be achieved.
  • the composite has an isotropic and thus uniform distribution of liquids with dynamic viscosities (at 20 ° C) from 0.2 mPa * s to 1 * 10E7 mPa * s.
  • one drop of liquid from a ca. 3 mm thick resin impregnated plate is completely absorbed at room temperature as follows:
  • Another object of the present invention is based on a composite body prepared according to the inventive method described above.
  • a composite may have a flexural strength of up to 150 MPa and / or a modulus of elasticity of up to 50 GPa.
  • Insulation materials as connecting elements, in particular as screws, threaded pins or bolts, as a nut, as brake discs, as brake pads, as coupling elements, in particular wet clutch elements, as Synchronringbeläge, especially wet synchronizer ring coverings, as a media distributor, as a wick for wetting media, used as a filter in columns, as supporting grates, as a storage tray or as an electrical resistance heater become.
  • the composite materials produced advantageously have the following
  • an adjustable compression and thus compression behavior of the layer (s) of e.g. 0.6 mm to 1, 0 mm per layer.
  • a step of partially or completely liquid-phase siliciding may be carried out, thereby obtaining a composite containing at least partially C / SiC.
  • An isotropic carbon fiber nonwoven was impregnated with a phenolic resin (phenolic resin: 65 mass%). From this impregnated nonwoven sheets were made by hot pressing using a pressure of 7 N / cm 2 and 70 N / cm 2 and a temperature of 160 to 290 ° C, respectively. The carbonization was carried out at 900 ° C and the graphitization at 2000 ° C. It can be done one to three Nachverdichtungs intimide with pitch.
  • G0 means graphitization without recompacting step
  • G1 graphitization with a Nachverdichtungsuze
  • G2 graphitization with two recompression steps
  • G3 graphitization with three recompression steps.
  • the first number describes the sampling direction with respect to the fiber orientation.
  • the second number describes the direction of the force application.
  • sample designation "13" therefore means a removal in direction 1 and a force introduction in direction 3.
  • Fiber volume content [%] 30.0 30-31-31.0 34- 38-40 37- 37- 32 32 36 38 39

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

Die vorliegende Erfindung betrifft einen neuartigen Verbundwerkstoff, ein Verfahren zu dessen Herstellung sowie die Verwendung dieses Verbundwerkstoffs.

Description

NEUARTIGER C/C VERBUNDWERKSTOFF
Die vorliegende Erfindung betrifft einen neuartigen Verbundwerkstoff, ein Verfahren zu dessen Herstellung sowie die Verwendung dieses Verbundwerkstoffs.
Verbundwerkstoffe aus kohlenfaserverstärktem Kohlenstoff umfassend 2- oder 3-dimensio- nale textile Gebilde aus Kohlenstoff-Fasern sind beispielsweise aus der EP 0466962 bekannt. Diese Verbundwerkstoffe bestehen aus zwei- oder dreidimensionalen Gebilden aus Kohlenstoff-Fasern und einer Kohlenstoffmatrix, die eine carbonisierte Kunstharz-Pechmischung enthält, welche aus einem im Hinblick auf den Koksrückstand spezifizierten Phenolharz und einem im Hinblick auf den Schmelzpunkt, den Koksrückstand und der Kornfeinheit spezifizierten Pech besteht. Als Kohlenstoff-Gebilde werden in den erfindungsgemäßen Beispielen ein Gewebe wie beispielsweise ein Rovinggewebe oder ein Gebilde aus graphitierten Kohlenstoff-Fasern aufweisend eine Faserlänge zwischen 40 und 60 mm beschrieben. Die hergestellten Verbundwerkstoffe aus einem Gewebe können eine Biegefestigkeit von größer 100 MPa und einen Elastizitätsmodul von größer 25 GPa aufweisen. Nachteilig an dem Verfahren gemäß der EP 0466962 ist, dass es durch die Verwendung einer sehr spezifizierten Kunstharz-Pechmischung komplex ist. Zudem ist es erforderlich, ein Gewebe zu verwenden, um Biegefestigkeiten von mehr als 100 MPa und Elastizitätsmodule von größer als 25 GPa des Verbundwerkstoffs zu erhalten. Die Herstellung eines Gewebes erfordert wieder zusätzliche Arbeitsschritte.
DE 600 06 804 T2 beschreibt im Allgemeinen einen runden Vlies, dessen Aufbau aus Fasern (Roving) besteht, deren Anordnung bis zu 100 % aus ausgerichteten Kreissehnen vorgesehen ist. Nachteilig an dieser Ausführungsform ist, dass zur Erreichung einer plana- ren Isotropie extrem viele derart gerichtete Kreissehnen kombiniert werden müssen, was neben einem großen industriellen Aufwand vor allem bevorzugt nur runde Halbzeuge zulässt.
Folglich besteht die Aufgabe der vorliegenden Erfindung darin, ein einfacheres, kostengünstigeres Verfahren zur Herstellung eines Verbundkörpers, insbesondere eines Verbundkörpers auf Basis eines kohlenfaserverstärkten Kohlenstoffs, bereitzustellen, wobei die mit diesem Verfahren hergestellten Verbundkörper Biegefestigkeiten von mehr als 100 MPa und ein Elastizitätsmodul von mehr als 25 GPa aufweisen können. Erfindungsgemäß wurde diese Aufgabe gelöst durch ein Verfahren zur Herstellung eines Verbund körpers (Verbundwerkstoff) umfassend folgende Schritte:
a) Bereitstellen eines isotropen Carbonfaser-Komplexes,
b) Imprägnieren des Komplexes aus Schritt a) mit einem Harz,
c) Heißpressen des imprägnierten Komplexes aus Schritt b) zu Halbzeugen, d) Carbonisieren der Halbzeuge aus Schritt c) und
e) Graphitieren der carbonisierten Halbzeuge aus Schritt d).
Der isotrope Carbonfaser-Komplex gemäß Schritt a) kann beispielsweise in Form eines Vlieses vorliegen.
Im Rahmen der vorliegenden Erfindung können die Carbonfasern aus welchem der Carbonfaser-Komplex hergestellt wird, bevorzugt Carbonfasern umfassen, die mindestens eine Faser ausgewählt aus der Gruppe bestehend aus Fasern basierend auf Pech, Fasern basierend auf Polyacrylnitril oder Fasern basierend auf Viskose, vorteilhafterweise Fasern basierend auf Polyacrylnitril, enthält.
Gemäß einer weiteren bevorzugten Ausführungsform der vorliegenden Erfindung umfasst der Carbonfaser-Komplex, Fasern in Form von Einzel- und Bündelfasern. Hierbei ist es besonders bevorzugt, dass diese Fasern in Form von recycelten Fasern vorliegen. Die Herstellung der Carbon-Faser-Komplexe kann beispielsweise gemäß der DE 10 2014 10 2079 erfolgen. Vorteilhafterweise wird„eine faserbasierte Trägerstruktur" aus den zuvor genannten Faserarten verwendet, die im Rahmen der Imprägnierung eine hohe und steuerbare Durchtränkbarkeit mit zähen Flüssigkeiten und Pulvern aufweist und gleichzeitig hohe Mengen dieser Substanzen im Inneren gleichmäßig deponieren kann. Dies wird u. a. durch den genannten Carbonfaserkomplex erreicht, bei dem mindestens 10%, jedoch maximal 90% der eingesetzten Fasern noch als unzerfaserte Bündel verbleiben. Damit lässt sich ein Prepreg mit homogener Matrixverteilung sicherstellen, so dass anschließend ein entsprechender Verbundkörper realisiert werden kann, der ein optimiertes Porensystem aufweist, welches für den Erfolg der nachfolgenden Carbonisierung sowie entsprechender Nachverdichtungsschritten besonders vorteilhaft ist.
In einer weiteren bevorzugten Ausführungsform stellen die Fasern des Carbonfaser- Komplexes Kurzfasern dar, welche eine Länge von 0,3 bis 100 mm, bevorzugt eine Länge von 10 bis 80 mm, bevorzugter eine Länge von 20 bis 60 mm, besonders bevorzugt eine Länge von 30 bis 50 mm, auf.
Die Imprägnierung des Carbonfaser-Komplexes gemäß Schritt b) kann beispielsweise erfolgen, indem der Komplex mit einem Harz imprägniert wird (sogenannte Prepreg-Route) oder es wird das Harzinfjektionsverfahren (RTM = Resin Transfer Moulding) angewendet. Bei dem Harz, mit welchem der Carbonfaser-Komplex gemäß Schritt b) des erfindungsgemäßen Verfahrens imprägniert wird, handelt es sich vorteilhafterweise um ein Phenolharz. Das Harz wird bevorzugt mit 40 - 80 Massen-%, bevorzugter mit 50 - 70 Massen-% eingesetzt.
Die Imprägnierung des Carbonfaser-Komplexes kann auch mittels der chemischen Gasphaseninfiltration (Chemical vapour Infiltration = CVI) erfolgen. Hierbei wird bevorzugt zur chemischen Gasphasenabscheidung ein kohlenstoffhaltiges Gas wie beispielsweise Erdgas, Methan- oder Propangas, eingesetzt. Im Falle, dass zur Imprägnierung die chemische Gasphaseninfiltration verwendet wird, ist es vorteilhaft, wenn zusätzlich Lagen des isotropen Carbonfaser-Komplexes vernadelt werden, bevor die entsprechende Imprägnierung erfolgt.
Im Anschluss an die Imprägnierung mit einem Harz erfolgt in Schritt c) das Heißpressen zu einem Halbzeug, welches bei Drücken von 2 bis 100 N/cm2, bevorzugt von 5 bis 80 N/cm2, und einer Temperatur von 130 bis 290 °C erfolgt. Dieser Schritt des Heißpressens erfolgt nicht, wenn zur Imprägnierung die chemische Gasphaseninfiltration eingesetzt wird; in diesem Falle, erfolgt nach der Imprägnierung direkt die Carbonisierung des Halbzeugs und anschließend die Graphitierung, wobei für die Carbonisierung und Graphitierung die unten genannten Ausführungsformen herangezogen werden können.
Die hergestellten Halbzeuge können eine Plattenform, Scheibenform, eine Wellenplatten- form oder ein L- oder U-Profil aufweisen. Die Form des Halbzeugs hängt von der beabsichtigten Verwendung ab.
Die Carbonisierung gemäß Schritt d) des Verfahrens kann bei einer Temperatur von 700 bis 1800 °C, bevorzugt von 800 bis 1200 °C erfolgen, und die Graphitierung gemäß Schritt e) des Verfahrens kann bei einer Temperatur von 900 bis 2800 °C, bevorzugt von 1900 bis 2200 °C, bevorzugter von 1950 bis 2050 °C, erfolgen. In einer weiteren bevorzugten Ausführungsform der vorliegenden Erfindung kann zwischen dem Carbonisierungsschritt d) und dem Graphitierungsschritt e) mindestens ein Nachverdichtungsschritt mit Pech, Harz, bevorzugt Phenolharz, oder präkeramischen Polymeren oder Mischungen davon, oder mittels des CVI-Verfahrens, erfolgen. Es ist weiterhin bevorzugt, dass maximal 5 Nachverdichtungsschritte, vorteilhafterweise 2 oder 3 Nachverdichtungsschritte, mit Pech, Harz, bevorzugt Phenolharz, oder präkeramischen Polymeren, oder Mischungen davon erfolgen. Bei der Verwendung des CVI-Verfahrens können kohlenstoffhaltige Gase, wie Erdgas, Methangas oder Propangas, oder Mischungen davon, oder präkeramische Gase, oder Mischungen davon eingesetzt werden. Diese Nachverdichtungsschritte weisen u. a. den Vorteil auf, dass sie Eigenschaften (Kennzahlen) des Verbundkörpers wie beispielsweise die Biegefestigkeit oder das Elastizitätsmodul positiv beeinflussen, d.h. es können höhere Kennzahlen erzielt werden.
Vorteilhafterweise weist der Verbundwerkstoff eine isotrope und damit gleichmäßige Verteilung von Flüssigkeiten mit dynamischen Viskositäten (bei 20 °C) von 0,2 mPa*s bis 1 *10E7 mPa*s auf. So wird beispielsweise ein Tropfen einer Flüssigkeit von einer ca. 3 mm dicken, mit Harz imprägnierten Platte, bei Raumtemperatur wie folgt vollständig absorbiert:
Figure imgf000005_0001
Ein weiterer Gegenstand der vorliegenden Erfindung beruht auf einem Verbundkörper hergestellt nach den oben beschriebenen erfindungsgemäßen Verfahren. Ein solcher Verbundkörper kann eine Biegefestigkeit von bis zu 150 MPa und/oder ein Elastizitätsmodul von bis zu 50 GPa aufweisen.
Die hergestellten Verbundkörper können beispielsweise als Ofenauskleidung, als
Isolationswerkstoffe, als Verbindungselemente, insbesondere als Schrauben, Gewindestifte oder Bolzen, als Mutter, als Bremsscheiben, als Bremsbeläge, als Kupplungselemente, insbesondere Nasskupplungselemente, als Synchronringbeläge, insbesondere Nass- Synchronringbeläge, als Medienverteiler, als Docht für benetzende Medien, als Filter in Kolonnen, als Tragroste, als Abstellplatte oder als elektrischer Widerstandsheizer verwendet werden.
Auch ist es möglich eine oder mehrere Einzellagen des isotropen Carbonfaser-Komplexes auf Tragstrukturen aufzubringen um die gewünschten Eigenschaften, wie z.B. Abrasionsverhalten und Isolierwirkung, optimal zu vereinen. a) Die hergestellten Verbundwerkstoffe weisen vorteilhafterweise folgende
Eigenschaften auf: Grundsätzlich planar-isotrope Materialeigenschaften; b) ein Flächengewicht von beispielsweise 450 g/cm3;
c) ein einstellbares Komprimierungs- und damit Verdichtungsverhalten der Lage(n) von z.B. 0,6 mm bis 1 ,0 mm je Lage.
Vorteilhaft für die Herstellung von Bauteilen ist die gute mechanische Bearbeitbarkeit, die eine Nacharbeit von Fräs- und Bohrbearbeitungen überflüssig macht.
Ergänzend zu den Prozessschritten der oben genannten Herstellungsverfahren kann nach dem Schritt der Carbonisierung oder der Graphitierung ein Schritt der teilweisen oder vollständigen Flüssigphasensilizierung erfolgen, wodurch ein Verbundkörper erhalten wird, welcher zumindest teilweise C/SiC enthält.
Nachfolgend wird die vorliegende Erfindung anhand von diese erläuternden, diese aber nicht einschränkenden Beispielen unter Bezugnahme auf die Zeichnungen weiter beschrieben.
Beispiele:
Ein isotropes Carbonfaser-Vlies wurde mit einem Phenolharz imprägniert (Phenolharz: 65 Massen-%). Aus diesem imprägnierten Vlies wurden Platten durch Heißpressen hergestellt, wobei ein Druck von 7 N/cm2 bzw. 70 N/cm2 und eine Temperatur von 160 bis 290 °C verwendet wurden. Die Carbonisierung erfolgte bei 900 °C und die Graphitierung bei 2000 °C. Es können ein bis drei Nachverdichtungsschritte mit Pech erfolgen. In Tabelle 1 bedeutet G0: Graphitierung ohne Nachverdichtungsschritt; G1 : Graphitierung mit einem Nachverdichtungsschritt; G2: Graphitierung mit zwei Nachverdichtungsschritten und G3: Graphitierung mit drei Nachverdichtungsschritten.
Für die Ermittlung der Biegefestigkeit wurden Proben in 3 Richtungen entnommen, wobei die Krafteinwirkung nicht in der Richtung erfolgte, in welcher die Probe entnommen wurde, wie es in Figur 1 dargestellt ist. Die erste Zahl beschreibt die Probenentnahmerichtung in Bezug auf die Faserorientierung. Die zweite Zahl beschreibt die Richtung der Krafteinleitung.
Beispielsweise bedeutet die Probenbezeichnung„13" demnach eine Entnahme in Richtung 1 und eine Krafteinleitung in Richtung 3.
Tabelle 1: Kennwerte der erfindungsgemäßen Verbundkörper sCF
Druck: 7 N/cm2 Druck: 70 N/cm2
Krafteinwirkung GO G1 G2 G3 G0 G1 G2 G3
Dichte [g/cm3] 0,8 1,1 1,3 1,4 0,9 1,3 1,3 1,4
Faservolumengehalt [%] 30,0 30- 31- 31,0 34- 38-40 37- 37- 32 32 36 38 39
Offene Porosität [%] 51-53 36- 30,0 25,0 41- 28-31 24- 22,0
38 48 28
Biegefestigkeit 3 Pt. [MPa] 13 25-27 44- 57- 67-82 25- 62-78 74- 95- 47 71 28 80 106
23 33,0 52- 79- 98- 24- 96- 101,0 122- 56 96 106 26 103 140
E-Modul [GPa] 13 8,0- 16- 24,0 23-26 9,0 25-28 29,0 31,0
10,0 18
23 13,0 22,5 31,0 33-34 8,0- 36,0 36,0 41- 10,0 42
Randfaserdehnung 3 Pt. [%] 13 4,0 0,3 0,3 0,3 0,4 0,3 0,3 0,4
23 0,3 0,3 0,3 4,0 0,4 0,3 0,3 0,4
Spez. Durchgangswiderstand [Ωμπι] 11 60-70 42- 32- 30-32 50- 32,0 29,0 27- Er 46 33 54 28
22 51,0 37- 28- 27,0 46- 28,0 25,0 25,0
39 30 50
Längenausdehnungsk.CTE 11 -0,5 -0,4 -0,4 -0,3 -0,5 -0,5 -0,4 -0,3 RT 200°C [Mm/(m*K)] 22 -0,5 -0,6 -0,5 -0,4 -0,6 -0,6 -0,5 -0,4
Längenausdehnungsk.CTE 11 0,1 0,2 0,3 0,3 0,1 0,2 0,2 0,3 RT 500°C [Mm/(m*K)] 22 0,1 0,1 0,2 0,2 0,1 0,1 0,2 0,2
Wärmeleitfähigkeit [W/mK] 1,0 3,2 5,2 6,6- 0,8 3,5 5,3 5,9

Claims

Patentansprüche:
1 . Verfahren zur Herstellung eines Verbundkörpers umfassend folgende Schritte: a) Bereitstellen eines isotropen Carbonfaser-Komplexes,
b) Imprägnieren des Komplexes aus Schritt a) mit einem Harz,
c) Heißpressen des imprägnierten Komplexes aus Schritt b) zu Halbzeugen, d) Carbonisieren der Halbzeuge aus Schritt c) und
e) Graphitieren der carbonisierten Halbzeuge aus Schritt d).
2. Verfahren gemäß Anspruch 1 ,
wobei der Komplex aus Schritt a) Carbonfasern umfasst, die mindestens eine Faser ausgewählt aus der Gruppe bestehend aus Fasern basierend auf Pech, Fasern basierend auf Polyacrylnitril oder Fasern basierend auf Viskose enthält.
3. Verfahren nach Anspruch 1 oder 2,
wobei der Carbonfaser-Komplex Fasern in Form von Einzelfasern und Bündelfasern umfasst.
4. Verfahren nach Anspruch 1 ,
wobei das Heißpressen in Schritt c) bei Drücken von 2 bis 100 N/cm2, und einer Temperatur von 130 bis 290 °C erfolgt.
5. Verfahren nach Anspruch 1 ,
wobei die Imprägnierung mit Harz gemäß Schritt b) ersetzt wird durch eine
Imprägnierung mittels der chemischen Gasphaseninfiltration und kein Heißpressen gemäß Schritt c) durchgeführt wird.
6. Verfahren nach Anspruch 1 ,
wobei zwischen Schritt d) und e) mindestens ein Nachverdichtungsschritt mit Pech, Harz oder präkeramischen Polymeren oder Mischungen davon, oder mittels der chemischen Gasphaseninfiltration erfolgt.
7. Verfahren nach Anspruch 6,
wobei zwischen Schritt d) und e) maximal 5 Nachverdichtungsschritte erfolgen.
8. Verbundkörper hergestellt nach einem Verfahren gemäß einem der Ansprüche 1 bis 7,
wobei der Verbundkörper eine Biegefestigkeit von bis zu 150 MPa.
9. Verbundkörper hergestellt nach einem Verfahren gemäß einem der Ansprüche 1 bis 7,
wobei der Verbundkörper ein Elastizitätsmodul von bis zu 50 GPa aufweist.
10. Verbundkörper hergestellt nach einem Verfahren einem der Ansprüche 1 bis 7, wobei der Verbundkörper eine isotrope Verteilung von Flüssigkeiten mit
dynamischen Viskositäten (bei 20 °C) von 0,2 mPa*s bis 1 *10E7 mPa*s aufweist.
1 1 . Verwendung eines Verbundkörpers nach einem der Ansprüche 8 bis 10 oder eines Verbund körpers hergestellt nach einem Verfahren gemäß der Ansprüche 1 bis 7 als Ofenauskleidung, als Isolationswerkstoff, als Verbindungselement, als Mutter, als Bremsscheibe, als Bremsbelag, als Kupplungselement, als Synchronringbelag, als Medienverteiler, als Docht für benetzende Medien, als Filter in Kolonnen, als Tragroste, als Abstellplatte oder als elektrischer Widerstandsheizer.
PCT/EP2017/079237 2016-11-14 2017-11-14 Neuartiger c/c verbundwerkstoff WO2018087402A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016013523.9 2016-11-14
DE102016013523.9A DE102016013523A1 (de) 2016-11-14 2016-11-14 Neuartiger Verbundwerkstoff

Publications (1)

Publication Number Publication Date
WO2018087402A1 true WO2018087402A1 (de) 2018-05-17

Family

ID=60569885

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2017/079237 WO2018087402A1 (de) 2016-11-14 2017-11-14 Neuartiger c/c verbundwerkstoff

Country Status (2)

Country Link
DE (1) DE102016013523A1 (de)
WO (1) WO2018087402A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115773321B (zh) * 2023-02-13 2023-05-09 西安超码科技有限公司 一种带有陶瓷功能层的高强度炭/陶制动盘

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0466962A1 (de) 1990-07-20 1992-01-22 SIGRI GREAT LAKES CARBON GmbH Verfahren zur Herstellung eines mit Kohlenstoffasern verstärkten Kohlenstoffverbundskörpers.
DE10164229A1 (de) * 2001-12-31 2003-07-24 Sgl Carbon Ag Faserverstärkte keramische Verbundwerkstoffe
DE60006804T2 (de) 1999-04-14 2004-09-23 Cytec Carbon Fibers Llc Sehnen-Vorformlinge für faserverstärkte Artikel und Verfahren zur Herstellung derselben
EP2289861A1 (de) * 2008-04-14 2011-03-02 Toyo Tanso Co., Ltd. Kohlenstofffaser-kohlenstoff-verbundformkörper, kohlenstofffaserverstärkter kohlenstoffverbundwerkstoff und herstellungsverfahren dafür
DE102014102079A1 (de) 2013-02-20 2014-08-21 Thüringisches Institut für Textil- und Kunststoff-Forschung e.V. Faserbasierte Trägerstruktur für Flüssigkeiten und Feststoffpartikel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0466962A1 (de) 1990-07-20 1992-01-22 SIGRI GREAT LAKES CARBON GmbH Verfahren zur Herstellung eines mit Kohlenstoffasern verstärkten Kohlenstoffverbundskörpers.
DE60006804T2 (de) 1999-04-14 2004-09-23 Cytec Carbon Fibers Llc Sehnen-Vorformlinge für faserverstärkte Artikel und Verfahren zur Herstellung derselben
DE10164229A1 (de) * 2001-12-31 2003-07-24 Sgl Carbon Ag Faserverstärkte keramische Verbundwerkstoffe
EP2289861A1 (de) * 2008-04-14 2011-03-02 Toyo Tanso Co., Ltd. Kohlenstofffaser-kohlenstoff-verbundformkörper, kohlenstofffaserverstärkter kohlenstoffverbundwerkstoff und herstellungsverfahren dafür
DE102014102079A1 (de) 2013-02-20 2014-08-21 Thüringisches Institut für Textil- und Kunststoff-Forschung e.V. Faserbasierte Trägerstruktur für Flüssigkeiten und Feststoffpartikel

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIEBERMAN M L ET AL: "CVD/PAN FELT CARBON/CARBON COMPOSITES", JOURNAL OF COMPOSITE MATERIALS, SAGE PUBLICATIONS, USA, vol. 9, 1 October 1975 (1975-10-01), pages 337 - 346, XP000566137, ISSN: 0021-9983, DOI: 10.1177/002199837500900403 *

Also Published As

Publication number Publication date
DE102016013523A1 (de) 2018-05-17

Similar Documents

Publication Publication Date Title
EP0864548B1 (de) Mit Graphitkurzfasern verstärkter Siliciumcarbidkörper
EP1852252B2 (de) Hochtemperaturbeständiger Verbundwerkstoff
DE102004009264B4 (de) Herstellung eines Vorformlings durch Verstärken einer faserartigen Struktur und/oder Verbinden von faserartigen Strukturen untereinander und Anwendung bei der Herstellung von Teilen aus Verbundwerkstoff
EP1008569B2 (de) Verfahren zur Herstellung eines mittels Kohlenstoffkurzfaser verstärkten Siliciumcarbid-Verbundwerkstoffes
EP1416185B1 (de) Faserverstärkte keramische Bremsbeläge
EP0636428B1 (de) Verfahren zum Wiederverwerten von kohlenstoffaserhaltigen Verbundwerkstoffen mit kohlenstoffhaltiger, nicht verkokter Matrix
DE102011007815B4 (de) Verfahren zum Herstellen eines aus mehreren Vorkörpern zusammengefügten Keramikbauteils
DE102009048422A1 (de) Verbundwerkstoff aus Carbonfaser-Weichfilz und Carbonfaser-Hartfilz
EP1216213A1 (de) Reib- oder gleitkörper aus mit faserbündeln verstärkten verbundwerkstoffen mit keramischer matrix
WO2017072187A1 (de) Carbonfaserverstärktes carbidkeramisches verbundbauteil
DE102013114628A1 (de) Verfahren zum Herstellen von endkonturnah geformten Siliciumcarbid-Keramiken
EP4041696A1 (de) Keramische faserverbundbauteile
DE102015201119B4 (de) Herstellungsverfahren von Keramikmatrix-Halbzeugen
EP1845075B1 (de) Formkörper aus carbonfaserverstärktem Kohlenstoff und ein Verfahren zur deren Herstellung
WO2018087402A1 (de) Neuartiger c/c verbundwerkstoff
DE19823521C2 (de) Verfahren zur Herstellung von Kohlenstoff-Verbundwerkstoffen und/oder kohlenstoffhaltigen, carbidischen und/oder carbonitridischen Werkstoffen
EP2118039A1 (de) Verfahren zur herstellung eines faserverstärkten carbidkeramischen bauteils und ein carbidkeramisches bauteil
WO2021069723A1 (de) Faserverbundbauteile
EP3198069A1 (de) Verwendung eines carbonfaservliesstoffs als isoliermaterial
EP1464634B1 (de) Carbidkeramik-Werkstoff
EP0466962A1 (de) Verfahren zur Herstellung eines mit Kohlenstoffasern verstärkten Kohlenstoffverbundskörpers.
DE3124364A1 (de) Kohlenstoffaserverstaerkter, hochsteifer leichtverbundwerkstoff, bestehend aus einem kohlenstoffskelett und einer porenfuellenden harzmatrix
WO2021069724A1 (de) Kunststofffaserverbundbauteile
JPH0352426B2 (de)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17808369

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17808369

Country of ref document: EP

Kind code of ref document: A1