WO2018087283A1 - Mécanisme de commutation dépendant de la température et son utilisation - Google Patents

Mécanisme de commutation dépendant de la température et son utilisation Download PDF

Info

Publication number
WO2018087283A1
WO2018087283A1 PCT/EP2017/078875 EP2017078875W WO2018087283A1 WO 2018087283 A1 WO2018087283 A1 WO 2018087283A1 EP 2017078875 W EP2017078875 W EP 2017078875W WO 2018087283 A1 WO2018087283 A1 WO 2018087283A1
Authority
WO
WIPO (PCT)
Prior art keywords
switching
temperature
phase change
actuator
phase
Prior art date
Application number
PCT/EP2017/078875
Other languages
German (de)
English (en)
Inventor
Christoph Maurer
Tilmann E. KUHN
Thibault PFLUG
Stefan Gschwander
Original Assignee
Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. filed Critical Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
Priority to EP17797335.1A priority Critical patent/EP3538818A1/fr
Publication of WO2018087283A1 publication Critical patent/WO2018087283A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/08Air-flow control members, e.g. louvres, grilles, flaps or guide plates
    • F24F13/10Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers
    • F24F13/12Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers built up of sliding members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F2007/004Natural ventilation using convection

Definitions

  • the invention relates to a temperature-dependent switching mechanism with an actuator and a transmission mechanism, wherein the transmission mechanism is set up by means of a switchable by the actuator switching force to effect a switching between two switching states.
  • openings are used in the building envelope of the building, which are also electrically or manually switched, i. opened or closed, e.g. to keep little heat in the building during summer days and to lose little heat on winter nights.
  • WO2014 / 114563 discloses a generic
  • Façade element with switchable heat transfer coefficient (U value).
  • an actuator e.g. an electrical
  • Power supply and a controller must be networked.
  • Object of the present invention is to provide a
  • the actuator of a generic switching mechanism has a container containing a phase change material (PCM).
  • PCM phase change material
  • the switching force is applied by a change in volume of the phase change material in a temperature change phase change between two phase states of the phase change material.
  • the PCM is according to the desired temperature at which the Phase change, eg from a solid to a liquid state or vice versa, should occur to select to allow switching at this temperature.
  • the PCM is stored in the container with a sufficient connection to this temperature, eg the outside temperature outside a building.
  • the transmission mechanism serves as
  • the switching mechanism e.g. an electric auxiliary power switching opening (self-switching opening) for cooling and heating a building by ambient air can be realized.
  • the switching mechanism may comprise a thermally switching PCM element, e.g. takes a different shift position in winter than in summer. Switching to cryogenic and high temperature phases, e.g. Winter-summer, can also be used for mechanisms that do not include openings, e.g. for aligning PV modules, solar sails of satellites and / or for
  • the switching mechanism according to the invention requires no auxiliary power for switching.
  • the switching takes place by recording and / or release of energy from the ambient heat and / or to the ambient heat.
  • the volume change of the phase change material has a temperature-dependent hysteresis, such that the phase change from a first to a second of the phase states at a different temperature than the phase change from the second to the first phase state.
  • a temperature-dependent switching actuator element is provided, wherein the switching force of the actuator for switching between the
  • Position of the average over several cycles e.g. seasonal average of the temperature, and / or the extreme values of the cycles, e.g. daily highs of temperature, are crucial.
  • the actuator element can be structurally simple designed as part of the transmission mechanism.
  • the actuator element has a lever made of a bimetal.
  • the actuator element may comprise a vessel containing a further phase change material, wherein the vessel is floating on the phase change material of the
  • the series connection of the actuator and the actuator element can be simplified in various variants, for example, a bimetal with thermal connection to an outer surface, e.g. a building under which the PCM is mounted with a float containing vessel of the PCM module, so that the vessel is moved by the bimetal due to temperature.
  • a robust and simple power transmission of the switching force can be achieved if the transmission mechanism, a rack with a gear and / or a slider
  • a ventilation opening in a building envelope can thus be automatically opened and closed in such a way that heat is dissipated to the outside on a summer night, heat is conducted from outside to inside on winter day and well insulated from each other inside and outside on summer days and winter nights.
  • An air conditioning system according to the invention is particularly well suited for use in a
  • Building envelope e.g. a facade, and / or for ventilation of a solar module.
  • Many facades of buildings are designed with a rear ventilation level.
  • a solar module installed on a ventilated building envelope e.g. a PV module and / or a solar thermal collector, it is advantageous if the rear ventilation in summer
  • an additional actuator element e.g. with a bimetal, can be dispensed with, so that the
  • Self-switching opening with a temperature-dependent switching mechanism according to the invention with a, a rack having transmission mechanism, in different switching states.
  • Fig. 3 is a schematic sectional view of one as a PCM
  • Fig. 4 is a schematic sectional view of a, as a
  • FIG. 7 is a schematic sectional view of an air conditioner with self-switching openings, the one
  • the openings are formed as passages in ventilation channels, as they are e.g. can be present as a fluid flow opening 3 for a convection roll in an inventively designed air conditioning.
  • the temperature-dependent switching mechanism 1 is provided with an actuator 4 and a transmission mechanism 5
  • the actuator 4 has a phase change material 6
  • the switching force is applied by a change in volume of the phase change material 6 at a temperature change phase change between two phase states of the phase change material 6.
  • the transmission mechanism 5 has one each
  • Switching states and the actuator element 9 are designed as a series circuit. That is, the switching paths of the actuator 4 and the actuator element 9 add up. In this way, an opening can be realized which can open and close depending on a varying external temperature, wherein the switching behavior depends on phases with low average external temperatures and / or high mean external temperatures. In addition to the heat from this external environment, no additional energy, such as electrical or pneumatic energy, for applying the switching force, so switching, needed.
  • FIG. 1 shows the switching mechanism 1 in one
  • the phase change material 6 is liquid, while it is solid in winter. When it is liquid, it has a larger volume than in the solid state.
  • the volume change is 5% to 15%. Suitable paraffins have a heat capacity in the range of 180-300 kJ / kg.
  • the float 17 on the PCM 6 therefore has a higher position than in winter. In the high position, the bimetal is turned over the rack 11 and the gear 12 so far that it holds the shutter 15 at the top and the opening is open.
  • Figure lb is a switching state during a summer day
  • FIG. 2 is a schematic sectional view of a
  • FIG. 3 is a schematic sectional view of a storage vessel 30 with riser pipe 31 containing a PCM 6
  • FIG. 4 shows a schematic sectional view of a self-switching opening, embodied as an air feedthrough between an interior (inside) 40 and the outside air (outside) 41, with an embodiment of an inventive device
  • Temperature-dependent switching mechanism 1 shown in Figures 1 may also allow for air exchange between inside 40 and outside 41, instead of e.g. to switch a convection roller within a partition. As a result, a greater cooling in the summer night can be achieved, but it must be a suitable handling of pollution and
  • Actuator element 9 which is connected in series with the switching force of the actuator 4 and a further phase change material 52 containing vessel 53 has.
  • the vessel 53 is
  • the shutter 15 of Fluid throughflow opening 3 is designed as a slide, wherein the closure 15 has an opening 57 which when switching between the switching states in
  • the fluid flow opening 3 is free, whereas the fluid flow opening 3 is covered in the closed case of the shutter 15 in an opening 57 not containing area.
  • FIG. 5a shows the switching state of the switching mechanism 1 at a
  • FIG. 5c shows the switching state of the switching mechanism 1 on a winter day and Figure 5d in a winter night.
  • the further PCM 52 between two floats 55 wherein one of the two floats is formed as the vessel 53 containing the further PCM 52, is selected such that it has a greater hysteresis than the PCM 6 in the container 7.
  • the other PCM 52 thus has a large volume in summer and a small volume in winter, since its phase change occurs only seasonally and not daily.
  • the lower PCM 6 has a smaller temperature dependent
  • Hysteresis in terms of its volume change, so that it goes through a phase change every day and thus can bring about a switching process daily.
  • the switching mechanism 1 shown here according to the switching mechanism 1 of Figures 5 has a configuration with two
  • phase change materials 6, 52 The difference from the embodiment in Figures 5 is the design of the shutter 15 to be switched of the fluid flow opening 3.
  • the shutter 15 does not need to be such as e.g. 5 linearly displaced in the figures, but can, as shown, also opened in rotation or
  • FIG. 6a shows the switching state of the switching mechanism 1 in one
  • FIG. 7 is a schematic sectional view of a
  • temperature-dependent switching mechanisms 1 can e.g. in the illustration of the air conditioner 70 as a self-closing opening at the bottom corner of the representation, which adjoins the outer region 41 may be used.
  • Ambient heat can be used for example in a building envelope so that in the open case an exchange of air between inside and outside can take place. See, for example, Figure 4.
  • the self-switching opening can also, as shown here, within a partition, such as a building envelope, between 40 and 41 outside inserted be in the open case, as shown on the right, via a convection roll to allow a high U-value and in the closed case, as shown on the left, to allow a low U-value by blocking the
  • the fluid forming the convection roll may be air, another gas or gas mixture, but also a liquid, e.g. Water and / or glycol.
  • the partition shown has a body 75 made of an insulating material and has around this body 75 in a closed circuit around channels 71, each with a fluid layer 81,82 in front of and behind the insulating material and
  • the convection roller is prevented in the channel system through the switchable openings, i. these are closed while on a summer night the
  • the switching mechanism with a bimetal as an actuator element connected in series with the PCM relies on the function of switching that the bimetal switches daily in a small temperature range and the PCM only on a daily basis.
  • PCM can have a large hysteresis, as shown schematically in the figure. For example, it can melt at 28 ° C (melting temperature TS), ie with the first hot summer days and freeze at 3 ° C (freezing temperature TG), ie with the first cold autumn nights. to
  • the switching behavior also depends on the thermal resistance between the bimetal and the ambient temperature and the thermal resistance between the PCM and the
  • Outer surface e.g. the air conditioning, and the thermally switching materials, e.g. the PCM and the bimetal, conceivable.
  • the heat transfer can e.g. through direct
  • bimetallic actuator element and separate bimetallic strip for a circuit in the summer (summer mechanism) and in winter (winter mechanism) may be provided.
  • the bimetals of the bimetallic strip can look out for the summer and winter temperatures

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermally Actuated Switches (AREA)

Abstract

L'invention concerne un mécanisme de commutation (1) dépendant de la température, comprenant un actionneur et un mécanisme de transmission (5), le mécanisme de transmission (5) étant conçu pour provoquer une commutation entre deux états de commutation au moyen d'une force de commutation pouvant être produite par l'actionneur (4). L'actionneur (4) comporte un récipient (7) contenant un matériau à changement de phase (6) et la force de commutation est produite par une variation de volume du matériau à changement de phase (6) lors d'un changement de phase dû à une variation de température entre deux états de phase du matériau à changement de phase. La variation de volume du matériau à changement de phase (6) présente une hystérésis dépendante de la température, de sorte que le changement de phase d'un premier à un deuxième des états de phase a lieu à une température différente de la température à laquelle a lieu le changement de phase du deuxième au premier état de phase.
PCT/EP2017/078875 2016-11-14 2017-11-10 Mécanisme de commutation dépendant de la température et son utilisation WO2018087283A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP17797335.1A EP3538818A1 (fr) 2016-11-14 2017-11-10 Mécanisme de commutation dépendant de la température et son utilisation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016222248.1A DE102016222248A1 (de) 2016-11-14 2016-11-14 Temperaturabhängiger Schaltmechanismus und dessen Verwendung
DE102016222248.1 2016-11-14

Publications (1)

Publication Number Publication Date
WO2018087283A1 true WO2018087283A1 (fr) 2018-05-17

Family

ID=60302120

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2017/078875 WO2018087283A1 (fr) 2016-11-14 2017-11-10 Mécanisme de commutation dépendant de la température et son utilisation

Country Status (3)

Country Link
EP (1) EP3538818A1 (fr)
DE (1) DE102016222248A1 (fr)
WO (1) WO2018087283A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4089342A1 (fr) 2021-05-13 2022-11-16 Systemair Production a.s. Sortie d'air au plafond avec contrôle thermique des modes

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2200443A (en) * 1986-09-30 1988-08-03 Ventline Mfg Ventilators
US6532952B1 (en) * 2000-08-21 2003-03-18 William Kreamer Heating and cooling solar system control module
KR20130131687A (ko) * 2012-05-24 2013-12-04 한국생산기술연구원 온도감지유닛을 이용한 동파방지밸브
WO2014114563A1 (fr) 2013-01-22 2014-07-31 Basf Se Élément de construction à coefficients de transmission thermique u réglables

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4281708A (en) * 1979-05-30 1981-08-04 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Automatic thermal switch
DE10250604A1 (de) * 2002-10-30 2004-05-19 Tyco Electronics Amp Gmbh Integriertes Schaltungssystem mit Latentwärmespeichermodul
CN102592883B (zh) * 2011-01-07 2014-06-11 中国科学院理化技术研究所 一种基于低熔点金属相变体积变化效应的温度开关

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2200443A (en) * 1986-09-30 1988-08-03 Ventline Mfg Ventilators
US6532952B1 (en) * 2000-08-21 2003-03-18 William Kreamer Heating and cooling solar system control module
KR20130131687A (ko) * 2012-05-24 2013-12-04 한국생산기술연구원 온도감지유닛을 이용한 동파방지밸브
WO2014114563A1 (fr) 2013-01-22 2014-07-31 Basf Se Élément de construction à coefficients de transmission thermique u réglables

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4089342A1 (fr) 2021-05-13 2022-11-16 Systemair Production a.s. Sortie d'air au plafond avec contrôle thermique des modes

Also Published As

Publication number Publication date
DE102016222248A1 (de) 2018-05-17
EP3538818A1 (fr) 2019-09-18

Similar Documents

Publication Publication Date Title
DE2721467C2 (de) Vorfabriziertes Fassadenelement mit einem auf der Innenseite angeordneten Heizkörper
WO2006106139A1 (fr) Collecteur solaire
DE2411308A1 (de) Heizungs- und/oder klimaanlage
DE202009013639U1 (de) Niedrigenergiegebäude, insbesondere autarkes Nullenergiehaus
CH645424A5 (en) Roofing tile for a roof arrangement for the utilisation of solar energy
DE102007018644A1 (de) Solarröhre, Solarröhrenkollektor sowie Verwendung
DE2622542A1 (de) Fassadenbauelement
WO2002084182A1 (fr) Collecteur solaire
WO2018087283A1 (fr) Mécanisme de commutation dépendant de la température et son utilisation
DE2542348A1 (de) Waermeanlage
DE3048499A1 (de) Einrichtung zur umsetzung von sonnenenergie in waerme
DE102006024067B4 (de) Dämmelement und Gebäude mit einem solchen Dämmelement
DE2605117A1 (de) Wandelement fuer energietransporte
DE102017129798B4 (de) Thermoaktive Vorrichtung und Bauwerk mit einer solchen
DE2619514A1 (de) Waermespeicher fuer waermepumpen
WO2013189717A1 (fr) Soupape et dispositif de capteur solaire fonctionnant selon le principe du thermosiphon
DE102012022939A1 (de) Solarkollektor und Wäremspeicher
DE20220874U1 (de) Sonnenkollektor
DE102009005637A1 (de) Energiespeicher
DE20311784U1 (de) Wärmekollektor und/oder -speichervorrichtung
WO1994018708A2 (fr) Agencement de cellules solaires
EP0033530A1 (fr) Dispositif pour la climatisation d'un local et/ou l'utilisation de la chaleur en utilisant de l'énergie ambiante
DE102013217289B3 (de) Wärmespeichereinrichtung für ein Gewächshaus
DE202007016964U1 (de) Luftabsorber-Solarkollektor-Kombination für Wärmepumpen
WO2011041818A2 (fr) Capteur solaire

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17797335

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017797335

Country of ref document: EP