WO2018083821A1 - 複合粉末およびその製造方法、ならびに、耐熱材料およびその製造方法 - Google Patents

複合粉末およびその製造方法、ならびに、耐熱材料およびその製造方法 Download PDF

Info

Publication number
WO2018083821A1
WO2018083821A1 PCT/JP2017/009730 JP2017009730W WO2018083821A1 WO 2018083821 A1 WO2018083821 A1 WO 2018083821A1 JP 2017009730 W JP2017009730 W JP 2017009730W WO 2018083821 A1 WO2018083821 A1 WO 2018083821A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
heat
composite
composite powder
resistant material
Prior art date
Application number
PCT/JP2017/009730
Other languages
English (en)
French (fr)
Inventor
野村 直之
偉偉 周
川崎 亮
吉見 享祐
Original Assignee
国立大学法人東北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東北大学 filed Critical 国立大学法人東北大学
Priority to JP2018548546A priority Critical patent/JP6934674B2/ja
Publication of WO2018083821A1 publication Critical patent/WO2018083821A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/12Metallic powder containing non-metallic particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/16Both compacting and sintering in successive or repeated steps
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/88Metals

Definitions

  • the present invention relates to a composite powder and a manufacturing method thereof, and a heat resistant material and a manufacturing method thereof.
  • a ceramic layer is conventionally formed on the metal surface by plasma spraying, PVD (physical vapor deposition), CVD (chemical vapor deposition), or the like. (For example, see Patent Document 2).
  • the composite powder according to the present invention comprises one or more binding substances that are negatively charged in a predetermined solvent, and a first powder that is positively charged in the predetermined solvent, And a second powder that is positively charged in the predetermined solvent, wherein the first powder and the second powder are bonded via the binding substance.
  • the method for producing a composite powder according to the present invention includes a first stirring step of stirring the binding substance and the first powder in the predetermined solvent, and further in the solution after the first stirring step. And a second stirring step of stirring the second powder.
  • the method for producing a composite powder according to the present invention preferably includes a recovery step of drying the solution after the second stirring step and recovering the powder remaining after the drying.
  • the composite powder according to the present invention is preferably produced by the method for producing a composite powder according to the present invention.
  • a first powder and a second powder that are both positively charged in a predetermined solvent are passed through a binding substance that is negatively charged in the predetermined solvent.
  • the composite material which concerns on this invention can be manufactured, without using binders, such as the conventional polyvinyl alcohol.
  • no heat treatment such as sintering is performed in the manufacturing process, it is possible to prevent the formation of a heterogeneous phase.
  • bonds electrostatically it can disperse
  • the composite powder according to the present invention can be produced without using a binder and does not contain a heterogeneous phase. Further, the first powder and the second powder are not aggregated and are uniformly dispersed. Since the composite powder according to the present invention does not use a binder in the production process, the original properties are not inhibited by the binder.
  • the composite powder according to the present invention can be used, for example, as a raw material powder for an additive manufacturing method.
  • the second powder has a larger particle size than the first powder, and the first powder is dispersed on the surface of the second powder via the binding substance. Preferably it is.
  • the composite powder according to the present invention is such that the first powder is uniformly dispersed on the surface of the second powder.
  • the first powder and the second powder are preferably made of metal powder or ceramic powder, respectively.
  • the first powder and the second powder are metal powders, ceramic powders, metal powders and ceramic powders, or a combination of ceramic powders and metal powders, respectively.
  • the first powder and the second powder are composed of a ceramic powder and a metal powder, respectively, the laser absorption rate can be increased as compared with the case where the metal powder as the second powder alone. For this reason, it can be used as a raw material powder for a hot melt additive manufacturing method using laser light.
  • the first powder is made of powder such as Al 2 O 3 , ZrO 2 , SiO 2 , or TiO 2
  • the second powder is NiAlCrMo, MoTiAl, Mo—Si—B alloy, stainless steel. , Cobalt chromium alloy, or titanium powder.
  • the first powder contains 2 to 18 wt%.
  • the binding substance is preferably made of a carbon-containing material, and particularly preferably a carbon material modified with a functional group so as to be negatively charged in the predetermined solvent.
  • the carbon material may be any material, for example, a carbon nanotube. Further, it preferably contains 0.10 to 0.55 wt% of a binding substance.
  • the carbon material is made of carbon nanotubes, since the ratio of the surface area to the volume is large, the coupling efficiency between the first powder and the second powder can be increased.
  • the composite powder according to the present invention is suitably used as a raw material powder for a hot melt additive manufacturing method using laser light. be able to.
  • the predetermined solvent may be any as long as the binding substance is negatively charged and the first powder and the second powder are positively charged.
  • the predetermined solvent may be any as long as the binding substance is negatively charged and the first powder and the second powder are positively charged.
  • water, ethanol, or methanol for example, water, ethanol, or methanol.
  • the heat-resistant material according to the present invention is characterized in that the first powder is composed of a ceramic powder and the second powder is composed of a composite powder shaped body according to the present invention composed of a heat-resistant metal powder.
  • the first powder is formed of a ceramic powder
  • the second powder is formed of a heat-resistant metal powder
  • the composite powder according to the present invention is molded into a desired shape.
  • the heat-resistant material having a ceramic layer on the surface of the heat-resistant metal is obtained by performing the dissolving step one or more times.
  • the heat resistant material according to the present invention is preferably manufactured by the method for manufacturing a heat resistant material according to the present invention.
  • the method for producing a heat-resistant material according to the present invention when the composite powder of the raw material is dissolved, the ceramic floats on the surface. Therefore, the ceramic layer is formed on the surface by dissolving the molded body of the composite powder. Can be formed. Thereby, the modeling body by which the ceramic layer was formed on the surface of a heat resistant metal can be obtained.
  • the heat-resistant metal and the ceramic form a solid phase from the molten state, the adhesion at the interface between the heat-resistant metal and the ceramic can be improved, and the dense A ceramic layer can be formed. Moreover, it can manufacture rapidly compared with the case where a ceramic layer is formed on the metal surface by PVD or CVD.
  • the heat-resistant material according to the present invention can be manufactured relatively quickly using the composite powder according to the present invention, and has a dense ceramic layer on the surface.
  • the method for producing a heat-resistant material according to the present invention may be dissolved by any method, but in particular, it is preferable to obtain the heat-resistant material by performing a hot melt additive manufacturing method using the composite powder. Moreover, it is preferable that the manufacturing method of the heat-resistant material according to the present invention is melted with a laser beam or an electron beam. In particular, in the case of melting with laser light, since the laser absorptivity of the composite powder of the raw material is higher than that of the metal powder alone as the second powder, the melting can be performed efficiently.
  • the present invention it is possible to provide a composite powder that can be produced without using a binder and does not contain a different phase, and a method for producing the same. Further, it is possible to provide a heat-resistant material that can be produced relatively quickly using the composite powder and has a dense ceramic layer on the surface, and a method for producing the same.
  • A Scanning electron microscope (SEM) photograph of a composite material “MoTiAl-5 wt.% Al 2 O 3 -0.16 wt.% MWCNT” manufactured by the composite powder manufacturing method of the embodiment of the present invention, ( b) SEM photograph in which part of (a) is enlarged, (c) SEM photograph in which part of (b) is further enlarged, and (d) SEM photograph in which another part of (b) is enlarged.
  • SEM Scanning electron microscope
  • A Scanning electron microscope (SEM) photograph of a composite material “MoTiAl-20 wt.% Al 2 O 3 -0.64 wt.% MWCNT” manufactured by the composite powder manufacturing method of the embodiment of the present invention, ( b) SEM photograph with a lower magnification than (a).
  • A A photograph showing the state of the mixed solution after stirring without adding MWCNT in accordance with the method for producing a composite powder of the embodiment of the present invention, (b) by the method for producing the composite powder of the embodiment of the present invention It is a photograph which shows the state of the mixed solution before drying at the time of manufacturing composite powder.
  • the wavelength (Wavelength) and absorption rate (Absorbance) of the laser beam of the composite powder (MoTiAl—Al 2 O 3 ), Al 2 O 3 powder and MoTiAl powder produced by the composite powder production method of the embodiment of the present invention It is a graph which shows the relationship.
  • A Scanning electron microscope (SEM) photograph of a composite material “NiAlCrMo-5 wt.% Al 2 O 3 -0.16 wt.% MWCNT” manufactured by the method for manufacturing a composite powder according to an embodiment of the present invention; b) It is the SEM photograph which expanded a part of (a).
  • SEM Scanning electron microscope
  • TEM transmission electron microscope
  • A Scanning electron microscope (SEM) photograph of the entire heat-resistant material produced by the method for producing a heat-resistant material according to the embodiment of the present invention, (b) SEM photograph in which the inside of the heat-resistant material is enlarged, and (b (B) Mapping of (c) Mo element, (d) Ti element, (e) Al element, (f) O element, (g) C element showing elemental analysis results by transmission electron microscope (TEM) in the range of It is a table
  • SEM Scanning electron microscope
  • multi-walled carbon nanotubes are modified with a carboxyl group to produce a binding substance 11.
  • the binding substance 11 and the first powder 12 are mixed in ethanol as a catalyst and stirred.
  • the carboxyl group of the binding substance 11 is negatively charged and the first powder 12 is positively charged in ethanol, the binding substance 11 and the first substance
  • the powder 12 is electrostatically bonded.
  • the first powder 12 is made of a mixture of Al 2 O 3 and Al.
  • the second powder 13 is further added to the ethanol, mixed and stirred.
  • the binding substance 11 and the second powder 13 are electrostatically coupled.
  • the first powder 12 and the second powder 13 are electrostatically coupled via the binding substance 11.
  • the second powder 13 is made of MoTiAl.
  • the ethanol solution containing the first powder 12, the second powder 13, and the binding substance 11 is dried, and the powder remaining after drying is collected. Thereby, the composite powder of the embodiment of the present invention in which the first powder 12 and the second powder 13 are bonded through the binding substance 11 can be obtained.
  • the composite material of the embodiment of the present invention can be manufactured without using a conventional binder such as polyvinyl alcohol. Further, since no heat treatment such as sintering is performed in the manufacturing process, it is possible to prevent the formation of a heterogeneous phase. Moreover, since it couple
  • the composite powder according to the embodiment of the present invention can be manufactured without using a binder, and does not contain a different phase. Further, the first powder 12 and the second powder 13 are not aggregated and are uniformly dispersed. Since the composite powder according to the embodiment of the present invention does not use a binder in the manufacturing process, the original properties are not inhibited by the binder.
  • the second powder 13 may have a larger particle size than the first powder 11.
  • the first powder 12 is uniformly dispersed on the surface of the second powder 13 via the binding substance 11.
  • the first powder 12 and the second powder 13 are not limited to the substances shown in FIG. It may be made up.
  • the binding substance 11 is not limited to the multi-walled carbon nanotube, and may be made of other carbon materials or materials containing carbon.
  • the solvent is not limited to ethanol, and may be water or methanol.
  • the composite powder was manufactured by the composite powder manufacturing method of the embodiment of the present invention.
  • a carbon nanotube (MWCNT) modified with a carboxyl group was used.
  • Al 2 O 3 powder was used as the first powder 12
  • MoTiAl powder was used as the second powder 13.
  • SEM scanning electron microscope
  • MWCNT, Al 2 O 3 powder, and MoTiAl powder were dissolved in different ethanol solutions, respectively, and stirred with ultrasonic waves for 1 hour.
  • the ethanol solution containing MWCNT and the ethanol solution containing Al 2 O 3 powder were mixed and stirred with ultrasonic waves for 15 minutes. At this time, the volume concentration of MWCNT was adjusted to 5.5 vol.%.
  • the ethanol solution containing the MoTiAl powder was mixed in the mixed solution, and stirred for 30 minutes with ultrasonic waves. After stirring, it was placed in a furnace and dried at 70 ° C. to recover the composite powder.
  • a composite powder containing 5 wt.% Al 2 O 3 by adjusting the mixing amount of an ethanol solution containing MoTiAl powder (hereinafter referred to as “MoTiAl-5 wt.% Al 2 O 3 -0.16 wt.%”) "MWCNT”), containing 10 wt.% (Hereinafter referred to as “MoTiAl-10 wt.% Al 2 O 3 -0.32 wt.% MWCNT”), containing 15 wt.% (Hereinafter referred to as “MoTiAl-15 wt.% Al 2 referred to as O 3 -0.48 wt.% MWCNT "), 20 wt.% including those (hereinafter,” MoTiAl-20 wt.% Al 2 O 3 -0.64 wt.% MWCNT “hereinafter) 4 Manufactured types.
  • FIGS. 3 to 6 Scanning electron microscope (SEM) photographs of the produced composite powders are shown in FIGS. 3 to 6, respectively.
  • SEM Scanning electron microscope
  • the composite powder of MoTiAl-20 wt.% Al 2 O 3 -0.64 wt.% MWCNT is partially agglomerated with Al 2 O 3, and the surface of each particle of MoTiAl In addition, it was confirmed that Al 2 O 3 was not uniformly dispersed (see the portion surrounded by a white line in the figure).
  • FIG. 5 shows the state of the mixed solution when MoTiAl-10 wt.% Al 2 O 3 -0.32 wt.% MWCNT composite powder is produced and the MoTiAl powder is stirred and left for 10 minutes (before drying).
  • FIG. 7 (a) shows the state of the mixed solution when it is left for 3 hours after stirring without adding MWCNT in the same amount except for MWCNT.
  • FIG. 7 (a) when not put MWCNT is, Al 2 O 3 and the MoTiAl are separated, that cloudy entire solution was confirmed.
  • FIG. 7B when MWCNT is added, Al 2 O 3 and MoTiAl are combined through MWCNT to form a composite powder, and the composite powder precipitates at the bottom and the solution is transparent. It was confirmed that
  • a laser beam was applied to the composite powder of MoTiAl-10 wt.% Al 2 O 3 -0.32 wt.% MWCNT, and the absorbance for each wavelength (Wavelength) was measured.
  • the measurement results are shown in FIG. 8 (“MoTiAl—Al 2 O 3 ” in the figure).
  • the absorptance was also measured for Al 2 O 3 powder and MoTiAl powder, and the results are shown in FIG. As shown in FIG. 8, it was confirmed that the ceramic Al 2 O 3 powder has a lower absorptance than the metal MoTiAl powder and reflects almost the laser beam.
  • NiAlCrMo powder was used as the second powder 13, and the other materials were the same as in Example 1, and composite powder was produced in the same manner as in Example 1.
  • composite powder by controlling the mix of ethanol solution containing the NiAlCrMo powder, those containing Al 2 O 3 5 wt.% ( Hereinafter, "NiAlCrMo-5 wt.% Al 2 O 3 -0.16 wt.% referred to as MWCNT "), 8 wt.% including those (hereinafter, were prepared two kinds of" NiAlCrMo-8 wt.% Al 2 O 3 -0.26 wt.% MWCNT "hereinafter).
  • FIGS. 9 and 10 Scanning electron microscope (SEM) photographs of the produced composite powders are shown in FIGS. 9 and 10, respectively.
  • SEM Scanning electron microscope
  • a composite powder was produced in the same manner as in Example 1 using MoSiBTiC powder of Mo—Si—B alloy as the second powder 13 and using the same other materials as in Example 1.
  • composite powder by controlling the mix of ethanol solution containing the MoSiBTiC powder, those containing Al 2 O 3 5 wt.% ( Hereinafter, "MoSiBTiC-5 wt.% Al 2 O 3 -0.16 wt.% "MWCNT”), containing 10 wt.% (Hereinafter referred to as “MoSiBTiC-10 wt.% Al 2 O 3 -0.32 wt.% MWCNT”), containing 15 wt.% (Hereinafter referred to as "MoSiBTiC-15 wt.% Al 2 referred to as O 3 -0.48 wt.% MWCNT "), 20 wt.% including those (hereinafter,” MoSiBTiC-20 wt.% Al 2 O 3 -0.64 wt
  • FIGS. 11 to 13 Scanning electron microscope (SEM) photographs of the produced composite powders are shown in FIGS. 11 to 13, respectively.
  • SEM Scanning electron microscope
  • Heat-resistant material of the embodiment of the present invention and heat-resistant material manufacturing method] 15 to 18 show a heat resistant material and a method of manufacturing the heat resistant material according to the embodiment of the present invention.
  • the manufacturing method of the heat-resistant material according to the embodiment of the present invention manufactures the heat-resistant material according to the embodiment of the present invention by a hot melt additive manufacturing method using laser light.
  • the first powder 12 is made of ceramic powder
  • the second powder 13 is made of metal powder.
  • the composite powder according to the embodiment of the present invention absorbs laser more than the metal powder alone. The rate is high. Therefore, in order to efficiently dissolve, as a raw material powder for the hot melt additive manufacturing method, the first powder 12 is composed of a ceramic powder, and the second powder 13 is composed of a heat resistant metal powder. Use.
  • a raw material composite powder is used to form a molded body having a desired shape and melted using laser light. Accordingly, when the ceramic is dissolved, the ceramic floats on the surface of the molded body and hardens as it is, so that a ceramic layer can be formed on the surface of the molded body. Thereby, the modeling body by which the ceramic layer was formed on the surface of a heat resistant metal can be obtained.
  • the heat-resistant material manufacturing method of the embodiment of the present invention since the heat-resistant metal and the ceramic form a solid phase from the molten state, the adhesion at the interface between the heat-resistant metal and the ceramic can be improved. At the same time, a dense ceramic layer can be formed. Moreover, it can manufacture rapidly in a short time compared with the case where a ceramic layer is formed on the metal surface by PVD or CVD.
  • the heat-resistant material was manufactured by the method for manufacturing a heat-resistant material according to the embodiment of the present invention.
  • the first powder 12 is made of Al 2 O 3 powder
  • the second powder 13 is made of MoTiAl powder.
  • the MoTiAl-10 wt.% Al 2 O 3 -0.32 wt.% MWCNT shown in FIG. A composite powder was used.
  • Manufacture was performed on a Ti substrate preheated at 80 ° C. in an argon (O 2 ⁇ 0.5%) atmosphere by a hot melt additive manufacturing method.
  • a YAG fiber laser was used, the laser output was 20.6 W, the laser irradiation diameter was 100 ⁇ m, the laminate thickness was 25 ⁇ m, and the laser scanning speed was 25 mm / s.
  • FIG. 15 shows a scanning electron microscope (SEM) photograph of the heat-resistant material manufactured by the hot melt additive manufacturing method.
  • FIG. 16 shows the result of elemental analysis of the surface of the manufactured heat-resistant material (surface in the direction perpendicular to the laminated surface) using a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • FIG. 17 and FIG. 18 show the results of elemental analysis by TEM for the inside of the cross section of the manufactured heat-resistant material and the vicinity of the upper surface layer (the vicinity of the laminated uppermost layer), respectively.
  • FIG. 17 it was confirmed that a large amount of Mo and Ti were present inside the heat-resistant material (“modeled body” in the figure), and that O was small. From this, it can be seen that the inside of the heat-resistant material is mostly MoTiAl, and Al 2 O 3 is hardly present.
  • the upper surface layer of the heat-resistant material contains a large amount of Al and O and has a small amount of Mo. From this, it can be seen that the upper surface layer is a ceramic layer made of Al 2 O 3 . Further, it was confirmed that a large amount of Mo and Ti exist in the inner portion of the upper surface layer of the heat resistant material, and that O is small. From this, it can be seen that the inner portion of the upper surface layer is MoTiAl. From these results, it can be seen that the heat-resistant material is made of MoTiAl and the surface thereof is covered with a ceramic layer made of Al 2 O 3 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Powder Metallurgy (AREA)
  • Producing Shaped Articles From Materials (AREA)

Abstract

【課題】バインダーを使用することなく製造可能で、異相を含まない複合粉末およびその製造方法を提供する。また、その複合粉末を利用して比較的早く製造可能で、表面に緻密なセラミックス層を有する耐熱材料およびその製造方法を提供する。 【解決手段】複合粉末は、所定の溶媒中で負に帯電する1または複数の結合用物質11と、その溶媒中で正に帯電する第1の粉末12と、その溶媒中で正に帯電する第2の粉末13とを有し、結合用物質11を介して第1の粉末12と第2の粉末13とが結合している。第1の粉末12はセラミックス粉末から成り、第2の粉末13は金属粉末から成り、結合用物質11は、官能基で修飾された炭素材料から成ることが好ましい。耐熱材料は、その複合粉末を原料とした、レーザ光を用いた熱溶解積層造形法により製造された造形体から成る。

Description

複合粉末およびその製造方法、ならびに、耐熱材料およびその製造方法
 本発明は、複合粉末およびその製造方法、ならびに、耐熱材料およびその製造方法に関する。
 複合材料を製造する際、例えば金属粉末とセラミックス粉末など、所定の溶媒中で正に帯電する材料同士は、その溶媒中で互いに反発して離れた状態で分散するため、そのままでは複合化することができない。そこで、このような材料同士を複合化する方法として、従来、ポリビニルアルコールなどのバインダーを使用して材料同士を接着した後、焼結などの熱処理を行うことにより複合粉末を得る方法が用いられている(例えば、特許文献1参照)。
 一方、耐熱金属などの金属材料を酸化や腐食から保護するために、従来、プラズマ溶射やPVD(物理蒸着)、CVD(化学蒸着)などの方法により、金属表面にセラミックス層を形成することが行われている(例えば、特許文献2参照)。
特開平8-104969号公報 特開2007-27329号公報
 特許文献1に記載のようなバインダーを使用する複合粉末の製造方法では、バインダーにより複合粉末の性質が阻害されたり、熱処理時のバインダーの蒸発により炉が汚染されたりするという課題があった。また、焼結などの熱処理により、異相が形成されてしまうという課題もあった。
 一方、金属表面にセラミックス層を形成する方法のうち、プラズマ溶射では、セラミックス層の成長速度は速いが、得られるセラミックス層は多孔質となり、密着性が低いという課題があった。また、PVD(物理蒸着)やCVD(化学蒸着)では、緻密なセラミックス層が得られるが、セラミックス層の成長速度が遅いという課題があった。
 本発明は、このような課題に着目してなされたもので、バインダーを使用することなく製造可能で、異相を含まない複合粉末およびその製造方法を提供することを目的とする。また、その複合粉末を利用して比較的早く製造可能で、表面に緻密なセラミックス層を有する耐熱材料およびその製造方法を提供することも目的とする。
 上記目的を達成するために、本発明に係る複合粉末は、所定の溶媒中で負に帯電する1または複数の結合用物質と、前記所定の溶媒中で正に帯電する第1の粉末と、前記所定の溶媒中で正に帯電する第2の粉末とを有し、前記結合用物質を介して前記第1の粉末と前記第2の粉末とが結合していることを特徴とする。
 本発明に係る複合粉末の製造方法は、前記結合用物質と前記第1の粉末とを前記所定の溶媒に入れて撹拌する第1撹拌工程と、前記第1撹拌工程後の溶液中にさらに前記第2の粉末を入れて撹拌する第2撹拌工程とを有することを特徴とする。本発明に係る複合粉末の製造方法は、前記第2撹拌工程後の溶液を乾燥させ、乾燥後に残る粉末を回収する回収工程を有することが好ましい。
 本発明に係る複合粉末は、本発明に係る複合粉末の製造方法により好適に製造される。本発明に係る複合粉末の製造方法によれば、所定の溶媒中で共に正に帯電した第1の粉末と第2の粉末とを、その所定の溶媒中で負に帯電した結合用物質を介して静電的に結合させることができる。このため、従来のポリビニルアルコールなどのバインダーを使用することなく、本発明に係る複合材料を製造することができる。また、製造過程で、焼結などの熱処理を行わないため、異相が形成されるのを防止することができる。また、静電的に結合させるため、第1の粉末および第2の粉末をそれぞれ凝集させず、均一に分散させることができる。
 このように、本発明に係る複合粉末は、バインダーを使用することなく製造可能で、異相を含んでいない。また、第1の粉末および第2の粉末がそれぞれ凝集せず、均一に分散している。本発明に係る複合粉末は、製造過程でバインダーを使用しないため、バインダーにより本来の性質が阻害されることがない。本発明に係る複合粉末は、例えば、積層造形法用の原料粉末として使用することができる。
 本発明に係る複合粉末で、前記第2の粉末は、前記第1の粉末より粒径が大きく、前記結合用物質を介して前記第2の粉末の表面に前記第1の粉末が分散していることが好ましい。この場合、本発明に係る複合粉末は、第2の粉末の表面に、第1の粉末が均一に分散したものとなっている。
 本発明に係る複合粉末で、前記第1の粉末および前記第2の粉末は、それぞれ金属粉末またはセラミックス粉末から成ることが好ましい。具体的には、第1の粉末および第2の粉末はそれぞれ、金属粉末同士、セラミックス粉末同士、金属粉末とセラミックス粉末、または、セラミックス粉末と金属粉末の組合せとなる。
 本発明に係る複合粉末は、第1の粉末および第2の粉末がそれぞれセラミックス粉末および金属粉末から成る場合、第2の粉末である金属粉末単独のときより、レーザ吸収率を高めることができる。このため、レーザ光を使用した熱溶解積層造形法用の原料粉末として使用することができる。この場合、例えば、第1の粉末は、Al、ZrO、SiO、またはTiO等の粉末から成り、第2の粉末は、NiAlCrMo、MoTiAl、Mo-Si-B合金、ステンレス鋼、コバルトクロム合金、またはチタン等の粉末から成っていてもよい。また、この場合、第1の粉末を2乃至18wt%含んでいることが好ましい。
 本発明に係る複合粉末で、前記結合用物質は炭素を含む材料から成ることが好ましく、特に、前記所定の溶媒中で負に帯電するよう、官能基で修飾された炭素材料から成ることが好ましい。炭素材料は、いかなるものであってもよいが、例えばカーボンナノチューブである。また、結合用物質を0.10乃至0.55wt%含んでいることが好ましい。炭素素材がカーボンナノチューブから成る場合には、体積に対して表面積の割合が大きいため、第1の粉末と第2の粉末との結合効率を高めることができる。また、カーボンナノチューブがポリマー材料と比べて高温で安定であり、レーザ吸収率も高いため、本発明に係る複合粉末を、レーザ光を使用した熱溶解積層造形法用の原料粉末として好適に使用することができる。
 本発明に係る複合粉末で、前記所定の溶媒は、結合用物質が負に帯電し、第1の粉末および第2の粉末が正に帯電するものであれば、いかなるものであってもよく、例えば、水、エタノール、またはメタノール等である。
 本発明に係る耐熱材料は、前記第1の粉末がセラミックス粉末から成り、前記第2の粉末が耐熱性金属の粉末から成る本発明に係る複合粉末の造形体から成ることを特徴とする。
 本発明に係る耐熱材料の製造方法は、前記第1の粉末がセラミックス粉末から成り、前記第2の粉末が耐熱性金属の粉末から成る本発明に係る複合粉末を、所望の形状に成形した後、溶解させる工程を、1乃至複数回行うことにより、耐熱金属の表面にセラミックス層を有する耐熱材料を得ることを特徴とする。
 本発明に係る耐熱材料は、本発明に係る耐熱材料の製造方法により好適に製造される。本発明に係る耐熱材料の製造方法によれば、原料の複合粉末を溶解させたとき、その表面にセラミックスが浮遊することから、複合粉末による成形体を溶解させることにより、その表面にセラミックス層を形成することができる。これにより、耐熱性金属の表面にセラミックス層が形成された造形体を得ることができる。
 本発明に係る耐熱材料の製造方法によれば、耐熱性金属とセラミックスとが溶融状態から固相を形成するため、耐熱性金属とセラミックスとの界面での密着性を高めることができるとともに、緻密なセラミックス層を形成することができる。また、PVDやCVDで金属の表面にセラミックス層を形成する場合と比べ、速く製造することができる。このように、本発明に係る耐熱材料は、本発明に係る複合粉末を利用して比較的早く製造可能で、表面に緻密なセラミックス層を有している。
 本発明に係る耐熱材料の製造方法は、いかなる方法で溶解を行ってもよいが、特に、前記複合粉末を使用して熱溶解積層造形法を行うことにより前記耐熱材料を得ることが好ましい。また、本発明に係る耐熱材料の製造方法は、レーザ光または電子ビームで溶解させることが好ましい。特にレーザ光で溶解させる場合には、原料の複合粉末のレーザ吸収率が、第2の粉末である金属粉末単独のときより高いため、効率良く溶解を行うことができる。
 本発明によれば、バインダーを使用することなく製造可能で、異相を含まない複合粉末およびその製造方法を提供することができる。また、その複合粉末を利用して比較的早く製造可能で、表面に緻密なセラミックス層を有する耐熱材料およびその製造方法を提供することもできる。
本発明の実施の形態の複合粉末の製造方法の(a)結合用物質、(b)結合用物質と第1の粉末とが結合した状態、(c)第1の粉末と第2の粉末とが結合用物質を介して結合した状態を示す模式図である。 本発明の実施の形態の複合粉末の製造方法で使用したMoTiAl粉末の(a)走査型電子顕微鏡(SEM)写真、(b)粒度分布である。 本発明の実施の形態の複合粉末の製造方法により製造された複合材料「MoTiAl-5 wt.%Al2O3-0.16 wt.%MWCNT」の(a)走査型電子顕微鏡(SEM)写真、(b) (a)の一部を拡大したSEM写真、(c) (b)の一部をさらに拡大したSEM写真、(d) (b)の他の部分を拡大したSEM写真である。 本発明の実施の形態の複合粉末の製造方法により製造された複合材料「MoTiAl-10 wt.%Al2O3-0.32 wt.%MWCNT」の(a)走査型電子顕微鏡(SEM)写真、(b) (a)の一部を拡大したSEM写真である。 本発明の実施の形態の複合粉末の製造方法により製造された複合材料「MoTiAl-15 wt.%Al2O3-0.48 wt.%MWCNT」の(a)走査型電子顕微鏡(SEM)写真、(b) (a)の一部を拡大したSEM写真である。 本発明の実施の形態の複合粉末の製造方法により製造された複合材料「MoTiAl-20 wt.%Al2O3-0.64 wt.%MWCNT」の(a)走査型電子顕微鏡(SEM)写真、(b) (a)より倍率が低いSEM写真である。 (a)本発明の実施の形態の複合粉末の製造方法に従って、MWCNTを入れずに撹拌した後の混合溶液の状態を示す写真、(b)本発明の実施の形態の複合粉末の製造方法により複合粉末を製造する際の、乾燥前の混合溶液の状態を示す写真である。 本発明の実施の形態の複合粉末の製造方法により製造された複合粉末(MoTiAl-Al2O3)、Al粉末およびMoTiAl粉末の、レーザ光の波長(Wavelength)と吸収率(Absorbance)との関係を示すグラフである。 本発明の実施の形態の複合粉末の製造方法により製造された複合材料「NiAlCrMo-5 wt.%Al2O3-0.16 wt.%MWCNT」の(a)走査型電子顕微鏡(SEM)写真、(b) (a)の一部を拡大したSEM写真である。 本発明の実施の形態の複合粉末の製造方法により製造された複合材料「NiAlCrMo-8 wt.%Al2O3-0.26 wt.%MWCNT」の(a)走査型電子顕微鏡(SEM)写真、(b) (a)の一部を拡大したSEM写真である。 本発明の実施の形態の複合粉末の製造方法により製造された複合材料「MoSiBTiC-5 wt.%Al2O3-0.16 wt.%MWCNT」の(a)走査型電子顕微鏡(SEM)写真、(b) (a)の一部を拡大したSEM写真である。 本発明の実施の形態の複合粉末の製造方法により製造された複合材料「MoSiBTiC-10 wt.%Al2O3-0.32 wt.%MWCNT」の(a)走査型電子顕微鏡(SEM)写真、(b) (a)の一部を拡大したSEM写真、(c) (b)の一部をさらに拡大したSEM写真である。 本発明の実施の形態の複合粉末の製造方法により製造された複合材料である(a)「MoSiBTiC-15 wt.%Al2O3-0.48 wt.%MWCNT」、(b)「MoSiBTiC-20 wt.%Al2O3-0.64 wt.%MWCNT」の走査型電子顕微鏡(SEM)写真である。 本発明の実施の形態の複合粉末の製造方法により、MoSiBTiC粉末を用いて製造された4種類の複合粉末、カーボンナノチューブ(MWCNT)およびMoSiBTiC粉末の、レーザ光の波長(Wavelength)と吸収率(Absorbance)との関係を示すグラフである。 本発明の実施の形態の耐熱材料の製造方法により製造された耐熱材料の(a)走査型電子顕微鏡(SEM)写真、(b) (a)の一部を拡大したSEM写真である。 本発明の実施の形態の耐熱材料の製造方法により製造された耐熱材料の(a)走査型電子顕微鏡(SEM)写真、ならびに、(a)の範囲での透過型電子顕微鏡(TEM)による元素分析結果を示す、(b)Al元素、(c)O元素、(d)Ti元素、(e)C元素、(f)Mo元素のマッピング像、ならびに、(g) (a)の位置での各元素の含有率を示すテーブルである。 本発明の実施の形態の耐熱材料の製造方法により製造された耐熱材料の(a)全体の走査型電子顕微鏡(SEM)写真、(b)耐熱材料の内部を拡大したSEM写真、ならびに、(b)の範囲での透過型電子顕微鏡(TEM)による元素分析結果を示す、(c)Mo元素、(d)Ti元素、(e)Al元素、(f)O元素、(g)C元素のマッピング像、および、(h) (b)の位置での各元素の含有率を示すテーブルである。 本発明の実施の形態の耐熱材料の製造方法により製造された耐熱材料の(a)全体の走査型電子顕微鏡(SEM)写真、(b)耐熱材料の上部表層付近を拡大したSEM写真、(c) (b)と同じ範囲内での透過型電子顕微鏡(TEM)による元素分析位置(1~6)を示すSEM写真、(d) (c)の1~3の位置での元素分析による各元素の含有率を示すテーブル、(e) (c)の4~6の位置での元素分析による各元素の含有率を示すテーブルである。
[本発明の実施の形態の複合粉末および複合粉末の製造方法]
 以下、実施例等に基づいて、本発明の実施の形態について説明する。
 図1乃至図14は、本発明の実施の形態の複合粉末および複合粉末の製造方法を示している。
 本発明の実施の形態の複合粉末の製造方法では、まず、図1(a)に示すように、多層カーボンナノチューブ(MWCNT)をカルボキシル基で修飾し、結合用物質11を製造する。次に、その結合用物質11と第1の粉末12とを、触媒のエタノール中に入れて混合し、撹拌する。このとき、図1(b)に示すように、エタノール中で、結合用物質11のカルボキシル基が負に帯電し、第1の粉末12が正に帯電するため、結合用物質11と第1の粉末12とが静電的に結合する。図1(b)に示す一例では、第1の粉末12は、AlとAlとの混合物から成っている。
 所定の時間撹拌した後、そのエタノール中に、さらに第2の粉末13を入れて混合し、撹拌する。このとき、図1(c)に示すように、エタノール中で、第2の粉末13が正に帯電するため、結合用物質11と第2の粉末13とが静電的に結合する。これにより、第1の粉末12と第2の粉末13とが、結合用物質11を介して静電的に結合される。図1(c)に示す一例では、第2の粉末13は、MoTiAlから成っている。
 所定の時間撹拌した後、第1の粉末12、第2の粉末13および結合用物質11が入ったエタノール溶液を乾燥させ、乾燥後に残る粉末を回収する。これにより、結合用物質11を介して第1の粉末12と第2の粉末13とが結合した、本発明の実施の形態の複合粉末を得ることができる。
 本発明の実施の形態の複合粉末の製造方法によれば、従来のポリビニルアルコールなどのバインダーを使用することなく、本発明の実施の形態の複合材料を製造することができる。また、製造過程で、焼結などの熱処理を行わないため、異相が形成されるのを防止することができる。また、静電的に結合させるため、第1の粉末12および第2の粉末13をそれぞれ凝集させず、均一に分散させることができる。
 このように、本発明の実施の形態の複合粉末は、バインダーを使用することなく製造可能で、異相を含んでいない。また、第1の粉末12および第2の粉末13がそれぞれ凝集せず、均一に分散している。本発明の実施の形態の複合粉末は、製造過程でバインダーを使用しないため、バインダーにより本来の性質が阻害されることがない。
 なお、本発明の実施の形態の複合粉末およびその製造方法で、第2の粉末13は、第1の粉末11より粒径が大きくてもよい。この場合、図1に示すように、結合用物質11を介して第2の粉末13の表面に第1の粉末12が均一に分散したものとなる。
 また、本発明の実施の形態の複合粉末およびその製造方法で、第1の粉末12および第2の粉末13はそれぞれ、図1に示した物質に限らず、それ以外の金属粉末またはセラミックス粉末から成っていてもよい。また、結合用物質11は、多層カーボンナノチューブに限らず、それ以外の炭素材料や炭素を含む材料から成っていてもよい。また、溶媒は、エタノールに限らず、水やメタノール等であってもよい。
 本発明の実施の形態の複合粉末の製造方法により、複合粉末の製造を行った。結合用物質11として、カーボンナノチューブ(MWCNT)をカルボキシル基で修飾したものを用いた。また、第1の粉末12としてAl粉末を、第2の粉末13としてMoTiAl粉末を用いた。使用したMoTiAl粉末の走査型電子顕微鏡(SEM)写真および粒度分布を、図2に示す。
 まず、MWCNT、Al粉末、MoTiAl粉末を、それぞれ別のエタノール溶液に溶かし、超音波で1時間撹拌した。次に、MWCNTを入れたエタノール溶液と、Al粉末を入れたエタノール溶液とを混合し、超音波で15分間撹拌した。また、このとき、MWCNTの体積濃度が、5.5 vol.%となるよう調整した。次に、その混合溶液中に、MoTiAl粉末を入れたエタノール溶液を混合し、超音波で30分間撹拌した。撹拌後、炉に入れて70℃で乾燥させ、複合粉末を回収した。
 複合粉末として、MoTiAl粉末を入れたエタノール溶液の混合量を調整することにより、Alを 5 wt.%含むもの(以下、「MoTiAl-5 wt.%Al2O3-0.16 wt.%MWCNT」と呼ぶ)、10 wt.%含むもの(以下、「MoTiAl-10 wt.%Al2O3-0.32 wt.%MWCNT」と呼ぶ)、15 wt.%含むもの(以下、「MoTiAl-15 wt.%Al2O3-0.48 wt.%MWCNT」と呼ぶ)、20 wt.%含むもの(以下、「MoTiAl-20 wt.%Al2O3-0.64 wt.%MWCNT」と呼ぶ)の4種類を製造した。
 製造された各複合粉末の走査型電子顕微鏡(SEM)写真を、それぞれ図3~図6に示す。図3に示すように、MoTiAl-5 wt.%Al2O3-0.16 wt.%MWCNTの複合粉末は、MoTiAlの各粒子の表面に、Alがほぼ均一に分散しているのが確認された。また、図3(c)および(d)に示すように、MWCNTがAlとMoTiAlとに結合している状態も確認された(図中の白線で囲んだ部分参照)。
 図4に示すように、MoTiAl-10 wt.%Al2O3-0.32 wt.%MWCNTの複合粉末も、MoTiAlの各粒子の表面に、Alがほぼ均一に分散しているのが確認された。また、図5に示すように、MoTiAl-15 wt.%Al2O3-0.48 wt.%MWCNTの複合粉末も、MoTiAlの各粒子の表面に、Alがほぼ均一に分散しているのが確認された。しかし、図6に示すように、MoTiAl-20 wt.%Al2O3-0.64 wt.%MWCNTの複合粉末は、一部でAlが塊になっており、MoTiAlの各粒子の表面に、Alが均一に分散していない状態が確認された(図中の白線で囲んだ部分参照)。
 MoTiAl-10 wt.%Al2O3-0.32 wt.%MWCNTの複合粉末を製造する際の、MoTiAl粉末を入れて撹拌後、10分間放置したとき(乾燥前)の混合溶液の状態を、図7(b)に示す。また、比較のため、MWCNT以外は同じ配合量で、MWCNTを入れずに撹拌後、3時間放置したときの混合溶液の状態を、図7(a)に示す。図7(a)に示すように、MWCNTを入れないときには、AlとMoTiAlとが分離しており、溶液全体が濁っているのが確認された。これに対し、図7(b)に示すように、MWCNTを入れると、MWCNTを介してAlとMoTiAlとが結合して複合粉末となり、その複合粉末が底に沈殿し、溶液が透明になっているのが確認された。
 MoTiAl-10 wt.%Al2O3-0.32 wt.%MWCNTの複合粉末にレーザ光を当てて、各波長(Wavelength)に対する吸収率(Absorbance)の測定を行った。その測定結果を、図8に示す(図中の「MoTiAl-Al2O3」)。また、比較のため、Al粉末およびMoTiAl粉末についても吸収率の測定を行い、その結果を図8に示す。図8に示すように、セラミックスのAl粉末は、金属のMoTiAl粉末よりも吸収率が低く、レーザ光をほとんど反射することが確認された。このことから、MoTiAl-10 wt.%Al2O3-0.32 wt.%MWCNTの複合粉末は、セラミックスのAlによりレーザ光の反射が多くなる(吸収率が低くなる)と考えられたが、予想に反し、金属のMoTiAl粉末よりも高い吸収率を有することが確認された。
 第2の粉末13としてNiAlCrMo粉末を用い、他の材料は実施例1と同じものを用いて、実施例1と同じ方法で複合粉末の製造を行った。複合粉末として、NiAlCrMo粉末を入れたエタノール溶液の混合量を調整することにより、Alを 5 wt.%含むもの(以下、「NiAlCrMo-5 wt.%Al2O3-0.16 wt.%MWCNT」と呼ぶ)、8 wt.%含むもの(以下、「NiAlCrMo-8 wt.%Al2O3-0.26 wt.%MWCNT」と呼ぶ)の2種類を製造した。
 製造された各複合粉末の走査型電子顕微鏡(SEM)写真を、それぞれ図9および図10に示す。図9に示すように、NiAlCrMo-5 wt.%Al2O3-0.16 wt.%MWCNTの複合粉末は、NiAlCrMoの各粒子の表面に、Alがほぼ均一に分散しているのが確認された。また、図10に示すように、NiAlCrMo-8 wt.%Al2O3-0.26 wt.%MWCNTの複合粉末も、NiAlCrMoの各粒子の表面に、Alがほぼ均一に分散しているのが確認された。
 第2の粉末13としてMo-Si-B合金のMoSiBTiC粉末を用い、他の材料は実施例1と同じものを用いて、実施例1と同じ方法で複合粉末の製造を行った。複合粉末として、MoSiBTiC粉末を入れたエタノール溶液の混合量を調整することにより、Alを 5 wt.%含むもの(以下、「MoSiBTiC-5 wt.%Al2O3-0.16 wt.%MWCNT」と呼ぶ)、10 wt.%含むもの(以下、「MoSiBTiC-10 wt.%Al2O3-0.32 wt.%MWCNT」と呼ぶ)、15 wt.%含むもの(以下、「MoSiBTiC-15 wt.%Al2O3-0.48 wt.%MWCNT」と呼ぶ)、20 wt.%含むもの(以下、「MoSiBTiC-20 wt.%Al2O3-0.64 wt.%MWCNT」と呼ぶ)の4種類を製造した。
 製造された各複合粉末の走査型電子顕微鏡(SEM)写真を、それぞれ図11~図13に示す。図11に示すように、MoSiBTiC-5 wt.%Al2O3-0.16 wt.%MWCNTの複合粉末は、MoSiBTiCの各粒子の表面に、Alがほぼ均一に分散しているのが確認された。また、図11(b)に示すように、MWCNT(図中の直線状のもの)がAlとMoSiBTiCとに結合している状態も確認された。
 また、図12に示すように、MoSiBTiC-10 wt.%Al2O3-0.32 wt.%MWCNTの複合粉末も、MoSiBTiCの各粒子の表面に、Alがほぼ均一に分散しているのが確認された。また、図12(b)および(c)に示すように、MWCNT(図中の矢印で示したもの)がAlとMoSiBTiCとに結合している状態も確認された。
 また、図13(a)に示すように、MoSiBTiC-15 wt.%Al2O3-0.48 wt.%MWCNTの複合粉末も、MoSiBTiCの各粒子の表面に、Alがほぼ均一に分散しているのが確認された。しかし、図13(d)に示すように、MoSiBTiC-20 wt.%Al2O3-0.64 wt.%MWCNTの複合粉末は、一部でAlが凝集して塊になっており(図中の白い部分)、MoSiBTiCの各粒子の表面に、Alが均一に分散していない状態が確認された。
 4種類の複合粉末にレーザ光を当てて、各波長(Wavelength)に対する吸収率(Absorbance)の測定を行った。その測定結果を、図14に示す。また、比較のため、カーボンナノチューブ(MWCNT)およびMoSiBTiC粉末についても吸収率の測定を行い、その結果を図14に示す。なお、Al粉末の吸収率は図8に示されており、例えば、波長1070 nmのレーザ光の吸収率は13%である。図14に示すように、各複合粉末は、セラミックスのAlによりレーザ光の反射が多くなる(吸収率が低くなる)と考えられたが、予想に反し、金属のMoSiBTiC粉末よりも高い吸収率を有することが確認された。
[本発明の実施の形態の耐熱材料および耐熱材料の製造方法]
 図15乃至図18は、本発明の実施の形態の耐熱材料および耐熱材料の製造方法を示している。
 本発明の実施の形態の耐熱材料の製造方法は、レーザ光を用いた熱溶解積層造形法により、本発明の実施の形態の耐熱材料を製造する。
 図8および図14に示すように、第1の粉末12がセラミックス粉末から成り、第2の粉末13が金属粉末から成る本発明の実施の形態の複合粉末が、金属粉末単独のときよりレーザ吸収率が高くなっている。このことから、効率良く溶解を行うために、熱溶解積層造形法用の原料粉末として、第1の粉末12がセラミックス粉末から成り、第2の粉末13が耐熱性金属の粉末から成る複合粉末を用いる。
 本発明の実施の形態の耐熱材料の製造方法では、原料の複合粉末で所望の形状の成形体を形成しつつ、レーザ光を使用して溶解する。これにより、溶解時に、その成形体の表面にセラミックスが浮遊し、そのまま固まるため、成形体の表面にセラミックス層を形成することができる。これにより、耐熱性金属の表面にセラミックス層が形成された造形体を得ることができる。
 本発明の実施の形態の耐熱材料の製造方法によれば、耐熱性金属とセラミックスとが溶融状態から固相を形成するため、耐熱性金属とセラミックスとの界面での密着性を高めることができるとともに、緻密なセラミックス層を形成することができる。また、PVDやCVDで金属の表面にセラミックス層を形成する場合と比べ、短い時間で、速く製造することができる。
 本発明の実施の形態の耐熱材料の製造方法により、耐熱材料の製造を行った。原料粉末として、第1の粉末12がAl粉末から成り、第2の粉末13がMoTiAl粉末から成る、図4に示す MoTiAl-10 wt.%Al2O3-0.32 wt.%MWCNT の複合粉末を用いた。製造は、熱溶解積層造形法により、アルゴン(O2<0.5%)雰囲気中で、80℃で予熱されたTi 基盤上で行った。熱溶解積層造形法では、YAGファイバレーザを用い、レーザ出力を 20.6 W、レーザ照射径を 100 μm、積層厚さを 25 μm、レーザの走査速度を 25 mm/s とした。
 熱溶解積層造形法により製造した耐熱材料の走査型電子顕微鏡(SEM)写真を、図15に示す。また、製造された耐熱材料の表面(積層面に対して垂直方向の表面)について、透過型電子顕微鏡(TEM)により元素分析した結果を、図16に示す。図15に示すように、耐熱材料の表面に、高温割れによるクラックは認められるが、空洞は認められず、緻密であることが確認された。また、図16に示すように、耐熱材料の表面には、AlとOが多く存在しており、Moが少ないことが確認された。これらの結果から、製造された耐熱材料は、表面に、Alから成る緻密なセラミックス層を有していることがわかる。
 製造された耐熱材料の断面の内部および上部表層付近(積層した最上位層付近)について、TEMにより元素分析した結果を、それぞれ図17および図18に示す。図17に示すように、耐熱材料(図中では「造形体」)の内部には、MoとTiが多く存在しており、Oが少ないことが確認された。このことから、耐熱材料の内部は、ほとんどがMoTiAlであり、Alはほとんど存在していないことがわかる。
 また、図18に示すように、耐熱材料の上部表層には、AlとOが多く存在しており、Moが少ないことが確認された。このことから、この上部表層は、Alから成るセラミックス層であることがわかる。また、耐熱材料の上部表層の内側の部分には、MoとTiが多く存在しており、Oが少ないことが確認された。このことから、この上部表層の内側部分は、MoTiAlであることがわかる。これらの結果から、耐熱材料は、内部がMoTiAlから成り、その表面が、Alから成るセラミックス層で覆われていることがわかる。
  11 結合用物質
  12 第1の粉末
  13 第2の粉末
 

Claims (17)

  1.  所定の溶媒中で負に帯電する1または複数の結合用物質と、
     前記所定の溶媒中で正に帯電する第1の粉末と、
     前記所定の溶媒中で正に帯電する第2の粉末とを有し、
     前記結合用物質を介して前記第1の粉末と前記第2の粉末とが結合していることを
     特徴とする複合粉末。
  2.  前記第2の粉末は、前記第1の粉末より粒径が大きく、
     前記結合用物質を介して前記第2の粉末の表面に前記第1の粉末が分散していることを
     特徴とする請求項1記載の複合粉末。
  3.  前記第1の粉末および前記第2の粉末は、それぞれ金属粉末またはセラミックス粉末から成ることを特徴とする請求項1または2記載の複合粉末。
  4.  前記第1の粉末はセラミックス粉末から成り、
     前記第2の粉末は金属粉末から成ることを
     特徴とする請求項2記載の複合粉末。
  5.  前記第1の粉末は、Al、ZrO、SiO、またはTiOの粉末から成り、
     前記第2の粉末は、NiAlCrMo、MoTiAl、Mo-Si-B合金、ステンレス鋼、コバルトクロム合金、またはチタンの粉末から成ることを
     特徴とする請求項2記載の複合粉末。
  6.  前記第1の粉末を2乃至18wt%含んでいることを特徴とする請求項4または5記載の複合粉末。
  7.  前記結合用物質は炭素を含む材料から成ることを特徴とする請求項1乃至6のいずれか1項に記載の複合粉末。
  8.  前記結合用物質は、前記所定の溶媒中で負に帯電するよう、官能基で修飾された炭素材料から成ることを特徴とする請求項1乃至6のいずれか1項に記載の複合粉末。
  9.  前記炭素材料はカーボンナノチューブであることを特徴とする請求項8記載の複合粉末。
  10.  前記結合用物質を0.10乃至0.55wt%含んでいることを特徴とする請求項8または9記載の複合粉末。
  11.  前記所定の溶媒は水、エタノール、またはメタノールであることを特徴とする請求項1乃至10のいずれか1項に記載の複合粉末。
  12.  請求項1乃至11のいずれか1項に記載の複合粉末の製造方法であって、
     前記結合用物質と前記第1の粉末とを前記所定の溶媒に入れて撹拌する第1撹拌工程と、
     前記第1撹拌工程後の溶液中にさらに前記第2の粉末を入れて撹拌する第2撹拌工程とを
     有することを特徴とする複合粉末の製造方法。
  13.  前記第2撹拌工程後の溶液を乾燥させ、乾燥後に残る粉末を回収する回収工程を有することを特徴とする請求項12記載の複合粉末の製造方法。
  14. 前記第1の粉末がセラミックス粉末から成り、前記第2の粉末が耐熱性金属の粉末から成る請求項1乃至11のいずれか1項に記載の複合粉末の造形体から成ることを特徴とする耐熱材料。
  15.  前記第1の粉末がセラミックス粉末から成り、前記第2の粉末が耐熱性金属の粉末から成る請求項1乃至11のいずれか1項に記載の複合粉末を、所望の形状に成形した後、溶解させる工程を、1乃至複数回行うことにより、耐熱金属の表面にセラミックス層を有する耐熱材料を得ることを特徴とする耐熱材料の製造方法。
  16.  前記複合粉末を使用して熱溶解積層造形法を行うことにより前記耐熱材料を得ることを特徴とする請求項15記載の耐熱材料の製造方法。
  17.  レーザ光または電子ビームで溶解させることを特徴とする請求項15または16記載の耐熱材料の製造方法。
     
PCT/JP2017/009730 2016-11-01 2017-03-10 複合粉末およびその製造方法、ならびに、耐熱材料およびその製造方法 WO2018083821A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018548546A JP6934674B2 (ja) 2016-11-01 2017-03-10 複合粉末およびその製造方法、ならびに、耐熱材料およびその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-214373 2016-11-01
JP2016214373 2016-11-01

Publications (1)

Publication Number Publication Date
WO2018083821A1 true WO2018083821A1 (ja) 2018-05-11

Family

ID=62075958

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/009730 WO2018083821A1 (ja) 2016-11-01 2017-03-10 複合粉末およびその製造方法、ならびに、耐熱材料およびその製造方法

Country Status (2)

Country Link
JP (1) JP6934674B2 (ja)
WO (1) WO2018083821A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110586925A (zh) * 2018-06-13 2019-12-20 自贡鼎力合金材料有限公司 金属陶瓷型材的生产方式

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009054309A1 (ja) * 2007-10-25 2009-04-30 National University Corporation Hokkaido University 複合金属材およびその製造方法
JP2011219802A (ja) * 2010-04-07 2011-11-04 Noritake Co Ltd コアシェル粒子及びその製造方法
JP2014012883A (ja) * 2012-06-07 2014-01-23 Allied Material Corp モリブデン耐熱合金
JP2014156638A (ja) * 2013-02-18 2014-08-28 Hitachi Chemical Co Ltd 粉末混合物

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4765382B2 (ja) * 2005-04-18 2011-09-07 トヨタ自動車株式会社 耐熱性を備えた複合酸化物の製法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009054309A1 (ja) * 2007-10-25 2009-04-30 National University Corporation Hokkaido University 複合金属材およびその製造方法
JP2011219802A (ja) * 2010-04-07 2011-11-04 Noritake Co Ltd コアシェル粒子及びその製造方法
JP2014012883A (ja) * 2012-06-07 2014-01-23 Allied Material Corp モリブデン耐熱合金
JP2014156638A (ja) * 2013-02-18 2014-08-28 Hitachi Chemical Co Ltd 粉末混合物

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110586925A (zh) * 2018-06-13 2019-12-20 自贡鼎力合金材料有限公司 金属陶瓷型材的生产方式
CN110586925B (zh) * 2018-06-13 2022-02-22 自贡鼎力合金材料有限公司 金属陶瓷型材的生产方法

Also Published As

Publication number Publication date
JP6934674B2 (ja) 2021-09-15
JPWO2018083821A1 (ja) 2019-09-19

Similar Documents

Publication Publication Date Title
Su et al. Large-scale synthesis and mechanism of β-SiC nanoparticles from rice husks by low-temperature magnesiothermic reduction
El Mel et al. The Kirkendall effect and nanoscience: hollow nanospheres and nanotubes
Faucheu et al. A review of vanadium dioxide as an actor of nanothermochromism: challenges and perspectives for polymer nanocomposites
US20170008236A1 (en) Additive Manufacturing 3D Printing of Advanced Ceramics
Sanchez‐Monjaras et al. Molten salt synthesis and characterization of potassium polytitanate ceramic precursors with varied TiO2/K2O molar ratios
JP5726663B2 (ja) ナノシリコンカーバイドコーティングを用いる炭素材料の界面強化方法
US20150292070A1 (en) Nanocarbon-reinforced aluminium composite materials and method for manufacturing the same
Yu et al. Synthesis and characterization of core‐shell selenium/carbon colloids and hollow carbon capsules
TW200840804A (en) SiO2 slurry for the production of quartz glass as well as the application of the slurry
Zhou et al. The laser writing of highly conductive and anti-oxidative copper structures in liquid
JP5382756B2 (ja) カーボンナノチューブ組成物およびこれを用いた製造方法
CN109843479A (zh) 金属增材制造用金属粉以及使用该金属粉制作的成型物
Sandhage Materials “alchemy”: shape-preserving chemical transformation of micro-to-macroscopic 3-D structures
Liu et al. The effect of temperature on Bi 2 Se 3 nanostructures synthesized via chemical vapor deposition
WO2018083821A1 (ja) 複合粉末およびその製造方法、ならびに、耐熱材料およびその製造方法
Ponce-Peña et al. Crystalline structure, synthesis, properties and applications of potassium hexatitanate: a review
JP2009030090A (ja) 金属粉末複合材等とその製造方法
Thulasiraman et al. A systematic review on the synthesis of silicon carbide: an alternative approach to valorisation of residual municipal solid waste
Cantürk et al. Review of recent development in copper/carbon composites prepared by infiltration technique
JP2010018448A (ja) セラミックス接合体およびその製造方法
Obrero et al. Supported porous nanostructures developed by plasma processing of metal phthalocyanines and porphyrins
JP2015224172A (ja) ロータス効果を有する被膜の製造方法及びロータス効果を有する被膜
Ali et al. Formation of self-organized Zircaloy-4 oxide nanotubes in organic viscous electrolyte via anodization
WO2017053850A2 (en) Additive manufacturing 3d printing of advanced ceramics
Ling et al. Fast Peel‐Off Ultrathin, Transparent, and Free‐Standing Films Assembled from Low‐Dimensional Materials Using MXene Sacrificial Layers and Produced Bubbles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17866482

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018548546

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17866482

Country of ref document: EP

Kind code of ref document: A1