WO2018084289A1 - 蛍光体含有フィルムおよびバックライトユニット - Google Patents

蛍光体含有フィルムおよびバックライトユニット Download PDF

Info

Publication number
WO2018084289A1
WO2018084289A1 PCT/JP2017/039951 JP2017039951W WO2018084289A1 WO 2018084289 A1 WO2018084289 A1 WO 2018084289A1 JP 2017039951 W JP2017039951 W JP 2017039951W WO 2018084289 A1 WO2018084289 A1 WO 2018084289A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphor
layer
film
resin layer
meth
Prior art date
Application number
PCT/JP2017/039951
Other languages
English (en)
French (fr)
Inventor
達也 大場
浩史 遠山
健一 柿下
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2018549100A priority Critical patent/JP6750026B2/ja
Priority to CN201780068835.2A priority patent/CN109964155B/zh
Priority to KR1020197012702A priority patent/KR102191226B1/ko
Publication of WO2018084289A1 publication Critical patent/WO2018084289A1/ja
Priority to US16/401,408 priority patent/US10948767B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/015Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction
    • G02F1/017Structures with periodic or quasi periodic potential variation, e.g. superlattices, quantum wells
    • G02F1/01791Quantum boxes or quantum dots
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133614Illuminating devices using photoluminescence, e.g. phosphors illuminated by UV or blue light
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/36Micro- or nanomaterials

Definitions

  • the present invention relates to a phosphor-containing film containing a phosphor that emits fluorescence when irradiated with excitation light, and a backlight unit including the phosphor-containing film as a wavelength conversion member.
  • LCD Liquid Crystal Display
  • Quantum dots that emit light after converting the wavelength of incident light in order to improve the light utilization efficiency and improve color reproducibility with the power saving of LCD backlight It has been proposed to use a wavelength conversion layer containing a light emitting material (phosphor).
  • a quantum dot is an electronic state in which the direction of movement is limited in all three dimensions, and when a semiconductor nanoparticle is three-dimensionally surrounded by a high potential barrier, the nanoparticle is quantum. It becomes a dot.
  • Quantum dots exhibit various quantum effects. For example, the “quantum size effect” in which the density of states of electrons (energy level) is discretized appears. According to this quantum size effect, the absorption wavelength and emission wavelength of light can be controlled by changing the size of the quantum dot.
  • quantum dots are dispersed in a resin or the like, and are used, for example, as a quantum dot film that performs wavelength conversion and disposed between a backlight and a liquid crystal panel.
  • excitation light enters the film containing quantum dots from the backlight, the quantum dots are excited and emit fluorescence.
  • white light can be realized by using quantum dots having different light emission characteristics and causing each quantum dot to emit light having a narrow half-value width of red light, green light, or blue light. Since fluorescence by quantum dots has a narrow half-value width, it is possible to make white light obtained by appropriately selecting a wavelength high brightness and to have a design excellent in color reproducibility.
  • the wavelength conversion member is configured to protect the resin layer including the quantum dots by laminating barrier films (gas barrier films) on both main surfaces of the resin layer including the quantum dots that are the wavelength conversion layers including the quantum dots. Composed.
  • the “resin layer including quantum dots” is also referred to as “quantum dot layer”.
  • the barrier film has a configuration in which a barrier layer that exhibits gas barrier properties is formed on one surface of a support film such as a resin film.
  • Patent Document 1 discloses a quantum point including a quantum point that converts wavelength of excitation light to generate wavelength converted light, a wavelength conversion unit that includes a dispersion medium that disperses the quantum point, and a sealing member that seals the wavelength conversion unit.
  • a point wavelength converter is described, a wavelength conversion part is arranged between two sealing sheets that are sealing members, and the wavelength conversion part is heated and thermally adhered around the wavelength conversion part of the sealing sheet. Sealing is described.
  • Patent Document 2 discloses a color conversion layer (phosphor layer) that converts at least a part of the color light emitted from the light source part into another color light, and an impermeable sealing sheet that seals the color conversion layer. And a second bonding layer provided in a frame shape so as to surround the planar shape of the color conversion layer along the outer periphery of the phosphor layer.
  • a color conversion sheet (phosphor sheet) is described in which the two bonding layers are made of an adhesive material having a water vapor barrier property to prevent water from entering the color conversion layer.
  • the quantum dot layer (wavelength conversion layer including quantum dots) used in the LCD is a thin film of about 50 to 350 ⁇ m. It was very difficult to coat the entire end face of such a very thin film with a sealing sheet such as a barrier film, and there was a problem that productivity was poor. Such a problem occurs not only in quantum dots but also in a phosphor-containing film including a phosphor that reacts with oxygen and deteriorates.
  • a coating process and a curing process are sequentially performed on a long film by a roll-to-roll method, and laminated.
  • a method of cutting to a desired size after forming the structure is preferred.
  • the phosphor-containing layer is exposed to the outside air at the cut end face, and thus measures against oxygen intrusion from the cut end face are necessary. .
  • Patent Document 3 includes two substrates, a sealing material that forms a plurality of separated regions, and a fluorescent member that includes a fluorescent material that is disposed in the separated regions.
  • An optical component having a phosphor-containing layer laminated between substrates is described. It is described that the optical component can be cut at the sealing material portion so that the sealed state of the fluorescent member can be maintained even when the optical component is cut.
  • the structure of the phosphor-containing layer is configured to have a resin layer that forms a plurality of separated regions (concave portions) and a fluorescent region that is disposed in the separated regions, formation of irregularities in the resin layer It was found that there was a problem that when the mold was used, the mold and the barrier film were in contact with each other, the barrier layer of the barrier film was destroyed, and moisture and oxygen were liable to enter.
  • the present invention has been made in view of the above circumstances, and in a film containing a phosphor such as a quantum dot, deterioration of the phosphor can be suppressed, and durability performance caused by a defect in the barrier layer It is an object of the present invention to provide a phosphor-containing film capable of suppressing deterioration of the light, and a backlight unit including the phosphor-containing film as a wavelength conversion member.
  • a fluorescent region includes a phosphor that reacts with oxygen to deteriorate when exposed to oxygen, and a binder, and the first substrate film is supported.
  • an inorganic layer provided on the side of the support film facing the phosphor-containing layer.
  • the resin layer has an elastic modulus of 0.5 to 10 GPa, and the bottom thickness of the concave portion of the resin layer is 0. It is found that the above-mentioned problems can be solved by being 1 to 20 ⁇ m. , It has led to the completion of the present invention. That is, it has been found that the above-described problem can be achieved by the following configuration.
  • the fluorescent region includes a phosphor that reacts with oxygen and deteriorates when exposed to oxygen, and a binder.
  • the first base film includes a support film, and an inorganic layer provided on the surface side facing the phosphor-containing layer of the support film,
  • the resin layer has an elastic modulus of 0.5 to 10 GPa, A phosphor-containing film in which the bottom thickness of the concave portion of the resin layer is 0.1 to 20 ⁇ m.
  • the second base film includes a support film and an inorganic layer provided on the surface of the support film facing the phosphor-containing layer, and the inorganic layer of the second base film.
  • the phosphor-containing layer is any one of (1) to (5), wherein the phosphor region is surrounded by a resin layer and a phosphor region containing a phosphor that has deteriorated through exposure to oxygen. 2.
  • a backlight unit comprising a wavelength conversion member comprising the phosphor-containing film according to any one of (1) to (6), and at least one of a blue light-emitting diode and an ultraviolet light-emitting diode.
  • a film containing a phosphor such as quantum dots can prevent damage to the barrier layer of the barrier film even when a mold is used when forming irregularities, and suppress deterioration of the phosphor due to oxygen or the like.
  • a phosphor-containing film that can be produced, and a backlight unit that includes the phosphor-containing film as a wavelength conversion member can be provided.
  • FIG. 1 is a perspective view schematically showing an example of the phosphor-containing film of the present invention.
  • FIG. 2 is a plan view of the phosphor-containing film of FIG.
  • FIG. 3 is a cross-sectional view of the phosphor-containing film of FIG.
  • FIG. 4 is a diagram for explaining the depth h of the concave portion of the fluorescent region and the width t between adjacent fluorescent regions.
  • FIG. 5 is a plan view showing another example of the plan view pattern of the fluorescent region.
  • FIG. 6 is a plan view showing another example of the plan view pattern of the fluorescent region.
  • FIG. 7 is a diagram for explaining a method of specifying the outline of the fluorescent region.
  • FIG. 8A is a plan view schematically showing another example of the phosphor-containing film of the present invention.
  • FIG. 8B is a cross-sectional view taken along the line BB of FIG. 8A.
  • 8C is a cross-sectional view taken along the line CC of FIG. 8A.
  • FIG. 9A is a plan view schematically showing another example of the phosphor-containing film of the present invention.
  • 9B is a cross-sectional view taken along line BB in FIG. 9A.
  • FIG. 10A is a plan view schematically showing another example of the phosphor-containing film of the present invention.
  • 10B is a cross-sectional view taken along line BB of FIG. 10A.
  • FIG. 11 is a schematic view for explaining an example of a method for producing the phosphor-containing film of the present invention.
  • FIG. 11 is a schematic view for explaining an example of a method for producing the phosphor-containing film of the present invention.
  • FIG. 12 is a schematic diagram for explaining an example of a method for producing the phosphor-containing film of the present invention.
  • FIG. 13 is a schematic cross-sectional view of an example of a backlight unit including a phosphor-containing film as a wavelength conversion member.
  • FIG. 14 is a schematic cross-sectional view of an example of a liquid crystal display device including a backlight unit.
  • FIG. 15 is a conceptual diagram for explaining an example of the phosphor-containing film of the present invention.
  • FIG. 16 is a conceptual diagram for explaining another example of the phosphor-containing film of the present invention.
  • a phosphor-containing film according to the present invention and a backlight unit including the phosphor-containing film will be described below with reference to the drawings.
  • the scale of each part is appropriately changed and shown for easy visual recognition.
  • a numerical range represented by using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • (meth) acrylate is used in the meaning of at least one of acrylate and methacrylate, or any one of them. The same applies to “(meth) acryloyl” and the like.
  • the phosphor-containing film of the present invention has an impermeability to oxygen, a resin layer in which a plurality of discrete recesses are formed, and a plurality of fluorescences in the recesses formed in the resin layer
  • a phosphor-containing layer having a region;
  • the fluorescent region includes a phosphor that reacts with oxygen and deteriorates when exposed to oxygen, and a binder.
  • the first base film includes a support film, and an inorganic layer provided on the surface side facing the phosphor-containing layer of the support film,
  • the resin layer has an elastic modulus of 0.5 to 10 GPa
  • the phosphor-containing film has a bottom thickness of the concave portion of the resin layer of 0.1 to 20 ⁇ m.
  • FIG. 1 is a perspective view schematically showing an example of the phosphor-containing film 1 according to the present invention
  • FIG. 2 is a plan view of FIG. 1
  • FIG. 3 is a cross-sectional view of FIG.
  • the 2nd base film 20 is shown with a broken line
  • the fluorescent substance content layer 30 is shown with a continuous line for description.
  • the phosphor-containing film 1 of the present embodiment includes a first substrate film 10 and a region 35 including a phosphor 31 that reacts with oxygen and deteriorates when exposed to oxygen on the first substrate film 10.
  • the “region 35 including the phosphor 31” is also referred to as “fluorescent region 35”
  • the “resin layer 38 having an impermeability to oxygen” may also be referred to as “resin layer 38”.
  • the phosphor-containing layer 30 has a resin layer 38 and a fluorescent region 35, and a plurality of concave portions are discretely formed in the resin layer 38, and the fluorescent region 35 is in the concave portion of the resin layer 38. It has an arranged configuration.
  • the first base film On the first base film,... A plurality of regions including phosphors are discretely arranged” means that the first base is as shown in FIG. 1 and FIG.
  • the plurality of fluorescent regions 35 When observed (plan view) from a direction perpendicular to the film surface (main surface) of the film 10, the plurality of fluorescent regions 35 are not in contact with each other in the two-dimensional direction along the film surface of the first base film 10. It means that they are arranged in isolation.
  • the main surface is the maximum surface of the sheet-like material.
  • the fluorescent region 35 has a cylindrical shape (disk shape) and is surrounded by a resin layer 38 that is impermeable to oxygen in a two-dimensional direction along the film surface of the first base film 10. These are isolated from each other, and the entry of oxygen from the two-dimensional direction along the film surface of the first base film 10 into each fluorescent region 35 is blocked.
  • “having oxygen impermeability” means that the oxygen permeability is 10 cc / (m 2 ⁇ day ⁇ atm) or less.
  • the oxygen permeability of the resin layer having an impermeability to oxygen is more preferably 1 cc / (m 2 ⁇ day ⁇ atm) or less, more preferably 1 ⁇ 10 ⁇ 1 cc / (m 2 ⁇ day ⁇ atm).
  • “having impermeability” and “having barrier properties” are used synonymously. That is, in this specification, the gas barrier means impermeable to gas (gas), and the water vapor barrier means impermeable to water vapor. A layer that is impermeable to both oxygen and water vapor is also referred to as a “barrier layer”.
  • the fluorescent regions 35 are discretely arranged in a two-dimensional direction. Therefore, as shown in FIG. 2, when the phosphor-containing film 1 is assumed to be a part of a long film, the fluorescent region that has become the cut portion, regardless of where it is cut linearly as shown by the broken line
  • the fluorescent regions 35 other than 35 can be kept sealed by being surrounded by the resin layer 38.
  • the fluorescent region 35 that has been cut and exposed to the outside air loses its original function as a phosphor, but the deactivated fluorescent region becomes a resin layer that protects the fluorescent region 35 that is not exposed to the outside air from the outside air. .
  • the first base film 10 is laminated on one main surface of the phosphor-containing layer 30, and the support film 11 and the barrier layer 12 are provided. Including. As conceptually shown in FIGS. 15 and 16, the barrier layer 12 is provided on the surface of the support film 11 facing the phosphor-containing layer 30 and has an inorganic layer 52.
  • the bottom thickness b of the recess of the resin layer 38 is 0.1 to 20 ⁇ m.
  • the thickness b of the bottom of the concave portion of the resin layer 38 is 0.1 to 20 ⁇ m”, in other words, for example, the barrier layer 12 includes the organic layer 50 as shown in FIG.
  • the distance from the bottom surface of the recess of the resin layer 38, that is, the fluorescent region 35 filled in the recess, is 0.1 to 20 ⁇ m.
  • the thickness b of the bottom of the concave portion of the resin layer 38 is “0.1 to 20 ⁇ m” means from the surface of the inorganic layer 52, which is the surface of the barrier layer 12 on the phosphor-containing layer 30 side, to the bottom of the concave portion of the resin layer 38, that is, the fluorescent region 35 filled in the concave portion. It indicates that the distance is 0.1 to 20 ⁇ m.
  • the distance between the inorganic layer on the side of the first base film in contact with the phosphor-containing layer and the top surface of the concave portion of the resin layer is 0.01 to 10 ⁇ m.
  • the depth of the concave portion of the resin layer 38 in which the fluorescent region 35 is disposed is set to h, and between the adjacent fluorescent regions 35.
  • a coating process and a curing process are sequentially performed on a long film by a roll-to-roll method.
  • a method of cutting to a desired size after forming the laminated structure is preferable.
  • the phosphor-containing film is cut as a configuration in which layers containing fluorescent materials such as quantum dots (fluorescent regions) are discretely arranged in a plurality of regions and a resin layer serving as a sealing material is arranged around the fluorescent regions. At this time, it is considered that the sealed state of the fluorescent member is maintained even when the optical component is cut by cutting at the resin layer portion.
  • fluorescent materials such as quantum dots (fluorescent regions)
  • a resin layer serving as a sealing material is arranged around the fluorescent regions.
  • a phosphor-containing film in which regions containing phosphors are discretely arranged has a resin layer on the surface on the inorganic layer side of a barrier film (gas barrier film) having an inorganic layer constituting the barrier layer.
  • a curable coating film using a mold, forming a plurality of discrete regions (recesses) in the coating film, then curing the coating film to form a resin layer having a plurality of recesses, It is formed by filling the fluorescent region and laminating and sticking a barrier film on the resin layer.
  • the configuration of the phosphor-containing layer has a configuration having a resin layer forming a plurality of separated regions (concave portions) and a fluorescent region arranged in the separated regions.
  • a resin layer forming a plurality of separated regions (concave portions) and a fluorescent region arranged in the separated regions.
  • the bottom thickness b of the concave portion of the resin layer 38 that is in contact with the first base film 10 is 0.1 to 20 ⁇ m.
  • the depth h of the concave portion of the resin layer 38 is 1 to 100 ⁇ m, and the width t between adjacent fluorescent regions is 5 to 300 ⁇ m.
  • the mold and the support film 11 are formed when the recess (unevenness) of the resin layer 38 is formed. ), And as a result, the end portion could be sealed while maintaining the barrier property of the wavelength conversion member main surface. Further, it has been clarified that the decrease in the quantum yield of the wavelength conversion member due to the light absorption of the resin layer 38 can be minimized by setting the thickness b of the bottom of the concave portion of the resin layer 38 to 20 ⁇ m or less.
  • the thickness b of the bottom of the recess of the resin layer 38 is more preferably 0.5 to 15 ⁇ m, and further preferably 1 to 10 ⁇ m. Further, the thickness b of the bottom of the concave portion of the resin layer 38 is determined by cutting the concave portion of the phosphor-containing film with a microtome to form a cross section, and observing the section with an SEM or the like. Ten samples are extracted, and the distance between the bottom surface of the recess and the inorganic layer is measured to obtain an average value.
  • the second substrate film 20 is laminated on the main surface of the phosphor-containing layer 30 on the side opposite to the first substrate film 10 and is supported.
  • a film 21 and a barrier layer 22 are included.
  • the second base film 20 also has the barrier layer 22 provided on the surface of the support film 21 on the phosphor-containing layer 30 side and has an inorganic layer. preferable.
  • the second base film 20 is not in contact with the phosphor-containing layer 30 side surface and the top surface of the concave portion of the resin layer 38. This is preferable from the viewpoint of increasing the adhesion between the material film 20 and the phosphor-containing layer 30.
  • the surface of the second base film 20 on the phosphor-containing layer 30 side is the surface of the barrier layer 22, and the barrier layer 22 includes an organic layer, an inorganic layer, and an organic layer as shown in FIG.
  • the barrier layer 22 is composed of an organic layer and an inorganic layer as shown in FIG. 16, it is an inorganic surface layer. It is the surface of the layer.
  • the distance between the surface of the second base film 20 on the phosphor-containing layer 30 side and the top surface of the concave portion of the resin layer 38 is preferably 0.01 to 10 ⁇ m, more preferably 0.05 to 4 ⁇ m. Preferably, 0.1 to 4 ⁇ m is more preferable.
  • the second base film 20 and the phosphor-containing layer are secured. It is possible to ensure sufficient adhesion to the substrate 30, and the distance between the surface of the second base film 20 on the phosphor-containing layer 30 side and the top surface of the concave portion of the resin layer 38 is set to a certain distance. By setting it as the following, the sealing capability by the resin layer 38 is maintained, and reliability can be ensured.
  • the distance between the surface of the second base film 20 on the phosphor-containing layer 30 side and the top surface of the concave portion of the resin layer 38 is the microtome of the top surface (location that is not a concave portion) of the phosphor-containing film.
  • a cross section is formed by cutting with, and the section is observed with an SEM or the like, ten top surfaces are extracted, measured, and obtained as an average value.
  • the fluorescent region 35 or other material may be used between the surface of the second base film 20 on the phosphor-containing layer 30 side and the top surface of the concave portion of the resin layer 38.
  • a material other than the fluorescent region 35 for example, a pressure-sensitive adhesive layer or a thermocompression bonding sealant layer is provided on the second base film 20, and a resin layer 38 is formed on the first base film 10. It is also possible to bond the second base film 20 after the filling, and press-bond by performing a heat press or the like.
  • the first base film 10 includes the inorganic layer 52, and the thickness b of the bottom of the concave portion of the resin layer 38 is 0.1 to 20 ⁇ m.
  • the second base film 20 includes an inorganic layer, and the surface of the second base film 20 and the top surface of the concave portion of the resin layer 38 are not in contact with each other.
  • the depth h of the recess is 1 to 100 ⁇ m, and the width t between adjacent fluorescent regions is 5 to 300 ⁇ m.
  • the height (film thickness) of the fluorescent region 35 can reach the target chromaticity when the thickness is 1 ⁇ m or more. However, since the influence of the film thickness unevenness is increased, it is preferable to have a certain film thickness or more. On the other hand, if the thickness of the fluorescent region 35 is too large, the amount of light absorption increases, and the initial luminance may decrease. From these viewpoints, the height of the fluorescent region 35, that is, the depth h of the concave portion is preferably 1 to 100 ⁇ m, more preferably 5 to 80 ⁇ m, and further preferably 10 to 50 ⁇ m.
  • the width t between the adjacent fluorescent regions 35 that is, the width t of the resin layer 38 portion is thinned so that the resin layer 38 cannot be visually recognized.
  • a certain width or more is required from the viewpoint of strength and durability. From these viewpoints, the width t between adjacent fluorescent regions 35, that is, the width t of the resin layer 38 is preferably 5 to 300 ⁇ m, more preferably 10 to 200 ⁇ m, and further preferably 15 to 100 ⁇ m.
  • the depth h of the recessed part formed in the resin layer 38 cut disconnects the recessed part of a fluorescent substance containing film with a microtome, forms a cross section, and irradiates a fluorescent substance containing layer with excitation light, and light-emits a fluorescent substance.
  • the cross section is observed using a confocal laser microscope, 10 concave portions are extracted, the depth is measured, and the average value is obtained.
  • the width t between adjacent fluorescent regions 35 (that is, the thickness of the resin layer 38) is the shortest distance between adjacent fluorescent regions 35, and the phosphor-containing layer is irradiated with excitation light to cause the phosphor to emit light.
  • the surface is observed using a confocal laser microscope or the like, and at least 20 resin layer 38 portions between adjacent fluorescent regions 35 are extracted, and the width is read.
  • the ratio of the area of the fluorescent region 35 to the entire area of the phosphor-containing layer 30 in a plan view is such that the phosphor-containing layer is irradiated with excitation light to emit the phosphor, and a confocal laser microscope or the like is used.
  • the surface of the phosphor-containing film was observed from directly above, and for a 30 mm ⁇ 30 mm visual field (five places), the ratio (the fluorescent region) of the total area of the fluorescent region and the area of the visual field (geometric area) Area / geometric area), and the average value in each field of view (5 locations) was calculated as the area ratio.
  • the fluorescent region 35 is configured by the phosphor 31 being dispersed in the binder 33.
  • the effect of the present invention is particularly remarkable when the oxygen permeability of the binder 33 is greater than the permeability of the resin layer 38 filled between the fluorescent regions 35, that is, when the binder 33 is likely to transmit oxygen. is there.
  • the 1st base film 10 and the 2nd base film 20 are what is impermeable with respect to oxygen, and as shown in FIG. 3, a support film (11, 21), Those having a laminated structure with barrier layers (12, 22) having an impermeability to oxygen are preferable.
  • the size and arrangement pattern of the fluorescent region 35 are not particularly limited, and may be appropriately designed according to desired conditions. In the design, consideration is given to a geometrical constraint for arranging the fluorescent regions apart from each other in plan view, an allowable value of the width of the non-light emitting region generated at the time of cutting, and the like. In addition, for example, when a printing method is used as one of the methods for forming a fluorescent region to be described later, there is a restriction that printing cannot be performed unless the individual occupied area (in plan view) is a certain size or more. Furthermore, the shortest distance (width t) between adjacent fluorescent regions needs to be a distance that can achieve an oxygen permeability of 10 cc / (m 2 ⁇ day ⁇ atm) or less. In view of these, a desired shape, size, and arrangement pattern may be designed.
  • the fluorescent region 35 is cylindrical and circular in plan view, but the shape of the fluorescent region 35 is not particularly limited.
  • the fluorescent region 35 may be a quadrangle in a plan view as shown in FIG. 5, or a hexagonal shape in a plan view as shown in FIG. May be.
  • the bottom surface of the cylinder or the polygonal column is disposed in parallel to the base film surface, but the bottom surface is not necessarily disposed in parallel to the base film surface.
  • the shape of each fluorescent region 35 may be indefinite.
  • the sides of a cylinder or a polygonal column are allowed to meander as shown in the outline of FIG.
  • the fluorescent regions 35 are periodically arranged in a pattern.
  • the fluorescent regions 35 may be aperiodic as long as the desired performance is not impaired. There may be. It is preferable that the fluorescent region 35 is uniformly distributed over the entire region of the phosphor-containing layer 30 because the in-plane distribution of luminance is uniform.
  • the phosphor 31 in the fluorescent region 35 may be one type or a plurality of types.
  • the phosphor 31 in one fluorescent region 35 is one type, and among the plurality of fluorescent regions 35, a region containing the first phosphor and a region containing a second phosphor different from the first phosphor. May be arranged periodically or aperiodically. There may be three or more types of phosphors.
  • the phosphor-containing layer 30 may be configured by laminating a plurality of fluorescent regions 35 in the thickness direction of the film. Such an example will be briefly described with reference to FIGS. 8A to 10B.
  • symbol is attached
  • FIG. 8A is a schematic plan view of another example of the phosphor-containing film
  • FIG. 8B is a cross-sectional view taken along line BB in FIG. 8A
  • FIG. 8C is a cross-sectional view taken along line CC in FIG. 8A. is there.
  • the phosphor-containing film 3 shown in FIGS. 8A to 8C includes a first phosphor region 35a in which a first phosphor 31a is dispersed in a binder 33 and a first phosphor 31a in the binder 33 as a phosphor region. And a second fluorescent region 35b in which second phosphors 31b different from the above are dispersed.
  • the first fluorescent regions 35a and the second fluorescent regions 35b are alternately arranged in a plan view, and are distributed at different positions in the film thickness direction.
  • the first fluorescent region 35a is disposed on the main surface side adjacent to the second base film 20
  • the second fluorescent region 35b is disposed on the main surface side adjacent to the first base film 10
  • the first fluorescent region 35a and the second fluorescent region 35b are arranged so as not to overlap in plan view.
  • the first phosphor 31a and the second phosphor 31b are phosphors having different emission center wavelengths.
  • a phosphor having an emission center wavelength in the wavelength band of 600 to 680 nm is used as the first phosphor 31a
  • a phosphor having an emission center wavelength in the wavelength band of 520 to 560 nm is used as the second phosphor 31b.
  • the binders 33 of the first fluorescent region 35a and the second fluorescent region 35b are made of the same composition in this example, but may be made of different compositions.
  • FIG. 9A is a plan view schematically showing another example of the phosphor-containing film of the present invention
  • FIG. 9B is a sectional view taken along line BB of FIG. 9A.
  • the first fluorescent region 35a and the second fluorescent region 35b arranged at different positions in the film thickness direction partially overlap when the film surface is viewed in plan view. Is different from the phosphor-containing film 3 shown in FIGS. 8A to 8C.
  • the first fluorescent region 35a and the second fluorescent region 35b arranged at different positions in the film direction may have an overlap in plan view.
  • FIG. 10A is a plan view schematically showing another example of the phosphor-containing film of the present invention
  • FIG. 10B is a sectional view taken along line BB of FIG. 10A.
  • the phosphor-containing film 6 shown in FIGS. 10A and 10B includes a step-like fluorescent region 35 in which square columnar regions are stacked with a half-cycle shift.
  • the fluorescent region 35 is formed by dispersing a first phosphor 31 a and a second phosphor 31 b in a binder 33.
  • the second phosphor 31b and the first phosphor 31a are dispersed in the lower step portion and the upper step portion of the step-like fluorescent region 35, respectively.
  • the phosphor 31b may be mixed in the entire upper and lower staircase portion in the fluorescent region 35.
  • the phosphor-containing film of the present invention is not particularly limited in the shape of the fluorescent region 35 and the arrangement pattern thereof.
  • the fluorescent regions 35 are discretely arranged on the film surface, the phosphor 31 in the fluorescent region 35 at the cut end deteriorates, but the fluorescent regions 35 in portions other than the cut end are Since it is surrounded and sealed by the resin layer 38 that does not transmit oxygen in the direction along the film surface, it is possible to suppress performance deterioration due to oxygen intrusion from the direction along the film surface.
  • the phosphor-containing layer 30 is laminated on one film surface of the first substrate film 10, and the second substrate film 20 is laminated on the phosphor-containing layer 30.
  • the phosphor-containing layer 30 is sandwiched between two base films 10 and 20.
  • the phosphor-containing layer 30 includes a fluorescent region 35 including a plurality of phosphors 31 and a resin layer 38 that is filled between the fluorescent regions 35 and is impermeable to oxygen.
  • the fluorescent region 35 is composed of a phosphor 31 and a binder 33 in which the phosphor 31 is dispersed, and a phosphor region forming coating solution containing a curable composition that becomes the phosphor 31 and the binder 33 is applied. , Formed by curing.
  • phosphors can be used as the phosphor that reacts with oxygen and deteriorates when exposed to oxygen.
  • phosphors in which semiconductor fine particles are doped with rare earth, and semiconductor nano particles (quantum dots, quantum rods) are also preferably used.
  • Phosphors can be used alone, but in order to obtain a desired fluorescence spectrum, a plurality of phosphors having different wavelengths may be used in combination, or a combination of phosphors having different material configurations (for example, A combination of a rare earth-doped garnet and quantum dots may be used.
  • being exposed to oxygen means being exposed to an oxygen-containing environment such as the atmosphere, and being deteriorated by reaction with oxygen means that the performance of the phosphor is caused by oxidation of the phosphor. Means deterioration (decrease). Deterioration due to reaction with oxygen mainly means that the light emission performance is reduced as compared with that before reacting with oxygen.
  • the photoelectric conversion efficiency reacts with oxygen. It means lower than before.
  • a quantum dot is mainly described as an example of a phosphor that deteriorates due to oxygen.
  • the phosphor of the present invention is not limited to quantum dots, and other fluorescent dyes that deteriorate due to oxygen, photoelectric conversion materials, and the like.
  • the material is not particularly limited as long as it is a material that converts external energy into light or converts light into electricity.
  • Quantum dot is a fine particle of a compound semiconductor having a size of several to several tens of nanometers, and emits fluorescence by being excited at least by incident excitation light.
  • the phosphor of this embodiment may include at least one kind of quantum dot and may include two or more kinds of quantum dots having different emission characteristics.
  • Known quantum dots include a quantum dot (A) having an emission center wavelength in a wavelength range of 600 to 680 nm, a quantum dot (B) having an emission center wavelength in a wavelength range of 500 nm to less than 600 nm, and There is a quantum dot (C) having an emission center wavelength in a wavelength band of 400 nm or more and less than 500 nm.
  • the quantum dot (A) is excited by excitation light to emit red light
  • the quantum dot (B) is excited by excitation light to emit green light
  • the quantum dot (C) is excited by excitation light to emit blue light. Is emitted.
  • red light and quantum dots (B) emitted from the quantum dots (A) emit light.
  • White light can be realized by the green light and the blue light transmitted through the phosphor-containing layer.
  • red light emitted from the quantum dots (A), quantum dots (B ) And green light emitted by the quantum dots (C) and white light can be realized.
  • quantum dots for example, JP 2012-169271 A paragraphs 0060 to 0066 can be referred to, but are not limited to those described here.
  • the quantum dots commercially available products can be used without any limitation.
  • the emission wavelength of the quantum dots can usually be adjusted by the composition and size of the particles.
  • Quantum dots can be added at, for example, about 0.1 to 10 parts by mass with respect to 100 parts by mass of the total amount of the coating solution.
  • Quantum dots may be added in the form of particles in the coating liquid, or may be added in the form of a dispersion dispersed in an organic solvent.
  • the addition in the state of a dispersion is preferable from the viewpoint of suppressing the aggregation of the quantum dot particles.
  • the organic solvent used for dispersing the quantum dots is not particularly limited.
  • quantum dots for example, core-shell type semiconductor nanoparticles are preferable from the viewpoint of improving durability.
  • the core II-VI group semiconductor nanoparticles, III-V group semiconductor nanoparticles, multi-component semiconductor nanoparticles, and the like can be used. Specific examples include CdSe, CdTe, CdS, ZnS, ZnSe, ZnTe, InP, InAs, and InGaP, but are not limited thereto. Among these, CdSe, CdTe, InP, and InGaP are preferable from the viewpoint of emitting visible light with high efficiency.
  • the shell CdS, ZnS, ZnO, GaAs, and a composite thereof can be used, but the shell is not limited thereto.
  • the emission wavelength of the quantum dots can usually be adjusted by the composition and size of the particles.
  • the quantum dots may be spherical particles, may be rod-like particles called quantum rods, and may be tetrapod-type particles.
  • Spherical quantum dots or rod-like quantum dots are preferable from the viewpoint of narrowing the light emission half width (FWHM (full (width at half maximum)) and expanding the color reproduction range of the liquid crystal display device.
  • a ligand having a Lewis basic coordinating group may be coordinated on the surface of the quantum dot. It is also possible to use quantum dots already coordinated with such a ligand.
  • Lewis basic coordinating groups include amino groups, carboxy groups, mercapto groups, phosphine groups, and phosphine oxide groups. Specifically, hexylamine, decylamine, hexadecylamine, octadecylamine, oleylamine, myristylamine, laurylamine, oleic acid, mercaptopropionic acid, trioctylphosphine, and trioctylphosphine oxide can be raised. Of these, hexadecylamine, trioctylphosphine, and trioctylphosphine oxide are preferable, and trioctylphosphine oxide is particularly preferable.
  • Quantum dots coordinated with these ligands can be produced by a known synthesis method. For example, synthesized by the method described in CBMurray, DJNorris, MGBawendi, Journal Amarican Chemical Society, 1993, 115 (19), pp8706-8715, or The Journal Physical Chemistry, 101, pp9463-9475,1997 Can do.
  • the quantum dot which the ligand coordinated can use a commercially available thing without a restriction
  • Lumidot manufactured by Sigma Aldrich
  • the content of the quantum dot coordinated with the ligand is preferably 0.01 to 10% by mass with respect to the total mass of the polymerizable compound contained in the quantum dot-containing composition serving as the fluorescent region. More preferably, the content is 05 to 5% by mass. It is desirable to adjust the concentration according to the thickness of the phosphor-containing film.
  • Quantum dots may be added in the form of particles to the quantum dot-containing composition, or may be added in the form of a dispersion dispersed in a solvent.
  • the addition in the state of a dispersion is preferable from the viewpoint of suppressing the aggregation of the quantum dot particles.
  • the solvent used here is not particularly limited.
  • the ligand in the quantum dot-containing composition can be synthesized by a known synthesis method. For example, if it is a patent document, it is compoundable by the method described in Unexamined-Japanese-Patent No. 2007-277514.
  • the curable composition that forms the binder in the fluorescent region contains a polymer dispersant. Moreover, it is preferable that this curable composition contains a polymeric compound.
  • the polymerizable compound is preferably an acrylic compound.
  • a monofunctional or polyfunctional (meth) acrylate monomer is preferable, and a monomer prepolymer or polymer may be used as long as it has polymerizability.
  • (meth) acrylate means one or both of acrylate and methacrylate. The same applies to “(meth) acryloyl” and the like.
  • Monofunctional- Monofunctional (meth) acrylate monomers include acrylic acid and methacrylic acid, derivatives thereof, and more specifically, monomers having one polymerizable unsaturated bond ((meth) acryloyl group) of (meth) acrylic acid in the molecule Can be mentioned. Specific examples thereof include the following compounds, but the present embodiment is not limited thereto.
  • the amount of the monofunctional (meth) acrylate monomer used is preferably 10 parts by mass or more from the viewpoint of adjusting the viscosity of the coating liquid to a preferable range with respect to 100 parts by mass of the total amount of the curable compound contained in the coating liquid. 10 to 80 parts by mass is more preferable.
  • polymerizable monomer having two polymerizable groups include a bifunctional polymerizable unsaturated monomer having two ethylenically unsaturated bond-containing groups.
  • Bifunctional polymerizable unsaturated monomers are suitable for reducing the viscosity of the composition.
  • (meth) acrylate compounds that are excellent in reactivity and have no problems such as residual catalyst are preferable.
  • neopentyl glycol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, dipropylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, Hydroxypivalic acid neopentyl glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, dicyclopentenyl (meth) acrylate, dicyclopentenyloxyethyl (meth) acrylate, dicyclopentanyl di (meth) acrylate, etc. Is preferably used in the present invention.
  • the amount of the bifunctional (meth) acrylate monomer used is preferably 5 parts by mass or more from the viewpoint of adjusting the viscosity of the coating liquid to a preferable range with respect to 100 parts by mass of the total amount of the curable compound contained in the coating liquid. 10 to 80 parts by mass is more preferable.
  • polymerizable monomer having three or more polymerizable groups examples include polyfunctional polymerizable unsaturated monomers having three or more ethylenically unsaturated bond-containing groups. These polyfunctional polymerizable unsaturated monomers are excellent in terms of imparting mechanical strength. In the present embodiment, (meth) acrylate compounds that are excellent in reactivity and have no problems such as residual catalyst are preferable.
  • ECH Epichlorohydrin
  • EO Ethylene Oxide
  • PO Propylene Oxide
  • pentaerythritol triacrylate pentaerythritol Tetraacrylate
  • EO-modified phosphate triacrylate trimethylolpropane tri (meth) acrylate
  • caprolactone-modified trimethylolpropane tri (meth) acrylate EO-modified trimethylolpropane tri (meth) acrylate
  • tris (acryloxyethyl) isocyanurate dipentaerythritol hexa (meth) acrylate, dipentaerythritol penta (meth) a Chlorate
  • EO-modified glycerol tri (meth) acrylate PO-modified glycerol tri (meth) acrylate, trimethylolpropane tri (meth) acrylate, EO-modified trimethylolpropane tri (meth) acrylate, PO-modified trimethylolpropane tri (Meth) acrylate, dipentaerythritol hexa (meth) acrylate, dipentaerythritol penta (meth) acrylate, pentaerythritol ethoxytetra (meth) acrylate, and pentaerythritol tetra (meth) acrylate are preferably used in the present invention.
  • the amount of the polyfunctional (meth) acrylate monomer used is preferably 5 parts by mass or more from the viewpoint of the coating strength of the fluorescent-containing layer after curing with respect to 100 parts by mass of the total amount of the curable compound contained in the coating solution. From the viewpoint of suppressing the gelation of the coating solution, 95 parts by mass or less is preferable.
  • the (meth) acrylate monomer is preferably an alicyclic acrylate.
  • monofunctional (meth) acrylate monomers include dicyclopentenyl (meth) acrylate, dicyclopentanyl (meth) acrylate, and dicyclopentenyloxyethyl (meth) acrylate.
  • bifunctional (meth) acrylate monomer include tricyclodecane dimethanol di (meth) acrylate.
  • the total amount of the polymerizable compound in the curable composition forming the binder is preferably 70 to 99 parts by mass with respect to 100 parts by mass of the curable composition from the viewpoint of handling and curable of the composition, and 85 to 97 parts by mass is more preferable.
  • the polymerizable monomer examples include compounds having a cyclic group such as a cyclic ether group capable of ring-opening polymerization such as an epoxy group and an oxetanyl group. More preferable examples of such a compound include compounds having an epoxy group-containing compound (epoxy compound).
  • Examples of the compound having an epoxy group include polyglycidyl esters of polybasic acids, polyglycidyl ethers of polyhydric alcohols, polyglycidyl ethers of polyoxyalkylene glycols, polyglycidyl ethers of aromatic polyols, and aromatics. Mention may be made of hydrogenated compounds of polyglycidyl ethers of polyols, urethane polyepoxy compounds, epoxidized polybutadienes and the like. These compounds can also be used individually by 1 type, and can also be used in mixture of 2 or more types.
  • the compound having an epoxy group that can be preferably used include, for example, an aliphatic cyclic epoxy compound, bisphenol A diglycidyl ether, bisphenol F diglycidyl ether, bisphenol S diglycidyl ether, brominated bisphenol A diglycidyl ether, Brominated bisphenol F diglycidyl ether, brominated bisphenol S diglycidyl ether, hydrogenated bisphenol A diglycidyl ether, hydrogenated bisphenol F diglycidyl ether, hydrogenated bisphenol S diglycidyl ether, 1,4-butanediol diglycidyl ether, 1,6-hexanediol diglycidyl ether, glycerin triglycidyl ether, trimethylolpropane triglycidyl ether, polyethylene glycol Diglycidyl ether, polypropylene glycol diglycidyl ethers; Polyglycidyl of a polyether polyol, poly
  • aliphatic cyclic epoxy compounds bisphenol A diglycidyl ether, bisphenol F diglycidyl ether, hydrogenated bisphenol A diglycidyl ether, hydrogenated bisphenol F diglycidyl ether, 1,4-butanediol diglycidyl ether, 1,6-hexanediol diglycidyl ether, glycerin triglycidyl ether, trimethylolpropane triglycidyl ether, neopentyl glycol diglycidyl ether, polyethylene glycol diglycidyl ether, and polypropylene glycol diglycidyl ether are preferred.
  • UVR-6216 manufactured by Union Carbide
  • glycidol glycidol
  • AOEX24 cyclomer A200
  • ceroxide 2021P ceroxide 2021P
  • celoxide 8000 above, Daicel Chemical Industries, Ltd.
  • 4-vinylcyclohexene dioxide manufactured by Sigma Aldrich
  • Epicoat 828, Epicoat 812, Epicoat 1031, Epicoat 872, and Epicoat CT508 aboveve, manufactured by Yuka Shell
  • KRM-2400, KRM- 2410, KRM-2408, KRM-2490, KRM-2720, and KRM-2750 manufactured by Asahi Denka Kogyo Co., Ltd.
  • these compounds having an epoxy group or oxetanyl group may be produced by any method.
  • a vinyl ether compound may be used as the curable compound.
  • known compounds can be appropriately selected. For example, those described in paragraph No. 0057 of JP-A-2009-73078 can be preferably used.
  • vinyl ether compounds are, for example, the methods described in Stephen C. Lapin, Polymers Paint Colour Journal 179 (4237), 321 (1988), that is, the reaction of a polyhydric alcohol or polyphenol with acetylene, and It can be synthesized by a reaction of a polyhydric alcohol or polyhydric phenol with a halogenated alkyl vinyl ether.
  • a vinyl ether compound can be used individually by 1 type or in combination of 2 or more types.
  • silsesquioxane compound having a reactive group described in JP-A-2009-73078 it is also possible to use a silsesquioxane compound having a reactive group described in JP-A-2009-73078 from the viewpoint of lowering viscosity and increasing hardness.
  • curable compound for forming the resin layer 38 that is impermeable to oxygen those capable of forming a resin layer having a high gas barrier property such as a (meth) acrylate compound and an epoxy compound are particularly preferable.
  • (meth) acrylate compounds are preferable from the viewpoint of composition viscosity and photocurability, and acrylates are more preferable.
  • a polyfunctional polymerizable compound having two or more polymerizable functional groups is preferred.
  • the blending ratio of the monofunctional (meth) acrylate compound and the polyfunctional (meth) acrylate compound is preferably 80/20 to 0/100, more preferably 70/30 to 0/100 in terms of mass ratio, / 60 to 0/100 is more preferable. By selecting an appropriate ratio, sufficient curability can be obtained and the composition can have a low viscosity.
  • the mass ratio of the bifunctional (meth) acrylate and the trifunctional or higher (meth) acrylate is preferably 100/0 to 20/80, more preferably 100 / 0 to 50/50, more preferably 100/0 to 70/30. Since the trifunctional or higher functional (meth) acrylate has a higher viscosity than the bifunctional (meth) acrylate, the more bifunctional (meth) acrylate is more impermeable to oxygen in the present invention. This is preferable because the viscosity of the curable compound can be lowered.
  • the polymerizable compound preferably includes a compound containing a substituent having an aromatic structure and / or an alicyclic hydrocarbon structure from the viewpoint of increasing the impermeability to oxygen.
  • the polymerizable compound more preferably contains 50% by mass or more of the polymerizable compound having an aromatic structure and / or alicyclic hydrocarbon structure, and more preferably 80% by mass or more.
  • a (meth) acrylate compound having an aromatic structure is preferable.
  • Examples of the (meth) acrylate compound having an aromatic structure include monofunctional (meth) acrylate compounds having a naphthalene structure, such as 1- or 2-naphthyl (meth) acrylate, 1- or 2-naphthylmethyl (meth) acrylate, 1 Particularly preferred are-or 2-naphthylethyl (meth) acrylate, monofunctional acrylates such as benzyl acrylate having substituents on the aromatic ring, catechol diacrylate, and bifunctional acrylates such as xylylene glycol diacrylate.
  • Polymerizable compounds having an alicyclic hydrocarbon structure include isobornyl (meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclopentanyloxyethyl (meth) acrylate, dicyclopentenyl (meth) acrylate, and adamantyl (meth).
  • Preferred are acrylate, tricyclodecanyl (meth) acrylate, and tetracyclododecanyl (meth) acrylate.
  • acrylate is preferred to methacrylate from the viewpoint of excellent curability.
  • the coating solution may contain a known polymerization initiator as a polymerization initiator.
  • a polymerization initiator for example, paragraph 0037 of JP2013-043382A can be referred to.
  • the content of the polymerization initiator is preferably 0.1 mol% or more, more preferably 0.5 to 2 mol% of the total amount of the curable compound contained in the coating solution.
  • the total curable composition excluding the volatile organic solvent preferably contains 0.1 to 10% by mass, more preferably 0.2 to 8% by mass, as mass%.
  • the curable compound preferably contains a photopolymerization initiator.
  • a photopolymerization initiator any compound can be used as long as it is a compound that generates an active species that polymerizes the above-described polymerizable compound by light irradiation.
  • the photopolymerization initiator include a cationic polymerization initiator and a radical polymerization initiator, and a radical polymerization initiator is preferable.
  • a plurality of photopolymerization initiators may be used in combination.
  • the content of the photopolymerization initiator is, for example, 0.01 to 15% by mass, preferably 0.1 to 12% by mass, and more preferably 0.2 to 7% by mass in the entire composition excluding the solvent. %.
  • the total amount becomes the said range.
  • the content of the photopolymerization initiator is 0.01% by mass or more because sensitivity (fast curability) and coating film strength tend to be improved.
  • the content of the photopolymerization initiator is 15% by mass or less, light transmittance, colorability, handleability and the like tend to be improved, which is preferable.
  • dyes and / or pigments may act as radical trapping agents, affecting photopolymerization and sensitivity.
  • the amount of the photopolymerization initiator added is optimized in these applications.
  • dyes and / or pigments are not essential components, and the optimal range of the photopolymerization initiator may be different from that in the field of curable compositions for liquid crystal display color filters. is there.
  • radical photopolymerization initiator for example, a commercially available initiator can be used.
  • these examples for example, those described in paragraph No. 0091 of JP-A No. 2008-105414 can be preferably used.
  • acetophenone compounds, acylphosphine oxide compounds, and oxime ester compounds are preferable from the viewpoints of curing sensitivity and absorption characteristics.
  • the acetophenone compound include hydroxyacetophenone compounds, dialkoxyacetophenone compounds, aminoacetophenone compounds, and the like.
  • the hydroxyacetophenone compound is preferably Irgacure (registered trademark) 2959 (1- [4- (2-hydroxyethoxy) phenyl] -2-hydroxy-2-methyl-1-propane-1 available from BASF -One), Irgacure® 184 (1-hydroxycyclohexyl phenyl ketone), Irgacure® 500 (1-hydroxycyclohexyl phenyl ketone, benzophenone), and Darocur® 1173 (2-hydroxy-2) -Methyl-1-phenyl-1-propan-1-one) and the like.
  • the dialkoxyacetophenone compound is preferably Irgacure (registered trademark) 651 (2,2-dimethoxy-1,2-diphenylethane-1-one) available from BASF.
  • aminoacetophenone-based compound preferably, Irgacure (registered trademark) 369 (2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) butanone-1), Irgacure (registered trademark) available from BASF Corporation. ) 379 (EG) (2-dimethylamino-2- (4methylbenzyl) -1- (4-morpholin-4-ylphenyl) butan-1-one), Irgacure® 907 (2-methyl-) 1 [4-methylthiophenyl] -2-morpholinopropan-1-one) and the like.
  • Irgacure (registered trademark) 369 (2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) butanone-1
  • acylphosphine oxide-based compound preferably, Irgacure (registered trademark) 819 (bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide) available from BASF, Irgacure (registered trademark) 1800 (bis (2,6-dimethoxybenzoyl) -2,4,4-trimethyl-pentylphosphine oxide), Lucirin TPO (2,4,6-trimethylbenzoyldiphenylphosphine oxide) available from BASF, Lucirin TPO-L (2, 4,6-trimethylbenzoylphenylethoxyphosphine oxide) and the like.
  • Irgacure (registered trademark) 819 bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide
  • Irgacure (registered trademark) 1800 bis (2,6-dimethoxybenzoyl) -2,4,4-trimethyl-pentylphosphine
  • the oxime ester-based compound is preferably Irgacure (registered trademark) OXE01 (1,2-octanedione, 1- [4- (phenylthio) phenyl] -2- (O-benzoyloxime) available from BASF, And Irgacure® OXE02 (ethanone, 1- [9-ethyl-6- (2-methylbenzoyl) -9H-carbazol-3-yl]-, 1- (O-acetyloxime).
  • Irgacure registered trademark
  • OXE01 1,2-octanedione, 1- [4- (phenylthio) phenyl] -2- (O-benzoyloxime) available from BASF
  • Irgacure® OXE02 ethanone, 1- [9-ethyl-6- (2-methylbenzoyl) -9H-carbazol-3-yl]-, 1- (O-acetyloxime).
  • a sulfonium salt compound, an iodonium salt compound, an oxime sulfonate compound and the like are preferable, and 4-methylphenyl [4- (1-methylethyl) phenyliodonium tetrakis (pentafluorophenyl) borate (manufactured by Rhodea Corporation) PI2074), 4-methylphenyl [4- (2-methylpropyl) phenyliodonium hexafluorophosphate (manufactured by BASF, IRGACURE250), IRGACURE PAG103, 108, 121 and 203 (manufactured by BASF).
  • the photopolymerization initiator needs to be selected in a timely manner with respect to the wavelength of the light source to be used, but is preferably one that does not generate gas during mold pressurization / exposure.
  • the gas is generated, the mold is contaminated, so that the mold has to be frequently washed, and the photocurable composition is deformed in the mold to cause problems such as deterioration of the transfer pattern accuracy.
  • the curable compound that forms the resin layer 38 impermeable to oxygen is a radical in which the polymerizable compound is a radical polymerizable compound and the photopolymerization initiator is a radical polymerization initiator that generates radicals upon light irradiation. It is preferably a polymerizable curable composition.
  • the curable composition that forms the binder may include a polymer.
  • the polymer include poly (meth) acrylate, poly (meth) acrylamide, polyester, polyurethane, polyurea, polyamide, polyether, and polystyrene.
  • the coating solution for forming a fluorescent region may contain a viscosity modifier, a silane coupling agent, a surfactant, an antioxidant, an oxygen getter agent, a polymerization inhibitor, inorganic particles, and the like.
  • the coating solution for forming the fluorescent region may contain a viscosity modifier as necessary. They can be adjusted to the desired viscosity by adding viscosity modifiers.
  • the viscosity modifier is preferably a filler having a particle size of 5 to 300 nm.
  • the viscosity modifier may be a thixotropic agent.
  • the thixotropic property refers to the property of reducing the viscosity with respect to the increase in shear rate in the liquid composition
  • the thixotropic agent includes the liquid composition by including it. It refers to a material having a function of imparting thixotropic properties to the composition.
  • thixotropic agents include fumed silica, alumina, silicon nitride, titanium dioxide, calcium carbonate, zinc oxide, talc, mica, feldspar, kaolinite (kaolin clay), pyrophyllite (waxite clay), and sericite.
  • sericite bentonite, smectite vermiculites (montmorillonite, beidellite, nontronite, saponite, etc.), organic bentonite, and organic smectite.
  • phosphor-containing layer (fluorescent region) formed from a coating solution containing a silane coupling agent can exhibit excellent durability because the silane coupling agent provides strong adhesion to adjacent layers. it can.
  • the phosphor-containing layer formed from the coating solution containing the silane coupling agent is a preferable adhesion condition “adhesion force A between the support film and the barrier layer ⁇ adhesion force B between the phosphor-containing layer and the barrier layer”. It is also preferable for forming the relationship.
  • the silane coupling agent contained in the phosphor-containing layer forms a covalent bond with the surface of the adjacent layer and the constituent components of this phosphor-containing layer by a hydrolysis reaction or a condensation reaction. is there.
  • the silane coupling agent has a reactive functional group such as a radical polymerizable group
  • the monomer component constituting the phosphor-containing layer may form a cross-linked structure, or the phosphor-containing layer may be closely adhered to the adjacent layer. It can contribute to improvement of performance.
  • silane coupling agent a known silane coupling agent can be used without any limitation.
  • a silane coupling agent represented by the following general formula (1) described in JP2013-43382A can be exemplified.
  • R 1 to R 6 are each independently a substituted or unsubstituted alkyl group or an aryl group, provided that at least one of R 1 to R 6 is a radical polymerizable group. This is a substituent containing a carbon-carbon double bond.
  • R 1 to R 6 are preferably an unsubstituted alkyl group or an unsubstituted aryl group, except in the case of a substituent containing a radically polymerizable carbon-carbon double bond.
  • alkyl group an alkyl group having 1 to 6 carbon atoms is preferable, and a methyl group is more preferable.
  • aryl group a phenyl group is preferable.
  • R 1 to R 6 are particularly preferably a methyl group.
  • At least one of R 1 ⁇ R 6 is a radical polymerizable carbon - having a substituent containing a carbon double bond, two are radically polymerizable carbon of R 1 ⁇ R 6 - carbon double bonds It is preferably a substituent. Further, among R 1 to R 3 , the number of those having a substituent containing a radical polymerizable carbon-carbon double bond is 1, and among R 4 to R 6 , the radical polymerizable carbon-carbon The number of those having a substituent containing a double bond is particularly preferably 1.
  • the substituents in which the silane coupling agent represented by the general formula (1) includes two or more radically polymerizable carbon-carbon double bonds may be the same or different. However, the same is preferable.
  • the substituent containing a radically polymerizable carbon-carbon double bond is preferably represented by —XY.
  • X is a single bond, an alkylene group having 1 to 6 carbon atoms, or an arylene group, preferably a single bond, a methylene group, an ethylene group, a propylene group, or a phenylene group.
  • Y is a radically polymerizable carbon-carbon double bond group, and is preferably an acryloyloxy group, a methacryloyloxy group, an acryloylamino group, a methacryloylamino group, a vinyl group, a propenyl group, a vinyloxy group, or a vinylsulfonyl group.
  • An acryloyloxy group is more preferred.
  • R 1 to R 6 may have a substituent other than a substituent containing a radically polymerizable carbon-carbon double bond.
  • substituents include alkyl groups (eg, methyl group, ethyl group, isopropyl group, tert-butyl group, n-octyl group, n-decyl group, n-hexadecyl group, cyclopropyl group, cyclopentyl group, cyclohexyl group).
  • aryl groups eg phenyl group, naphthyl group etc.
  • halogen atoms eg fluorine, chlorine, bromine, iodine
  • acyl groups eg acetyl group, benzoyl group, formyl group, pivaloyl group etc.
  • acyloxy Groups for example, acetoxy group, acryloyloxy group, methacryloyloxy group, etc.
  • alkoxycarbonyl groups for example, methoxycarbonyl group, ethoxycarbonyl group, etc.
  • aryloxycarbonyl groups for example, phenyloxycarbonyl group, etc.
  • sulfonyl groups For example, methanesulfonyl group, benzene Honiru group
  • the silane coupling agent is preferably contained in the coating solution in the range of 1 to 30% by mass, more preferably 3 to 30% by mass. More preferably, it is 5 to 25% by mass.
  • the coating solution for forming a fluorescent region may contain at least one surfactant containing 20% by mass or more of fluorine atoms.
  • the surfactant preferably contains 25% by mass or more of fluorine atoms, and more preferably contains 28% by mass or more.
  • the upper limit is not particularly defined, but is, for example, 80% by mass or less, and preferably 70% by mass or less.
  • the surfactant used in the present invention is preferably a compound having an alkyl group having a fluorine atom, a cycloalkyl group having a fluorine atom, or an aryl group having a fluorine atom.
  • An alkyl group containing a fluorine atom is a linear or branched alkyl group in which at least one hydrogen atom is substituted with a fluorine atom.
  • the alkyl group preferably has 1 to 10 carbon atoms, and more preferably 1 to 4 carbon atoms.
  • the alkyl group containing a fluorine atom may further have a substituent other than the fluorine atom.
  • the cycloalkyl group containing a fluorine atom is a monocyclic or polycyclic cycloalkyl group in which at least one hydrogen atom is substituted with a fluorine atom.
  • the cycloalkyl group containing a fluorine atom may further have a substituent other than the fluorine atom.
  • An aryl group containing a fluorine atom is an aryl group in which at least one hydrogen atom is substituted with a fluorine atom.
  • Examples of the aryl group include a phenyl group and a naphthyl group.
  • the aryl group containing a fluorine atom may further have a substituent other than the fluorine atom.
  • the molecular weight of the surfactant is preferably 300 to 10,000, and more preferably 500 to 5,000.
  • the content of the surfactant in the entire composition excluding the solvent is, for example, 0.01 to 10% by mass, preferably 0.1 to 7% by mass, and more preferably 0.5 to 4% by mass. It is. When using 2 or more types of surfactant, the total amount becomes the said range.
  • surfactant examples include trade names Fluorad FC-430 and FC-431 (manufactured by Sumitomo 3M), trade name Surflon “S-382” (manufactured by Asahi Glass Co., Ltd.), EFTOP “EF-122A, 122B, 122C, EF” -121, EF-126, EF-127 and MF-100 "(manufactured by Tochem Products), trade names PF-636, PF-6320, PF-656 and PF-6520 (all made by OMNOVA), trade names Footgent FT250, FT251 and DFX18 (all manufactured by Neos), trade names Unidyne DS-401, DS-403 and DS-451 (all manufactured by Daikin Industries), trade names Megafuck 171, 172, 173, 178K and 178A (all manufactured by DIC), trade names Megafuck 171, 172, 173, 178K and 178A (all manufactured by DIC), trade names Megafuck 171, 172
  • the curable compound may contain other components such as an antioxidant as long as the effects of the present invention are not impaired in accordance with various purposes in addition to the components described above.
  • the curable compound preferably contains a known antioxidant.
  • the antioxidant suppresses fading caused by heat or light irradiation and fading caused by various oxidizing gases such as ozone, active oxygen, NO x , SO x (X is an integer).
  • oxidizing gases such as ozone, active oxygen, NO x , SO x (X is an integer).
  • X is an integer.
  • by adding an antioxidant there are advantages that prevention of coloring of the cured film and reduction in film thickness due to decomposition can be reduced. Two or more kinds of antioxidants may be used as the antioxidant.
  • the antioxidant is preferably 0.2% by mass or more, more preferably 1% by mass or more, and more preferably 2% by mass or more based on the total mass of the curable compound. Further preferred.
  • the antioxidant may be altered by the interaction with oxygen. The altered antioxidant may induce decomposition of the quantum dot-containing polymerizable composition, resulting in decreased adhesion, poor brittleness, and reduced quantum dot luminous efficiency. From the viewpoint of preventing these, the antioxidant is preferably 20% by mass or less, more preferably 15% by mass or less, and further preferably 10% by mass or less.
  • the antioxidant is preferably at least one of a radical inhibitor, a metal deactivator, a singlet oxygen scavenger, a superoxide scavenger, and a hydroxy radical scavenger.
  • antioxidants include phenolic antioxidants, hindered amine antioxidants, quinone antioxidants, phosphorus antioxidants, and thiol antioxidants.
  • phenolic antioxidants examples include 2,6-ditert-butyl-p-cresol, 2,6-diphenyl-4-octadecyloxyphenol, distearyl (3,5-ditert-butyl-4- Hydroxybenzyl) phosphonate, 1,6-hexamethylenebis [(3,5-ditert-butyl-4-hydroxyphenyl) propionic acid amide], 4,4′-thiobis (6-tert-butyl-m-cresol) 2,2'-methylenebis (4-methyl-6-tert-butylphenol), 2,2'-methylenebis (4-ethyl-6-tert-butylphenol), 4,4'-butylidenebis (6-tert-butyl- m-cresol), 2,2′-ethylidenebis (4,6-ditert-butylphenol), 2,2′-ethylidenebis (4-secondarybutyl-6-tert-butylphenol) 1,1,3-tris (2-
  • phosphorus antioxidants include trisnonylphenyl phosphite, tris [2-tert-butyl-4- (3-tert-butyl-4-hydroxy-5-methylphenylthio) -5-methylphenyl] phos.
  • thiol antioxidants include dialkylthiodipropionates such as dilauryl thiodipropionate, dimyristyl thiodipropionate and distearyl thiodipropionate, and pentaerythritol tetra ( ⁇ -alkylmercaptopropionic acid). Examples include esters.
  • the hindered amine antioxidant is also referred to as HALS (Hidered amine lightstabilizers), and has a structure in which all hydrogen atoms on the 2nd and 6th carbons of piperidine are substituted with methyl groups, preferably a group represented by the following formula 1.
  • X represents a hydrogen atom or an alkyl group.
  • 2,2,6,6-tetramethyl-4-piperidyl group in which X is a hydrogen atom, and 1,2,2,6,6 in which X is a methyl group HALS having a pentamethyl-4-piperidyl group are particularly preferably used.
  • a number of HALS having a structure in which a group represented by the formula 1 is bonded to a —COO— group, that is, a group represented by the following formula 2 is commercially available, but these can be preferably used.
  • HALS that can be preferably used in the present invention include those represented by the following formulas.
  • 2,2,6,6-tetramethyl-4-piperidyl group is represented by R
  • 1,2,2,6,6-pentamethyl-4-piperidyl group is represented by R ′.
  • CH 2 (COOR ′) CH (COOR ′) CH (COOR ′) CH 2 COOR ′ compounds represented by the following formula 3, and the like.
  • Tinuvin 123 Tinuvin 144, Tinuvin 765, Tinuvin 770, Tinuvin 622, Timassorb 944 and Timassorb 119 (all of which are trade names manufactured by Ciba Specialty Chemicals), and Adeka Stub Examples include LA52, ADK STAB LA57, ADK STAB LA62, ADK STAB LA67, ADK STAB LA82, ADK STAP LA87, and ADK STAB LX335 (all of which are trade names manufactured by Asahi Denka Kogyo Co., Ltd.).
  • HALS those having relatively small molecules are preferable because they easily diffuse from the resin layer to the fluorescent region.
  • Preferred HALS from this viewpoint includes a compound represented by ROC ( ⁇ O) (CH 2 ) 8 C ( ⁇ O) OR, R′OC ( ⁇ O) C (CH 3 ) ⁇ CH 2 , and the like.
  • the antioxidant is at least one of a hindered phenol compound, a hindered amine compound, a quinone compound, a hydroquinone compound, a triferol compound, an aspartic acid compound, and a thiol compound, More preferably, it is at least one of an ascorbic acid compound and a tocopherol compound.
  • a hindered phenol compound a hindered amine compound, a quinone compound, a hydroquinone compound, a triferol compound, an aspartic acid compound, and thiol, More preferably, it is at least one of an ascorbic acid compound and a tocopherol compound.
  • These compounds are not particularly limited, but hindered phenol, hindered amine, quinone, hydroquinone, triferol, aspartic acid, thiol, citric acid, tocopheryl acetic acid, and tocopheryl phosphoric acid itself, or a salt or ester compound thereof. Etc. are prefer
  • the oxygen getter agent a known substance used as a getter agent for an organic EL element can be used.
  • the oxygen getter agent may be either an inorganic getter agent or an organic getter agent.
  • inorganic getter agents examples include calcium oxide (CaO), barium oxide (BaO), magnesium oxide (MgO), strontium oxide (SrO), lithium sulfate (Li 2 SO 4 ), sodium sulfate (Na 2 SO 4 ), sulfuric acid Calcium (CaSO 4 ), magnesium sulfate (MgSO 4 ), cobalt sulfate (CoSO 4 ), gallium sulfate (Ga 2 (SO 4 ) 3 ), titanium sulfate (Ti (SO 4 ) 2 ), and nickel sulfate (NiSO 4) ) And the like.
  • the organic getter agent is not particularly limited as long as it is a material that takes in water by a chemical reaction and does not become opaque before and after the reaction.
  • the organometallic compound means a compound having a metal-carbon bond, a metal-oxygen bond, a metal-nitrogen bond, or the like.
  • the aforementioned bond is broken by the hydrolysis reaction to form a metal hydroxide.
  • hydrolytic polycondensation may be performed after the reaction with the metal hydroxide to increase the molecular weight.
  • an organic metal compound that has good reactivity with water that is, a metal atom that easily breaks various bonds with water.
  • a metal atom that easily breaks various bonds with water include aluminum, silicon, titanium, zirconium, silicon, bismuth, strontium, calcium, copper, sodium, and lithium.
  • cesium, magnesium, barium, vanadium, niobium, chromium, tantalum, tungsten, chromium, indium, iron, and the like can be given.
  • a desiccant of an organometallic compound having aluminum as a central metal is preferable in terms of dispersibility in a resin and reactivity with water.
  • Organic groups include unsaturated hydrocarbons such as methoxy group, ethoxy group, propoxy group, butoxy group, 2-ethylhexyl group, octyl group, decyl group, hexyl group, octadecyl group, stearyl group, saturated hydrocarbon, branched unsaturated carbon Examples thereof include alkoxy groups and carboxyl groups containing hydrogen, branched saturated hydrocarbons, cyclic hydrocarbons, and ⁇ -diketonato groups such as aceethylacetonato group and dipivaloylmethanato group.
  • aluminum ethyl acetoacetates having 1 to 8 carbon atoms represented by the following chemical formula are preferably used because they can form a sealing composition having excellent transparency.
  • R 5 to R 8 represent an organic group including an alkyl group having 1 to 8 carbon atoms, an aryl group, an alkoxy group, a cycloalkyl group, and an acyl group, and M represents a trivalent metal atom.
  • R 5 to R 8 may be the same or different organic groups.
  • the aluminum ethyl acetoacetates having 1 to 8 carbon atoms are commercially available from, for example, Kawaken Fine Chemical Co., Ltd. and Hope Pharmaceutical Co., Ltd.
  • the oxygen getter agent is in the form of particles or powder.
  • the average particle size of the oxygen getter agent may be usually in the range of less than 20 ⁇ m, preferably 10 ⁇ m or less, more preferably 2 ⁇ m or less, and even more preferably 1 ⁇ m or less. From the viewpoint of scattering properties, the average particle diameter of the oxygen getter agent is preferably 0.3 to 2 ⁇ m, and more preferably 0.5 to 1.0 ⁇ m.
  • the average particle diameter here refers to the average value of the particle diameters calculated from the particle size distribution measured by the dynamic light scattering method.
  • the curable composition forming the binder may contain a polymerization inhibitor.
  • the content of the polymerization inhibitor is 0.001 to 1% by mass, more preferably 0.005 to 0.5% by mass, and still more preferably 0.008 to 0. 05% by mass.
  • Preferred polymerization inhibitors include hydroquinone, p-methoxyphenol, di-tert-butyl-p-cresol, pyrogallol, tert-butylcatechol, benzoquinone, 4,4′-thiobis (3-methyl-6-tert-butylphenol) 2,2'-methylenebis (4-methyl-6-tert-butylphenol), N-nitrosophenylhydroxyamine cerium salt, phenothiazine, phenoxazine, 4-methoxynaphthol, 2,2,6,6-tetramethyl Examples include piperidine-1-oxyl free radical, 2,2,6,6-tetramethylpiperidine, 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl free radical, nitrobenzene, dimethylaniline and the like.
  • polymerization inhibitors suppress the generation of polymer impurities not only during the production of the polymerizable monomer but also during storage of the cured composition, and suppress the deterioration of pattern formation during imprinting.
  • the fluorescent region forming coating solution preferably contains inorganic particles.
  • the impermeability to oxygen can be increased by containing inorganic particles.
  • inorganic particles include silica particles, alumina particles, zirconium oxide particles, zinc oxide particles, titanium oxide particles, and inorganic layered compounds such as mica and talc.
  • the inorganic particles are preferably in the form of a plate from the viewpoint of increasing the impermeability to oxygen.
  • a larger aspect ratio is preferable because it is excellent in the effect of increasing the impermeability to oxygen, but if it is too large, the physical strength of the film and the particle dispersibility in the curable composition are inferior.
  • the phosphor-containing layer may contain light scattering particles. Therefore, light scattering particles may be added to the photocurable composition.
  • the particle size of the light scattering particles is preferably 0.10 ⁇ m or more. It is preferable from the viewpoint of further improving the brightness that the light scattering particles are contained in the phosphor-containing layer. From the viewpoint of the light scattering effect, the particle size of the light scattering particles is preferably 0.10 to 15.0 ⁇ m, more preferably 0.10 to 10.0 ⁇ m, and further preferably 0.20 to 4.0 ⁇ m. Further, in order to further improve the luminance and adjust the luminance distribution with respect to the viewing angle, two or more kinds of light scattering particles having different particle sizes may be mixed and used.
  • the light scattering particles may be organic particles, inorganic particles, or organic-inorganic composite particles.
  • the organic particles can include synthetic resin particles. Specific examples include silicone resin particles, acrylic resin particles (polymethyl methacrylate (PMMA)), nylon resin particles, styrene resin particles, polyethylene particles, urethane resin particles, and benzoguanamine particles.
  • PMMA polymethyl methacrylate
  • the refractive index of the light scattering particles and other portions in the phosphor-containing layer is preferably different, and from the viewpoint of easy availability of particles having a suitable refractive index, Acrylic resin particles are preferred.
  • particles having a hollow structure can also be used.
  • particles such as diamond, titanium oxide, zirconium oxide, lead oxide, lead carbonate, zinc oxide, zinc sulfide, antimony oxide, silicon oxide, and aluminum oxide can be used and have a suitable refractive index. From the viewpoint of availability of particles, titanium oxide and aluminum oxide are preferable.
  • the fluorescent region forming coating solution contains a release agent, a silane coupling agent, an ultraviolet absorber, a light stabilizer, an anti-aging agent, a plasticizer, an adhesion promoter, and thermal polymerization.
  • An agent, a colorant, an elastomer particle, a photoacid growth agent, a photobase generator, a basic compound, a flow preparation agent, an antifoaming agent, a dispersing agent, and the like may be added.
  • the method for preparing the curable composition for forming the binder is not particularly limited, and may be performed according to a general procedure for preparing the curable composition.
  • the resin layer 38 (resin layer 38 that is impervious to oxygen) is applied by applying a resin-forming coating solution containing the same curable composition as the curable composition for forming the binder, and then cured. It is formed.
  • the curable composition forming the resin layer may not contain a polymer dispersant.
  • the resin layer 38 is impervious to oxygen, that is, the oxygen permeability at the shortest distance between adjacent fluorescent regions 35 across the resin layer 38 is 10 cc / (m 2 ⁇ day ⁇ atm).
  • the resin layer 38, the oxygen permeability of the shortest distance between adjacent fluorescent regions 35 is preferably 1cc / (m 2 ⁇ day ⁇ atm) or less, 1 ⁇ 10 -1 cc / ( m 2 ⁇ day ⁇ atm) or less More preferred. Depending on the composition of the resin layer 38, the necessary minimum distance between the fluorescent regions 35 differs.
  • the SI unit of oxygen permeability is [fm / (s ⁇ Pa)].
  • the shortest distance between the adjacent fluorescent regions 35 of the resin layer 38 means the shortest distance in the film plane between the adjacent fluorescent regions 35 when observed from the phosphor-containing film main surface.
  • the shortest distance between adjacent fluorescent regions 35 may be referred to as the width of the resin layer.
  • the minimum required distance between the fluorescent regions 35 varies depending on the composition of the resin layer 38.
  • the shortest distance between adjacent fluorescent regions 35 that is, the width t of the resin layer 38 is 5 to 300 ⁇ m. 200 ⁇ m is preferable, and 15 to 100 ⁇ m is more preferable. If the width t of the resin layer 38 is too short, it is difficult to ensure the necessary oxygen permeability, and if the width t of the resin layer 38 is too long, the luminance unevenness of the display device is deteriorated.
  • the resin layer 38 has an elastic modulus of 0.5 to 10 GPa, preferably 1 to 7 GPa, and more preferably 3 to 6 GPa. By setting the elastic modulus of the resin layer within this range, it is possible to prevent defects when forming the resin layer 38 while maintaining oxygen permeability.
  • the elastic modulus of the resin layer 38 is measured by a method exemplified in JIS K7161.
  • a compound having a bifunctional or higher functional photopolymerizable crosslinking group is preferable.
  • At least urethane (meth) acrylate and an epoxy compound are included from the viewpoint of increasing the impermeability to oxygen.
  • a compound having a polar functional group such as a urethane bond, a hydroxyl group, and a carboxyl group
  • an intermolecular interaction is enhanced, and a resin layer having high oxygen impermeability is obtained.
  • the resin layer preferably includes at least a (meth) acrylate compound.
  • the resin layer forming material may contain a photopolymerization initiator, an inorganic layered compound, light scattering particles, an antioxidant, a peeling accelerator, a solvent, and the like, if necessary.
  • the curable compound that forms the resin layer 38 preferably contains a photopolymerization initiator.
  • a photopolymerization initiator any compound can be used as long as it is a compound that generates an active species that polymerizes the above-described polymerizable compound by light irradiation.
  • the photopolymerization initiator include a cationic polymerization initiator and a radical polymerization initiator, and are appropriately selected depending on the resin layer forming material.
  • the curable compound that forms the resin layer 38 may include a compound that imparts a so-called labyrinth effect, such as an inorganic layered compound, that increases the diffusion length of gas molecules in the resin layer and improves the gas barrier properties.
  • examples of such inorganic layered compounds include talc, mica, feldspar, kaolinite (kaolin clay), pyrophyllite (waxite clay), sericite (sericite), bentonite, smectite vermiculites (montmorillonite, beidellite, Nontronite, saponite, etc.), organic bentonite, organic smectite, and flat inorganic oxides such as flat alumina.
  • the inorganic layered compound may be subjected to a surface treatment in order to improve dispersibility in the resin forming material. Further, from the viewpoint of being excellent in the maze effect described above, it is preferable that the inorganic layered compound has an aspect ratio of 10 to 1,000. If the aspect ratio is 10 or less, the effect of improving the gas barrier property due to the maze effect is low.
  • layered compounds include inorganic compounds such as ST-501 and ST-509 manufactured by Shiraishi Calcium Co., Ltd., the Somasif series and Micro Mica series manufactured by Katakura Corp. Agri, and Kinseimatic Corporation. Seraph series is listed. Among these, the highly transparent Seraph series can be suitably used in the phosphor-containing film of the present invention.
  • the thickness b of the bottom of the concave portion of the resin layer 38 is increased.
  • the bottom thickness b of the recess of the resin layer 38 is preferably 1 ⁇ m or more, and is thicker than the maximum length of the inorganic layered compound. Is more preferable.
  • the thickness b of the bottom of the concave portion of the resin layer 38 is increased, whereby the barrier layer 12 when the concave portion (unevenness) of the resin layer 38 is formed by molding. It is possible to obtain a highly durable phosphor-containing film that can more suitably prevent the inorganic layer from being damaged and prevent the phosphor 31 from being deteriorated due to oxygen or the like.
  • the ratio of the volume Vp of the fluorescent region 35 to the volume Vb of the resin layer 38 can be any ratio, but the ratio of the volume Vp of the fluorescent region 35 to the volume of the entire phosphor-containing layer (Vp + Vb). Is preferably 0.1 ⁇ Vp / (Vp + Vb) ⁇ 0.9, more preferably 0.2 ⁇ Vp / (Vp + Vb) ⁇ 0.85, and 0.3 ⁇ Vp / (Vp + More preferred is Vb) ⁇ 0.8.
  • the region Vp containing the phosphor and the region Vb of the oxygen-impermeable resin layer are defined as the product of the area and the thickness when observed from the phosphor-containing film main surface.
  • the 1st base film 10 and the 2nd base film 20 are films which have a function which suppresses permeation
  • the 1st base film 10 and the 2nd base film 20 have the structure provided with the barrier layers 12 and 22 on the one surface of the support films 11 and 21, respectively.
  • the presence of the support films 11 and 21 improves the strength of the phosphor-containing film, and enables easy film formation.
  • the base film may be comprised only by the support body which has sufficient barrier property.
  • the first base film 10 and the second base film 20 preferably have a total light transmittance of 80% or more in the visible light region, and more preferably 85% or more.
  • the visible light region refers to a wavelength region of 380 to 780 nm, and the total light transmittance indicates an average value of light transmittance over the visible light region.
  • the oxygen permeability of the first base film 10 and the second base film 20 is preferably 1 cc / (m 2 ⁇ day ⁇ atm) or less.
  • the oxygen permeability of the first substrate film 10 and the second substrate film 20 is more preferably 0.1 cc / (m 2 ⁇ day ⁇ atm) or less, and still more preferably 0.01 cc / (m 2 ⁇ day). Atm) or less, and particularly preferably 0.001 cc / (m 2 ⁇ day ⁇ atm) or less.
  • the oxygen permeability is a value measured using an oxygen gas permeability measuring apparatus (manufactured by MOCON, OX-TRAN 2/20: trade name) under the conditions of a measurement temperature of 23 ° C. and a relative humidity of 90%. is there.
  • the first substrate film 10 and the second substrate film 20 preferably have a function of blocking moisture (water vapor) in addition to a gas barrier function of blocking oxygen.
  • the moisture permeability (water vapor permeability) of the first substrate film 10 and the second substrate film 20 is preferably 0.10 g / (m 2 ⁇ day ⁇ atm) or less, and 0.01 g / (m 2 ⁇ day ⁇ atm) or less is more preferable.
  • a flexible belt-like support that is transparent to visible light is preferable.
  • being transparent to visible light means that the light transmittance in the visible light region is 80% or more, preferably 85% or more.
  • the light transmittance used as a measure of transparency is measured by measuring the total light transmittance and the amount of scattered light using the method described in JIS-K7105, that is, using an integrating sphere light transmittance measuring device. It can be calculated by subtracting the rate.
  • the support film preferably has a barrier property against oxygen and moisture.
  • Preferred examples of the support film include a polyethylene terephthalate film, a film made of a polymer having a cyclic olefin structure, and a polystyrene film.
  • the average film thickness of the support films 11 and 21 is preferably 10 to 500 ⁇ m, more preferably 20 to 400 ⁇ m, and even more preferably 30 to 300 ⁇ m, from the viewpoint of impact resistance of the phosphor-containing film.
  • the average film thickness of the support films 11 and 21 is preferably 40 ⁇ m or less, and more preferably 25 ⁇ m or less, from the viewpoint of suppressing a decrease in luminance.
  • the support films 11 and 21 preferably have an in-plane retardation Re (589) at a wavelength of 589 nm of 1000 nm or less, more preferably 500 nm or less, and even more preferably 200 nm or less.
  • Re (589) can be measured by making light having an input wavelength of 589 nm incident in the normal direction of the film using AxoScan OPMF-1 (manufactured by Optoscience).
  • the first base film 10 and the second base film 20 include barrier layers 12 and 22 including at least one inorganic layer formed on the surface of the support films 11 and 21 on the phosphor-containing layer 30 side. It is preferable.
  • the barrier layers 12 and 22 may include at least one inorganic layer and at least one organic layer (see FIGS. 15 and 16). Laminating a plurality of layers in this manner is preferable from the viewpoint of improving light resistance because the barrier property can be further enhanced.
  • the number of layers to be stacked increases, the light transmittance of the base film tends to decrease. Therefore, it is desirable to increase the number of layers within a range in which good light transmittance can be maintained.
  • the barrier layers 12 and 22 preferably have a total light transmittance in the visible light region of 80% or more and an oxygen permeability of 1.00 cc / (m 2 ⁇ day ⁇ atm) or less.
  • the oxygen permeability of the barrier layers 12 and 22 is more preferably 0.1 cc / (m 2 ⁇ day ⁇ atm) or less, further preferably 0.01 cc / (m 2 ⁇ day ⁇ atm) or less, and is particularly preferable. Is 0.001 cc / (m 2 ⁇ day ⁇ atm) or less. The lower the oxygen permeability, the better, and the higher the total light transmittance in the visible light region, the better.
  • the inorganic layer is a layer mainly composed of an inorganic material, and is preferably a layer in which the inorganic material occupies 50% by mass or more, more preferably 80% by mass or more, and particularly 90% by mass or more, and is preferably formed only from the inorganic material. Layer.
  • the inorganic layer is preferably a layer having a gas barrier function of blocking oxygen.
  • the oxygen permeability of the inorganic layer is preferably 1 cc / (m 2 ⁇ day ⁇ atm) or less.
  • the oxygen permeability of the inorganic layer can be obtained by attaching a wavelength conversion layer to the detection part of an oxygen meter made by Orbis Fair Laboratories via silicon grease and converting the oxygen permeability from the equilibrium oxygen concentration value. It is also preferable that the inorganic layer has a function of blocking water vapor.
  • the inorganic layer may be included in two or three layers in the barrier layer.
  • the thickness of the inorganic layer may be 1 to 500 nm, preferably 5 to 300 nm, particularly preferably 10 to 150 nm. This is because when the film thickness of the inorganic layer is within the above-described range, it is possible to suppress reflection in the inorganic layer while providing good barrier properties, and to provide a laminated film with higher light transmittance. .
  • the inorganic material constituting the inorganic layer is not particularly limited, and for example, metals and various inorganic compounds such as inorganic oxides, nitrides, and oxynitrides can be used.
  • silicon, aluminum, magnesium, titanium, tin, indium, and cerium are preferable, and one or more of these may be included.
  • Specific examples of the inorganic compound include silicon oxide, silicon oxynitride, aluminum oxide, magnesium oxide, titanium oxide, tin oxide, indium oxide alloy, silicon nitride, aluminum nitride, and titanium nitride.
  • a metal film such as an aluminum film, a silver film, a tin film, a chromium film, a nickel film, or a titanium film may be provided.
  • the inorganic layer having the barrier property is particularly preferably an inorganic layer containing at least one compound selected from silicon nitride, silicon oxynitride, silicon oxide, and aluminum oxide. Since the inorganic layer made of these materials has good adhesion to the organic layer, even when the inorganic layer has pinholes, the organic layer can effectively fill the pinholes and suppress breakage. In addition, it is possible to form an extremely excellent inorganic layer film even in a case where an inorganic layer is further laminated, and to further increase the barrier property. Further, silicon nitride is most preferable from the viewpoint of suppressing light absorption in the barrier layer.
  • the method for forming the inorganic layer is not particularly limited, and for example, various film forming methods capable of evaporating or scattering the film forming material and depositing it on the deposition surface can be used.
  • Examples of the method for forming the inorganic layer include: vacuum evaporation method in which an inorganic material such as an inorganic oxide, an inorganic nitride, an inorganic oxynitride, and a metal is heated and vapor-deposited; Oxidation reaction vapor deposition method that oxidizes and deposits by introducing an inorganic material; Sputtering method that uses an inorganic material as a target raw material, introduces argon gas and oxygen gas, and deposits by sputtering; Examples thereof include a physical vapor deposition method (PVD method (Physical Vapor Deposition method)) such as an ion plating method in which deposition is performed by heating with a plasma beam.
  • PVD method Physical Vapor Deposition method
  • a plasma chemical vapor deposition method (CVD method (Chemical Vapor Deposition method)) using an organosilicon compound as a raw material can be used.
  • CVD method Chemical Vapor Deposition method
  • silane gas silane gas
  • the organic layer is a layer mainly composed of an organic material, and preferably refers to a layer in which the organic material occupies 50% by mass or more, more preferably 80% by mass or more, and particularly 90% by mass or more.
  • JP, 2007-290369, A paragraphs 0020-0042 and JP, 2005-096108, A paragraphs 0074-0105 can be referred to as an organic layer.
  • an organic layer contains a cardo polymer within the range which satisfies said adhesive force conditions.
  • the adhesiveness between the organic layer and the adjacent layer, particularly the adhesiveness with the inorganic layer is improved, and a further excellent gas barrier property can be realized.
  • the thickness of the organic layer is preferably 0.05 to 10 ⁇ m, and more preferably 0.5 to 10 ⁇ m.
  • the thickness of the organic layer is preferably 0.5 to 10 ⁇ m, and more preferably 1 to 5 ⁇ m. Further, when formed by a dry coating method, 0.05 to 5 ⁇ m, particularly 0.05 to 1 ⁇ m is preferable. This is because when the film thickness of the organic layer formed by the wet coating method or the dry coating method is within the above-described range, the adhesion with the inorganic layer can be further improved.
  • the organic layer may be laminated between the support film and the inorganic layer as a base layer of the inorganic layer, and is laminated between the inorganic layer and the phosphor-containing layer as a protective layer of the inorganic layer. May be. Moreover, when it has two or more inorganic layers, the organic layer may be laminated
  • the base films 10 and 20 may include a concavo-convex imparting layer that imparts a concavo-convex structure on the surface opposite to the surface on the phosphor-containing layer 30 side. It is preferable that the base films 10 and 20 have a concavity and convexity providing layer because the blocking property and slipperiness of the base film can be improved.
  • the unevenness imparting layer is preferably a layer containing particles. Examples of the particles include inorganic particles such as silica, alumina and metal oxide, and organic particles such as crosslinked polymer particles. Moreover, although it is preferable that the uneven
  • the phosphor laminated film can have a light scattering function in order to efficiently extract the fluorescence of the quantum dots to the outside.
  • the light scattering function may be provided inside the phosphor-containing layer 30, or a layer having a light scattering function may be separately provided as the light scattering layer.
  • the light scattering layer may be provided on the surface of the base material films 10 and 20 on the phosphor-containing layer 30 side, or provided on the surface of the base material films 10 and 20 opposite to the phosphor-containing layer 30. It may be.
  • the unevenness providing layer is preferably a layer that can also be used as a light scattering layer.
  • a fluorescent region forming coating liquid containing quantum dots (or quantum rods) as a phosphor is prepared. Specifically, components such as quantum dots, curable compounds, polymer dispersants, polymerization initiators, and silane coupling agents dispersed in an organic solvent are mixed in a tank, etc., to form a fluorescent region. Prepare the solution.
  • the fluorescent region forming coating solution may not contain an organic solvent.
  • a resin layer coating liquid to be filled between the fluorescent regions is prepared.
  • the resin layer coating solution is applied onto the first base film 10 and, if necessary, the resin layer coating solution is dried. Then, the uneven pattern is formed on the applied resin layer coating solution (coating film).
  • a predetermined pattern having recesses is formed by press-contacting a mold (mold), the resin layer coating solution is cured, and a plurality of recesses are formed on the first base film 10 as shown in FIG.
  • a laminated film 59 in which the resin layer 38 having the laminated structure is laminated is formed.
  • the resin layer 38 having a plurality of recesses is formed so that the thickness of the bottom of the recesses of the resin layer 38 is 0.1 to 20 ⁇ m.
  • the present invention prevents contact between the mold and the first base film 10, prevents damage to the inorganic layer of the barrier layer 12 of the first base film 10, and causes fluorescence due to oxygen or the like.
  • a highly durable phosphor-containing film that prevents deterioration of the body 31 can be realized.
  • fluorescent region forming step and second base film pasting step Next, a fluorescent region forming coating solution is applied in the recesses of the resin layer 38 of the laminated film 59, and the second substrate film 20 is bonded before the fluorescent region forming coating solution is cured.
  • the region forming coating solution is cured to form the fluorescent region 35, and the first base film 10, the phosphor-containing layer 30, and the second base film 20 are laminated as shown in FIG. A phosphor-containing film was prepared.
  • the curing treatment in the fluorescent region forming step and the resin layer forming step may be appropriately selected according to the coating solution, such as heat curing or photocuring with ultraviolet rays.
  • the irradiation amount of ultraviolet rays is preferably 100 to 10,000 mJ / cm 2 .
  • the resin layer 38 is cured by thermosetting, it is preferably heated to 20 to 100 ° C.
  • the preparation method of a fluorescent substance containing film may perform each above-mentioned process continuously with what is called a roll-to-roll (RtoR (Roll to Roll)), and uses a cut sheet-like base film.
  • the process of each process may be performed by a so-called single wafer type.
  • a method for forming a plurality of recesses (concave / convex patterns) in the resin layer coating solution applied to the first base film 10 will be specifically described.
  • a method of forming a fine concavo-convex pattern by pressing a mold (mold) having a concavo-convex pattern onto a coating solution for a resin layer applied on a base film can be used.
  • pattern formation can also be performed by an inkjet method or a dispenser method.
  • a mold having a pattern to be transferred is used as the mold.
  • the pattern on the mold can be formed according to desired processing accuracy by, for example, photolithography, electron beam drawing, or the like, but the mold pattern forming method is not particularly limited.
  • the light-transmitting mold material is not particularly limited as long as it has predetermined strength and durability. Specifically, a light transparent resin such as glass, quartz, PMMA and polycarbonate resin, a transparent metal vapor-deposited film, a flexible film such as polydimethylsiloxane, a photocured film, and a metal film such as SUS are exemplified.
  • the non-light-transmitting mold material is not particularly limited as long as it has a predetermined strength. Specifically, ceramic materials, vapor deposition films, magnetic films, reflective films, metal substrates such as Ni, Cu, Cr and Fe, and substrates such as SiC, silicon, silicon nitride, polysilicon, silicon oxide and amorphous silicon Is exemplified. Further, the shape of the mold is not particularly limited, and may be either a plate mold or a roll mold. The roll mold is applied particularly when continuous transfer productivity is required.
  • the mold may be a mold that has been subjected to a release treatment in order to improve the peelability between the curable compound and the mold surface.
  • a mold include coating a material excellent in water and oil repellency. Specifically, polytetrafluoroethylene (PTFE (polytetrafluoroethylene)), diamond-like carbon (DLC (Diamond-like Carbon)), etc., physical vapor deposition (PVD) or chemical vapor deposition (CVD), as well as silicon and fluorine What performed the process by silane coupling agents, such as a system, is illustrated.
  • a commercially available mold release agent such as Optool DSX manufactured by Daikin Industries, Ltd. or Novec EGC-1720 manufactured by Sumitomo 3M Co. can be suitably used.
  • a method of forming a concavo-convex pattern using the mold heat for forming a fine concavo-convex pattern by pressing the mold with a resin layer or a heated mold on a resin layer coated and cured on a base film
  • Imprint method optical imprint method in which a resin layer is cured with light after pressing a mold having a concavo-convex pattern onto a coating solution for a resin layer applied on a base film, and a fine concavo-convex pattern is formed, And the melt molding method etc. which form a fine uneven
  • the optical imprint method is preferable from the viewpoint of excellent production speed and low capital investment.
  • the mold pressure it is usually preferable to perform the mold pressure at 10 atm or less.
  • the mold pressure it is preferable to select a region in which the uniformity of mold transfer can be ensured within a range in which the remaining film of the curable compound on the mold convex portion is reduced.
  • the irradiation amount necessary for curing is appropriately determined by examining the consumption of unsaturated bonds of the curable composition and the tackiness of the cured film.
  • the substrate temperature during light irradiation is usually room temperature, but light irradiation may be performed while heating in order to increase the reactivity.
  • a pre-stage of light irradiation if it is in a vacuum state, it is effective in preventing bubbles from being mixed, suppressing the decrease in reactivity due to oxygen mixing, and improving the adhesion between the mold and the curable composition. May be.
  • a preferable degree of vacuum at the time of light irradiation is in the range of 10 ⁇ 1 Pa to 1 atm.
  • the light used for curing the curable compound is not particularly limited, and examples thereof include high energy ionizing radiation, light or radiation having a wavelength in a region such as near ultraviolet, far ultraviolet, visible, and infrared.
  • the high-energy ionizing radiation source for example, an electron beam accelerated by an accelerator such as a cockcroft accelerator, a handagraaf accelerator, a linear accelerator, a betatron, or a cyclotron is industrially most convenient and economically used. Is done.
  • radiation such as ⁇ -rays, X-rays, ⁇ -rays, neutrons, and protons emitted from radioisotopes and nuclear reactors can also be used.
  • Examples of the ultraviolet ray source include an ultraviolet fluorescent lamp, a low-pressure mercury lamp, a high-pressure mercury lamp, an ultrahigh-pressure mercury lamp, a xenon lamp, a carbon arc lamp, a solar lamp, and an LED (Light Emitting Diode).
  • Examples of the radiation include microwaves and EUV (Extreme Ultraviolet).
  • laser light used in semiconductor microfabrication such as LED, semiconductor laser light, 248 nm KrF excimer laser light, and 193 nm ArF excimer laser can also be suitably used in the present invention. These lights may be monochromatic lights, or may be lights having different wavelengths (mixed lights).
  • the exposure illuminance is preferably 1 to 1000 mW / cm 2 .
  • the exposure intensity 1 mW / cm 2 or more, the exposure time productivity is improved because it is possible to shorten, by a 1000 mW / cm 2 or less, deterioration of the characteristics of the permanent film owing to side reaction This is preferable because it tends to be suppressed.
  • the exposure dose is preferably 5 to 10,000 mJ / cm 2 . When the exposure amount is less than 5 mJ / cm 2 , the exposure margin becomes narrow, photocuring becomes insufficient, and problems such as adhesion of unreacted substances to the mold tend to occur.
  • the permanent film may be deteriorated due to decomposition of the composition.
  • an inert gas such as nitrogen or argon may be flowed to control the oxygen concentration to less than 100 mg / L.
  • the curing of the curable compound may include a step of further curing by applying heat as necessary after curing the curable compound by light irradiation.
  • the heat for heat curing after irradiation with light is preferably 80 to 280 ° C., more preferably 100 to 200 ° C.
  • the time for applying heat is preferably 5 to 60 minutes, more preferably 15 to 45 minutes.
  • the uneven pattern formed on the resin layer 38 can take any form.
  • the uneven pattern include a lattice mesh pattern in which the opening shape of the recesses or the shape of the protrusions is a regular tetragon or rectangle, a honeycomb pattern in which the recesses or protrusions are regular hexagons, and a sea island pattern in which the recesses or protrusions are circular
  • a composite pattern such as a combination of a regular pentagon / regular hexagon with concave or convex portions, a circular combination with different diameters, a pattern having an in-plane distribution in the size of the hexagon, and the like.
  • the resin layer 38 is formed by the photoimprint method, it is possible to suppress the loss of the partition wall when peeling the resin layer from the mold, and from the viewpoint of shortening the ingress distance, a square, a regular hexagon, etc. Regular polygons and circular patterns are preferred. Furthermore, a regular hexagon is more preferable from the viewpoint of increasing the filling rate (area ratio) of the fluorescent region 35.
  • the step of curing the resin layer 38 is performed in a state where the mold is in close contact, but may be performed after the mold is peeled off.
  • the step of curing the resin layer 38 is preferably performed in a state where the mold is in close contact.
  • the mold pressure in the range of 0.1 to 100 MPa.
  • the temperature of the mold and the resin layer is preferably within a predetermined range.
  • the mold temperature is set to be equal to or higher than the glass transition temperature (Tg) of the resin layer, and the substrate temperature is set to be lower than the mold temperature. Often to do.
  • the resin to be molded is heated to a temperature equal to or higher than the melting point, and immediately after pouring a molten resin (melt) between the mold and the base film, the resin is pressed and cooled.
  • a polymer having a low oxygen permeability coefficient is preferable.
  • PVDC vinylidene chloride
  • PVDF polyvinylidene fluoride
  • PET polyethylene terephthalate
  • (modified) polyvinyl alcohol is preferred from the viewpoint of excellent transparency and heat and light resistance, and polyethylene-vinyl alcohol copolymer (EVOH) is particularly preferred.
  • an anchor coat layer may be provided on the base film.
  • the material of the anchor coat layer is appropriately selected according to the material of the resin layer 38 and the base film, etc.
  • the material of the anchor coat layer is urethane-based.
  • Urethane-based and (modified) polyolefin-based anchor coat materials are most preferable from the viewpoint of excellent water resistance and adhesion.
  • Specific examples of anchor coat materials include EL-530A / B manufactured by Toyo Morton, Takelac A / Takenate A series, Admer series, and Unistar series manufactured by Mitsui Chemicals.
  • FIG. 13 is a schematic diagram illustrating a schematic configuration of the backlight unit.
  • the backlight unit 102 includes a light source 101A that emits primary light (blue light L B ) and a light guide plate 101B that guides and emits the primary light emitted from the light source 101A.
  • the reflecting plate 102A, the light guide plate 101B, the wavelength conversion member 100, and the retroreflective member 102B are shown separated from each other, but actually, they may be formed in close contact with each other. Good.
  • Wavelength conversion member 100 at least a portion of the primary light L B emitted from the surface light source 101C as excitation light, emits fluorescence, secondary light comprising this fluorescence (green light L G, the red light L R) and it is intended to emit primary light L B having passed through the wavelength conversion member 100.
  • the wavelength conversion member 100, the blue light L B irradiation phosphor-containing layer and the first base film 10 including the quantum dots that emit quantum dots and the red light L R that emits green light L G by the The phosphor-containing film is formed by being sandwiched between the second base film 20.
  • L B , L G , and L R emitted from the wavelength conversion member 100 are incident on the retroreflective member 102B, and each incident light is transmitted between the retroreflective member 102B and the reflecting plate 102A. The reflection is repeated and passes through the wavelength conversion member 100 many times. As a result, a sufficient amount of excitation light (blue light L B ) is absorbed by the phosphor 31 (here, quantum dots) in the phosphor-containing layer 30 in the wavelength conversion member 100, and a necessary amount of fluorescence (L G). , L R ), and white light L W is embodied and emitted from the retroreflective member 102B.
  • a backlight unit that is a multi-wavelength light source.
  • blue light having an emission center wavelength in a wavelength band of 430 to 480 nm and a peak of emission intensity having a half width of 100 nm or less, and an emission center wavelength in a wavelength band of 500 to 600 nm and having a half width of It emits green light having an emission intensity peak of 100 nm or less, and red light having an emission center wavelength in a wavelength band of 600 to 680 nm and a emission intensity peak having a half width of 100 nm or less.
  • blue light having an emission center wavelength in a wavelength band of 430 to 480 nm and a peak of emission intensity having a half width of 100 nm or less
  • red light having an emission center wavelength in a wavelength band of 600 to 680 nm and a emission intensity peak having
  • the wavelength band of blue light emitted from the backlight unit is more preferably 440 to 460 nm.
  • the wavelength band of the green light emitted from the backlight unit is preferably 520 to 560 nm, and more preferably 520 to 545 nm.
  • the wavelength band of red light emitted from the backlight unit is more preferably 610 to 640 nm.
  • the half-value width of each of the emission intensity of blue light, green light and red light emitted from the backlight unit is preferably 80 nm or less, more preferably 50 nm or less, further preferably 40 nm or less, and more preferably 30 nm or less. Is more preferable.
  • the full width at half maximum of each emission intensity of blue light is particularly preferably 25 nm or less.
  • the light source 101A is, for example, a blue light emitting diode that emits blue light having an emission center wavelength in a wavelength band of 430 to 480 nm, but an ultraviolet light emitting diode that emits ultraviolet light may be used.
  • a laser light source other than a light emitting diode can be used.
  • a phosphor that emits blue light when irradiated with ultraviolet light, a phosphor that emits green light, and A phosphor that emits red light may be included.
  • the planar light source 101 ⁇ / b> C may be a planar light source including a light source 101 ⁇ / b> A and a light guide plate 101 ⁇ / b> B that guides and emits primary light emitted from the light source 101 ⁇ / b> A.
  • a planar light source that is arranged side by side in a plane parallel to the wavelength conversion member 100 and includes a diffusion plate instead of the light guide plate 101B may be used.
  • the former planar light source is generally called an edge light system, and the latter planar light source is generally called a direct type.
  • a case where a planar light source is used as the light source has been described as an example. However, a light source other than the planar light source can be used as the light source.
  • the reflecting plate 102A is not particularly limited, and a known one can be used, and is described in Japanese Patent No. 3416302, Japanese Patent No. 3363565, Japanese Patent No. 4091978, Japanese Patent No. 3448626, and the like. The contents of these publications are incorporated into the present invention.
  • the retroreflective member 102B may be configured by a known diffusion plate, diffusion sheet, prism sheet (for example, BEF series manufactured by Sumitomo 3M), a light guide, or the like.
  • the configuration of the retroreflective member 102B is described in Japanese Patent No. 3416302, Japanese Patent No. 3363565, Japanese Patent No. 4091978, and Japanese Patent No. 3448626, and the contents of these publications are incorporated in the present invention.
  • FIG. 14 is a schematic diagram illustrating a schematic configuration of the liquid crystal display device.
  • the liquid crystal display device 104 includes the backlight unit 102 according to the above-described embodiment and the liquid crystal cell unit 103 disposed to face the retroreflective member side of the backlight unit.
  • the liquid crystal cell unit 103 has a configuration in which the liquid crystal cell 110 is sandwiched between polarizing plates 120 and 130.
  • the polarizing plates 120 and 130 have both main surfaces of the polarizers 122 and 132, respectively.
  • the polarizing plate protective films 121 and 123 and 131 and 133 are used for the protection.
  • liquid crystal cell 110 there are no particular limitations on the liquid crystal cell 110, the polarizing plates 120 and 130, and the components of the liquid crystal display device 104, and those manufactured by known methods and commercially available products can be used without any limitation. It is of course possible to provide a known intermediate layer such as an adhesive layer between the layers.
  • the driving mode of the liquid crystal cell 110 is not particularly limited, and twisted nematic (TN), super twisted nematic (STN), vertical alignment (VA), in-plane switching (IPS), and optically compensated bend cell.
  • Various modes such as (OCB) can be used.
  • the liquid crystal cell is preferably VA mode, OCB mode, IPS mode, or TN mode, but is not limited thereto.
  • the configuration shown in FIG. 2 of Japanese Patent Application Laid-Open No. 2008-262161 is given as an example.
  • the specific configuration of the liquid crystal display device is not particularly limited, and a known configuration can be adopted.
  • the liquid crystal display device 104 further includes an accompanying functional layer such as an optical compensation member that performs optical compensation as necessary, and an adhesive layer.
  • an accompanying functional layer such as an optical compensation member that performs optical compensation as necessary, and an adhesive layer.
  • an optical compensation member that performs optical compensation as necessary
  • an adhesive layer along with (or instead of) a color filter substrate, thin layer transistor substrate, lens film, diffusion sheet, hard coat layer, antireflection layer, low reflection layer, antiglare layer, etc., forward scattering layer, primer layer, charging
  • a surface layer such as a prevention layer and an undercoat layer may be disposed.
  • the backlight side polarizing plate 120 may have a retardation film as the polarizing plate protective film 123 on the liquid crystal cell 110 side.
  • a retardation film a known cellulose acylate film or the like can be used.
  • the backlight unit 102 and the liquid crystal display device 104 include a wavelength conversion member made of the phosphor-containing film of the present invention. Therefore, the backlight unit and the liquid crystal display device having the same effects as those of the phosphor-containing film of the present invention and having a light emission intensity of the wavelength conversion layer including the quantum dots are hardly reduced.
  • Example 1 ⁇ Preparation of phosphor-containing film> A phosphor-containing film having a phosphor-containing layer was prepared using a coating liquid containing quantum dots as the phosphor.
  • coated the following composition on the barrier layer was prepared as follows.
  • an inorganic layer (silicon nitride layer) was formed on the surface of the organic layer using a roll-to-roll CVD apparatus.
  • Silane gas (flow rate 160 sccm), ammonia gas (flow rate 370 sccm), hydrogen gas (flow rate 590 sccm), and nitrogen gas (flow rate 240 sccm) were used as source gases.
  • a high frequency power supply having a frequency of 13.56 MHz was used as the power supply.
  • the film forming pressure was 40 Pa, and the reached film thickness was 50 nm.
  • a photopolymerization initiator (trade name “IRGACURE 184”, manufactured by BASF) 5 parts by weight with respect to 95.0 parts by mass of urethane acrylate polymer (trade name “Acryt 8BR930”, manufactured by Taisei Fine Chemical Co., Ltd.) 5 0.0 parts by weight were weighed and dissolved in methyl ethyl ketone to obtain a coating solution having a solid concentration of 15%.
  • This coating solution was applied directly to the surface of the inorganic layer by a roll-to-roll using a die coater, and passed through a 100 ° C. drying zone for 3 minutes. Thereafter, while being held in a heat roll heated to 60 ° C., it was cured by being irradiated with ultraviolet rays (integrated irradiation amount: about 600 mJ / cm 2 ) and wound up.
  • the thickness of the second organic layer formed on the support was 0.1 ⁇ m.
  • the barrier film with a 2nd organic layer was produced as a 1st base film and a 2nd base film.
  • OX-TRAN 2/20 manufactured by MOCON a value of 4.0 ⁇ 10 ⁇ 3 cc / (m 2 ⁇ day ⁇ atm) or less was shown.
  • coating solution 1 for forming a resin layer As coating solution 1 for forming a resin layer, components such as a curable compound, a polymerization initiator, and a silane coupling agent were mixed in a tank to prepare a coating solution.
  • the resin layer coating solution 1 was applied onto the first base film, and the recesses were transferred and then photocured to form a resin layer having a plurality of recesses.
  • transfer used what the round part of the curvature radius 10 micrometers was attached to the corner
  • the concave portion has a regular hexagonal shape with a side of 125 ⁇ m, has a honeycomb pattern, the depth h of the concave portion (bottom thickness of the concave portion) is 40 ⁇ m, and the width t (line width) is 50 ⁇ m. That is, the aspect ratio h / t is 0.8.
  • a resin layer coating solution was poured between the first base film and the sheet mold, and the resin was filled into the mold sheet recess by pressing with a laminator at a pressure of 0.5 MPa, followed by photocuring. .
  • the sheet mold was peeled from the first base film to obtain a film having a plurality of recesses.
  • a 200 W / cm air-cooled metal halide lamp manufactured by Eye Graphics Co., Ltd. was used to cure the resin layer by irradiating ultraviolet rays with 500 mJ / cm 2 from the first base film side.
  • the width t (line width (50 ⁇ m)) is the shortest distance between adjacent fluorescent regions across the resin layer, that is, the thinnest portion of the resin layer between the fluorescent regions.
  • coating solution 2 for forming a fluorescent region components such as quantum dots, curable compounds, polymer dispersants, polymerization initiators, and silane coupling agents were mixed in a tank to prepare a coating solution.
  • a quantum dot dispersion liquid having the following composition was prepared and designated as coating liquid 2.
  • Toluene dispersion of quantum dot 1 (light emission maximum: 520 nm) 20% by mass -Quantum dot 2 toluene dispersion (maximum emission: 630 nm) 2% by mass ⁇
  • Dicyclopentanyl acrylate (DCP: FA-513AS, manufactured by Hitachi Chemical Co., Ltd.) 78.8% by mass
  • Tricyclodecane dimethanol diacrylate (A-DCP, Shin-Nakamura Chemical Co., Ltd.) 20% by mass ⁇
  • Light scattering particles (Tospearl 120, manufactured by Momentive Performance Materials) 20% by mass -Photopolymerization initiator (Irgacure TPO, manufactured by BASF) 0.2% by mass
  • Quantum dot 1 INP530-10 (manufactured by NN-labs)
  • Quantum dot 2 INP620-10 (manufactured by NN-labs)
  • a fluorescent layer forming coating solution 2 is applied onto a resin layer having a plurality of recesses and a first substrate film, the coating solution 2 is filled in the recesses, and the second substrate film is attached, and then pressure is applied with a laminator.
  • a phosphor-containing film was produced by pressure-contacting at 0.1 MPa and photocuring to form a fluorescent region-containing layer in which fluorescent regions were formed in a plurality of recesses of the resin layer.
  • a 200 W / cm air-cooled metal halide lamp manufactured by Eye Graphics Co., Ltd. was used to cure the fluorescent region by irradiating ultraviolet rays from the first substrate film side at 500 mJ / cm 2 .
  • the thickness of the phosphor-containing layer of the obtained phosphor-containing film was 40 ⁇ m.
  • the bottom thickness b of the concave portion of the resin layer was 1.2 ⁇ m.
  • the distance (gap with a resin layer) of the surface (surface of a 2nd organic layer) of a 2nd base film and the top surface of a resin layer recessed part was 0.5 micrometer.
  • Example 2-12 and Comparative Examples 1-2 The laminator pressure at the time of forming the resin layer and the fluorescent region is changed, the thickness b of the bottom of the concave portion of the resin layer, and the top surface of the concave portion of the resin layer and the surface of the second base film (second A phosphor-containing film was produced in the same manner as in Example 1 except that the distance (gap with the resin layer) to the surface of the organic layer was as shown in Table 1.
  • a fluorescent region coating solution 3 quantitative dot dispersion having the following composition was prepared, and the coating solution 3 was used as a fluorescent region coating solution.
  • a quantum dot dispersion liquid having the following composition was prepared and designated as coating liquid 2.
  • Toluene dispersion of quantum dot 1 (light emission maximum: 520 nm) 20% by mass -Quantum dot 2 toluene dispersion (maximum emission: 630 nm) 2% by mass ⁇
  • Dicyclopentanyl acrylate (DCP: FA-513AS, manufactured by Hitachi Chemical Co., Ltd.) 78.8% by mass
  • Tricyclodecane dimethanol diacrylate (A-DCP, Shin-Nakamura Chemical Co., Ltd.) 20% by mass ⁇
  • Light scattering particles (Tospearl 120, manufactured by Momentive Performance Materials) 20% by mass -Photopolymerization initiator (Irgacure TPO, manufactured by BASF) 0.2% by mass
  • Quantum dot 1 CZ520-10 (manufactured by NN-labs)
  • Quantum dot 2 CZ620-10 (manufactured by NN-labs)
  • the fluorescent material having no resin layer is formed by sandwiching the fluorescent region coating solution 2 between the first substrate film and the second substrate film and then photocuring.
  • a containing film was prepared.
  • a 200 W / cm air-cooled metal halide lamp (manufactured by Eye Graphics Co., Ltd.) is used to irradiate UV light from the first substrate film side by 500 mJ / cm 2 to give a coating solution 2 for the fluorescent region. Cured to form a fluorescent region.
  • the thickness of the phosphor-containing layer of the obtained phosphor-containing film was 30 ⁇ m.
  • the phosphor-containing films prepared in the examples and comparative examples are wavelength conversion members, and changes with time in the light emission performance of the wavelength conversion members were measured and evaluated as follows.
  • each wavelength conversion member was cut
  • Each side of the cut wavelength conversion member straddles the resin layer and the fluorescent region.
  • a commercially available tablet terminal equipped with a blue light source in the backlight unit (trade name “Kindle (registered trademark) Fire HDX 7”, manufactured by Amazon, hereinafter simply referred to as “Kindle Fire HDX 7”) may be disassembled.
  • the backlight unit was taken out.
  • the wavelength conversion film QDEF Quantum Dot Enhancement Film
  • the wavelength conversion member of Example or Comparative Example cut into a rectangle was incorporated. In this way, a liquid crystal display device was produced.
  • the manufactured liquid crystal display device is turned on so that the entire surface becomes white display, and the luminance is measured with a luminance meter (trade name “SR3”, manufactured by TOPCON) installed at a position of 520 mm in the vertical direction with respect to the surface of the light guide plate. It was measured.
  • the initial luminance Y 0 (cd / m 2 ) was evaluated based on the following evaluation criteria. -Evaluation criteria- A: Y 0 ⁇ 530 B: 530> Y 0 ⁇ 515 C: 515> Y 0 ⁇ 500 D: 500> Y 0
  • the produced wavelength conversion member is cut into strips having a length of 150 mm and a width of 25 mm, and in accordance with JIS K 6854 (T-peeling), the fluorescence of the first base film is peeled off at a peeling angle of 180 degrees and a peeling speed of 300 mm / min.
  • the peel force F (N / 25 mm) of the body-containing layer was measured and evaluated based on the following criteria.
  • F ⁇ 10 B 10>
  • F ⁇ 3 C 3>
  • F ⁇ 1 D 1> F
  • each wavelength conversion member was placed on a commercially available blue light source (OPSM-H150X142B manufactured by OPTEX-FA), and the wavelength conversion member was irradiated with blue light continuously for 1000 hours. After 1000 hours, the phosphor-containing film was taken out and observed with an optical microscope, and the edge luminance deterioration distance (distance at which chromaticity change or luminance reduction can be confirmed) Lmm was evaluated.
  • the examples of the present invention suggest that a phosphor-containing film having excellent wet heat durability and high reliability can be obtained. Further, from the results of Examples and Comparative Example 1, when the thickness b of the bottom of the concave portion of the resin layer is too small, the luminance deterioration of the end portion is suppressed, but the wet heat durability is deteriorated, and the phosphor It can be seen that the main surface / end surface sealing of the containing film is not compatible. Furthermore, it can be seen from the results of Examples and Comparative Example 2 that when the thickness b of the bottom of the concave portion of the resin layer is too large, the luminance of the phosphor-containing film decreases. From the results of Comparative Example 3, it can be seen that the durability deteriorates when the resin layer is not provided.
  • Example 1 and Examples 7 to 9 it can be seen that durability is excellent when the distance between the surface of the second base film and the top surface of the concave portion of the resin layer is appropriately short. Moreover, it turns out that it is excellent in adhesiveness if the distance of the surface of a 2nd base film and the top face of the recessed part of a resin layer is moderately long from the comparison of Example 1 and Examples 10 and 11.
  • the phosphor-containing film of the present invention has been described by taking the wavelength conversion member as an example in the above-described embodiment, but by appropriately selecting the type of phosphor, the organic electroluminescence layer in the organic electroluminescence element, the organic solar cell It can be applied to an organic photoelectric conversion layer and the like, and an effect of suppressing performance degradation can be obtained.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Engineering & Computer Science (AREA)
  • Engineering & Computer Science (AREA)
  • Nonlinear Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Mathematical Physics (AREA)
  • Optical Filters (AREA)
  • Liquid Crystal (AREA)
  • Laminated Bodies (AREA)
  • Planar Illumination Modules (AREA)
  • Luminescent Compositions (AREA)

Abstract

蛍光体の劣化を抑制でき、基材フィルムの欠損に起因する輝点の発生および輝度の低下を抑制できる蛍光体含有フィルムおよびバックライトユニットの提供を課題とする。酸素不透過性を有し離散的な凹部が形成された樹脂層および凹部に配置される蛍光領域を有する蛍光体含有層と、蛍光体含有層の一面に積層される第1の基材フィルムおよび逆面に積層される第2の基材フィルムとを有し、蛍光領域は、酸素に暴露されると酸素と反応して劣化する蛍光体とバインダをと含み、第1の基材フィルムは、支持フィルムと蛍光体含有層に対面する面側に設けられる無機層と含み、樹脂層は、弾性率が0.5~10GPaで、凹部の底の厚さが0.1~20μmであることにより、課題を解決する。

Description

蛍光体含有フィルムおよびバックライトユニット
 本発明は、励起光照射により蛍光を発する蛍光体を含む蛍光体含有フィルムおよび蛍光体含有フィルムを波長変換部材として備えたバックライトユニットに関する。
 液晶表示装置(LCD(Liquid Crystal Display))などのフラットパネルディスプレイは、消費電力が小さく、省スペースの画像表示装置として年々その用途が広がっている。以下、「液晶表示装置」を「LCD」とも言う。近年のLCDにおいて、LCD性能改善としてさらなる省電力化や色再現性向上等が求められている。
 LCDのバックライトの省電力化に伴って、光利用効率を高め、また、色再現性を向上するために、入射光の波長を変換して出射する量子ドット(QD(Quantum Dot)、量子点とも呼ばれる)を発光材料(蛍光体)として含んだ波長変換層を利用することが提案されている。
 量子ドットとは、三次元全方向において移動方向が制限された電子の状態のことであり、半導体のナノ粒子が、高いポテンシャル障壁で三次元的に囲まれている場合に、このナノ粒子は量子ドットとなる。量子ドットは種々の量子効果を発現する。例えば、電子の状態密度(エネルギー準位)が離散化される「量子サイズ効果」が発現する。この量子サイズ効果によれば、量子ドットの大きさを変化させることで、光の吸収波長や発光波長を制御できる。
 一般に、このような量子ドットは、樹脂等の中に分散されて、例えば、波長変換を行う量子ドットフィルムとして、バックライトと液晶パネルとの間に配置されて用いられる。
 バックライトから量子ドットを含むフィルムに励起光が入射すると、量子ドットが励起され蛍光を発光する。ここで異なる発光特性を有する量子ドットを用い、各量子ドットに赤色光、緑色光もしくは青色光の半値幅の狭い光を発光させることにより白色光を具現化することができる。量子ドットによる蛍光は半値幅が狭いため、波長を適切に選択することで得られる白色光を高輝度にすること、および色再現性に優れる設計にすることが可能である。
 ところで、量子ドットは、水分や酸素により劣化しやすく、特に光酸化反応により発光強度が低下するという問題がある。そのため、波長変換部材は、量子ドットを含んだ波長変換層である量子ドットを含む樹脂層の両主面にバリアフィルム(ガスバリアフィルム)を積層して、量子ドットを含む樹脂層を保護するように構成される。以下、「量子ドットを含む樹脂層」を「量子ドット層」ともいう。
 バリアフィルムは、一例として、樹脂フィルム等の支持フィルムの一面に、ガスバリア性を発現するバリア層を形成した構成を有する。
 しかしながら、量子ドット層の両主面をバリアフィルムで保護するのみでは、バリアフィルムで保護されていない端面から水分や酸素が入り込み、量子ドットが劣化するという問題がある。
 そのため、量子ドット層の周囲全部(端面の全周)をバリアフィルムで保護することが提案されている。
 例えば、特許文献1には、励起光を波長変換して波長変換光を発生させる量子点および量子点を分散させる分散媒質を含む波長変換部と、波長変換部を密封する密封部材とを含む量子点波長変換体が記載されており、密封部材である2枚の密閉シート間に波長変換部を配置して、密閉シートの波長変換部の周囲を加熱して熱粘着させることにより波長変換部を密封することが記載されている。
 また、特許文献2には、光源部から発せられた色光の少なくとも一部を他の色光に変換する色変換層(蛍光体層)と、色変換層を封止する不透水性の封止シートとを備えた発光装置が記載されており、蛍光体層の外周に沿って、すなわち色変換層の平面形状を囲むように枠形状に設けられている第2貼合層を有し、この第2貼合層が水蒸気バリア性を有する接着材料からなる構成により色変換層への水の浸入を防止した色変換シート(蛍光体シート)が記載されている。
 ところで、LCDに用いられる、量子ドット層(量子ドットを含む波長変換層)は50~350μm程度の薄型のフィルムである。そのような非常に薄型のフィルムの端面全面をバリアフィルムなどの密封シートで被覆するのは非常に困難であり、生産性が悪いという問題があった。
 このような問題は、量子ドットに限らず、酸素と反応して劣化する蛍光体を備える蛍光体含有フィルムで同様に生じる。
 一方、量子ドットなどの蛍光体を含有する蛍光体含有フィルムを高い生産効率で製造するためには、ロール・トゥ・ロール方式により長尺なフィルム上に塗布工程や硬化工程を順次施して、積層構造を形成した後に、所望のサイズに裁断する方法が好ましい。
 しかし、この長尺フィルムから所望サイズの蛍光体含有フィルムを裁断して得る際、やはり切断端面において蛍光体含有層が外気に曝露されるため、切断端面からの酸素の侵入に対する対策が必要である。
 これに対して、特許文献3には、2つの基板と、複数の分離された領域を形成するシール材、および、分離された領域に配置される蛍光物質を含む蛍光部材を有し、2つの基板の間に積層される蛍光体含有層とを有する光学部品が記載されている。この光学部品は、シール材の部分で裁断することで、光学部品を裁断しても蛍光部材の密閉状態を維持できることが記載されている。
特開2010-061098号公報 特開2009-283441号公報 米国特許公開2015/048403号
 しかしながら、蛍光体含有層の構成を、複数の分離された領域(凹部)を形成する樹脂層と分離された領域に配置される蛍光領域とを有する構成とした場合でも、樹脂層の凹凸の形成にモールドを使用した場合に、モールドとバリアフィルムが接触して、バリアフィルムのバリア層を破壊し水分や酸素が侵入しやすくなってしまうという問題があることがわかった。
 本発明は、上記事情に鑑みてなされたものであって、量子ドットなどの蛍光体を含有するフィルムにおいて、蛍光体の劣化を抑制することができ、かつ、バリア層の欠損に起因する耐久性能の悪化を抑制できる蛍光体含有フィルム、ならびに、この蛍光体含有フィルムを波長変換部材として備えたバックライトユニットを提供することを課題とする。
 本発明者らは、上記課題を達成すべく鋭意検討した結果、酸素に対する不透過性を有し、離散的に配置された複数の凹部が形成された樹脂層、および、樹脂層に形成された凹部に配置される複数の蛍光領域、を有する蛍光体含有層と、蛍光体含有層の一方の主面に積層される第1の基材フィルム、および、蛍光体含有層の他方の主面に積層される第2の基材フィルムと、を有し、蛍光領域は、酸素に暴露されると酸素と反応して劣化する蛍光体、および、バインダを含み、第1の基材フィルムは、支持フィルム、および、支持フィルムの蛍光体含有層と対面する面側に設けられる無機層を含み、樹脂層は、弾性率が0.5~10GPaであり、樹脂層の凹部の底の厚さが0.1~20μmであることにより、上記課題を解決できることを見出し、本発明を完成させた。
 すなわち、以下の構成により上記課題を達成することができることを見出した。
 (1) 酸素に対する不透過性を有し、離散的に配置された複数の凹部が形成された樹脂層、および、樹脂層に形成された凹部に配置される複数の蛍光領域、を有する蛍光体含有層と、
 蛍光体含有層の一方の主面に積層される第1の基材フィルム、および、蛍光体含有層の他方の主面に積層される第2の基材フィルムと、を有し、
 蛍光領域は、酸素に暴露されると酸素と反応して劣化する蛍光体、および、バインダを含み、
 第1の基材フィルムは、支持フィルム、および、支持フィルムの蛍光体含有層と対面する面側に設けられる無機層を含み、
 樹脂層は、弾性率が0.5~10GPaであり、
 樹脂層の凹部の底の厚さが0.1~20μmである蛍光体含有フィルム。
 (2) 前記第2の基材フィルムは、支持フィルム、および、前記支持フィルムの前記蛍光体含有層と対面する面側に設けられる無機層を含み、前記第2の基材フィルムの前記無機層と前記樹脂層の凹部の頂面とが接していない(1)に記載の蛍光体含有フィルム。
 (3) 樹脂層の凹部の深さhが10~80μmであり、る隣接する蛍光領域の間の幅tが5~300μm以下である(1)または(2)に記載の蛍光体含有フィルム。
 (4) 樹脂層の酸素透過度が10cc/(m2・day・atm)以下である(1)~(3)のいずれかに記載の蛍光体含有フィルム。
 (5) 第1の基材フィルムおよび第2の基材フィルムの酸素透過度が1cc/(m2・day・atm)以下である(1)~(4)のいずれかに記載の蛍光体含有フィルム。
 (6) 蛍光体含有層は、蛍光領域が、樹脂層および酸素に暴露されることにより酸素と反応して劣化した蛍光体を含む蛍光領域によって囲まれた(1)~(5)のいずれかに記載の蛍光体含有フィルム。
 (7) (1)~(6)のいずれかに記載の蛍光体含有フィルムからなる波長変換部材と、青色発光ダイオードおよび紫外線発光ダイオードの少なくとも一方を含むバックライトユニット。
 本発明によれば、量子ドットなどの蛍光体を含有するフィルムにおいて、凹凸形成時にモールドを使用した場合でもバリアフィルムのバリア層の損傷を防止でき、酸素等による蛍光体の劣化を抑制することができる蛍光体含有フィルム、ならびに、この蛍光体含有フィルムを波長変換部材として備えたバックライトユニットを提供することができる。
図1は、本発明の蛍光体含有フィルムの一例を模式的に示す斜視図である。 図2は、図1の蛍光体含有フィルムの平面図である。 図3は、図1の蛍光体含有フィルムの断面図である。 図4は、蛍光領域の凹部の深さhと隣接する蛍光領域間の幅tとを説明するための図である。 図5は、蛍光領域の平面視パターンの別の例を示す平面図である。 図6は、蛍光領域の平面視パターンの別の例を示す平面図である。 図7は、蛍光領域の輪郭の特定方法を説明するための図である。 図8Aは、本発明の蛍光体含有フィルムの別の例を模式的に示す平面図である。 図8Bは、図8AのB-B線断面図である。 図8Cは、図8AのC-C線断面図である。 図9Aは、本発明の蛍光体含有フィルムの別の例を模式的に示す平面図である。 図9Bは、図9AのB-B線断面図である。 図10Aは、本発明の蛍光体含有フィルムの別の例を模式的に示す平面図である。 図10Bは、図10AのB-B線断面図である。 図11は、本発明の蛍光体含有フィルムの作製方法の一例を説明するための模式図である。 図12は、本発明の蛍光体含有フィルムの作製方法の一例を説明するための模式図である。 図13は、蛍光体含有フィルムを波長変換部材として備えたバックライトユニットの一例の概略構成断面図である。 図14は、バックライトユニットを備えた液晶表示装置の一例の概略構成断面図である。 図15は、本発明の蛍光体含有フィルムの一例を説明するための概念図である。 図16は、本発明の蛍光体含有フィルムの別の例を説明するための概念図である。
 以下、図面を参照して、本発明に係る蛍光体含有フィルム、および、蛍光体含有フィルムを備えたバックライトユニットの実施の形態について説明する。本明細書の図面において、視認しやすくするために各部の縮尺を適宜変更して示している。なお、本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
 また、本明細書において、「(メタ)アクリレート」とは、アクリレートとメタクリレートとの少なくとも一方、または、いずれかの意味で用いるものとする。「(メタ)アクリロイル」等も同様である。
<蛍光体含有フィルム>
 本発明の蛍光体含有フィルムは、酸素に対する不透過性を有し、離散的に配置された複数の凹部が形成された樹脂層、および、樹脂層に形成された凹部に配置される複数の蛍光領域、を有する蛍光体含有層と、
 蛍光体含有層の一方の主面に積層される第1の基材フィルム、および、蛍光体含有層の他方の主面に積層される第2の基材フィルムと、を有し、
 蛍光領域は、酸素に暴露されると酸素と反応して劣化する蛍光体、および、バインダを含み、
 第1の基材フィルムは、支持フィルム、および、支持フィルムの蛍光体含有層と対面する面側に設けられる無機層を含み、
 樹脂層は、弾性率が0.5~10GPaであり、
 樹脂層の凹部の底の厚さが0.1~20μmである蛍光体含有フィルムである。
 図1は、本発明に係る蛍光体含有フィルム1の一例を模式的に示す斜視図であり、図2は、図1の平面図であり、図3は、図1の断面図である。なお、図1においては説明のため、第2の基材フィルム20を破線で示し、蛍光体含有層30を実線で示す。
 本実施形態の蛍光体含有フィルム1は、第1の基材フィルム10と、第1の基材フィルム10上において、酸素に暴露されると酸素と反応して劣化する蛍光体31を含む領域35が複数、離散的に配置され、離散的に配置された蛍光体31を含む領域35間に、酸素に対する不透過性を有する樹脂層38が配置されてなる蛍光体含有層30と、蛍光体含有層30上に配置される第2の基材フィルム20とを備えている。以下において、「蛍光体31を含む領域35」を「蛍光領域35」とも言い、また、「酸素に対する不透過性を有する樹脂層38」を「樹脂層38」とも言う場合がある。
 言い換えると、蛍光体含有層30は、樹脂層38と蛍光領域35とを有し、樹脂層38には複数の凹部が離散的に形成されており、蛍光領域35が樹脂層38の凹部内に配置された構成を有する。
 本明細書において、「第1の基材フィルム上において、・・・蛍光体を含む領域が複数、離散的に配置され」とは、図1および図2に示すように、第1の基材フィルム10のフィルム面(主面)に垂直な方向から観察(平面視)した際に、第1の基材フィルム10のフィルム面に沿った二次元方向において複数の蛍光領域35が互いに接触しないで孤立して配置されていることを意味する。なお、主面とは、シート状物の最大面である。
 図1に示す例においては、蛍光領域35は円柱状(ディスク状)であり、第1の基材フィルム10のフィルム面に沿った二次元方向において酸素に対する不透過性を有する樹脂層38に囲まれて個々孤立しており、個々の蛍光領域35への第1の基材フィルム10のフィルム面に沿った二次元方向からの酸素の侵入が遮断されている。
 本明細書において「酸素に対する不透過性を有する」とは、酸素透過度が10cc/(m2・day・atm)以下であることを意味する。酸素に対する不透過性を有する樹脂層の酸素透過度は1cc/(m2・day・atm)以下であるのがより好ましく、さらに好ましくは、1×10-1cc/(m2・day・atm)以下である。
 なお、本明細書において「不透過性を有する」と「バリア性を有する」とは同義で用いている。すなわち、本明細書において、ガスバリアとは、ガス(気体)に対して不透過性を有することを意味し、水蒸気バリアとは、水蒸気に対して不透過性を有することを意味する。また、酸素および水蒸気の両者に対して不透過性を有する層については、「バリア層」とも言う。
 本発明の蛍光体含有フィルム1は、蛍光領域35が二次元方向に離散的に配置されている。そのため、図2に示すように、蛍光体含有フィルム1を長尺フィルムの一部と仮定したとき、破線で示すようにどの箇所で直線的に裁断されたとしても、裁断箇所となった蛍光領域35以外の蛍光領域35は樹脂層38により囲まれて封止された状態を保つことができる。また、裁断されて外気に暴露された蛍光領域35は、本来の蛍光体としての機能を失うが、失活した蛍光領域は、外気に暴露されていない蛍光領域35を外気から守る樹脂層となる。
 ここで、本発明の蛍光体含有フィルム1においては、第1の基材フィルム10は、蛍光体含有層30の一方の主面に積層されるものであり、支持フィルム11とバリア層12とを含む。また、図15および図16に概念的に示すように、バリア層12は、支持フィルム11の蛍光体含有層30と対面する側の面に設けられ、かつ、無機層52を有する。
 また、本発明の蛍光体含有フィルム1においては、樹脂層38の凹部の底の厚さbが、0.1~20μmである。なお、本発明において、「樹脂層38の凹部の底の厚さbが0.1~20μmである」とは、言い換えれば、例えば、バリア層12が、図15に示すように、有機層50と、有機層50の上の無機層52と、無機層52の上の有機層54とで構成される場合には、バリア層12の蛍光体含有層30側の表面となる有機層54の表面から、樹脂層38の凹部の底面すなわち凹部に充填される蛍光領域35までの距離が0.1~20μmであることを示す。また、バリア層12が、図16に示すように、有機層50と、有機層50の上の無機層52とで構成される場合には、「樹脂層38の凹部の底の厚さbが0.1~20μmである」とは、バリア層12の蛍光体含有層30側の表面となる無機層52の表面から、樹脂層38の凹部の底面すなわち凹部に充填される蛍光領域35までの距離が0.1~20μmであることを示す。
 また、本発明の蛍光体含有フィルム1においては、好ましい態様として、第1の基材フィルムの蛍光体含有層と接する側の無機層と樹脂層の凹部の頂面との距離が0.01~10μmである。さらに、本発明の蛍光体含有フィルム1においては、好ましい態様として、図4に示すように、蛍光領域35が配置される樹脂層38の凹部の深さをhとし、隣接する蛍光領域35間の幅、すなわち、樹脂層38の厚さをtとすると、樹脂層38の凹部の深さhが1~100μmであり、隣接する蛍光領域35の間の幅tが5~300μmである。
 前述のとおり、量子ドットなどの蛍光体を含有する蛍光体含有フィルムを高い生産効率で製造するためには、ロール・トゥ・ロール方式により長尺なフィルム上に塗布工程や硬化工程を順次施して、積層構造を形成した後に、所望のサイズに裁断する方法が好ましい。この長尺フィルムから所望サイズの蛍光体含有フィルムを裁断して得る際、切断端面において蛍光体含有層が外気に曝露されるため、切断端面からの酸素の侵入に対する対策が必要である。
 そこで、量子ドットなどの蛍光体を含む層(蛍光領域)を複数の領域に離散的に配置し、蛍光領域の周囲にシール材となる樹脂層を配置する構成として、蛍光体含有フィルムを裁断する際に樹脂層の部分で裁断することで、光学部品を裁断しても蛍光部材の密閉状態を維持することが考えられている。
 後述するが、蛍光体を含む領域を離散的に配置した蛍光体含有フィルムは、一例として、バリア層を構成する無機層を有するバリアフィルム(ガスバリアフィルム)の無機層側の表面に、樹脂層となる硬化性の塗膜を形成し、モールドを用いて、塗膜に複数の離散された領域(凹部)を形成した後、塗膜を硬化して複数の凹部を有する樹脂層を形成し、凹部に蛍光領域を充填して、樹脂層の上にバリアフィルムを積層して貼着することで形成される。
 しかしながら、本発明者らの検討によれば、蛍光体含有層の構成を、複数の分離された領域(凹部)を形成する樹脂層と分離された領域に配置される蛍光領域とを有する構成とした場合でも、凹凸形成時にモールドを使用した場合に、モールドとバリアフィルムとが接触して、バリア層(無機層)を破壊し、水分や酸素が侵入しやすくなってしまうという問題があることがわかった。
 これに対して、本発明の蛍光体含有フィルムは、第1の基材フィルム10と接触する、樹脂層38の凹部の底の厚さbが、0.1~20μmである。
 また、好ましくは、樹脂層38の凹部の深さhが1~100μmであり、隣接する蛍光領域の間の幅tが5~300μmである。
 本発明者らの検討によれば、樹脂層38の凹部の底の厚さbを0.1μm以上にすることで、樹脂層38の凹部(凹凸)形成時に、モールドと支持フィルム11(無機層)との接触を防ぐことができ、その結果、波長変換部材主面のバリア性を維持しつつ端部を封止することができた。また、樹脂層38の凹部の底の厚さbを20μm以下にすることで、樹脂層38の光吸収による波長変換部材の量子収率低下を最小限に抑えられることを明らかになった。上述する観点から、具体的には、樹脂層38の凹部の底の厚さbは、0.5~15μmがより好ましく、1~10μmがさらに好ましい。
 また、樹脂層38の凹部の底の厚さbは、蛍光体含有フィルムを蛍光体含有フィルムの凹部の部分をミクロトームで切断して断面を形成し、その切片をSEM等で観察し、凹部を10個抽出して凹部の底面と無機層との距離を測定して平均値として求める。
 また、本発明の蛍光体含有フィルムにおいては、第2の基材フィルム20は、蛍光体含有層30の第1の基材フィルム10とは逆側の主面に積層されるものであり、支持フィルム21とバリア層22とを含む。また、第1の基材フィルム10と同様、第2の基材フィルム20も、バリア層22は、支持フィルム21の蛍光体含有層30側の面に設けられ、かつ、無機層を有するのが好ましい。
 ここで、本発明の蛍光体含有フィルムにおいては、第2の基材フィルム20の蛍光体含有層30側の表面と、樹脂層38の凹部の頂面が接していないことが、第2の基材フィルム20と蛍光体含有層30との密着力を高める観点から好ましい。なお、第2の基材フィルム20の蛍光体含有層30側の表面とは、すなわち、バリア層22の表面であり、バリア層22が、図15に示すように有機層と無機層と有機層とで構成される場合には、最表層となる有機層の表面であり、バリア層22が、図16に示すように有機層と無機層とで構成される場合には、最表層となる無機層の表面である。
 具体的には、第2の基材フィルム20の蛍光体含有層30側の表面と、樹脂層38の凹部の頂面との距離は0.01~10μmが好ましく、0.05~4μmがより好ましく、0.1~4μmがさらに好ましい。第2の基材フィルム20の蛍光体含有層30側の表面と、樹脂層38の凹部の頂面との距離を、ある程度、確保することで、第2の基材フィルム20と蛍光体含有層30との十分な密着性の確保が可能になり、また、第2の基材フィルム20の蛍光体含有層30側の表面と、樹脂層38の凹部の頂面との距離を、ある程度の距離以下とすることで、樹脂層38による封止能を保って、信頼性を確保できる。
 ここで、第2の基材フィルム20の蛍光体含有層30側の表面と樹脂層38の凹部の頂面との距離は、蛍光体含有フィルムの頂面(凹部ではない箇所)の部分をミクロトームで切断して断面を形成し、その切片をSEM等で観察し、頂面を10個抽出して、測定し平均値として求める。
 また、第2の基材フィルム20の蛍光体含有層30側の表面と、樹脂層38の凹部の頂面との間は、蛍光領域35でもその他の素材でも良い。蛍光領域35以外の素材として、例えば第2の基材フィルム20上に感圧性接着層や熱圧着性シーラント層を設け、第1の基材フィルム10に樹脂層38を形成して、蛍光領域35を充填した後、第2の基材フィルム20を貼合し、ヒートプレス等を行い圧着することも挙げられる。
 以上のとおり、本発明の蛍光体含有フィルム1は、第1の基材フィルム10は無機層52を含み、樹脂層38の凹部の底の厚さbが0.1~20μmである。
 また、好ましくは、第2の基材フィルム20は無機層を含み、第2の基材フィルム20の表面と樹脂層38の凹部の頂面とのが接しておらず、さらに、樹脂層38の凹部の深さhが1~100μmであり、隣接する蛍光領域の間の幅tが5~300μmである。
 ここで、蛍光領域35の高さ(膜厚)は1μm以上で目標色度に到達できるが、膜厚ムラの影響が大きくなるため、一定以上の膜厚を有するのが好ましい。一方、蛍光領域35の膜厚が大きすぎると、光の吸収量が増大し、初期の輝度が低下する場合がある。これらの観点から、蛍光領域35の高さ、すなわち、凹部の深さhは、1~100μmが好ましく、5~80μmがより好ましく、10~50μmがさらに好ましい。
 また、隣接する蛍光領域35間の幅t、すなわち、樹脂層38部分の幅tは、樹脂層38を視認できないようにするため薄くするのが好ましい。一方、強度および耐久性の観点から一定以上の幅が必要となる。これらの観点から、隣接する蛍光領域35間の幅t、すなわち、樹脂層38部分の幅tは、5~300μmが好ましく、10~200μmがより好ましく、15~100μmがさらに好ましい。
 なお、樹脂層38に形成される凹部の深さhは、蛍光体含有フィルムの凹部の部分をミクロトームで切断して断面を形成し、励起光を蛍光体含有層に照射して蛍光体を発光させた状態で、この断面を共焦点レーザー顕微鏡を用いて観察し、凹部を10個抽出して深さを測定して平均値として求める。
 また、隣接する蛍光領域35間の幅t(すなわち樹脂層38の厚さ)は、隣接する蛍光領域35間の最短距離であり、励起光を蛍光体含有層に照射して蛍光体を発光させた状態で、蛍光体含有フィルムの一方の面から、共焦点レーザー顕微鏡等を用いて表面を観察し、隣接する蛍光領域35の間の樹脂層38部分を少なくとも20個抽出し、その幅を読み取って、これらの平均値を幅tとして算出する。
 また、平面視における、蛍光体含有層30全体の面積に対する蛍光領域35の面積の比率は、励起光を蛍光体含有層に照射して蛍光体を発光させた状態で、共焦点レーザー顕微鏡等を用いて蛍光体含有フィルムの表面を真上から観察し、30mm×30mmの視野(5箇所)について、蛍光領域の面積の合計と視野の面積(幾何学的面積)とから、比率(蛍光領域の面積/幾何学的面積)から算出し、各視野(5箇所)における平均値を面積の比率として算出した。
 ここで、蛍光領域35は、蛍光体31がバインダ33中に分散されて構成されている。バインダ33の酸素透過度が蛍光領域35間に充填されている樹脂層38の透過度よりも大きい場合、すなわちバインダ33が酸素を透過しやすいものである場合に、本発明の効果は特に顕著である。
 また、第1の基材フィルム10および第2の基材フィルム20は、酸素に対して不透過性を有するものであることが好ましく、図3に示すように支持フィルム(11、21)と、酸素に対する不透過性を有するバリア層(12、22)との積層構造を有するものが好ましい。
 また、蛍光領域35の大きさや配置パターンは特に限定されず、所望の条件によって適宜設計すればよい。設計においては、蛍光領域を平面視において互いに離間して配置するための幾何学的制約や、切断時に生じる非発光領域の幅の許容値などを考慮する。また、例えば、後述する蛍光領域の形成方法の1つとして印刷法を用いる場合、個々の占有面積(平面視において)がある程度の大きさ以上でないと印刷ができないという制約もある。さらには、隣接する蛍光領域の最短距離(幅t)は、酸素透過度10cc/(m2・day・atm)以下を実現できる距離とする必要がある。これらを鑑みて所望の形状、大きさおよび配置パターンを設計すればよい。
 上記実施形態においては、蛍光領域35は円柱状であり、平面視において円形であるが、蛍光領域35の形状は特に制限はない。蛍光領域35は、図5に示すように平面視において四角形、あるいは、図6に示すように平面視において六角形などのように蛍光領域35は多角柱であってもよく、正多角柱であってもよい。また、上述の例においては円柱あるいは多角柱の底面が基材フィルム面に平行に配置されているが、必ずしも底面が基材フィルム面に平行に配置されていなくても構わない。また、各蛍光領域35の形状は不定形でも構わない。
 なお、蛍光領域35中のバインダ33と蛍光領域35間の酸素に対して不透過性を有する樹脂層38との境界が明確でない場合には、図7に示すように、蛍光体31が近接配置されている領域の最外部に位置する蛍光体31eの外側(蛍光体31が配置されていない側)の点を結ぶ線を蛍光領域35の輪郭(蛍光領域35と樹脂層38の境界)mとみなすものとする。励起光を蛍光体含有層に照射して蛍光体を発光させ、たとえば、共焦点レーザー顕微鏡などで観察することにより、蛍光体の位置を特定することができ、これにより蛍光領域35の輪郭mを特定することができる。本明細書において、円柱や多角柱の辺は図7の輪郭のように蛇行しているものを許容するものとする。
 また、上記実施形態においては、蛍光領域35は周期的にパターン配置されているが、複数の蛍光領域35が離散的に配置されていれば所望の性能が損なわれない限りにおいて、非周期的であってもよい。蛍光領域35は、蛍光体含有層30の全域に亘って均一に分布していることが輝度の面内分布が均等になるため好ましい。
 蛍光量を十分なものとするためには蛍光領域35の占める領域をなるべく大きくすることが望ましい。
 蛍光領域35中の蛍光体31は1種であってもよいし、複数種であってもよい。また、1つの蛍光領域35中の蛍光体31は1種として、複数の蛍光領域35のうち、第1の蛍光体を含む領域と第1の蛍光体とは異なる第2の蛍光体を含む領域とが周期的にあるいは非周期的に配置されていてもよい。蛍光体の種類は3種以上であっても構わない。
 蛍光体含有層30は、蛍光領域35がフィルムの厚み方向に複数層積層されて構成されていてもよい。そのような例を図8Aから図10Bを参照し簡単に説明する。なお、以下の説明において、図1に示す蛍光体含有フィルム1と同一の要素には同一の符号を付して詳細な説明や省略する。
 図8Aは、蛍光体含有フィルムの他の一例の模式的平面図であり、図8Bは、図8AのB-B線断面図であり、図8Cは、図8AのC-C線断面図である。
 図8A~図8Cに示す蛍光体含有フィルム3は、蛍光領域として、バインダ33中に第1の蛍光体31aが分散されてなる第1の蛍光領域35aとバインダ33中に第1の蛍光体31aとは異なる第2の蛍光体31bが分散されてなる第2の蛍光領域35bとを備えている。第1の蛍光領域35aと第2の蛍光領域35bは、平面視において交互に配置されており、フィルム厚み方向において、互いに異なる位置に分散配置されている。第1の蛍光領域35aが第2の基材フィルム20に隣接する主面側に配置され、第2の蛍光領域35bが第1の基材フィルム10に隣接する主面側に配置されており、第1の蛍光領域35aと第2の蛍光領域35bとは平面視において重ならないように配置されている。
 第1の蛍光体31aと第2の蛍光体31bとは、例えば、互いに異なる発光中心波長を有する蛍光体とする。例えば、第1の蛍光体31aとして、600~680nmの波長帯域に発光中心波長を有する蛍光体を、第2の蛍光体31bとして、520~560nmの波長帯域に発光中心波長を有する蛍光体を用いるなどである。
 第1の蛍光領域35aと第2の蛍光領域35bのバインダ33は本例において同一の組成からなるものとしているが、異なる組成からなるものであってもよい。
 図9Aは、本発明の蛍光体含有フィルムの他の一例を模式的に示す平面図であり、図9Bは、図9AのB-B線断面図である。
 図9Aおよび図9Bに示す蛍光体含有フィルム4は、フィルム厚み方向に異なる位置に配置されている第1の蛍光領域35aと第2の蛍光領域35bとがフィルム面を平面視したとき一部重なりを有している点で、図8A~図8Cに示す蛍光体含有フィルム3と異なる。このように、フィルム方向において異なる位置に配置されている第1の蛍光領域35aと第2の蛍光領域35bとが平面視において重なりを有していても構わない。
 図10Aは、本発明の蛍光体含有フィルムの他の一例を模式的に示す平面図であり、図10Bは、図10AのB-B線断面図である。
 図10Aおよび図10Bに示す蛍光体含有フィルム6は、四角柱状の領域が半周期ずれて積層された階段状の蛍光領域35を備えている。蛍光領域35は、第1の蛍光体31a、第2の蛍光体31bがバインダ33中に分散されてなる。本例では、階段状の蛍光領域35の下階段部に第2の蛍光体31bが、上階段部に第1の蛍光体31aが分散されているが、第1の蛍光体31a、第2の蛍光体31bが蛍光領域35内の上下階段部全体に混在していても構わない。
 既述の通り、本発明の蛍光体含有フィルムは、蛍光領域35の形状やその配置パターンには特段の制限はない。いずれの場合も、蛍光領域35は、フィルム面において離散的に配置されているために、切断端部の蛍光領域35の蛍光体31は劣化するが、切断端部以外の部分の蛍光領域35はフィルム面に沿った方向において酸素を透過しない樹脂層38により囲まれて封止されているため、フィルム面に沿った方向からの酸素の侵入による性能劣化を抑制できる。
 以下に、本発明の蛍光体含有フィルムの各構成要素について説明する。
 蛍光体含有フィルム1は、第1の基材フィルム10の一方のフィルム面に蛍光体含有層30が積層され、さらに、蛍光体含有層30の上に第2の基材フィルム20が積層されて、蛍光体含有層30が2枚の基材フィルム10、20で挟持された構成である。
-蛍光体含有層-
 蛍光体含有層30は、複数の蛍光体31を含む蛍光領域35と、蛍光領域35間に充填される、酸素に対して不透過性を有する樹脂層38とを備える。
<<蛍光体を含む領域(蛍光領域)>>
 蛍光領域35は、蛍光体31と蛍光体31が分散されてなるバインダ33とから構成されるものであり、蛍光体31およびバインダ33となる硬化性組成物を含む蛍光領域形成用塗布液を塗布、硬化して形成される。
<蛍光体>
 酸素に暴露されると酸素と反応して劣化する蛍光体としては、公知の各種蛍光体を用いることができる。例えば、希土類ドーピングガーネット、ケイ酸塩、アルミン酸塩、リン酸塩、セラミックス蛍光体、硫化物蛍光体、窒化物蛍光体等の無機蛍光体、および、有機蛍光染料および有機蛍光顔料を始めとする有機蛍光物質などである。また、半導体微粒子に希土類をドープした蛍光体、および、半導体のナノ微粒子(量子ドット、量子ロッド)も好適に用いられる。蛍光体は1種単独で用いることもできるが、所望の蛍光スペクトルが得られるように、異なる波長のものを複数混ぜて使用してもよいし、異なる素材構成の蛍光体同士の組み合わせ(例えば、希土類ドーピングガーネットと量子ドットとの組み合わせ)として用いてもよい。
 ここで、酸素に暴露されるとは、大気中など酸素を含む環境下に曝されることを意味し、酸素と反応して劣化するとは、蛍光体が酸化されることによりその蛍光体の性能が劣化(低下)することを意味する。酸素と反応して劣化するとは、主として、発光性能が酸素と反応する前と比較して低下することをいうが、蛍光体を光電変換体として利用する場合には、光電変換効率が酸素と反応する前と比較して低下することを意味する。
 以下においては、酸素により劣化する蛍光体として、主に量子ドットを例として説明するが、本発明の蛍光体としては、量子ドットに限らず、その他の酸素により劣化する蛍光色素、光電変換材料など、外部からのエネルギーを光に変換する、あるいは光を電気に変換する材料であれば特に限定はされない。
(量子ドット)
 量子ドットは、数~数十nmの大きさをもつ化合物半導体の微粒子であり、少なくとも、入射する励起光により励起され蛍光を発光する。
 本実施形態の蛍光体としては、少なくとも一種の量子ドットを含み、発光特性の異なる二種以上の量子ドットを含んでもよい。公知の量子ドットには、600~680nmの範囲の波長帯域に発光中心波長を有する量子ドット(A)、500nm以上600nm未満の範囲の波長帯域に発光中心波長を有する量子ドット(B)、および、400nm以上500nm未満の波長帯域に発光中心波長を有する量子ドット(C)がある。量子ドット(A)は、励起光により励起され赤色光を発光し、量子ドット(B)は、励起光により励起され緑色光を発光し、量子ドット(C)は、励起光により励起され青色光を発光する。
 例えば、量子ドット(A)と量子ドット(B)を含む蛍光体含有層へ励起光として青色光を入射させると、量子ドット(A)により発光される赤色光および量子ドット(B)により発光される緑色光と、蛍光体含有層を透過した青色光とにより、白色光を具現化することができる。または、量子ドット(A)、(B)、および(C)を含む蛍光体含有層に励起光として紫外光を入射させることにより、量子ドット(A)により発光される赤色光、量子ドット(B)により発光される緑色光、および、量子ドット(C)により発光される青色光により、白色光を具現化することができる。
 量子ドットについては、例えば特開2012-169271号公報段落0060~0066を参照することができるが、ここに記載のものに限定されるものではない。量子ドットとしては、市販品を何ら制限なく用いることができる。量子ドットの発光波長は、通常、粒子の組成、サイズにより調整することができる。
 量子ドットは、塗布液の全量100質量部に対して、例えば0.1~10質量部程度添加することができる。
 量子ドットは、塗布液中に粒子の状態で添加してもよく、有機溶媒に分散した分散液の状態で添加してもよい。分散液の状態で添加することが、量子ドットの粒子の凝集を抑制する観点から好ましい。量子ドットの分散のために使用される有機溶媒は、特に限定されるものではない。
 量子ドットとしては、例えば、コアーシェル型の半導体ナノ粒子が、耐久性を向上する観点から好ましい。コアとしては、II-VI族半導体ナノ粒子、III-V族半導体ナノ粒子、および多元系半導体ナノ粒子等を用いることができる。具体的には、CdSe、CdTe、CdS、ZnS、ZnSe、ZnTe、InP、InAs、InGaP等が挙げられるが、これらに限定されない。中でも、CdSe、CdTe、InP、InGaPが、高効率で可視光を発光する観点から、好ましい。シェルとしては、CdS、ZnS、ZnO、GaAs、およびこれらの複合体を用いることができるが、これらに限定されない。量子ドットの発光波長は、通常、粒子の組成およびサイズにより調整することができる。
 量子ドットは、球形の粒子であってもよく、また、量子ロッドとも呼ばれる、棒状の粒子であってもよく、さらに、テトラポッド型の粒子であってもよい。発光半値幅(FWHM(full width at half maximum))を狭くし、液晶表示装置の色再現域を拡大する観点からは、球形の量子ドット、または棒状の量子ドット(すなわち、量子ロッド)が好ましい。
 量子ドットの表面には、ルイス塩基性の配位性基を有する配位子が配位していても良い。また、すでにこのような配位子が配位した量子ドットを用いることも可能である。ルイス塩基性の配位性基としては、アミノ基、カルボキシ基、メルカプト基、ホスフィン基、および、ホスフィンオキシド基、等を挙げることができる。具体的には、ヘキシルアミン、デシルアミン、ヘキサデシルアミン、オクタデシルアミン、オレイルアミン、ミリスチルアミン、ラウリルアミン、オレイン酸、メルカプトプロピオン酸、トリオクチルホスフィン、および、トリオクチルホスフィンオキシド等を上げることができる。なかでも、ヘキサデシルアミン、トリオクチルホスフィン、および、トリオクチルホスフィンオキシドが好ましく、トリオクチルホスフィンオキシドが特に好ましい。
 これらの配位子が配位した量子ドットは、公知の合成方法によって作製することができる。例えば、C.B.Murray,D.J.Norris、M.G.Bawendi,Journal Amarican Chemical Society,1993,115(19),pp8706-8715、または、The Journal Physical Chemistry,101,pp9463-9475,1997に記載された方法によって合成することができる。また、配位子が配位した量子ドットは、市販のものを何ら制限無く用いることができる。例えば、Lumidot(シグマアルドリッチ社製)を挙げることができる。
 本発明において、配位子が配位した量子ドットの含有量は、蛍光領域となる量子ドット含有組成物に含まれる重合性化合物の全質量に対し0.01~10質量%が好ましく、0.05~5質量%がより好ましい。蛍光体含有フィルムの厚さにより、濃度を調整することが望ましい。
 また、量子ドットは、上記量子ドット含有組成物に粒子の状態で添加してもよく、溶媒に分散した分散液の状態で添加してもよい。分散液の状態で添加することが量子ドットの粒子の凝集を抑制する観点から好ましい。ここで使用される溶媒は、特に限定されるものではない。
(配位子の合成方法)
 量子ドット含有組成物における配位子は、公知の合成法によって合成することができる。例えば、特許文献であれば、特開2007-277514号公報に記載される方法によって合成することができる。
<蛍光領域のバインダを形成する硬化性組成物>
 本発明においては、蛍光領域のバインダを形成する硬化性組成物は、高分子分散剤を含む。また、この硬化性組成物は、重合性化合物を含むのが好ましい。
(重合性化合物)
 重合性化合物は、アクリル化合物であるのが好ましい。単官能または多官能(メタ)アクリレートモノマーが好ましく、重合性を有していれば、モノマーのプレポリマーやポリマーであってもよい。なお、本明細書において、「(メタ)アクリレート」とは、アクリレートおよびメタクリレートの一方、または、両方を意味する。「(メタ)アクリロイル」等も同様である。
 --単官能のもの--
 単官能(メタ)アクリレートモノマーとしては、アクリル酸およびメタクリル酸、それらの誘導体、より詳しくは、(メタ)アクリル酸の重合性不飽和結合((メタ)アクリロイル基)を分子内に1個有するモノマーを挙げることができる。それらの具体例として以下に化合物を挙げるが、本実施形態はこれに限定されるものではない。
 メチル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、イソノニル(メタ)アクリレート、n-オクチル(メタ)アクリレート、ラウリル(メタ)アクリレート、および、ステアリル(メタ)アクリレート等のアルキル基の炭素数が1~30であるアルキル(メタ)アクリレート;ベンジル(メタ)アクリレート等のアラルキル基の炭素数が7~20であるアラルキル(メタ)アクリレート;ブトキシエチル(メタ)アクリレート等のアルコキシアルキル基の炭素数が2~30であるアルコキシアルキル(メタ)アクリレート;N,N-ジメチルアミノエチル(メタ)アクリレート等の(モノアルキルまたはジアルキル)アミノアルキル基の総炭素数が1~20であるアミノアルキル(メタ)アクリレート;ジエチレングリコールエチルエーテルの(メタ)アクリレート、トリエチレングリコールブチルエーテルの(メタ)アクリレート、テトラエチレングリコールモノメチルエーテルの(メタ)アクリレート、ヘキサエチレングリコールモノメチルエーテルの(メタ)アクリレート、オクタエチレングリコールのモノメチルエーテル(メタ)アクリレート、ノナエチレングリコールのモノメチルエーテル(メタ)アクリレート、ジプロピレングリコールのモノメチルエーテル(メタ)アクリレート、ヘプタプロピレングリコールのモノメチルエーテル(メタ)アクリレート、および、テトラエチレングリコールのモノエチルエーテル(メタ)アクリレート等のアルキレン鎖の炭素数が1~10で末端アルキルエーテルの炭素数が1~10のポリアルキレングリコールアルキルエーテルの(メタ)アクリレート;ヘキサエチレングリコールフェニルエーテルの(メタ)アクリレート等のアルキレン鎖の炭素数が1~30で末端アリールエーテルの炭素数が6~20のポリアルキレングリコールアリールエーテルの(メタ)アクリレート;シクロヘキシル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、イソボルニル(メタ)アクリレート、および、メチレンオキシド付加シクロデカトリエン(メタ)アクリレート等の脂環構造を有する総炭素数4~30の(メタ)アクリレート;ヘプタデカフロロデシル(メタ)アクリレート等の総炭素数4~30のフッ素化アルキル(メタ)アクリレート;2-ヒドロキシエチル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、トリエチレングリコールのモノ(メタ)アクリレート、テトラエチレングリコールモノ(メタ)アクリレート、ヘキサエチレングリコールモノ(メタ)アクリレート、オクタプロピレングリコールモノ(メタ)アクリレート、および、グリセロールのモノまたはジ(メタ)アクリレート等の水酸基を有する(メタ)アクリレート;グリシジル(メタ)アクリレート等のグリシジル基を有する(メタ)アクリレート;テトラエチレングリコールモノ(メタ)アクリレート、ヘキサエチレングリコールモノ(メタ)アクリレート、および、オクタプロピレングリコールモノ(メタ)アクリレート等のアルキレン鎖の炭素数が1~30のポリエチレングリコールモノ(メタ)アクリレート; (メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、N-イソプロピル(メタ)アクリルアミド、2-ヒドロキシエチル(メタ)アクリルアミド、および、アクリロイルモルホリン等の(メタ)アクリルアミド;などが挙げられる。
 単官能(メタ)アクリレートモノマーの使用量は、塗布液に含まれる硬化性化合物の全量100質量部に対して、塗布液の粘度を好ましい範囲に調整する観点からは、10質量部以上が好ましく、10~80質量部がより好ましい。
 --2官能のもの--
 重合性基を2つ有する重合性単量体として、エチレン性不飽和結合含有基を2個有する2官能重合性不飽和単量体を挙げることができる。2官能の重合性不飽和単量体は組成物を低粘度にするのに適している。本実施形態では、反応性に優れ、残存触媒などの問題の無い(メタ)アクリレート系化合物が好ましい。
 特に、ネオペンチルグリコールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、および、ジシクロペンタニルジ(メタ)アクリレート等が本発明に好適に用いられる。
 2官能(メタ)アクリレートモノマーの使用量は、塗布液に含まれる硬化性化合物の全量100質量部に対して、塗布液の粘度を好ましい範囲に調整する観点からは、5質量部以上が好ましく、10~80質量部がより好ましい。
 --3官能以上のもの--
 重合性基を3つ以上有する重合性単量体として、エチレン性不飽和結合含有基を3個以上有する多官能重合性不飽和単量体を挙げることができる。これら多官能の重合性不飽和単量体は機械的強度付与の点で優れる。本実施形態では、反応性に優れ、残存触媒などの問題の無い(メタ)アクリレート系化合物が好ましい。
 具体的には、ECH(Epichlorohydrin)変性グリセロールトリ(メタ)アクリレート、EO(Ethylene Oxide)変性グリセロールトリ(メタ)アクリレート、PO(Propylene Oxide)変性グリセロールトリ(メタ)アクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、EO変性リン酸トリアクリレート、トリメチロールプロパントリ(メタ)アクリレート、カプロラクトン変性トリメチロールプロパントリ(メタ)アクリレート、EO変性トリメチロールプロパントリ(メタ)アクリレート、PO変性トリメチロールプロパントリ(メタ)アクリレート、トリス(アクリロキシエチル)イソシアヌレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、カプロラクトン変性ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールヒドロキシペンタ(メタ)アクリレート、アルキル変性ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールポリ(メタ)アクリレート、アルキル変性ジペンタエリスリトールトリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールエトキシテトラ(メタ)アクリレート、および、ペンタエリスリトールテトラ(メタ)アクリレート等が好適である。
 これらの中で特に、EO変性グリセロールトリ(メタ)アクリレート、PO変性グリセロールトリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、EO変性トリメチロールプロパントリ(メタ)アクリレート、PO変性トリメチロールプロパントリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ペンタエリスリトールエトキシテトラ(メタ)アクリレート、および、ペンタエリスリトールテトラ(メタ)アクリレートが本発明に好適に用いられる。
 多官能(メタ)アクリレートモノマーの使用量は、塗布液に含まれる硬化性化合物の全量100質量部に対して、硬化後の蛍光含有層の塗膜強度の観点からは、5質量部以上が好ましく、塗布液のゲル化抑制の観点からは、95質量部以下が好ましい。
 また、蛍光領域(バインダ)の耐熱性をより向上させる観点から、(メタ)アクリレートモノマーは脂環式アクリレートであるのが好ましい。そのような単官能(メタ)アクリレートモノマーとしては、たとえばジシクロペンテニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、および、ジシクロペンテニルオキシエチル(メタ)アクリレ-トが挙げられる。また、2官能(メタ)アクリレートモノマーとしては、たとえばトリシクロデカンジメタノールジ(メタ)アクリレートが挙げられる。
 また、バインダを形成する硬化性組成物中の重合性化合物の総量は、組成物の取扱いおよび硬化性の観点から硬化性組成物100質量部に対して、70~99質量部が好ましく、85~97質量部がより好ましい。
 -エポキシ系化合物他-
 重合性単量体として、エポキシ基、オキセタニル基等の開環重合可能な環状エーテル基等の環状基を有する化合物を挙げることができる。そのような化合物としてより好ましくは、エポキシ基を有する化合物(エポキシ化合物)を有する化合物を挙げることができる。エポキシ基やオキセタニル基を有する化合物を、(メタ)アクリレート系化合物と組み合わせて使用することにより、バリア層との密着性が向上する傾向にある。
 エポキシ基を有する化合物としては、例えば、多塩基酸のポリグリシジルエステル類、多価アルコールのポリグリシジルエーテル類、ポリオキシアルキレングリコールのポリグリシジルエーテル類、芳香族ポリオールのポリグリシジルエテーテル類、芳香族ポリオールのポリグリシジルエーテル類の水素添加化合物類、ウレタンポリエポキシ化合物、および、エポキシ化ポリブタジエン類等を挙げることができる。これらの化合物は、一種を単独で使用することもできるし、また、二種以上を混合して使用することもできる。
 その他に好ましく使用することのできるエポキシ基を有する化合物としては、例えば、脂肪族環状エポキシ化合物、ビスフェノールAジグリシジルエーテル、ビスフェノールFジグリシジルエーテル、ビスフェノールSジグリシジルエーテル、臭素化ビスフェノールAジグリシジルエーテル、臭素化ビスフェノールFジグリシジルエーテル、臭素化ビスフェノールSジグリシジルエーテル、水添ビスフェノールAジグリシジルエーテル、水添ビスフェノールFジグリシジルエーテル、水添ビスフェノールSジグリシジルエーテル、1,4-ブタンジオールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、グリセリントリグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル類;エチレングリコール、プロピレングリコール、および、グリセリンなどの脂肪族多価アルコールに1種または2種以上のアルキレンオキサイドを付加することにより得られるポリエーテルポリオールのポリグリシジルエーテル類;脂肪族長鎖二塩基酸のジグリシジルエステル類;脂肪族高級アルコールのモノグリシジルエーテル類;フェノール、クレゾール、ブチルフェノール、および、これらにアルキレンオキサイドを付加して得られるポリエーテルアルコール等のモノグリシジルエーテル類;高級脂肪酸のグリシジルエステル類などを例示することができる。
 これらの成分のうち、脂肪族環状エポキシ化合物、ビスフェノールAジグリシジルエーテル、ビスフェノールFジグリシジルエーテル、水添ビスフェノールAジグリシジルエーテル、水添ビスフェノールFジグリシジルエーテル、1,4-ブタンジオールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、グリセリントリグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、および、ポリプロピレングリコールジグリシジルエーテル等が好ましい。
 エポキシ基やオキセタニル基を有する化合物として好適に使用できる市販品としては、UVR-6216(ユニオンカーバイド社製)、グリシドール、AOEX24、サイクロマーA200、セロキサイド2021P、および、セロキサイド8000(以上、ダイセル化学工業社製)、4-ビニルシクロヘキセンジオキシド(シグマアルドリッチ社製)、エピコート828、エピコート812、エピコート1031、エピコート872、および、エピコートCT508(以上、油化シェル社製)、ならびに、KRM-2400、KRM-2410、KRM-2408、KRM-2490、KRM-2720、および、KRM-2750(以上、旭電化工業社製)などを挙げることができる。これらは、1種単独で、または2種以上組み合わせて用いることができる。
 また、これらのエポキシ基やオキセタニル基を有する化合物はその製法は問わないが、例えば、丸善KK出版、第四版実験化学講座20有機合成II、213~、平成4年、Ed.by Alfred Hasfner,The chemistry OF heterocyclic compounds-Small Ring Heterocycles part3 Oxiranes,John & Wiley and Sons, An Interscience Publication, New York,1985、吉村、接着、29巻12号、32、1985、吉村、接着、30巻5号、42、1986、吉村、接着、30巻7号、42、1986、特開平11-100378号公報、特許第2906245号公報、および、特許第2926262号公報などの文献を参考にして合成できる。
 硬化性化合物として、ビニルエーテル化合物を用いてもよい。
 ビニルエーテル化合物は公知のものを適宜選択することができ、例えば、特開2009-73078号公報の段落番号0057に記載のものを好ましく採用することができる。
 これらのビニルエーテル化合物は、例えば、Stephen.C.Lapin,Polymers Paint Colour Journal.179(4237)、321(1988)に記載されている方法、即ち多価アルコールもしくは多価フェノールとアセチレンとの反応、および、多価アルコールもしくは多価フェノールとハロゲン化アルキルビニルエーテルとの反応により合成することができる。ビニルエーテル化合物は、1種を単独あるいは2種以上を組み合わせて用いることができる。
 塗布液には、低粘度化、高硬度化の観点から特開2009-73078号公報に記載の反応性基を有するシルセスキオキサン化合物を用いることも可能である。
 酸素に対して不透過性を有する樹脂層38を形成する硬化性化合物としては、(メタ)アクリレート系化合物、エポキシ系化合物などのガスバリア性の高い樹脂層を形成できるものが特に好ましい。
 上述した硬化性化合物の中でも、(メタ)アクリレート化合物が、組成物粘度、光硬化性の観点から好ましく、アクリレートがより好ましい。また、本発明では、重合性官能基を2つ以上有する多官能重合性化合物が好ましい。本発明では特に、単官能(メタ)アクリレート化合物と多官能(メタ)アクリレート化合物の配合比が、質量比で80/20~0/100が好ましく、70/30~0/100がより好ましく、40/60~0/100がさらに好ましい。適切な比率を選択することで、十分な硬化性を有し、かつ組成物を低粘度とすることができる。
 上記多官能(メタ)アクリレート化合物において、上記2官能(メタ)アクリレートと上記3官能以上の(メタ)アクリレートとの比率は、質量比で100/0~20/80が好ましく、より好ましくは100/0~50/50、さらに好ましくは100/0~70/30である。上記3官能以上の(メタ)アクリレートは上記2官能(メタ)アクリレートよりも粘度が高いため、上記2官能(メタ)アクリレートが多い方が本発明における酸素に対して不透過性を有する樹脂層用硬化性化合物の粘度を下げられるため好ましい。
 重合性化合物としては芳香族構造および/または脂環炭化水素構造を有する置換基を含有している化合物を含むことが酸素に対する不透過性を高める観点から好ましい。重合性化合物は、芳香族構造および/または脂環炭化水素構造を有する重合性化合物を成分中50質量%以上含有していることがより好ましく、80質量%以上含有していることがさらに好ましい。
 芳香族構造を有する重合性化合物としては、芳香族構造を有する(メタ)アクリレート化合物が好ましい。芳香族構造を有する(メタ)アクリレート化合物としては、ナフタレン構造を有する単官能(メタ)アクリレート化合物、例えば1-または2-ナフチル(メタ)アクリレート、1-または2-ナフチルメチル(メタ)アクリレート、1-または2-ナフチルエチル(メタ)アクリレート、芳香環上に置換基を有するベンジルアクリレートなどの単官能アクリレート、カテコールジアクリレート、および、キシリレングリコールジアクリレートなどの2官能アクリレートが特に好ましい。
 脂環炭化水素構造を有する重合性化合物としてはイソボロニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンタニルオキシエチル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、アダマンチル(メタ)アクリレート、トリシクロデカニル(メタ)アクリレート、および、テトラシクロドデカニル(メタ)アクリレートなどが好ましい。
 また、重合性化合物として、(メタ)アクリレートを用いる場合、硬化性に優れる観点からメタアクリレートよりも、アクリレートの方が好ましい。
 <重合開始剤>
 上記塗布液は、重合開始剤としては、公知の重合開始剤を含むことができる。重合開始剤については、例えば、特開2013-043382号公報の段落0037を参照できる。重合開始剤の含有量は、塗布液に含まれる硬化性化合物の全量の0.1モル%以上が好ましく、0.5~2モル%がより好ましい。また、揮発性有機溶媒を除いた全硬化性組成物中に質量%として、0.1~10質量%含むのが好ましく、さらに好ましくは0.2~8質量%である。
-光重合開始剤-
 硬化性化合物は、光重合開始剤を含むのが好ましい。光重合開始剤としては、光照射により上述の重合性化合物を重合する活性種を発生する化合物であればいずれのものでも用いることができる。光重合開始剤としては、カチオン重合開始剤、および、ラジカル重合開始剤が挙げられ、ラジカル重合開始剤が好ましい。また、本発明において、光重合開始剤は複数種を併用してもよい。
 光重合開始剤の含有量は、溶剤を除く全組成物中、例えば、0.01~15質量%であり、好ましくは0.1~12質量%であり、さらに好ましくは0.2~7質量%である。2種類以上の光重合開始剤を用いる場合は、その合計量が上記範囲となる。
 光重合開始剤の含有量が0.01質量%以上であると、感度(速硬化性)、塗膜強度が向上する傾向にあり好ましい。一方、光重合開始剤の含有量を15質量%以下とすると、光透過性、着色性、取り扱い性などが向上する傾向にあり、好ましい。
 染料および/または顔料を含む系では、これらがラジカルトラップ剤として働くことがあり、光重合性、感度に影響を及ぼす。その点を考慮して、これらの用途では、光重合開始剤の添加量が最適化される。一方で、本発明に用いられる組成物では、染料および/または顔料は必須成分でなく、光重合開始剤の最適範囲が液晶ディスプレイカラーフィルタ用硬化性組成物等の分野のものとは異なる場合がある。
 ラジカル光重合開始剤としては、例えば、市販されている開始剤を用いることができる。これらの例としては、例えば、特開平2008-105414号公報の段落番号0091に記載のものを好ましく採用することができる。この中でもアセトフェノン系化合物、アシルホスフィンオキサイド系化合物、および、オキシムエステル系化合物が、硬化感度、吸収特性の観点から好ましい。
 アセトフェノン系化合物としては、好ましくは、ヒドロキシアセトフェノン系化合物、ジアルコキシアセトフェノン系化合物、および、アミノアセトフェノン系化合物等が挙げられる。
 ヒドロキシアセトフェノン系化合物としては、好ましくは、BASF社から入手可能なIrgacure(登録商標)2959(1-[4-(2-ヒドロキシエトキシ)フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン)、Irgacure(登録商標)184(1-ヒドロキシシクロヘキシルフェニルケトン)、Irgacure(登録商標)500(1-ヒドロキシシクロヘキシルフェニルケトン、ベンゾフェノン)、および、Darocur(登録商標)1173(2-ヒドロキシ-2-メチル-1-フェニル-1-プロパン-1-オン)等が挙げられる。
 ジアルコキシアセトフェノン系化合物としては、好ましくは、BASF社から入手可能なIrgacure(登録商標)651(2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン)が挙げられる。
 アミノアセトフェノン系化合物としては、好ましくは、BASF社から入手可能なIrgacure(登録商標)369(2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)ブタノン-1)、Irgacure(登録商標)379(EG)(2-ジメチルアミノー2ー(4メチルベンジル)-1-(4-モルフォリン-4-イルフェニル)ブタン-1-オン)、Irgacure(登録商標)907(2-メチル-1[4-メチルチオフェニル]-2-モルフォリノプロパン-1-オン)等が挙げられる。
 アシルホスフィンオキサイド系化合物としては、好ましくは、BASF社から入手可能なIrgacure(登録商標)819(ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド)、Irgacure(登録商標)1800(ビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチル-ペンチルフォスフィンオキサイド)、BASF社から入手可能なLucirinTPO(2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド)、LucirinTPO-L(2,4,6-トリメチルベンゾイルフェニルエトキシホスフィンオキサイド)等が挙げられる。
 オキシムエステル系化合物としては、好ましくは、BASF社から入手可能なIrgacure(登録商標)OXE01(1,2-オクタンジオン,1-[4-(フェニルチオ)フェニル]-2-(O-ベンゾイルオキシム)、および、Irgacure(登録商標)OXE02(エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(O-アセチルオキシム)が挙げられる。
 カチオン光重合開始剤としては、スルホニウム塩化合物、ヨードニウム塩化合物、オキシムスルホネート化合物などが好ましく、4-メチルフェニル[4-(1-メチルエチル)フェニルヨードニウムテトラキス(ペンタフルオロフェニル)ボレート(ローデア社製、PI2074)、および、4-メチルフェニル[4-(2-メチルプロピル)フェニルヨードニウムヘキサフルオロフォスフェート(BASF社製、IRGACURE250)、IRGACURE PAG103、108、121および203(BASF社製)などが挙げられる。
 光重合開始剤は、使用する光源の波長に対して適時に選択する必要があるが、モールド加圧・露光中にガスを発生させないものが好ましい。
 ガスが発生すると、モールドが汚染されるため、頻繁にモールドを洗浄しなければならなくなったり、光硬化性組成物がモールド内で変形し、転写パターン精度を劣化させるなどの問題を生じたりする。
 酸素に対して不透過性を有する樹脂層38を形成する硬化性化合物は、重合性化合物がラジカル重合性化合物であり、光重合開始剤が光照射によりラジカルを発生するラジカル重合開始剤であるラジカル重合性硬化性組成物であるのが好ましい。
(ポリマー)
 バインダを形成する硬化性組成物は、ポリマーを含んでもよい。
 ポリマーとしては、例えば、ポリ(メタ)アクリレート、ポリ(メタ)アクリルアミド、ポリエステル、ポリウレタン、ポリウレア、ポリアミド、ポリエーテル、および、ポリスチレン等を挙げることができる。
(その他の添加剤)
 蛍光領域形成用塗布液は、粘度調整剤、シランカップリング剤、界面活性剤、酸化防止剤、酸素ゲッター剤、重合禁止剤、および、無機粒子等を含有してもよい。
-粘度調整剤-
 蛍光領域形成用塗布液は、必要に応じて粘度調整剤を含んでもよい。粘度調整剤を添加することによって、それらを所望の粘度に調整することが可能である。粘度調整剤は、粒径が5~300nmのフィラーが好ましい。また、粘度調整剤はチキソトロピー剤であってもよい。
 なお、本発明および本明細書中、チキソトロピー性とは、液状組成物において、せん断速度の増加に対して粘性を減じる性質を指し、チキソトロピー剤とは、それを液状組成物に含ませることによって、組成物にチキソトロピー性を付与する機能を有する素材のことを指す。
 チキソトロピー剤の具体例としては、ヒュームドシリカ、アルミナ、窒化珪素、二酸化チタン、炭酸カルシウム、酸化亜鉛、タルク、雲母、長石、カオリナイト(カオリンクレー)、パイロフィライト(ろう石クレー)、セリサイト(絹雲母)、ベントナイト、スメクタイト・バーミキュライト類(モンモリロナイト、バイデライト、ノントロナイト、サポナイトなど)、有機ベントナイト、および、有機スメクタイト等が挙げられる。
-シランカップリング剤-
 シランカップリング剤を含む塗布液から形成される蛍光体含有層(蛍光領域)は、シランカップリング剤により隣接する層との密着性が強固なものとなるため、優れた耐久性を示すことができる。
 また、シランカップリング剤を含む塗布液から形成される蛍光体含有層は、好ましい密着力条件である「支持フィルムとバリア層の密着力A<蛍光体含有層とバリア層との密着力B」の関係を形成する上でも好ましい。これは主に、蛍光体含有層に含まれるシランカップリング剤が、加水分解反応や縮合反応により、隣接する層の表面やこの蛍光体含有層の構成成分と共有結合を形成することによるものである。また、シランカップリング剤がラジカル重合性基等の反応性官能基を有する場合、蛍光体含有層を構成するモノマー成分と架橋構造を形成することも、蛍光体含有層と隣接する層との密着性向上に寄与し得る。
 シランカップリング剤としては、公知のシランカップリング剤を、何ら制限なく使用することができる。密着性の観点から好ましいシランカップリング剤としては、特開2013-43382号公報に記載の下記一般式(1)で表されるシランカップリング剤を挙げることができる。
Figure JPOXMLDOC01-appb-C000001

(一般式(1)中、R1~R6は、それぞれ独立に、置換もしくは無置換のアルキル基またはアリール基である。但し、R1~R6のうち少なくとも1つは、ラジカル重合性の炭素-炭素二重結合を含む置換基である。)
 R1~R6は、ラジカル重合性の炭素-炭素二重結合を含む置換基である場合を除き、無置換のアルキル基または無置換のアリール基が好ましい。アルキル基としては炭素数1~6のアルキル基が好ましく、メチル基がより好ましい。アリール基としては、フェニル基が好ましい。R1~R6は、メチル基が特に好ましい。
 R1~R6のうち少なくとも1つは、ラジカル重合性の炭素-炭素二重結合を含む置換基を有し、R1~R6の2つがラジカル重合性の炭素-炭素二重結合を含む置換基であるのが好ましい。さらに、R1~R3の中で、ラジカル重合性の炭素-炭素二重結合を含む置換基を有するものの数が1であって、R4~R6のなかでラジカル重合性の炭素-炭素二重結合を含む置換基を有するものの数が1であるのが特に好ましい。
 一般式(1)で表されるシランカップリング剤が2つ以上のラジカル重合性の炭素-炭素二重結合を含む置換基は、それぞれの置換基は同じであってもよいし、異なっていてもよいが、同じであるのが好ましい。
 ラジカル重合性の炭素-炭素二重結合を含む置換基は、-X-Yで表されるのが好ましい。ここで、Xは、単結合、炭素数1~6のアルキレン基、アリーレン基であり、好ましくは、単結合、メチレン基、エチレン基、プロピレン基、フェニレン基である。Yは、ラジカル重合性の炭素-炭素二重結合基であり、アクリロイルオキシ基、メタクリロイルオキシ基、アクリロイルアミノ基、メタクリロイルアミノ基、ビニル基、プロペニル基、ビニルオキシ基、ビニルスルホニル基が好ましく、(メタ)アクリロイルオキシ基がより好ましい。
 また、R1~R6はラジカル重合性の炭素-炭素二重結合を含む置換基以外の置換基を有してもよい。置換基の例としては、アルキル基(例えば、メチル基、エチル基、イソプロピル基、tert-ブチル基、n-オクチル基、n-デシル基、n-ヘキサデシル基、シクロプロピル基、シクロペンチル基、シクロヘキシル基等)、アリール基(例えば、フェニル基、ナフチル基等)、ハロゲン原子(例えば、フッ素、塩素、臭素、ヨウ素)、アシル基(例えば、アセチル基、ベンゾイル基、ホルミル基、ピバロイル基等)、アシルオキシ基(例えば、アセトキシ基、アクリロイルオキシ基、メタクリロイルオキシ基等)、アルコキシカルボニル基(例えば、メトキシカルボニル基、エトキシカルボニル基等)、アリールオキシカルボニル基(例えば、フェニルオキシカルボニル基等)、スルホニル基(例えば、メタンスルホニル基、ベンゼンスルホニル基等)、等が挙げられる。
 シランカップリング剤は、隣接層との密着性をより一層向上する観点からは、塗布液中に、1~30質量%の範囲で含まれることが好ましく、より好ましくは3~30質量%であり、さらに好ましくは5~25質量%である。
-界面活性剤-
 蛍光領域形成用塗布液は、フッ素原子を20質量%以上含有する少なくとも1種の界面活性剤を含んでいても良い。
 界面活性剤は、フッ素原子を25質量%以上含有することが好ましく、28質量%以上含有するのがより好ましい。上限値としては、特に定めるものではないが、例えば80質量%以下であり、好ましくは70質量%以下である。
 本発明で用いる界面活性剤としては、フッ素原子を有するアルキル基、フッ素原子を有するシクロアルキル基またはフッ素原子を有するアリール基を有する化合物であるのが好ましい。
 フッ素原子を含んだアルキル基は、少なくとも1つの水素原子がフッ素原子で置換された直鎖または分岐鎖アルキル基である。このアルキル基は、炭素数が1~10であるのが好ましく、炭素数が1~4であるのがより好ましい。このフッ素原子を含んだアルキル基は、フッ素原子以外の置換基を更に有していてもよい。
 フッ素原子を含んだシクロアルキル基は、少なくとも1つの水素原子がフッ素原子で置換された単環式または多環式のシクロアルキル基である。このフッ素原子を含んだシクロアルキル基は、フッ素原子以外の置換基を更に有していてもよい。
 フッ素原子を含んだアリール基は、少なくとも1つの水素原子がフッ素原子で置換されたアリール基である。このアリール基としては、例えば、フェニル基およびナフチル基が挙げられる。このフッ素原子を含んだアリール基は、フッ素原子以外の置換基を更に有していてもよい。
 このような構造を有することによって表面偏在能が良好となり、また重合体との部分的な相溶が生じて相分離が抑制されると考えられる。
 界面活性剤の分子量は、300~10000が好ましく、500~5000がより好ましい。
 界面活性剤の含有量は、溶剤を除く全組成物中、例えば、0.01~10質量%であり、好ましくは0.1~7質量%であり、さらに好ましくは0.5~4質量%である。2種類以上の界面活性剤を用いる場合は、その合計量が上記範囲となる。
 界面活性剤の例としては、商品名フロラードFC-430およびFC-431(住友スリーエム社製)、商品名サーフロン「S-382」(旭硝子社製)、EFTOP「EF-122A、122B、122C、EF-121、EF-126、EF-127およびMF-100」(トーケムプロダクツ社製)、商品名PF-636、PF-6320、PF-656およびPF-6520(いずれもOMNOVA社製)、商品名フタージェントFT250、FT251およびDFX18(いずれもネオス社製)、商品名ユニダインDS-401、DS-403およびDS-451(いずれもダイキン工業社製)、商品名メガファック171、172、173、178Kおよび178A、(いずれもDIC社製)、商品名X-70-090、X-70-091、X-70-092およびX-70-093(いずれも信越化学工業社製)、ならびに、商品名メガファックR-08およびXRB-4(いずれもDIC社製)等が挙げられる。
(その他成分)
 硬化性化合物は、上述の成分の他に種々の目的に応じて、本発明の効果を損なわない範囲で、酸化防止剤等その他の成分を含んでいてもよい。
-酸化防止剤-
 硬化性化合物には、公知の酸化防止剤を含有するのが好ましい。酸化防止剤は、熱や光照射による退色およびオゾン、活性酸素、NOx、SOx(Xは整数)などの各種の酸化性ガスによる退色を抑制するものである。特に本発明では、酸化防止剤を添加することにより、硬化膜の着色防止や、分解による膜厚減少を低減できるという利点がある。
 また、酸化防止剤として2種類以上の酸化防止剤を用いてもよい。
 硬化性化合物において、酸化防止剤は、硬化性化合物の全質量に対し、0.2質量%以上であるのが好ましく、1質量%以上であるのがより好ましく、2質量%以上であるのがさらに好ましい。
 一方、酸化防止剤は、酸素との間での相互作用により変質することがある。変質した酸化防止剤は量子ドット含有重合性組成物の分解を誘引することがあり、密着性低下、脆性悪化、量子ドット発光効率低下をもたらす。これらを防止する観点から、酸化防止剤は、20質量%以下であるのが好ましく、15質量%以下であるのがより好ましく、10質量%以下であるのがさらに好ましい。
 酸化防止剤としては、ラジカル阻害剤、金属不活性化剤、一重項酸素消去剤、スーパーオキシド消去剤、および、ヒドロキシラジカル消去剤のうち少なくとも1種であるのが好ましい。このような酸化防止剤としては、フェノール系酸化防止剤、ヒンダードアミン系酸化防止剤、キノン系酸化防止剤、リン系酸化防止剤、および、チオール系酸化防止剤等が例示される。
 フェノール系酸化防止剤としては、例えば、2,6-ジ第三ブチル-p-クレゾール、2,6-ジフェニル-4-オクタデシロキシフェノール、ジステアリル(3,5-ジ第三ブチル-4-ヒドロキシベンジル)ホスホネート、1,6-ヘキサメチレンビス[(3,5-ジ第三ブチル-4-ヒドロキシフェニル)プロピオン酸アミド]、4,4’-チオビス(6-第三ブチル-m-クレゾール)、2,2’-メチレンビス(4-メチル-6-第三ブチルフェノール)、2,2’-メチレンビス(4-エチル-6-第三ブチルフェノール)、4,4’-ブチリデンビス(6-第三ブチル-m-クレゾール)、2,2’-エチリデンビス(4,6―ジ第三ブチルフェノール)、2,2’-エチリデンビス(4-第二ブチル-6-第三ブチルフェノール)、1,1,3-トリス(2-メチル-4-ヒドロキシ-5-第三ブチルフェニル)ブタン、1,3,5-トリス(2,6-ジメチル-3-ヒドロキシ-4-第三ブチルベンジル)イソシアヌレート、1,3,5-トリス(3,5-ジ第三ブチル-4-ヒドロキシベンジル)イソシアヌレート、1,3,5-トリス(3,5-ジ第三ブチル-4-ヒドロキシベンジル)-2,4,6-トリメチルベンゼン、2-第三ブチル-4-メチル-6-(2-アクリロイルオキシ-3-第三ブチル-5-メチルベンジル)フェノール、ステアリル(3,5-ジ第三ブチル-4-ヒドロキシフェニル)プロピオネート、テトラキス[3-(3,5-ジ第三ブチル-4-ヒドロキシフェニル)プロピオン酸メチル]メタン((アデカスタブAO-60、ADEKA社製))、チオジエチレングリコールビス[(3,5-ジ第三ブチル-4-ヒドロキシフェニル)プロピオネート]、1,6-ヘキサメチレンビス[(3,5-ジ第三ブチル-4-ヒドロキシフェニル)プロピオネート]、ビス[3,3-ビス(4-ヒドロキシ-3-第三ブチルフェニル)ブチリックアシッド]グリコールエステル、ビス[2-第三ブチル-4-メチル-6-(2-ヒドロキシ-3-第三ブチル-5-メチルベンジル)フェニル]テレフタレート、1,3,5-トリス[(3,5-ジ第三ブチル-4-ヒドロキシフェニル)プロピオニルオキシエチル]イソシアヌレート、3,9-ビス[1,1-ジメチル-2-{(3-第三ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ}エチル]-2,4,8,10-テトラオキサスピロ[5,5]ウンデカン、および、トリエチレングリコールビス[(3-第三ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオネート]等が挙げられる。
 リン系酸化防止剤としては、例えば、トリスノニルフェニルホスファイト、トリス[2-第三ブチル-4-(3-第三ブチル-4-ヒドロキシ-5-メチルフェニルチオ)-5-メチルフェニル]ホスファイト、トリデシルホスファイト、オクチルジフェニルホスファイト、ジ(デシル)モノフェニルホスファイト、ジ(トリデシル)ペンタエリスリトールジホスファイト、ジ(ノニルフェニル)ペンタエリスリトールジホスファイト、ビス(2,4-ジ第三ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6-ジ第三ブチル-4-メチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,4,6-トリ第三ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,4-ジクミルフェニル)ペンタエリスリトールジホスファイト、テトラ(トリデシル)イソプロピリデンジフェノールジホスファイト、テトラ(トリデシル)-4,4’-n-ブチリデンビス(2-第三ブチル-5-メチルフェノール)ジホスファイト、ヘキサ(トリデシル)-1,1,3-トリス(2-メチル-4-ヒドロキシ-5-第三ブチルフェニル)ブタントリホスファイト、テトラキス(2,4-ジ第三ブチルフェニル)ビフェニレンジホスホナイト、9,10-ジハイドロ-9-オキサ-10-ホスファフェナンスレン-10-オキサイド、2,2’-メチレンビス(4,6-第三ブチルフェニル)-2-エチルヘキシルホスファイト、2,2’-メチレンビス(4,6-第三ブチルフェニル)-オクタデシルホスファイト、2,2’-エチリデンビス(4,6-ジ第三ブチルフェニル)フルオロホスファイト;トリス(2-[(2,4,8,10-テトラキス第三ブチルジベンゾ[d,f][1,3,2]ジオキサホスフェピン-6-イル)オキシ]エチル)アミン、2-エチル-2-ブチルプロピレングリコール、および、2,4,6-トリ第三ブチルフェノールのホスファイト等が挙げられる。
 これらのリン系酸化防止剤の添加量は、ポリオレフィン系樹脂100質量部に対して0.001~10質量部が好ましく、特に0.05~5質量部が好ましい。
 チオール系酸化防止剤としては、例えば、チオジプロピオン酸ジラウリル、チオジプロピオン酸ジミリスチルおよびチオジプロピオン酸ジステアリル等のジアルキルチオジプロピオネート類、ならびに、ペンタエリスリトールテトラ(β-アルキルメルカプトプロピオン酸)エステル類等が挙げられる。
 ヒンダードアミン系酸化防止剤は、HALS(Hidered amine lightstabilizers)とも称され、ピペリジンの2位および6位の炭素上の全ての水素原子がメチル基で置換された構造、好ましくは下記式1で表わされる基を有する。ただし、式1中、Xは水素原子またはアルキル基を表す。下記式1で表わされる基のなかでも、Xが水素原子である2,2,6,6-テトラメチル-4-ピペリジル基、および、Xがメチル基である1,2,2,6,6-ペンタメチル-4-ピペリジル基を有するHALSが特に好ましく利用される。
 なお、式1で表わされる基が-COO-基に結合している構造、すなわち下記式2で表わされる基を有するHALSが数多く市販されているが、これらは好ましく使用できる。
Figure JPOXMLDOC01-appb-C000002
 具体的に本発明で好ましく使用できるHALSを挙げると、例えば以下の式で表わされるものが挙げられる。なお、ここで2,2,6,6-テトラメチル-4-ピペリジル基をR、1,2,2,6,6-ペンタメチル-4-ピペリジル基をR’で表す。
 ROC(=O)(CH28C(=O)OR、ROC(=O)C(CH3)=CH2、R’OC(=O)C(CH3)=CH2、CH2(COOR)CH(COOR)CH(COOR)CH2COOR、CH2(COOR’)CH(COOR’)CH(COOR’)CH2COOR’、下記の式3で表わされる化合物等。
Figure JPOXMLDOC01-appb-C000003
 具体的には、2,2,6,6-テトラメチル-4-ピペリジルステアレート、1,2,2,6,6-ペンタメチル-4-ピペリジルステアレート、2,2,6,6-テトラメチル-4-ピペリジルベンゾエート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケート、ビス(1-オクトキシ-2,2,6,6-テトラメチル-4-ピペリジル)セバケート、テトラキス(2,2,6,6-テトラメチル-4-ピペリジル)-1,2,3,4-ブタンテトラカルボキシレート、テトラキス(1,2,2,6,6-ペンタメチル-4-ピペリジル)-1,2,3,4-ブタンテトラカルボキシレート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)・ジ(トリデシル)-1,2,3,4-ブタンテトラカルボキシレート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)・ジ(トリデシル)-1,2,3,4-ブタンテトラカルボキシレート、ビス(1,2,2,4,4-ペンタメチル-4-ピペリジル)-2-ブチル-2-(3,5-ジ第三ブチル-4-ヒドロキシベンジル)マロネート、1-(2-ヒドロキシエチル)-2,2,6,6-テトラメチル-4-ピペリジノ-ル/コハク酸ジエチル重縮合物、1,6-ビス(2,2,6,6-テトラメチル-4-ピペリジルアミノ)ヘキサン/2,4-ジクロロ-6-モルホリノ-s-トリアジン重縮合物、1,6-ビス(2,2,6,6-テトラメチル-4-ピペリジルアミノ)ヘキサン/2,4-ジクロロ-6-第三オクチルアミノ-s-トリアジン重縮合物、1,5,8,12-テトラキス[2,4-ビス(N-ブチル-N-(2,2,6,6-テトラメチル-4-ピペリジル)アミノ)-s-トリアジン-6-イル]-1,5,8,12-テトラアザドデカン、1,5,8,12-テトラキス[2,4-ビス(N-ブチル-N-(1,2,2,6,6-ペンタメチル-4-ピペリジル)アミノ)-s-トリアジン-6-イル]-1,5,8-12-テトラアザドデカン、1,6,11-トリス[2,4-ビス(N-ブチル-N-(2,2,6,6-テトラメチル-4-ピペリジル)アミノ)-s-トリアジン-6-イル]アミノウンデカン、および、1,6,11-トリス[2,4-ビス(N-ブチル-N-(1,2,2,6,6-ペンタメチル-4-ピペリジル)アミノ)-s-トリアジン-6-イル]アミノウンデカン等のヒンダードアミン化合物が挙げられる。
 また、具体的な商品としては、チヌビン123、チヌビン144、チヌビン765、チヌビン770、チヌビン622、チマソーブ944およびチマソーブ119(以上は、いずれもチバ・スペシャリティ・ケミカルズ社製、商品名)、ならびに、アデカスタブLA52、アデカスタブLA57、アデカスタブLA62、アデカスタブLA67、アデカスタブLA82、アデカスタプLA87およびアデカスタブLX335(以上は、いずれも旭電化工業社製、商品名)等を挙げることができるが、これらに限定されない。
 HALSのなかでも分子が比較的小さいものは樹脂層から蛍光領域へと拡散しやすく好ましい。この観点で好ましいHALSとしては、ROC(=O)(CH28C(=O)OR、R’OC(=O)C(CH3)=CH2で表わされる化合物等である。
 上記した酸化防止剤のうち、ヒンダードフェノール化合物、ヒンダードアミン化合物、キノン化合物、ヒドロキノン化合物、トリフェロール化合物、アスパラギン酸化合物、および、チオール化合物のうち少なくとも1種であることがより好ましく、クエン酸化合物,アスコルビン酸化合物、および、トコフェロール化合物のうち少なくとも1種であることが更に好ましい。
 これらの化合物としては特に制限されないが、ヒンダードフェノール、ヒンダードアミン、キノン、ヒドロキノン、トリフェロール、アスパラギン酸、チオール、クエン酸、トコフェリル酢酸、および、トコフェリルリン酸それ自体、またはそれらの塩やエステル化合物等が好ましく挙げられる。
 以下に、酸化防止剤の一例を示す。
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
 -酸素ゲッター剤-
 酸素ゲッター剤としては、有機EL素子のゲッター剤として用いられる公知の物質を用いることができる。酸素ゲッター剤は、無機系ゲッター剤および有機系ゲッター剤のいずれでもよく、金属酸化物、金属ハロゲン化物、金属硫酸塩、金属過塩素酸塩、金属炭酸塩、金属アルコキシド、金属カルボキシレート、金属キレート、および、ゼオライト(アルミノケイ酸塩)の中から選ばれた少なくとも1種の化合物を含むのが好ましい。
 無機系ゲッター剤としては、酸化カルシウム(CaO)、酸化バリウム(BaO)、酸化マグネシウム(MgO)、酸化ストロンチウム(SrO)、硫酸リチウム(Li2SO4)、硫酸ナトリウム(Na2SO4)、硫酸カルシウム(CaSO4)、硫酸マグネシウム(MgSO)、硫酸コバルト(CoSO4)、硫酸ガリウム(Ga2(SO43)、硫酸チタン(Ti(SO42)、および、硫酸ニッケル(NiSO4)等が挙げられる。
 有機系ゲッター剤としては、化学反応により水を取り込み、その反応前後で不透明化しない材料であれば特に制限されない。ここで、有機金属化合物とは、金属-炭素結合や金属-酸素結合、金属-窒素結合等を有する化合物を意味する。水と有機金属化合物とが反応すると加水分解反応により、前述の結合が切れて金属水酸化物になる。金属によっては金属水酸化物に反応後に加水分解重縮合を行い高分子量化してもよい。
 金属アルコキシド、金属カルボキシレート、および、金属キレートの金属としては、有機金属化合物として水との反応性が良いもの、すなわち、水により各種結合と切れやすい金属原子を用いるのが好ましい。具体的には、アルミニウム、ケイ素、チタン、ジルコニウム、ケイ素、ビスマス、ストロンチウム、カルシウム、銅、ナトリウム、リチウムが挙げられる。また、セシウム、マグネシウム、バリウム、バナジウム、ニオブ、クロム、タンタル、タングステン、クロム、インジウム、および、鉄などが挙げられる。特に、アルミニウムを中心金属として持つ有機金属化合物の乾燥剤が樹脂中への分散性や水との反応性の点で好適である。有機基は、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、2-エチルヘキシル基、オクチル基、デシル基、ヘキシル基、オクタデシル基、ステアリル基などの不飽和炭化水素、飽和炭化水素、分岐不飽和炭化水素、分岐飽和炭化水素、環状炭化水素を含有したアルコキシ基およびカルボキシル基、ならびに、アセエチルアセトナト基およびジピバロイルメタナト基などのβ-ジケトナト基が挙げられる。
 中でも、下記化学式に示す、炭素数が1~8のアルミニウムエチルアセトアセテート類が、透明性に優れた封止組成物を形成できる点から好適に用いられる。
Figure JPOXMLDOC01-appb-C000013

(式中、R5~R8は炭素数1個以上8個以下のアルキル基,アリール基,アルコキシ基,シクロアルキル基,アシル基を含む有機基を示し、Mは3価の金属原子を示す。なお、R5~R8はそれぞれ同じ有機基でも異なる有機基でもよい。)
 上記炭素数が1~8のアルミニウムエチルアセトアセテート類は、例えば、川研ファインケミカル株式会社、ホープ製薬株式会社から上市されており、入手可能である。
 酸素ゲッター剤は粒子状または粉末状である。酸素ゲッター剤の平均粒子径は通常20μm未満の範囲とすれば良く、好ましくは10μm以下、より好ましくは2μm以下、さらに好ましくは1μm以下である。散乱性の観点から、酸素ゲッター剤の平均粒子径は、0.3~2μmが好ましく、0.5~1.0μmがより好ましい。ここでいう平均粒径とは、動的光散乱法によって測定した粒度分布から算出した、粒子径の平均値をいう。
-重合禁止剤-
 バインダを形成する硬化性組成物には、重合禁止剤を含有してもよい。
 重合禁止剤の含有量としては、全重合性単量体に対し、0.001~1質量%であり、より好ましくは0.005~0.5質量%、さらに好ましくは0.008~0.05質量%である。重合禁止剤を適切な量配合することで高い硬化感度を維持しつつ経時による粘度変化が抑制できる。一方、重合禁止剤の添加量が過剰となる場合、重合阻害による硬化不良や硬化物の着色が発生するため適量が存在する。重合禁止剤は重合性単量体の製造時に添加してもよいし、硬化組成物に後から添加してもよい。
 好ましい重合禁止剤としては、ハイドロキノン、p-メトキシフェノール、ジ-tert-ブチル-p-クレゾール、ピロガロール、tert-ブチルカテコール、ベンゾキノン、4,4’-チオビス(3-メチル-6-tert-ブチルフェノール)、2,2’-メチレンビス(4-メチル-6-tert-ブチルフェノール)、N-ニトロソフェニルヒドロキシアミン第一セリウム塩、フェノチアジン、フェノキサジン、4-メトキシナフトール、2,2,6,6-テトラメチルピペリジン-1-オキシルフリーラジカル、2,2,6,6-テトラメチルピペリジン、4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン-1-オキシルフリーラジカル、ニトロベンゼン、ジメチルアニリン等が挙げられ、好ましくはp-ベンゾキノン、2,2,6,6-テトラメチルピペリジン-1-オキシルフリーラジカル、4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン-1-オキシルフリーラジカル、および、フェノチアジン等が挙げられる。これら重合禁止剤は重合性単量体の製造時だけでなく、硬化組成物の保存時においてもポリマー不純物の生成を抑制し、インプリント時のパターン形成性の劣化を抑制する。
-無機粒子-
 さらに、蛍光領域形成用塗布液は、無機粒子を含有するのが好ましい。無機粒子を含有することで酸素に対する不透過性を高めることができる。
 無機粒子の一例として、シリカ粒子、アルミナ粒子、酸化ジルコニウム粒子、酸化亜鉛粒子、酸化チタン粒子、ならびに、マイカおよびタルク等の無機層状化合物などが挙げられる。
 また、無機粒子は平板状であるのが酸素に対する不透過性を高める観点から好ましい。具体的には、無機粒子のアスペクト比(r=a/b、ただしa>b)は、2~1000が好ましく、10~800がより好ましく、20~500がさらに好ましい。アスペクト比が大きい方が酸素に対する不透過性を高める効果に優れるため好ましいが、大きすぎると膜の物理強度や硬化用組成物中の粒子分散性に劣る。
-光散乱粒子-
 蛍光体含有層(蛍光領域および樹脂層)は、光散乱粒子を含んでいてもよい。したがって、上記光硬化性組成物に光散乱粒子を添加してもよい。
 光散乱粒子の粒子サイズは0.10μm以上であるのが好ましい。光散乱粒子が蛍光体含有層に含まれることは、輝度の更なる向上の観点から好ましい。光散乱効果の観点から、光散乱粒子の粒子サイズは0.10~15.0μmが好ましく、0.10~10.0μmがより好ましく、0.20~4.0μmがさらに好ましい。また、より一層の輝度の向上や、視野角に対する輝度の分布を調整するために、粒子サイズの異なる二種以上の光散乱粒子を混合して用いてもよい。
 光散乱粒子は、有機粒子であってもよく、無機粒子であってもよく、有機無機複合粒子であってもよい。
 例えば、有機粒子としては、合成樹脂粒子を挙げることができる。具体例としては、シリコーン樹脂粒子、アクリル樹脂粒子(ポリメチルメタクリレート(PMMA))、ナイロン樹脂粒子、スチレン樹脂粒子、ポリエチレン粒子、ウレタン樹脂粒子、および、ベンゾグアナミン粒子等が挙げられる。光散乱効果の観点からは、蛍光体含有層において光散乱粒子と他の部分との屈折率は異なることが好ましく、好適な屈折率を有する粒子の入手容易性の観点からはシリコーン樹脂粒子、および、アクリル樹脂粒子が好ましい。また、中空構造を有する粒子も使用できる。
 無機粒子としては、ダイヤモンド、酸化チタン、酸化ジルコニウム、酸化鉛、炭酸鉛、酸化亜鉛、硫化亜鉛、酸化アンチモン、酸化ケイ素、および、酸化アルミニウム等の粒子を用いることができ、好適な屈折率を有する粒子の入手容易性の観点からは酸化チタン、酸化アルミニウムが好ましい。
 蛍光領域形成用塗布液には、上述の成分の他に必要に応じて離型剤、シランカップリング剤、紫外線吸収剤、光安定剤、老化防止剤、可塑剤、密着促進剤、熱重合開始剤、着色剤、エラストマー粒子、光酸増殖剤、光塩基発生剤、塩基性化合物、流動調製剤、消泡剤、および、分散剤等を添加してもよい。
 バインダを形成する硬化性組成物の調製方法は特に制限されず、一般的な硬化性組成物の調製手順により実施すればよい。
<<酸素に対して不透過性を有する樹脂層>>
 樹脂層38(酸素に対して不透過性を有する樹脂層38)は、上述のバインダを形成する硬化性組成物と同様の硬化性組成物を含む樹脂形成用塗布液を塗布し、硬化して形成される。なお、樹脂層を形成する硬化性組成物には高分子分散剤は含まなくてよい。
 樹脂層38は、酸素に対して不透過性を有するものであり、すなわち、樹脂層38を挟んで隣接する蛍光領域35間の最短距離における酸素透過度が10cc/(m2・day・atm)以下を満たす。樹脂層38の、隣接する蛍光領域35間の最短距離における酸素透過度は1cc/(m2・day・atm)以下が好ましく、1×10-1cc/(m2・day・atm)以下がより好ましい。樹脂層38の組成により、蛍光領域35間の必要最短距離は異なる。
 ここで、酸素透過度のSI単位は[fm/(s・Pa)]である。「fm」は「フェムトメートル」であり「1fm=1×10-15m」である。[cc/(m2・day・atm)]は、「1fm/(s・Pa)=8.752cc/(m2・day・atm)」によって、SI単位に換算できる。
 樹脂層38の組成により、蛍光領域35間の必要最短距離は異なる。なお、樹脂層38の隣接する蛍光領域35間の最短距離とは、蛍光体含有フィルム主面より観察した場合の隣接する蛍光領域35間のフィルム面内における最短距離のことを意味する。また、以下では隣接する蛍光領域35間の最短距離を樹脂層の幅と記載することもある。
 上述のように樹脂層38の組成により蛍光領域35間の必要最短距離は異なるが、一例として隣接する蛍光領域35間の最短距離、すなわち樹脂層38の幅tは5~300μmであり、10~200μmが好ましく、15~100μmがより好ましい。樹脂層38の幅tが短すぎると必要な酸素透過度を確保することが難しく、樹脂層38の幅tが長すぎると表示装置の輝度ムラが悪化するため好ましくない。
 樹脂層38は、弾性率が0.5~10GPaであり、1~7GPaであるのが好ましく、3~6GPaであるのがより好ましい。樹脂層の弾性率をこの範囲にすることで、酸素透過度を維持しつつ、樹脂層38を形成する際の欠損を防ぐことができ、好ましい。
 樹脂層38の弾性率は、JIS K7161等に例示される方法で測定される。
 樹脂層38の形成材料としては、2官能以上の光重合性架橋基を有する化合物が好ましい。具体的には、ウレタン(メタ)アクリレート、トリシクロデカンジメタノールジ(メタ)アクリレート等の脂環式(メタ)アクリレート、ペンタエリスリトールトリアクリレート等のヒドロキシル基を有する(メタ)アクリレート、変性ビスフェノールaジ(メタ)アクリレート等の芳香族(メタ)アクリレート、ジペンタエリスリトールジ(メタ)アクリレート、3,4-エポキシシクロヘキシルメチル(メタ)アクリレート、3’,4’-エポキシシクロヘキシルメチル3,4-エポキシシクロヘキサンカルボキシレート、および、ビスフェノールa型エポキシ等が挙げられる。
 中でも酸素に対する不透過性を高める観点からウレタン(メタ)アクリレート、および、エポキシ化合物を少なくとも含むのが好ましい。ウレタン結合、ヒドロキシル基、および、カルボキシル基などの極性官能基有する化合物を用いることで分子間の相互作用を高め、酸素に対する不透過性が高い樹脂層が得られる。
 また、蛍光領域と同一の重合性架橋基を有する化合物を含むのが、樹脂層と蛍光領域との密着に優れる観点から好ましい。例えば、蛍光領域の素材にジシクロペンタニル(メタ)アクリレート等が含まれる場合、樹脂層は、少なくとも(メタ)アクリレート化合物を含むのが好ましい。
 (添加剤)
 樹脂層形成材料には必要に応じて、光重合開始剤、無機層状化合物、光散乱粒子、酸化防止剤、剥離促進剤、および、溶剤等が含まれていても良い。
 (光重合開始剤)
 樹脂層38を形成する硬化性化合物は、光重合開始剤を含むのが好ましい。光重合開始剤としては、光照射により上述の重合性化合物を重合する活性種を発生する化合物であればいずれのものでも用いることができる。光重合開始剤としては、カチオン重合開始剤、および、ラジカル重合開始剤が挙げられ、樹脂層形成材料に応じて適切に選ばれる。
 (無機層状化合物)
 樹脂層38を形成する硬化性化合物は無機層状化合物等の、樹脂層中で気体分子の拡散長を伸ばし、ガスバリア性を向上させる、いわゆる迷路効果を付与する化合物を含んでいても良い。そのような無機層状化合物としては例えば、タルク、雲母、長石、カオリナイト(カオリンクレー)、パイロフィライト(ろう石クレー)、セリサイト(絹雲母)、ベントナイト、スメクタイト・バーミキュライト類(モンモリロナイト、バイデライト、ノントロナイト、サポナイトなど)、有機ベントナイト、有機スメクタイト、および、平板アルミナなどの平板無機酸化物などが挙げられる。また、無機層状化合物は樹脂形成材料への分散性を高めるために表面処理が施されていても良い。
 さらに上述の迷路効果に優れる観点から、無機層状化合物のアスペクト比が10~1000であるものが好ましい。アスペクト比が10以下であると迷路効果によるガスバリア性向上効果が低く、アスペクト比が1000以上であると脆いため作製プロセス中に粉砕される可能性がある。
 これらを単独でまたは2種以上を組み合わせて用いることができる。市販されている層状化合物としては、例えば、無機化合物としては、白石カルシウム社製のST-501およびST-509、片倉コープアグリ社製のソマシフシリーズおよびミクロマイカシリーズ、ならびに、キンセイマティック社製のセラフシリーズが挙げられる。中でも、本発明の蛍光体含有フィルムにおいては透明性の高いセラフシリーズが好適に用いることができる。
 ここで、樹脂層38、すなわち、樹脂層38を形成する硬化性化合物が、無機層状化合物を含有する場合には、樹脂層38の凹部の底の厚さbは、厚めにするのが好ましい。
 具体的には、樹脂層38が無機層状化合物を含有する場合には、樹脂層38の凹部の底の厚さbを1μm以上とするのが好ましく、無機層状化合物の最大長さよりも厚くするのがより好ましい。
 樹脂層38が無機層状化合物を含有する場合に、樹脂層38の凹部の底の厚さbを厚めにすることにより、モールドによって樹脂層38の凹部(凹凸)を形成する際のバリア層12の無機層の損傷を、より好適に防止でき、酸素等に起因する蛍光体31の劣化を防止した、耐久性の高い蛍光体含有フィルムがえられる。
 蛍光体含有層30において、蛍光領域35の体積Vpと樹脂層38の体積Vb比に関しては任意の比率を取り得るが、蛍光領域35の体積Vpの蛍光体含有層全体の体積(Vp+Vb)に対する比は0.1≦Vp/(Vp+Vb)<0.9であるのが好ましく、0.2≦Vp/(Vp+Vb)<0.85がより好ましく、0.3≦Vp/(Vp+Vb)<0.8がさらに好ましい。
 蛍光体含有層30における蛍光領域35の体積比が小さすぎると、ある一定厚みにおける初期輝度が低下する傾向にあり、蛍光領域35の体積比が大きすぎると樹脂層38の幅が短くなり、結果、必要な酸素透過度を確保することが難しくなる。なお、蛍光体を含む領域Vpと酸素不透過性を有する樹脂層の領域Vbは、蛍光体含有フィルム主面より観察した場合における各々の面積と厚みを掛け合わせたものと定義する。
-基材フィルム-
 第1の基材フィルム10および第2の基材フィルム20は、酸素の透過を抑制する機能を有するフィルムであるのが好ましい。上記の実施形態では、第1の基材フィルム10および第2の基材フィルム20は、支持フィルム11,21の一面にバリア層12,22をそれぞれ備えた構成を有している。かかる態様では、支持フィルム11,21の存在により、蛍光体含有フィルムの強度が向上され、且つ、容易に製膜を実施することが可能となる。なお、本実施形態では支持フィルム11,21一面にバリア層12,22を備える構成であるが、バリア性を充分有する支持体のみにより基材フィルムが構成されていてもよい。
 第1の基材フィルム10および第2の基材フィルム20は、可視光領域における全光線透過率が80%以上であるのが好ましく、85%以上であるのがより好ましい。可視光領域とは、380~780nmの波長領域をいうものとし、全光線透過率とは、可視光領域にわたる光透過率の平均値を示す。
 第1の基材フィルム10および第2の基材フィルム20の酸素透過度が1cc/(m2・day・atm)以下であるのが好ましい。第1の基材フィルム10および第2の基材フィルム20の酸素透過度は、より好ましくは0.1cc/(m2・day・atm)以下、さらに好ましくは0.01cc/(m2・day・atm)以下であり、特に好ましいのは0.001cc/(m2・day・atm)以下である。ここで、酸素透過度は、測定温度23℃、相対湿度90%の条件下で、酸素ガス透過率測定装置(MOCON社製、OX-TRAN 2/20:商品名)を用いて測定した値である。
 第1の基材フィルム10および第2の基材フィルム20は、酸素を遮断するガスバリア機能に加え、水分(水蒸気)を遮断する機能を有しているのが好ましい。第1の基材フィルム10および第2の基材フィルム20の透湿度(水蒸気透過度)は0.10g/(m2・day・atm)以下が好ましく、0.01g/(m2・day・atm)以下がより好ましい。
(支持フィルム)
 支持フィルム11,21としては、可視光に対して透明である可撓性を有する帯状の支持体が好ましい。ここで可視光に対して透明とは、可視光領域における光線透過率が、80%以上、好ましくは85%以上であることをいう。透明の尺度として用いられる光線透過率は、JIS-K7105に記載された方法、すなわち積分球式光線透過率測定装置を用いて全光線透過率および散乱光量を測定し、全光線透過率から拡散透過率を引いて算出することができる。可撓性を有する支持体については、特開2007-290369号公報段落0046~0052、および、特開2005-096108号公報段落0040~0055を参照できる。
 支持フィルムは、酸素および水分に対するバリア性を有するのが好ましい。かかる支持フィルムとしては、ポリエチレンテレフタレートフィルム、環状オレフィン構造を有するポリマーからなるフィルム、および、ポリスチレンフィルム等が、好ましい例として挙げられる。
 支持フィルム11,21の平均膜厚は、蛍光体含有フィルムの耐衝撃性等の観点から、10~500μmが好ましく、20~400μmがより好ましく、30~300μmがさらに好ましい。
 蛍光体含有層30に含まれる量子ドットの濃度を低減した場合や、蛍光体含有層30の厚みを低減した場合のように、光の再帰反射を増加させる態様では、波長450nmの光の吸収率がより低い方が好ましいため、輝度低下を抑制する観点から、支持フィルム11,21の平均膜厚は、40μm以下であるのが好ましく、25μm以下であるのがさらに好ましい。
 また、支持フィルム11,21は、波長589nmにおける面内リターデーションRe(589)が1000nm以下であるのが好ましく、500nm以下であるのがより好ましく、200nm以下であるのがさらに好ましい。
 蛍光体含有フィルムを作製した後、異物や欠陥の有無を検査する際、2枚の偏光板を消光位に配置し、その間に蛍光体含有フィルムを差し込んで観察することで、異物や欠陥を見つけやすい。支持体のRe(589)が上記範囲であると、偏光板を用いた検査の際に、異物や欠陥をより見つけやすくなるため、好ましい。
 ここで、Re(589)は、AxoScan OPMF-1(オプトサイエンス社製)を用いて、入力波長589nmの光をフィルム法線方向に入射させることにより測定することができる。
(バリア層)
 第1の基材フィルム10および第2の基材フィルム20は、支持フィルム11、21の蛍光体含有層30側の面に形成される少なくとも一層の無機層を含むバリア層12、22を備えているのが好ましい。バリア層12、22としては、少なくとも無機層1層と少なくとも1層の有機層を含むものであってもよい(図15および図16参照)。このように複数の層を積層することは、より一層バリア性を高めることができるため、耐光性向上の観点からは好ましい。他方、積層する層の数が増えるほど、基材フィルムの光透過率は低下する傾向があるため、良好な光透過率を維持し得る範囲で、積層数を増やすことが望ましい。
 バリア層12、22は、可視光領域における全光線透過率が好ましくは80%以上であり、かつ、酸素透過度が1.00cc/(m2・day・atm)以下であるのが好ましい。
 バリア層12、22の酸素透過度は、より好ましくは0.1cc/(m2・day・atm)以下、さらに好ましくは0.01cc/(m2・day・atm)以下であり、特に好ましいのは0.001cc/(m2・day・atm)以下である。
 酸素透過度は、低いほど好ましく、可視光領域における全光線透過率は、高いほど好ましい。
-無機層-
 無機層とは、無機材料を主成分とする層であり、無機材料が50質量%以上、さらには80質量%以上、特に90質量%以上を占める層が好ましく、好ましくは無機材料のみから形成される層である。
 無機層は酸素を遮断するガスバリア機能を有する層であるのが好ましい。具体的には、無機層の酸素透過度は、1cc/(m2・day・atm)以下であるのが好ましい。無機層の酸素透過度はオービスフェアラボラトリー社製型酸素濃度計の検出部に波長変換層を、シリコングリスを介して貼付し、平衡酸素濃度値から酸素透過度を換算して求めることができる。無機層は、水蒸気を遮断する機能を有することも好ましい。
 無機層は、バリア層中に2層または3層上含まれていてもよい。
 無機層の厚さは、1~500nmであればよく、5~300nmが好ましく、特に10~150nmが好ましい。無機層の膜厚が、上述した範囲内であることにより、良好なバリア性を実現しつつ、無機層における反射を抑制することができ、光透過率がより高い積層フィルムを提供できるからである。
 無機層を構成する無機材料は、特に限定されるものではなく、例えば、金属、ならびに、無機酸化物、窒化物および酸化窒化物等の各種無機化合物を用いることができる。無機材料を構成する元素としては、ケイ素、アルミニウム、マグネシウム、チタン、スズ、インジウム、および、セリウムが好ましく、これらを一種または二種以上含んでいてもよい。無機化合物の具体例としては、酸化ケイ素、酸化窒化ケイ素、酸化アルミニウム、酸化マグネシウム、酸化チタン、酸化スズ、酸化インジウム合金、窒化ケイ素、窒化アルミニウム、および、窒化チタンを挙げることができる。また、無機層として、金属膜、例えば、アルミニウム膜、銀膜、錫膜、クロム膜、ニッケル膜、および、チタン膜等を設けてもよい。
 上記の材料の中でも、上記バリア性を有する無機層が窒化ケイ素、酸化窒化ケイ素、酸化ケイ素、および、酸化アルミニウムから選ばれる少なくとも一種の化合物を含む無機層でが特に好ましい。これらの材料からなる無機層は、有機層との密着性が良好であることから、無機層にピンホールがある場合でも、有機層がピンホールを効果的に埋めることができ、破断を抑制できるとともに、さらに無機層を積層したケースにおいても極めて良好な無機層膜形成ができ、バリア性をより一層高くすることができるからである。また、バリア層における光の吸収を抑制する観点からは、窒化ケイ素がもっとも好ましい。
 無機層の形成方法としては、特に限定されず、例えば製膜材料を蒸発ないし飛散させ被蒸着面に堆積させることができる各種製膜方法を用いることができる。
 無機層の形成方法の例としては、無機酸化物、無機窒化物、無機酸化窒化物、および、金属等の無機材料を、加熱して蒸着させる真空蒸着法;無機材料を原料として用い、酸素ガスを導入することにより酸化させて蒸着させる酸化反応蒸着法;無機材料をターゲット原料として用い、アルゴンガス、酸素ガスを導入して、スパッタリングすることにより蒸着させるスパッタリング法;無機材料にプラズマガンで発生させたプラズマビームにより加熱させて蒸着させるイオンプレーティング法等の物理気相成長法(PVD法(Physical VaporDeposition法))が例示される。酸化ケイ素の蒸着膜を製膜させる場合は、有機ケイ素化合物を原料とするプラズマ化学気相成長法(CVD法(Chemical Vapor Deposition法))等が挙げられる。
 また、無機層として窒化ケイ素の蒸着膜を製膜させる場合には、シランガスを原料とするプラズマCVD法が例示される。
-有機層-
 有機層とは、有機材料を主成分とする層であって、好ましくは有機材料が50質量%以上、さらには80質量%以上、特に90質量%以上を占める層を言うものとする。
 有機層としては、特開2007-290369号公報段落0020~0042、および、特開2005-096108号公報段落0074~0105を参照できる。なお有機層は、上記の密着力条件を満足する範囲内でカルドポリマーを含むのが好ましい。これにより、有機層と隣接する層との密着性、特に、無機層とも密着性が良好になり、より一層優れたガスバリア性を実現することができるからである。カルドポリマーの詳細については、上述の特開2005-096108号公報段落0085~0095を参照できる。
 有機層の膜厚は、0.05~10μmが好ましく、中でも0.5~10μmがより好ましい。有機層がウェットコーティング法により形成される場合には、有機層の膜厚は、0.5~10μm、中でも1~5μmが好ましい。また、ドライコーティング法により形成される場合には、0.05~5μm、中でも0.05~1μmが好ましい。ウェットコーティング法またはドライコーティング法により形成される有機層の膜厚が上述した範囲内であることにより、無機層との密着性をより良好なものとすることができるからである。
 無機層、有機層のその他詳細については、上述の特開2007-290369号公報、特開2005-096108号公報、さらにUS2012/0113672A1の記載を参照できる。
 蛍光体含有フィルムにおいて、有機層は、無機層の下地層として支持フィルムと無機層との間に積層されていてもよく、無機層の保護層として無機層と蛍光体含有層との間に積層されていてもよい。また、2層以上の無機層を有する場合には、有機層は無機層の間に積層されていてもよい。
(凹凸付与層)
 基材フィルム10、20は、蛍光体含有層30側の面と反対側の面に、凹凸構造を付与する凹凸付与層を備えていてもよい。基材フィルム10、20が凹凸付与層を有していると、基材フィルムのブロッキング性、滑り性を改良することができるため、好ましい。凹凸付与層は粒子を含有する層であるのが好ましい。粒子としては、シリカ、アルミナおよび酸化金属等の無機粒子、ならびに、架橋高分子粒子等の有機粒子等が挙げられる。また、凹凸付与層は、基材フィルムの蛍光体含有層とは反対側の表面に設けられることが好ましいが、両面に設けられていてもよい。
 蛍光体積層フィルムは、量子ドットの蛍光を効率よく外部に取り出すために光散乱機能を有することができる。光散乱機能は、蛍光体含有層30内部に設けてもよいし、光散乱層として光散乱機能を有する層を別途設けてもよい。光散乱層は、基材フィルム10、20の蛍光体含有層30側の面に設けられていてもよいし、基材フィルム10、20の蛍光体含有層30とは反対側の面に設けられていてもよい。上記凹凸付与層を設ける場合は、凹凸付与層を光散乱層と兼用できる層とするのが好ましい。
 <蛍光体含有フィルムの製造方法>
 次に、上記の如く構成された本発明の実施形態の蛍光体含有フィルムの製造工程の一例について図11~図12を参照して説明する。
(塗布液調製工程)
 第1の塗布液調製工程では、蛍光体として量子ドット(または量子ロッド)を含む蛍光領域形成用塗布液を調製する。具体的には、有機溶媒中に分散された量子ドット、硬化性化合物、高分子分散剤、重合開始剤、および、シランカップリング剤などの各成分をタンクなどにより混合し、蛍光領域形成用塗布液を調製する。なお、蛍光領域形成用塗布液には有機溶媒を含んでいなくても構わない。
 第2の塗布液調製工程では蛍光領域間に充填する樹脂層用塗布液を調製する。
  (樹脂層形成工程)
 次に、第1の基材フィルム10上に樹脂層用塗布液を塗布し、必要に応じて樹脂層用塗布液を乾燥した後、塗布した樹脂層用塗布液(塗膜)に凹凸パターンを有する型(モールド)を圧接して凹部を有する所定パターンを形成して、樹脂層用塗布液を硬化させて、図11に示すような、第1の基材フィルム10上に、複数の凹部を有する樹脂層38が積層された積層フィルム59を形成する。
 ここで、本発明の蛍光体含有フィルムにおいては、樹脂層38の凹部の底の厚さが0.1~20μmとなるように、複数の凹部を有する樹脂層38を形成する。本発明は、これにより、モールドと第1の基材フィルム10との接触を防止して、第1の基材フィルム10のバリア層12が有する無機層の損傷を防止して、酸素等による蛍光体31の劣化を防止した、耐久性の高い蛍光体含有フィルムを実現できる。
  (蛍光領域形成工程、および、第2の基材フィルム貼合工程)
 次に、積層フィルム59の樹脂層38の凹部内に蛍光領域形成用塗布液を塗布し、蛍光領域形成用塗布液を硬化させる前に、第2の基材フィルム20を貼り合せた後、蛍光領域形成用塗布液を硬化させて蛍光領域35を形成して、図12に示すような、第1の基材フィルム10、蛍光体含有層30、および、第2の基材フィルム20が積層された蛍光体含有フィルムを作製する。
 蛍光領域形成工程および樹脂層形成工程における硬化処理は、塗布液に応じて熱硬化あるいは紫外線による光硬化など適宜選択すればよい。
 紫外線による光硬化により樹脂層38を硬化させる場合には、紫外線の照射量は、100~10000mJ/cm2とするのが好ましい。
 他方、熱硬化により樹脂層38を硬化させる場合には、20~100℃に加熱するのが好ましい。
(裁断処理)
 得られた蛍光体含有フィルムは、必要により切断機により裁断(切断)される。
 なお、蛍光体含有フィルムの作製方法は、いわゆるロール・トゥ・ロール(RtoR(Roll to Roll))により上述の各工程を連続的に行ってもよいし、カットシート状の基材フィルムを用いて、いわゆる枚葉式で各工程の処理を施すものであってもよい。
 ここで、第1の基材フィルム10に塗布された樹脂層用塗布液に複数の凹部(凹凸パターン)を形成する方法について具体的に説明する。
 パターンの形成としては、上述のとおり、基材フィルム上に塗布した樹脂層用塗布液に凹凸パターンを有する型(モールド)を圧接して微細な凹凸パターンを形成する方法を用いることができる。
 また、インクジェット法、ディスペンサー法でパターン形成をすることもできる。
 ここで、モールドとしては、転写されるべきパターンを有するモールドが使われる。モールド上のパターンは、例えば、フォトリソグラフィや電子線描画法等によって、所望する加工精度に応じて形成できるが、モールドパターン形成方法は特に制限されない。
 光透過性のモールド材は、特に限定されないが、所定の強度、耐久性を有するものであればよい。具体的には、ガラス、石英、PMMAおよびポリカーボネート樹脂などの光透明性樹脂、透明金属蒸着膜、ポリジメチルシロキサンなどの柔軟膜、光硬化膜、ならびに、SUS等の金属膜が例示される。
 一方、非光透過型モールド材としては、特に限定されないが、所定の強度を有するものであればよい。具体的には、セラミック材料、蒸着膜、磁性膜、反射膜、Ni、Cu、CrおよびFeなどの金属基板、ならびに、SiC、シリコン、窒化シリコン、ポリシリコン、酸化シリコンおよびアモルファスシリコンなどの基板等が例示される。また、モールドの形状も特に制約されるものではなく、板状モールドおよびロール状モールドのどちらでもよい。ロール状モールドは、特に転写の連続生産性が必要な場合に適用される。
 モールドは、硬化性化合物とモールド表面との剥離性を向上させるために離型処理を行ったものを用いてもよい。このようなモールドとしては、撥水撥油性に優れた素材をコーティングすることが挙げられる。具体的には、ポリテトラフルオロエチレン(PTFE(polytetrafluoroethylene))およびダイヤモンドライクカーボン(DLC(Diamond-like Carbon))等を物理蒸着(PVD)または化学蒸着(CVD)したもの、ならびに、シリコン系およびフッ素系などのシランカップリング剤による処理を行ったものが例示される。離型処理には、例えば、ダイキン工業社製のオプツールDSXや、住友スリーエム社製のNovec EGC-1720等、市販の離型剤も好適に用いることができる。
 上記モールドを用いた凹凸パターンを形成する方法として具体的に、基材フィルム上に塗布・硬化した樹脂層にモールドを樹脂層またはモールドを加熱した状態で圧接して微細な凹凸パターンを形成する熱インプリント法、基材フィルム上に塗布した樹脂層用塗布液に凹凸パターンを有する型(モールド)を圧接した後、樹脂層を光で硬化し、微細な凹凸パターンを形成する光インプリント法、および、微細な凹凸パターンを形成する溶融成型法等が挙げられる。中でも、生産速度に優れ、設備投資が少ない観点から光インプリント法が好ましい。
 光インプリントリソグラフィを行なう場合、通常、モールド圧力を10気圧以下で行なうのが好ましい。モールド圧力を10気圧以下とすることにより、モールドや基板が変形しにくくパターン精度が向上する傾向にある。また、加圧が低いため装置を縮小できる傾向にある点からも好ましい。モールド圧力は、モールド凸部の硬化性化合物の残膜が少なくなる範囲で、モールド転写の均一性が確保できる領域を選択するのが好ましい。
 硬化性化合物を硬化する際における光照射の照射量は、硬化に必要な照射量よりも十分大きければよい。硬化に必要な照射量は、硬化性組成物の不飽和結合の消費量や硬化膜のタッキネスを調べて適宜決定される。
 また、光インプリントリソグラフィにおいては、光照射の際の基板温度は、通常、室温で行われるが、反応性を高めるために加熱をしながら光照射してもよい。光照射の前段階として、真空状態にしておくと、気泡混入防止、酸素混入による反応性低下の抑制、モールドと硬化性組成物との密着性向上に効果があるため、真空状態で光照射してもよい。また、パターン形成方法中、光照射時における好ましい真空度は、10-1Paから1気圧の範囲である。
 硬化性化合物を硬化させるために用いられる光は特に限定されず、例えば、高エネルギー電離放射線、近紫外、遠紫外、可視、および、赤外等の領域の波長の光または放射線が挙げられる。高エネルギー電離放射線源としては、例えば、コッククロフト型加速器、ハンデグラーフ型加速器、リニヤーアクセレーター、ベータトロン、および、サイクロトロン等の加速器によって加速された電子線が工業的に最も便利且つ経済的に使用される。また、その他に放射性同位元素や原子炉等から放射されるγ線、X線、α線、中性子線、および、陽子線等の放射線も使用できる。
 紫外線源としては、例えば、紫外線螢光灯、低圧水銀灯、高圧水銀灯、超高圧水銀灯、キセノン灯、炭素アーク灯、太陽灯、および、LED(Light Emitting Diode)等が挙げられる。
 放射線には、例えばマイクロ波、および、EUV(Extreme Ultraviolet)等が含まれる。
 また、LED、半導体レーザー光、248nmのKrFエキシマレーザー光、および、193nmArFエキシマレーザーなどの半導体の微細加工で用いられているレーザー光も本発明に好適に用いることができる。
 これらの光は、モノクロ光を用いてもよいし、複数の波長の異なる光(ミックス光)でもよい。
 露光に際しては、露光照度を1~1000mW/cm2にするのが好ましい。露光照度を1mW/cm2以上とすることにより、露光時間を短縮することができるため生産性が向上し、1000mW/cm2以下とすることにより、副反応が生じることによる永久膜の特性の劣化を抑止できる傾向にあり好ましい。
 露光量は5~10000mJ/cm2とするのが好ましい。露光量が5mJ/cm2未満では、露光マージンが狭くなり、光硬化が不十分となりモールドへの未反応物の付着などの問題が発生しやすくなる。一方、露光量が10000mJ/cm2を超えると組成物の分解による永久膜の劣化の恐れが生じる。
 さらに、露光に際しては、酸素によるラジカル重合の阻害を防ぐため、窒素やアルゴンなどの不活性ガスを流して、酸素濃度を100mg/L未満に制御してもよい。
 硬化性化合物の硬化においては、光照射により硬化性化合物を硬化させた後、必要に応じて熱を加えてさらに硬化させる工程を含んでいてもよい。光照射後に加熱硬化させる熱としては、80~280℃が好ましく、100~200℃がより好ましい。また、熱を付与する時間としては、5~60分間が好ましく、15~45分間がより好ましい。
 樹脂層38に形成される凹凸パターンは任意の形態をとり得ることができる。
 凹凸パターンとしては、一例として凹部の開口形状または凸部の形状が正四角形または長方形である格子状メッシュパターン、凹部または凸部が正六角形であるハニカムパターン、凹部または凸部が円形である海島パターン、凹部または凸部が正五角形/正六角形の組合せ、直径の異なる円形の組合せ等の複合パターン、および、六角形の大きさに面内分布があるパターン等が挙げられる。
 中でも、光インプリント法で樹脂層38を形成する場合は、モールドから樹脂層を剥離する際の隔壁の欠損を抑制できる、および、イングレス距離を短くできる等の観点から、正方形、正六角形等の正多角形、および、円形パターンが好ましい。さらに、蛍光領域35の充填率(面積率)を高くできる観点から正六角形がより好ましい。
 また、上記例においては、樹脂層38の硬化させる工程は、モールドを密着させた状態で行う構成としたが、モールド剥離後に行ってもよい。ただし、樹脂層38の硬化させる工程は、モールドを密着させた状態で行なうのが好ましい。
 熱インプリント法を行う場合、通常、モールド圧力を0.1~100MPaの範囲で行うのが好ましい。また、モールドおよび樹脂層の温度を所定の範囲にすることが好ましく、一般的には、モールド温度は樹脂層のガラス転移温度(Tg)以上に設定すること、基材温度はモールド温度より低く設定することが多い。
 溶融成型法を行う場合、成型する樹脂を融点以上の温度に加熱した後、ただちにモールドと基材フィルムの間に溶融状態の樹脂(メルト)を流しこんだ後に圧接・冷却して作製する。溶融成型法を行う場合の、樹脂層38に適した材料として、酸素透過係数が低い高分子が好ましく、具体的にはポリビニアルコール(PVA)、ポリエチレン-ビニルアルコール共重合体(EVOH)、ポリ塩化ビニリデン(PVDC)、ポリフッ化ビニリデン(PVDF)、および、ポリエチレンテレフタレート(PET)などのポリエステル系樹脂等が挙げられる。中でも透明性、耐熱耐光性に優れる観点から(変性)ポリビニルアルコールが好ましく、ポリエチレン-ビニルアルコール共重合体(EVOH)が特に好ましい。
 樹脂層を形成する基材フィルムとの密着性を確保するために、基材フィルムにアンカーコート層を設けても良い。アンカーコート層の素材としては、樹脂層38および基材フィルムの材質等に応じて適切に選ばれるが、例えば樹脂層がEVOH、基材フィルムがPETの場合、アンカーコート層の素材として、ウレタン系、ポリエチレンイミン系、ポリブタジエン系、および、(変性)ポリオレフィン系等の化合物が挙げられ、耐水性および密着力に優れる観点からウレタン系、および、(変性)ポリオレフィン系化合物のアンカーコート素材等が最も好ましい。アンカーコート素材の具体的な商品として、東洋モートン社製EL-530A/B、三井化学社製タケラックA/タケネートAシリーズ、アドマーシリーズ、および、ユニストールシリーズが例示される。
 「バックライトユニット」
 図面を参照して、本発明の蛍光体含有フィルムの一実施形態としての波長変換部材を備えたバックライトユニットについて説明する。図13は、バックライトユニットの概略構成を示す模式図である。
 図13に示されるように、バックライトユニット102は、一次光(青色光L)を出射する光源101Aと光源101Aから出射された一次光を導光して出射する導光板101Bとからなる面状光源101Cと、面状光源101C上に備えられてなる蛍光体含有フィルムからなる波長変換部材100と、面状光源101Cを挟んで波長変換部材100と対向配置される反射板102Aと、再帰反射性部材102Bとを備えている。なお、図13においては、反射板102A、導光板101B、波長変換部材100および再帰反射性部材102Bは離間した図を示しているが、実際には、これらは互いに密着して形成されていてもよい。
 波長変換部材100は、面状光源101Cから出射された一次光LBの少なくとも一部を励起光として、蛍光を発光し、この蛍光からなる二次光(緑色光LG,赤色光LR)および波長変換部材100を透過した一次光Lを出射するものである。例えば、波長変換部材100は、青色光LBの照射により緑色光LGを発光する量子ドットと赤色光LRを発光する量子ドットとを含む蛍光体含有層が第1の基材フィルム10および第2の基材フィルム20で挟持されて構成されてなる蛍光体含有フィルムである。
 図13において、波長変換部材100から出射されたLB,LG,LRは、再帰反射性部材102Bに入射し、入射した各光は、再帰反射性部材102Bと反射板102Aとの間で反射を繰り返し、何度も波長変換部材100を通過する。その結果、波長変換部材100では十分な量の励起光(青色光LB)が蛍光体含有層30内の蛍光体31(ここでは、量子ドット)によって吸収され、必要な量の蛍光(LG,LR)が発光し、再帰反射性部材102Bから白色光LWが具現化されて出射される。
 高輝度かつ高い色再現性の実現の観点からは、バックライトユニットとして、多波長光源化されたものを用いるのが好ましい。例えば、430~480nmの波長帯域に発光中心波長を有し、半値幅が100nm以下である発光強度のピークを有する青色光と、500~600nmの波長帯域に発光中心波長を有し、半値幅が100nm以下である発光強度のピークを有する緑色光と、600~680nmの波長帯域に発光中心波長を有し、半値幅が100nm以下である発光強度のピークを有する赤色光と、を発光するのが好ましい。
 より一層の輝度および色再現性の向上の観点から、バックライトユニットが発光する青色光の波長帯域は、440~460nmであるのがより好ましい。
 同様の観点から、バックライトユニットが発光する緑色光の波長帯域は、520~560nmが好ましく、520~545nmがより好ましい。
 また、同様の観点から、バックライトユニットが発光する赤色光の波長帯域は、610~640nmがより好ましい。
 また同様の観点から、バックライトユニットが発光する青色光、緑色光および赤色光の各発光強度の半値幅は、いずれも80nm以下が好ましく、50nm以下がより好ましく、40nm以下がさらに好ましく、30nm以下が一層好ましい。これらの中でも、青色光の各発光強度の半値幅は25nm以下が、特に好ましい。
 上記において光源101Aとしては、例えば430~480nmの波長帯域に発光中心波長を有する青色光を発光する青色発光ダイオードであるが、紫外光を発光する紫外線発光ダイオードを用いてもよい。光源101Aとしては、発光ダイオードの他レーザー光源等を使用することができる。紫外光を発光する光源を備えた場合には、波長変換部材の波長変換層(蛍光体含有層)において、紫外光の照射により青色光を発光する蛍光体、緑色光を発光する蛍光体、および赤色光を発光する蛍光体を含むものとすればよい。
 面状光源101Cは、図13に示すように、光源101Aと光源101Aから出射された一次光を導光させて出射させる導光板101Bとからなる面状光源であってもよいし、光源101Aが波長変換部材100と平行な平面状に並べて配置され、導光板101Bに替えて拡散板を備えた面状光源であっても良い。前者の面状光源は一般にエッジライト方式、後者の面状光源は一般に直下型方式と呼ばれている。
 なお、本実施形態では、光源として面状光源を用いた場合を例に説明したが、光源としては面状光源以外の光源も使用することができる。
(バックライトユニットの構成)
 バックライトユニットの構成としては、図13では、導光板や反射板などを構成部材とするエッジライト方式について説明したが、直下型方式であっても構わない。導光板としては、公知のものを何ら制限なく使用することができる。
 また、反射板102Aとしては、特に制限は無く、公知のものを用いることができ、特許3416302号公報、特許3363565号公報、特許4091978号公報、および、特許3448626号公報などに記載されており、これらの公報の内容は本発明に組み込まれる。
 再帰反射性部材102Bは、公知の拡散板や拡散シート、プリズムシート(例えば、住友スリーエム社製BEFシリーズなど)、導光器等から構成されていてもよい。再帰反射性部材102Bの構成については、特許3416302号公報、特許3363565号公報、特許4091978号公報、および、特許3448626号公報などに記載されており、これらの公報の内容は本発明に組み込まれる。
「液晶表示装置」
 上述のバックライトユニット102は液晶表示装置に応用することができる。図14は、液晶表示装置の概略構成を示す模式図である。
 図14に示されるように、液晶表示装置104は上記実施形態のバックライトユニット102とバックライトユニットの再帰反射性部材側に対向配置された液晶セルユニット103とを備えてなる。
 液晶セルユニット103は、図14に示されるように、液晶セル110を偏光板120と130とで挟持した構成としており、偏光板120,130は、それぞれ、偏光子122、132の両主面を偏光板保護フィルム121と123、131と133で保護された構成としている。
 液晶表示装置104を構成する液晶セル110、偏光板120、130およびその構成要素については特に限定はなく、公知の方法で作製されるものや市販品を、何ら制限なく用いることができる。また、各層の間に、接着層等の公知の中間層を設けることも、もちろん可能である。
 液晶セル110の駆動モードについては特に制限はなく、ツイステットネマチック(TN)、スーパーツイステットネマチック(STN)、バーティカルアライメント(VA)、インプレインスイッチング(IPS)、および、オプティカリーコンペンセイテットベンドセル(OCB)等の種々のモードを利用することができる。液晶セルは、VAモード、OCBモード、IPSモード、またはTNモードであることが好ましいが、これらに限定されるものではない。VAモードの液晶表示装置の構成としては、特開2008-262161号公報の図2に示す構成が一例として挙げられる。ただし、液晶表示装置の具体的構成には特に制限はなく、公知の構成を採用することができる。
 液晶表示装置104には、さらに必要に応じて光学補償を行う光学補償部材、接着層などの付随する機能層を有する。また、カラーフィルター基板、薄層トランジスタ基板、レンズフィルム、拡散シート、ハードコート層、反射防止層、低反射層、および、アンチグレア層等とともに(またはそれに替えて)、前方散乱層、プライマー層、帯電防止層、および、下塗り層等の表面層が配置されていてもよい。
 バックライト側偏光板120は、液晶セル110側の偏光板保護フィルム123として、位相差フィルムを有していてもよい。このような位相差フィルムとしては、公知のセルロースアシレートフィルム等を用いることができる。
 バックライトユニット102および液晶表示装置104は、上記本発明の蛍光体含有フィルムからなる波長変換部材を備えてなる。従って、上記本発明の蛍光体含有フィルムと同様の効果を奏し、量子ドットを含む波長変換層の発光強度が低下しにくい、高輝度なバックライトユニットおよび液晶表示装置となる。
 以下に実施例に基づき本発明をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。従って、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。
[実施例1]
<蛍光体含有フィルムの作製>
 蛍光体として量子ドットを含有する塗布液を用いて蛍光体含有層を有する蛍光体含有フィルムを作製した。
(バリアフィルムの作製)
 第1の基材フィルムおよび第2の基材フィルムとして、PETからなる支持フィルム上に無機層からなるバリア層およびそのバリア層上に下記組成物を塗工した有機層が形成されてなるバリアフィルムを以下のようにして作製した。
 支持体としてPETフィルム(東洋紡社製、商品名「コスモシャイン(登録商標)A4300」、厚さ23μm)を用いて、支持体の片面側に以下の手順で有機層および無機層を順次形成した。
-有機層の形成-
 トリメチロールプロパントリアクリレート(製品名「TMPTA」、ダイセル・オルネクス社製)および光重合開始剤(商品名「ESACURE(登録商標) KTO46」、ランベルティ社製)を用意し、質量比率として95:5となるように秤量し、これらをメチルエチルケトンに溶解させ、固形分濃度15%の塗布液とした。この塗布液を、ダイコーターを用いてロール・トゥ・ロールにてPETフィルム上に塗布し、50℃の乾燥ゾーンを3分間通過させた。その後、窒素雰囲気下で紫外線を照射(積算照射量約600mJ/cm2)し、紫外線硬化にて硬化させ、巻き取った。支持体上に形成された有機層の厚さは、1μmであった。
-無機層の形成-
 次に、ロール・トゥ・ロールのCVD装置を用いて、有機層の表面に無機層(窒化ケイ素層)を形成した。原料ガスとして、シランガス(流量160sccm)、アンモニアガス(流量370sccm)、水素ガス(流量590sccm)、および窒素ガス(流量240sccm)を用いた。電源として、周波数13.56MHzの高周波電源を用いた。製膜圧力は40Pa、到達膜厚は50nmであった。このようにして支持体上に形成された有機層の表面に無機層が積層されたバリアフィルムを作製した。
-第二の有機層の形成-
 さらに、無機層の表面に、第二の有機層を積層した。第二の有機層には、ウレタン骨格アクリレートポリマー(商品名「アクリット8BR930」、大成ファインケミカル社製)95.0質量部に対して、光重合開始剤(商品名「IRGACURE184」、BASF社製)5.0質量部を秤量し、これらをメチルエチルケトンに溶解させ、固形分濃度15%の塗布液とした。
 この塗布液を、ダイコーターを用いてロール・トゥ・ロールにより上記無機層表面に直接に塗布し、100℃の乾燥ゾーンを3分間通過させた。その後、60℃に加熱したヒートロールに抱かせながら、紫外線を照射(積算照射量約600mJ/cm2)して硬化させ、巻き取った。支持体上に形成された第二の有機層の厚さは、0.1μmであった。
 このようにして、第1の基材フィルムおよび第2の基材フィルムとして、第二の有機層付きのバリアフィルムを作製した。
 このバリアフィルムの酸素透過度をMOCON社製、OX-TRAN 2/20を用いて測定したところ、4.0×10-3cc/(m2・day・atm)以下の値を示した。
(樹脂層の形成)
 樹脂層形成用の塗布液1として、硬化性化合物、重合開始剤、および、シランカップリング剤などの各成分をタンクなどにより混合し、塗布液を調製した。
-樹脂層の塗布液1の組成-
・ウレタン(メタ)アクリレート(U-4HA、新中村化学工業社製)
                             42質量部
・トリシクロデカンジメタノールジアクリレート(A-DCP、新中村化学工業社製)
                             42質量部
・平板アルミナ(散乱粒子:セラフ05070、キンセイマティック社製)
                             15質量部
・光重合開始剤(イルガキュアTPO、BASF社製)     1質量部
-樹脂層の形成-
 第1の基材フィルム上に樹脂層用塗布液1を塗布し凹部を転写した後に光硬化させて、複数の凹部を有する樹脂層を形成した。なお、転写に用いる金型には、凹部の角部に曲率半径10μmの丸みが付いたものを使用した。
 ここで、凹部は、一辺125μmの正六角形状で、ハニカム状パターンとし、凹部の深さh(凹部の底厚)は40μmとし、幅t(線幅)は50μmとした。すなわち、アスペクト比h/tは0.8である。
 続いて、第1の基材フィルムとシート状金型との間に樹脂層用塗布液を流し込み、ラミネーターで圧力0.5MPaで圧接して樹脂を金型シート凹部に充填した後、光硬化した。硬化後にシート状金型を第一の基材フィルムから剥離し、複数の凹部を有するフィルムを得た。なお、光硬化には、200W/cmの空冷メタルハライドランプ(アイグラフィックス社製)を用いて、紫外線を第1の基材フィルム側より500mJ/cm2照射して樹脂層を硬化させた。
 また、硬化後の樹脂層の弾性率を、JIS K7161の基準に従って計測した結果、4.2GPaであった。
 幅t(線幅(50μm))は、樹脂層を挟んで隣接する蛍光領域間の最短距離であり、すなわち、蛍光領域間における樹脂層の最も薄い部分である。樹脂層の厚さ50μmにおける酸素透過度を先と同様に測定したところ、8cc/(m2・day・atm)であった。
(蛍光領域の形成および基材フィルムの貼着)
 蛍光領域を形成する塗布液2として、量子ドット、硬化性化合物、高分子分散剤、重合開始剤、および、シランカップリング剤などの各成分をタンクなどにより混合し、塗布液を調製した。
-蛍光領域用の塗布液2の組成-
 下記の組成の量子ドット分散液を調製し、塗布液2とした。
・量子ドット1のトルエン分散液(発光極大:520nm)  20質量%
・量子ドット2のトルエン分散液(発光極大:630nm)   2質量%
・ジシクロペンタニルアクリレート(DCP:FA-513AS、日立化成社製)
                           78.8質量%
・トリシクロデカンジメタノールジアクリレート(A-DCP、新中村化学工業社製)
                             20質量%
・光散乱粒子(トスパール120、モメンティブ・パフォーマンス・マテリアルズ社製)
                             20質量%
・光重合開始剤(イルガキュアTPO、BASF社製)    0.2質量%
 上記量子ドット1、2としては、下記のコアーシェル構造(InP/ZnS)を有するナノ結晶を用いた。
 ・量子ドット1:INP530-10(NN-labs社製)
 ・量子ドット2:INP620-10(NN-labs社製)
-蛍光領域形成用塗布液の塗布および基材フィルムの貼着-
 複数の凹部を有する樹脂層と第1の基材フィルム上に蛍光領域形成用塗布液2を塗布し凹部内に塗布液2を充填し、第2の基材フィルムを貼着した後にラミネーターで圧力0.1MPaで圧接して光硬化させて、樹脂層の複数の凹部内に蛍光領域が形成された蛍光領域含有層を形成して蛍光体含有フィルムを作製した。
 また、光硬化には、200W/cmの空冷メタルハライドランプ(アイグラフィックス社製)を用いて、紫外線を第1の基材フィルム側より500mJ/cm2照射して蛍光領域を硬化させた。
 得られた蛍光体含有フィルムの蛍光体含有層の厚みは40μmとした。なお、作製したフィルムをミクロトームで切削し、その切片の断面をSEMで観察したところ、樹脂層の凹部の底の厚さbは1.2μmであった。また、第二の基材フィルムの表面(第二の有機層の表面)と、樹脂層凹部の頂面との距離(樹脂層との隙間)は0.5μmであった。
[実施例2~12および比較例1~2]
 樹脂層形成時および、蛍光領域の形成時のラミネーター圧力を変更し、樹脂層の凹部の底の厚さb、および、樹脂層凹部の頂面と第二の基材フィルムの表面(第二の有機層の表面)との距離(樹脂層との隙間)を表1のようにした以外は、実施例1と同様にして蛍光体含有フィルムを作製した。
 なお、実施例12においては、下記組成の蛍光領域用の塗布液3(量子ドット分散液)を調製し、塗布液3を蛍光領域用の塗布液として用いた。
-蛍光領域用の塗布液3の組成-
 下記の組成の量子ドット分散液を調製し、塗布液2とした。
・量子ドット1のトルエン分散液(発光極大:520nm)  20質量%
・量子ドット2のトルエン分散液(発光極大:630nm)   2質量%
・ジシクロペンタニルアクリレート(DCP:FA-513AS、日立化成社製)
                           78.8質量%
・トリシクロデカンジメタノールジアクリレート(A-DCP、新中村化学工業社製)
                             20質量%
・光散乱粒子(トスパール120、モメンティブ・パフォーマンス・マテリアルズ社製)
                             20質量%
・光重合開始剤(イルガキュアTPO、BASF社製)   0.2質量%
 上記量子ドット3、4としては、下記のコアーシェル構造(CdSe/ZnS)を有するナノ結晶を用いた。
 ・量子ドット1:CZ520-10(NN-labs社製)
 ・量子ドット2:CZ620-10(NN-labs社製)
Figure JPOXMLDOC01-appb-C000014
[比較例3]
 樹脂層を形成せずに、第一の基材フィルムと第二の基材フィルムとの間に蛍光領域用の塗布液2を挟みこんだ後に光硬化させて、樹脂層を有さない蛍光体含有フィルムを作製した。
 また、光硬化には、200W/cmの空冷メタルハライドランプ(アイグラフィックス社製)を用いて、紫外線を第1の基材フィルム側より500mJ/cm2照射して蛍光領域用の塗布液2を硬化して、蛍光領域を形成した。得られた蛍光体含有フィルムの蛍光体含有層の厚さは30μmであった。
<評価項目>
 実施例および比較例で作製した蛍光体含有フィルムは波長変換部材であり、この波長変換部材の発光性能の経時変化を以下のように測定し、評価した。
 なお、各波長変換部材は、ナカヤマ社製のトムソン刃MIR-CI23を使って所定の大きさに裁断して各評価に供した。裁断された波長変換部材の各辺は、樹脂層および蛍光領域を跨いでいる。
(初期輝度)
 バックライトユニットに青色光源を備える市販のタブレット端末(商品名「Kindle(登録商標)Fire HDX 7」、Amazon社製、以下、単に「Kindle Fire HDX 7」と記載する場合がある。)を分解し、バックライトユニットを取り出した。バックライトユニットに組み込まれていた波長変換フィルムQDEF(Quantum Dot Enhancement Film)に代えて矩形に切り出した実施例または比較例の波長変換部材を組み込んだ。このようにして液晶表示装置を作製した。
 作製した液晶表示装置を点灯させ、全面が白表示になるようにし、導光板の面に対して垂直方向520mmの位置に設置した輝度計(商品名「SR3」、TOPCON社製)にて輝度を測定した。
 そして初期輝度Y(cd/m2)を下記評価基準に基づいて評価した。
-評価基準-
 A:Y≧530
 B:530>Y≧515
 C:515>Y≧500
 D:500>Y
(湿熱耐久性の評価)
 作製した波長変換部材を、ヤマト科学株式会社製精密恒温器DF411を用い、60℃、相対湿度90%で1000時間加熱した。その後、上記と同様にしてKindle Fire HDX 7に組み込み、輝度を測定し、初期輝度Yに対する湿熱耐久後の相対輝度Yを算出した。相対輝度Yを、下記評価基準に基づいて評価した。
-評価基準-
 A:Y≧95%
 B:95%>Y≧90%
 C:90%>Y≧80%
 D:80%>Y
(剥離力の評価)
 作製した波長変換部材を、縦150mmおよび横25mmの短冊状に裁断し、JIS K 6854(T型はく離)に従い、剥離角度180度と剥離速度300mm/分の条件で、第一基材フィルムの蛍光体含有層の剥離力F(N/25mm)を測定し、以下の基準に基づいて評価した。なお、明確な接着境界を得るために第一に基材フィルムに接着防止テープを貼付したサンプルを用い、非接着部をつかみ部として測定を実施した。
-評価基準-
 A:F≧10
 B:10>F≧3
 C:3>F≧1
 D:1>F
(端部輝度劣化の評価)
 85℃に保たれた部屋で、市販の青色光源(OPTEX-FA株式会社製OPSM-H150X142B)上に各波長変換部材を置き、波長変換部材に対して青色光を1000時間連続で照射した。1000時間後、蛍光体含有フィルムを取り出し、光学顕微鏡で観察し、端部輝度劣化の距離(色度変化または輝度低下が確認できる距離)Lmmを評価した。
 -評価基準-
 A:L≦0.5
 B:0.5<L≦1.0
 C:1.0<L≦1.5
 D:1.5<L
Figure JPOXMLDOC01-appb-T000015
 表1に示す結果から、本発明の実施例は湿熱耐久性をに優れ、信頼性の高い蛍光体含有フィルムを得られることを示唆している。また、実施例および比較例1の結果から、樹脂層の凹部の底の厚さbが小さすぎると、端部の輝度劣化は抑制されているが、湿熱耐久性が悪化しており、蛍光体含有フィルムの主面/端面封止が両立できていないことがわかる。さらに実施例および比較例2の結果から樹脂層の凹部の底の厚さbが大きすぎると、蛍光体含有フィルムの輝度が低下することがわかる。そして、比較例3の結果から、樹脂層を設けない場合には、耐久性が悪くなることがわかる。
 また、実施例1と実施例7~9との対比等から、第2の基材フィルムの表面と樹脂層の凹部の頂面との距離が適度に短いと耐久性に優れることが分かる。
 また、実施例1と実施例10、11との対比から、第2の基材フィルムの表面と樹脂層の凹部の頂面との距離が適度に長いと密着性に優れることが分かる。
 本発明の蛍光体含有フィルムは、上述の実施形態においては波長変換部材を例に説明したが、蛍光体の種類を適宜選択することにより、有機エレクトロルミネッセンス素子における有機エレクトロルミネッセンス層、有機太陽電池における有機光電変換層などに適用することが可能であり、性能低下を抑制する効果を得ることができる。
  1、3、4、6 蛍光体含有フィルム
  10 第1の基材フィルム
  11、21 支持フィルム
  12、22 バリア層
  20 第2の基材フィルム
  30 蛍光体含有層
  31、31a、31b、31e 蛍光体
  33 バインダ
  35、35a、35b 蛍光体を含む領域(蛍光領域)
  37 樹脂層用塗布液
  38 酸素に対する不透過性を有する樹脂層
  100 波長変換部材
  101A 光源
  101B 導光板
  101C 面状光源
  102 バックライトユニット
  102A 反射板
  102B 再帰反射性部材
  103 液晶セルユニット
  104 液晶表示装置
  110 液晶セル
  120、130 偏光板
  121、123、131、133 偏光板保護フィルム
  122、132 偏光子

Claims (7)

  1.  酸素に対する不透過性を有し、離散的に配置された複数の凹部が形成された樹脂層、および、前記樹脂層に形成された凹部に配置される複数の蛍光領域、を有する蛍光体含有層と、
     前記蛍光体含有層の一方の主面に積層される第1の基材フィルム、および、前記蛍光体含有層の他方の主面に積層される第2の基材フィルムと、を有し、
     前記蛍光領域は、酸素に暴露されると酸素と反応して劣化する蛍光体、および、バインダを含み、
     前記第1の基材フィルムは、支持フィルム、および、前記支持フィルムの前記蛍光体含有層と対面する面側に設けられる無機層を含み、
     前記樹脂層は、弾性率が0.5~10GPaであり、
     前記樹脂層の前記凹部の底の厚さが0.1~20μmである蛍光体含有フィルム。
  2.  前記第2の基材フィルムは、支持フィルム、および、前記支持フィルムの前記蛍光体含有層と対面する面側に設けられる無機層を含み、前記第2の基材フィルムの前記無機層と前記樹脂層の凹部の頂面とが接していない請求項1に記載の蛍光体含有フィルム。
  3.  前記樹脂層の凹部の深さhが10~80μmであり、隣接する前記蛍光領域の間の幅tが5~300μmである請求項1または2に記載の蛍光体含有フィルム。
  4.  前記樹脂層の酸素透過度が10cc/(m2・day・atm)以下である請求項1~3のいずれか一項に記載の蛍光体含有フィルム。
  5.  前記第1の基材フィルムおよび前記第2の基材フィルムの酸素透過度が1cc/(m2・day・atm)以下である請求項1~4のいずれか一項に記載の蛍光体含有フィルム。
  6.  前記蛍光体含有層は、前記蛍光領域が、前記樹脂層および酸素に暴露されることにより酸素と反応して劣化した蛍光体を含む蛍光領域によって囲まれた請求項1~5のいずれか一項に記載の蛍光体含有フィルム。
  7.  請求項1~6のいずれか一項に記載の蛍光体含有フィルムからなる波長変換部材と、青色発光ダイオードおよび紫外線発光ダイオードの少なくとも一方を含むバックライトユニット。
PCT/JP2017/039951 2016-11-07 2017-11-06 蛍光体含有フィルムおよびバックライトユニット WO2018084289A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018549100A JP6750026B2 (ja) 2016-11-07 2017-11-06 蛍光体含有フィルムおよびバックライトユニット
CN201780068835.2A CN109964155B (zh) 2016-11-07 2017-11-06 含荧光体膜及背光单元
KR1020197012702A KR102191226B1 (ko) 2016-11-07 2017-11-06 형광체 함유 필름 및 백라이트 유닛
US16/401,408 US10948767B2 (en) 2016-11-07 2019-05-02 Phosphor-containing film and backlight unit

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016217583 2016-11-07
JP2016-217583 2016-11-07
JP2016-232970 2016-11-30
JP2016232970 2016-11-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/401,408 Continuation US10948767B2 (en) 2016-11-07 2019-05-02 Phosphor-containing film and backlight unit

Publications (1)

Publication Number Publication Date
WO2018084289A1 true WO2018084289A1 (ja) 2018-05-11

Family

ID=62076095

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/039951 WO2018084289A1 (ja) 2016-11-07 2017-11-06 蛍光体含有フィルムおよびバックライトユニット

Country Status (5)

Country Link
US (1) US10948767B2 (ja)
JP (1) JP6750026B2 (ja)
KR (1) KR102191226B1 (ja)
CN (1) CN109964155B (ja)
WO (1) WO2018084289A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200022325A (ko) * 2018-08-22 2020-03-03 고려대학교 세종산학협력단 양자점 나노캡슐 및 그 제조 방법
JPWO2021251448A1 (ja) * 2020-06-11 2021-12-16
JP7088351B1 (ja) 2021-03-12 2022-06-21 凸版印刷株式会社 光学フィルムおよび表示装置
JP7088353B1 (ja) 2021-03-12 2022-06-21 凸版印刷株式会社 粘着シート、光学シート及び表示装置
JP7088352B1 (ja) 2021-03-12 2022-06-21 凸版印刷株式会社 光学フィルムおよび表示装置
US12061396B2 (en) 2020-10-12 2024-08-13 Samsung Electronics Co., Ltd. Display device

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110023796B (zh) * 2016-11-30 2021-10-08 富士胶片株式会社 波长转换部件及背光单元
JP6813599B2 (ja) 2017-02-02 2021-01-13 シチズン電子株式会社 Ledパッケージおよびその製造方法
WO2018186300A1 (ja) * 2017-04-04 2018-10-11 富士フイルム株式会社 蛍光体含有フィルムおよびバックライトユニット
KR102547690B1 (ko) * 2018-04-27 2023-06-27 삼성디스플레이 주식회사 표시장치
CN109037271B (zh) * 2018-08-16 2021-10-26 京东方科技集团股份有限公司 光学器件及其制造方法、显示装置
CN110161600B (zh) * 2019-07-09 2022-08-30 京东方科技集团股份有限公司 一种阵列基板及其制备方法和液晶显示装置
CN113448120B (zh) * 2020-03-27 2022-11-22 拓米(成都)应用技术研究院有限公司 变色膜及其制造方法
US20210341649A1 (en) * 2020-04-29 2021-11-04 Samsung Display Co., Ltd. Anti-reflective film and display device including the same
CN114758628B (zh) * 2021-10-26 2023-09-22 嘉视(山东)电子科技有限公司 一种显示模块区域调光的方法
CN116339016B (zh) * 2023-05-30 2023-08-22 苏州弘德光电材料科技有限公司 一种量子点膜及显示器件

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013197530A (ja) * 2012-03-22 2013-09-30 Sharp Corp 光源、発光装置、バックライト用光源、表示装置、および光源の製造方法
WO2013157059A1 (ja) * 2012-04-18 2013-10-24 パナソニック株式会社 表示装置および表示装置の製造方法
US20140168576A1 (en) * 2011-07-18 2014-06-19 Lg Innotek Co., Ltd. Title optical member and display device having the same
WO2015024008A1 (en) * 2013-08-16 2015-02-19 Qd Vision, Inc. Methods for making optical components, optical components, and products including same
WO2016125479A1 (ja) * 2015-02-02 2016-08-11 富士フイルム株式会社 波長変換部材及びそれを備えたバックライトユニット、液晶表示装置、波長変換部材の製造方法
WO2017002783A1 (ja) * 2015-06-29 2017-01-05 富士フイルム株式会社 機能性フィルムおよび機能性フィルムの製造方法
WO2017026118A1 (ja) * 2015-08-10 2017-02-16 富士フイルム株式会社 蛍光体含有フィルムおよびバックライトユニット

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7102152B2 (en) * 2004-10-14 2006-09-05 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Device and method for emitting output light using quantum dots and non-quantum fluorescent material
JP5418762B2 (ja) * 2008-04-25 2014-02-19 ソニー株式会社 発光装置および表示装置
KR100982991B1 (ko) 2008-09-03 2010-09-17 삼성엘이디 주식회사 양자점 파장변환체, 양자점 파장변환체의 제조방법 및 양자점 파장변환체를 포함하는 발광장치
JP5255532B2 (ja) * 2009-03-26 2013-08-07 富士フイルム株式会社 El素子、導電膜形成用感光材料および導電膜
WO2011104936A1 (ja) * 2010-02-25 2011-09-01 シャープ株式会社 発光素子、ディスプレイ及び表示装置
KR101210180B1 (ko) * 2011-04-21 2012-12-07 엘지이노텍 주식회사 광학 부재 및 이의 제조방법
KR20130009020A (ko) * 2011-07-14 2013-01-23 엘지이노텍 주식회사 광학 부재, 이를 포함하는 표시장치 및 이의 제조방법
JP2014199267A (ja) * 2011-08-05 2014-10-23 シャープ株式会社 蛍光体基板、表示装置および電子機器
JP5767550B2 (ja) 2011-10-04 2015-08-19 株式会社カネカ Ledモジュール用樹脂成形体
KR20130046974A (ko) * 2011-10-28 2013-05-08 엘지이노텍 주식회사 광학 부재, 이를 포함하는 표시장치 및 이의 제조방법
US9658520B2 (en) * 2012-10-01 2017-05-23 Koninklijke Philips N.V. Wavelength converting element comprising ceramic capsule
JP6304228B2 (ja) * 2013-02-19 2018-04-04 Jsr株式会社 波長変換フィルム、波長変換基板、波長変換素子および表示素子
CN105009689B (zh) * 2013-03-08 2018-06-22 日本先锋公司 发光元件
US9111464B2 (en) * 2013-06-18 2015-08-18 LuxVue Technology Corporation LED display with wavelength conversion layer
EP3168531B1 (en) * 2013-06-21 2019-03-20 Panasonic Intellectual Property Management Co., Ltd. Wavelength conversion member, light source and vehicle head lamp
CN103474559A (zh) * 2013-09-02 2013-12-25 四川柏狮光电技术有限公司 荧光板材及其制备方法
EP3064829B1 (en) * 2013-09-13 2018-07-25 Toppan Printing Co., Ltd. Wavelength conversion sheet and backlight unit
KR101533157B1 (ko) 2013-10-28 2015-07-02 엘지전자 주식회사 가스 히트펌프 시스템
JP6287634B2 (ja) 2014-06-27 2018-03-07 コニカミノルタ株式会社 ガスバリア性フィルム、その製造方法、およびこれを用いた電子デバイス
JP6362765B2 (ja) * 2015-03-18 2018-07-25 シャープ株式会社 照明装置、表示装置、及びテレビ受信装置
CN105058909A (zh) * 2015-08-14 2015-11-18 纳晶科技股份有限公司 荧光膜结构、其制作方法及显示器件
CN105116609B (zh) * 2015-09-16 2018-06-15 武汉华星光电技术有限公司 一种背光模组和液晶显示器
US10479937B2 (en) * 2015-10-09 2019-11-19 Intematix Corporation Narrow band red phosphor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140168576A1 (en) * 2011-07-18 2014-06-19 Lg Innotek Co., Ltd. Title optical member and display device having the same
JP2013197530A (ja) * 2012-03-22 2013-09-30 Sharp Corp 光源、発光装置、バックライト用光源、表示装置、および光源の製造方法
WO2013157059A1 (ja) * 2012-04-18 2013-10-24 パナソニック株式会社 表示装置および表示装置の製造方法
WO2015024008A1 (en) * 2013-08-16 2015-02-19 Qd Vision, Inc. Methods for making optical components, optical components, and products including same
WO2016125479A1 (ja) * 2015-02-02 2016-08-11 富士フイルム株式会社 波長変換部材及びそれを備えたバックライトユニット、液晶表示装置、波長変換部材の製造方法
WO2017002783A1 (ja) * 2015-06-29 2017-01-05 富士フイルム株式会社 機能性フィルムおよび機能性フィルムの製造方法
WO2017026118A1 (ja) * 2015-08-10 2017-02-16 富士フイルム株式会社 蛍光体含有フィルムおよびバックライトユニット

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102272857B1 (ko) * 2018-08-22 2021-07-05 고려대학교 세종산학협력단 양자점 나노캡슐 및 그 제조 방법
KR20200022325A (ko) * 2018-08-22 2020-03-03 고려대학교 세종산학협력단 양자점 나노캡슐 및 그 제조 방법
JP7170903B2 (ja) 2020-06-11 2022-11-14 富士フイルム株式会社 波長変換部材、発光装置および液晶表示装置
JPWO2021251448A1 (ja) * 2020-06-11 2021-12-16
WO2021251448A1 (ja) * 2020-06-11 2021-12-16 富士フイルム株式会社 波長変換部材、発光装置および液晶表示装置
US11886079B2 (en) 2020-06-11 2024-01-30 Fujifilm Corporation Wavelength conversion member, light emitting device, and liquid crystal display device
US12061396B2 (en) 2020-10-12 2024-08-13 Samsung Electronics Co., Ltd. Display device
JP7088352B1 (ja) 2021-03-12 2022-06-21 凸版印刷株式会社 光学フィルムおよび表示装置
JP2022140095A (ja) * 2021-03-12 2022-09-26 凸版印刷株式会社 光学フィルムおよび表示装置
JP2022140094A (ja) * 2021-03-12 2022-09-26 凸版印刷株式会社 光学フィルムおよび表示装置
JP2022140096A (ja) * 2021-03-12 2022-09-26 凸版印刷株式会社 粘着シート、光学シート及び表示装置
JP7088353B1 (ja) 2021-03-12 2022-06-21 凸版印刷株式会社 粘着シート、光学シート及び表示装置
JP7088351B1 (ja) 2021-03-12 2022-06-21 凸版印刷株式会社 光学フィルムおよび表示装置

Also Published As

Publication number Publication date
JP6750026B2 (ja) 2020-09-02
US20190258098A1 (en) 2019-08-22
JPWO2018084289A1 (ja) 2019-08-08
US10948767B2 (en) 2021-03-16
KR20190057133A (ko) 2019-05-27
KR102191226B1 (ko) 2020-12-15
CN109964155A (zh) 2019-07-02
CN109964155B (zh) 2021-07-09

Similar Documents

Publication Publication Date Title
US11914172B2 (en) Light absorbing body-containing film and backlight unit
JP6750026B2 (ja) 蛍光体含有フィルムおよびバックライトユニット
US10982135B2 (en) Phosphor-containing film and backlight unit
US11549054B2 (en) Phosphor-containing film and backlight unit
US10781369B2 (en) Wavelength conversion member and backlight unit
US10366876B2 (en) Phosphor-containing film and backlight unit
US11136496B2 (en) Phosphor-containing film and backlight unit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17866522

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018549100

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197012702

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17866522

Country of ref document: EP

Kind code of ref document: A1