WO2021069723A1 - Faserverbundbauteile - Google Patents

Faserverbundbauteile Download PDF

Info

Publication number
WO2021069723A1
WO2021069723A1 PCT/EP2020/078509 EP2020078509W WO2021069723A1 WO 2021069723 A1 WO2021069723 A1 WO 2021069723A1 EP 2020078509 W EP2020078509 W EP 2020078509W WO 2021069723 A1 WO2021069723 A1 WO 2021069723A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
reinforcing element
carbon
component
composite component
Prior art date
Application number
PCT/EP2020/078509
Other languages
English (en)
French (fr)
Inventor
Andreas Kienzle
Almut SCHWENKE
Tanja Damjanovic
Oswin Oettinger
Original Assignee
Sgl Carbon Se
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sgl Carbon Se filed Critical Sgl Carbon Se
Priority to DE112020004903.5T priority Critical patent/DE112020004903A5/de
Publication of WO2021069723A1 publication Critical patent/WO2021069723A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/165Processes of additive manufacturing using a combination of solid and fluid materials, e.g. a powder selectively bound by a liquid binder, catalyst, inhibitor or energy absorber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/68Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts by incorporating or moulding on preformed parts, e.g. inserts or layers, e.g. foam blocks
    • B29C70/86Incorporated in coherent impregnated reinforcing layers, e.g. by winding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/522Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/528Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite obtained from carbonaceous particles with or without other non-organic components
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/528Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite obtained from carbonaceous particles with or without other non-organic components
    • C04B35/532Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite obtained from carbonaceous particles with or without other non-organic components containing a carbonisable binder
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/6267Pyrolysis, carbonisation or auto-combustion reactions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/003Joining burned ceramic articles with other burned ceramic articles or other articles by heating by means of an interlayer consisting of a combination of materials selected from glass, or ceramic material with metals, metal oxides or metal salts
    • C04B37/005Joining burned ceramic articles with other burned ceramic articles or other articles by heating by means of an interlayer consisting of a combination of materials selected from glass, or ceramic material with metals, metal oxides or metal salts consisting of glass or ceramic material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/02Selection of particular materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D13/00Friction clutches
    • F16D13/22Friction clutches with axially-movable clutching members
    • F16D13/38Friction clutches with axially-movable clutching members with flat clutching surfaces, e.g. discs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D65/00Parts or details
    • F16D65/02Braking members; Mounting thereof
    • F16D65/12Discs; Drums for disc brakes
    • F16D65/125Discs; Drums for disc brakes characterised by the material used for the disc body
    • F16D65/126Discs; Drums for disc brakes characterised by the material used for the disc body the material being of low mechanical strength, e.g. carbon, beryllium; Torque transmitting members therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2023/00Tubular articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/04Bearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/08Blades for rotors, stators, fans, turbines or the like, e.g. screw propellers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/736Grinding or polishing equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/748Machines or parts thereof not otherwise provided for
    • B29L2031/7482Brakes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/748Machines or parts thereof not otherwise provided for
    • B29L2031/7486Clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/757Moulds, cores, dies
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/424Carbon black
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5244Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5248Carbon, e.g. graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5252Fibers having a specific pre-form
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/526Fibers characterised by the length of the fibers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6021Extrusion moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6026Computer aided shaping, e.g. rapid prototyping
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/614Gas infiltration of green bodies or pre-forms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/616Liquid infiltration of green bodies or pre-forms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/94Products characterised by their shape
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/04Ceramic interlayers
    • C04B2237/08Non-oxidic interlayers
    • C04B2237/083Carbide interlayers, e.g. silicon carbide interlayers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/04Ceramic interlayers
    • C04B2237/08Non-oxidic interlayers
    • C04B2237/086Carbon interlayers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/363Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/365Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/38Fiber or whisker reinforced
    • C04B2237/385Carbon or carbon composite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/61Joining two substrates of which at least one is porous by infiltrating the porous substrate with a liquid, such as a molten metal, causing bonding of the two substrates, e.g. joining two porous carbon substrates by infiltrating with molten silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/84Joining of a first substrate with a second substrate at least partially inside the first substrate, where the bonding area is at the inside of the first substrate, e.g. one tube inside another tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/18Rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/30Manufacture with deposition of material
    • F05D2230/31Layer deposition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/20Oxide or non-oxide ceramics
    • F05D2300/22Non-oxide ceramics
    • F05D2300/224Carbon, e.g. graphite
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/60Properties or characteristics given to material by treatment or manufacturing
    • F05D2300/603Composites; e.g. fibre-reinforced
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2200/00Materials; Production methods therefor
    • F16D2200/0034Materials; Production methods therefor non-metallic
    • F16D2200/0052Carbon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2200/00Materials; Production methods therefor
    • F16D2200/006Materials; Production methods therefor containing fibres or particles

Definitions

  • the present invention relates to a method for producing a fiber composite component, a fiber composite component produced by this method and its use.
  • Carbon fiber reinforced carbon materials combine the properties of carbon fibers and a carbon-based matrix. This creates a material with high fracture toughness, low thermal expansion, excellent chemical resistance and high temperature resistance.
  • CFC materials Carbon fiber reinforced carbon materials
  • Additive manufacturing techniques such as 3D printing enable a high degree of design freedom, the flexible production of small series and thus the cost-effective production of complex components.
  • powder-based 3D printed carbon materials can only be mechanically stressed within narrow limits and tend to abrupt material failure at the moment of the first crack formation.
  • the introduction of long reinforcing fibers during the printing process is practically impossible with current 3D printing processes for carbon-based powders, such as binder jetting or paste extrusion. This is especially true for fibers whose length exceeds the diameter of the particles used for printing.
  • the object of the present invention is to make a component with low thermal expansion, high chemical resistance, high temperature resistance and high damage tolerance available in any complex form with little effort.
  • This object is achieved by a method for producing a fiber composite component comprising the following steps: a) providing a body which has been produced by means of additive manufacturing, b) attaching a fiber-containing reinforcing element to the body, and c) generating connecting carbon between the reinforcing element and the body.
  • the body provided in step a) can be, for example, a carbon-based body and / or a ceramic body.
  • the ceramic body in principle any ceramic comes into consideration that can be converted into a body by means of additive manufacturing starting from a powder (and binder), provided that it withstands the conditions in step c).
  • Ceramic here preferably stands for silicon carbide or boron carbide or mixtures thereof.
  • the body provided in a) can therefore preferably be a carbon-based and / or silicon carbide-based or boron carbide-based body which has been produced by means of additive manufacturing.
  • carbon particles comprising amorphous carbon and graphite and all mixed forms of these can be used.
  • the body provided in a) can have been produced from a mixture of coke and silicon carbide by means of additive manufacturing.
  • the type of coke used is not particularly limited; inter alia, cokes such as coal tar pitch coke, petroleum coke, acetylene coke, flexi coke, fluid coke or shot coke, preferably flexi coke, can be used.
  • cokes such as coal tar pitch coke, petroleum coke, acetylene coke, flexi coke, fluid coke or shot coke, preferably flexi coke.
  • the advantageous properties of using the above-mentioned carbon particles are described in WO 2017/089499 A1.
  • With a carbon-based body fiber composite components according to the invention with particularly high thermal resistance can be produced.
  • the silicon carbide-based body ensures special hardness and abrasion resistance.
  • boron carbide-based body With a boron carbide-based body, even lighter composite components can be produced than with a silicon carbide-based body.
  • the mass fractions given here relate to the body as it is obtained from additive manufacturing, i.e. before the reinforcement element is attached and before the body is infiltrated with further substance.
  • the mass fractions relate to the ratio of the sum of the mass fractions of carbon and ceramic, for example silicon carbide and / or board carbide, based on the total mass of the body provided in step a). Since, in connection with the present invention, carbon means amorphous carbon and graphite, both amorphous carbon and graphite are included in the proportion of carbon, that is to say any carbon regardless of its degree of crystallinity.
  • the body provided in step a) can be obtained or manufactured by means of additive manufacturing.
  • Certain embodiments of the method according to the invention include an additive manufacturing of the body which takes place before step a).
  • the additive manufacturing of the body can therefore optionally be included in the method according to the invention.
  • the body provided in step a) can, for example, be purchased or manufactured using additive manufacturing technologies that are known to the person skilled in the art from the relevant specialist literature. It can be produced, for example, as described in WO 2017/089499 A1 (see, for example, method claims 8 to 10 specified therein) or DE10 2012 219 989 A1 (see, for example, the body of claims 7 and 8 specified therein). A wealth of different, very suitable additively manufactured bodies can be purchased from SGL Carbon.
  • the body provided in step a) preferably consists of particles with an average size (d50) in the range of 10-500 ⁇ m. The resulting high porosity of the body favors infiltration with liquid or gaseous medium.
  • the laser granulometric method (ISO 13320) can be used to determine the d50 value, using a measuring device from Sympatec GmbH with the associated evaluation software.
  • the particle size can also be determined from the micrograph, eg using a light microscope.
  • additive manufacturing is understood to mean binder jetting or paste extrusion.
  • the body provided in step a) has been produced by means of binder jetting or is obtainable by means of binder jetting.
  • a powdery starting material is glued to selected places with a binder to create the body.
  • the body is powder-based, highly porous and largely isotropic.
  • a connecting carbon extending into the pores of the body can then arise, which leads to a particularly firm connection between the reinforcement element and the body.
  • the binder used in binder jetting is referred to herein as a jetting binder.
  • Organic or inorganic jetting binders can be used, e.g. waterglass as the inorganic jetting binder and e.g. phenolic resin or furan resin as the organic jetting binder.
  • binder jetting a body with a solids content of greater than 80% by weight, preferably greater than 90% by weight, is obtained.
  • an extrusion paste is deposited in a defined manner in a predetermined pattern in order to create the body.
  • the extrusion paste can be deposited in layers from an extruded strand.
  • the extrusion paste preferably contains carbon particles and / or ceramic particles, for example Silicon carbide particles.
  • the extrusion paste also contains binders. The binder contained in the extrusion paste is not subject to any particular restrictions.
  • a carbonizable binder is preferably contained in the extrusion paste, for example phenolic resin, furan resin, benzoxazine resin, pitch, cellulose, starch, sugar, polyvinyl alcohol (PVA), thermoplastics such as polyaryletherketones and in particular polyetheretherketone (PEEK) and / or polyimide.
  • PVA polyvinyl alcohol
  • thermoplastics such as polyaryletherketones and in particular polyetheretherketone (PEEK) and / or polyimide.
  • the fibrous reinforcing member is not particularly limited.
  • a fiber-containing reinforcing element in principle any fiber and any fiber-containing material and any fiber-containing mass can be considered which can be further processed with the body into a fiber composite component according to the invention according to method steps b) and c).
  • fiber preferably means carbon fiber or silicon carbide fiber, particularly preferably carbon fiber.
  • containing fibers preferably means “containing carbon fibers” or “containing silicon carbide fibers”, particularly preferably “containing carbon fibers”.
  • Carbon fiber is always preferred when there are low weight, high strength and rigidity requirements.
  • Silicon carbide fiber is preferred when it comes to good oxidation stability and wear resistance.
  • any type of attachment of the reinforcement element to the body comes into consideration which withstands the conditions which prevail in the subsequent method step c).
  • the attachment in step b) can take place cohesively with a carbonizable bonding agent. This means that the contact associated with the attachment between the body and the reinforcement element leads to a bonding agent-mediated bond between the body and the reinforcement element.
  • the binding agent already contained in the reinforcing element and / or an additional binding agent to be introduced can preferably serve as the bonding agent.
  • At least part of the joining agent can be a binding agent contained in the reinforcing element and / or in the body. Alternatively or additionally, at least part of the joining agent can be applied to at least one surface of the reinforcing element and / or the body before it is applied.
  • the fiber-containing reinforcing element provided in step b) can be malleable. This is usually the case when the fiber-containing reinforcing element contains a binder that has not yet hardened.
  • the fibers can be wetted with the binder or taken up in the binder.
  • Specific examples of such mouldable reinforcing elements are a resin and fiber-containing compound, which is also referred to herein as a "resin-fiber compound", an at least partially resin-impregnated textile fabric (such fabrics are commercially available as "prepregs", e.g. from SGL Carbon), a resin-soaked fiber strand.
  • the resin used for the production of such moldable reinforcing elements has, after pyrolysis, a carbon yield of preferably at least 10%, more preferably of at least 20% and even more preferably of at least 40%.
  • the formable reinforcement element does not have to contain a binding agent, as is the case, for example, with braided hoses in which a body is braided with fibers. After the attachment, it can be impregnated with a carbonizable bonding agent. Subsequently, in step c) connecting carbon can be generated between the reinforcement element and the body.
  • These moldable reinforcing elements can then be attached to the body, for example, by pressing using a press mold (attachment method 1), spraying using fiber injection (attachment method 2), pressing using a vacuum bag (attachment method 3) and / or autoclave method (attachment method 4), or wrapping the body with the fibrous reinforcement element (attachment method 5).
  • Vacuum bag processes and autoclave processes are described in Drechsler, K., Heine, M., Mitschang, P., Baur, W., Gruber, U., Fischer,
  • attachment methods 1 to 5 are suitable for the above-listed formable reinforcement elements for attachment to the body.
  • attachment to the body is generally accompanied by a change in the shape of the reinforcing element.
  • the reinforcement element can be flexibly adapted to a contour of the body when it is attached to the body.
  • Moldable reinforcing elements thus make it possible to optimize the shape of the body without regard to the shape of a rigid reinforcing element. It is then not necessary to provide a body with a surface which is specifically adapted to the surface of a given rigid reinforcing element. Since the binding agent, e.g. resin, moldable reinforcing elements is not yet hardened at the moment of attachment to the body, it can also serve as a bonding agent.
  • the binding agent e.g. resin, moldable reinforcing elements is not yet hardened at the moment of attachment to the body, it can also serve as a bonding agent.
  • the attachment in step b) can take place without a material bond.
  • a material bond does not take place, for example, if all the binders or binders in the body and reinforcement element at the moment when there is contact between the body and reinforcement element comes, have already hardened to such an extent that further hardening does not result in a binder-mediated connection between body and reinforcement element or the reinforcement element is a reinforcement element free of binder.
  • a carbonizable substance can be infiltrated into the body and the reinforcing element attached thereto. It can be a liquid or a gaseous carbonizable substance. The substance can then bring about a material bond, with the connecting carbon produced by the method according to the invention at the latest causing the material bond.
  • the fiber-containing reinforcing element provided in step b) can be rigid.
  • the fiber-containing reinforcing element is rigid, for example, when the fiber-containing reinforcing element contains cured binder, a carbon matrix and / or a ceramic matrix. Concrete examples of rigid fibrous reinforcing elements are
  • - fiber reinforced carbon elements e.g. carbon fiber reinforced carbon elements, in particular o fiber reinforced carbon plates, e.g. carbon fiber reinforced carbon plates (CFC plates) o fiber reinforced carbon rings, e.g. carbon fiber reinforced carbon rings (CFC rings) o fiber reinforced carbon rods, e.g. carbon fiber reinforced carbon rods (CFC rods) and
  • Carbon fiber reinforced silicon carbide ceramic elements in particular o carbon fiber reinforced silicon carbide ceramic plates o carbon fiber reinforced silicon carbide ceramic rings o carbon fiber reinforced silicon carbide ceramic rods
  • These rigid reinforcing elements can be attached to the body by pressing onto a surface of the body (in particular if the rigid reinforcing element is a plate), folding over the body (in particular if the rigid reinforcing element is a ring) or inserting it into a recess in the body (in particular when the rigid reinforcing element is a rod, grid or ring).
  • the binding agent of a rigid reinforcement element is generally hardened and can no longer serve as a joining agent, further joining agent can be added to attach the body.
  • the reinforcement element and / or the body can then be treated at a temperature of at least 600 ° C, preferably at least 800 ° C, particularly preferably at least 1400 ° C, e.g. at least 1600 ° C, before the reinforcement element is attached to the body.
  • the bonding agent which can (additionally) be added to attach the body, can contain, for example, a resin, in particular a phenolic resin, a furan resin, a benzoxazine resin and / or a bismaleimide resin, or sugar or pitch.
  • the connecting carbon can be produced using any technique with which carbon can be produced in the area of the contact surface between the body and the reinforcing element. Which technique is particularly sensible to choose depends on how the arrangement was made in step b) and whether, as a result, there is carbonizable material in the area of the contact surface or not.
  • the connecting carbon can be produced by carbonizing the carbonizable substance described herein or the bonding agent described herein.
  • the carbonizable substance can extend through the entire component or through wide areas of the component.
  • the carbonization then leads to a continuous phase of connecting carbon, which can extend through the entire component.
  • the connecting carbon can also be formed differently, e.g. by chemical gas phase infiltration (CVI).
  • CVI chemical gas phase infiltration
  • the bonding agent and / or the carbonizable substance preferably have a material yield of at least 20% by weight, in particular at least 40% by weight, when heated in an N2 atmosphere. This is tested by weighing approx. One milliliter of bonding agent or carbonizable substance, heating it up to 900 ° C in an N2 atmosphere at a heating rate of 1 K / minute and then holding the sample at 900 ° C for a further 10 minutes under an N2 atmosphere . The residue is weighed again. If the mass in the second weighing is at least 20% of the mass in the first weighing, the material yield is at least 20% by weight.
  • the mass fraction of C in the residue is preferably at least 40% by weight, particularly preferably at least 90% by weight, for example at least 95% by weight. This has the effect that in method step c) the connecting carbon between the reinforcement element and the body is formed particularly effectively. This increases the strength of fiber composite components according to the invention.
  • the bonding agent can be a paste containing carbon and / or silicon carbide particles and / or fibers with an average length of at most 3 mm, for example with a mass fraction of particles and / or fibers totaling 10-90% by weight, in particular 30-70 Wt%.
  • the thermomechanical properties of the body and reinforcement element are matched to one another, the particles of the paste being able to fill the cavities between the surfaces in contact.
  • the thermal stresses occurring in step c) between the body and the reinforcement element then seem to be better absorbed by the fiber composite component being formed. This results in a higher mechanical load capacity of the component as well as a higher manufacturing accuracy and a lower reject rate.
  • the paste is preferably composed like the extrusion paste described in connection with the paste extrusion, but the viscosity of the extrusion paste is generally set higher than the viscosity of the paste used for joining.
  • the bonding agent can be fiber-free or also contain fibers, for example carbon fibers or silicon carbide fibers.
  • the fibers contained in the bonding agent can have an average length of up to 3 mm, particularly preferably an average length of up to 1 mm. It can be short cut fibers or ground fibers, for example. Short cut fibers are produced by cutting from a fiber strand separates louder sections of equal length. Milled fibers are created by grinding fibers.
  • Fiber composite components according to the invention which comprise very large volume fractions based on paste are less preferred. Because in the finished fiber composite component, the areas due to the paste are generally less resilient than the areas due to fiber-containing reinforcing elements.
  • the bonding agent is preferably a paste which takes up at most 10% of the total volume of the fiber composite component present after step b). The upper limit of 10% given here relates to the volume of bonding agent that is present in addition to a binding agent optionally contained in the reinforcement element. If several bodies and / or several reinforcement elements are installed in the fiber composite component, all bodies, all reinforcement elements and all areas based on pastes are included in the calculation of the relevant volume fractions.
  • the body and / or the reinforcement element and / or the body and the reinforcement element connected to the body can be compressed by chemical gas phase infiltration (CVI) and / or by infiltration with carbonizable substance and subsequent carbonization (so-called “compression”). So the body can be compressed. Alternatively or additionally, the reinforcing element can be compressed. In addition, compression of the reinforcing element connected to the body obtained after step c) is possible. A compression can take place several times in succession, but preferably not more than 5 times, since this would increase the process costs too much. The compression by CVI can take place, for example, as described in WO 2019/063831 A2.
  • Carbonization is understood here to mean pyrolysis in a non-oxidizing atmosphere, for example in an N2 atmosphere.
  • Any substance that can be carbonized is called carbonizable in a ⁇ atmosphere, when heated, can decompose into a residue, the mass fraction of which is higher in carbon than in the substance. This is tested by heating one milliliter of the substance in an N2 atmosphere at a heating rate of 1 K / minute up to 900 ° C and then holding the sample at 900 ° C for a further 10 minutes under an N2 atmosphere.
  • the mass fraction of carbon is determined by elemental analysis before and after heating.
  • carbonizable substances that can be used advantageously for infiltration are phenolic resins, furan resins, benzoxazine resins, bismaleimide resins, sugar (present as a solution containing at least one sugar), pitch and mixtures thereof.
  • the compression not only increases the density, but also the strength. It lowers the porosity and closes cracks, so defects are reduced.
  • step c) at the latest the resulting fiber composite component is generally exposed to very high temperatures, so that the stress gradients and mechanical stresses already mentioned above occur. These arise because the volume and the expansion of the body and the reinforcement element change when heated and this does not occur to the same extent for the body and the reinforcement element. Essentially reversible thermal expansion is superimposed on irreversible shrinkage. The shrinkage is due to the pyrolysis of components of the body and reinforcing element. Stress gradients and mechanical stresses can always occur to a particularly high degree if the thermal expansion coefficient and shrinkage of the parts to be connected or already connected (body and reinforcement element) differ greatly.
  • the body provided in step a) is graphite-based, for example made from or partially from graphite powder, then the shrinkage of the body and thus the mechanical stresses are minimized, since the body generally shrinks more than the reinforcing element.
  • the body can be pretreated at a high temperature before joining, or a high-temperature-treated body can be used in additive manufacturing.
  • an (additional) compression of the composite component can take place.
  • the composite component can also be compressed by chemical gas phase infiltration (CVI) and / or by infiltration with a carbonizable substance and subsequent carbonization. This allows the porosity of the component according to the invention to be set in a targeted manner.
  • a high-temperature treatment is preferably carried out at at least 1600 ° C, in particular at 1600 to 3000 ° C, e.g. at 1700 to 2400 ° C. This increases the purity as various elements from carbon are expelled at such high temperatures. As a result, the dimensional stability increases at the same time at very high temperatures. The component is then much better suited for use at temperatures of> 900 ° C.
  • SiC particles or SiC fibers are present, a temperature of 2200 ° C. is not exceeded in order not to cause any significant decomposition of SiC.
  • a fiber composite component obtainable by the method according to the invention, in particular by a fiber composite component having a body and a fiber-containing reinforcing element, the body and the reinforcing element being connected by carbon between the reinforcing element and the body, produced by a method according to the invention, or by a A fiber composite component comprising a body that is free of fibers or does not include fibers with a length of more than 0.5 mm and a fiber-containing reinforcing element that includes fibers with an average length of more than 1 mm, the body and the reinforcing element being carbon are connected between reinforcing element and body, produced by a method according to the invention.
  • the ratio of the volume of the reinforcement element or of the reinforcement elements to the total volume of the component can vary within wide ranges. For certain components / for certain uses, very small reinforcement elements can be sufficient. On the other hand, very large reinforcing elements may be required for other components / for certain uses.
  • the volume ratio of reinforcing element (s) to the total volume of the component according to the invention is 0.01 to 0.5, preferably 0.05 to 0.25, particularly preferably 0.1 to 0.2.
  • the fiber volume fraction in the fiber-containing reinforcing element is preferably at least 20% by volume, in particular at least 50% by volume. This can be determined optically in the micrograph. For this purpose, one cuts through a component according to the invention including the reinforcement element, grinds the cut surfaces obtained during cutting and determines visually (e.g. with a microscope) the proportion of the reinforcement element cut surfaces occupied by the areas of the reinforcement element cut surfaces. If the fibers are not distributed completely homogeneously within the reinforcement element, the component is cut through several times and all reinforcement element cut surfaces are included in the determination of the fiber volume fraction. It has already been described above in connection with the method according to the invention that the fiber composite component can be produced using formable reinforcing elements, such as resin-fiber mass. Such masses in particular often lead to components according to the invention with extensive fiber-free reinforcing element areas based on resin and with a correspondingly low fiber volume fraction.
  • the upper limit on the length of the fibers that the body can encompass ensures that the body can be produced in a particularly simple manner by additive manufacturing, for example binder jetting. Fibers above a certain length are difficult to process in additive manufacturing processes.
  • the fiber-containing reinforcing element is preferably a carbon fiber-containing or silicon carbide-fiber-containing reinforcing element, particularly preferably a carbon fiber-containing reinforcing element.
  • the fiber-containing reinforcing element preferably comprises a fabric, a spiral fabric, a multiaxial fabric, a unidirectional fabric, short cut fibers, continuous fibers, a fleece, a felt, a paper, a braid, a knitted fabric, a knitted fabric and / or a fiber lattice.
  • Knitted fabrics are elastic and therefore easy to drape.
  • Braids and knitted fabrics are preferably hoses and can therefore be used to strengthen the body outside.
  • Reinforcing elements comprising continuous fibers are produced, for example, by wrapping a towpreg around the body or by braiding the body with fibers.
  • the fiber composite component has a fiber-containing reinforcement element which comprises fibers with a length of more than 1 mm.
  • the aforementioned fiber-containing reinforcing elements such as, for example, scrims, fleeces, felts, papers, braids, knitted fabrics, knitted fabrics or fiber grids regularly contain fibers with a length of far more than 1 mm.
  • the fiber composite component can have a fiber-containing reinforcing element which comprises fibers with an average length of more than 0.5 cm, for example of more than 1 cm, in particular of more than 2 cm. With shorter fibers, scrims, braids, knitted fabrics, embroideries or fiber grids can only be realized with increased effort. Short fibers are also possible, especially with short-cut fibers, fleece, felt or paper.
  • a preferred fiber composite component contains at least 85% by weight carbon, in particular at least 88% by weight carbon, particularly preferably at least 90% by weight carbon, very particularly preferably at least 95% by weight carbon, for example at least 97% by weight carbon .
  • This percentage relates to the component as a whole, including the reinforcement element and body. It is determined by elemental analysis. In general, the body is then manufactured additively from carbon particles, the binder used in additive manufacturing is largely carbonized and the reinforcement element contains carbon fibers.
  • the body can comprise graphite particles. This brings about a further increase in the high temperature stability of the component according to the invention. In addition, thermal and chemical stability (corrosion resistance and oxidation stability) increase. The heat conduction and sliding properties are increased.
  • the body can be positively connected to the reinforcing element. This brings about an additional increase in the stability of the connection between the parts of the fiber composite component, that is between the reinforcement element and the body.
  • At least one of the parts eg the body
  • the in step a) The body provided can therefore have an undercut.
  • a moldable reinforcement element can be brought into a form fit with the undercut when it is attached, for example by pressing, and then cured with a form fit.
  • the body or the reinforcement element can have a recess in which the (entire) reinforcement element or the body is received. This prevents tilting, slipping and delamination.
  • the reinforcement element or the body then also does not influence the external geometry of the body or the reinforcement element. The surface is not affected, which can be a great advantage for a pump component, e.g. a pump impeller.
  • the body can be provided in a wide variety of shapes, so that every imaginable fiber composite component geometry is possible.
  • Recesses for fiber-containing reinforcing elements and / or undercuts can be provided at any point.
  • particularly high mechanical loads always arise at very specific points where the fiber-containing reinforcing elements can be arranged in a targeted manner.
  • the result is a component that can cope with the anticipated loads (mechanical and thermal) in every component area and that can also be manufactured at particularly low cost.
  • the reinforcing element can be arranged on the body where it has a receptacle for a fastening element (e.g. screw). It can thus be prevented that the forces acting on the fastening element lead to parts of the body breaking out in the region of the receptacle.
  • Preferred fiber composite components according to the invention have a pseudo-ductile fracture behavior. This means that with fiber composite components according to the invention, a stress-strain curve can be determined in the 3-point bending test, which after a first, based on the linear-elastic deformation of the Component declining increase does not suddenly drop to 0 at the first damage. The first time the component is damaged, there is no sudden failure.
  • the body without a fiber-containing reinforcement element would break at the end of the linear-elastic deformation, whereby the 3-point bending test then results in a stress-strain curve which, after a first increase due to the linear-elastic deformation of the component, is abrupt falls to 0.
  • the 3-point bending test can e.g. be carried out based on ISO 178: 2013 with a support radius: 3mm, punch radius: 3mm, support width: 80 mm, with a test speed of 2 mm / min.
  • the invention also relates to the use of fiber composite components according to the invention as a brake disc and brake lining for aircraft or racing vehicles and industrial brakes, as a clutch disc, as a nozzle, as a fan wheel, as a crucible, as a heater, as a sliding ring, as a bearing, as a pump component, for example a pump impeller, as built-in components for columns; e.g. column bottom, as a grinding wheel, as a process aid for the hardening process, soldering process, coating process, firing process, forming process, as a charging aid and transport aid, as a primary forming aid (e.g.
  • each of the auxiliaries can have, for example, at least one recess for the form-fitting reception of at least one workpiece.
  • Process aids for the hardening process, soldering process, coating process, firing process and forming process are suitable components according to the invention because of their high dimensional stability at high temperatures. It should be emphasized that there are essentially no additional costs for complex geometries.
  • the complex structure can be printed.
  • the invention offers a higher level of safety in the case of rotating components and a higher tolerance for damage when working with processing aids.
  • standard CFC parts which can be made up of charging racks, for example, can be adapted to special, complex shape requirements.
  • FIG. 1A shows a sandwich component with a flat reinforcement element between two flat, 3D printed bodies.
  • FIG. 1 B shows a sandwich component with a flat, 3D printed body between two flat reinforcement elements.
  • FIG. 1C shows a sandwich component with a flat reinforcement element between two flat, 3D printed bodies attached with paste 1 D shows a multilayer component in which the flat, 3D printed body and flat reinforcing elements are alternately arranged one above the other,
  • FIG. 1 E shows a sandwich component in which the flat 3D printed body has a continuous recess through which the two flat
  • Reinforcing elements are connected to each other.
  • Figure 2A shows a component in which the body has several recesses
  • Figure 2B shows a section through the component of Figure 2A along the dashed line.
  • Figure 2C shows a component in which the body has recesses connected to form a grid for receiving a grid-shaped reinforcing element
  • FIG. 2D shows a section through the component of FIG. 2C along the dashed line
  • FIG. 2E shows a section through a multilayer component made up of three layers of components from FIG. 2A or 2B
  • Figure 2F shows a component in which the body has a plurality of cylindrical
  • Figure 2G shows a section through the component of Figure 2F along the dashed line
  • FIG. 3A shows a component with a disk-shaped body which is surrounded by an annular reinforcing element.
  • FIG. 3B shows a section through the component of FIG. 3A along the dashed line
  • FIG. 3C shows a component with a disk-shaped body, an annular reinforcing element being received in a circumferential groove.
  • FIG. 3D shows a section through the component of FIG. 3C along the dashed line
  • FIG. 4A shows a plan view of a component with a body which is open at the top and which is filled with a reinforcing element obtainable from a fibrous fill
  • FIG. 4B shows a section through the component of FIG. 4A along the dashed line with cover.
  • FIGS. 5A, B and C show sections of bodies whose complex-shaped surface is covered with a reinforcing element a groove are added.
  • FIGS. 8A, B show components in which the 3D printed body contains a channel structure, such as can be used for cooling.
  • FIGS. 8A, B show a component in which complex 3D printed bodies are joined in a fiber-reinforced base plate.
  • FIG. 8A shows a section
  • FIG. 8B shows a plan view of the component.
  • FIG. 9 shows a stress-strain curve from a 3-point bending test.
  • components according to the invention are shown in the form of sandwich structures made up of flat reinforcing elements 2 and flat, 3D printed bodies 1. Such sandwich structures are produced by pressing. The connecting carbon between the reinforcement element and the body is then generated, e.g. by carbonizing bonding agents.
  • the type of reinforcement element 2 to be preferred in each case depends on the geometry of the component (reinforcement element based on web material for rectangular structures or spiral fabric for round structures) and the subsequent load profile (unidirectional, multiaxial scrim, fabric or planar isotropic fleece).
  • an uncured, resin-containing and thus malleable reinforcing element 2 is introduced during manufacture.
  • a malleable reinforcing element for the production of the components of Figures 1 A As a malleable reinforcing element for the production of the components of Figures 1 A,
  • a prepreg can be used.
  • the resin contained in the prepreg acts as a bonding agent and ensures a material connection between the body 1 and the reinforcement element 2.
  • the component of FIG. 1C is produced using additional bonding agent.
  • a paste containing carbon and / or silicon carbide particles is used as the bonding agent.
  • the bonding agent is applied to the interfaces between the body and the reinforcement element.
  • Such a bonding agent may be necessary in particular in the case of rigid reinforcing elements in order to attach the reinforcing element 2 firmly to the body 1. This is created by carbonization Component according to the invention, wherein in the bonding agent area 3 connecting carbon is formed.
  • any sequence of layers is possible in which the reinforcement element 2 is embedded between 3D printed bodies 1 (1 A, 1C) or a 3D printed body 1 is embedded between reinforcement elements 2 (1 B).
  • multilayer structures with different layer sequences are possible (1 D).
  • Such multi-layer structures can be implemented with rigid or malleable reinforcement elements 2, with the additional bonding agent being applied, especially when using rigid reinforcement elements 2, so that a firm attachment of the rigid reinforcement element 2, which is essentially free of uncured binding agent, is made possible on the body.
  • the outermost layers can either go back to 3D printed bodies 1 or be reinforcing elements 2.
  • a continuous recess in the 3D printed body 1 enables the connection of two formable reinforcement elements 2 applied on both sides and thus an additional form-fitting fixation of the reinforcement elements 2 on the 3D printed body 1 (FIG. 1 E).
  • FIGS. 2A to G components according to the invention are shown in which the body (s) 1 have recesses in which reinforcing elements 2 are received.
  • the production can take place either with rigid or malleable reinforcement elements 2.
  • Mouldable reinforcement elements 2 containing uncured resin for example resin-fiber mass
  • Rigid reinforcing elements 2 are fixed in the recesses by means of additional joining means, the intermediate areas due to joining means not being indicated in FIGS. 2A to G.
  • the component according to the invention is then obtained by converting bonding agent into carbon to be bonded (carbonization of the bonding agent).
  • fiber rods can be inserted by means of joining binders.
  • a lattice-shaped reinforcing element for example a fiber lattice, can be inserted into the component of FIGS. 2C, D.
  • FIG. 2E shows a section through a multilayer component made up of three layers of components from FIG. 2A or 2C.
  • a bonding agent can also be used to connect the three layers.
  • the recesses are on the inside, that is, surrounded by body 1 all around.
  • a moldable reinforcing element 2 e.g. a resin-fiber mass
  • the recesses can first be filled with joining paste and then the reinforcing element 2 can be inserted.
  • Recesses with a round cross-section are shown, with recesses and reinforcing elements 2 with any, e.g. rectangular or square, cross-section also being conceivable.
  • FIGS. 3A to D components according to the invention with a disk-shaped body 1 and an annular reinforcing element 2 are shown.
  • the disk-shaped body 1 can be surrounded by the annular reinforcing element 2 (FIGS. 3A, B).
  • the reinforcing element 2 can also be received in a circumferential groove in the body (FIGS. 3C, D).
  • the reinforcement element 2 can be attached to the disk-shaped body (FIGS. 3A, B) or introduced into it (FIGS. 3C, D) as a rigid ring (eg a wound tube made of carbon fiber reinforced carbon) by means of joining paste.
  • a moldable reinforcing element for example a resin-fiber mass
  • a moldable reinforcing element for example a resin-fiber mass
  • the disk-shaped body can alternatively be wrapped with a resin-impregnated fiber strand or a pre-impregnated textile, or a circular knitted fabric can be pulled on, which is then impregnated with bonding agent.
  • components according to the invention can be produced by subsequent carbonization.
  • FIGS. 4A, B a component is shown in which a body 1 that is open at the top is filled with a reinforcing element 2 obtainable from a fibrous fill.
  • a component is manufactured by filling the cavity of a 3D printed body with fiber-resin mass. The compound is then pressed with a press ram or by a vacuum bag process and, if necessary, the fiber-resin compound is refilled. When the entire cavity is filled, the body is closed with a suitable cover 4.
  • a bonding agent can be used for this purpose.
  • the body 1 is covered on all sides with reinforcing element 2; in FIG. 5C, only one side of the body 1 is covered with reinforcing element 2.
  • the surface to be reinforced is covered with a resin-containing reinforcing element 2 (e.g. prepreg or resin-fiber mass) and then firmly bonded using the vacuum bag process.
  • the reinforcement element 2 can be applied manually, with the aid of a robot or by means of fiber spraying.
  • the material bond in particular in the case of a larger number of items, can also be achieved by means of a specially shaped press ram.
  • the body 1 has undercuts into which the reinforcing element 2 engages in a form-fitting manner, here by way of example in the form of a dovetail connection.
  • Other shapes with an undercut can also be used.
  • the 3D printed body 1 comprises channels 6. They can be used to cool the component and to reduce weight. By using a 3D printing method to manufacture the body 1, diverse, complex structures can be created represent.
  • the introduction of channels 6 is basically possible in all components according to the invention.
  • the channels can be open on one or both sides.
  • FIGS. 8A and B a component according to the invention is shown in which 3-D printed bodies 1 are connected to a fiber-reinforced base plate functioning as a fiber-containing reinforcing element 2.
  • 3D printing enables a high degree of design freedom and complex geometries can also be produced. Such structures are used, for example, as process, charging and transport aids.
  • precisely fitting component mountings e.g. for gear wheels, as indicated here, can be produced, in which the components can be processed safely and without slipping.
  • the graph in FIG. 9 shows a stress-strain curve of a bending test on a fiber-reinforced component according to the invention, the production of which is described in the exemplary embodiment.
  • Sandwich structure made of a plate-shaped 3D printed body (100x100x2mm 3 ) and reinforcement element that was attached to the body in the form of a phenolic resin prepreg (made of isotropic carbon fiber fleece with 450 g / m 2 ).
  • the body was made from carbon powder and phenolic resin binder using the Binder Jet process. The The production of such a body is described in more detail, for example, in WO 2017/089499.
  • a layer of prepreg was placed on each side of the body and pressed at 7.5 bar at a maximum temperature of 170 ° C. After curing, the material was carbonized at 900.degree. C. and then re-compacted three times, ie impregnated with phenolic resin and carbonized at 900.degree.
  • a reference sample was produced in which the same process steps were used, but no reinforcement element was attached to the body.
  • the 3-point bending test was carried out based on ISO 178: 2013 with a support radius: 3mm, punch radius: 3mm, support width: 80 mm, with a test speed of 2 mm / min.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Composite Materials (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung eines Faserverbundbauteils umfassend die folgenden Schritte: a) Bereitstellen eines Körpers (1), welcher mittels additiver Fertigung hergestellt worden ist, b) Anbringen eines faserhaltigen Verstärkungselements (2) am Körper, und c) Erzeugen verbindenden Kohlenstoffs zwischen Verstärkungselement und Körper sowie nach dem Verfahren erhältliche Faserverbundbauteile und deren Verwendung.

Description

FASERVERBUNDBAUTEILE
Beschreibung
Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung eines Faserverbund bauteils, ein nach diesem Verfahren hergestelltes Faserverbundbauteil und dessen Verwendung.
Carbonfaserverstärkte Kohlenstoffmaterialien (CFC-Materialien) kombinieren die Eigenschaften von Carbonfasern und einer kohlenstoffbasierten Matrix. Dadurch entsteht ein Material mit hoher Bruchzähigkeit, geringer thermischer Ausdehnung, exzellenter chemischer Beständigkeit, sowie einer hohen Temperaturbeständigkeit. Allerdings ist die Fertigung sehr aufwendig und insbesondere die Herstellung komplexer Bauteile sehr zeit-, material- und damit kostenintensiv.
Additive Fertigungstechniken wie 3D Druck ermöglichen eine hohe Designfreiheit, die flexible Herstellung von Kleinserien und damit die kostengünstige Herstellung von komplexen Bauteilen. Pulverbasierte 3D gedruckte Kohlenstoffmaterialien sind jedoch mechanisch nur in engen Grenzen belastbar und neigen im Moment einer ersten Rissbildung zum abrupten Materialversagen. Ein Einbringen von langen verstärkenden Fasern während des Drückens ist bei gängigen 3D Druckverfahren für kohlenstoffbasierte Pulver, wie Binder Jetting oder Pastenextrusion, aber bisher quasi nicht möglich. Dies gilt insbesondere für Fasern, deren Länge die Durchmesser der Partikel überschreitet, die für den Druck verwendet werden.
Die Aufgabe der vorliegenden Erfindung besteht darin, ein Bauteil mit geringer thermischer Ausdehnung, hoher chemischer Beständigkeit, hoher Temperaturbeständigkeit und hoher Schadenstoleranz in beliebig komplexer Form mit geringem Aufwand zugänglich zu machen. Diese Aufgabe wird gelöst durch ein Verfahren zur Herstellung eines Faserverbundbauteils umfassend die folgenden Schritte: a) Bereitstellen eines Körpers, welcher mittels additiver Fertigung hergestellt worden ist, b) Anbringen eines faserhaltigen Verstärkungselements am Körper, und c) Erzeugen verbindenden Kohlenstoffs zwischen Verstärkungselement und Körper.
Der in Schritt a) bereitgestellte Körper kann z.B. ein kohlenstoffbasierter Körper und/oder ein keramischer Körper sein. Für den keramischen Körper kommt prinzipiell jede Keramik in Betracht, die mittels additiver Fertigung ausgehend von einem Pulver (und Binder) in einen Körper überführt werden kann, soweit sie den Bedingungen in Schritt c) standhält. Vorzugsweise steht Keramik hierin für Siliziumcarbid oder Borcarbid oder deren Mischungen. Der in a) bereitgestellte Körper kann demnach bevorzugt ein kohlenstoffbasierter und/oder siliziumcarbidbasierter oder borcarbidbasierter Körper sein, welcher mittels additiver Fertigung hergestellt worden ist. Für den kohlenstoff basierten Körper können Kohlenstoffpartikel umfassend amorphen Kohlenstoff und Graphit sowie sämtliche Mischformen dieser verwendet werden. Insbesondere kann der in a) bereitgestellte Körper aus einer Mischung aus Koks und Siliziumcarbid mittels additiver Fertigung hergestellt worden sein. Die Art des verwendeten Koks ist hierbei nicht besonders eingeschränkt; es können unter anderem Kokse wie Steinkohlenteer pechkoks, Petrolkoks, Acetylenkoks, Flexikoks, Fluidkoks oder Shot Coke, bevorzugt Flexikoks, eingesetzt werden. Die vorteilhaften Eigenschaften der Verwendung der oben genannten Kohlenstoffpartikel sind in der WO 2017/089499 A1 beschrieben. Mit kohlenstoffbasiertem Körper können erfindungsgemäße Faserverbundbauteile mit besonders hoher thermischer Beständigkeit hergestellt werden. Der siliziumcarbid- basierte Körper sorgt hingegen für eine besondere Härte und Abrasionsfestigkeit. Mit borcarbidbasiertem Körper lassen sich noch leichtere Verbundbauteile hersteilen, als mit siliziumcarbidbasiertem Körper. Die Angabe, dass der Körper kohlenstoffbasiert und/oder keramisch, z.B. silizium- carbidbasiert ist, bedeutet, dass der Körper mindestens zu 50 Gew.-%, bevorzugt mindestens zu 70 Gew.-% und ganz besonders bevorzugt zu mindestens 90 Gew.-% aus Kohlenstoff und/oder Keramik, z.B. Siliziumcarbid und oder Borcarbid, besteht. Die hier angegebenen Massenanteile beziehen sich auf den Körper, wie er aus der additiven Fertigung erhalten wird, also noch vor der Anbringung des Verstärkungs elements und vor einer Infiltration des Körpers mit weiterer Substanz. Die Massen anteile beziehen sich dabei auf das Verhältnis der Summe der Massenanteile an Kohlenstoff und Keramik, z.B. Siliziumcarbid und/oder Bordcarbid, bezogen auf die Gesamtmasse des in Schritt a) bereitgestellten Körpers. Da Kohlenstoff im Zusammenhang mit der vorliegenden Erfindung amorphen Kohlenstoff und Graphit meint, geht in den Anteil an Kohlenstoff sowohl amorpher Kohlenstoff als auch Graphit ein, also jeglicher Kohlenstoff unabhängig von dessen Kristallinitätsgrad.
Der in Schritt a) bereitgestellte Körper ist mittels additiver Fertigung erhältlich oder hergestellt worden. Bestimmte Ausführungsformen des erfindungsgemäßen Verfahrens umfassen eine noch vor Schritt a) erfolgende additive Fertigung des Körpers. Es ist jedoch auch möglich, die durch additive Fertigung erhältlichen oder hergestellten Körper, die in Schritt a) bereitgestellt werden, zuzukaufen oder vom erfindungsgemäßen Verfahren räumlich getrennt und/oder zeitlich entkoppelt herzustellen. Die additive Fertigung des Körpers kann also optional vom erfindungsgemäßen Verfahren umfasst sein.
Der in Schritt a) bereitgestellte Körper kann z.B. gekauft oder mit additiven Fertigungstechnologien hergestellt werden, die dem Fachmann aus der einschlägigen Fachliteratur bekannt sind. Er kann z.B. so hergestellt werden, wie in WO 2017/089499 A1 (siehe z.B. darin angegebene Verfahrensansprüche 8 bis 10) oder DE10 2012 219 989 A1 (siehe z.B. darin angegebene Körper der Ansprüche 7 und 8) beschrieben. Eine Fülle verschiedener, sehr gut geeigneter additiv gefertigter Körper können von SGL Carbon gekauft werden. Der in Schritt a) bereitgestellte Körper besteht vorzugsweise aus Partikeln mit einer mittleren Größe (d50) im Bereich von 10-500 pm aufgebaut sein. Die daraus resultierende hohe Porosität des Körpers begünstigt die Infiltration mit flüssigem oder gasförmigem Medium. Für die Bestimmung des d50-Werts kann die lasergranulo- metrische Methode (ISO 13320) eingesetzt werden, wobei ein Messgerät der Sympatec GmbH mit zugehöriger Auswertesoftware verwendet wird. Im bestehenden Körper kann die Partikelgröße auch aus dem Schliffbild bestimmt werden, z.B. lichtmikroskopisch.
Unter additiver Fertigung wird in bevorzugten erfindungsgemäßen Verfahren Binder Jetting oder Pastenextrusion verstanden. In einem besonders bevorzugten erfindungsgemäßen Verfahren ist der in Schritt a) bereitgestellte Körper mittels Binder Jetting hergestellt worden oder mittels Binder Jetting erhältlich.
Beim Binder Jetting wird ein pulverförmiges Ausgangsmaterial an ausgewählten Stellen mit einem Binder verklebt, um so den Körper zu erzeugen. Dies bewirkt, dass der Körper pulverbasiert, hochporös, und weitgehend isotrop ist. In Schritt c) kann dann ein sich bis in die Poren des Körpers erstreckender, verbindender Kohlenstoff entstehen, der zu einer besonders festen Verbindung von Verstärkungselement und Körper führt.
Der beim Binder Jetting verwendete Binder wird hierin als Jetting-Binder bezeichnet. Es können organische oder anorganische Jetting-Binder verwendet werden, wobei z.B. Wasserglas als anorganischer Jetting-Binder und z.B. Phenolharz oder Furanharz als organische Jetting-Binder gut verwendbar sind. Beim Binder Jetting wird ein Körper mit einem Feststoffanteil von größer 80 Gew.-%, bevorzugt größer 90 Gew.-%, erhalten.
Bei der Pastenextrusion wird eine Extrusionspaste in definierter weise in einem vorgegebenen Muster abgelegt, um so den Körper zu erzeugen. Das Ablegen der Extrusionspaste kann dabei schichtweise aus einem extrudierten Strang erfolgen. Die Extrusionspaste enthält vorzugsweise Kohlenstoffpartikel und/oder Keramikpartikel, z.B. Siliziumcarbidpartikel. Außerdem enthält die Extrusionspaste Binder. Der in der Extrusionspaste enthaltene Binder unterliegt keinen besonderen Beschränkungen. Bevorzugt ist in der Extrusionspaste ein carbonisierbarer Binder enthalten, z.B., Phenolharz, Furanharz, Benzoxazinharz, Pech, Cellulose, Stärke, Zucker, Polyvinylalkohol (PVA), Thermoplaste wie z.B. Polyaryletherketone und insbesondere Polyetheretherketon (PEEK) und/oder Polyimid.
Das faserhaltige Verstärkungselement unterliegt keinen besonderen Beschränkungen. Als faserhaltiges Verstärkungselement kommt prinzipiell jede Faser und jedes faserhaltige Material und jede faserhaltige Masse in Betracht, welche(s) sich gemäß der Verfahrensschritte b) und c) mit dem Körper zu einem erfindungsgemäßen Faserver bundbauteil weiterverarbeiten lässt.
Faser meint im Zusammenhang mit der vorliegenden Erfindung vorzugsweise Carbonfaser oder Siliziumcarbidfaser, besonders bevorzugt Carbonfaser. Dementsprechend bedeutet „faserhaltig“ vorzugsweise „carbonfaserhaltig“ oder „siliziumcarbidfaserhaltig“, besonders bevorzugt „carbonfaserhaltig“. Carbonfaser ist immer dann bevorzugt, wenn geringe Gewichts-, hohe Festigkeits- und Steifigkeits anforderungen bestehen. Siliziumcarbidfaser wird bevorzugt eingesetzt, wenn es um eine gute Oxidationsstabilität und Verschleißstabilität geht.
Gemäß der vorliegenden Erfindung kommt jeder Art der Anbringung des Verstärkungselements am Körper in Betracht, die den Bedingungen standhält, welche beim nachfolgenden Verfahrensschritt c) vorherrschen.
Das Anbringen in Schritt b) kann stoffschlüssig mit einem carbonisierbaren Fügebindemittel erfolgen. Dies bedeutet, dass der mit dem Anbringen zwischen Körper und Verstärkungselement einhergehende Kontakt zu einem fügebindemittelvermittelten Stoffschluss zwischen Körper und Verstärkungselement führt. Wie aus den nachfolgenden Ausführungen zu formbaren und starren faserhaltigen Verstärkungselementen und Anbringungsmethoden deutlich wird, kann als Fügebindemittel bevorzugt das im Verstärkungselement ohnehin enthaltene Bindemittel und/oder ein zusätzlich einzubringendes Bindemittel dienen. Es kann mindestens ein Teil des Fügebindemittels ein im Verstärkungselement und/oder im Körper enthaltenes Bindemittel sein. Alternativ oder zusätzlich kann mindestens ein Teil des Fügebindemittels vor dem Anbringen auf mindestens eine Oberfläche des Verstärkungselements und/oder des Körpers aufgetragen werden.
Das in Schritt b) bereitgestellte faserhaltige Verstärkungselement kann formbar sein. Dies ist in der Regel dann der Fall, wenn das faserhaltige Verstärkungselement ein Bindemittel enthält, das noch nicht ausgehärtet ist. Die Fasern können mit dem Bindemittel benetzt oder in dem Bindemittel aufgenommen sein. Konkrete Beispiele solcher formbaren Verstärkungselemente sind eine Harz und Fasern enthaltende Masse, die hierin auch als „Harz-Faser- Masse“ bezeichnet ist, ein mindestens teilweise harzgetränktes textiles Flächengebilde (solche Flächengebilde sind als „Prepregs“ käuflich erhältlich, z.B. von SGL Carbon), ein harzgetränkter Faserstrang.
Das verwendete Harz für die Herstellung solcher formbaren Verstärkungselemente weist nach der Pyrolyse eine Kohlenstoffausbeute von vorzugsweise mindestens 10 %, bevorzugter von mindestens 20 % und noch bevorzugter von mindestens 40 % auf.
Das formbare Verstärkungselement muss jedoch kein Bindemittel enthalten, wie z.B. bei Flechtschläuchen, bei denen ein Körper mit Fasern umflochten wird. Nach dem Anbringen kann eine Imprägnierung mit carbonisierbarem Fügebindemittel erfolgen. Anschließend kann in Schritt c) verbindender Kohlenstoff zwischen Verstärkungs element und Körper erzeugt werden. Das Anbringen dieser formbaren Verstärkungselemente am Körper kann dann z.B. erfolgen durch Pressen mithilfe einer Pressform (Anbringungsmethode 1), Aufsprühen mittels Faserspritzen (Anbringungsmethode 2), Aufpressen mittels Vakuumsack verfahren (Anbringungsmethode 3) und/oder Autoklavverfahren (Anbringungsmethode 4), oder Umwickeln des Körpers mit dem faserhaltigen Verstärkungselement (Anbringungsmethode 5). Vakuumsackverfahren und Autoklavverfahren sind beschrieben in Drechsler, K., Heine, M., Mitschang, P., Baur, W., Gruber, U., Fischer,
L, Öttinger, O., Heidenreich, B., Lützenburger, N. und Voggenreiter, H. (2009), Carbon Fiber Reinforced Composites, in Ullmann's Encyclopedia of Industrial Chemistry, (Ed.)., in Abschnitt 2.3.3. Es versteht sich für den Fachmann von selbst, welche der vorgenannten Anbringungsmethoden 1 bis 5 für die oben aufgelisteten formbaren Verstärkungselemente zur Anbringung am Körper jeweils geeignet sind. Die Anbringung am Körper geht beim formbaren Verstärkungselement im Allgemeinen mit einer Veränderung der Form des Verstärkungselements einher. Das Verstärkungselement kann beim Anbringen an den Körper einer Kontur des Körpers flexibel angepasst werden.
Formbare Verstärkungselemente lassen es also zu, die Form des Körpers ohne Rücksicht auf die Form eines starren Verstärkungselement zu optimieren. Es ist dann nicht erforderlich, einen Körper mit einer Oberfläche bereitzustellen, die spezifisch an die Oberfläche eines gegebenen, starren Verstärkungselements angepasst ist. Da das Bindemittel, z.B. Harz, formbarer Verstärkungselemente im Moment der Anbringung am Körper noch nicht ausgehärtet ist, kann es zugleich als Fügebindemittel dienen.
Das Anbringen in Schritt b) kann ohne Stoffschluss erfolgen. Dies bedeutet, dass der mit dem Anbringen einhergehende Kontakt zwischen Körper und Verstärkungselement zu keinem Stoffschluss zwischen Körper und Verstärkungselement führt. Ein Stoffschluss erfolgt z.B. dann nicht, wenn sämtliche Binder bzw. Bindemittel in Körper und Verstärkungselement in dem Moment, in dem es zu dem Kontakt zwischen Körper und Verstärkungselement kommt, schon so weit ausgehärtet sind, dass es beim weiteren Aushärten nicht zu einer binder- bzw. bindemittelvermittelten Verbindung von Körper und Verstärkungselement kommt oder das Verstärkungselement ein bindemittelfreies Verstärkungselement ist. In den Körper und das daran angebrachte Verstärkungselement kann eine carbonisierbare Substanz infiltriert werden. Es kann sich um eine flüssige oder um eine gasförmige carbonisierbare Substanz handeln. Die Substanz kann dann einen Stoffschluss bewirken, wobei spätestens der gemäß dem erfindungsgemäßen Verfahren entstehende verbindende Kohlenstoff den Stoffschluss bewirkt.
Das in Schritt b) bereitgestellte faserhaltige Verstärkungselement kann starr sein. Starr ist das faserhaltige Verstärkungselement z.B. dann, wenn das faserhaltige Verstärkungselement ausgehärtetes Bindemittel, eine Kohlenstoffmatrix und/oder eine keramische Matrix enthält. Konkrete Beispiele starrer faserhaltiger Verstärkungselemente sind
- faserverstärkte Kohlenstoffelemente, z.B. carbonfaserverstärkte Kohlenstoffelemente, insbesondere o faserverstärkte Kohlenstoffplatten, z.B. carbonfaserverstärkte Kohlenstoffplatten (CFC-Platten) o faserverstärkte Kohlenstoffringe, z.B. carbonfaserverstärkte Kohlenstoffringe (CFC-Ringe) o faserverstärkte Kohlenstoffstäbe, z.B. carbonfaserverstärkte Kohlenstoffstäbe (CFC-Stäbe) und
- Carbonfaserverstärkte siliziumcarbidkeramische Elemente, insbesondere o carbonfaserverstärkte siliziumcarbidkeramische Platten o carbonfaserverstärkte siliziumcarbidkeramische Ringe o carbonfaserverstärkte siliziumcarbidkeramische Stäbe Das Anbringen dieser starren Verstärkungselemente am Körper kann insbesondere erfolgen durch Aufpressen auf eine Oberfläche des Körpers (insbesondere wenn das starre Verstärkungselement eine Platte ist), Umlegen des Körpers (insbesondere wenn das starre Verstärkungselement ein Ring ist) oder Einlegen in eine Ausnehmung des Körpers (insbesondere wenn das starre Verstärkungselement ein Stab, Gitter oder ein Ring ist).
Da das Bindemittel eines starren Verstärkungselements im Allgemeinen ausgehärtet ist und nicht mehr als Fügebindemittel dienen kann, kann zur Anbringung des Körpers weiteres Fügebindemittel zugeführt werden.
Erfindungsgemäß können Verstärkungselement und/oder der Körper dann bei einer Temperatur von mindestens 600 °C, bevorzugt mindestens 800 °C, besonders bevorzugt mindestens 1400 °C, z.B. mindestens 1600 °C behandelt werden, bevor das Anbringen des Verstärkungselements an dem Körper erfolgt. Dies hat den Vorteil, dass bei der nachfolgenden Infiltration in Schritt c) keine oder nur noch eine geringfügige weitere Pyrolyse und Dimensionsänderung aufgrund von Materialschrumpf erfolgt.
Ein Teil des in Schritt c) erfolgenden Schrumpfens wird dadurch schon vor dem Anbringen vorweggenommen. Erste Versuche deuten klar darauf hin, dass sich dadurch der Ausschuss bei der Fertigung erfindungsgemäßer Faserverbundbauteile verringern lässt. Es wird vermutet, dass mechanische Spannungen im Bereich der entstehenden Verbindung von Körper und Verstärkungselement auf ein Minimum reduziert werden. Deshalb ist auf diese Weise die Herstellung noch stabilerer Faserverbundbauteile mit besonders geringem Ausschuss möglich.
Das Fügebindemittel, das zur Anbringung des Körpers (zusätzlich) zugeführt werden kann, kann z.B. ein Harz enthalten, insbesondere ein Phenolharz, ein Furanharz, ein Benzoxazinharz und/oder ein Bismaleinimidharz, oder Zucker oder Pech. In Schritt c) kann der verbindende Kohlenstoff mit jeder Technik hergestellt werden, mit der sich im Bereich der Kontaktfläche von Körper und Verstärkungselement Kohlenstoff erzeugen lässt. Welche Technik besonders sinnvoll zu wählen ist, hängt davon ab, wie die Anordnung in Schritt b) erfolgt ist und ob infolgedessen im Bereich der Kontaktfläche carbonisierbares Material vorliegt oder nicht. So kann der verbindende Kohlenstoff durch Carbonisierung der hierin beschriebenen carbonisierbaren Substanz oder des hierin beschriebenen Fügebindemittels erzeugt werden.
Die carbonisierbare Substanz kann sich infolge einer Infiltration dieser Substanz durch das gesamte Bauteil oder durch weite Bereiche des Bauteils erstrecken. Die Carbonisierung führt dann zu einer durchgehenden Phase verbindenden Kohlenstoffs, die sich durch das gesamte Bauteil hindurch erstrecken kann.
Wenn im Bereich der Kontaktfläche von Körper und Verstärkungselement keine carbonisierbare Substanz und auch kein Fügebindemittel vorliegt, kann der verbindende Kohlenstoff auch anders gebildet werden, z.B. durch chemische Gasphaseninfiltration (CVI).
Das Fügebindemittel und oder die carbonisierbare Substanz haben beim Erhitzen in N2- Atmosphäre vorzugsweise eine Materialausbeute von mindestens 20 Gew.-%, insbesondere mindestens 40 Gew.-%. Dies wird getestet, indem man ca. einen Milliliter Fügebindemittel oder carbonisierbare Substanz wiegt, in N2-Atmosphäre mit einer Heizrate von 1 K/Minute bis auf 900 °C erhitzt und die Probe dann weitere 10 Minuten unter N2-Atmospäre auf 900 °C hält. Der Rückstand wird erneut gewogen. Wenn die Masse bei der zweiten Wägung mindestens 20 % der Masse bei der ersten Wägung ergibt, beträgt die Materialausbeute mindestens 20 Gew.-%. Vorzugsweise beträgt der Massenanteil an C im Rückstand insgesamt mindestens 40 Gew.-%, besonders bevorzugt mindestens 90 Gew.-%, z.B. mindestens 95 Gew.-%. Dies bewirkt, dass sich in Verfahrensschritt c) der verbindende Kohlenstoff zwischen Verstärkungselement und Körper besonders effektiv bildet. Dadurch wird die Festigkeit erfindungsgemäßer Faserverbundbauteile gesteigert.
Das Fügebindemittel kann eine Kohlenstoff- und/oder Siliziumcarbidpartikel und/oder Fasern mit einer mittleren Länge von höchstens 3 mm enthaltende Paste sein, z.B. mit einem Massenanteil an Partikeln und/oder Fasern von insgesamt 10-90 Gew.-%, insbesondere 30-70 Gew.-%. Mit der Paste werden die thermomechanischen Eigenschaften von Körper und Verstärkungselement aneinander angeglichen, wobei die Partikel der Paste, die zwischen den in Kontakt stehenden Flächen liegenden Hohlräume ausfüllen können. Die in Schritt c) zwischen Körper und Verstärkungs element auftretenden thermischen Spannungen scheinen vom sich bildenden Faserverbundbauteil dann besser aufgenommen zu werden. Dadurch wird eine höhere mechanische Belastbarkeit des Bauteils erreicht sowie eine höhere Fertigungsgenauigkeit und eine geringere Ausschussquote.
Der Einsatz von weniger Paste hilft hingegen, die Dimensionsgenauigkeit zu erhalten. Vor diesem Hintergrund kann der Fachmann die Menge der Paste so wählen, dass die Dimensionsgenauigkeit möglichst hoch wird, ohne jedoch zu große mechanische Spannungen in den erzeugten Verbundbauteilen zu bewirken.
Die Paste ist bevorzugt so zusammengesetzt wie die im Zusammenhang mit der Pastenextrusion beschriebene Extrusionspaste, jedoch ist die Viskosität der Extrusionspaste im Allgemeinen höher eingestellt als die Viskosität der für das Fügen verwendeten Paste. Das Fügebindemittel kann faserfrei sein oder auch Fasern enthalten, z.B. Carbonfasern oder Siliziumcarbidfasern. Die im Fügebindemittel enthaltenen Fasern können eine mittlere Länge von bis zu 3 mm haben, besonders bevorzugt eine mittlere Länge von bis zu 1 mm. Es kann sich z.B. um Kurzschnittfasern oder gemahlene Fasern handeln. Kurzschnittfasern werden erzeugt, indem man von einem Faserstrang lauter gleich lange Abschnitte abtrennt. Gemahlene Fasern werden erzeugt, indem man Fasern mahlt.
Erfindungsgemäße Faserverbundbauteile, die sehr große, auf Paste zurückgehende Volumenanteile umfassen, sind weniger bevorzugt. Denn im fertigen Faserverbund bauteil sind die auf die Paste zurückgehenden Bereiche im Allgemeinen weniger belastbar, als die auf faserhaltige Verstärkungselemente zurückgehenden Bereiche. Vorzugsweise ist das Fügebindemittel eine Paste, die höchstens 10 % des Gesamt volumens des nach Schritt b) vorliegenden Faserverbundbauteils einnimmt. Die hier angegebene Obergrenze von 10 % bezieht sich auf Fügebindemittelvolumen, die zusätzlich zu einem im Verstärkungselement optional enthaltenen Bindemittel vorliegen. Sind in dem Faserverbundbauteil mehrere Körper und/oder mehrere Verstärkungs elemente verbaut, gehen in die Berechnung der maßgeblichen Volumenanteile sämtliche Körper, sämtliche Verstärkungselemente und sämtliche auf Pasten zurückgehenden Bereiche ein.
Der Körper und/oder das Verstärkungselement und/oder der Körper und das mit dem Körper verbundene Verstärkungselement können durch chemische Gasphasen infiltration (CVI) und/oder durch Infiltration mit carbonisierbarer Substanz und anschließender Carbonisierung verdichtet werden (sogenannte „Verdichtung“). Es kann also eine Verdichtung des Körpers erfolgen. Alternativ oder zusätzlich kann eine Verdichtung des Verstärkungselements erfolgen. Außerdem ist eine Verdichtung des nach Schritt c) erhaltenen, mit dem Körper verbundenen Verstärkungselements möglich. Eine Verdichtung kann mehrmals nacheinander erfolgen, jedoch vorzugsweise nicht öfter als 5-mal, da dies die Verfahrenskosten zu sehr steigern würde. Die Verdichtung durch CVI kann dabei jeweils z.B. so erfolgen, wie in WO 2019/063831 A2 beschrieben.
Unter Carbonisierung wird hierin eine Pyrolyse in nicht oxidierender Atmosphäre, z.B. in N2-Atmosphäre, verstanden. Als carbonisierbar wird jede Substanz bezeichnet, die sich in ^-Atmosphäre beim Erhitzen in einen Rückstand zersetzen lässt, dessen Massenanteil an Kohlenstoff höher ist, als in der Substanz. Dies wird getestet, indem man einen Milliliter der Substanz in N2-Atmosphäre mit einer Heizrate von 1 K/Minute bis auf 900 °C erhitzt und die Probe dann weitere 10 Minuten unter N2-Atmospäre auf 900 °C hält. Den Massenanteil an Kohlenstoff bestimmt man vor und nach dem Erhitzen jeweils durch Elementaranalyse. Beispiele carbonisierbarer Substanzen, die vorteilhaft zur Infiltration eingesetzt werde können, sind Phenolharze, Furanharze, Benzoxazinharze, Bismaleinimidharze, Zucker (vorliegend als mindestens einen Zucker enthaltende Lösung), Pech und deren Gemische. Die Verdichtung steigert nicht nur die Dichte, sondern auch die Festigkeit. Sie senkt die Porosität und schließt Risse, Fehlstellen werden also reduziert.
Spätestens in Schritt c) wird das entstehende Faserverbundbauteil in der Regel sehr hohen Temperaturen ausgesetzt, so dass die schon weiter oben erwähnten Spannungsgradienten und mechanischen Spannungen auftreten. Diese entstehen, da das Volumen und die Ausdehnung von Körper und Verstärkungselement sich beim Erhitzen verändern und dies bei Körper und Verstärkungselement nicht in gleichem Umfang erfolgt. Es überlagern sich eine im Wesentlichen reversible Wärmeausdehnung mit einem irreversiblen Schrumpfen. Das Schrumpfen ist auf die Pyrolyse von Bestandteilen von Körper und Verstärkungselement zurückzuführen. Spannungsgradienten und mechanischen Spannungen können immer dann in besonders starkem Maße auftreten, wenn thermischer Ausdehnungskoeffizient und Schrumpf der zu verbindenden oder schon verbundenen Teile (Körper und Verstärkungselement) sich stark unterscheiden. Ist der Körper in Schritt a) bereitgestellte Körper graphitbasiert, z.B. hergestellt aus oder teilweise aus Graphitpulver, dann minimiert sich der Schrumpf des Körpers und somit die mechanischen Spannungen, da in der Regel der Körper stärker schrumpft, als das Verstärkungselement. Alternativ kann der Körper vor dem Fügen bei hoher Temperatur vorbehandelt werden oder bei der additiven Fertigung ein hochtemperaturbehandelter Körper verwendet werden. Nach Schritt c) kann eine (zusätzliche) Verdichtung des Verbundbauteils erfolgen. Auch das Verbundbauteil kann durch chemische Gasphaseninfiltration (CVI) und/oder durch Infiltration mit carbonisierbarer Substanz und anschließender Carbonisierung verdichtet werden. Dadurch lässt sich die Porosität des erfindungsgemäßen Bauteils gezielt einstellen.
Vorzugsweise erfolgt nach der Verdichtung eine Hochtemperaturbehandlung (sogenannte „Graphitierung“) bei mindestens 1600 °C, insbesondere bei 1600 bis 3000 °C, z.B. bei 1700 bis 2400 °C. Dadurch wird die Reinheit gesteigert, da von Kohlenstoff verschiedene Elemente bei so hohen Temperaturen ausgetrieben werden. Folglich steigt zugleich die Formstabilität bei sehr hohen Temperaturen. Das Bauteil eignet sich dann viel besser für den Einsatz bei Temperaturen von > 900 °C.
Wenn SiC-Partikel oder SiC Fasern zugegen sind, wird eine Temperatur von 2200 °C nicht überschritten, um keine nennenswerte Zersetzung von SiC zu bewirken.
Die Aufgabe wird ebenfalls gelöst durch ein nach dem erfindungsgemäßen Verfahren erhältliches Faserverbundbauteil, insbesondere durch ein Faserverbundbauteil aufweisend einen Körper und ein faserhaltiges Verstärkungselement, wobei der Körper und das Verstärkungselement durch Kohlenstoff zwischen Verstärkungselement und Körper verbunden sind, hergestellt nach einem erfindungsgemäßen Verfahren, oder durch ein Faserverbundbauteil aufweisend einen Körper, der von Fasern frei ist oder keine Fasern mit einer Länge von mehr als 0,5 mm umfasst und ein faserhaltiges Verstärkungselement, das Fasern mit einer mittleren Länge von mehr als 1 mm umfasst, wobei der Körper und das Verstärkungselement durch Kohlenstoff zwischen Verstärkungselement und Körper verbunden sind, hergestellt nach einem erfindungsgemäßen Verfahren. In erfindungsgemäßen Bauteilen kann das Verhältnis vom Volumen des Verstärkungselements oder der Verstärkungselemente zum gesamten Volumen des Bauteils in breiten Bereichen variieren. Für bestimmte Bauteile/zu bestimmten Verwendungen können sehr kleine Verstärkungselemente ausreichen. Hingegen können bei anderen Bauteilen/für bestimmte Verwendungen sehr große Verstärkungselemente erforderlich sein. Im Allgemeinen beträgt das Volumenverhältnis von Verstärkungselement(en) zum gesamten Volumen des erfindungsgemäßen Bauteils 0,01 bis 0,5, bevorzugt 0,05 bis 0,25, besonders bevorzugt 0,1 bis 0,2.
Der Faservolumenanteil im faserhaltigen Verstärkungselement beträgt vorzugsweise mindestens 20 Volumen-%, insbesondere mindestens 50 Volumen-%. Dies lässt sich im Schliffbild optisch bestimmen. Dazu schneidet man ein erfindungsgemäßes Bauteil einschließlich Verstärkungselement durch, schleift die beim Durchschneiden erhaltenen Schnittoberflächen ab und bestimmt visuell (z.B. mit einem Mikroskop), welchen Anteil die von Fasern eingenommenen Bereiche der Verstärkungselement-Schnittoberflächen an den gesamten Verstärkungselement-Schnittoberflächen einnehmen. Sind die Fasern innerhalb des Verstärkungselements nicht vollkommen homogen verteilt, so wird das Bauteil mehrfach durchschnitten und es werden sämtliche Verstärkungselement- Schnittoberflächen in die Bestimmung des Faservolumenanteils mit einbezogen. Es wurde schon oben im Zusammenhang mit dem erfindungsgemäßen Verfahren beschrieben, dass die Herstellung des Faserverbundbauteils unter Verwendung von formbaren Verstärkungselementen, wie z.B. Harz-Faser-Masse, erfolgen kann. Insbesondere solche Massen führen häufig zu erfindungsgemäßen Bauteilen mit ausgedehnten faserfreien, auf Harz zurückgehenden Verstärkungselementbereichen und mit dementsprechend geringem Faservolumenanteil.
Durch die Obergrenze bei der Länge der Fasern, die der Körper umfassen kann, wird gewährleistet, dass der Körper in besonders einfacher weise durch additive Fertigung, z.B. Binder Jetting, erzeugt werden kann. Fasern oberhalb einer gewissen Länge sind in additiven Fertigungsverfahren schwer mitzuverarbeiten. Vorzugsweise ist der Körper von Fasern frei oder umfasst Fasern die die Dimensionen der Partikel aus denen der Körper gebildet ist, nicht überschreiten, z.B. umfasst er keine Fasern mit einer Länge von mehr als 0,4 mm, insbesondere keine Fasern mit einer Länge von mehr als 0,3 mm.
Das faserhaltige Verstärkungselement ist vorzugsweise ein carbonfaserhaltiges oder siliziumcarbidfaserhaltiges Verstärkungselement, besonders bevorzugt ein carbonfaserhaltiges Verstärkungselement. Dies bewirkt eine hohe Schlagzähigkeit, pseudoduktiles Bruchverhalten, hohe Festigkeit, niedrige Dichte, gute Temperatur- und Korrosionsstabilität und zugleich ein inertes Verhalten gegenüber vielen hochkorrosiven Chemikalien, insbesondere Säuren, z.B. HCl. Letztlich führt dies zu einer sehr vielseitigen Verwendbarkeit erfindungsgemäßer Bauteile, wobei die Lebensdauer konventioneller Bauteile teils deutlich überschritten wird. Eine Reihe möglicher Verwendungen sind unten angegeben.
Vorzugsweise umfasst das faserhaltige Verstärkungselement ein Gewebe, ein Spiralgewebe, ein multiaxiales Gelege, ein unidirektionales Gelege, Kurzschnittfasern, Endlosfaser, ein Vlies, einen Filz, ein Papier, ein Geflecht, ein Gestrick, ein Gestick und/oder ein Fasergitter. Gestricke sind elastisch und dadurch gut drapierbar. Geflechte und Gestricke sind bevorzugt Schläuche und lassen sich somit gut zur Außenver stärkung des Körpers verwenden. Endlosfaser umfassende Verstärkungselemente werden z.B. hergestellt indem ein Towpreg um den Körper gewickelt wird oder indem der Körper mit Fasern umflochten wird.
Erfindungsgemäß weist das Faserverbundbauteil ein faserhaltiges Verstärkungs element auf, das Fasern mit einer Länge von mehr als 1 mm umfasst. Vorgenannte faserhaltige Verstärkungselemente wie z.B. Gelege, Vliese, Filze, Papiere, Geflechte, Gestricke, Gesticke oder Fasergitter enthalten regelmäßig Fasern mit einer Länge von weit mehr als 1 mm. Das Faserverbundbauteil kann ein faserhaltiges Verstärkungselement aufweisen, das Fasern mit einer mittleren Länge von mehr als 0,5 cm, z.B. von mehr als 1 cm, insbesondere von mehr als 2 cm umfasst. Mit kürzeren Fasern lassen sich Gelege, Geflechte, Gestricke, Gesticke oder Fasergitter nur mit erhöhtem Aufwand verwirklichen. Gerade bei Kurzschnittfasern, Vliesen, Filzen oder Papieren sind jedoch auch kurze Fasern möglich.
Ein bevorzugtes Faserverbundbauteil enthält mindestens 85 Gew.-% Kohlenstoff, insbesondere mindestens 88 Gew.-% Kohlenstoff, besonders bevorzugt mindestens 90 Gew.-% Kohlenstoff, ganz besonders bevorzugt mindestens 95 Gew.-% Kohlenstoff, z.B. mindestens 97 Gew.-% Kohlenstoff. Dieser Anteil bezieht sich auf das Bauteil insgesamt, einschließlich Verstärkungselement und Körper. Er wird durch Elementaranalyse bestimmt. Im Allgemeinen ist der Körper dann aus Kohlenstoffpartikeln additiv gefertigt, der bei der additiven Fertigung eingesetzte Binder weitgehend carbonisiert und das Verstärkungselement enthält Carbonfasern.
Der Körper kann Graphitpartikel umfassen. Dies bewirkt eine weitere Steigerung der Hochtemperaturstabilität des erfindungsgemäßen Bauteils. Darüber hinaus steigen thermische und chemische Stabilität (Korrosionsbeständigkeit sowie Oxidations stabilität). Die Wärmeleitung und Gleiteigenschaften werden gesteigert.
Hinsichtlich der Form der verbundenen Oberflächenbereiche von Verstärkungselement und Körper bestehen keine Einschränkungen. Der Körper kann formschlüssig mit dem Verstärkungselement verbunden sein. Dies bewirkt eine zusätzliche Steigerung der Stabilität der Verbindung zwischen den Teilen des Faserverbundbauteils, also zwischen Verstärkungselement und Körper. Mindestens eines der Teile (z.B. der Körper) kann eine Hinterschneidung aufweisen, in die der andere Teil (z.B. das Verstärkungselement) formschlüssig eingreift, z.B. in Form einer Schwalbenschwanzverbindung. Dies ist im Zusammenhang mit der Erfindung sehr effektiv, da die additive Fertigung für die Herstellung von Hinterschneidungen besonders gut geeignet ist. Der in Schritt a) bereitgestellte Körper kann also eine Hinterschneidung aufweisen. Ein formbares Verstärkungselement kann beim Anbringen z.B. durch Pressen in Formschluss mit der Hinterschneidung gebracht werden und dann formschlüssig ausgehärtet werden.
Der Körper oder das Verstärkungselement kann eine Ausnehmung aufweisen, in die das (gesamte) Verstärkungselement oder der Körper aufgenommen ist. Dies verhindert ein Verkippen, Verrutschen und Delaminieren. Das Verstärkungselement oder der Körper beeinflusst dann zudem die Außengeometrie des Körpers oder des Verstärkungselements nicht. Die Oberfläche wird nicht beeinflusst, was z.B. bei einem Pumpenbauteil, z.B. Pumpenlaufrad, von großem Vorteil sein kann.
Mittels additiver Fertigung kann der Körper in unterschiedlichsten Formen bereitgestellt werden, so dass jede erdenkliche Faserverbundbauteilgeometrie möglich ist. Ausnehmungen für faserhaltige Verstärkungselemente und/oder Hinterschneidungen können dabei an jeder beliebigen Stelle vorgesehen werden. Je nach Bauteil und dessen bestimmungsgemäßer Verwendung ergeben sich besonders hohe mechanische Belastungen immer an ganz bestimmten Stellen, an denen die faserhaltigen Verstärkungselemente gezielt angeordnet werden können. So erhält man ein Bauteil, das den zu erwartenden Belastungen (mechanisch und thermisch) in jedem Bauteilbereich gerecht wird und zugleich besonders günstig hergestellt werden kann. Das Verstärkungselement kann dort am Körper angeordnet sein, wo dieser eine Aufnahme für ein Befestigungselement (z.B. Schraube) aufweist. So kann verhindert werden, dass die auf das Befestigungselement wirkenden Kräfte zu einem Herausbrechen von Teilen des Körpers im Bereich der Aufnahme führen.
Bevorzugte erfindungsgemäße Faserverbundbauteile weisen ein pseudoduktiles Bruchverhalten auf. Dies bedeutet, dass sich mit erfindungsgemäßen Faserverbundbauteilen im 3-Punkt Biegeversuch eine Spannungs-Dehnungs-Kurve bestimmen lässt, die nach einem ersten, auf die linear-elastische Verformung des Bauteils zurückgehenden Anstieg nicht abrupt beim ersten Schaden auf 0 fällt. Es kommt beim ersten Schaden am Bauteil nicht gleich zu einem abrupten Versagen.
Hingegen würde z.B. der Körper ohne faserhaltiges Verstärkungselement am Ende der linear-elastischen Verformung brechen, wobei sich im 3-Punkt Biegeversuch dann eine Spannungs-Dehnungs-Kurve ergibt, die nach einem ersten, auf die linear-elastische Verformung des Bauteils zurückgehenden Anstieg, abrupt auf 0 fällt.
Ein solches abruptes Abfallen der Spannungs-Dehnungs-Kurve auf 0 erfolgt mit erfindungsgemäßen Bauteilen nicht, da das mit dem Körper verbundene faserhaltige Verstärkungselement ein plötzliches vollständiges Materialversagen verhindert. Auch nach einem initialen Riss im Köper des erfindungsgemäßen Bauteils ist wegen des Verstärkungselements für eine weitere Verformung ein weiterer Kraftaufwand erforderlich. Das pseudoduktile Bruchverhalten verleiht dem Faserverbundbauteil eine ausgeprägte Schadenstoleranz.
Der 3-Punkt Biegeversuch kann z.B. durchgeführt werden in Anlehnung an ISO 178:2013 mit Auflagerradius: 3mm, Stempelradius: 3mm, Stützweite : 80 mm, mit einer Prüfgeschwindigkeit von 2 mm/min.
Die Erfindung betrifft auch die Verwendung erfindungsgemäßer Faserverbundbauteile als Bremsscheibe und Bremsbelag für Flugzeuge oder Rennsportfahrzeuge und Industriebremsen, als Kupplungsscheibe, als Düse, als Ventilatorrad, als Tiegel, als Heizer, als Gleitring, als Lager, als Pumpenbauteil, z.B. Pumpenlaufrad, als Einbauten für Kolonnen; z.B. Kolonnenboden, als Schleifscheibe, als Prozesshilfsmittel für Härteprozess, Lötprozess, Beschichtungsprozess, Brennprozess, Umformprozess, als Chargierhilfsmittel und Transporthilfsmittel, als Urformungshilfsmittel (z.B. als Gussform), wobei jedes der Hilfsmittel z.B. mindestens eine Ausnehmung zur formschlüssigen Aufnahme mindestens eines Werkstücks aufweisen kann. Prozesshilfsmittel für Härteprozess, Lötprozess, Beschichtungsprozess, Brennprozess und Umformprozess eignen sich erfindungsgemäße Bauteile wegen deren hoher Formstabilität bei hoher Temperatur. Hervorzuheben ist, dass dabei im Wesentlichen keine Mehrkosten für komplexe Geometrien entstehen. Die komplexe Struktur kann gedruckt werden. Außerdem bietet die Erfindung eine höhere Sicherheit bei rotierenden Bauteilen sowie eine höhere Schadenstoleranz beim Arbeiten mit Prozesshilfsmitteln. Mittels additiver Fertigung können Standard CFC Teile, aus denen z.B. Chargiergestelle bestehen können, an spezielle komplexe Formbedürfnisse angepasst werden. Zudem entsteht viel weniger Verschnitt, als bei konventioneller Fertigung von z.B. Lüftungsstrukturen, Aussparungen, Kanälen. Durch die Möglichkeit des zielgerichteten Einsatzes von Fasern an den mechanisch am stärksten belasteten Stellen gelingt eine besonders effiziente Fertigung, weil Fasern teurer sind als die für die additive Fertigung benötigen Ausgangsstoffe. Eine weitere Effizienzsteigerung entsteht durch die Endkonturnähe der additiven Fertigung. Dies verringert den Nachbearbeitungsaufwand. Außerdem ist wegen der additiven Fertigung kein oder nur ein reduzierter Formenbau zur Herstellung komplexer Geometrien nötig.
Bei schnellen Rotationen rotierender Bauteile wirken starke Fliehkräfte, die zum Bruch des Körpers führen können. Außerdem droht bei rotierenden Bauteilen die Gefahr von Folgeschäden an umgebenden Bauteilen, denn vollständig abgebrochene Teile können durch Rotationsbewegungen weggeschleudert werden. Außerdem kann die infolge des Bruchs auftretende Unwucht zu Folgeschäden führen. All dem wirkt die Erfindung effizient entgegen. Bei Kolonneneinbauten wird eine Verschmutzung der Kolonne mit Bruchstücken verhindert, da das faserhaltige Verstärkungselement das vollständige Abbrechen von Teilen der Einbauten verhindert.
Die Erfindung wird durch die nachfolgenden Figuren und Ausführungsbeispiele illustriert, ohne auf diese beschränkt zu sein.
Figuren
Figur 1A zeigt ein Sandwichbauteil mit flächigem Verstärkungselement zwischen zwei flächigen, 3D gedruckten Körpern Figur 1 B zeigt ein Sandwichbauteil mit flächigem, 3D gedrucktem Körper zwischen zwei flächigen Verstärkungselementen Figur 1C zeigt ein Sandwichbauteil mit flächigem Verstärkungselement zwischen zwei flächigen, mit Paste angebrachten 3D gedruckten Körpern Figur 1 D zeigt ein Mehrlagenbauteil in dem flächige, 3D gedruckte Körper und flächige Verstärkungselemente abwechselnd übereinander angeordnet sind, Figur 1 E zeigt ein Sandwichbauteil, bei dem der flächige 3D gedruckte Körper eine durchgängige Ausnehmung aufweist, durch welche die beiden flächigen
Verstärkungselemente miteinander verbunden sind.
Figur 2A zeigt ein Bauteil, bei dem der Körper mehrere Ausnehmungen zur
Aufnahme je eines Verstärkungselements aufweist Figur 2B zeigt einen Schnitt durch das Bauteil der Figur 2A entlang der gestrichelten Linie Figur 2C zeigt ein Bauteil, bei dem der Körper zu einem Gitter verbundene Ausnehmungen zur Aufnahme eines gitterförmigen Verstärkungselements aufweist Figur 2D zeigt einen Schnitt durch das Bauteil der Figur 2C entlang der gestrichelten Linie
Figur 2E zeigt einen Schnitt durch einen Mehrlagenbauteil aus drei Lagen von Bauteilen aus Figur 2A oder 2B
Figur 2F zeigt ein Bauteil, bei dem der Körper eine Vielzahl zylindrischer
Ausnehmungen aufweist, zur Aufnahme je eines Verstärkungselements Figur 2G zeigt einen Schnitt durch das Bauteil der Figur 2F entlang der gestrichelten Linie
Figur 3A zeigt ein Bauteil mit scheibenförmigem Körper, der von einem ringförmigen Verstärkungselement umgeben ist Figur 3B zeigt einen Schnitt durch das Bauteil der Figur 3A entlang der gestrichelten Linie
Figur 3C zeigt ein Bauteil mit scheibenförmigem Körper, wobei ein ringförmiges Verstärkungselement in eine umlaufende Nut aufgenommen ist Figur 3D zeigt einen Schnitt durch das Bauteil der Figur 3C entlang der gestrichelten Linie
Figur 4A zeigt eine Aufsicht auf ein Bauteil mit einem nach oben offenem Körper, der verfüllt ist mit einem aus einer faserhaltigen Schüttung erhältlichen Verstärkungselement
Figur 4B zeigt einen Schnitt durch das Bauteil der Figur 4A entlang der gestrichelten Linie mit Deckel Figuren 5A,B und C zeigen Schnitte von Körpern, deren komplex geformte Oberfläche mit einem Verstärkungselement überzogen sind Figuren 6A, B zeigen Bauteile, in denen schwalbenschwanzförmige Verstärkungselemente in mindestens einer Nut aufgenommen sind.
Figure 7A, B zeigen Bauteile, bei denen der 3D gedruckte Körper eine Kanalstruktur enthält, wie sie z.B. zur Kühlung verwendet werden kann. Figuren 8A, B zeigen ein Bauteil, bei dem komplexe 3D gedruckte Körper in eine faserverstärkte Grundplatte gefügt sind. Figur 8A zeigt einen Schnitt, Figur 8B zeigt eine Aufsicht auf das Bauteil.
Figur 9 zeigt eine Spannungs-Dehnungs-Kurve aus einem 3-Punkt Biegeversuch.
In Figur 1A bis E sind erfindungsgemäße Bauteile in Form von Sandwichstrukturen aus flächigen Verstärkungselementen 2 und flächigen, 3D gedruckten Körpern 1 gezeigt. Solche Sandwichstrukturen werden durch Verpressen hergestellt. Anschließend wird der verbindende Kohlenstoff zwischen Verstärkungselement und Körper erzeugt, z.B. durch Carbonisierung von Fügebindemittel. Die Art des jeweils zu bevorzugenden Verstärkungselements 2 hängt dabei von der Geometrie des Bauteils (Verstärkungselement basierend auf Bahnware bei rechteckigen Strukturen oder Spiralgewebe bei runden Strukturen) sowie dem späteren Lastverlauf (unidirektionale, multiaxiale Gelege, Gewebe oder planar isotrope Vliese) ab.
In den Bauteilen der Figuren 1 A, B, D und E wird bei der Herstellung ein nicht ausgehärtetes, harzhaltiges und damit formbares Verstärkungselement 2 eingebracht. Als formbares Verstärkungselement kann zur Herstellung der Bauteile der Figuren 1 A,
B und D, E z.B. ein Prepreg verwendet werden. Dabei wirkt das im Prepreg enthaltene Harz als Fügebindemittel und sorgt für eine stoffschlüssige Verbindung von Körper 1 und Verstärkungselement 2.
Das Bauteil der Figur 1C ist unter Verwendung von zusätzlichem Fügebindemittel hergestellt. Als Fügebindemittel wird eine Kohlenstoff- und/oder Siliziumcarbidpartikel enthaltende Paste verwendet. Das Fügebindemittel wird an den Grenzflächen zwischen Körper und Verstärkungselement aufgetragen. Eine solches Fügebindemittel kann insbesondere bei starren Verstärkungselementen nötig sein, um das Verstärkungs element 2 fest am Körper 1 anzubringen. Durch Carbonisierung entsteht das erfindungsgemäße Bauteil, wobei im Fügebindemittelbereich 3 verbindender Kohlenstoff gebildet wird.
Es sind beliebige Lagenfolgen möglich, bei denen das Verstärkungselement 2 zwischen 3D gedruckten Körpern 1 eingebettet ist (1 A, 1C) oder ein 3D gedruckter Körper 1 zwischen Verstärkungselementen 2 eingebettet ist (1 B). Des Weiteren sind Multilagen strukturen mit verschiedener Lagenabfolge möglich (1 D). Solche Mehrlagenstrukturen lassen sich mit starren oder formbaren Verstärkungselementen 2 realisieren, wobei insbesondere bei der Verwendung von starren Verstärkungselementen 2 das zusätzliche Fügebindemittel aufgebracht wird, so dass eine feste Anbringung des starren, von nicht ausgehärtetem Bindemittel im Wesentlichen freien Verstärkungs element 2 am Körper ermöglicht wird. Die äußersten Lagen können wahlweise auf 3D gedruckte Körper 1 zurückgehen oder Verstärkungselemente 2 sein. Eine durchgängige Ausnehmung im 3D gedruckten Körper 1 ermöglicht die Verbindung zweier beidseitig aufgebrachter, formbarer Verstärkungselemente 2 und somit eine zusätzliche formschlüssige Fixierung der Verstärkungselemente 2 am 3D gedruckten Körper 1 (Figur 1 E).
In Figur 2A bis G sind erfindungsgemäße Bauteile gezeigt, bei denen der/die Körper 1 Ausnehmungen aufweisen, in die Verstärkungselemente 2 aufgenommen sind. Die Herstellung kann wahlweise mit starren oder formbaren Verstärkungselementen 2 erfolgen. Formbare, nicht ausgehärtetes Harz enthaltende Verstärkungselemente 2 (z.B. Harz-Faser-Masse) können in die Ausnehmungen hineingepresst werden. Starre Verstärkungselemente 2 werden mittels zusätzlichem Fügebindemittel in den Ausnehmungen fixiert, wobei die auf Fügebindemittel zurückgehenden Zwischen bereiche in Figuren 2A bis G nicht angedeutet sind. Anschließend wird das erfindungsgemäße Bauteil durch Umsetzung von Fügebindemittel zu verbindendem Kohlenstoff (Carbonisierung des Fügebindemittels) erhalten. In das Bauteil der Figuren 2A, B können zum Beispiel Faserstäbe mittels Fügebindemittel eingelegt werden. In das Bauteil der Figuren 2C, D kann ein gitterförmiges Verstärkungselement eingefügt werden, z.B. ein Fasergitter.
In Figur 2E ist ein Schnitt durch einen Mehrlagenbauteil aus drei Lagen von Bauteilen aus Figur 2A oder 2C gezeigt. Zum Verbinden der drei Lagen kann ebenfalls ein Fügebindemittel verwendet werden.
Im Bauteil der Figuren 2 F, G sind die Ausnehmungen innenliegend, also ringsum von Körper 1 umgeben. In die Ausnehmungen kann ein formbares Verstärkungselement 2 (z.B. eine Harz-Faser-Masse) eingepresst werden oder ein starres Verstärkungs element 2 eingeschoben werden. Zum Fügen mit starren Verstärkungselementen 2 können die Ausnehmungen zunächst mit Fügepaste befüllt und anschließend das Verstärkungselement 2 eingeschoben werden. Es sind Ausnehmungen mit rundem Querschnitt gezeigt, wobei genauso gut auch Ausnehmungen und Verstärkungs elemente 2 mit beliebigem, z.B. rechteckigem oder quadratischem Querschnitt denkbar wären.
In Figuren 3A bis D sind erfindungsgemäße Bauteile mit scheibenförmigen Körper 1 und ringförmigem Verstärkungselement 2 gezeigt. Der scheibenförmige Körper 1 kann vom ringförmigen Verstärkungselement 2 umgeben sein (Figuren 3A, B). Alternativ kann das Verstärkungselement 2 auch in eine umlaufende Nut des Körpers aufgenom men sein (Figuren 3C, D). Das Verstärkungselement 2 kann dabei als starrer Ring (z.B. ein Wickelrohr aus carbonfaserverstärktem Kohlenstoff) mittels Fügepaste an den scheibenförmigen Körper angebracht (Figuren 3A, B) oder in diesen eingebracht (Figuren 3C, D) sein. Alternativ kann insbesondere zur Herstellung des Bauteils der Figuren 3C, D ein formbares Verstärkungselement (z.B. eine Harz-Faser-Masse) verwendet werden, die in die Nut eingepresst wird. Zur Herstellung des Bauteils der Figuren 3A, B kann der scheibenförmige Körper alternativ mit einem harzimprägnierten Faserstrang oder einem vorimprägnierten Textil umwickelt oder ein Rundgestrick aufgezogen werden, das anschließend mit Fügebindemittel imprägniert wird. Unabhängig von der Art der Anbringung des Verstärkungselements am Körper können erfindungsgemäße Bauteile durch anschließende Carbonisierung erzeugt werden.
In Figuren 4A, B ist ein Bauteil gezeigt, bei dem ein nach oben offener Körper 1 mit einem aus einer faserhaltigen Schüttung erhältlichen Verstärkungselement 2 verfüllt ist. Ein solches Bauteil wird hergestellt, indem der Hohlraum eines 3D gedruckten Körpers mit Faser-Harz-Masse verfüllt wird. Im Anschluss wird die Masse mit einem Press stempel oder durch Vakuumsackverfahren verpresst und gegebenenfalls nochmals Faser-Harz-Masse nachgefüllt. Ist der ganze Hohlraum befüllt, wird der Körper mit einem passenden Deckel 4 verschlossen. Hierzu kann ein Fügebindemittel verwendet werden.
In Figuren 5A und 5B ist der Körper 1 allseitig mit Verstärkungselement 2 überzogen, in Figur 5C ist nur eine Seite des Körpers 1 mit Verstärkungselement 2 überzogen. Zum überziehen komplexer Oberflächen wird die zu verstärkende Oberfläche mit einem harzhaltigen Verstärkungselement 2 belegt (z.B. Prepreg oder Harz-Faser-Masse) und anschließend mittels Vakuumsackverfahren stoffschlüssig verbunden. Das Auflegen des Verstärkungselements 2 kann manuell, mit Hilfe eines Roboters oder mittels Faserspritzen erfolgen. Im Fall von Figur 5C kann der Stoffschluss, insbesondere bei größerer Stückzahl, auch mittels eines speziell geformten Pressstempels erzielt werden.
In den Bauteilen der Figuren 6A, B hat der Körper 1 Hinterschneidungen, in die das Verstärkungselement 2 formschlüssig eingreift, hier beispielhaft in Form einer Schwalbenschwanzverbindung. Es können auch andere Formen mit Hinterschneidung verwendet werden.
In Figuren 7A, B umfasst der 3D gedruckte Körper 1 Kanäle 6. Sie können zur Kühlung des Bauteils und zur Gewichtsreduktion dienen. Durch die Verwendung eines 3D Druck Verfahrens zur Herstellung des Körpers 1 lassen sich vielfältige, komplexe Strukturen darstellen. Die Einbringung von Kanälen 6 ist grundsätzlich bei allen erfindungsgemäßen Bauteilen möglich. Die Kanäle können ein- oder beidseitig offen sein.
In Figuren 8A und B ist ein erfindungsgemäßes Bauteil gezeigt, bei dem 3D gedruckte Körper 1 mit einer als faserhaltiges Verstärkungselement 2 fungierenden, faserverstärkten Grundplatte verbunden sind. Durch den 3D Druck ist eine hohe Designfreiheit möglich und es können auch komplexe Geometrien hergestellt werden. Solche Strukturen werden z.B. als Prozess-, Chargier- und Transporthilfsmittel verwendet. Mittels 3D Druck können passgenaue Bauteilaufnahmen, z.B. für Zahnräder, wie hier angedeutet, hergestellt werden, in denen die Bauteile sicher und ohne verrutschen prozessiert werden können.
Der Graph in Figur 9 zeigt eine Spannungs-Dehnungs-Kurve eines Biegeversuchs an einem erfindungsgemäßen faserverstärkten Bauteil, dessen Herstellung im Ausführungsbeispiel beschrieben ist.
Bezugszeichenliste
1 Körper
2 faserhaltiges Verstärkungselement
3 Fügebindemittelbereich
4 Deckel
6 Kanal
Ausführungsbeispiel
Sandwichaufbau aus einem plattenförmigen 3D gedrucktem Körper (100x100x2mm3) und Verstärkungselement das in Form eines Phenolharzprepregs (aus isotropem Carbonfaservlies mit 450 g/m2) am Körper angebracht wurde. Der Körper wurde mittels Binder Jet Verfahren aus Kohlenstoffpulver und Phenolharzbinder hergestellt. Die Herstellung eines solchen Körpers ist z.B. genauer in WO 2017/089499 beschrieben. Auf beide Seiten des Körpers wurde je eine Lage Prepreg aufgelegt und mit 7,5 bar bei Maximaltemperatur 170 °C verpresst. Nach der Aushärtung wurde das Material bei 900 °C carbonisiert und im Anschluss noch drei Mal nachverdichtet, d.h. mit Phenolharz imprägniert und bei 900 °C carbonisiert. Zusätzlich wurde eine Referenzprobe herge stellt, bei der die gleichen Prozessschritte angewandt wurden, jedoch kein Verstärkungselement an den Körper angebracht wurde.
Aus den so hergestellten Platten wurden Biegeproben herausgearbeitet (100 mm x 10 mm x 4 mm) und mittels 3-Punkt-Biegeversuch untersucht. Die faserverstärkten Proben zeigten in der Biegekurve eine deutlich höhere Festigkeit von 80 MPa und eine Dehnung bei Bruch von über 0,5% ganz im Gegensatz zum klassischen keramischen Sprödbruchverhalten der unverstärkten Vergleichsproben, die eine Biegefestigkeit von weniger 10 MPa erreichte. Eine exemplarische Biegekurve einer erfindungsgemäßen Faserverbundbauteils ist in Figur 9 dargestellt.
Der 3-Punkt Biegeversuch wurde durchgeführt in Anlehnung an ISO 178:2013 mit Auflagerradius: 3mm, Stempelradius: 3mm, Stützweite: 80 mm, mit einer Prüfgeschwindigkeit von 2 mm/min.

Claims

Patentansprüche
1. Verfahren zur Herstellung eines Faserverbundbauteils umfassend die folgenden Schritte: a) Bereitstellen eines Körpers, welcher mittels additiver Fertigung hergestellt worden ist, b) Anbringen eines faserhaltigen Verstärkungselements am Körper, und c) Erzeugen verbindenden Kohlenstoffs zwischen Verstärkungselement und Körper.
2. Verfahren nach Anspruch 1 , wobei in Schritt b) das Anbringen ohne Stoffschluss erfolgt.
3. Verfahren nach Anspruch 2, wobei in den Körper und das daran angebrachte Verstärkungselement eine carbonisierbare Substanz infiltriert wird.
4. Verfahren nach Anspruch 1 , wobei in Schritt b) das Anbringen stoffschlüssig mit einem carbonisierbaren Fügebindemittel erfolgt.
5. Verfahren nach Anspruch 3 oder 4, wobei in Schritt c) der verbindende Kohlenstoff durch Carbonisierung der Substanz oder des Fügebindemittels erzeugt wird.
6. Verfahren nach Anspruch 4, wobei mindestens ein Teil des Fügebindemittels vor dem Anbringen auf mindestens eine Oberfläche des Verstärkungselements und/oder des Körpers aufgetragen wird.
7. Verfahren nach Anspruch 1 , wobei der in Schritt a) bereitgestellte Körper ein kohlenstoffbasierter und/oder keramischer, z.B. siliziumcarbidbasierter oder borcarbidbasierter Körper ist.
8. Verfahren nach Anspruch 1 , wobei der in Schritt a) bereitgestellte Körper mittels Binder Jetting oder Pastenextrusion hergestellt worden ist.
9. Verfahren nach Anspruch 1 , wobei der Körper und/oder das Verstärkungselement und/oder der Körper und das mit dem Körper verbundene Verstärkungselement durch chemische Gasphaseninfiltration (CVI) und/oder durch Infiltration mit carbonisierbarer Substanz und anschließender Carbonisierung verdichtet werden.
10. Verfahren nach Anspruch 9, wobei nach der Verdichtung eine Hochtemperaturbehandlung bei mindestens 1600 °C erfolgt.
11 . Faserverbundbauteil aufweisend einen Körper und ein faserhaltiges Verstärkungselement, wobei der Körper und das Verstärkungselement durch Kohlenstoff zwischen Verstärkungselement und Körper verbunden sind, hergestellt nach einem Verfahren gemäß mindestens einem der vorangehenden Ansprüche 1 bis 10.
12. Faserverbundbauteil nach Anspruch 11 , wobei das faserhaltige Verstärkungselement ein carbonfaserhaltiges oder siliziumcarbidfaserhaltiges Verstärkungselement ist.
13. Faserverbundbauteil nach Anspruch 11 oder 12, wobei das faserhaltige Verstärkungselement ein Gewebe, ein Spiralgewebe, ein multiaxiales Gelege, ein unidirektionales Gelege, Kurzschnittfasern, Endlosfaser, ein Vlies, einen Filz, ein Papier, ein Geflecht, ein Gestrick, ein Gestick und/oder ein Fasergitter umfasst.
14. Faserverbundbauteil nach Anspruch 11 , wobei der Faservolumenanteil im faserhaltigen Verstärkungselement mindestens 20 Volumen-% beträgt.
15. Faserverbundbauteil nach Anspruch 11 , aufweisend ein pseudoduktiles Bruchverhalten.
16. Verwendung des Faserverbundbauteils nach einem der Ansprüche 11 bis 15
- als Bremsscheibe und Bremsbelag für Flugzeuge oder Rennsportfahrzeuge und Industriebremsen,
- als Kupplungsscheibe,
- als Düse,
- als Ventilatorrad,
- als Tiegel,
- als Heizer,
- als Gleitring,
- als Lager,
- als Pumpenbauteil,
- als Einbauten für Kolonnen,
- als Schleifscheibe,
- als Prozesshilfsmittel für Härteprozess, Lötprozess, Beschichtungsprozess, Brennprozess, Umformprozess,
- als Chargierhilfsmittel und Transporthilfsmittel oder
- als Urformungshilfsmittel.
PCT/EP2020/078509 2019-10-11 2020-10-09 Faserverbundbauteile WO2021069723A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112020004903.5T DE112020004903A5 (de) 2019-10-11 2020-10-09 Faserverbundbauteile

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102019215664.9 2019-10-11
DE102019215664.9A DE102019215664A1 (de) 2019-10-11 2019-10-11 Faserverbundbauteile

Publications (1)

Publication Number Publication Date
WO2021069723A1 true WO2021069723A1 (de) 2021-04-15

Family

ID=72964637

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2020/078509 WO2021069723A1 (de) 2019-10-11 2020-10-09 Faserverbundbauteile

Country Status (2)

Country Link
DE (2) DE102019215664A1 (de)
WO (1) WO2021069723A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4215359A1 (de) * 2022-01-19 2023-07-26 ArianeGroup GmbH Verfahren zur herstellung eines keramischen faserverbundbauteils und ein keramisches faserverbundbauteil

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017089494A1 (de) * 2015-11-24 2017-06-01 Sgl Carbon Se 3d drucken von einem keramischen bauteil
US10022890B2 (en) * 2015-09-15 2018-07-17 Honeywell International Inc. In situ carbonization of a resin to form a carbon-carbon composite
CN108709198A (zh) * 2018-06-06 2018-10-26 苏州宏久航空防热材料科技有限公司 一种3D打印SiC芯材及高致密玻璃碳封装燃烧室的制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10773456B2 (en) * 2016-09-22 2020-09-15 Freshmade 3D, LLC Process for strengthening porous 3D printed objects
GB2564753B (en) * 2017-05-18 2020-06-24 Bae Systems Plc Fastenerless structural assembly

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10022890B2 (en) * 2015-09-15 2018-07-17 Honeywell International Inc. In situ carbonization of a resin to form a carbon-carbon composite
WO2017089494A1 (de) * 2015-11-24 2017-06-01 Sgl Carbon Se 3d drucken von einem keramischen bauteil
CN108709198A (zh) * 2018-06-06 2018-10-26 苏州宏久航空防热材料科技有限公司 一种3D打印SiC芯材及高致密玻璃碳封装燃烧室的制备方法

Also Published As

Publication number Publication date
DE112020004903A5 (de) 2022-08-25
DE102019215664A1 (de) 2021-04-15

Similar Documents

Publication Publication Date Title
EP3380324B1 (de) 3d drucken von einem keramischen bauteil
WO2021069722A1 (de) Keramische faserverbundbauteile
DE102004009264B4 (de) Herstellung eines Vorformlings durch Verstärken einer faserartigen Struktur und/oder Verbinden von faserartigen Strukturen untereinander und Anwendung bei der Herstellung von Teilen aus Verbundwerkstoff
EP0636428B1 (de) Verfahren zum Wiederverwerten von kohlenstoffaserhaltigen Verbundwerkstoffen mit kohlenstoffhaltiger, nicht verkokter Matrix
DE102009048422A1 (de) Verbundwerkstoff aus Carbonfaser-Weichfilz und Carbonfaser-Hartfilz
DE10164229B4 (de) Reibscheiben, Verfahren zu ihrer Herstellung und ihre Verwendung
DE69828168T2 (de) Kohlenstoffverbundwerkstoffe
EP1008569A1 (de) Verfahren zur Herstellung eines mittels Kohlenstoffkurzfaser verstärkten Siliciumcarbid-Verbundwerkstoffes
WO2017072187A1 (de) Carbonfaserverstärktes carbidkeramisches verbundbauteil
DE69837677T2 (de) Faserverbundwerkstoff und verfahren zur herstellung
EP1323686B1 (de) Verfahren zur Herstellung von Hohlkörpern aus faserverstärkten keramischen Materialien
EP1323685B1 (de) Verfahren zur Herstellung von Formkörpern aus faserverstärkten keramischen Materialien
EP1876158B1 (de) Verfahren zur Herstellung von Carbidkeramik-Bauteilen
WO2021069723A1 (de) Faserverbundbauteile
EP1386896A2 (de) Verfahren zur Herstellung von Hohlkörpern aus faserverstärkten keramischen Materialien
EP2058545B1 (de) Verfahren zur Herstellung von Reibscheiben aus faserverstärkten keramischen Werkstoffen
WO2021069724A1 (de) Kunststofffaserverbundbauteile
WO2018087402A1 (de) Neuartiger c/c verbundwerkstoff
EP1464634B1 (de) Carbidkeramik-Werkstoff
EP0466962A1 (de) Verfahren zur Herstellung eines mit Kohlenstoffasern verstärkten Kohlenstoffverbundskörpers.
DE102014003782B3 (de) Keramikbremsscheibe
DE29724573U1 (de) Mit Graphitkurzfasern verstärkter Siliciumcarbidkörper

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20793586

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: DE

Ref legal event code: R225

Ref document number: 112020004903

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20793586

Country of ref document: EP

Kind code of ref document: A1