WO2018084292A1 - 密閉型電動圧縮機及びこれを用いた冷凍装置 - Google Patents
密閉型電動圧縮機及びこれを用いた冷凍装置 Download PDFInfo
- Publication number
- WO2018084292A1 WO2018084292A1 PCT/JP2017/039973 JP2017039973W WO2018084292A1 WO 2018084292 A1 WO2018084292 A1 WO 2018084292A1 JP 2017039973 W JP2017039973 W JP 2017039973W WO 2018084292 A1 WO2018084292 A1 WO 2018084292A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- bolt
- electric compressor
- stator
- mounting surface
- core
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B39/00—Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/12—Stationary parts of the magnetic circuit
- H02K1/18—Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K7/00—Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
- H02K7/14—Structural association with mechanical loads, e.g. with hand-held machine tools or fans
Definitions
- the present invention relates to a hermetic electric compressor using an outer rotor type motor and a refrigeration apparatus using the same.
- the hermetic electric compressors used in various refrigeration systems are being reduced in size and height.
- the scroll compressor is being reduced in size and height so that the system space can be used more efficiently.
- an electric motor suitable for this miniaturization and low profile for example, as shown in Patent Document 1, an outer rotor type motor in which a rotor rotates around the outside of a stator can be cited.
- FIG. 8 shows a longitudinal sectional view of a conventional hermetic electric compressor described in Patent Document 1. As shown in FIG. 8, an electric element 4 and a compression element 6 driven by the electric element 4 are accommodated in the sealed container 2.
- the electric element 4 includes a stator 18 formed by winding a coil 16 around a core portion 14 and a rotor 20 that rotates around the outer periphery of the stator 18.
- the rotor 20 includes a cylindrical back yoke 22 and a permanent magnet 24 attached to the inner peripheral surface thereof.
- a bearing 32 is formed on the lower surface of the compression element 6.
- the bearing 32 supports the shaft 30.
- a core receiving surface 34 to which the core portion 14 is attached is formed at the base of the bearing 32, and a screw hole 36 is formed on the surface of the core receiving surface 34.
- a seating surface 40 is formed at a position facing the core receiving surface 34 in the core portion 14. Further, a bolt mounting surface 42 is formed on the surface of the core portion 14 opposite to the seating surface 40.
- the stator 18 is fastened to the lower surface (core receiving surface 34) of the bearing 32 of the compression element 6 by bolts 44.
- the seating surface 40 of the core portion 14 in the stator 18 is in close contact with the core receiving surface 34.
- the bolt 44 is inserted from the bolt mounting surface 42 through the inside of the core portion 14 until reaching the screw hole 36 of the core receiving surface 34, and tightened with the head 46 of the bolt 44 on the bolt mounting surface 42. Thereby, the stator 18 is fixed to the compression element 6.
- the rotor 20 is connected to a shaft 30 supported by a bearing 32 via a flange plate 48.
- the outer rotor type motor having the conventional configuration has a problem that the input power increases due to an increase in iron loss.
- the seating surface 40 that is one surface (upper surface) of the core portion 14 is brought into close contact with the other surface (lower surface) on the opposite side of the seating surface 40.
- the core portion 14 (stator 18) is fixed by tightening from the bolt mounting surface 42 with the head portion 46 of the bolt 44. Therefore, a compressive stress is generated in the core portion 14 by locally tightening the bolt mounting surface 42 by the head portion 46 of the bolt 44. As a result, the iron loss increases in the core portion 14, and thus the input power increases.
- the present invention solves the above-mentioned conventional problem, and even if the bolt mounting surface of the core part is tightened with the head part of the bolt, the compressive stress generated in the core part is reduced and the increase in iron loss is suppressed or prevented. It is an object of the present invention to provide a hermetic electric compressor.
- a hermetic electric compressor includes a bearing that supports a shaft of a compression element, a core portion of a stator that is fastened with a bolt in the vicinity of the bearing, and the stator. And a inclusion sandwiched between a bolt mounting surface of the core portion and a head portion of the bolt.
- the load that the head portion of the bolt locally compresses the bolt mounting surface of the core portion by the inclusion can be dispersed.
- the compressive stress generated in the core portion can be reduced, and an increase in iron loss can be suppressed or prevented.
- an increase in input power to the electric element can be suppressed, so that a high-performance sealing is achieved.
- a type electric compressor can be realized.
- the refrigerating apparatus includes a refrigerant circuit in which a compressor, a radiator, a decompression device, and a heat absorber are connected in an annular shape by piping, and the compressor is a sealed electric compressor having the above-described configuration. It is.
- the hermetic electric compressor can suppress or prevent an increase in iron loss in the core portion, it is a high-performance one that suppresses an increase in input power to the electric element. Therefore, a high-performance refrigeration apparatus can be realized by installing such a high-performance hermetic electric compressor.
- FIG. 2 is a cross-sectional view of the hermetic electric compressor when FIG. 1 is viewed from the direction of arrow AA. It is a top view of the plate in the same Embodiment 1. It is a longitudinal cross-sectional view of the hermetic type electric compressor in Embodiment 2 of this invention.
- FIG. 5 is a sectional view of the hermetic electric compressor when FIG. 4 is viewed from the direction of arrow BB. It is a top view of the end plate in the same Embodiment 2. It is a schematic diagram of the freezing apparatus in Embodiment 3 of this invention. It is a longitudinal cross-sectional view of the conventional hermetic electric compressor.
- a hermetic electric compressor includes a bearing that supports a shaft of a compression element, a core portion of a stator that is fastened with a bolt in the vicinity of the bearing, and a rotor that rotates an outer periphery of the stator. And an inclusion sandwiched between the bolt mounting surface of the core part and the head of the bolt.
- the load that the head portion of the bolt locally compresses the bolt mounting surface of the core portion by the inclusion can be dispersed.
- the compressive stress generated in the core portion can be reduced, and an increase in iron loss can be suppressed or prevented.
- an increase in input power to the electric element can be suppressed, so that a high-performance sealing is achieved.
- a type electric compressor can be realized.
- the inclusion includes a load distribution mechanism that distributes a load that compresses the bolt mounting surface by the bolt head when the bolt is tightened. There may be.
- the load that the head portion of the bolt locally compresses the bolt mounting surface of the core portion can be further dispersed by the inclusion having the load distribution mechanism.
- produces in a core part can further be reduced, and the increase in a core loss can further be suppressed or prevented.
- an increase in input power to the electric element can be further suppressed, so that a higher performance hermetic electric compressor can be realized.
- the inclusion may be a ring-shaped plate that covers the bolt mounting surface of the core portion.
- the ring-shaped plate that covers the bolt mounting surface of the core portion further disperses the load that the bolt head locally compresses the bolt mounting surface of the core portion. Can do.
- produces in a core part can further be reduced, and the increase in a core loss can further be suppressed or prevented.
- an increase in input power to the electric element can be further suppressed, so that a higher performance hermetic electric compressor can be realized.
- the ring-shaped plate which is an inclusion can be provided very simply and cheaply by press work. Therefore, the productivity of the hermetic electric compressor can be improved. Furthermore, since the ring-shaped plate can reinforce only the bolt mounting surface, it is possible to suppress or avoid increasing the size of the stator. Thereby, the enlargement of the hermetic electric compressor can be suppressed or avoided.
- the plate may be a non-magnetic material.
- the leakage of magnetic flux passing through the core portion can be satisfactorily suppressed or prevented by making the plate a non-magnetic material. Therefore, an increase in input power to the electric element can be suppressed satisfactorily.
- the bolt may have three configurations.
- the number of bolts may be two or more. However, depending on the configuration of the electric element and the compression element, if the number of bolts is two, there is a concern that inclusions may float from the bolt mounting surface. On the other hand, if the number of bolts is increased too much, the number of bolt through holes opened in the core portion increases. The increase in the bolt through holes leads to narrowing the magnetic path of the magnetic flux passing through the core portion. In this case, there is a concern that the iron loss increases and the input power to the electric element increases. Considering these viewpoints, the number of bolts is preferably three.
- the inclusion may be an end plate that is integrally attached to the stator on the bolt mounting surface of the core portion.
- the load that the head portion of the bolt compresses the bolt mounting surface of the core portion can be further dispersed by the end plate integrally attached to the stator.
- produces in a core part can further be reduced, and the increase in a core loss can further be suppressed or prevented.
- an increase in input power to the electric element can be further suppressed, and a high-performance hermetic electric compressor can be realized.
- the electric element may be driven by an inverter at a plurality of operating frequencies.
- the copper loss greatly decreases in proportion to the square of the current as the current value decreases. This increases the rate at which iron loss affects input power.
- produces in a core part with an inclusion can be reduced, and the increase in an iron loss can be suppressed or prevented. Therefore, an increase in input power to the electric element can be further suppressed during low-speed operation. As a result, a high-performance hermetic electric compressor can be realized even at low speed operation.
- a refrigeration apparatus includes a refrigerant circuit in which a compressor, a radiator, a decompression device, and a heat absorber are connected in an annular shape by piping, and the compressor is a sealed electric compressor having the above-described configuration. .
- the hermetic electric compressor can suppress or prevent an increase in iron loss in the core portion, it is a high-performance one that suppresses an increase in input power to the electric element. Therefore, a high-performance refrigeration apparatus can be realized by installing such a high-performance hermetic electric compressor.
- FIG. 1 is a longitudinal sectional view of a hermetic electric compressor according to Embodiment 1 of the present disclosure
- FIG. 2 is a cross-sectional view of the hermetic electric compressor when FIG. 1 is viewed from the direction of arrow AA.
- FIG. 3 is a plan view of a plate which is an inclusion according to the first embodiment.
- the hermetic electric compressor according to the first embodiment is configured such that an electric element 104 and a compression element 106 are accommodated in a hermetic container 102.
- the sealed container 102 is formed, for example, by drawing a steel plate.
- the electric element 104 is driven by an inverter power source (not shown), and the compression element 106 is driven by the electric element 104.
- the driving power source of the electric element 104 is not limited to the inverter power source, and may be another known power source.
- the electric element 104 and the compression element 106 are integrally assembled to constitute the compressor main body 108.
- the compressor main body 108 is elastically supported in the sealed container 102 by a coil spring 110.
- the electric element 104 is located in the lower part in the sealed container 102
- the compression element 106 is located in the upper part in the sealed container 102. Therefore, it can be said that the compressor body 108 has the compression element 106 at the top and the electric element 104 at the bottom.
- the compression element 106 includes a cylinder block 120.
- the cylinder block 120 is formed with a cylindrical cylinder 122.
- a piston 124 is fitted in the cylinder 122 so as to reciprocate.
- a valve plate 126 is attached to the open end of the cylinder 122.
- a compression chamber 128 defined by the piston 124 and the valve plate 126 is formed in the cylinder 122.
- the cylinder block 120 has a shape that spreads in the lateral direction (a direction perpendicular to the vertical direction) within the sealed container 102.
- the cylinder 122 and the piston 124 are provided in the cylinder block 120 so as to be arranged in the lateral direction.
- the cylinder block 120 has a bearing 132 formed in the lower part thereof.
- the bearing 132 pivotally supports the main shaft portion 134a of the shaft 133 serving as a rotating shaft.
- the bearing 132 has a cylindrical shape that covers the outer periphery of the shaft 133, and extends downward from the lower surface of the cylinder block 120.
- the shaft 133 includes a main shaft portion 134a, a flange portion 134b, and an eccentric shaft portion 134c.
- the main shaft portion 134 a and the eccentric shaft portion 134 c are both arranged in the vertical direction, and the main shaft portion 134 a constitutes the lower portion of the shaft 133, and the eccentric shaft portion 134 c constitutes the upper portion of the shaft 133.
- the flange portion 134b is interposed between the main shaft portion 134a and the eccentric shaft portion 134c and is disposed in the lateral direction.
- the main shaft portion 134 a is pivotally supported by the bearing 132 of the cylinder block 120.
- a main shaft portion 134a and an eccentric shaft portion 134c are fixed to the flange portion 134b, but the respective shaft centers are different. Therefore, the flange portion 134b causes the eccentric shaft portion 134c to be eccentric (eccentric) with respect to the main shaft portion 134a.
- the eccentric shaft part 134 c is connected to the piston 124 via a connecting rod 136.
- the connecting rod 136 is rotatably attached to the eccentric shaft portion 134c. Thereby, the rotational motion of the eccentric shaft portion 134 c is converted into a reciprocating motion in the lateral direction and transmitted to the piston 124.
- the electric element 104 includes a rotor 140 and a stator 142.
- the rotor 140 rotates outside the stator 142.
- the electric element 104 is configured as an outer rotor type motor because the rotor 140 positioned outside rotates around the stator 142 positioned inside.
- the electric element 104 of the outer rotor type motor is an inverter drive type driven by an inverter power source. Such an inverter-driven outer rotor type motor is suitable for reducing the size and weight of a hermetic electric compressor.
- the rotor 140 includes a flange plate 144, a back yoke 146, and a plurality of permanent magnets 148.
- the flange plate 144 is a disk-shaped member fixed to the main shaft portion 134a. As shown in FIG. 1, most of the main shaft portion 134 a is pivotally supported by a bearing 132, but the lower end of the main shaft portion 134 a is exposed from the lower end of the bearing 132.
- a flange plate 144 is fixed to the lower end of the main shaft portion 134a.
- the back yoke 146 is a ring-shaped member fixed to the end of the flange plate 144 by welding, for example.
- the permanent magnet 148 is fixed in close contact with the inner peripheral surface of the back yoke 146.
- the stator 142 includes a core part 150 and a coil 152.
- the core part 150 is formed by stacking electromagnetic steel plates, for example.
- a coil 152 is wound around the outer periphery of the core unit 150.
- a bore hole 154 through which the bearing 132 passes is formed at the center of the core portion 150.
- a seating surface 156 is formed on one surface (upper surface) of the core portion 150 so as to face a base portion (core receiving surface 162 described later) of the bearing 132 on the lower surface of the cylinder block 120.
- a bolt mounting surface 158 is formed on the surface opposite to the seating surface 156, that is, the other surface (lower surface) of the core portion 150.
- the seating surface 156 and the bolt mounting surface 158 are surfaces located on the inner side when viewed from the coil 152.
- a plurality of bolt through holes 160 are provided around the bore hole 154 of the core portion 150.
- three bolt through holes 160 are equally provided in a circumferential shape, but the number of bolt through holes 160 is not limited to three.
- the bolt through hole 160 is a hole that penetrates from the bolt mounting surface 158 to the seating surface 156.
- the bearing 132 is provided so as to extend downward from the lower surface of the cylinder block 120.
- a portion of the lower surface of the cylinder block 120 that corresponds to the base of the bearing 132 is a core receiving surface 162.
- the core receiving surface 162 is provided at a position where the seating surface 156 of the core portion 150 faces.
- the core receiving surface 162 is provided with a plurality of bolt holes 164 on the surface. Similar to the bolt through-hole 160, three bolt holes 164 are equally provided in a circumferential shape.
- the stator 142 is arranged so that the outer periphery thereof is surrounded by the rotor 140.
- the cylindrical rotor 140 is arranged in a state where the stator 142 is inserted. Since the plurality of permanent magnets 148 are provided on the inner peripheral surface of the rotor 140 as described above, the outer periphery of the stator 142 is surrounded by the permanent magnets 148 of the rotor 140.
- the upper surface of the core portion 150 in the stator 142 is the seating surface 156 and abuts on the core receiving surface 162 on the lower surface of the cylinder block 120.
- an insulating distance is secured between the coil 152 of the stator 142 and the lower surface of the cylinder block 120 (in other words, the lower surface of the compression element 106).
- the bolt through hole 160 provided in the core portion 150 and the core receiving surface 162 are provided as shown in FIG.
- the bolt hole 164 forms one continuous hole (referred to as a “bolt insertion hole” for convenience) extending linearly in the vertical direction (vertical direction).
- a screw groove is formed on at least the inner peripheral surface of the bolt hole 164 among the bolt through hole 160 and the bolt hole 164 constituting the bolt insertion hole.
- a screw groove is also formed on the outer peripheral surface of at least the tip of the bolt 166. As described above, in the present embodiment, three bolt through holes 160 and three bolt holes 164 are formed. Therefore, a total of three bolt insertion holes are formed.
- the bolts 166 are respectively inserted into these three bolt insertion holes and screwed together.
- the head 168 of the bolt 166 is positioned on the bolt mounting surface 158 that is the lower surface of the core portion 150.
- the tip of the bolt 166 is screwed into a bolt hole 164 formed in the core receiving surface 162 of the cylinder block 120.
- the three bolts 166 are inserted into the three bolt insertion holes and screwed together, so that the seating surface 156 of the stator 142 and the core receiving surface 162 of the cylinder block 120 are in close contact with each other.
- the stator 142 is fixed by the cylinder block 120. At this time, the fixed stator 142 is coaxial with the rotor 140 located outside the stator 142.
- the upper surface (seat surface 156) of the core portion 150 and the lower surface of the cylinder block 120 (core receiving surface) so as to be coaxial with the rotor 140. 162) and the stator 142 are fixed to the cylinder block 120 with three bolts 166.
- the plate 169 is sandwiched between the head 168 of the bolt 166 and the bolt mounting surface 158 facing the head 168 as shown in FIGS. It is.
- the plate 169 has a ring shape that covers the entire surface of the bolt mounting surface 158.
- the plate 169 functions as a load distribution mechanism (a load distribution unit or a load distribution member) that distributes a load by which the head 168 of the bolt 166 compresses the bolt mounting surface 158.
- hermetic electric compressor configured as described above.
- electric element 104 when electric element 104 is energized from an inverter power supply (not shown), a current flows through stator 142. As a result, a magnetic field is generated in the coil 152 of the stator 142.
- the plurality of permanent magnets 148 of the rotor 140 are disposed on the outer periphery of the stator 142, the rotor 140 rotates when a magnetic field is generated in the stator 142.
- the rotor 140 is fixed to the main shaft portion 134a of the shaft 133 via the flange plate 144.
- the lower portion is the main shaft portion 134a and the upper portion is the eccentric shaft portion 134c, and the eccentric shaft portion 134c is eccentric with respect to the main shaft portion 134a by the flange portion 134b. Therefore, when the rotor 140 fixed to the main shaft portion 134a rotates, the shaft 133 rotates, and the rotational motion of the eccentric shaft portion 134c of the shaft 133 is transmitted as a reciprocating motion to the piston 124 via the connecting rod 136. The Accordingly, the piston 124 reciprocates in the compression chamber 128 and compresses the refrigerant in the compression chamber 128.
- the compression element 106 performs a predetermined compression motion in this way.
- a compressive load is locally applied to a surface (referred to as a “head contact surface” for convenience) on which the bolt head is in contact. Therefore, the head contact surface is deformed by tightening the bolt, and a compressive stress is generated in the lower portion of the head contact surface.
- a plate 169 is interposed as an inclusion between the head 168 of the bolt 166 and the bolt mounting surface 158 (head contact surface).
- the plate 169 functions as a load distribution mechanism. Therefore, when the bolt 166 is tightened, the compressive load generated from the head 168 of the bolt 166 is distributed by the plate 169 and transmitted to the bolt mounting surface 158.
- the bolt mounting surface 158 is the lower surface of the core portion 150 as described above. Therefore, since the plate 169 suppresses a local compressive load from being applied to the bolt mounting surface 158, the compressive stress generated in the core portion 150 is also reduced. As a result, an increase in iron loss in the core portion 150 can be suppressed or prevented. If an increase in iron loss can be suppressed or prevented, an increase in input power to the electric element 104 (outer rotor type motor) can be suppressed or reduced during operation of the hermetic electric compressor. High performance can be achieved.
- an outer rotor type in which the rotor rotates outside the stator, and an inner rotor in which the rotor rotates inside the stator is a type.
- the electric element 104 is an outer rotor type motor. Therefore, as described above, the ring-shaped plate 169 is sandwiched between the head 168 of the bolt 166 and the bolt mounting surface 158 as an inclusion. Thereby, the plate 169 functions as a load distribution mechanism, and a local compressive load by the head 168 of the bolt 166 is suppressed, and an increase in iron loss in the core portion 150 can be effectively suppressed or prevented.
- the hermetic electric compressor according to the present disclosure is preferably inverter-driven at a plurality of operating frequencies as described above.
- an inverter-driven outer rotor type motor electric element
- high-speed operation or low-speed operation can be performed at a plurality of operation frequencies.
- the input power also decreases because the rotational capability of the motor is low. Therefore, the current value input to the motor also decreases.
- the input power of a motor mainly consists of the sum of copper loss and iron loss. Since the copper loss is proportional to the square of the current value, the copper loss is greatly reduced if the current value is reduced. For this reason, during low speed operation, the ratio of iron loss to the input power increases. Therefore, if the increase in iron loss is suppressed, the effect of reducing input power can be increased.
- the specific configuration of the ring-shaped plate 169 is not particularly limited as long as the local load by the head 168 of the bolt 166 can be dispersed.
- the plate 169 (inclusion) is preferably composed of a nonmagnetic material (nonmagnetic material). If the plate 169 is a nonmagnetic material, leakage of magnetic flux passing through the core portion 150 can be suppressed or prevented. Therefore, an increase in input power in the hermetic electric compressor can be suppressed.
- the plate 169 (inclusion) is preferably made of a relatively high hardness material. Since the plate 169 is made of a material having high hardness, even when the plate 169 (inclusion) is thin, deformation of the plate 169 (inclusion) when the bolt 166 is tightened is effectively suppressed or Can be prevented. Therefore, the compressive stress generated in the core part 150 can be further reduced. In other words, the plate 169 (inclusion) preferably has a strength that does not substantially deform with a load that compresses the bolt mounting surface 158 generated when the bolt 166 is tightened.
- examples of the non-magnetic material having high hardness include stainless steel materials such as SUS304. If the ring-shaped plate 169 is made of stainless steel, not only the above-described effects can be obtained, but also the plate 169 can be manufactured easily and inexpensively by pressing. Therefore, the productivity of inclusions can be improved and the increase in cost can be suppressed.
- the ring-shaped plate 169 has a shape corresponding to the bolt mounting surface 158. Therefore, only the bolt mounting surface 158 in the core portion 150 can be reinforced. Therefore, even if the plate 169 is attached to the stator 142, it is possible to avoid or suppress an increase in the size of the stator 142. Therefore, an increase in the size of the hermetic electric compressor can be avoided or suppressed.
- the ring-shaped plate 169 itself functions as a load distribution mechanism, but the inclusion according to the present disclosure has a specific configuration as long as the inclusion is provided with the load distribution mechanism. It is not limited.
- the inclusion according to the present disclosure may have a configuration having a portion that becomes a load distribution mechanism and other portions, or a configuration in which a member that becomes a load distribution mechanism and other members are assembled (plural The structure which consists of a member of this may be sufficient.
- the three bolts 166 are used as fastening members. Yes.
- the specific number of fastening members is not limited to this, and the stator 142 can be fixed to the cylinder block 120 as long as it is two or more.
- Preferred examples of the number of bolts 166 include three. For example, if the number of bolts 166 is two, depending on the positional relationship of the bolt insertion holes, a state may occur in which the plate 169 (inclusion) is lifted from the bolt mounting surface 158 after the bolt 166 is tightened. is there.
- the number of the bolts 166 is excessively increased, the number of the bolt through holes 160 formed in the core portion 150 and the number of the bolt holes 164 formed in the core receiving surface 162 are increased. Thereby, there is a concern that the processing cost of the core part 150 and the cylinder block 120 will increase. Further, when the number of bolt through holes 160 formed in the core part 150 increases, the magnetic path of the magnetic flux passing through the core part 150 may be narrowed. If the magnetic path becomes narrow, an increase in iron loss occurs in the core 150, and as a result, there is a concern about an increase in input power of the hermetic electric compressor. Considering these, three can be cited as the preferred number of bolts 166.
- the hermetic electric compressor includes an outer rotor type electric element and a compression element driven by the electric element, and the electric element includes a rotor and a stator.
- the compression element includes a shaft and a bearing that rotatably supports the shaft, and the core portion of the stator is fixed to the bearing with a plurality of bolts so as to be coaxial with the shaft.
- the contact surface to the bearing is a seating surface and the opposite surface of the seating surface is a bolt mounting surface
- the bolt is inserted through a bolt through hole penetrating the seating surface from the bolt mounting surface.
- An inclusion (load distribution member) that is fastened to the bearing and distributes a load applied to the bolt mounting surface when the bolt is fastened between the bolt mounting surface and the bolt head. It may be any configuration that is provided.
- the local compressive load on the bolt mounting surface by the bolt head can be dispersed by the inclusion.
- produces in a core part can be reduced, the increase in the iron loss in a core part can be suppressed or prevented, As a result, the increase in the input electric power to an electrically-driven element can be suppressed. Therefore, a high-performance hermetic electric compressor can be realized.
- FIG. 4 is a longitudinal sectional view of the hermetic electric compressor according to the second embodiment of the present disclosure
- FIG. 5 is a sectional view of the hermetic electric compressor when FIG. 4 is viewed from the arrow BB direction.
- FIG. 6 is a plan view of an end plate which is an inclusion according to 2 of the present embodiment.
- the hermetic electric compressor according to the second embodiment is configured such that an electric element 204 and a compression element 206 are accommodated in a hermetic container 202.
- the sealed container 202 is formed, for example, by drawing a steel plate.
- the electric element 204 is driven by an inverter power source (not shown), and the compression element 206 is driven by the electric element 204.
- the driving power source of the electric element 204 is not limited to the inverter power source, and may be another known power source.
- the electric element 204 and the compression element 206 are integrally assembled to constitute the compressor body 208.
- the compressor body 208 is elastically supported in the sealed container 202 by a coil spring 210.
- the electric element 204 is located in the lower part in the sealed container 202
- the compression element 206 is located in the upper part in the sealed container 202. Therefore, it can be said that the compressor body 208 has the upper part as the compression element 206 and the lower part as the electric element 204.
- the compression element 206 includes a cylinder block 220.
- the cylinder block 220 is formed with a cylindrical cylinder 222.
- a piston 224 is reciprocally fitted in the cylinder 222.
- a valve plate 226 is attached to the open end of the cylinder 222.
- a compression chamber 228 defined by the piston 224 and the valve plate 226 is formed in the cylinder 222.
- the cylinder block 220 has a shape that extends in the horizontal direction (direction perpendicular to the vertical direction) within the sealed container 202.
- the cylinder 222 and the piston 224 are provided in the cylinder block 220 so as to be arranged in the lateral direction.
- the cylinder block 220 has a bearing 232 formed in the lower part thereof.
- the bearing 232 supports the main shaft portion 234a of the shaft 233 serving as a rotation shaft.
- the bearing 232 has a cylindrical shape that covers the outer periphery of the shaft 233, and extends downward from the lower surface of the cylinder block 220.
- the shaft 233 includes a main shaft portion 234a, a flange portion 234b, and an eccentric shaft portion 234c.
- the main shaft portion 234a and the eccentric shaft portion 234c are both arranged in the vertical direction.
- the main shaft portion 234a constitutes the lower portion of the shaft 233, and the eccentric shaft portion 234c constitutes the upper portion of the shaft 233.
- the flange portion 234b is interposed between the main shaft portion 234a and the eccentric shaft portion 234c and is disposed in the lateral direction.
- the main shaft portion 234a is pivotally supported by the bearing 232 of the cylinder block 220.
- the main shaft portion 234a and the eccentric shaft portion 234c are fixed to the flange portion 234b, but the respective shaft centers are different. Therefore, the flange portion 234b causes the eccentric shaft portion 234c to be eccentric (eccentric) with respect to the main shaft portion 234a.
- the eccentric shaft portion 234c is connected to the piston 224 via a connecting rod 236.
- the connecting rod 236 is rotatably attached to the eccentric shaft portion 234c. Thereby, the rotational motion of the eccentric shaft portion 234c is converted into a lateral reciprocating motion and transmitted to the piston 224.
- the electric element 204 includes a rotor 240 and a stator 242.
- the rotor 240 rotates outside the stator 242.
- the electric element 204 is configured as an outer rotor type motor because the rotor 240 positioned outside rotates around the stator 242 positioned inside.
- the electric element 204 of the outer rotor type motor is an inverter drive type driven by an inverter power source. Such an inverter-driven outer rotor type motor is suitable for reducing the size and weight of a hermetic electric compressor.
- the rotor 240 includes a flange plate 244, a back yoke 246, and a plurality of permanent magnets 248.
- the flange plate 244 is a disk-shaped member fixed to the main shaft portion 234a. As shown in FIG. 4, most of the main shaft portion 234 a is pivotally supported by a bearing 232, but the lower end of the main shaft portion 234 a is exposed from the lower end of the bearing 232.
- a flange plate 244 is fixed to the lower end of the main shaft portion 234a.
- the back yoke 246 is a ring-shaped member fixed to the end of the flange plate 244 by welding, for example.
- the permanent magnet 248 is fixed in close contact with the inner peripheral surface of the back yoke 246.
- the stator 242 includes a core part 250 and a coil 252.
- the core part 250 is formed by stacking electromagnetic steel plates, for example.
- an end plate 269 having the same planar shape as that of the electromagnetic steel plate constituting the core portion 250 is attached to the lower surface of the core portion 250.
- the end plate 269 corresponds to an inclusion according to the present disclosure.
- a coil 252 is wound around the outer periphery of the core portion 250.
- a bore hole 254 through which the bearing 232 passes is formed at the center of the core portion 250.
- a seating surface 256 is formed on one surface (upper surface) of the core portion 250 so as to face a base portion (core receiving surface 262 described later) of the bearing 232 on the lower surface of the cylinder block 220.
- a bolt mounting surface 258 is formed on the surface opposite to the seating surface 256, that is, the other surface (lower surface) of the core portion 250.
- the seating surface 256 and the bolt mounting surface 258 are surfaces located on the inner side when viewed from the coil 252.
- the end plate 269 is attached to the lower surface of the core portion 250.
- the lower surface of the core part 250 is the bolt mounting surface 258 as described above. Therefore, the end plate 269 is attached to the bolt attachment surface 258 side of the core portion 250. In other words, the end plate 269 is stacked on the bolt mounting surface 258 of the core portion 250. Therefore, the end plate 269 is integrated with the core portion 250.
- the end plate 269 has the same planar shape as the electromagnetic steel plate constituting the core portion 250, but the thickness (plate thickness) is thicker than one electromagnetic steel plate.
- a bore hole 254 is formed in the central portion of the core portion 250 in which the end plate 269 is integrated on the lower surface (therefore, the bore hole 254 is also formed in the end plate 269).
- a plurality of bolt through holes 260 are provided around the bore hole 254 of the core portion 250. In the configuration shown in FIG. 6, three bolt through holes 260 are equally provided in a circumferential shape, but the number of bolt through holes 260 is not limited to three.
- the bolt through hole 260 is a hole penetrating from the end plate 269 stacked on the bolt mounting surface 258 to the seating surface 256.
- the bearing 232 is provided so as to extend downward from the lower surface of the cylinder block 220.
- a portion of the lower surface of the cylinder block 220 that corresponds to the base of the bearing 232 is a core receiving surface 262.
- the core receiving surface 262 is provided at a position where the seating surface 256 of the core portion 250 faces.
- the core receiving surface 262 is provided with a plurality of bolt holes 264 on the surface. Similar to the bolt through-hole 260, three bolt holes 264 are equally provided in a circumferential shape.
- the stator 242 is arranged so that the outer periphery thereof is surrounded by the rotor 240.
- the cylindrical rotor 240 is arranged so that the stator 242 is inserted therein. Since the plurality of permanent magnets 248 are provided on the inner peripheral surface of the rotor 240 as described above, the outer periphery of the stator 242 is surrounded by the permanent magnets 248 of the rotor 240.
- the upper surface of the core portion 250 in the stator 242 is the seating surface 256 and contacts the core receiving surface 262 on the lower surface of the cylinder block 220.
- an insulative distance is ensured between the coil 252 in the stator 242 and the lower surface of the cylinder block 220 (in other words, the lower surface of the compression element 206).
- the bolt through hole 260 provided in the core portion 250 and the core receiving surface 262 are provided as shown in FIG.
- the bolt hole 264 forms one continuous bolt insertion hole that extends linearly in the vertical direction (vertical direction).
- a screw groove is formed on at least the inner peripheral surface of the bolt hole 264 among the bolt through hole 260 and the bolt hole 264 constituting the bolt insertion hole.
- a screw groove is also formed on the outer peripheral surface of at least the tip of the bolt 266. As described above, in the present embodiment, three bolt through holes 260 and three bolt holes 264 are formed. Therefore, a total of three bolt insertion holes are formed.
- the bolts 266 are respectively inserted into these three bolt insertion holes and screwed together.
- the head 268 of the bolt 266 is positioned on the end plate 269. This is because the end plate 269 is laminated on the bolt mounting surface 258 which is the lower surface of the core portion 250. Further, the tip of the bolt 266 is screwed into a bolt hole 264 formed in the core receiving surface 262 of the cylinder block 220.
- the seating surface 256 of the stator 242 and the core receiving surface 262 of the cylinder block 220 are brought into close contact with each other.
- the stator 242 is fixed by the cylinder block 220.
- the fixed stator 242 is coaxial with the rotor 240 located outside the stator 242.
- the upper surface (seat surface 256) of the core portion 250 and the lower surface (core receiving surface) of the cylinder block 220 are coaxial with the rotor 240. 262) and the stator 242 are fixed to the cylinder block 220 by three bolts 266.
- an end plate 269 is provided between the head 268 of the bolt 266 and the bolt mounting surface 258 facing the head 268 as shown in FIGS. It is sandwiched. As described above, since the end plate 269 is laminated on the bolt mounting surface 258, the entire surface of the bolt mounting surface 258 is covered. When the bolt 266 is tightened, the end plate 269 functions as a load distribution mechanism (load distribution means) that distributes a load by which the head 268 of the bolt 266 compresses the bolt mounting surface 258.
- load distribution mechanism load distribution means
- the hermetic electric compressor configured as described above will be described.
- the electric element 204 when the electric element 204 is energized from an inverter power supply (not shown), a current flows through the stator 242. As a result, a magnetic field is generated in the coil 252 of the stator 242.
- the plurality of permanent magnets 248 of the rotor 240 are arranged on the outer periphery of the stator 242, the rotor 240 rotates when a magnetic field is generated in the stator 242.
- the rotor 240 is fixed to the main shaft portion 234a of the shaft 233 via the flange plate 244.
- the lower portion is the main shaft portion 234a and the upper portion is the eccentric shaft portion 234c
- the eccentric shaft portion 234c is eccentric with respect to the main shaft portion 234a by the flange portion 234b. Therefore, if the rotor 240 fixed to the main shaft portion 234a rotates, the shaft 233 rotates, and the rotational motion of the eccentric shaft portion 234c of the shaft 233 is transmitted as a reciprocating motion to the piston 224 via the connecting rod 236. The Thereby, the piston 224 reciprocates in the compression chamber 228 and compresses the refrigerant in the compression chamber 228. The compression element 206 thus performs a predetermined compression movement.
- an end plate 269 is interposed as an inclusion between the head 268 of the bolt 266 and the bolt mounting surface 258 (head contact surface). As described above, the end plate 269 functions as a load distribution mechanism. Therefore, when the bolt 266 is tightened, the compressive load generated from the head 268 of the bolt 266 is distributed by the plate 269 and transmitted to the bolt mounting surface 258.
- the bolt mounting surface 258 is the lower surface of the core portion 250 as described above, and is integrated so that the end plate 269 is laminated on the lower surface. Therefore, the end plate 269 suppresses a local compressive load from being applied to the bolt mounting surface 258, so that the compressive stress generated in the core portion 250 is also reduced. As a result, an increase in iron loss in the core part 250 can be suppressed or prevented. If an increase in iron loss can be suppressed or prevented, an increase in input power to the electric element 204 (outer rotor type motor) can be suppressed or reduced during operation of the hermetic electric compressor. High performance can be achieved.
- the hermetic electric compressor according to the present disclosure is preferably inverter-driven at a plurality of operating frequencies, as in the first embodiment. Therefore, also in the second embodiment, when the bolt 266 is tightened, the compressive load by the head 268 of the bolt 266 is dispersed and transmitted to the bolt mounting surface 258 by the end plate 269 that functions as a load distribution mechanism. . Therefore, the compressive stress generated in the core portion 250 is reduced, and an increase in iron loss can be suppressed or prevented. As a result, an increase in input power to the motor (electric element 204) during low-speed operation can be suppressed. As described above, with the configuration according to the present disclosure, it is possible to achieve higher performance more effectively particularly in an inverter-driven hermetic electric compressor.
- the specific configuration of the end plate 269 is not particularly limited as long as the local load by the head 268 of the bolt 266 can be dispersed.
- the end plate 269 that is an inclusion according to the second embodiment is preferably made of a material having relatively high hardness, like the plate 169 that is an inclusion according to the first embodiment.
- the end plate 269 has the same planar shape as the electromagnetic steel plate constituting the core part 250 and is integrally attached to the core part 250. Therefore, the end plate 269 may be a high-strength and ferromagnetic electromagnetic steel plate. A magnetic field is generated by the coil 252 wound around the core portion 250. If the end plate 269 is an electromagnetic steel plate, the cross-sectional area of the magnetic path through which the magnetic field passes can be increased. Thereby, since the increase in the iron loss in the core part 250 can be reduced, the increase in the input power during the operation can be further suppressed, so that the performance of the hermetic electric compressor is further effectively improved. be able to.
- the thickness of the end plate 269 is larger than the thickness of one electromagnetic steel plate as described above. Accordingly, even when a local compressive load is applied to the end plate 269, the deformation of the end plate 269 can be effectively suppressed or prevented when the bolt 266 is tightened. Further, in the second embodiment, the end plate 269 is integrally attached to the lower surface of the stator 242. As a result, assembly work is facilitated when the bolt 266 is tightened, so that the productivity of the hermetic electric compressor can be improved.
- the end plate 269 may be made of a stainless material such as SUS304, similarly to the plate 169.
- the end plate 269 itself functions as a load distribution mechanism, like the plate 169, but the end plate 269, which is an inclusion according to the present disclosure, also has a specific configuration as long as the end plate 269 includes the load distribution mechanism.
- Such a configuration is not particularly limited.
- the number of bolts 266 that are fastening members is not particularly limited, and may be two or more, and three is preferable.
- FIG. 7 is a schematic diagram showing an outline of a basic configuration of the refrigeration apparatus according to Embodiment 3.
- This refrigeration apparatus has a configuration in which the hermetic electric compressor described in either Embodiment 1 or 2 is mounted on a refrigerant circuit.
- the refrigeration apparatus includes a heat insulating main body 302, a partition wall 308, a refrigerant circuit 310, and the like.
- One side of the main body 302 is open, and the opening is opened and closed by a door.
- the partition wall 308 partitions the interior of the main body 302 into an article storage space 304 and a machine room 306.
- the refrigerant circuit 310 cools the inside of the storage space 304.
- the refrigerant circuit 310 includes a compressor 312, a radiator 314, a decompressor 316, a heat absorber 318, a pipe 320, and the like.
- the compressor 312, the radiator 314, the decompressor 316, and the heat absorber 318 are connected by a pipe 320 and are connected in an annular shape.
- the compressor 312 is the hermetic electric compressor described in the first or second embodiment.
- the heat absorber 318 is disposed in a storage space 304 including a blower (not shown). The heat of cooling of the heat absorber 318 is agitated so as to circulate in the storage space 304 by a blower indicated by an arrow M in FIG. Thereby, the inside of the storage space 304 is cooled.
- the refrigeration apparatus having such a configuration is equipped with the above-described hermetic electric compressor.
- This hermetic electric compressor is a high-performance one that can suppress or prevent an increase in iron loss in the core portion and can suppress an increase in input power. Therefore, the refrigeration apparatus according to Embodiment 3 can also have high performance.
- the hermetic electric compressor includes a bearing that supports the shaft of the compression element, a core portion of the stator that is fastened with a bolt in the vicinity of the bearing, and an outer periphery of the stator. And a inclusion sandwiched between a bolt mounting surface of the core portion and a head portion of the bolt.
- the configurations described in the first to third embodiments are shown as an example for carrying out the present disclosure. Therefore, it goes without saying that the configurations of the hermetic electric compressor and the refrigeration apparatus according to the present disclosure can be variously changed within the scope of achieving the object (problem) according to the present disclosure. That is, the hermetic electric compressor and the refrigeration apparatus according to the present disclosure include the hermetic electric compressor and the refrigeration apparatus using the outer rotor type motor to which the configuration based on the technical idea according to the present disclosure is applied. That's fine.
- the present invention can be widely and suitably used in the field of hermetic electric compressors, particularly in the field of hermetic electric compressors having an outer rotor type configuration.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Compressor (AREA)
- Iron Core Of Rotating Electric Machines (AREA)
- Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
Abstract
本開示に係る密閉型電動圧縮機は、圧縮要素(106)のシャフト(133)を軸支する軸受(132)と、軸受(132)の近傍にボルト(166)で締結される固定子(142)のコア部(150)と、固定子(142)の外周を回転する回転子(140)と、コア部(150)のボルト取り付け面(158)とボルト(166)の頭部(168)との間に挟み込まれた介在物、例えば、リング状のプレート(169)を備えている。これにより、ボルト(166)を締め付けたときに、介在物によってボルト(166)の頭部(168)がコア部(150)のボルト取り付け面(158)を局所的に圧縮する荷重を分散させることができる。
Description
本発明はアウターロータ型モータを用いた密閉型電動圧縮機及びこれを用いた冷凍装置に関する。
各種冷凍装置に用いられている密閉型電動圧縮機は、小型化かつ低背化が進められている。例えば、空気調和機のような冷凍装置では、システムの空間をより効率的に利用できるようにスクロール圧縮機の小型化かつ低背化が進められている。
このように密閉型電動圧縮機の小型化かつ低背化を実現するためには、駆動源となる電動機の小型化かつ低背化が必要である。この小型化かつ低背化に適した電動機としては、例えば、特許文献1に示すように、固定子の外側を回転子が回るアウターロータ型モータが挙げられる。
図8は、特許文献1に記載された従来の密閉型電動圧縮機の縦断面図を示すものである。図8に示すように、密閉容器2内には、電動要素4と、この電動要素4によって駆動される圧縮要素6とがそれぞれ収納されている。
この電動要素4は、コア部14にコイル16を巻回して構成した固定子18と、この固定子18の外周を回る回転子20とからなる。回転子20は、筒状のバックヨーク22及びその内周面に貼り付けた永久磁石24から構成されている。
圧縮要素6の下面には軸受32が形成されている。この軸受32はシャフト30を軸支する。軸受32の根元には、コア部14を取り付けるコア受け面34が形成されており、コア受け面34の表面にはねじ孔36が形成されている。
コア部14におけるコア受け面34と相対する位置には、着座面40が形成されている。また、コア部14における着座面40の反対側の面には、ボルト取り付け面42が形成されている。
固定子18は、圧縮要素6の軸受32の下面(コア受け面34)にボルト44により締結されている。固定子18におけるコア部14の着座面40は、コア受け面34に相対して密着されている。この状態で、ボルト取り付け面42からコア部14内を介してコア受け面34のねじ孔36に達するまでボルト44を挿入し、ボルト取り付け面42においてボルト44の頭部46で締め付ける。これにより、固定子18が圧縮要素6に固定される。
回転子20は、軸受32に軸支されたシャフト30にフランジプレート48を介して連結されている。
しかしながら、前記従来の構成のアウターロータ型モータでは、鉄損が増加することにより入力電力が増加するという課題が生じている。
具体的には、前記従来の構成では、前記の通り、コア部14の一方の面(上面)である着座面40を密着させて、着座面40の反対側の他方の面(下面)であるボルト取り付け面42からボルト44の頭部46で締め付けることにより、コア部14(固定子18)を固定している。そのため、ボルト44の頭部46による局所的なボルト取り付け面42の締め付けによってコア部14に圧縮応力が発生する。その結果、コア部14において鉄損が増加するため、入力電力が増加してしまう。
本発明は、前記従来の課題を解決するもので、コア部のボルト取り付け面をボルトの頭部で締め付けても、コア部に発生する圧縮応力を低減し、鉄損の増加を抑制または防止することができる、密閉型電動圧縮機を提供することを目的とする。
本発明に係る密閉型電動圧縮機は、前記の課題を解決するために圧縮要素のシャフトを軸支する軸受と、前記軸受の近傍にボルトで締結される固定子のコア部と、前記固定子の外周を回転する回転子と、前記コア部のボルト取り付け面と前記ボルトの頭部との間に挟み込まれた介在物と、を備えている構成である。
前記構成によれば、ボルトを締め付けたときに、介在物によってボルトの頭部がコア部のボルト取り付け面を局所的に圧縮する荷重を分散させることができる。これにより、コア部に発生する圧縮応力を低減し、鉄損の増加を抑制または防止することができる、その結果、電動要素への入力電力の増加を抑制することができるので、高性能の密閉型電動圧縮機を実現することができる。
また、本開示に係る冷凍装置は、圧縮機、放熱器、減圧装置、および吸熱器を配管によって環状に連結した冷媒回路を備え、前記圧縮機が、前記構成の密閉型電動圧縮機である構成である。
前記構成によれば、密閉型電動圧縮機が、コア部における鉄損の増加を抑制または防止できるため、電動要素への入力電力の増加を抑制した高性能のものである。それゆえ、このような高性能の密閉型電動圧縮機を搭載することによって、高性能の冷凍装置を実現することができる。
本発明の上記目的、他の目的、特徴、及び利点は、添付図面参照の下、以下の好適な実施態様の詳細な説明から明らかにされる。
本発明では、以上の構成により、コア部のボルト取り付け面をボルトの頭部で締め付けても、コア部に発生する圧縮応力を低減し、鉄損の増加を抑制または防止することができる、密閉型電動圧縮機を提供することができる、という効果を奏する。
本開示に係る密閉型電動圧縮機は、圧縮要素のシャフトを軸支する軸受と、前記軸受の近傍にボルトで締結される固定子のコア部と、前記固定子の外周を回転する回転子と、前記コア部のボルト取り付け面と前記ボルトの頭部との間に挟み込まれた介在物と、を備えている構成である。
前記構成によれば、ボルトを締め付けたときに、介在物によってボルトの頭部がコア部のボルト取り付け面を局所的に圧縮する荷重を分散させることができる。これにより、コア部に発生する圧縮応力を低減し、鉄損の増加を抑制または防止することができる、その結果、電動要素への入力電力の増加を抑制することができるので、高性能の密閉型電動圧縮機を実現することができる。
前記構成の密閉型電動圧縮機においては、前記介在物は、前記ボルトを締め付けたときに、前記ボルトの頭部が前記ボルト取り付け面を圧縮する荷重を分散する荷重分散機構を備えている構成であってもよい。
前記構成によれば、ボルトを締め付けたときに、荷重分散機構を備えた介在物によってボルトの頭部がコア部のボルト取り付け面を局所的に圧縮する荷重をさらに分散させることができる。これにより、コア部に発生する圧縮応力をさらに低減し、鉄損の増加をさらに抑制または防止することができる。その結果、電動要素への入力電力の増加をさらに抑制することができるので、より高性能の密閉型電動圧縮機を実現することができる。
前記構成の密閉型電動圧縮機においては、前記介在物は、前記コア部の前記ボルト取り付け面を覆うリング状のプレートである構成であってもよい。
前記構成によれば、ボルトを締め付けたときに、コア部のボルト取り付け面を覆うリング状のプレートによって、ボルトの頭部がコア部のボルト取り付け面を局所的に圧縮する荷重をさらに分散させることができる。これにより、コア部に発生する圧縮応力をさらに低減し、鉄損の増加をさらに抑制または防止することができる。その結果、電動要素への入力電力の増加をさらに抑制することができるので、より高性能の密閉型電動圧縮機を実現することができる。
また、前記構成によれば、介在物であるリング状のプレートは、プレス加工で極めて簡単かつ安価に提供することができる。それゆえ、密閉型電動圧縮機の生産性を向上することができる。さらに、リング状のプレートは、ボルト取り付け面のみを補強することができるので、固定子のサイズを大きくすることを抑制または回避することができる。これにより、密閉型電動圧縮機の大型化を抑制または回避することができる。
前記構成の密閉型電動圧縮機においては、前記プレートは非磁性体である構成であってもよい。
前記構成によれば、プレートを非磁性体にすることにより、コア部を通る磁束の漏れを良好に抑制または防止することができる。それゆえ、電動要素への入力電力の増加を良好に抑制することができる。
前記構成の密閉型電動圧縮機においては、前記ボルトは3本である構成であってもよい。
前記構成によれば、ボルトの本数が3本であることで、コア部のボルト取り付け面とボルトの頭部との間に、介在物を挟み込んだ状態を良好に実現できるとともに、鉄損の増加を抑制または回避することもできる。
軸受に固定子のコア部を固定する場合には、ボルトの本数は2本以上であればよい。ただし、電動要素および圧縮要素の構成によっては、ボルトの本数が2本であると、介在物がボルト取り付け面から浮き上がることが懸念される。一方、ボルトの本数を増やし過ぎると、コア部に開けるボルト貫通孔の数が増加する。ボルト貫通孔の増加は、コア部を通る磁束の磁路を狭くすることにつながる。この場合、鉄損が増加して電動要素への入力電力の増加が懸念される。これらの観点を考慮すれば、ボルトの本数は3本であることが好ましい。
前記構成の密閉型電動圧縮機においては、前記介在物は、前記コア部の前記ボルト取り付け面に、前記固定子と一体で装着されている端板である構成であってもよい。
前記構成によれば、ボルトを締め付けたときに、固定子に一体で装着された端板よって、ボルトの頭部がコア部のボルト取り付け面を圧縮する荷重をさらに分散させることができる。これにより、コア部に発生する圧縮応力をさらに低減し、鉄損の増加をさらに抑制または防止することができる。その結果、電動要素への入力電力の増加をさらに抑制し、高性能の密閉型電動圧縮機を実現することができる。
また、前記構成によれば、端板が固定子に一体で装着されているので、組立時の作業性を良好なものにできる。それゆえ、密閉型電動圧縮機の生産性を向上することも可能になる。
前記構成の密閉型電動圧縮機においては、前記電動要素は複数の運転周波数でインバータ駆動される構成であってもよい。
インバータ駆動では、特に低速運転であれば、電流値が減少することに伴い、電流の二乗に比例して銅損が大きく減少する。これにより、鉄損が入力電力に影響を及ぼす割合が大きくなる。前記構成によれば、介在物によりコア部に発生する圧縮応力を低減して鉄損の増加を抑制または防止することができる。それゆえ、低速運転時には、電動要素への入力電力の増加をより一層抑制することができる。その結果、低速運転でも高性能の密閉型電動圧縮機を実現することができる。
本開示に係る冷凍装置は、圧縮機、放熱器、減圧装置、および吸熱器を配管によって環状に連結した冷媒回路を備え、前記圧縮機が、前記構成の密閉型電動圧縮機である構成である。
前記構成によれば、密閉型電動圧縮機が、コア部における鉄損の増加を抑制または防止できるため、電動要素への入力電力の増加を抑制した高性能のものである。それゆえ、このような高性能の密閉型電動圧縮機を搭載することによって、高性能の冷凍装置を実現することができる。
以下、本発明の代表的な実施の形態を、図面を参照しながら説明する。なお、以下では全ての図を通じて同一又は相当する要素には同一の参照符号を付して、その重複する説明を省略する。
(実施の形態1)
図1は、本開示の実施の形態1に係る密閉型電動圧縮機の縦断面図であり、図2は、図1を矢印A-A方向から見た密閉型電動圧縮機の断面図であり、図3は、本実施の形態1に係る介在物であるプレートの平面図である。
図1は、本開示の実施の形態1に係る密閉型電動圧縮機の縦断面図であり、図2は、図1を矢印A-A方向から見た密閉型電動圧縮機の断面図であり、図3は、本実施の形態1に係る介在物であるプレートの平面図である。
[密閉型電動圧縮機の構成]
図1に示すように、本実施の形態1に係る密閉型電動圧縮機は、密閉容器102内に電動要素104および圧縮要素106が収容されて構成されている。密閉容器102は、例えば鉄板の絞り成型によって形成されている。電動要素104は、インバータ電源(図示せず)によって駆動され、圧縮要素106は電動要素104により駆動される。なお、電動要素104の駆動電源はインバータ電源に限定されず、公知の他の電源であってもよい。
図1に示すように、本実施の形態1に係る密閉型電動圧縮機は、密閉容器102内に電動要素104および圧縮要素106が収容されて構成されている。密閉容器102は、例えば鉄板の絞り成型によって形成されている。電動要素104は、インバータ電源(図示せず)によって駆動され、圧縮要素106は電動要素104により駆動される。なお、電動要素104の駆動電源はインバータ電源に限定されず、公知の他の電源であってもよい。
電動要素104および圧縮要素106は、一体的に組み立てられて圧縮機本体108を構成する。この圧縮機本体108は、コイルばね110によって密閉容器102内に弾性的に支持されている。ここで、図1に示すように、電動要素104は密閉容器102内の下部に位置し、圧縮要素106は密閉容器102内の上部に位置する。したがって、圧縮機本体108は、上部が圧縮要素106であり下部が電動要素104であるということができる。
圧縮要素106は、シリンダブロック120を備えている。このシリンダブロック120には、円筒状のシリンダ122が形成されている。シリンダ122には、ピストン124が往復自在に嵌入されている。そして、シリンダ122の開口端にはバルブプレート126が取り付けられている。これにより、シリンダ122内には、ピストン124とバルブプレート126により区画された圧縮室128が形成される。
なお、密閉容器102の上下方向を縦方向とすると、シリンダブロック120は、密閉容器102内で横方向(上下方向に直交する方向)に広がるような形状である。そして、シリンダ122およびピストン124は、横方向に配置するようにシリンダブロック120に設けられている。
また、シリンダブロック120は、その下部に軸受132が形成されている。軸受132は、回転軸となるシャフト133の主軸部134aを軸支している。本実施の形態では、図1に示すように、軸受132は、シャフト133の外周を覆うような筒状であり、シリンダブロック120の下面から下側に延伸している。
シャフト133は、主軸部134a、フランジ部134bおよび偏芯軸部134cから構成されている。主軸部134aおよび偏芯軸部134cは、いずれも縦方向に配置しており、主軸部134aがシャフト133の下部を構成し、偏芯軸部134cはシャフト133の上部を構成する。フランジ部134bは、主軸部134aと偏芯軸部134cとの間に介在し、横方向に配置される。
主軸部134aは、シリンダブロック120の軸受132に軸支されている。フランジ部134bには主軸部134aおよび偏芯軸部134cが固定されているが、それぞれの軸心は異なっている。それゆえ、フランジ部134bは、主軸部134aに対して偏芯軸部134cを偏芯(偏心)させることになる。偏芯軸部134cは、コンロッド136を介してピストン124に連結されている。コンロッド136は偏芯軸部134cに対して回転自在に取り付けられている。これにより、偏芯軸部134cの回転運動は、横方向の往復運動に変換されてピストン124に伝達される。
電動要素104は、回転子140および固定子142を備えている。回転子140が固定子142の外側を回転する。このように、本実施の形態1では、電動要素104は、外側に位置する回転子140が内側に位置する固定子142の周囲を回転するので、アウターロータ型モータとして構成されている。また、アウターロータ型モータの電動要素104は、インバータ電源により駆動されるインバータ駆動型である。このような、インバータ駆動のアウターロータ型モータは、密閉型電動圧縮機の小型化かつ軽量化に適したものである。
回転子140は、フランジプレート144、バックヨーク146、および複数の永久磁石148を備えている。フランジプレート144は、主軸部134aに固定された円盤状の部材である。図1に示すように、主軸部134aの大部分は軸受132により軸支されているが、主軸部134aの下端は軸受132の下端から露出している。この主軸部134aの下端にフランジプレート144が固定されている。バックヨーク146は、フランジプレート144の端部に例えば溶接で固定されたリング状の部材である。永久磁石148は、バックヨーク146の内周面に密着して固定されている。
固定子142は、コア部150およびコイル152を備えている。コア部150は、例えば、電磁鋼板を積層して成型されている。コア部150の外周にはコイル152が巻き回されている。
コア部150の中心部には、軸受132が貫通するボア孔154が形成されている。また、コア部150の一方の面(上面)には、シリンダブロック120の下面における軸受132の根元の部位(後述するコア受け面162)に相対する着座面156が形成されている。また、この着座面156の反対側の面すなわちコア部150の他方の面(下面)は、ボルト取り付け面158が形成されている。着座面156およびボルト取り付け面158は、コイル152から見て内側に位置する面である。
また、コア部150のボア孔154の周辺には、複数のボルト貫通孔160が設けられている。図3に示す構成では、ボルト貫通孔160は、円周状に均等に3個設けられているが、ボルト貫通孔160の数は3つに限定されない。ボルト貫通孔160は、ボルト取り付け面158から着座面156まで貫通する孔である。
前記の通り、軸受132は、シリンダブロック120の下面から下側に延伸するように設けられている。シリンダブロック120の下面において、軸受132の根元に当たる部位は、コア受け面162である。このコア受け面162は、コア部150の着座面156が相対する位置に設けられている。このコア受け面162には、その面上に複数のボルト孔164が設けられている。このボルト孔164は、ボルト貫通孔160と同様に、円周状に均等に3個設けられている。
図2に示すように、固定子142は、その外周が回転子140で囲まれるように配置されている。言い換えれば、筒状の回転子140の内部には、固定子142が挿入されるような状態で配置されている。回転子140の内周面には、前記の通り複数の永久磁石148が設けられているので、固定子142の外周は、回転子140の永久磁石148によって囲まれていることになる。
前記の通り、固定子142におけるコア部150の上面は着座面156であり、シリンダブロック120の下面のコア受け面162に当接する。この状態では、図1に示すように、固定子142におけるコイル152とシリンダブロック120の下面(言い換えれば圧縮要素106の下面)との間には、絶縁可能な距離が確保される。
コア部150の着座面156とシリンダブロック120のコア受け面162とが当接した状態では、図1に示すように、コア部150に設けられるボルト貫通孔160と、コア受け面162に設けられるボルト孔164とは、縦方向(上下方向)に直線的に延伸する一つの連続した孔(便宜上「ボルト挿入孔」と称する)を形成する。
ボルト挿入孔を構成するボルト貫通孔160およびボルト孔164のうち少なくともボルト孔164の内周面には、ねじ溝が形成されている。また、ボルト166における少なくとも先端の外周面にもねじ溝が形成されている。前記の通り、本実施の形態では、ボルト貫通孔160およびボルト孔164はそれぞれ3個形成されている。それゆえ、ボルト挿入孔も合計3個形成されることになる。
これら3個のボルト挿入孔にそれぞれボルト166を挿入して螺合する。この状態では、図2に示すように、コア部150の下面であるボルト取り付け面158に、ボルト166の頭部168が位置することになる。また、ボルト166の先端は、シリンダブロック120のコア受け面162に形成されるボルト孔164に螺合していることになる。
このように、3本のボルト166をそれぞれ3個のボルト挿入孔に挿入して螺合することにより、固定子142の着座面156とシリンダブロック120のコア受け面162とを密着させた状態で、固定子142がシリンダブロック120により固定される。このとき、固定された固定子142は、固定子142の外側に位置する回転子140と同軸になっている。
言い換えれば、コイル152とシリンダブロック120との間に絶縁距離を確保しつつ、回転子140と同軸になるように、コア部150の上面(着座面156)とシリンダブロック120の下面(コア受け面162)とを密着させた状態で、固定子142がシリンダブロック120に対して3本のボルト166により固定されている。
ここで、本実施の形態1においては、ボルト166の頭部168と、この頭部168に相対するボルト取り付け面158との間には、図1~図3に示すように、プレート169が挟み込まれている。このプレート169は、ボルト取り付け面158の全面を覆うリング状である。ボルト166を締め付けたときには、プレート169は、ボルト166の頭部168がボルト取り付け面158を圧縮する荷重を分散する荷重分散機構(荷重分散手段または荷重分散部材)として機能する。
以上のように構成された密閉型電動圧縮機について、その動作および作用について説明する。本実施の形態1に係る密閉型電動圧縮機は、電動要素104にインバータ電源(図示せず)から通電されると、固定子142に電流が流れる。これにより固定子142のコイル152に磁界が発生する。前記の通り、固定子142の外周には、回転子140の複数の永久磁石148が配置しているので、固定子142に磁界が発生することで回転子140が回転する。
回転子140は、前記の通り、シャフト133の主軸部134aに対してフランジプレート144を介して固定されている。前記の通り、下部が主軸部134aであり上部が偏芯軸部134cであり、フランジ部134bにより主軸部134aに対して偏芯軸部134cが偏芯している。それゆえ、主軸部134aに固定された回転子140が回転すれば、シャフト133が回転し、シャフト133の偏芯軸部134cの回転運動は、コンロッド136を介してピストン124に往復運動として伝達される。これにより、ピストン124は、圧縮室128内を往復運動し、圧縮室128内の冷媒を圧縮する。圧縮要素106は、このようにして所定の圧縮運動を行う。
[介在物としてのプレート]
次に、本開示に係る密閉型電動圧縮機が備える介在物としてのプレート169について、その作用および効果を説明する。
次に、本開示に係る密閉型電動圧縮機が備える介在物としてのプレート169について、その作用および効果を説明する。
一般的に、ボルトを締め付けたときには、ボルトの頭部が接する面(便宜上「頭部接触面」とする)には、局所的に圧縮荷重がかかる。それゆえ、ボルトの締め付けによって頭部接触面が変形し、この頭部接触面の下部には圧縮応力が生じる。
これに対して、本実施の形態1では、ボルト166の頭部168とボルト取り付け面158(頭部接触面)との間には、介在物としてプレート169が挟み込まれている。このプレート169は、前記の通り、荷重分散機構として機能する。それゆえ、ボルト166を締め付けたときに、ボルト166の頭部168より発生する圧縮荷重は、プレート169によって分散されて、ボルト取り付け面158に伝達される。
ボルト取り付け面158は、前記の通り、コア部150の下面である。それゆえ、プレート169により、ボルト取り付け面158に局所的に圧縮荷重がかかることが抑制されるので、コア部150に発生する圧縮応力も低減される。その結果、コア部150における鉄損の増加を抑制または防止することができる。鉄損の増加が抑制または防止できれば、密閉型電動圧縮機の運転時に電動要素104(アウターロータ型モータ)への入力電力の増加を抑制または低減することが可能になり、当該密閉型電動圧縮機の高性能化を図ることができる。
ここで、密閉型電動圧縮機のモータ構造としては、本実施の形態1のように、回転子が固定子の外側を回転するアウターロータ型と、回転子が固定子の内側を回転するインナーロータ型とが存在する。
インナーロータ型モータの場合には、磁束があまり通らない固定子の外周にボルト貫通孔が位置する。そのため、ボルトを締め付けることにより外側の固定子のコア部に発生する鉄損の増加は、電動要素への入力電力にあまり影響を及ぼすことがない。
これに対して、アウターロータ型モータの場合には、コア部の内側近傍を磁束が通る。そのため、ボルトを締め付けることにより内側の固定子のコア部に発生する鉄損の増加は、電動要素への入力電力の増加に顕著に影響を及ぼす。
本開示においては、電動要素104はアウターロータ型モータである。そこで、前記の通り、ボルト166の頭部168とボルト取り付け面158との間に、介在物としてリング状のプレート169を挟み込んでいる。これにより、プレート169が荷重分散機構として機能して、ボルト166の頭部168による局所的な圧縮荷重が抑制され、コア部150における鉄損の増加を有効に抑制または防止することができる。
また、本開示に係る密閉型電動圧縮機は、前記の通り、複数の運転周波数でインバータ駆動されるものであることが好ましい。インバータ駆動のアウターロータ型モータ(電動要素)では、複数の運転周波数により高速運転または低速運転を行うことが可能である。ここで、低速運転時は、モータの回転能力が低いため入力電力も下がる。それゆえ、モータに入力される電流値も減少する。一般に、モータの入力電力は、主に銅損および鉄損の和からなる。銅損は、電流値の2乗に比例するため、電流値が減少すれば銅損も大きく減少する。そのため、低速運転時は、入力電力に占める鉄損の割合が増えるため、鉄損の増加を抑制すると、入力電力の低減効果を大きくすることができる。
本実施の形態では、ボルト166を締め付けたときに、荷重分散機構として機能するリング状のプレート169によって、ボルト166の頭部168による圧縮荷重が分散され、ボルト取り付け面158に伝えられる。そのため、コア部150に発生する圧縮応力が低減されて鉄損の増加を抑制または防止することができる。その結果、低速運転時のモータ(電動要素104)への入力電力の増加を抑制することができる。このように、本開示に係る構成であれば、特にインバータ駆動の密閉型電動圧縮機において、より効果的に高性能化を図ることができる。
ここで、リング状のプレート169の具体的な構成は特に限定されず、ボルト166の頭部168による局所的な荷重を分散することができるものであればよい。プレート169(介在物)は、非磁性体(非磁性材料)で構成されることが好ましい。プレート169が非磁性体であれば、コア部150を通る磁束の漏れを抑制または防止することができる。それゆえ、密閉型電動圧縮機における入力電力の増加を抑制することができる。
また、プレート169(介在物)は、相対的に高硬度の材料で構成されることが好ましい。プレート169が、高硬度の材料で構成されることで、プレート169(介在物)の厚さが薄くても、ボルト166を締め付けたときの当該プレート169(介在物)の変形を有効に抑制または防止することができる。そのため、コア部150に発生する圧縮応力をより一層低減することができる。言い換えれば、プレート169(介在物)は、ボルト166を締め付けたときに生じるボルト取り付け面158を圧縮する荷重で実質的に変形しない強度を有していることが好ましい。
このように、非磁性体であり高硬度である材料としては、例えば、SUS304等のステンレス材料を挙げることができる。リング状のプレート169がステンレス製であれば、前述した作用効果が得られるだけでなく、プレス加工により容易かつ安価にプレート169を製造することができる。それゆえ、介在物の生産性を向上できるとともにコストの増加も抑制することができる。
また、リング状のプレート169は、ボルト取り付け面158に対応する形状を有している。それゆえ、コア部150におけるボルト取り付け面158のみを補強することができる。したがって、固定子142にプレート169を取り付けたとしても、固定子142のサイズを大きくすることが回避または抑制できる。それゆえ、密閉型電動圧縮機の大型化を回避または抑制することができる。
本実施の形態1では、リング状のプレート169は、それ自体が荷重分散機構として機能するが、本開示に係る介在物は、荷重分散機構を備える構成であれば、その具体的な構成は特に限定されない。例えば、本開示に係る介在物は、荷重分散機構となる部位とそれ以外の部位とを有する構成であってもよいし、荷重分散機構となる部材とそれ以外の部材とを組み立てた構成(複数の部材からなる構成)であってもよい。
なお、本実施の形態1では、前記の通り、固定子142の着座面156を、シリンダブロック120のコア受け面162に密着して固定するために、締結部材として3本のボルト166を用いている。しかしながら、締結部材の具体的な数はこれに限定されず2本以上であれば、固定子142をシリンダブロック120に固定することは可能である。
好ましいボルト166の本数としては、例えば3本を挙げることができる。例えば、ボルト166の本数が2本であると、ボルト挿入孔の位置関係によっては、ボルト166を締め付けた後にプレート169(介在物)がボルト取り付け面158から浮き上がるような状態が発生する可能性がある。
これに対してボルト166の本数を増やし過ぎると、コア部150に形成するボルト貫通孔160およびコア受け面162に形成するボルト孔164の数が増加する。これにより、コア部150およびシリンダブロック120の加工コストの上昇が懸念される。また、コア部150に形成されるボルト貫通孔160の数が増加すると、コア部150を通る磁束の磁路が狭くなる可能性がある。磁路が狭くなればコア部150に鉄損の増加が発生し、結果として密閉型電動圧縮機の入力電力の増加が懸念される。これらを考慮すれば、ボルト166の好ましい本数としては、3本を挙げることができる。
このように、本開示に係る密閉型電動圧縮機は、アウターロータ型の電動要素と、この電動要素により駆動される圧縮要素と、を備え、前記電動要素は、回転子および固定子を備え、前記圧縮要素は、シャフトおよびこれを回転可能に支持する軸受を備え、前記固定子のコア部は、前記軸受に対して前記シャフトと同軸となるように複数のボルトで固定され、前記コア部における前記軸受への当接面を着座面とし、当該着座面の対向面をボルト取り付け面としたときに、前記ボルトは、前記ボルト取り付け面から前記着座面を貫通するボルト貫通孔を介して、前記軸受に締結され、前記ボルト取り付け面と前記ボルトの頭部との間には、当該ボルトの締結時に前記ボルト取り付け面に対して加えられる荷重を分散する介在物(荷重分散部材)が設けられている構成であればよい。
前記構成によれば、介在物によってボルトの頭部によるボルト取り付け面に対する局所的な圧縮荷重を分散することができる。これにより、コア部に発生する圧縮応力を低減することができるので、コア部における鉄損の増加を抑制または防止することができる、その結果、電動要素への入力電力の増加を抑制することができるので、高性能の密閉型電動圧縮機を実現することができる。
(実施の形態2)
図4は、本開示の実施の形態2に係る密閉型電動圧縮機の縦断面図であり、図5は、図4を矢印B-B方向から見た密閉型電動圧縮機の断面図であり、図6は、本実施の形態に2に係る介在物である端板の平面図である。
図4は、本開示の実施の形態2に係る密閉型電動圧縮機の縦断面図であり、図5は、図4を矢印B-B方向から見た密閉型電動圧縮機の断面図であり、図6は、本実施の形態に2に係る介在物である端板の平面図である。
[密閉型電動圧縮機の構成]
図4に示すように、本実施の形態2に係る密閉型電動圧縮機は、密閉容器202内に電動要素204および圧縮要素206が収容されて構成されている。密閉容器202は、例えば鉄板の絞り成型によって形成されている。電動要素204は、インバータ電源(図示せず)によって駆動され、圧縮要素206は電動要素204により駆動される。なお、電動要素204の駆動電源はインバータ電源に限定されず、公知の他の電源であってもよい。
図4に示すように、本実施の形態2に係る密閉型電動圧縮機は、密閉容器202内に電動要素204および圧縮要素206が収容されて構成されている。密閉容器202は、例えば鉄板の絞り成型によって形成されている。電動要素204は、インバータ電源(図示せず)によって駆動され、圧縮要素206は電動要素204により駆動される。なお、電動要素204の駆動電源はインバータ電源に限定されず、公知の他の電源であってもよい。
電動要素204および圧縮要素206は、一体的に組み立てられて圧縮機本体208を構成する。この圧縮機本体208は、コイルばね210によって密閉容器202内に弾性的に支持されている。ここで、図4に示すように、電動要素204は密閉容器202内の下部に位置し、圧縮要素206は密閉容器202内の上部に位置する。したがって、圧縮機本体208は、上部が圧縮要素206であり下部が電動要素204であるということができる。
圧縮要素206は、シリンダブロック220を備えている。このシリンダブロック220には、円筒状のシリンダ222が形成されている。シリンダ222には、ピストン224が往復自在に嵌入されている。そして、シリンダ222の開口端にはバルブプレート226が取り付けられている。これにより、シリンダ222内には、ピストン224とバルブプレート226により区画された圧縮室228が形成される。
なお、密閉容器202の上下方向を縦方向とすると、シリンダブロック220は、密閉容器202内で横方向(上下方向に直交する方向)に広がるような形状である。そして、シリンダ222およびピストン224は、横方向に配置するようにシリンダブロック220に設けられている。
また、シリンダブロック220は、その下部に軸受232が形成されている。軸受232は、回転軸となるシャフト233の主軸部234aを軸支している。本実施の形態では、図4に示すように、軸受232は、シャフト233の外周を覆うような筒状であり、シリンダブロック220の下面から下側に延伸している。
シャフト233は、主軸部234a、フランジ部234bおよび偏芯軸部234cから構成されている。主軸部234aおよび偏芯軸部234cは、いずれも縦方向に配置しており、主軸部234aがシャフト233の下部を構成し、偏芯軸部234cはシャフト233の上部を構成する。フランジ部234bは、主軸部234aと偏芯軸部234cとの間に介在し、横方向に配置される。
主軸部234aは、シリンダブロック220の軸受232に軸支されている。フランジ部234bには主軸部234aおよび偏芯軸部234cが固定されているが、それぞれの軸心は異なっている。それゆえ、フランジ部234bは、主軸部234aに対して偏芯軸部234cを偏芯(偏心)させることになる。偏芯軸部234cは、コンロッド236を介してピストン224に連結されている。コンロッド236は偏芯軸部234cに対して回転自在に取り付けられている。これにより、偏芯軸部234cの回転運動は、横方向の往復運動に変換されてピストン224に伝達される。
電動要素204は、回転子240および固定子242を備えている。回転子240が固定子242の外側を回転する。このように、本実施の形態1では、電動要素204は、外側に位置する回転子240が内側に位置する固定子242の周囲を回転するので、アウターロータ型モータとして構成されている。また、アウターロータ型モータの電動要素204は、インバータ電源により駆動されるインバータ駆動型である。このような、インバータ駆動のアウターロータ型モータは、密閉型電動圧縮機の小型化かつ軽量化に適したものである。
回転子240は、フランジプレート244、バックヨーク246、および複数の永久磁石248を備えている。フランジプレート244は、主軸部234aに固定された円盤状の部材である。図4に示すように、主軸部234aの大部分は軸受232により軸支されているが、主軸部234aの下端は軸受232の下端から露出している。この主軸部234aの下端にフランジプレート244が固定されている。バックヨーク246は、フランジプレート244の端部に例えば溶接で固定されたリング状の部材である。永久磁石248は、バックヨーク246の内周面に密着して固定されている。
固定子242は、コア部250およびコイル252を備えている。コア部250は、例えば、電磁鋼板を積層して成型されている。さらに、本実施の形態2では、コア部250の下面には、コア部250を構成する電磁鋼板と同一の平面形状である端板269が装着されている。この端板269は、本開示に係る介在物に相当する。コア部250の外周にはコイル252が巻き回されている。
コア部250の中心部には、軸受232が貫通するボア孔254が形成されている。また、コア部250の一方の面(上面)には、シリンダブロック220の下面における軸受232の根元の部位(後述するコア受け面262)に相対する着座面256が形成されている。また、この着座面256の反対側の面すなわちコア部250の他方の面(下面)は、ボルト取り付け面258が形成されている。着座面256およびボルト取り付け面258は、コイル252から見て内側に位置する面である。
前記の通り、コア部250の下面には端板269が装着されている。コア部250の下面は、前記の通りボルト取り付け面258である。それゆえ、端板269は、コア部250におけるボルト取り付け面258側に装着されていることになる。言い換えれば、端板269は、コア部250のボルト取り付け面258に対して積層されている。それゆえ、端板269は、コア部250に一体化されている。端板269は、前記の通り、コア部250を構成する電磁鋼板と同一の平面形状であるが、その厚さ(板厚)は、1枚の電磁鋼板よりも厚くなっている。
端板269を下面で一体化したコア部250には、前記の通り、その中心部にボア孔254が形成されている(したがって、端板269にもボア孔254が形成されている)。そして、コア部250のボア孔254の周辺には、複数のボルト貫通孔260が設けられている。図6に示す構成では、ボルト貫通孔260は、円周状に均等に3個設けられているが、ボルト貫通孔260の数は3つに限定されない。ボルト貫通孔260は、ボルト取り付け面258に積層されている端板269から着座面256まで貫通する孔である。
前記の通り、軸受232は、シリンダブロック220の下面から下側に延伸するように設けられている。シリンダブロック220の下面において、軸受232の根元に当たる部位は、コア受け面262である。このコア受け面262は、コア部250の着座面256が相対する位置に設けられている。このコア受け面262には、その面上に複数のボルト孔264が設けられている。このボルト孔264は、ボルト貫通孔260と同様に、円周状に均等に3個設けられている。
図5に示すように、固定子242は、その外周が回転子240で囲まれるように配置されている。言い換えれば、筒状の回転子240の内部には、固定子242が挿入されるような状態で配置されている。回転子240の内周面には、前記の通り複数の永久磁石248が設けられているので、固定子242の外周は、回転子240の永久磁石248によって囲まれていることになる。
前記の通り、固定子242におけるコア部250の上面は着座面256であり、シリンダブロック220の下面のコア受け面262に当接する。この状態では、図4に示すように、固定子242におけるコイル252とシリンダブロック220の下面(言い換えれば圧縮要素206の下面)との間には、絶縁可能な距離が確保される。
コア部250の着座面256とシリンダブロック220のコア受け面262とが当接した状態では、図4に示すように、コア部250に設けられるボルト貫通孔260と、コア受け面262に設けられるボルト孔264とは、縦方向(上下方向)に直線的に延伸する一つの連続したボルト挿入孔を形成する。
ボルト挿入孔を構成するボルト貫通孔260およびボルト孔264のうち少なくともボルト孔264の内周面には、ねじ溝が形成されている。また、ボルト266における少なくとも先端の外周面にもねじ溝が形成されている。前記の通り、本実施の形態では、ボルト貫通孔260およびボルト孔264はそれぞれ3個形成されている。それゆえ、ボルト挿入孔も合計3個形成されることになる。
これら3個のボルト挿入孔にそれぞれボルト266を挿入して螺合する。この状態では、図5に示すように、端板269に、ボルト266の頭部268が位置することになる。これは、端板269がコア部250の下面であるボルト取り付け面258に積層されているためである。また、ボルト266の先端は、シリンダブロック220のコア受け面262に形成されるボルト孔264に螺合していることになる。
このように、3本のボルト266をそれぞれ3個のボルト挿入孔に挿入して螺合することにより、固定子242の着座面256とシリンダブロック220のコア受け面262とを密着させた状態で、固定子242がシリンダブロック220により固定される。このとき、固定された固定子242は、固定子242の外側に位置する回転子240と同軸になっている。
言い換えれば、コイル252とシリンダブロック220との間に絶縁距離を確保しつつ、回転子240と同軸になるように、コア部250の上面(着座面256)とシリンダブロック220の下面(コア受け面262)とを密着させた状態で、固定子242がシリンダブロック220に対して3本のボルト266により固定されている。
ここで、本実施の形態2においては、ボルト266の頭部268と、この頭部268に相対するボルト取り付け面258との間には、図4~図6に示すように、端板269が挟み込まれている。前記の通り、端板269は、ボルト取り付け面258に積層されているため、当該ボルト取り付け面258の全面を覆うことになる。ボルト266を締め付けたときには、端板269は、ボルト266の頭部268がボルト取り付け面258を圧縮する荷重を分散する荷重分散機構(荷重分散手段)として機能する。
以上のように構成された密閉型電動圧縮機について、その動作および作用について説明する。本実施の形態2に係る密閉型電動圧縮機は、電動要素204にインバータ電源(図示せず)から通電されると、固定子242に電流が流れる。これにより固定子242のコイル252に磁界が発生する。前記の通り、固定子242の外周には、回転子240の複数の永久磁石248が配置しているので、固定子242に磁界が発生することで回転子240が回転する。
回転子240は、前記の通り、シャフト233の主軸部234aに対してフランジプレート244を介して固定されている。前記の通り、下部が主軸部234aであり上部が偏芯軸部234cであり、フランジ部234bにより主軸部234aに対して偏芯軸部234cが偏芯している。それゆえ、主軸部234aに固定された回転子240が回転すれば、シャフト233が回転し、シャフト233の偏芯軸部234cの回転運動は、コンロッド236を介してピストン224に往復運動として伝達される。これにより、ピストン224は、圧縮室228内を往復運動し、圧縮室228内の冷媒を圧縮する。圧縮要素206は、このようにして所定の圧縮運動を行う。
[介在物としての端板]
次に、本開示に係る密閉型電動圧縮機が備える介在物としての端板269について、その作用および効果を説明する。
次に、本開示に係る密閉型電動圧縮機が備える介在物としての端板269について、その作用および効果を説明する。
本実施の形態2では、ボルト266の頭部268とボルト取り付け面258(頭部接触面)との間には、介在物として端板269が挟み込まれている。この端板269は、前記の通り、荷重分散機構として機能する。それゆえ、ボルト266を締め付けたときに、ボルト266の頭部268より発生する圧縮荷重は、プレート269によって分散されて、ボルト取り付け面258に伝達される。
ボルト取り付け面258は、前記の通り、コア部250の下面であり、この下面に対して端板269が積層するように一体化している。それゆえ、端板269により、ボルト取り付け面258に局所的に圧縮荷重がかかることが抑制されるので、コア部250に発生する圧縮応力も低減される。その結果、コア部250における鉄損の増加を抑制または防止することができる。鉄損の増加が抑制または防止できれば、密閉型電動圧縮機の運転時に電動要素204(アウターロータ型モータ)への入力電力の増加を抑制または低減することが可能になり、当該密閉型電動圧縮機の高性能化を図ることができる。
また、本開示に係る密閉型電動圧縮機は、前記実施の形態1と同様に、複数の運転周波数でインバータ駆動されるものであることが好ましい。それゆえ、本実施の形態2においても、ボルト266を締め付けたときに、荷重分散機構として機能する端板269によって、ボルト266の頭部268による圧縮荷重が分散されてボルト取り付け面258に伝えられる。そのため、コア部250に発生する圧縮応力が低減されて鉄損の増加を抑制または防止することができる。その結果、低速運転時のモータ(電動要素204)への入力電力の増加を抑制することができる。このように、本開示に係る構成であれば、特にインバータ駆動の密閉型電動圧縮機において、より効果的に高性能化を図ることができる。
ここで、端板269の具体的な構成は特に限定されず、ボルト266の頭部268による局所的な荷重を分散することができるものであればよい。本実施の形態2に係る介在物である端板269は、前記実施の形態1に係る介在物であるプレート169と同様に、相対的に高硬度の材料で構成されることが好ましい。
本実施の形態2では、端板269は、コア部250を構成する電磁鋼板と同一の平面形状であり、コア部250に一体的に装着されている。それゆえ、端板269は、高強度かつ強磁性体の電磁鋼板であればよい。コア部250に巻かれたコイル252により磁界が発生するが、端板269が電磁鋼板であれば、この磁界が通過する磁路の断面積を広げることができる。これにより、コア部250における鉄損の増加を減少することができるので、運転時における入力電力の増加をさらに抑制することができるので、より一層効果的に密閉型電動圧縮機を高性能化することができる。
また、端板269を荷重分散機構としてより良好に機能させる観点では、前述したように、1枚の電磁鋼板の厚さよりも端板269の板厚が大きい方が好ましい。これにより、端板269に局所的な圧縮荷重が加えられても、ボルト266を締め付けたときに当該端板269の変形を有効に抑制または防止することができる。さらに、本実施の形態2では、端板269が固定子242の下面に一体的に装着されている。これにより、ボルト266を締め付けるときに組立作業が容易になるため、密閉型電動圧縮機の生産性を向上することができる。
なお、端板269は、プレート169と同様にSUS304等のステンレス材料で構成されてもよい。また、端板269は、プレート169と同様に、それ自体が荷重分散機構として機能するが、本開示に係る介在物である端板269も、荷重分散機構を備える構成であれば、その具体的な構成は特に限定されない。さらに、本実施の形態2においても、締結部材であるボルト266の本数は特に限定されず、2本以上であればよく、3本が好ましい。
(実施の形態3)
本実施の形態3では、前記実施の形態1または前記実施の形態2のいずれかで説明した密閉型電動圧縮機を用いて構成した冷凍装置の一例について説明する。図7は、本実施の形態3に係る冷凍装置の基本構成の概略を示す模式図である。この冷凍装置は、実施の形態1または2のいずれかで説明した密閉型電動圧縮機を冷媒回路に搭載した構成である。
本実施の形態3では、前記実施の形態1または前記実施の形態2のいずれかで説明した密閉型電動圧縮機を用いて構成した冷凍装置の一例について説明する。図7は、本実施の形態3に係る冷凍装置の基本構成の概略を示す模式図である。この冷凍装置は、実施の形態1または2のいずれかで説明した密閉型電動圧縮機を冷媒回路に搭載した構成である。
図7に示すように、本実施の形態3に係る冷凍装置は、断熱性の本体302、区画壁308、冷媒回路310等を備えている。本体302は、その一面が開口し、この開口が扉で開閉される構成されている。区画壁308は、本体302の内部を、物品の貯蔵空間304と機械室306に区画する。冷媒回路310は、貯蔵空間304内を冷却する。
冷媒回路310は、圧縮機312、放熱器314、減圧装置316、吸熱器318、および配管320等を備えている。圧縮機312、放熱器314、減圧装置316、および吸熱器318は、配管320により連結され、環状に接続されている。圧縮機312は、前記実施の形態1または2で説明した密閉型電動圧縮機である。吸熱器318は、送風機(図示せず)を備える貯蔵空間304内に配置されている。吸熱器318の冷却熱は、図7において矢印Mで示す、送風機によって貯蔵空間304内を循環するように撹拌される。これにより、貯蔵空間304内は冷却される。
このような構成の冷凍装置は、前述した密閉型電動圧縮機を搭載している。この密閉型電動圧縮機は、コア部における鉄損の増加を抑制または防止し、入力電力の増加を抑制することができる高性能のものである。それゆえ、本実施の形態3に係る冷凍装置も、高性能のものとすることができる。
このように、本開示に係る密閉型電動圧縮機は、圧縮要素のシャフトを軸支する軸受と、前記軸受の近傍にボルトで締結される固定子のコア部と、前記固定子の外周を回転する回転子と、前記コア部のボルト取り付け面と前記ボルトの頭部との間に挟み込まれた介在物と、を有する構成である。
これにより、ボルトを締め付けたときに、介在物によってボルトの頭部がコア部のボルト取り付け面を局所的に圧縮する荷重を分散させることができる。これにより、コア部に発生する圧縮応力を低減され、鉄損の増加を防止することができる。その結果、電動要素への入力電力の増加を抑制して、高性能の密閉型電動圧縮機とすることができる。また、このような密閉型電動圧縮機を備える冷凍装置も高性能なものとることができる。
なお、前記実施の形態1~3で説明した構成は、本開示を実施する一例として示したものである。それゆえ、本開示に係る目的(課題)を達成する範囲で、本開示に係る密閉型電動圧縮機および冷凍装置の構成を種々変更することが可能であることは言うまでもない。すなわち、本開示に係る密閉型電動圧縮機および冷凍装置は、本開示に係る技術思想に基づく構成が適用された、アウターロータ型モータを用いた密閉型電動圧縮機および冷凍装置を含むものであればよい。
上記説明から、当業者にとっては、本発明の多くの改良や他の実施形態が明らかである。従って、上記説明は、例示としてのみ解釈されるべきであり、本発明を実行する最良の態様を当業者に教示する目的で提供されたものである。本発明の精神を逸脱することなく、その構造及び/又は機能の詳細を実質的に変更できる。
本発明は、密閉型電動圧縮機の分野、特に、アウターロータ型の構成を有する密閉型電動圧縮機の分野に広く好適に用いることができる。
102、202:密閉容器
104、204:電動要素
106、206:圧縮要素
132、232:軸受
133、233:シャフト
140、240:回転子
142、242:固定子
150、250:コア部
152、254:コイル
158、258:ボルト取り付け面
166、266:ボルト
168、268:頭部
169:プレート(介在物、荷重分散機構)
269:端板(介在物、荷重分散機構)
310:冷媒回路
312:圧縮機
314:放熱器
316:減圧装置
318:吸熱器
320:配管
104、204:電動要素
106、206:圧縮要素
132、232:軸受
133、233:シャフト
140、240:回転子
142、242:固定子
150、250:コア部
152、254:コイル
158、258:ボルト取り付け面
166、266:ボルト
168、268:頭部
169:プレート(介在物、荷重分散機構)
269:端板(介在物、荷重分散機構)
310:冷媒回路
312:圧縮機
314:放熱器
316:減圧装置
318:吸熱器
320:配管
Claims (8)
- 圧縮要素のシャフトを軸支する軸受と、
前記軸受の近傍にボルトで締結される固定子のコア部と、
前記固定子の外周を回転する回転子と、
前記コア部のボルト取り付け面と前記ボルトの頭部との間に挟み込まれた介在物と、
を備えている、
密閉型電動圧縮機。 - 前記介在物は、前記ボルトを締め付けたときに、前記ボルトの頭部が前記ボルト取り付け面を圧縮する荷重を分散する荷重分散機構を備えている、
請求項1記載の密閉型電動圧縮機。 - 前記介在物は、前記コア部の前記ボルト取り付け面を覆うリング状のプレートである、
請求項1または2に記載の密閉型電動圧縮機。 - 前記プレートは非磁性体である、
請求項3に記載の密閉型電動圧縮機。 - 前記ボルトは3本である、
請求項3に記載の密閉型電動圧縮機。 - 前記介在物は、前記コア部の前記ボルト取り付け面に、前記固定子と一体で装着されている端板である、
請求項1または2に記載の密閉型電動圧縮機。 - 前記電動要素は複数の運転周波数でインバータ駆動される、
請求項1から6のいずれか1項に記載の密閉型電動圧縮機。 - 圧縮機、放熱器、減圧装置、および吸熱器を配管によって環状に連結した冷媒回路を備え、
前記圧縮機が、請求項1から7のいずれか1項に記載の密閉型電動圧縮機である、
冷凍装置。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016216846A JP2021042670A (ja) | 2016-11-07 | 2016-11-07 | 密閉型電動圧縮機及びこれを用いた冷凍装置 |
JP2016-216846 | 2016-11-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018084292A1 true WO2018084292A1 (ja) | 2018-05-11 |
Family
ID=62076565
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/039973 WO2018084292A1 (ja) | 2016-11-07 | 2017-11-06 | 密閉型電動圧縮機及びこれを用いた冷凍装置 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2021042670A (ja) |
WO (1) | WO2018084292A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020100527A1 (ja) * | 2018-11-16 | 2020-05-22 | パナソニックIpマネジメント株式会社 | モータ、圧縮機、およびモータの製造方法 |
CN113107807A (zh) * | 2020-01-09 | 2021-07-13 | Lg电子株式会社 | 马达组装体及包括其的往复式压缩机 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2022196701A1 (ja) | 2021-03-16 | 2022-09-22 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09209935A (ja) * | 1996-01-31 | 1997-08-12 | Sanyo Electric Co Ltd | 圧縮機におけるステータの固定方法 |
JP2005057819A (ja) * | 2003-08-01 | 2005-03-03 | Nissan Motor Co Ltd | 回転電機 |
JP2005304106A (ja) * | 2004-04-06 | 2005-10-27 | Nippon Steel Corp | 低鉄損内転型電動機 |
-
2016
- 2016-11-07 JP JP2016216846A patent/JP2021042670A/ja active Pending
-
2017
- 2017-11-06 WO PCT/JP2017/039973 patent/WO2018084292A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09209935A (ja) * | 1996-01-31 | 1997-08-12 | Sanyo Electric Co Ltd | 圧縮機におけるステータの固定方法 |
JP2005057819A (ja) * | 2003-08-01 | 2005-03-03 | Nissan Motor Co Ltd | 回転電機 |
JP2005304106A (ja) * | 2004-04-06 | 2005-10-27 | Nippon Steel Corp | 低鉄損内転型電動機 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020100527A1 (ja) * | 2018-11-16 | 2020-05-22 | パナソニックIpマネジメント株式会社 | モータ、圧縮機、およびモータの製造方法 |
EP3883091A4 (en) * | 2018-11-16 | 2021-12-29 | Panasonic Intellectual Property Management Co., Ltd. | Motor, compressor, and motor manufacturing method |
CN113107807A (zh) * | 2020-01-09 | 2021-07-13 | Lg电子株式会社 | 马达组装体及包括其的往复式压缩机 |
US11421669B2 (en) * | 2020-01-09 | 2022-08-23 | Lg Electronics Inc. | Motor assembly and reciprocation compressor including motor assembly |
Also Published As
Publication number | Publication date |
---|---|
JP2021042670A (ja) | 2021-03-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018084292A1 (ja) | 密閉型電動圧縮機及びこれを用いた冷凍装置 | |
EP2818709B1 (en) | Linear compressor | |
CN203906210U (zh) | 线性压缩机 | |
US9677553B2 (en) | Linear compressor | |
US9726164B2 (en) | Linear compressor | |
US10128710B2 (en) | Linear compressor and linear motor for a linear compressor | |
KR100856845B1 (ko) | 선형 모터 및 이 선형 모터를 포함하는 선형 압축기 | |
TW201407932A (zh) | 凸極型線性馬達及具有凸極型線性馬達之往復式雙活塞壓縮機 | |
WO2003076805A1 (en) | Constructive arrangement for a resonant compressor | |
KR20160000651A (ko) | 리니어 압축기 및 리니어 압축기의 흡입장치 | |
EP3324515A1 (en) | Rotor, electric motor, compressor, and refrigerator/air conditioning equipment | |
WO2016006229A1 (ja) | 密閉型圧縮機およびそれを用いた冷凍装置 | |
US20050112000A1 (en) | Linear motor and linear compressor having the same | |
KR102122096B1 (ko) | 리니어 압축기 | |
WO2017213134A1 (ja) | 電動機、それを用いた密閉型電動圧縮機、並びに冷凍装置 | |
KR102122097B1 (ko) | 리니어 압축기 | |
JPH0555030A (ja) | 線形アクチユエータ | |
WO2019155998A1 (ja) | 圧縮機およびそれを用いた冷凍装置 | |
KR102056733B1 (ko) | 리니어 압축기 | |
JP2014202070A (ja) | 密閉型圧縮機および冷凍装置 | |
KR20150040053A (ko) | 리니어 압축기 | |
JP2002295366A (ja) | リニア振動アクチュエータ | |
JP2019075954A (ja) | 密閉型電動圧縮機 | |
CN117477887A (zh) | 一种磁通反向型无弹簧双边直线振荡电机 | |
KR200165731Y1 (ko) | 압축기의 고정자 구조 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17866652 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17866652 Country of ref document: EP Kind code of ref document: A1 |