WO2018084362A1 - 지중케이블용 아세틸렌 가스 분석 장치 및 아세틸렌 가스 분석 방법 - Google Patents

지중케이블용 아세틸렌 가스 분석 장치 및 아세틸렌 가스 분석 방법 Download PDF

Info

Publication number
WO2018084362A1
WO2018084362A1 PCT/KR2016/013995 KR2016013995W WO2018084362A1 WO 2018084362 A1 WO2018084362 A1 WO 2018084362A1 KR 2016013995 W KR2016013995 W KR 2016013995W WO 2018084362 A1 WO2018084362 A1 WO 2018084362A1
Authority
WO
WIPO (PCT)
Prior art keywords
acetylene
gas
hydration
electrical conductivity
gas analysis
Prior art date
Application number
PCT/KR2016/013995
Other languages
English (en)
French (fr)
Inventor
박현주
임병훈
전태현
김상호
Original Assignee
한국전력공사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전력공사 filed Critical 한국전력공사
Priority to CN201680089457.1A priority Critical patent/CN109716118B/zh
Publication of WO2018084362A1 publication Critical patent/WO2018084362A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/129Diode type sensors, e.g. gas sensitive Schottky diodes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0036General constructional details of gas analysers, e.g. portable test equipment concerning the detector specially adapted to detect a particular component

Definitions

  • FIG. 2 briefly shows a gas analysis method by a conventional gas chromatograph.
  • FIG. 3 briefly shows the acetylene gas analysis method of the present invention.
  • One embodiment of the present invention includes a hydration reaction unit for accommodating the acetylene hydration catalyst aqueous solution therein and passing the analyte gas into the acetylene hydration catalyst aqueous solution to hydrate acetylene in acetaldehyde; Acetaldehyde is introduced into the hydration reaction unit, and ZnO nanocrystals coated with a silane compound containing an amine group are installed on the inner surface to generate electricity generated by reaction of acetaldehyde with the surface of the ZnO nanocrystals.
  • An electrical conductivity measurement unit measuring a change in conductivity It relates to an acetylene gas analysis device for underground cables, including; and a quantitative analysis unit for calculating and displaying the measured electrical conductivity value as the amount of acetylene contained in the analysis target gas.
  • the acetylene gas analysis device of the present invention includes a hydration reaction unit 100, an electrical conductivity measurement unit 200, and a quantitative analysis unit 300.
  • the hydration reaction unit 100 may be formed in the double wall structure 102 of the outer wall of the container containing the acetylene hydration catalyst aqueous solution 101.
  • the effect of maintaining the temperature of the acetylene hydration catalyst aqueous solution is excellent, and the efficiency of converting acetylene in acetaldehyde into the analysis target gas G can be improved.
  • the volume of the hydration reaction unit 100 is not particularly limited, but may be, for example, 50 mL to 100 mL. Within this range, it is advantageous for the device to be portable and has more advantageous properties for increasing the durability and stability of the device including the acetylene hydration catalyst in aqueous solution.
  • the hydration reaction unit 100 may include a heater 103 that can adjust the temperature of the acetylene hydration catalyst aqueous solution 101 to about 70 °C to about 90 °C. Within the said temperature range, the efficiency which the acetylene in analyte gas G converts to acetaldehyde is very excellent, and a detection limit can be lowered by improving the sensitivity of an analytical apparatus.
  • the temperature of the acetylene hydration catalyst aqueous solution 101 is about 75 °C to about 85 °C, for example, 75 ⁇ 0.1 °C, 76 ⁇ 0.1 °C, 77 ⁇ 0.1 °C, 78 ⁇ 0.1 °C, 79 ⁇ 0.1 °C , 80 ⁇ 0.1 ° C, 81 ⁇ 0.1 ° C, 82 ⁇ 0.1 ° C, 83 ⁇ 0.1 ° C, 84 ⁇ 0.1 ° C, 85 ⁇ 0.1 ° C.
  • the efficiency of acetylene conversion in acetaldehyde in the gas to be analyzed (G) can be further improved.
  • the hydration reaction unit 100 may include a mass flow control system 104 for controlling the flow rate of the analysis target gas (G) injected into the acetylene hydration catalyst aqueous solution (101). More specifically, the mass flow controller 104 may adjust the inflow rate such that the gas G to be analyzed is introduced into the acetylene hydration catalyst aqueous solution 101 in the form of bubbles.
  • G analysis target gas
  • the mass flow controller 104 may adjust the inflow rate such that the gas G to be analyzed is introduced into the acetylene hydration catalyst aqueous solution 101 in the form of bubbles.
  • the efficiency of converting acetylene into acetaldehyde in the gas to be analyzed is more excellent, so that the detection limit can be lowered and the amount of the lowest gas to be analyzed (G) required for abnormal diagnosis can be reduced. have.
  • the hydration reaction unit 100 may further include a gas permeable membrane 105 which is provided to divide the internal space of the hydration reaction unit 100 up and down to selectively collect only gas.
  • the gas permeable membrane 105 may permeate only gas, and the aqueous acetylene hydration catalyst 101 may not permeate.
  • the analyte gas G ′ including acetaldehyde generated in the course of passing through the aqueous solution of acetylene hydration catalyst 101 may be selectively collected by the gas permeable membrane 105.
  • the hydration reaction unit 100 may further include a discharge port 107 for controlling the discharge of the acetylene hydration catalyst aqueous solution 101 to maintain the pressure in the container.
  • a discharge port 107 for controlling the discharge of the acetylene hydration catalyst aqueous solution 101 to maintain the pressure in the container.
  • the appropriate pressure of the hydration reaction unit 100 is about 0.5 atm to about 1.5 atm, for example, 0.5 atm, 0.6 atm, 0.7 atm, 0.8 atm, 0.9 atm, 1.0 atm, 1.1 atm, 1.2 atm, 1.3 atm, 1.4 atm, 1.5 atm.
  • this range it is possible to further improve the efficiency of the conversion of acetylene in acetaldehyde into the analyte gas (G), to control the inflow rate of the analyte gas (G), and to be more advantageous to portable the device. have.
  • the hydration reaction unit 100 is a container that can accommodate the aqueous solution of acetylene hydration catalyst therein, the heater 103, which is provided in the container to control the temperature of the acetylene hydration catalyst aqueous solution, the container Mass flow control system 104 for injecting the gas to be analyzed into the aqueous solution of the acetylene hydration catalyst contained therein, a gas permeable membrane 105 provided inside the vessel to selectively collect only gas, and discharge of the acetylene hydration catalyst aqueous solution. It may include an outlet 106 to control to maintain pressure in the container.
  • the acetylene gas analyzer equipped with the hydration reaction unit 100 has a very high efficiency of the reaction for hydrating acetylene in the gas G to be analyzed with acetaldehyde, and precisely adjusts the inflow rate of the gas G to be analyzed. It is possible to lower the detection limit and to reduce the amount of the minimum analysis target gas G required for abnormal diagnosis.
  • the electrical conductivity measuring unit 200 is applied as a separate reaction vessel connected by the above-described hydration reaction unit 100 and the connection unit 201, the analysis target including acetaldehyde generated in the hydration reaction unit 100 Gas G 'is introduced into the interior.
  • the conductivity measuring unit 200 is provided with a ZnO nanocrystal 202 coated on the inner surface of the silane compound containing an amine group.
  • the surface of the ZnO nanocrystals and the electrical conductivity measuring unit 200 causes a change in electrical conductivity caused by the reaction of acetaldehyde introduced into the inside.
  • the electrical conductivity measuring unit 200 measures the amount of electrical conductivity change generated by the reaction of the silane compound and acetaldehyde containing an amine group coated on the surface of the ZnO nanocrystals.
  • the electrical conductivity measuring unit 200 measures the amount of electrical conductivity change generated by acetaldehyde reversibly reacts with the amine group (amine).
  • the silane compound including the amine group may be N- (2-aminoethyl) aminopropyltrimethoxysilane (N- (2-aminoethyl) aminopropyltrimethoxylsilane).
  • ZnO nanocrystals and the silane compound including the amine group have excellent binding force and electrical conductivity transferability, thereby further improving the sensitivity of the analytical device and increasing the detection accuracy.
  • the silane compound including the amine group is N- (2-aminoethyl) aminopropyltrimethoxysilane (N- (2-aminoethyl) aminopropyltrimethoxylsilane)
  • the amine group is determined by acetaldehyde. Since the efficiency of reversibly reacting with an imine group is more excellent, the value of electric conductivity change may be greater. In this case, the reaction that occurs may be represented by the following scheme 2.
  • the conductivity measuring unit 200 may include a light source 203 capable of initiating the reaction of the amine group with acetaldehyde.
  • a light source 203 capable of initiating the reaction of the amine group with acetaldehyde.
  • the reaction start time and reaction rate of the amine group and acetaldehyde can be controlled.
  • the conductivity measuring unit 200 may include an conductivity meter 204 that is connected to the ZnO nanocrystals 202 coated with a silane compound containing an amine group to measure the amount of change in conductivity. have.
  • the quantitative analysis unit 300 calculates and displays the electric conductivity value measured by the electric conductivity measuring unit 200 as the amount of acetylene included in the analysis target gas.
  • the quantitative analysis unit 300 may include a display device 301 for displaying the calculated value.
  • the type of the display device 301 is not particularly limited.
  • Ac is the amount of acetylene contained in the gas to be analyzed (unit: ppm)
  • Ec1 is the electrical conductivity (unit: mho) measured before the start of the analysis
  • Mw1 is the molecular weight of the imine group (unit: g / mol)
  • Ec2 is the electrical conductivity (in mho) measured after the start of the analysis
  • Mw2 is the molecular weight (in g / mol) of the amine group
  • F is a Faraday constant (in: C / mol).
  • Equation 1 'before the start of the analysis' may mean a state before the analysis counterpart (G) is introduced into the hydration reaction unit 100, and 'after the start of the analysis' means that the analysis counterpart (G) It may refer to a state introduced into the hydration reaction unit 100 or a state in which the reaction of the amine group and acetaldehyde is initiated by the light source in the electrical conductivity measurement unit 200.
  • the Faraday constant F is 96485 (C / mol)
  • Mw1 is an imine group molecular weight of 265.29 (g / mol)
  • Mw2 is an amine group molecular weight of 237.29 (g / mol)
  • the amount of acetylene contained in the analysis target gas (G) in the quantitative analysis unit 300 is the following [Formula 1A Can be calculated as
  • the minimum detection limit of the amount of acetylene contained in the analysis target gas (G) that can be converted by the acetylene analyzer for underground cables of the present invention is specifically about 10 ppm or less, for example, 10 ppm, 5 ppm, 1 ppm, 0.1 It may be ppm. In such a case, it is advantageous to carry out the portable device and diagnose the detection sample which is finely diffused in the field with excellent sensitivity.
  • the minimum amount of the gas to be analyzed for acetylene gas analysis by the acetylene analyzer for underground cables of the present invention is about 5 mL or more, for example, 5 mL, 10 mL, 15 mL, 20 mL, 25 mL, 30 mL, 35 mL, 40 mL, 45 mL, 50 mL or more. In such a case, it is advantageous to portable the device and diagnose the abnormality through a small amount of detection samples collected at the site.
  • Another embodiment of the present invention relates to an acetylene gas analysis method for underground cables, using the acetaldehyde generated by contacting the gas of analysis with an acetylene hydration catalyst to calculate the amount of acetylene contained in the gas of analysis.
  • the acetylene gas analysis method may be performed using the above-described acetylene gas analysis device.
  • the acetylene gas analysis method includes (a) collecting acetaldehyde generated by contacting an analyte gas with an aqueous solution of an acetylene hydration catalyst, and (b) ZnO nanocrystals whose surface is coated with a silane compound containing an amine group. And the amount of change in electrical conductivity generated by the reaction of the amine group and acetaldehyde, and (c) calculating the amount of acetylene contained in the gas to be analyzed by the amount of change in the electrical conductivity.
  • the hydration reaction may be performed at about 70 °C to about 90 °C.
  • the efficiency which the acetylene in analyte gas G converts to acetaldehyde is very excellent, and a detection limit can be lowered by improving the sensitivity of an analytical apparatus.
  • the hydration reaction temperature is about 75 °C to about 85 °C, for example, 75 ⁇ 0.1 °C, 76 ⁇ 0.1 °C, 77 ⁇ 0.1 °C, 78 ⁇ 0.1 °C, 79 ⁇ 0.1 °C, 80 ⁇ 0.1 °C , 81 ⁇ 0.1 ° C, 82 ⁇ 0.1 ° C, 83 ⁇ 0.1 ° C, 84 ⁇ 0.1 ° C, 85 ⁇ 0.1 ° C.
  • the efficiency of acetylene conversion in acetaldehyde in the gas to be analyzed can be further improved.
  • the acetylene gas analysis method measures the amount of change in electrical conductivity caused by the reaction of the silane compound and acetaldehyde containing an amine group coated on the surface of the ZnO nanocrystals.
  • the acetylene gas analysis method measures the amount of change in electrical conductivity caused by the reversible reaction of the amine group (amine) by the acetaldehyde group (imine).
  • the silane compound including the amine group may be N- (2-aminoethyl) aminopropyltrimethoxysilane (N- (2-aminoethyl) aminopropyltrimethoxylsilane).
  • ZnO nanocrystals and the silane compound containing the amine group have excellent binding force and electrical conductivity transferability, thereby further improving the sensitivity of the acetylene gas analysis method and increasing the detection accuracy.
  • the reaction of the amine group with acetaldehyde can be initiated by a light source.
  • the acetylene analysis method for underground cables of the present invention can calculate the amount of acetylene contained in the gas to be analyzed according to the following formula (1).
  • the minimum detection limit of the amount of acetylene contained in the gas to be analyzed (G) converted by the acetylene analysis method for underground cables of the present invention is specifically about 10 ppm or less, for example, 10 ppm, 5 ppm, 1 ppm, 0.1 It may be ppm. In this case, it is advantageous to diagnose the detection sample finely diffused in the field with excellent sensitivity.
  • the minimum amount of the gas to be analyzed for acetylene gas analysis by the acetylene analysis method for underground cables of the present invention is about 5 mL or more, for example, 5 mL, 10 mL, 15 mL, 20 mL, 25 mL, 30 mL, 35 mL, 40 mL, 45 mL, 50 mL or more. In this case, it is advantageous to diagnose the abnormality through a small amount of detection samples collected on site.
  • a double-walled vessel capable of accommodating an aqueous acetylene hydration catalyst therein, a heater provided in the vessel, a mass flow controller connected to the vessel and injecting an analyte gas therein, and optionally provided only in the vessel.
  • a hydration reaction unit was prepared including a gas permeable membrane that can be collected and an outlet for controlling the discharge of the aqueous acetylene hydration catalyst solution to maintain the pressure in the vessel.
  • ZnO nanocrystals coated with a silane compound containing an amine group is installed on the inner surface, and connected to the ZnO nanocrystals
  • An electrical conductivity measuring unit including the prepared electrical conductivity meter and a light source capable of irradiating a light source to the surface of the ZnO nanocrystals coated with a silane compound containing the amine group was prepared.
  • the quantitative analysis unit was connected to the electrical conductivity measurement unit to calculate and display the measured change in electrical conductivity as the amount of acetylene contained in the gas to be analyzed.
  • Acetylene was detected in the same manner using the same apparatus as Example 1, except that the concentration of acetylene in the simulated environment, the concentration of the catalyst aqueous solution, the reaction pressure and the reaction temperature were changed as shown in Table 1 below.
  • Example 2 0.78 ⁇ 10 3
  • Example 3 1.51 ⁇ 10 3
  • Example 4 2.07 ⁇ 10 3
  • Example 5 2.42 ⁇ 10 3
  • Example 6 0.34 ⁇ 10 3
  • Example 7 0.72 ⁇ 10 3
  • Example 8 1.22 ⁇ 10 3
  • Example 9 1.54 ⁇ 10 3
  • Example 10 0.77 ⁇ 10 3
  • Example 11 1.23 ⁇ 10 3
  • Example 12 1.52 ⁇ 10 3
  • the detection limit of the diffusion detector (NEW COSMOS, XP-3160) and the minimum amount of gas to be analyzed were confirmed, and it was confirmed whether acetylene can be detected in a simulated environment of less than 1 ppm of acetylene.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Combustion & Propulsion (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

본 발명은 분석 대상 기체를 아세틸렌 수화 촉매와 접촉시켜 발생하는 아세트알데히드를 이용하여, 분석 대상 기체 중에 포함된 아세틸렌의 양을 산출하는 지중케이블용 아세틸렌 가스 분석 방법 및 이를 위한 지중케이블용 아세틸렌 가스 분석 장치에 관한 것이다. 이를 통해 본 발명은 10mL 내외의 적은 양의 시료 샘플에서도 아세틸렌 가스를 검출할 수 있으며, 검출 한계가 0.1 ppm 정도로 낮아 정밀한 진단이 가능하고, 휴대가 가능하여 현장에서 직접 가스 분석을 수행하여, 고장을 미리 진단할 수 있는 지중케이블용 아세틸렌 가스 분석 장치 및 아세틸렌 가스 분석 방법을 제공할 수 있다.

Description

지중케이블용 아세틸렌 가스 분석 장치 및 아세틸렌 가스 분석 방법
본 발명은 지중케이블용 아세틸렌 가스 분석 장치 및 아세틸렌 가스 분석 방법에 관한 것이다.
지중케이블(지중선로)은 전선로를 땅속에 매설한 형태의 설비이다. 이러한 지중케이블 설비는 복잡하게 시설되어있는 전화, 전력 등의 가공선을 정비할 수 있고, 도시 미관을 개선할 수 있어 그 수요가 증가하고 있다. 또한, 신규개발단지의 조성 시 공사로 발생하는 민원을 최소화하기 위해 미리 개발단지 내의 공동구에 지중케이블 설비를 건설하는 방식이 이용되기도 한다.
최근에는 이와 같은 수요의 증가에 따라, 지중케이블 설비가 계속해서 증가하는 추세에 있어, 안정적인 전력 공급을 위해 고장을 예방하고, 조기에 발견하며, 점검의 편이성을 높이기 위한 점검 기술의 개발이 요구되고 있다.
종래의 점검 기술 중 하나로 ASTM D3612에서 규정하고 있는 방법에 따라 지중케이블의 접속함 등에서 가스를 포집하여 실험실에서 가스크로마토그래프(GC)하는 방법이 사용되고 있다. 위와 같은 방법으로 포집된 가스를 성분별로 분리 정량하는 경우, 측정된 수소, 이산화탄소, 메탄, 아세틸렌 등의 가스 농도를 통해 절연유의 이상, 절연지의 과열, 아크방전, 절연내력 저하 등의 이상 유무를 조기에 판단할 수 있다. 그러나, 실험실에서 가스크로마토그래프를 이용하여 포집된 가스를 분석하는 방법은 접속함 내부의 가스를 샘플링한 이후 실험실까지 운반하는 과정에서 불확도가 존재하고, 가스크로마토그래프의 설비에 높은 비용이 소요되며, 분석 전문가에 의해서만 분석이 가능하다는 단점이 있다.
또한, 아세틸렌 가스의 경우 불꽃 이온화 검출기(FID : Flame Ionization Detector)등을 사용하여 분석할 수 있으나, 시료 중 아세틸렌의 양이 미량일 경우 검출이 어렵고 현장에서 샘플링하여 실험실까지 이동하면서 가스조성의 변화가 생길 수 있어 정확도가 낮은 문제점이 있다.
따라서, 점검 시 고장 진단의 정확성 확보를 위해 샘플링한 가스 시료를 현장에서 바로 분석 가능한 방법에 대한 요구가 증가하고 있다. 특히, 점검 인력이 이상가스 검출 시 현장에서 쉽게 이상 여부를 진단할 수 있는 측정 가능한 휴대용 장치에 대한 요구가 증가하고 있다.
현재 시판 중인 여러 종류의 아세틸렌 검출 장치들은 기본적으로 검지센서가 대기 중에 노출되어 있어 확산에 의해 검출하는 확산식과 측정가스를 펌프나 Air Asporator에 의해 강제 흡입하는 흡입식의 두 가지로 이루어져 있다. 확산식 검출기의 경우 가스의 확산에 의해 검출을 하기 때문에 기본적으로 대기 중에 분석하고자 하는 가스의 농도가 매우 높아야 하며, 예를 들면, 최소 10,000 ppm 이상의 농도가 있어야 검출이 가능하므로 전력설비의 이상진단용으로는 적합하지 않다. 흡입식 검출기의 경우는 확산식 검출기보다 감도가 우수하여 수 ppm에서 1,000 ppm의 농도까지 검출이 가능하나, 예를 들면, 검출에 필요한 시료의 양이 수 L 이상이거나, 지속적으로 시료를 흡입시켜줄 필요가 있어, 접속함 내부의 소량의 가스량으로는 분석이 불가하다는 단점이 있다.
이에 따라, 적은 양의 시료 샘플에서도 아세틸렌 가스를 검출할 수 있으며, 검출 한계를 낮출 수 있어 정밀한 진단이 가능하고, 휴대가 가능하여 현장에서 직접 분석을 수행할 수 있는 지중케이블용 아세틸렌 가스 분석 장치에 대한 요구가 증가하고 있다.
본 발명의 하나의 목적은 적은 양의 시료 샘플에서도 아세틸렌 가스를 검출할 수 있으며, 검출 한계가 낮아 정밀한 진단이 가능하고, 휴대가 가능하여 현장에서 직접 가스 분석을 수행할 수 있는 지중케이블용 아세틸렌 가스 분석 장치 및 아세틸렌 가스 분석 방법을 제공하는 것이다.
본 발명의 일 구현예는 아세틸렌 수화 촉매 수용액을 내부에 수용하고, 분석 대상 기체를 아세틸렌 수화 촉매 수용액 내로 통과시켜 분석 대상 기체 중의 아세틸렌을 아세트알데히드로 수화시키는 수화 반응부; 상기 수화 반응부와 연결되어 아세트알데히드가 내부로 유입되고, 아민기를 포함하는 실란화합물로 표면이 코팅된 ZnO 나노 크리스탈이 내면에 설치되어 상기 ZnO 나노 크리스탈의 표면과 아세트알데히드의 반응에 의해 발생하는 전기전도도의 변화량을 측정하는 전기전도도 측정부; 및 측정된 전기전도도 값을 분석 대상 기체 중에 포함된 아세틸렌의 양으로 산출하여 표시하는 정량분석부;를 포함하는 지중케이블용 아세틸렌 가스 분석 장치에 관한 것이다.
본 발명의 다른 구현예는 분석 대상 기체를 아세틸렌 수화 촉매와 접촉시켜 발생하는 아세트알데히드를 이용하여, 분석 대상 기체 중에 포함된 아세틸렌의 양을 산출하는 지중케이블용 아세틸렌 가스 분석 방법에 관한 것이다.
본 발명은 10mL 내외의 적은 양의 시료 샘플에서도 아세틸렌 가스를 검출할 수 있으며, 검출 한계가 0.1 ppm 정도로 낮아 정밀한 진단이 가능하고, 휴대가 가능하여 현장에서 직접 가스 분석을 수행하여, 고장을 미리 진단할 수 있는 지중케이블용 아세틸렌 가스 분석 장치 및 아세틸렌 가스 분석 방법을 제공할 수 있다.
도 1은 본 발명의 아세틸렌 가스 분석 장치의 구조를 나타낸 것이다.
도 2는 종래의 가스크로마토그래프에 의한 가스 분석 방법을 간략하게 나타낸 것이다.
도 3은 본 발명의 아세틸렌 가스 분석 방법을 간략하게 나타낸 것이다.
본 발명의 일 구현예는 아세틸렌 수화 촉매 수용액을 내부에 수용하고, 분석 대상 기체를 아세틸렌 수화 촉매 수용액 내로 통과시켜 분석 대상 기체 중의 아세틸렌을 아세트알데히드로 수화시키는 수화 반응부; 상기 수화 반응부와 연결되어 아세트알데히드가 내부로 유입되고, 아민기를 포함하는 실란화합물로 표면이 코팅된 ZnO 나노 크리스탈이 내면에 설치되어 상기 ZnO 나노 크리스탈의 표면과 아세트알데히드의 반응에 의해 발생하는 전기전도도의 변화량을 측정하는 전기전도도 측정부; 및 측정된 전기전도도 값을 분석 대상 기체 중에 포함된 아세틸렌의 양으로 산출하여 표시하는 정량분석부;를 포함하는 지중케이블용 아세틸렌 가스 분석 장치에 관한 것이다.
이를 통해 본 발명은 10mL 내외의 적은 양의 시료 샘플에서도 아세틸렌 가스를 검출할 수 있으며, 검출 한계가 0.1 ppm 정도로 낮아 정밀한 진단이 가능하고, 휴대가 가능하여 현장에서 직접 가스 분석을 수행하여, 고장을 미리 진단할 수 있는 지중케이블용 아세틸렌 가스 분석 장치 및 아세틸렌 가스 분석 방법을 제공할 수 있다.
도 1은 본 발명의 아세틸렌 가스 분석 장치의 구조를 나타낸 것이다. 이하, 도 1을 참고로 하여 일 구현예의 아세틸렌 가스 분석 장치를 설명한다.
본 발명의 아세틸렌 가스 분석 장치는 수화 반응부(100), 전기전도도 측정부(200), 및 정량분석부(300)를 포함한다.
상기 수화 반응부(100)는 아세틸렌 수화 촉매 수용액(101)을 내부에 수용하도록 구비된다. 이에 따라, 분석 대상 기체(G)를 수화 반응 부의 아세틸렌 수화 촉매 수용액(101) 내로 통과시켜 분석 대상 기체(G) 중의 아세틸렌을 아세트알데히드로 수화시키는 반응 용기로 적용될 수 있다.
구체적으로, 상기 수화 반응부(100)는 아세틸렌 수화 촉매 수용액(101)을 수용하는 용기의 외벽이 이중벽 구조(102)로 형성될 수 있다. 이러한 경우, 아세틸렌 수화 촉매 수용액의 온도를 유지하는 효과가 우수하여, 분석 대상 기체(G) 중의 아세틸렌이 아세트알데히드로 변환되는 효율을 높일 수 있다.
상기 수화 반응부(100)의 용적은 특별히 제한되지 않으나 예를 들면, 50mL 내지 100mL일 수 있다. 상기 범위 내에서, 장치를 휴대화하기에 유리하며, 수용액 상의 아세틸렌 수화 촉매를 포함하는 장치의 내구성 및 안정성을 높이기에 더욱 유리한 특성을 갖는다.
구체적으로, 상기 아세틸렌 수화 촉매 수용액(101)은 [Ru(EDTA-H)Cl]2H2O 촉매를 약 0.5 mM 내지 약 2.0 mM의 농도, 예를 들면, 0.5 mM, 0.6 mM, 0.7 mM, 0.8 mM, 0.9 mM, 1.0 mM, 1.1 mM, 1.2 mM, 1.3 mM, 1.4 mM, 1.5 mM, 1.6 mM, 1.7 mM, 1.8 mM, 1.9 mM, 2.0 mM로 함유하는 것일 수 있다. 이러한 경우, 분석 대상 기체(G) 중의 아세틸렌이 아세트알데히드로 변환되는 효율이 매우 우수하여, 검출 한계를 낮추고, 이상 진단에 요구되는 최저 분석 대상 기체(G)의 양을 저감할 수 있다.
일 구체예에서, [Ru(EDTA-H)Cl]2H2O 인 아세틸렌 수화 촉매 수용액에 의해 분석 대상 기체(G) 중의 아세틸렌이 아세트알데히드로 변환(수화 반응)되는 반응 메카니즘은 하기 반응식 1로 표시될 수 있다.
[반응식 1]
Figure PCTKR2016013995-appb-I000001
구체적으로, 상기 수화 반응부(100)는 아세틸렌 수화 촉매 수용액(101)의 온도를 약 70℃ 내지 약 90℃로 조절할 수 있는 히터(103)를 포함할 수 있다. 상기 온도 범위 내에서, 분석 대상 기체(G) 중의 아세틸렌이 아세트알데히드로 변환되는 효율이 매우 우수하여, 분석 장치의 감도를 향상시킴으로써 검출 한계를 낮출 수 있다.
보다 구체적으로, 아세틸렌 수화 촉매 수용액(101)의 온도는 약 75℃ 내지 약 85℃, 예를 들면, 75±0.1℃, 76±0.1℃, 77±0.1℃, 78±0.1℃, 79±0.1℃, 80±0.1℃, 81±0.1℃, 82±0.1℃, 83±0.1℃, 84±0.1℃, 85±0.1℃로 조절될 수 있다. 상기 온도 범위 내에서, 분석 대상 기체(G) 중의 아세틸렌이 아세트알데히드로 변환되는 효율이 더욱 향상될 수 있다.
구체적으로, 상기 수화 반응부(100)는 아세틸렌 수화 촉매 수용액(101) 내로 주입되는 분석 대상 기체(G)의 유입량을 제어하는 질량유량조절계(104)를 포함할 수 있다. 보다 구체적으로, 상기 질량유량조절계(104)는 분석 대상 기체(G)가 아세틸렌 수화 촉매 수용액(101) 내에 기포 형태로 유입되도록 유입 속도를 조절할 수 있다. 또한, 이 때의 유입속도는 약 20mL/s 내지 약 30 mL/s, 예를 들면, 20 mL/s, 21 mL/s, 22 mL/s, 23 mL/s, 24 mL/s, 25 mL/s, 26 mL/s, 27 mL/s, 28 mL/s, 29 mL/s, 30 mL/s일 수 있다. 상기 범위 내에서, 분석 대상 기체(G) 중의 아세틸렌이 아세트알데히드로 변환되는 효율이 더욱 우수하여, 검출 한계를 낮출 수 있고, 이상 진단에 요구되는 최저 분석 대상 기체(G)의 양을 저감할 수 있다.
구체적으로, 상기 수화 반응부(100)는 상기 수화 반응부(100)의 내부 공간을 상하로 이분하도록 구비되어 기체만을 선택적으로 포집할 수 있는 기체 투과막(105)을 더 포함할 수 있다. 상기 기체 투과막(105)은 기체만을 투과할 수 있으며, 아세틸렌 수화 촉매 수용액(101)은 투과시킬 수 없다. 이러한 경우, 아세틸렌 수화 촉매 수용액(101)을 통과하는 과정에서 발생한 아세트알데히드를 포함하는 분석 대상 기체(G')가 기체 투과막(105)에 의해 선택적으로 포집될 수 있다.
구체적으로, 상기 수화 반응부(100)는 상기 기체 투과막(105)에 연결되어 기체 투과막(105)의 축 방향 이동을 제어할 수 있는 피스톤(106)을 더 포함할 수 있다. 이러한 경우, 기체 투과막(105)에 의해 포집된 아세트알데히드를 포함하는 분석 대상 기체(G')의 부피 변화에 의해 변동되는 압력을 조절하기에 유리하고, 전기전도도 측정부로 이동되는 기체의 양을 제어하기에 유리하다.
구체적으로, 상기 수화 반응부(100)는 아세틸렌 수화 촉매 수용액(101)의 배출을 제어하여 용기 내의 압력을 유지하는 배출구(107)을 더 포함할 수 있다. 이러한 경우, 분석 대상 기체(G)의 유입에 의해 발생하는 수화 반응부(100) 내의 압력을 조절하기에 유리하다.
구체적으로, 상기 수화 반응부(100)의 적정압력은 약 0.5 atm 내지 약 1.5 atm, 예를 들면, 0.5 atm, 0.6 atm, 0.7 atm, 0.8 atm, 0.9 atm, 1.0 atm, 1.1 atm, 1.2 atm, 1.3 atm, 1.4 atm, 1.5 atm일 수 있다. 상기 범위 내에서, 분석 대상 기체(G) 중의 아세틸렌이 아세트알데히드로 변환되는 효율을 더욱 향상시키고, 분석 대상 기체(G)의 유입 속도를 제어하기에 유리하며, 장치를 휴대화하기에 더욱 유리할 수 있다.
일 구체예에서, 상기 수화 반응부(100)는 내부에 아세틸렌 수화 촉매 수용액을 수용할 수 있는 용기이고, 상기 용기 내에 구비되어 아세틸렌 수화 촉매 수용액의 온도를 조절할 수 있는 히터(103), 상기 용기에 수용된 아세틸렌 수화 촉매 수용액 내부로 분석 대상 기체를 주입하는 질량유량조절계(104), 상기 용기의 내부에 구비되어 기체만을 선택적으로 포집할 수 있는 기체 투과막(105), 및 아세틸렌 수화 촉매 수용액의 배출을 제어하여 용기 내의 압력을 유지하는 배출구(106)를 포함할 수 있다. 이러한 수화 반응부(100)가 구비된 아세틸렌 가스 분석 장치는 분석 대상 기체(G) 중의 아세틸렌을 아세트알데히드로 수화시키는 반응의 효율이 매우 우수하며, 분석 대상 기체(G)의 유입 속도를 정밀하게 조절할 수 있어, 검출 한계를 낮추고, 이상 진단에 요구되는 최저 분석 대상 기체(G)의 양을 저감할 수 있다.
상기 전기전도도 측정부(200)는 전술한 상기 수화 반응부(100)와 연결부(201)에 의해 연결된 별도의 반응 용기로 적용되며, 상기 수화 반응부(100)에서 발생한 아세트알데히드를 포함하는 분석 대상 기체(G')가 내부로 유입된다.
상기 전기전도도 측정부(200)는 아민기를 포함하는 실란화합물로 표면이 코팅된 ZnO 나노 크리스탈(202)이 내면에 설치된다. 상기 ZnO 나노 크리스탈의 표면과 전기전도도 측정부(200) 내부로 유입된 아세트알데히드의 반응에 의해 발생하는 전기전도도의 변화를 야기한다.
구체적으로, 전기전도도 측정부(200)는 ZnO 나노 크리스탈 표면에 코팅된 아민기를 포함하는 실란화합물과 아세트알데히드의 반응에 의해 발생하는 전기전도도 변화량을 측정한다.
보다 구체적으로, 전기전도도 측정부(200)는 아세트알데히드에 의해 상기 아민기(amine)가 이민(imine)기로 가역적으로 반응함에 의해 발생하는 전기전도도 변화량을 측정한다.
구체적으로, 상기 아민기를 포함하는 실란화합물은 N-(2-아미노에틸)아미노프로필트리메톡시실란(N-(2-aminoethyl)aminopropyltrimethoxylsilane)일 수 있다. 이러한 경우, ZnO 나노 크리스탈과 상기 아민기를 포함하는 실란화합물의 결합력 및 전기전도도 전달성이 우수하여 분석 장치의 감도를 더욱 향상시키고 검출 정밀도를 높일 수 있다.
일 구체예에서, 상기 아민기를 포함하는 실란화합물이 N-(2-아미노에틸)아미노프로필트리메톡시실란(N-(2-aminoethyl)aminopropyltrimethoxylsilane)인 경우, 아세트알데히드에 의해 상기 아민기(amine)가 (imine)기로 가역적으로 반응하는 효율이 더욱 우수하여, 전기전도도 변화 값이 더욱 크게 발생할 수 있다. 이러한 경우, 발생하는 반응은 하기 반응식 2로 표시될 수 있다.
[반응식 2]
Figure PCTKR2016013995-appb-I000002
구체적으로, 전기전도도 측정부(200)는 상기 아민기와 아세트알데히드의 반응을 개시할 수 있는 광원(203)을 포함할 수 있다. 이러한 경우, 상기 아민기와 아세트알데히드의 반응 개시 시점 및 반응 속도를 제어할 수 있다.
구체적으로, 상기 전기전도도 측정부(200)는 아민기를 포함하는 실란화합물로 표면이 코팅된 ZnO 나노 크리스탈(202)과 접속되어 전기전도도 변화량을 측정할 수 있는 전기전도도 측정기(204)를 포함할 수 있다.
상기 정량분석부(300)는 전기전도도 측정부(200)에서 측정된 전기전도도 값을 분석 대상 기체 중에 포함된 아세틸렌의 양으로 산출하여 표시한다. 또한, 상기 정량분석부(300)는 상기 산출된 값을 표시하기 위한 표시장치(301)를 포함할 수 있다. 상기 표시장치(301)의 종류는 특별히 제한되지 않는다.
구체적으로, 상기 정량분석부(300)에서 상기 분석 대상 기체(G) 중에 포함된 아세틸렌의 양은 하기 식 1에 따라 산출할 수 있다.
[식 1]
Ac (ppm) = {Ec2/(Mw2/F)} - {Ec1/(Mw1/F)}
상기 식 1에서, Ac는 분석 대상 기체 중에 포함되는 아세틸렌의 양(단위: ppm)이고, Ec1은 분석 개시 전 측정된 전기전도도(단위: mho), Mw1은 이민기(imine group)의 분자량(단위: g/mol)이고, Ec2는 분석 개시 후에 측정된 전기전도도(단위: mho), Mw2는 아민기(amine group)의 분자량(단위: g/mol), F는 패러데이 상수(Faraday constant)(단위: C/mol)이다.
또한, 상기 식 1에서, '분석 개시 전'은 분석대상기체(G)가 수화 반응부(100)내로 유입되기 전 상태를 의미할 수 있고, '분석 개시 후'는 분석대상기체(G)가 수화 반응부(100)내로 유입된 상태 또는 전기전도도 측정부(200)에서 광원에 의해 상기 아민기와 아세트알데히드의 반응을 개시된 상태를 의미할 수 있다.
일 구체예에서, 상기 아민기를 포함하는 실란화합물이 N-(2-아미노에틸)아미노프로필트리메톡시실란(N-(2-aminoethyl)aminopropyltrimethoxylsilane)인 경우, 패러데이 상수 F는 96485 (C/mol), Mw1은 이민기 분자량 265.29 (g/mol), Mw2는 아민기 분자량 237.29 (g/mol)이고, 상기 정량분석부(300)에서 상기 분석 대상 기체(G) 중에 포함된 아세틸렌의 양은 하기 [식 1A]와 같이 산출될 수 있다.
[식 1A]
Ac (ppm) = (Ec2 / 0.002459) - (Ec1 / 0.002750)
상기 식 1A에서, Ac는 분석 대상 기체 중에 포함되는 아세틸렌의 양(단위: ppm)이고, Ec1은 전 측정된 전기전도도(단위: mho), Ec2는 후에 측정된 전기전도도(단위: mho)이다. 또한, 상기 식 1A에서, 0.002459 (mg/mC)는 237.29 / 96485 = 0.002459 로 산출되는 값이고, 0.002750는 (mg/mC)는 265.29 / 96485 = 0.002750 로 산출되는 값이다.
본 발명의 지중케이블용 아세틸렌 분석 장치에 의해 환산 가능한 분석 대상 기체(G) 중에 포함된 아세틸렌의 양의 최저 검출 한계는 구체적으로 약 10 ppm 이하 예를 들면, 10 ppm, 5 ppm, 1 ppm, 0.1 ppm일 수 있다. 이러한 경우, 장치를 휴대화하여 현장에 미세하게 확산되어 있는 검출 시료를 우수한 감도로 진단하기에 유리하다.
본 발명의 지중케이블용 아세틸렌 분석 장치에 의해 아세틸렌 가스 분석이 가능한 상기 분석 대상 기체의 최소양은 약 5mL 이상, 예를 들면, 5 mL, 10 mL, 15 mL, 20 mL, 25 mL, 30 mL, 35 mL, 40 mL, 45mL, 50 mL 이상일 수 있다. 이러한 경우, 장치를 휴대화하여 현장에서 채집된 소량의 검출 시료를 통해 이상을 진단하기에 유리하다.
본 발명의 다른 구현예는 분석 대상 기체를 아세틸렌 수화 촉매와 접촉시켜 발생하는 아세트알데히드를 이용하여, 분석 대상 기체 중에 포함된 아세틸렌의 양을 산출하는 지중케이블용 아세틸렌 가스 분석 방법에 관한 것이다. 또한, 이러한 아세틸렌 가스 분석 방법은 전술한 아세틸렌 가스 분석 장치를 이용하여 수행될 수 있다.
상기 아세틸렌 가스 분석 방법은 (a) 분석 대상 기체를 아세틸렌 수화 촉매 수용액과 접촉시켜 발생하는 아세트알데히드를 포집하고, (b) 포집된 아세트알데히드를 아민기를 포함하는 실란화합물로 표면이 코팅된 ZnO 나노 크리스탈과 반응시켜, 상기 아민기와 아세트알데히드의 반응에 의해 발생하는 전기전도도의 변화량을 측정하고, (c) 상기 전기전도도의 변화량으로 분석 대상 기체 중에 포함된 아세틸렌의 양을 산출하는 것을 포함한다.
구체적으로, 상기 수화 반응은 약 70℃ 내지 약 90℃에서 수행될 수 있다. 상기 온도 범위 내에서, 분석 대상 기체(G) 중의 아세틸렌이 아세트알데히드로 변환되는 효율이 매우 우수하여, 분석 장치의 감도를 향상시킴으로써 검출 한계를 낮출 수 있다.
보다 구체적으로, 상기 수화 반응 온도는 약 75℃ 내지 약 85℃, 예를 들면, 75±0.1℃, 76±0.1℃, 77±0.1℃, 78±0.1℃, 79±0.1℃, 80±0.1℃, 81±0.1℃, 82±0.1℃, 83±0.1℃, 84±0.1℃, 85±0.1℃로 조절될 수 있다. 상기 온도 범위 내에서, 분석 대상 기체 중의 아세틸렌이 아세트알데히드로 변환되는 효율이 더욱 향상될 수 있다.
구체적으로, 상기 아세틸렌 수화 촉매 수용액은 [Ru(EDTA-H)Cl]2H2O 촉매를 0.5 mM 내지 2.0 mM의 농도로 함유하는 것일 수 있다. 이러한 경우, 분석 대상 기체 중의 아세틸렌이 아세트알데히드로 변환되는 효율이 매우 우수하여, 검출 한계를 낮추고, 이상 진단에 요구되는 최저 분석 대상 기체의 양을 저감할 수 있다.
구체적으로, 상기 아세틸렌 가스 분석 방법은 ZnO 나노 크리스탈 표면에 코팅된 아민기를 포함하는 실란화합물과 아세트알데히드의 반응에 의해 발생하는 전기전도도 변화량을 측정한다.
보다 구체적으로, 상기 아세틸렌 가스 분석 방법은 아세트알데히드에 의해 상기 아민기(amine)가 이민(imine)기로 가역적으로 반응함에 의해 발생하는 전기전도도 변화량을 측정한다.
구체적으로, 상기 아민기를 포함하는 실란화합물은 N-(2-아미노에틸)아미노프로필트리메톡시실란(N-(2-aminoethyl)aminopropyltrimethoxylsilane)일 수 있다. 이러한 경우, ZnO 나노 크리스탈과 상기 아민기를 포함하는 실란화합물의 결합력 및 전기전도도 전달성이 우수하여 아세틸렌 가스 분석 방법의 감도를 더욱 향상시키고 검출 정밀도를 높일 수 있다.
상기 아민기와 아세트알데히드의 반응은 광원에 의해 개시될 수 있다.
본 발명의 지중케이블용 아세틸렌 분석 방법은 분석 대상 기체 중에 포함된 아세틸렌의 양을 하기 식 1에 따라 산출할 수 있다.
[식 1]
Ac (ppm) = {Ec2/(Mw2/F)} - {Ec1/(Mw1/F)}
상기 식 1에서, Ac는 분석 대상 기체 중에 포함되는 아세틸렌의 양(단위: ppm)이고, Ec1은 분석 개시 전 측정된 전기전도도(단위: mho), Mw1은 이민기(imine group)의 분자량(단위: g/mol)이고, Ec2는 분석 개시 후에 측정된 전기전도도(단위: mho), Mw2는 아민기(amine group)의 분자량(단위: g/mol), F는 패러데이 상수(Faraday constant)(단위: C/mol)이다.
본 발명의 지중케이블용 아세틸렌 분석 방법에 의해 환산 가능한 분석 대상 기체(G) 중에 포함된 아세틸렌의 양의 최저 검출 한계는 구체적으로 약 10 ppm 이하 예를 들면, 10 ppm, 5 ppm, 1 ppm, 0.1 ppm일 수 있다. 이러한 경우, 현장에 미세하게 확산되어 있는 검출 시료를 우수한 감도로 진단하기에 유리하다.
본 발명의 지중케이블용 아세틸렌 분석 방법에 의해 아세틸렌 가스 분석이 가능한 상기 분석 대상 기체의 최소양은 약 5mL 이상, 예를 들면, 5 mL, 10 mL, 15 mL, 20 mL, 25 mL, 30 mL, 35 mL, 40 mL, 45mL, 50 mL 이상일 수 있다. 이러한 경우, 현장에서 채집된 소량의 검출 시료를 통해 이상을 진단하기에 유리하다.
실시예
이하, 본 발명의 바람직한 실시예를 통해 본 발명의 구성 및 작용을 더욱 상세히 설명하기로 한다. 다만, 하기 실시예는 본 발명의 이해를 돕기 위한 것으로, 본 발명의 범위가 하기 실시예에 한정되지는 않는다. 여기에 기재되지 않은 내용은 이 기술분야에서 숙련된 자이면 충분히 기술적으로 유추할 수 있는 것이므로 그 설명을 생략하기로 한다.
실시예 1
내부에 아세틸렌 수화 촉매 수용액을 수용할 수 있는 이중벽의 용기, 상기 용기 내에 구비된 히터, 상기 용기와 연결되어 내부로 분석 대상 기체를 주입하는 질량유량조절계, 상기 용기의 내부에 구비되어 기체만을 선택적으로 포집할 수 있는 기체 투과막, 및 아세틸렌 수화 촉매 수용액의 배출을 제어하여 용기 내의 압력을 유지하는 배출구를 포함하는 수화 반응부를 준비하였다.
상기 수화 반응부와 연결부를 통해 연결되어 아세트알데히드를 포함하는 분석 대상 기체가 유입되도록 연결하고, 아민기를 포함하는 실란화합물로 표면이 코팅된 ZnO 나노 크리스탈이 내면에 설치되고, 상기 ZnO 나노 크리스탈과 접속된 전기전도도 측정기 및, 상기 아민기를 포함하는 실란화합물로 표면이 코팅된 ZnO 나노 크리스탈의 표면에 광원을 조사할 수 있는 광원을 포함하는 전기전도도 측정부를 준비하였다.
상기 전기전도도 측정부에 연결되어, 측정된 전기전도도 변화량을 분석 대상 기체 중에 포함된 아세틸렌의 양으로 산출하여 표시하는 정량분석부를 준비하였다.
상기 수화 반응부, 전기전도도 측정부 및 정량분석부를 기능적으로 연결하여 아세틸렌 가스 분석 장치를 구성하였다.
상기 수화 반응부 내에 증류수 50 mL를 채우고 피스톤을 이용하여 내부에 공기가 없도록 유지한 후, [Ru(EDTA-H)Cl]2H2O 촉매를 0.5 mM의 농도가 되는 양으로 투입하였으며, 히터를 이용하여 촉매 수용액의 온도를 80±0.1℃, 압력을 1 atm, 분석 대상 기체 유입 속도를 20mL/min 로 제어하였다.
상기 실시예 1의 아세틸렌 가스 분석 장치를 이용하여 아세틸렌 1 ppm 의 모사환경 내에서의 아세틸렌 검출 가능 여부를 확인하였다.
실시예 2 내지 12
모사환경 내의 아세틸렌 농도, 촉매 수용액의 농도, 반응 압력 및 반응 온도를 하기 표 1과 같이 변화시킨 것을 제외하고, 상기 실시예 1과 동일한 장치를 이용하여 동일한 방법으로 아세틸렌 검출을 실시하였다.
검출 실시 후 실시예 2 내지 12의 장치 내의 촉매 수용액을 분석하여 수화율을 확인하였다. 결과는 하기 표 2에 나타내었다.
촉매 수용액의 농도(mM) 반응 온도(℃) 압력(atm) 모사환경 내 아세틸렌의 농도 (ppm)
실시예 1 0.5 80 1 1
실시예 2 0.5 80 1 150
실시예 3 1 80 1 150
실시예 4 1.5 80 1 150
실시예 5 2 80 1 150
실시예 6 1 80 0.4 150
실시예 7 1 80 0.8 150
실시예 8 1 80 1.3 150
실시예 9 1 80 1.5 150
실시예 10 1 60 1 150
실시예 11 1 70 1 150
실시예 12 1 80 1 150
수화율(M hr-1)
실시예 2 0.78 × 103
실시예 3 1.51 × 103
실시예 4 2.07 × 103
실시예 5 2.42 × 103
실시예 6 0.34 × 103
실시예 7 0.72 × 103
실시예 8 1.22 × 103
실시예 9 1.54 × 103
실시예 10 0.77 × 103
실시예 11 1.23 × 103
실시예 12 1.52 × 103
비교예 1
테들러 백에 아세틸렌 1 ppm 미만의 모사환경에서 채취한 기체 시료를 샘플링 하였다. 실험실에 구비된 가스크로마토그래프(GC) 장치의 검출 한계 향상을 위해 가스 유량과 sample loop를 조정하고, 채취해 온 시료를 가스크로마토그래프 기기로 주입할 수 있도록 태들러백 샘플러를 설치하였다. 질량유량조절계와 출력 컨트롤러를 추가로 설치하여 샘플로부터 주입되는 유량을 조절하고, 샘플은 GC의 운영 프로그램에 의해 일정시간(약 30초) 동안만 시료를 주입하고 자동 차단되도록 제어하여 시료의 소비량을 최소화 하도록 한다. 질량유량조절계는 태들러백 샘플러에서 유입된 시료를 설정된 값(50cc/min)으로 주입되도록 조절하였다.
비교예 2
확산식 검출기(NEW COSMOS 사, XP-3160)의 검출한계 및 최저 분석 대상 기체량을 확인하고, 이를 이용하여 아세틸렌 1 ppm 미만의 모사환경 내에서의 아세틸렌 검출 가능 여부를 확인하였다.
비교예 3
흡입식 검출기(Honeywell 사, MiniMaxX4)의 검출한계 및 최저 분석 대상 기체량을 확인하고, 이를 이용하여 아세틸렌 1 ppm 미만의 모사환경 내에서의 아세틸렌 검출 가능 여부를 확인하였다.
검출한계(ppm) 최저 분석 대상 기체량(L) 아세틸렌 농도 1 ppm현장 검출 가능 여부 경제성(만원)
실시예 1 0.1 0.01 500 (장치 구성 비용)
비교예 1 0.1 0.1 × 8000 (기기 비용)
비교예 2 10,000 1~10 × 200
비교예 3 1~10 1~10 × 1000
(부호의 설명)
100: 수화 반응부
200: 전기전도도 측정부
300: 정량분석부

Claims (18)

  1. 아세틸렌 수화 촉매 수용액을 내부에 수용하고, 분석 대상 기체를 아세틸렌 수화 촉매 수용액 내로 통과시켜 분석 대상 기체 중의 아세틸렌을 아세트알데히드로 수화시키는 수화 반응부;
    상기 수화 반응부와 연결되어 아세트알데히드가 내부로 유입되고, 아민기를 포함하는 실란화합물로 표면이 코팅된 ZnO 나노 크리스탈이 내면에 설치되어 상기 ZnO 나노 크리스탈의 표면과 아세트알데히드의 반응에 의해 발생하는 전기전도도의 변화량을 측정하는 전기전도도 측정부; 및
    측정된 전기전도도 값을 분석 대상 기체 중에 포함된 아세틸렌의 양으로 산출하여 표시하는 정량분석부;를 포함하는 지중케이블용 아세틸렌 가스 분석 장치.
  2. 제1항에 있어서,
    상기 수화 반응부는 아세틸렌 수화 촉매 수용액의 온도를 약 70℃ 내지 약 90℃로 조절할 수 있는 히터를 포함하는 지중케이블용 아세틸렌 가스 분석 장치.
  3. 제1항에 있어서,
    상기 수화 반응부는 아세틸렌 수화 촉매 수용액 내로 주입되는 분석 대상 기체의 유입량을 제어하는 질량유량조절계를 포함하는 지중케이블용 아세틸렌 가스 분석 장치.
  4. 제1항에 있어서,
    상기 아세틸렌 수화 촉매 수용액은 [Ru(EDTA-H)Cl]2H2O 촉매를 약 0.5 mM 내지 약 2.0 mM의 농도로 함유하는 것인 지중케이블용 아세틸렌 가스 분석 장치.
  5. 제1항에 있어서,
    상기 수화 반응부는 내부에 아세틸렌 수화 촉매 수용액을 수용할 수 있는 용기, 상기 용기 내에 구비되어 아세틸렌 수화 촉매 수용액의 온도를 조절할 수 있는 히터, 상기 용기에 수용된 아세틸렌 수화 촉매 수용액 내부로 분석 대상 기체를 주입하는 질량유량조절계, 상기 용기의 내부에 구비되어 기체만을 선택적으로 포집할 수 있는 기체 투과막, 및 아세틸렌 수화 촉매 수용액의 배출을 제어하여 용기 내의 압력을 유지하는 배출구를 포함하는 지중케이블용 아세틸렌 가스 분석 장치.
  6. 제5항에 있어서,
    상기 기체 투과막과 연결되어 기체 투과막의 축 방향 이동을 제어할 수 있는 피스톤을 포함하는 지중케이블용 아세틸렌 가스 분석 장치.
  7. 제1항에 있어서,
    상기 아민기를 포함하는 실란화합물은 N-(2-아미노에틸)아미노프로필트리메톡시실란인 지중케이블용 아세틸렌 가스 분석 장치.
  8. 제1항에 있어서,
    상기 전기전도도 측정부는 상기 아민기와 아세트알데히드의 반응을 개시할 수 있는 광원을 포함하는 지중케이블용 아세틸렌 가스 분석 장치.
  9. 제1항에 있어서,
    상기 전기전도도 측정부는 아민기를 포함하는 실란화합물로 표면이 코팅된 ZnO 나노 크리스탈과 접속되어 전기전도도 변화량을 측정할 수 있는 전기전도도 측정기를 포함하는 지중케이블용 아세틸렌 가스 분석 장치.
  10. 분석 대상 기체를 아세틸렌 수화 촉매와 접촉시켜 발생하는 아세트알데히드를 이용하여, 분석 대상 기체 중에 포함된 아세틸렌의 양을 산출하는 아세틸렌 가스 분석 방법.
  11. 제10항에 있어서,
    상기 아세틸렌 가스 분석 방법은
    (a) 분석 대상 기체를 아세틸렌 수화 촉매 수용액과 접촉시켜 발생하는 아세트알데히드를 포집하고,
    (b) 포집된 아세트알데히드를 아민기를 포함하는 실란화합물로 표면이 코팅된 ZnO 나노 크리스탈과 반응시켜, 상기 아민기와 아세트알데히드의 반응에 의해 발생하는 전기전도도의 변화량을 측정하고,
    (c) 상기 전기전도도의 변화량으로 분석 대상 기체 중에 포함된 아세틸렌의 양을 산출하는 것을 포함하는 아세틸렌 가스 분석 방법.
  12. 제11항에 있어서,
    상기 수화는 약 70℃ 내지 약 90℃에서 수행되는 것인 아세틸렌 가스 분석 방법.
  13. 제11항에 있어서,
    상기 아세틸렌 수화 촉매 수용액은 [Ru(EDTA-H)Cl]2H2O 촉매를 약 0.5 mM 내지 약 2.0 mM의 농도로 함유하는 것인 아세틸렌 가스 분석 방법.
  14. 제11항에 있어서,
    상기 아민기를 포함하는 실란화합물은 N-(2-아미노에틸)아미노프로필트리메톡시실란인 아세틸렌 가스 분석 방법.
  15. 제11항에 있어서,
    상기 아민기와 아세트알데히드의 반응은 광원에 의해 개시되는 것인 아세틸렌 가스 분석 방법.
  16. 제11항에 있어서,
    상기 전기전도도의 변화량에 의해 환산 가능한 분석 대상 기체 중에 포함된 아세틸렌의 양의 최저 검출 한계는 0.1 ppm인 아세틸렌 가스 분석 방법.
  17. 제11항에 있어서,
    아세틸렌 가스 분석이 가능한 상기 분석 대상 기체의 최소양은 약 10mL인 아세틸렌 가스 분석 방법.
  18. 제11항에 있어서,
    상기 분석 대상 기체 중에 포함된 아세틸렌의 양은 하기 식 1에 의해 산출되는 것인 아세틸렌 가스 분석 방법:
    [식 1]
    Ac (ppm) = {Ec2/(Mw2/F)} - {Ec1/(Mw1/F)}
    상기 식 1에서, Ac는 분석 대상 기체 중에 포함되는 아세틸렌의 양(단위: ppm)이고, Ec1은 분석 개시 전 측정된 전기전도도(단위: mho), Mw1은 이민기(imine group)의 분자량(단위: g/mol)이고, Ec2는 분석 개시 후에 측정된 전기전도도(단위: mho), Mw2는 아민기(amine group)의 분자량(단위: g/mol), F는 패러데이 상수(Faraday constant)(단위: C/mol)이다.
PCT/KR2016/013995 2016-11-02 2016-11-30 지중케이블용 아세틸렌 가스 분석 장치 및 아세틸렌 가스 분석 방법 WO2018084362A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201680089457.1A CN109716118B (zh) 2016-11-02 2016-11-30 用于地下电缆的乙炔气体分析设备与分析方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0145232 2016-11-02
KR1020160145232A KR101840191B1 (ko) 2016-11-02 2016-11-02 지중케이블용 아세틸렌 가스 분석 장치 및 아세틸렌 가스 분석 방법

Publications (1)

Publication Number Publication Date
WO2018084362A1 true WO2018084362A1 (ko) 2018-05-11

Family

ID=61900586

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/013995 WO2018084362A1 (ko) 2016-11-02 2016-11-30 지중케이블용 아세틸렌 가스 분석 장치 및 아세틸렌 가스 분석 방법

Country Status (3)

Country Link
KR (1) KR101840191B1 (ko)
CN (1) CN109716118B (ko)
WO (1) WO2018084362A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005265810A (ja) * 2004-03-22 2005-09-29 Shimadzu Corp ホルムアルデヒド等の定量分析法
KR20070112014A (ko) * 2006-05-18 2007-11-22 가부시키가이샤 니혼 에이이 파워시스템즈 절연유중 가스분석장치 및 절연유중 가스의 분석방법
KR100842099B1 (ko) * 2007-01-26 2008-06-30 한국전력공사 가스 조합식 변압기 내부이상 진단 장치 및 방법
KR20140055652A (ko) * 2012-11-01 2014-05-09 한국전력공사 변압기의 유중가스 농도 측정장치 및 방법
KR20160040884A (ko) * 2014-10-06 2016-04-15 울산대학교 산학협력단 은 나노입자가 코팅된 산화아연-그래핀 하이브리드 기반 아세틸렌 가스센서 및 그의 제조방법

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003342734A (ja) * 2002-05-24 2003-12-03 Konica Minolta Holdings Inc 透明導電膜、その形成方法及びそれを有する物品
US20080176317A1 (en) * 2006-04-17 2008-07-24 Kirollos Kirollos S System and device for transformation and detection of substances
CN101768063A (zh) * 2009-11-04 2010-07-07 上海化工研究院 一种同位素13c标记乙醛的制备方法
CN102141532A (zh) * 2010-01-06 2011-08-03 林世明 包含导电性促进分子的抗体探针电感测芯片
CN103896750A (zh) * 2012-12-31 2014-07-02 天津市泰亨气体有限公司 一种采用一步法生产乙醛的方法
CN103399040B (zh) * 2013-07-17 2015-05-06 武汉工程大学 一种检测乙醛的气敏材料及用其制作气敏元件的方法
CN104198540B (zh) * 2014-09-18 2016-08-24 安徽工业大学 一种用于检测低浓度乙醛的气敏材料
EP3255411A1 (en) * 2015-02-06 2017-12-13 Kabushiki Kaisha Toshiba Gas analyzing method and gas analyzing device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005265810A (ja) * 2004-03-22 2005-09-29 Shimadzu Corp ホルムアルデヒド等の定量分析法
KR20070112014A (ko) * 2006-05-18 2007-11-22 가부시키가이샤 니혼 에이이 파워시스템즈 절연유중 가스분석장치 및 절연유중 가스의 분석방법
KR100842099B1 (ko) * 2007-01-26 2008-06-30 한국전력공사 가스 조합식 변압기 내부이상 진단 장치 및 방법
KR20140055652A (ko) * 2012-11-01 2014-05-09 한국전력공사 변압기의 유중가스 농도 측정장치 및 방법
KR20160040884A (ko) * 2014-10-06 2016-04-15 울산대학교 산학협력단 은 나노입자가 코팅된 산화아연-그래핀 하이브리드 기반 아세틸렌 가스센서 및 그의 제조방법

Also Published As

Publication number Publication date
CN109716118B (zh) 2021-10-15
KR101840191B1 (ko) 2018-03-21
CN109716118A (zh) 2019-05-03

Similar Documents

Publication Publication Date Title
CN110308216A (zh) 一种气体中微量永久性杂质气体和水的一体化分析系统及其使用方法
CN106153849A (zh) 一种多功能在线水质检测装置
CN108088892A (zh) 一种sf6的在线快速测量装置及方法
CN110320251A (zh) 一种天然气硫化氢和四氢噻吩含量的在线检测装置和检测方法
CN207649856U (zh) 一种燃料电池双极板气密性检测设备
CN105259230B (zh) 一种用于原位电化学质谱检测系统的一体化电解池系统及方法
CN207502451U (zh) 一种多通道式气体分析仪
WO2018084362A1 (ko) 지중케이블용 아세틸렌 가스 분석 장치 및 아세틸렌 가스 분석 방법
CA2164438A1 (en) Gas detection, identification and elemental and quantitative analysis system
WO2019245206A1 (ko) 감지부의 잔존 수명을 추정할 수 있는 음주측정기
CN101614650B (zh) 负压管道瓦斯取气测量装置
CN2814405Y (zh) 电除尘和余热回收系统漏风率的在线测定装置
CN211348070U (zh) 一种高精度气相色谱仪
CN205229100U (zh) 一种恶臭气体监测仪
CN110231427A (zh) 一种掺杂氧化锆固体燃料电池的色谱检测传感器
RU51228U1 (ru) Датчик газоанализатора кислорода
CN201653847U (zh) 一种角膜修复材料透氧量的测试装置
CN110806440B (zh) 一种库仑法微水仪
KR20220004597A (ko) 변압기의 유중가스 측정을 위한 가스센서 프로브
CN211317953U (zh) 一种高温燃烧水解收集装置
CN210376301U (zh) 一种同时测量高温烟气含氧量和湿度的取样装置
CN2594793Y (zh) 便携式氧化锆氧气传感器
CN211785301U (zh) 一种环境监测用的湿氧探头
KR20010039446A (ko) 변압기 이상 감시장치
CN100575947C (zh) 电化学传感器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16920751

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16920751

Country of ref document: EP

Kind code of ref document: A1