WO2018082468A1 - 一种数据传输方法、基站、用户设备及系统 - Google Patents

一种数据传输方法、基站、用户设备及系统 Download PDF

Info

Publication number
WO2018082468A1
WO2018082468A1 PCT/CN2017/107368 CN2017107368W WO2018082468A1 WO 2018082468 A1 WO2018082468 A1 WO 2018082468A1 CN 2017107368 W CN2017107368 W CN 2017107368W WO 2018082468 A1 WO2018082468 A1 WO 2018082468A1
Authority
WO
WIPO (PCT)
Prior art keywords
slot
downlink
mini
uplink
frame structure
Prior art date
Application number
PCT/CN2017/107368
Other languages
English (en)
French (fr)
Inventor
李新彩
赵亚军
杨玲
徐汉青
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to JP2019522943A priority Critical patent/JP6987858B2/ja
Priority to US16/347,380 priority patent/US11044038B2/en
Priority to EP17868352.0A priority patent/EP3537633B1/en
Publication of WO2018082468A1 publication Critical patent/WO2018082468A1/zh
Priority to US17/353,465 priority patent/US11863313B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0006Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission format
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1887Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/1469Two-way operation using the same type of signal, i.e. duplex using time-sharing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • H04W28/065Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information using assembly or disassembly of packets
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/30Resource management for broadcast services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/08Upper layer protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria

Definitions

  • the present disclosure relates to transmission management technologies in the field of communications, and in particular, to a data transmission method, a base station, a user equipment, and a system.
  • 5G has to solve some of the challenges brought by diverse application scenarios. For example, for applications with low latency, there is a high metric requirement for latency, and the user is provided with a millisecond-level end-to-end delay. At the same time, it is an inevitable trend for 5G communication to adapt to the forward-compatible support service.
  • Service adaptation refers to allowing semi-static configuration or dynamic configuration of uplink and downlink configurations to meet service load requirements or match service load changes. Therefore, how to support or implement flexible duplex or dynamic time division duplex TDD is the first problem to be solved. This problem has not yet been developed in the discussion of 3GPP standard 3GPP standards.
  • the present disclosure provides a data transmission method, a base station, a user equipment, and a system.
  • the embodiment of the invention provides a data transmission method, including:
  • the data is transmitted according to the adjusted frame structure.
  • the embodiment of the invention provides a data transmission method, including:
  • Data transmission is performed according to the adjusted frame structure.
  • An embodiment of the present invention provides a base station, where the base station includes:
  • control unit configured to adjust and determine a frame structure of each time unit within a preset duration
  • the communication unit is configured to notify the user equipment UE of the adjusted frame structure; and perform data transmission according to the adjusted frame structure.
  • An embodiment of the present invention provides a UE, where the UE includes:
  • a receiving unit configured to receive an adjusted frame structure sent by the base station
  • the sending unit is configured to perform data transmission according to the adjusted frame structure.
  • An embodiment of the present invention provides a data transmission system, where the system includes:
  • the base station is configured to adjust and determine a frame structure of each time unit in the preset duration; notify the user equipment UE of the adjusted frame structure; and perform data transmission according to the adjusted frame structure;
  • the UE is configured to receive the adjusted frame structure sent by the base station, and perform data transmission according to the adjusted frame structure.
  • An embodiment of the present invention provides a base station, where the base station includes: a storage medium and a processor;
  • the storage medium includes a set of instructions that, when executed, cause at least one processor to perform operations including:
  • the data is transmitted according to the adjusted frame structure.
  • An embodiment of the present invention provides a UE, where the UE includes: a storage medium and a processor;
  • the storage medium includes a set of instructions that, when executed, cause at least one processor to perform operations including:
  • Embodiments of the present invention also provide a computer readable storage medium having stored thereon computer executable instructions that, when executed by a processor, implement any of the methods described above.
  • the embodiment of the present invention provides a data transmission method, a base station, a user equipment, and a system.
  • the base station side can flexibly adjust a frame structure of a time unit within a preset duration, and send the adjusted frame structure to the UE, so that the base station And the UE can perform data transmission between each other based on the adjusted frame structure. Therefore, the problem of implementing dynamic uplink and downlink data transmission according to service requirements is solved.
  • 1-1 is a schematic flowchart 1 of a data transmission method according to an embodiment of the present invention.
  • 1-2 is a schematic flowchart 2 of a data transmission method according to an embodiment of the present invention.
  • 2-1 is a schematic diagram 1 of resource allocation according to an embodiment of the present invention.
  • FIG. 2-2 is a schematic diagram 2 of resource allocation according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram 3 of resource allocation according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram 4 of resource allocation according to an embodiment of the present invention.
  • FIG. 5 is a schematic flowchart 3 of a data transmission method according to an embodiment of the present invention.
  • FIG. 6 is a schematic flowchart 4 of a data transmission method according to an embodiment of the present invention.
  • 7-1 is a schematic structural diagram of a base station according to an embodiment of the present invention.
  • FIG. 7-2 is a schematic structural diagram of a user equipment according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a system according to an embodiment of the present invention.
  • the base station sends a downlink control information in time slot 1 to schedule time slot 3 and time slot 4 for uplink data transmission, but in time slot 2, a high priority downlink data is sent, such as a downlink.
  • High-reliability ultra-low-latency communication URLLC service data packets or measured to be relatively strong, how to deal with the base station in order to meet the service requirements; for example, the base station transmits downlink data or transmits discovery reference signals in consecutive multiple time slots.
  • DRS process there is an uplink scheduling request for the base station to immediately allocate an uplink resource to the UE to send a high priority service data packet.
  • the present disclosure provides a data transmission method, as shown in FIG. 1-1, including:
  • Step 101 Adjust and determine a frame structure of each time unit within a preset duration
  • Step 102 Notifying the user equipment UE of the adjusted frame structure
  • Step 103 Perform data transmission according to the adjusted frame structure.
  • One content addressed by the present disclosure is how to implement flexible duplex or dynamic TDD, and determine the uplink and downlink configuration and how to indicate.
  • the uplink and downlink configuration is adjusted and determined by at least one of the following:
  • the capabilities of the UE are the capabilities of the UE.
  • the configured time unit includes one of: one subframe, one time slot, one mini-slot mini-slot, and m orthogonal frequency division multiplexing OFDM symbols, where m is an integer greater than or equal to 1.
  • the adjusted frame structure is notified to the UE, including at least one of the following:
  • the adjusted frame structure is indicated by physical layer signaling
  • the adjusted frame structure is configured by high layer signaling
  • the adjusted frame structure is notified by multicast signaling or system messages.
  • the base station informs the UE of the uplink and downlink configuration or further includes blank resources by at least one of the following: a system information block SIB, a physical broadcast channel PBCH, a radio resource control RRC, and dynamic physical layer signaling such as DCI.
  • the blank resource characterizes a resource that is at least not configured for transmitting data information.
  • Adjusting the frame structure includes:
  • the preset information includes at least one of the following: an uplink acknowledgement ACK/non-acknowledgement NACK, a scheduling request SR, and a probe Reference signal SRS, preamble initial access, uplink retransmission data packet;
  • the downlink preset information includes at least one of: a downlink control channel, a synchronization channel, a downlink broadcast channel, or DRS signal.
  • the third number of slots or mini-slots or OFDM symbols are configured as reserved resources or as blank resources; wherein the blank resources represent resources that are at least not configured for transmitting data information.
  • semi-static + dynamic signaling indicates the way.
  • Two adjacent base stations negotiate and then semi-statically configure certain time domain locations for transmission of downlink or uplink important information. For example, certain slots or OFDM symbols are configured for uplink ACK/NACK, SR, SRS or preamble initial access or retransmission of data packets. Some slots or OFDM symbols are configured for downlink control channels, synchronization channels, or similar DRS signal transmissions. Then, the remaining time domain resource base stations can dynamically indicate whether it is uplink or downlink or blank resources.
  • the size of one subframe group/slot group is configured to dynamically indicate the uplink and downlink configuration of each subframe/slot in each subframe group/slot group.
  • the size of one subframe/slot group is semi-statically configured, and the uplink and downlink configuration of each subframe/slot in each subframe/slot group is dynamically indicated.
  • the uplink authorization information includes time domain location information in which the uplink data transmission is scheduled, and the downlink authorization information includes time domain location information in which the downlink data transmission is scheduled.
  • the manner in which the foregoing base station passes the dynamic indication further includes:
  • the common search space of the downlink control channel carries a downlink control information indicating the uplink and downlink configuration information of the subsequent k slots or the m mini slots or the indication is a blank resource.
  • Manner 1 The uplink grant information for scheduling uplink data implicitly determines the time domain location of the uplink data; and the downlink grant information for scheduling the downlink data implicitly determines the time domain location of the downlink data.
  • the common search space of the downlink control channel carries a downlink control information indicating the uplink or downlink attributes of the subsequent k slots or mini-slots or indicates that a certain slot is blank; and attributes of each OFDM symbol in the mixed slot.
  • the common control information is sent in a control area of a predefined or configured downlink time unit or in each downstream time unit.
  • Manner 3 The proprietary search space of the downlink control channel carries a proprietary downlink control information to indicate that the uplink and downlink configuration attributes of the subsequent t-th slot or the s-th mini-slot are changed or indicated as blank resources; t, s is positive Integer.
  • the uplink and downlink or blank resources of each symbol are determined by means of the secondary indication.
  • the first level DCI indicates the length of each mini-slot
  • the second level DCI indicates the uplink and downlink or blank resources of each mini-slot.
  • the uplink and downlink configuration dynamic adjustment method is applicable to all cells, and the uplink and downlink configuration indication information of the secondary cell Scell is sent through the downlink control channel of the primary cell Pcell, or only the downlink control of the local cell. Channel transmission.
  • the uplink and downlink configuration indication information of the secondary cell Scell may also be sent through the downlink control channel of the primary and secondary cells PScell.
  • processing of scheduling and HARQ impact which may include:
  • the mini-slot in the slot m or slot m for uplink data transmission is adjusted to a blank resource.
  • the original data packet processing can be one of the following:
  • the data sent by the mini-slot in the slot m indicates that the data packet is destroyed by the terminal, and the scheduling is not counted in the number of retransmissions;
  • the MCS transmits in the time slot n or the time slot n with reduced power or reduced modulation coding mode.
  • the data packet to be sent by the mini-slot in slot n or slot n, and the data packet to be sent by the mini-slot in slot m or slot m are rescheduled to other resources for transmission;
  • the reserved resources and other resources may be time domain resources, or frequency domain resources, or time domain resources and frequency domain resources, but other resources and reserved resources may refer to different resource locations. .
  • the method 1 directly discarding the data originally transmitted at the location, and instructing the terminal that the data packet is destroyed, thereby avoiding the influence of retransmission and merging. It does not feed back ACK/NACK and is not counted within the number of retransmissions.
  • Method 2 This packet is still sent with reduced power or low MCS.
  • Method 3 Reschedule the packet to other time domain locations, or other frequency domain locations, or other carriers.
  • the feedback processing for ACK/NACK includes:
  • the DCI information When the re-instructed data transmission location is behind the original ACK/NACK feedback location, the DCI information also includes new resource location information of the ACK/NACK feedback corresponding to the data packet, and the new packet location and the corresponding ACK.
  • the location of the /NACK is indicated by a joint encoding.
  • Manner 4 The base station sends the data packet to the reserved downlink resources. give away.
  • the original data packet may be processed as one of the following:
  • the UE continues to blindly trigger the DCI information of the transmission indication. After detecting the indication information for triggering transmission again, the UE again transmits the prepared data packet at the indicated location;
  • the other time-frequency resources include: a physical resource block PRB location or a new slot location or a codebook or orthogonal code resource.
  • a UE that originally scheduled to be in the location sends a trigger to send signaling indicating a new scheduling location, including a new PRB location or a new slot location or further including a codebook or orthogonal code resource.
  • the UE transmits the data packet on some reserved uplink resources.
  • the subframe for data transmission is determined according to the reference subframe configuration and the configured timing value; or the original semi-static configuration timing is switched to dynamic indication timing; for dynamic signaling indicating timing re-modification timing Instructions.
  • Others include: setting the uplink and downlink of different subbands with different bandwidths, and setting a guard band when the uplink and downlink configurations of the two adjacent subbands are different.
  • the uplink and downlink configurations of different subbands with different bandwidths may be different.
  • a protection layer may be used to avoid the interference.
  • the base station notifies the UE of the uplink and downlink configurations of different sub-bands in a time-frequency two-dimensional manner.
  • Certain signals/channels such as the preamble of the discovery reference signal (DRS)/random access channel (preamble), transmitted in a transmission window, can dynamically adjust the transmission position of these signals for high priority service transmission.
  • DRS discovery reference signal
  • preamble Random access channel
  • the present disclosure also provides a data transmission method for a UE, as shown in FIG. 1-2, the method includes:
  • Step 201 Receive an adjusted frame structure sent by the base station.
  • Step 202 Perform data transmission according to the adjusted frame structure.
  • the method further includes:
  • the UE determines, according to the uplink and downlink configuration information or the frame structure, that the uplink and downlink configuration information of the corresponding time unit is changed, and then performs the following processing on the original scheduled data packet:
  • the UE blindly checks the new scheduling information of the base station within a predefined time
  • the scheduling information is scrambled by a proprietary identifier, which indicates that the original data packet is rescheduled to other time domain locations, or other frequency domain locations, or other carriers, or other codebooks, or other positive Cross-code resource;
  • the UE After the re-scheduled control information is not detected within a predefined time, the UE abandons the transmission or reception of the data, or the UE performs transmission or reception of the data packet on some reserved resources.
  • This example describes in detail how the base station notifies the direction, uplink and downlink attributes, and blank resources of the subordinate UE link.
  • the base station notifies the UE of the uplink and downlink configuration by using at least one of the following information.
  • SIB SIB
  • PBCH Physical Broadcast Channel
  • RRC Radio Resource Control
  • DCI dynamic physical layer signaling
  • the uplink and downlink attributes at a certain moment are determined by one of the following:
  • Manner 1 The system specifies certain fixed time domain locations, for example, specifying certain fixed slots or OFDM symbols for transmitting uplink ACK/NACK, SR, SRS or preamble initial access or retransmission packets.
  • slot 1 is used to transmit the SR
  • the last OFDM symbol of slot 4 is used to transmit the SRS
  • slot 5 is used to send the message 1 or the preamble of the random access procedure.
  • the last OFDM symbol of slot 8 is used to transmit ACK/NACK.
  • the first OFDM symbol fixedly using slot 0 is used for transmission of the downlink control channel
  • slot 4 is used for transmitting the downlink synchronization channel
  • slot 7 is used for transmitting DRS.
  • the base station can then dynamically indicate whether the remaining resources other than the fixed resources are uplink or downlink or blank resources.
  • Manner 2 Two adjacent base stations negotiate and then semi-statically configure certain time domain locations for transmitting downlink data or uplink data.
  • cell 1 and cell 2 are two adjacent cells.
  • the base station can semi-statically configure certain time domain resources for transmitting uplink data through high-level signaling according to requirements. Or uplink data.
  • the two base stations can exchange information through the air interface, and then notify the UEs in the cell by using the high-level signaling of the uplink and downlink attributes of the negotiated time domain location.
  • the slot 1 of the neighboring two cells determined by the neighboring base station is used to transmit the SR
  • the last OFDM symbol of the slot 4 is used to transmit the SRS
  • the slot 5 is used to send the message 1 or the preamble of the random access procedure.
  • the last OFDM symbol of slot 8 is used to transmit ACK/NACK.
  • the first OFDM symbol of slot0 is used for transmission of the downlink control channel
  • slot 4 is used for transmission.
  • Line synchronization channel, slot7 is used to send DRS.
  • the base station dynamically adjusts or configures the remaining time domain resources according to the uplink and downlink service requirements.
  • Mode 3 All resources are dynamically indicated by the base station.
  • Mode 4 A part of the resources are fixed for uplink data or downlink data transmission, and some resources are semi-statically configured as uplink data or downlink data transmission or blank resources, and some resources dynamically indicate uplink data or downlink data transmission or blank resources.
  • the manner in which the foregoing base station passes the dynamic indication further includes:
  • the uplink grant information for scheduling uplink data implicitly determines the time domain location of the uplink data; and the downlink grant information for scheduling the downlink data implicitly determines the time domain location of the downlink data. That is, the time domain location for scheduling uplink data transmission is uplink data, and the location for scheduling downlink data transmission is downlink data.
  • the uplink grant information and the downlink grant information are carried by a dedicated search space of the downlink control channel.
  • the downlink control channel is located in the first few OFDM symbols of some slots that are semi-statically configured or fixed.
  • Method 2 Display signaling by public control information.
  • the common search space of the downlink control channel carries a downlink control information indicating that the uplink or downlink attributes of the subsequent k slots or mini-slots or a certain slot is blank. And the attributes of each OFDM symbol in the mixed slot.
  • the Bitmap indicates whether the subsequent k slots or mini-slots are uplink attributes or downlink attributes. 0 represents the uplink and 1 represents the downlink. Or reverse the change of the uplink and downlink attributes representing the slot or mini-slot. The uplink and downlink attributes of the slot or mini-slot are not reversed. If a time slot changes from 0 to 1, it means that the uplink and downlink attributes are changed. Otherwise it means that there is no change to the attributes of the time slot.
  • Mode 3 Notify which time slot configuration changes through proprietary control information.
  • 3 bits or 4 bits in the DCI indicate which time slot or mini-slot configuration has changed, 1 bit indicates a change between uplink and downlink, or the resource becomes a blank resource. If the 1 bit is 0, it indicates that the time slot or the mini time slot changes the uplink and downlink attributes, and when 1 indicates that the time slot or the mini time slot is a blank resource.
  • Manner 4 Pre-defined or high-level signaling semi-statically configures some uplink and downlink frame structure patterns and the granularity of time slot allocation changed by the base station, and then the base station dynamically indicates the index of the pattern.
  • the size of the semi-statically configured slot group is 4, and then the dynamic DCI signaling notifies the uplink and downlink configuration of every 4 slots.
  • the notification may also adopt the manner of notifying the uplink and downlink proportioning index.
  • each matching index corresponds to one uplink and downlink ratio, and each time is determined according to the order of the first downlink time slot and the uplink time slot.
  • the configuration of the gap What is missing is a blank time slot. If there are both uplink and downlink time slots, the blank time slot is located between the downlink time slot and the uplink time slot.
  • the UE determines the reception or transmission of data or the reservation of resources at each time by receiving the above information.
  • the UE can accurately know the direction of data transmission, so as to correctly receive or transmit data.
  • This example describes in detail the situation in which the uplink and downlink configurations in the frame structure are dynamically changed.
  • the frame structure uplink and downlink configuration includes reserving or configuring some blank resources.
  • the base station may also dynamically indicate some blank resources, indicating that the UE cannot transmit any data on the resources during the data transmission.
  • These blank resources include consecutive n PRBs for the frequency domain, and one or more OFDM symbols within the time domain including one or more slots or time slots, for example, the common OFDM symbol of the base station in a certain time slot.
  • the control information DCI indicates, by means of a bitmap, which of the remaining 6 OFDM symbols included in the slot are reserved or which symbols are reserved.
  • the UE does not receive data at the reserved location
  • the location of the blank symbol can also be semi-statically configured for higher layer signaling, with the frequency domain location occupying a portion of the bandwidth.
  • the location of the blank symbol can be between the uplink and downlink data transmissions or between the two mini-slots.
  • the base station notifying the uplink and downlink configuration further includes: semi-statically configuring one slot group size, and then dynamically signaling indicating uplink and downlink configurations in each slot group.
  • the size of the initial configuration slot group of the base station is 4 slots.
  • the dynamic DCI indicates that the ratio of uplink and downlink in the first slot group is 0:4, and the pre-defined is arranged in the order of the first downlink slot and the uplink slot. It means that the first time slot to the fourth time slot are both downlink. If the DCI indicates that the ratio of uplink and downlink in the second slot group is 2:1, the first of the four slots is downlink, the second is blank, and the third and fourth are uplink. Then, the high-level signaling semi-statically changing slot group has a size of 2 slots.
  • the dynamic signaling indicates that the uplink and downlink ratio of the first time slot group is 1:1, indicating that the first time slot is downlink and the second time slot is uplink. Then, the uplink and downlink ratio of the second time slot group is 2:0, indicating that the first time slot is downlink, and the second time slot is also downlink.
  • the signaling overhead can be reduced by this indication.
  • This example describes the granularity and adjustment of dynamic TDD.
  • the base station determines the uplink and downlink attributes at a certain moment by using at least one of the following:
  • the priority of the data service where the high-priority service preferentially sends and configures the corresponding uplink and downlink attributes to the data packet, and the two data packets in different directions of the same service priority determine the direction of the final link through competition;
  • the priority of a channel or signal where a predefined channel and signal are divided into different priorities, a channel or signal with a higher priority is transmitted first, and then the base station broadcasts a corresponding uplink and downlink attribute, a low priority channel or signal. Delayed transmission;
  • the neighboring cell if the neighboring cell sends a high-priority downlink data transmission at a certain moment, in order to avoid cross-link interference to the data, the cell is also configured to be downlink data transmission;
  • the capabilities of the UE are the capabilities of the UE.
  • the granularity of dynamically changing the time slot allocation of the uplink and downlink includes: 1 ms of a subframe, a granularity of a slot, or a granularity of a mini-slot. Or the granularity of n OFDM symbols, where n is semi-statically configured or indicated by dynamic signaling.
  • the length of the mini-slot is semi-statically configured to 2 OFDM symbols, and the structure of a certain slot is as shown in Figure 2-2.
  • the length of the Slot is 7 OFDM symbols
  • the first OFDM symbol is fixed for the downlink control channel and includes the uplink and downlink attributes of the subsequent 3 mimi-slots. For example, by indicating to the user equipment that the adjusted frame structure is 011, the first mini-slot is indicated as being downlink, and the remaining two mini-slots are uplink.
  • the subband configuration may be different in the same time period.
  • the uplink and downlink configuration of the sub-band sub-band 1 is the configuration pattern 1
  • the uplink and downlink configuration of the sub-band 2 is the pattern 2
  • the uplink and downlink configuration of the sub-band 3 is the pattern 3.
  • the uplink and downlink configurations of different frequency bands in the system bandwidth can be dynamically adjusted at different times.
  • This example describes the case where the uplink data is adjusted to be downlink during transmission.
  • the base station sends a multi-slot continuously scheduled DCI information to the UE in slot 0, and the information is carried in the UE-specific search space. For example, as shown in FIG. 3, the uplink packets are continuously scheduled in slots 4, 5 and 6. Send. As a result, at time slot 2, the base station suddenly has a downlink high priority data packet, for example, the URLLC packet is to be transmitted, and the base station is in time slot 3.
  • the common DCI sends a time slot uplink and downlink configuration change signaling in a frame structure, and changes the time slot 5 to the downlink, and then the base station sends the downlink scheduling information scheduling URLLC data packet to be sent in the time slot 5.
  • Mode 2 The time slot transmits the data packet at a lower power.
  • Manner 3 The UE continues to perform the blind detection to trigger the DCI information of the sending indication. After the indication information for triggering the transmission is detected, the UE then sends the prepared data packet at the indicated location.
  • the base station sends a scheduling update signaling to the UE originally scheduled to be in the location, the scheduling update signaling indicating a new scheduling location, including a new PRB location or a new slot location or further including a codebook or orthogonal code.
  • the scheduling update signaling indicating a new scheduling location, including a new PRB location or a new slot location or further including a codebook or orthogonal code.
  • Resources For example, the data packet originally scheduled in slot 5 is scheduled to be sent to slot 6, and an orthogonal code may be configured at the same time.
  • Manner 4 The UE sends the data packet to the reserved uplink resources.
  • the reserved resource is a fixed resource or a certain resource configured semi-statically.
  • slot 7 is a reserved slot resource for a new transmission location when the original scheduled packet is not sent.
  • the base station then receives the data packet according to the indicated new location or the reserved resource location.
  • the above method solves the problem of data transmission and reception in the case of dynamically adjusting the uplink and downlink configuration.
  • This example describes the case where the uplink data is adjusted to be uplink.
  • the base station sends a multi-slot continuously scheduled DCI information to the UE on the first OFDM symbol of slot 0, and the information is carried by the UE-specific search space. For example, as shown in FIG. 3, the slots 0, 1, 2 are continuously scheduled. And slot 3 performs downlink packet transmission.
  • the base station suddenly receives an uplink scheduling request sent by the UE, and the base station immediately allocates an uplink resource to the UE to send a high priority service data packet, for example, the URLLC packet is to be sent, and the base station is In the common downlink control information of time slot 2, an uplink and downlink change signaling is sent, and time slot 2 is changed to uplink.
  • the UE may perform sensing on certain resources of the time slot for the UE with the high priority service, and if the resource is not used, the uplink data may be sent in an unlicensed grant-free manner.
  • the base station simultaneously sends, in the dedicated search space of the slot 2 control channel, the UE that sends the scheduling request, an authorization information indicating certain PRB resources of the OFDM symbol of the slot 2, and scheduling information such as the MCS, for the original scheduling at the location.
  • the downlink data packet, the base station can have one of the following processing:
  • the data packet is still transmitted at a lower power than the original transmit power
  • a time timer is set, and if the rescheduling indication information is still not received within the time timer, the data packet is discarded.
  • the DCI information may include new resource location information for the ACK/NACK feedback corresponding to the data packet.
  • the transmission position of the ACK/NACK feedback corresponding to the originally indicated time slot 2 downlink data packet is the last OFDM symbol of the time slot 3. Since the data packet of the base station time slot 2 is not transmitted, the NUE is fed back to the time slot 3 UE or nothing. No feedback.
  • the base station If the base station re-instructs the location of the ACK/NACK feedback corresponding to the data packet as slot 5, the UE feeds back the corresponding ACK/NACK in slot 5 according to the new indication information after receiving the data packet in slot 4.
  • the base station indicates the location of the new data packet and the location of the corresponding ACK/NACK in a joint coding manner.
  • the base station transmits the data packet on some reserved downlink resources.
  • the reserved resource is a fixed resource or a certain resource configured semi-statically.
  • slot 7 is a reserved slot resource for a new transmission location when the original scheduled packet is not sent.
  • the above method solves the problem of data transmission, reception, and feedback in the case of dynamically adjusting the uplink and downlink configurations.
  • This example illustrates the process of data scheduling adjustment by the base station in the process of transmitting the downlink synchronization signal and the measurement signal.
  • the system defines the downlink synchronization signal and the channel measurement signal to be transmitted within some predefined time window. It is assumed that the time window for transmission is 2ms and contains 4 slots, that is, these signals can have 4 possible transmission positions in one transmission period, or can be transmitted in any of 4 slots.
  • the base station can dynamically adjust the transmission location of these signals according to the needs of the service priority. As shown in Figure 4.
  • the base station originally transmits a downlink synchronization signal and a channel measurement signal, such as DRS, in slot 5, and suddenly an uplink URLLC data packet is to be transmitted, and the base station can send a common DCI information to notify all OFDM symbols or partial symbols of slot 5. Used for uplink URLLC services, while delaying the DRS signal to the next slot.
  • the transmission location of the message 1 of the predefined random access is also a predefined time window, that is, the system reserves certain resources for the transmission of the uplink preamble initial access. If the base station has downlink high-priority service transmission, it may send a common DCI information to notify certain reserved resources for downlink high-priority data transmission, and then the UE may perform other reserved resources in the time window. Channel access sensing is performed before access and access.
  • This example describes the case of packet ACK/NACK.
  • the corresponding ACK/NACK playload size may also be dynamically changed, and the ACK/NACK feedback resources and location may be affected.
  • the determining manner of the ACK/NACK feedback resource corresponding to the downlink data includes at least one of the following:
  • the base station originally schedules m data packets for the scheduling unit with k (k can be 1 or 2 or 4) OFDM symbols, and the m data packets are all in the This slot performs ACK/NACK feedback.
  • the resource is determined by one of the following:
  • Manner 1 The location of the DCI corresponding to the scheduled downlink data packet implicitly determines the location of the ACK/NACK corresponding to the data packet.
  • a resource set is configured by semi-static high-level signaling of the base station, and then dynamic signaling indicates time-frequency resources.
  • the following resource determination method may be adopted: the high-level configuration of two resource locations and a predefined threshold, when the ACK/NACK payload size exceeds the threshold, the resource location is 1 or is long.
  • the uplink control channel PUCCH transmission when less than the threshold, is transmitted with resource location 2 or with a short uplink control channel PUCCH.
  • This example illustrates the situation when the URLLC service and the enhanced mobile broadband eMBB service are multiplexed and transmitted.
  • the base station transmits downlink control information to UE1 in the first OFDM symbol of slot 1 to schedule a downlink eMBB service for data transmission in slots 1, 2, 3 and 4, respectively.
  • the base station sends the DCI information to the UE2 to schedule the transmission of the uplink URLLC data packet at the time slot 2, and the base station intends to transmit the time slot 3.
  • the eMBB packets are all removed and a control message is sent in the last OFDM symbol of slot 4 to inform UE1 that the eMBB packet on slot 3 has been corrupted.
  • the UE1 can then perform interference cancellation reception on the corrupted data after receiving the information.
  • the signalling efficiency is improved by avoiding the retransmission of the entire eMBB data packet by the displayed signaling indication.
  • This example describes the solution to dynamically change the impact of uplink and downlink on scheduling and HARQ timing.
  • the base station sends a downlink control information in slot n to schedule four downlink time slots from time slot n+1 to time slot n+4 for downlink data transmission, and dynamic signaling indicates corresponding data packets carried by each time slot.
  • the ACK/NACK is fed back in time slot n+5. Since the neighboring cell or the local cell has a higher priority uplink data to be transmitted in the time slot n+4, in order to ensure the performance of the high priority data packet, the base station temporarily sends a public DCI message to notify n+4 as the uplink subroutine. frame. After receiving the information, the UE managed by the base station does not receive downlink data in the time slot n+4.
  • the downlink data packet originally scheduled at the location does not feed back ACK/NACK, and the data transmission of the scheduled time is not calculated. Within the maximum number of retransmissions. If new DCI information is received within the timer, the data packet is received according to the new indicated location, and ACK/NACK is fed back at the corresponding location according to the indication information.
  • This example illustrates the process of URLLC scheduling and data transmission.
  • the URLLC service For the URLLC service, it can be accessed in a scheduling-based manner or in a non-scheduled manner.
  • the initial transmission receives an error, for retransmission of the data packet, in order to reduce the delay, the UE still accesses in a scheduling-free manner, or the UE accesses in a scheduling-based manner, and the indicated transmission timing is symbol-level, for example,
  • the URLLC is scheduled in units of 1 OFDM symbol, and the scheduling interval of two adjacent two is very small, separated by one or two OFDM symbols.
  • the process of scheduling access may be: the base station sends a downlink DCI to the third symbol of slot 0 to notify the UE to perform the transmission of the original unscheduled access retransmission data packet at symbol 6.
  • the resource is notified by the base station through a public DCI. After receiving the DCI, all UEs will not send uplink data in the resource.
  • the resource is a resource dedicated to scheduling retransmission of data packets, and will not be occupied by other UEs.
  • the UE may perform retransmission according to the predefined hopping pattern.
  • the hopping pattern is separated by k OFDM symbols in the time domain, where k is less than a predefined threshold.
  • the frequency domain position is performed according to a random location.
  • the UE uses different orthogonal codes for each automatic transmission.
  • the base station allocates an automatic retransmission hopping pattern when rescheduling.
  • the above method is used to meet the requirements of low latency services.
  • This example illustrates the method provided by the present disclosure for the processing on the base station side.
  • the base station determines the uplink-downlink ratio of a certain cell by negotiating with the adjacent station and according to its own uplink and downlink service requirements.
  • the uplink and downlink attributes of the two cells at this time are determined by the data packet, and if it is an uplink data packet, the two adjacent ones at the moment.
  • the cells are all uplink data transmission. If they are downlink data packets, both cells are configured for downlink data transmission at this time.
  • the processing flow of the base station side corresponding to the present example is described with reference to FIG. 5: when the priorities of the two uplink and downlink data packets are the same, the uplink and downlink attributes of the time are determined by competition.
  • the base station notifies the subordinate UE of the determined uplink and downlink ratio.
  • the notification method includes high layer signaling, or dynamic physical layer control signaling, or higher layer signaling and dynamic physical layer control signaling.
  • downlink data and reception of uplink data are transmitted according to the uplink and downlink positions.
  • the base station temporarily adjusts the uplink and downlink attributes or blank resources at a certain moment according to the service requirements or the measured interference conditions.
  • This example illustrates the method provided by the present disclosure for the processing on the terminal side.
  • the terminal receives information about the relevant uplink and downlink configuration sent by the base station.
  • the terminal then transmits or receives data according to the configuration information.
  • the base station described in the present disclosure includes a base station (Node B), an evolved base station (eNode B), a home base station (Home Node B), a relay station (Relay Node, RN), a macro base station, a micro base station, and the like.
  • the disclosure further provides a base station, as shown in FIG. 7-1, the base station includes:
  • the control unit 71 is configured to adjust and determine a frame structure of each time unit within the preset duration
  • the communication unit 72 is configured to notify the user equipment UE of the adjusted frame structure, and perform data transmission according to the adjusted frame structure.
  • the time unit includes one of: one subframe, one time slot, one mini-slot mini-slot, and m OFDM symbols, where m is an integer greater than or equal to 1.
  • the control unit is configured to notify the UE of the uplink and downlink configuration information or a frame structure, including at least one of the following:
  • the control unit is configured to adjust and determine the uplink and downlink configuration by at least one of the following:
  • the capabilities of the UE are the capabilities of the UE.
  • the adjusted frame structure includes:
  • the first number of slots or OFDM symbols are configured for uplink transmission of uplink preset information, where the preset information includes at least one of the following: uplink ACK/NACK, SR, SRS, preamble initial access, uplink weight Pass the data packet;
  • the second number of slots or OFDM symbols are configured for downlink transmission of downlink preset information, where the downlink preset information includes at least one of the following: a downlink control channel, a synchronization channel, or a DRS signal.
  • the third number of slots or mini-slots or OFDM symbols are configured as reserved resources or as blank resources; wherein the blank resources represent resources that are at least not configured for transmitting data information.
  • the control unit is set to perform at least one of the following:
  • the size of one subframe group/slot group is configured to dynamically indicate the uplink and downlink configuration of each subframe/slot in each subframe group/slot group.
  • the signaling through the physical layer signaling includes:
  • the common search space of the downlink control channel carries a downlink control information indicating uplink/downlink configuration information or blank resources of the subsequent k slots or m mini slots.
  • the control unit is configured to adjust a mini-slot in a time slot n or a time slot n for downlink data transmission to an uplink;
  • the mini-slot in slot m or slot m for uplink data transmission is adjusted to downlink.
  • the control unit is arranged to perform one of the following processes:
  • the data packet to be transmitted by the mini-slot originally in the slot n or the slot n, and the packet to be transmitted by the mini-slot in the slot m or the slot m are transmitted on the reserved resources.
  • the other time-frequency resources include: a PRB location or a new slot location or a codebook or orthogonal code resource.
  • the uplink and downlink configuration further includes:
  • the uplink and downlink configurations of the subbands with different bandwidths are different, and a guard band is set when the uplink and downlink configurations of the adjacent two subbands are different.
  • the control unit is also configured to
  • the signal/channel having a higher priority than the preset type is set to be transmitted in the specified window.
  • a UE is also provided. As shown in FIG. 7-2, the UE includes:
  • the receiving unit 81 is configured to receive the adjusted uplink and downlink configuration information or frame structure sent by the base station;
  • the transmitting unit 82 is configured to perform data transmission according to the adjusted uplink and downlink configuration information or frame structure.
  • the UE further includes:
  • the adjusting unit 83 is configured to determine that the uplink and downlink configuration information of the corresponding time unit is changed based on the uplink and downlink configuration information or the frame structure, and then perform the following processing on the original scheduled data packet:
  • the scheduling information is scrambled by a proprietary identifier, the scheduling information indicating that the original data packet is rescheduled to other time domain locations, or other frequency domain locations, or other carriers;
  • the UE After the re-scheduled control information is not detected within a predefined time, the UE abandons the transmission or reception of the data, or the UE performs transmission or reception of the data packet on some reserved resources.
  • the present disclosure also provides an indication system, as shown in FIG. 7-3, the system includes:
  • the base station 91 is configured to adjust and determine a frame structure of each time unit in the preset duration; notify the user equipment UE of the adjusted frame structure; and perform data transmission according to the adjusted frame structure;
  • the UE 92 is configured to receive the adjusted uplink and downlink configuration information or a frame structure sent by the base station, and perform data transmission according to the adjusted uplink and downlink configuration information or a frame structure.
  • a base station provided by the present disclosure includes: a storage medium and a processor
  • the storage medium includes a set of instructions that, when executed, cause at least one processor to perform operations including:
  • the data is transmitted according to the adjusted frame structure.
  • the present disclosure provides a UE, including: a storage medium and a processor; the storage medium includes a set of instructions, when executed, causing at least one processor to perform an operation including: receiving an adjusted frame sent by a base station Structure; data transmission according to the adjusted frame structure.
  • Embodiments of the present invention also provide a computer readable storage medium having stored thereon computer executable instructions that, when executed by a processor, implement any of the methods described above.
  • the functional modules/units in the system, device, and device can be implemented as software, firmware, hardware, and suitable combinations thereof.
  • the division between functional modules/units mentioned in the above description does not necessarily correspond to the division of physical components; for example, one physical component may have multiple functions, or one function or step may be composed of several physical The components work together.
  • Some or all of the components may be implemented as software executed by a processor, such as a digital signal processor or microprocessor, or as hardware, or as an integrated circuit, such as an application specific integrated circuit.
  • Such software may be distributed on a computer readable medium, which may include computer storage media (or non-transitory media) and communication media (or transitory media).
  • computer storage medium includes volatile and nonvolatile, implemented in any method or technology for storing information, such as computer readable instructions, data structures, program modules or other data. Sex, removable and non-removable media.
  • Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disc (DVD) or other optical disc storage, magnetic cartridge, magnetic tape, magnetic disk storage or other magnetic storage device, or may Any other medium used to store the desired information and that can be accessed by the computer.
  • communication media typically includes computer readable instructions, data structures, program modules, or other data in a modulated data signal, such as a carrier wave or other transport mechanism, and can include any information delivery media. .
  • the embodiment of the present invention provides a data transmission method, a base station, a user equipment, and a system, where the base station side can flexibly adjust a frame structure of a time unit within a preset duration, and send the adjusted frame structure to the UE, so that the base station And the UE can perform data transmission between each other based on the adjusted frame structure. Therefore, the problem of implementing dynamic uplink and downlink data transmission according to service requirements is solved. Therefore, the present invention has industrial applicability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Time-Division Multiplex Systems (AREA)

Abstract

公开了一种数据传输方法、基站、用户设备及系统,所述方法包括:调整并确定预设时长内每个时间单元的帧结构;将所述调整后的帧结构通知给用户设备UE;根据调整后的帧结构进行数据的传输。

Description

一种数据传输方法、基站、用户设备及系统 技术领域
本公开涉及通信领域中的传输管理技术,尤其涉及一种数据传输方法、基站、用户设备及系统。
背景技术
5G要解决多样化应用场景带来的一些挑战。例如,对于低时延的这类应用对时延具有较高的指标要求,要为用户提供毫秒级的端到端时延。同时,5G通讯中为了前向兼容支持业务自适应是一个必然趋势,业务自适应指的是允许上下行配置半静态配置或动态配置,从而满足业务负载需求或者匹配业务负载变化。因此,如何支持或实现灵活双工或动态时分双工TDD是首先要解决的一个问题,该问题目前在第三代伙伴计划3GPP标准讨论中还没有展开。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本公开提供一种数据传输方法、基站、用户设备及系统。
本公开的方案是这样实现的:
本发明实施例提供了一种数据传输方法,包括:
调整并确定预设时长内每个时间单元的帧结构;
将所述调整后的帧结构通知给用户设备UE;
根据调整后的帧结构进行数据的传输。
本发明实施例提供了一种数据传输方法,包括:
接收基站发送的调整后的帧结构;
按照调整后的帧结构进行数据传输。
本发明实施例提供了一种基站,所述基站包括:
控制单元,设置为调整并确定预设时长内每个时间单元的帧结构;
通信单元,设置为将所述调整后的帧结构通知给用户设备UE;根据调整后的帧结构进行数据的传输。
本发明实施例提供了一种UE,所述UE包括:
接收单元,设置为接收基站发送的调整后的帧结构;
发送单元,设置为按照调整后的帧结构进行数据传输。
本发明实施例提供了一种数据传输系统,所述系统包括:
基站,设置为调整并确定预设时长内每个时间单元的帧结构;将所述调整后的帧结构通知给用户设备UE;根据调整后的帧结构进行数据的传输;
UE,设置为接收基站发送的调整后的帧结构;按照调整后的帧结构进行数据传输。
本发明实施例提供了一种基站,所述基站包括:存储介质以及处理器;
该存储介质包括一组指令,当执行所述指令时,引起至少一个处理器执行包括以下的操作:
调整并确定预设时长内每个时间单元的帧结构;
将所述调整后的帧结构通知给用户设备UE;
根据调整后的帧结构进行数据的传输。
本发明实施例提供了一种UE,所述UE包括:存储介质以及处理器;
该存储介质包括一组指令,当执行所述指令时,引起至少一个处理器执行包括以下的操作:
接收基站发送的调整后的帧结构;按照调整后的帧结构进行数据传输。
本发明实施例还提供了一种计算机可读存储介质,其上存储有计算机可执行指令,所述计算机可执行指令被处理器执行时实现以上描述的任一方法。
本发明实施例提供了一种数据传输方法、基站、用户设备及系统,基站侧能够灵活的调整预设时长内的时间单元的帧结构,并且将调整后的帧结构发送给UE,以使得基站以及UE相互之间能够基于调整后的帧结构进行数据的传输。因此,解决了根据业务需求实现动态上下行数据发送的问题。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图说明
图1-1为本发明实施例数据传输方法流程示意图一;
图1-2为本发明实施例数据传输方法流程示意图二;
图2-1为本发明实施例提供的资源分配示意图一;
图2-2为本发明实施例提供的资源分配示意图二;
图3为本发明实施例提供的资源分配示意图三;
图4为本发明实施例提供的资源分配示意图四;
图5为本发明实施例数据传输方法流程示意图三;
图6为本发明实施例数据传输方法流程示意图四;
图7-1为本发明实施例提供的基站组成结构示意图;
图7-2为本发明实施例提供的用户设备组成结构示意图;
图7-3为本发明实施例提供的系统组成结构示意图。
具体实施方式
由于动态改变上下行带来的调度及混合自动重传请求HARQ过程的相关问题也要考虑。例如,基站在时隙1发送一个下行链路控制信息DCI调度时隙3和时隙4为上行数据传输,但在时隙2突然来了一个优先级高的下行数据要发送,如一个下行的高可靠超低延时通信URLLC业务的数据包,或者测量到干扰比较强,则为了满足业务需求这个时候基站应如何处理;又例如,基站在连续多个时隙发送下行数据或发送发现参考信号DRS的过程 中,突然有个上行的调度请求要基站立即分配一个上行资源给UE发送一个高优先级的业务数据包,则这个时候基站如何调度,如何通知UE以及对应调度数据的HARQ处理问题都要考虑。因此,不同业务需求下如何实现灵活双工及相关的信令设计,以及对调度及后续HARQ的影响及相应的解决方法都要考虑。
下面结合附图及示例对本公开作详细的说明。
本公开提供了一种数据传输方法,如图1-1所示,包括:
步骤101:调整并确定预设时长内每个时间单元的帧结构;
步骤102:将所述调整后的帧结构通知给用户设备UE;
步骤103:根据调整后的帧结构进行数据的传输。
本公开针对的一个内容为:如何实现灵活双工或动态TDD,上下行配置确定及如何指示。
首先,所述上下行配置通过以下至少之一调整并确定:
数据业务的优先级;
信道或信号或链路的优先级;
根据载波的感知结果;
相邻小区协调;
UE的能力。
配置的所述时间单元包括以下之一:一个子帧、一个时隙、一个迷你时隙mini-slot、m个正交频分复用OFDM符号,其中,m为大于等于1的整数。
然后,将所述调整后的帧结构通知给UE,包括以下至少之一:
通过物理层信令指示调整后的帧结构;
通过高层信令配置调整后的帧结构;
通过多播信令或系统消息通知调整后的帧结构。
例如,基站通过如下至少之一信息通知UE上下行配置或者还包括空白资源:系统信息块SIB、物理广播信道PBCH、无线资源控制RRC、和动态物理层信令如DCI。所述空白资源表征其至少不配置为用于传输数据信息的资源。
调整所述帧结构包括:
配置第一数量个slot或mini-slot或OFDM符号,用于上行预设信息的上行传输;其中,所述预设信息包括以下至少之一:上行确认ACK/不确认NACK、调度请求SR、探测参考信号SRS、前导初始接入、上行重传数据包;
配置第二数量个slot或mini-slot或OFDM符号,用于下行预设信息的下行传输;其中,所述下行预设信息包括以下至少之一:下行控制信道,同步信道,下行广播信道,或DRS信号。
配置第三数量个slot或mini-slot或OFDM符号,作为预留资源或作为空白资源;其中,所述空白资源表征其至少不配置为用于传输数据信息的资源。
也就是说,半静态+动态信令指示的方式。采用以下方式至少之一:
方式一:
相邻两个基站协商然后半静态配置某些时域位置用于下行或上行重要信息的发送。例如,配置某些slot或OFDM符号用于上行ACK/NACK,SR,SRS或者前导初始接入或重传数据包的发送。配置某些slot或OFDM符号用于下行控制信道,同步信道,或类似DRS信号的发送。然后剩余的时域资源基站可以动态指示为上行还是下行或者为空白资源。
方式二:
配置配比集合、或图样、或配比集合和图样,通过动态信令指示配比集合、或图样、或配比集合和图样的索引;半静态配置一些配比集合、或图 样、或配比集合和图样,动态指示索引。
方式三:
配置一个子帧组/时隙组的大小,动态指示每个子帧组/时隙组内每个子帧/时隙的上下行配置。半静态配置一个子帧/时隙组的大小,动态指示每个子帧/时隙组内每个子帧/时隙的上下行配置。
所述上行授权信息包含调度上行数据传输所在的时域位置信息,所述下行授权信息包含调度下行数据传输所在的时域位置信息。
上述基站通过动态指示的方式又包括:
通过调度上行数据的上行授权信息确定上行的时域位置;通过调度下行数据的下行授权信息确定下行的时域位置;
通过下行控制信道的公共搜索空间承载一个下行控制信息指示后续k个slot、或m个迷你时隙的上下行配置信息或者指示为空白资源。
方式一:通过调度上行数据的上行授权信息隐含确定上行数据的时域位置;通过调度下行数据的下行授权信息隐含确定下行数据的时域位置。
方式二:通过下行控制信道的公共搜索空间承载一个下行控制信息指示后续k个slot或mini-slot的上行或下行属性或者指示某个slot为空白;以及混合slot内每个OFDM符号的属性。
该公共控制信息在预定义的或者配置的下行时间单元的控制区域发送,或者在每个下行时间单元都发送。
方式三:通过下行控制信道的专有搜索空间承载一个专有下行控制信息指示后续第t个slot、或第s个迷你时隙的上下行配置属性改变或者指示为空白资源;t,s为正整数。
特别的,对于上下行都包含的混合slot的结构,通过二级指示的方式确定每个符号的上下行或者空白资源。
一级DCI指示每个mini-slot的长度,二级DCI指示每个mini-slot的上下行或空白资源。
特别的,对于载波聚合场景,所述上下行配置动态调整方法适用于所有的小区,且辅小区Scell的上下行配置指示信息通过主小区Pcell的下行控制信道发送,或者仅在本小区的下行控制信道发送。
对于双链接场景,辅小区Scell的上下行配置指示信息还可以通过主辅小区PScell的下行控制信道发送。
本公开针对的另一个内容为:对调度及HARQ影响的处理,可以包括:
将用于下行数据传输的时隙n或时隙n内的mini-slot,调整为用于上行数据传输的时隙n或时隙n内的mini-slot;
将用于上行数据传输的时隙m或时隙m内的mini-slot,调整为用于下行数据传输的时隙m或时隙m内的mini-slot;
将用于下行数据传输的时隙n或时隙n内的mini-slot,调整为空白资源;
将用于上行数据传输的时隙m或时隙m内的mini-slot,调整为空白资源。
例如,原来调度某个下行数据包在时隙n或n内的某个mini-slot传输,由于时隙n或n内的某个mini-slot临时动态调整为上行来发送高优先级的业务或者是为了相邻小区干扰协调,则原来的数据包的处理可以为以下之一:
丢弃原来在时隙n或时隙n内的mini-slot发送的数据,同时指示终端该数据包被破坏,并且该次调度不计算在重传次数内;或者,丢弃原来在时隙m或时隙m内的mini-slot发送的数据,同时指示终端该数据包被破坏,并且该次调度不计算在重传次数内;
以减小的功率或降低调制编码方式MCS发送原来在时隙n或时隙n内 的mini-slot所要发送的数据包、以及时隙m或时隙m内的mini-slot所要发送的数据包;
将原来在时隙n或时隙n内的mini-slot所要发送的数据包、或时隙m或时隙m内的mini-slot所要发送的数据包重新调度到其他资源处;将原来在时隙n或时隙n内的mini-slot所要发送的数据包、以及时隙m或时隙m内的mini-slot所要发送的数据包重新调度到其他资源处进行传输;
将原来在时隙n或时隙n内的mini-slot所要发送的数据包、或时隙m或时隙m内的mini-slot所要发送的数据包在预留的资源上进行发送;将原来在时隙n或时隙n内的mini-slot所要发送的数据包、以及时隙m或时隙m内的mini-slot所要发送的数据包在预留的资源上进行发送。上述预留的资源以及其他资源从本质上来讲均可以为时域资源、或频域资源、或时域资源和频域资源,但是其他资源以及预留的资源可以分别为指代不同的资源位置。
也就是说,方法一:直接丢弃原来在该位置发送的数据,同时指示终端该数据包被破坏,避免重传合并的影响。也不反馈ACK/NACK,并且不计算在重传次数内。
方法二:以减小的功率或低的MCS仍然发送这个数据包。
方法三:将该数据包重新调度到其他时域位置,或者其他的频域位置,或者其他的载波。
对于ACK/NACK的反馈处理包括:
当重新指示的数据传输位置在原来ACK/NACK反馈位置的后面,则该DCI信息也包含该数据包对应的ACK/NACK反馈的新的资源位置信息,并将新的数据包位置及对应的ACK/NACK的位置采用联合编码的方式指示。
方式四:基站将该数据包在预留的一些下行资源上进行数据包的发 送。
原来调度某个上行数据包在时隙m或m内的某个mini-slot传输,由于时隙m或m内的某个mini-slot临时动态调整为下行来发送高优先级的业务或者是为了相邻小区干扰协调,则原来的数据包的处理可以为以下之一:
直接放弃原来在该时隙传输的数据包的传输;
UE继续盲检触发发送指示的DCI信息。当再次检测到触发发送的指示信息后,该UE再次将该准备好的数据包在指示的位置进行发送;
或者设置一个定时器,当在定时器时间内接收到新的触发信息再按照指示信息发送,定时器时间内没有收到新的触发信息才放弃该数据包。
所述其他时频资源,包括:物理资源块PRB位置或者新的时隙位置或者还包括一个码本或正交码资源。例如,给原来调度在该位置的UE发送一个触发发送信令指示新的调度位置,包括新的PRB位置或者新的时隙位置或者还包括一个码本或正交码资源。
UE将该数据包在预留的一些上行资源上进行数据包的发送。
对于调度及HARQ定时影响的处理包括:
对于半静态配置调度及反馈定时的场景,根据参考的子帧配置及配置的定时值确定数据传输的子帧;或者原来半静态配置定时切换为动态指示定时;对于动态信令指示定时重新修改定时指示。
其他还包括:对于带宽不同的子带的上下行配置不同,且当相邻两个子带上下行配置不同的时候设置一个保护带。
对于大带宽不同子带的上下行配置可以不同,当相邻两个子带上下行不同的时候,可以用一个保护带来避免临频干扰。且基站通过时频两维的方式通知UE不同子带的上下行配置。
某些信号/信道,例如发现参考信号(DRS)/随机接入信道的前导码 (preamble),在一个发送窗口内发送,为了高优先级的业务发送可以动态调整这些信号的发送位置。
本公开还提供了一种数据传输方法,用于UE,如图1-2所示,所述方法包括:
步骤201:接收基站发送的调整后的帧结构;
步骤202:按照调整后的帧结构进行数据传输。
接收基站发送的调整后的上下行配置信息或帧结构之后,所述方法还包括:
所述UE基于上下行配置信息或帧结构确定对应的时间单元上下行配置信息产生改变,则将原调度的数据包做以下处理:
UE在预定义时间内盲检基站的新的调度信息;
该调度信息通过专有的标识加扰,该调度信息指示将原来的数据包重新调度到其他时域位置,或者其他的频域位置,或者其他的载波,或者其他的码本、或其他的正交码资源;
当在预定义时间内没有检测到该重新调度的控制信息后,该UE放弃该数据的发送或接收,或者该UE在预留的一些资源上进行数据包的发送或接收。
基于上述方案,本公开提供以下示例:
示例1、
本示例对基站如何通知下属的UE链路的方向或上下行属性及空白资源进行详细说明。
基站通过如下至少之一信息通知UE上下行配置。
SIB、PBCH、RRC、和动态物理层信令如DCI。
例如:某个时刻的上下行属性通过以下之一确定:
方式一:系统指定某些固定的时域位置,例如指定某些固定的slot或OFDM符号用于发送上行ACK/NACK,SR,SRS或者前导初始接入或重传数据包。
如,slot1用于发送SR,slot4的最后一个OFDM符号用于发送SRS,slot5用于发送随机接入过程的消息1或前导信号。时隙8的最后一个OFDM符号用于发送ACK/NACK。
同时固定使用某些slot或者OFDM符号用于某些下行数据或信息的发送。
如固定使用slot0的第一个OFDM符号用于下行控制信道的发送,slot4用于发送下行同步信道,slot7用于发送DRS。
然后基站可以动态指示除固定资源之外的剩余的资源为上行还是下行或者为空白资源。
方式二:相邻两个基站协商然后半静态配置某些时域位置用于传输下行数据或上行数据。
例如,小区1和小区2为相邻的两个小区,当这两个小区属于同一个基站的时候,该基站可以根据需求通过高层信令半静态的配置某些时域资源用于传输上行数据或上行数据。
当这两个相邻小区属于不同的基站的时候,这两个基站可以通过空口交互信息,然后将协商后的时域位置的上下行属性通过高层信令通知给小区内的UE。
如,相邻基站协商后确定的相邻两个小区的slot1用于发送SR,slot4的最后一个OFDM符号用于发送SRS,slot5用于发送随机接入过程的消息1或前导信号。时隙8的最后一个OFDM符号用于发送ACK/NACK。slot0的第一个OFDM符号用于下行控制信道的发送,slot4用于发送下 行同步信道,slot7用于发送DRS。
然后基站再根据上下行业务需求进行动态调整或配置剩余的时域资源。
方式三:所有资源都是基站动态指示的。
方式四:一部分资源固定用于上行数据或下行数据传输,一部分资源半静态配置为上行数据或下行数据传输或者空白资源,一部分资源动态指示上行数据或下行数据传输或者空白资源。
其中,上述基站通过动态指示的方式又包括:
方式一:通过调度上行数据的上行授权信息隐含确定上行数据的时域位置;通过调度下行数据的下行授权信息隐含确定下行数据的时域位置。即调度上行数据传输的时域位置为上行数据,调度下行数据传输的位置为下行数据。
所述的上行授权信息和下行授权信息通过下行控制信道的专有搜索空间承载。下行控制信道位于半静态配置或固定的某些slot的前几个OFDM符号。
方式二:通过公共控制信息显示信令通知。
例如,通过下行控制信道的公共搜索空间承载一个下行控制信息指示后续k个slot或mini-slot的上行或下行属性或者某个slot为空白。以及混合slot内每个OFDM符号的属性。
如通过Bitmap指示后续k个slot或mini-slot为上行属性还是下行属性。0代表上行,1代表下行。或者反转代表slot或mini-slot的上下行属性变化了,没反转代表slot或mini-slot的上下行属性没有变化,如果某一个时隙由0变为1则表示改变了上下行属性,否则代表没有改变时隙的属性。
方式三:通过专有控制信息通知哪个时隙配置产生变化。
例如,DCI里面3比特或4比特指示是哪个时隙或迷你时隙的配置发生了改变,1比特指示上下行之间的变化,或者是该资源变为空白资源。如该1比特为0的时候指示该时隙或迷你时隙改变上下行属性,1的时候指示该时隙或迷你时隙为空白资源。
方式四:预定义或高层信令半静态配置一些上下行帧结构图样及基站改变的时隙分配的粒度,然后基站动态指示图样的索引。
例如,半静态配置时隙组的大小为4,然后动态DCI信令通知每4个时隙的上下行配置。通知也可以采用通知上下行配比索引的方式,如下表1所示,每个配比索引对应一个上下行配比,按照先下行时隙再上行时隙的顺序进行一一对应确定每个时隙的配置。且缺少的为空白时隙,如果上下行时隙都有,空白时隙位于下行时隙和上行时隙的中间。
表1
索引 信令 对应的上下行配比
1 000 0∶4
2 001 1∶3
3 010 2∶2
4 011 3∶1
5 100 4∶0
6 101 3∶0
7 110 0∶3
8 111 2∶1
UE通过接收上述的信息确定每个时刻数据的接收或者收发或者资源的预留。
通过上面的方法UE可以准确的知道数据传输的方向,从而正确的接收或发送数据。
示例2、
本示例对帧结构中上下行配置动态改变的情形进行详细的说明。
所述帧结构上下行配置包括预留或配置一些空白资源。
对于子帧或时隙或者mini-slot或几个OFDM的上下行属性动态改变外,基站还可能动态地指示一些空白资源,指示UE在数据发送的过程中这些资源上不能发送任何数据。
这些空白资源对于频域包括连续的n个PRB,对于时域包括一个或多个slot或者时隙内的某个或某些OFDM符号,例如基站在某个时隙的第一个OFDM符号的公共控制信息DCI中通过bitmap的方式指示该slot内包含的7个OFDM符号中剩余的6个OFDM符号中哪些符号要预留或者哪个符号要预留。
关于预留或空白资源位置,用于以下至少之一:
UE在预留的位置不进行数据的接收;
用于站点对干扰进行感知侦听;
用于收发动态调整;
跟传统系统共存;
预留一些资源用于没能发送的数据包的发送;
用于发送多播业务。
该空白符号的位置还可以高层信令半静态配置,频域位置占据带宽内的一部分。
该空白符号的位置可以位于上下行数据传输之间或两个mini-slot中间。
通过配置这些空白资源满足了系统的前向兼容的需求及资源的灵活调整。
基站通知上下行配置还包括:半静态配置一个时隙组大小,然后动态信令指示每个时隙组内的上下行配置。
如附图2-1所示,基站初始配置时隙组的大小为4个时隙。然后动态DCI指示第一个时隙组内上下行的配比为0∶4,且预定义按照先下行时隙再上行时隙的顺序排列。则说明第一个时隙到第四个时隙均为下行。再如DCI指示第二个时隙组内上下行的配比为2∶1,则这四个时隙中第一个为下行,第二个为空白,第三个和第四个为上行。然后又高层信令半静态改变时隙组的大小为2个时隙。并通过动态信令指示第一个时隙组上下行配比为1∶1,则说明第一个时隙为下行,第二个时隙为上行。然后第二个时隙组的上下行配比为2∶0,则说明第一个时隙为下行,第二个时隙为也为下行。
通过该指示方式可以减少信令的开销。
示例3、
本示例对动态TDD的粒度及调整的情形及方法进行说明。
基站通过以下至少之一确定某个时刻的上下行属性:
数据业务的优先级,其中,高优先级的业务优先发送并配置相应的上下行链路属性给该数据包,对于相同业务优先级不同方向的两个数据包通过竞争确定最终链路的方向;
信道或信号的优先级,其中,预定义将不同的信道和信号划分为不同的优先级,优先级高的信道或信号优先发送然后基站广播通知相应的上下行属性,低优先级的信道或信号延迟发送;
对载波的感知结果,其中,根据载波的竞争结果确定上下行数据传输;
相邻小区协调的结果,其中,如相邻小区某个时刻发送一个高优先级的下行数据传输,为了避免给该数据产生跨链路干扰,因此本小区也要配置为下行数据传输;
UE的能力。
动态改变上下行的时隙分配的粒度包括:一个子帧1ms,一个slot的粒度,或者一个mini-slot的粒度。或者n个OFDM符号的粒度,其中n为半静态配置的或者动态信令指示的。
例如,假设mini-slot的长度半静态配置为2个OFDM符号,某个slot的结构如附图2-2所示。Slot的长度为7个OFDM符号,第一个OFDM符号固定用于下行控制信道,并且包含后续3个mimi-slot的上下行属性。例如通过bitmap的方式向用户设备指示调整后的帧结构为011,则表示指示第一个mini-slot为下行,剩余的两个mini-slot为上行。
对于某个系统带宽内不同子带Subband同一个时间段内上下行配置可以不同。例如,某个子帧子带1的上下行配置为配置图样1,子带2的上下行配置为图样2,子带3的上下行配置为图样3。同时子带之间有个保护带。
通过上述方式可以动态调整系统带宽内不同频带不同时间的上下行配置。
示例4、
本示例对上行数据的发送过程中调整为下行的情形进行说明。
基站在时隙0给UE发送一个多slot连续调度的DCI信息,该信息通过UE专有搜索空间承载,例如,如图3所示,连续调度时隙4,5和时隙6进行上行数据包的发送。结果在时隙2的时候,基站突然有了一个下行的优先级高的数据包,例如URLLC包要发送,则基站在时隙3的 common DCI里面发送一个帧结构中时隙上下行配置改变信令,将时隙5改变成下行,然后基站发送下行调度信息调度URLLC数据包在时隙5发送。
当所有UE检测到该公共指示信息后,对于调度在时隙5的UE的数据包进行如下之一处理:
方式一:放弃该数据包在该时隙的传输,直接丢弃。
方式二:该时隙以较低的功率发送该数据包。
方式三:UE继续盲检触发发送指示的DCI信息,其中,当再检测到触发发送的指示信息后,该UE再将该准备好的数据包在指示的位置进行发送。
例如,基站给原来调度在该位置的UE发送一个调度更新信令,该调度更新信令指示新的调度位置,包括新的PRB位置或者新的时隙位置或者还包括一个码本或正交码资源。如将原来调度在slot5的数据包调度到slot6发送,同时可能会配置一个正交码。
方式四:UE将该数据包在预留的一些上行资源上进行数据包的发送。
其中,该预留资源为固定的某些资源或者半静态配置的某些资源。例如slot7为预留的时隙资源用于原来调度数据包没能发送时候的新的发送位置。
然后基站根据指示的新的位置或者预留的资源位置进行数据包的接收。
通过上述方法解决了动态调整上下行配置的情况下数据发送接收的问题。
示例5、
本示例对下行数据的发送过程中调整为上行的情形进行说明。
基站在时隙0的第一个OFDM符号上给UE发送一个多slot连续调度的DCI信息,该信息通过UE专有搜索空间承载,例如如图3所示,连续调度时隙0,1,2和时隙3进行下行数据包的发送。结果在时隙1的时候,基站突然收到一个UE发送的上行的调度请求,要基站立即分配一个上行资源给该UE发送一个高优先级的业务数据包,例如URLLC包要发送,则基站在时隙2的公共下行控制信息里面发送一个上下行改变信令,将时隙2改变成上行。UE接收到该公共信息后对于有高优先级业务的UE可以在该时隙的某些资源上进行感知,如果该资源没有被使用则就可以采用免授权grant-free的方式进行上行数据的发送。或者基站同时在时隙2控制信道的专有搜索空间给发送调度请求的UE发送一个授权信息指示时隙2的某些OFDM符号的某些PRB资源及MCS等调度信息,对于原来调度在该位置的下行数据包,基站可以有如下之一处理:
放弃该数据包的传输,同时UE不再接收该调度的下行数据包,也不反馈ACK/NACK;
以低于原发射功率的功率仍然发送这个数据包;
将该数据包重新调度到其他时域位置,或者其他的频域位置,或者其他的载波;
设置一个时间定时器,如果在该时间定时器内仍然没有接收到重新调度的指示信息,则才丢弃该数据包。
例如,基站给原来调度在该位置的下行数据包对应的UE重新发送一个DCI,通知原来的数据包重新在时隙4进行发送,例如可以为原来位置的k个slot偏移量,其中k=2。
如果重新指示的位置在原来ACK/NACK反馈位置的后面,则该DCI信息可能包含该数据包对应的ACK/NACK反馈的新的资源位置信息。
例如原来指示的时隙2下行数据包对应的ACK/NACK反馈的传输位置在时隙3的最后一个OFDM符号,由于基站时隙2的数据包没有发送,则在时隙3UE反馈NACK或者什么也不反馈。
如果基站重新指示该数据包对应的ACK/NACK反馈的位置为时隙5,则UE在时隙4接收到该数据包后按照新的指示信息在时隙5反馈对应的ACK/NACK。
或者基站将新的数据包位置及对应的ACK/NACK的位置采用联合编码的方式指示。
基站将该数据包在预留的一些下行资源上进行数据包的发送。
其中,该预留资源为固定的某些资源或者半静态配置的某些资源。例如slot7为预留的时隙资源用于原来调度数据包没能发送时候的新的发送位置。
通过上述方法解决了动态调整上下行配置的情况下数据发送接收及反馈的问题。
示例6、
本示例对基站在发送下行同步信号和测量信号的过程中数据调度调整的过程进行说明。
例如,系统定义下行同步信号和信道测量信号可以在一些预定义的时间窗内发送。假设发送的时间窗为2ms包含4个slot,即这些信号可以在一个发送周期内有4个可能的发送位置,或者说可以在4个slot中的任意一个发送。基站可以根据业务优先级的需求动态调整这些信号的发送位置。如附图4所示。基站原来在slot5发送下行同步信号及信道测量信号,例如DRS,突然有个上行的URLLC数据包要发送,则基站可以发送一个公共的DCI信息通知slot5的全部OFDM符号或者部分符号 用于上行URLLC业务,同时将DRS信号延迟到下一个slot发送。
例如预定义随机接入的消息1的发送位置也为预定义的一些时间窗,即系统预留某些资源用于上行前导初始接入的发送。基站如果有下行高优先级的业务发送,则可以发送一个公共的DCI信息通知某些预留的资源用于下行高优先级数据的发送,然后UE可以在时间窗内的其他预留资源上进行接入,接入之前先进行信道感知测量。
示例7、
本示例对数据包ACK/NACK的情况进行说明。
对于上下行数据包的发送动态改变的时候,则会导致对应ACK/NACK playload大小也有可能是动态变化,同时会对ACK/NACK反馈的资源及位置会产生影响。
例如原来某个时刻要反馈m比特的ACK/NACK,中间由于新增的下行数据包对应的ACK/NACK也要在该时刻进行反馈,则ACK/NACK的比特数目会增加。或者基站重新对新增加的下行数据包分配其他的反馈ACK/NACK的时刻。
对于下行数据对应ACK/NACK反馈资源的确定方式包括以下至少之一:
半静态配置某些slot的最后一个OFDM符号或者第一个OFDM符号用于上行ACK/NACK的资源。
例如,某个slot内包含14个OFDM符号,基站原本调度以k(k可以为1或2或4)个OFDM符号为调度单元连续调度了m个数据包,且该m个数据包均要在本slot进行ACK/NACK反馈。
当承载ACK/NACK的上行控制信道的长度为一个slot的时候,资源通过如下之一确定:
方式一:通过跟调度下行数据包对应DCI的位置隐含确定这个或者这些数据包对应ACK/NACK的位置。
方式二:通过基站半静态高层信令配置一个资源集合,然后动态信令指示时频资源。
另外,对于ACK/NACK有效载荷payload大小动态变化的时候,可以采用如下的资源确定方法:高层配置两份资源位置及预定义一个阈值,当ACK/NACK payload大小超过阈值用资源位置1或者用长的上行控制信道PUCCH发送,当小于阈值的时候用资源位置2或者用短的上行控制信道PUCCH发送。
示例8、
本示例对URLLC业务和增强移动宽带eMBB业务复用传输时候的情形进行说明。
假设基站在时隙1的第一个OFDM符号中给UE1发送下行控制信息调度一个下行的eMBB业务连续在时隙1,2,3和时隙4进行数据的传输。然后,在时隙2的时候UE2突然有个上行的URLLC业务要进行调度,则基站在时隙3给UE2发送DCI信息调度上行URLLC数据包的发送,同时基站将原来打算在时隙3发送的eMBB数据包全部去掉,并且在时隙4的最后一个OFDM符号里面发送一个控制信息给UE1通知时隙3上的eMBB数据包被损坏了。然后UE1在接收到该信息后可以对损坏的数据进行干扰消除接收。
通过显示的信令指示避免了整个eMBB数据包的重传,提高了频谱效率。
示例9、
本示例对动态改变上下行对调度及HARQ定时的影响后的解决方法进行说明。
假设基站在时隙n发送一个下行控制信息调度从时隙n+1到时隙n+4四个下行时隙进行下行数据的发送,同时动态信令指示对应的每个时隙承载的数据包的ACK/NACK在时隙n+5进行反馈传输。由于相邻小区或者本小区在时隙n+4有个优先级高的上行数据要发送,为了确保该优先级高的数据包的性能,基站临时发送一个公共DCI信息通知n+4为上行子帧。基站所管理的UE在接收到该信息后在时隙n+4就不再接收下行数据了,原来调度在该位置的下行数据包也不反馈ACK/NACK,同时该次调度的数据传输不计算在最大重传次数内。如果在定时器内接收到新的DCI信息,则按照新的指示位置进行数据包的接收,同时按照指示信息在相应位置反馈ACK/NACK。
示例10、
本示例对URLLC调度及数据传输的过程进行说明。
对于URLLC业务,可以采用基于调度的方式接入,或者采用免调度的方式接入。当初始传输接收错误的时候,对于重传数据包,为了减少时延,UE仍然采用免调度的方式接入,或者UE采用基于调度的方式接入,且指示的传输定时为符号级的,例如,URLLC以1个OFDM符号为单位调度,且相邻两次的调度间隔非常小,相隔一个或两个OFDM符号。调度接入的过程可以为:基站在时隙0的第3个符号发送下行DCI通知UE在符号6进行原来免调度接入重传数据包的发送。所述的资源为基站通过公共的DCI通知的。所有UE接收到该DCI后不会再在该资源发送上行数据,该资源是调度重传的数据包专有的资源,不会有其他UE占用。
另外,对于免调度的UE,当初始传输错误,或者UE在预定义时间内没有接收到基站的ACK,则UE可以按照预定义的跳频图样进行重传。 所述的跳频图样在时域上相隔k个OFDM符号,其中k小于预定义的阈值。频域位置按照随机的位置进行。
或者UE每次自动传输采用不同的正交码,
或者基站在重新调度的时候分配一个自动重传的跳频图样。
通过上述方法来满足低时延业务的要求。
示例11、
本示例对本公开提供的方法用于基站侧的处理过程进行说明。
如附图4所示,首先,基站通过跟相邻站点协商及根据自己的上下行业务需求来确定某个小区的上下行配比。
如果小区1某个时刻要发送一个高优先级的数据包,则这两个小区此时的链路上下行属性以该数据包确定,如果是上行数据包,则该时刻这相邻的两个小区都为上行数据传输,如果是下行的数据包,则该时刻这两个小区都配置成下行数据传输。
结合图5说明本示例对应的基站侧的处理流程:当两个上下行数据包的优先级相同的时候,通过竞争来确定该时刻的上下行属性。
然后,基站将确定后的上下行配比通知给下属的UE。
通知方法包括高层信令、或动态物理层控制信令、或高层信令和动态物理层控制信令。
然后,根据上下行的位置发送下行数据及对上行数据的接收。
期间基站会临时根据业务需求或者测量到的干扰情况动态调整某个时刻的上下行属性或空白资源。
示例12、
本示例对本公开提供的方法用于终端侧的处理过程进行说明。
如附图6所示,首先,终端接收基站发送的相关上下行配置的信息。
然后终端根据配置信息进行数据的发送或接收。
本公开中所述的基站包括基站(Node B)、演进型基站(eNode B)家庭基站(Home Node B)、中继站(Relay Node,RN),宏基站,微基站等。
在上述说明的基础之上,本公开还提供一种基站,如图7-1所示,所述基站包括:
控制单元71,设置为调整并确定预设时长内每个时间单元的帧结构;
通信单元72,设置为将所述调整后的帧结构通知给用户设备UE;根据调整后的帧结构进行数据的传输。
所述时间单元包括以下之一:一个子帧、一个时隙、一个迷你时隙mini-slot、m个OFDM符号,其中,m为大于等于1的整数。
控制单元设置为将所述上下行配置信息或帧结构通知给UE,包括以下至少之一:
通过物理层信令指示;
通过高层信令配置;
通过多播信令或系统消息通知。
控制单元设置为通过以下至少之一调整并确定所述上下行配置:
数据业务的优先级;
信道或信号或链路的优先级;
对载波的感知结果;
相邻小区协调;
UE的能力。
所述调整后的帧结构包括:
配置的第一数量个slot或OFDM符号,用于上行预设信息的上行传输;其中,所述预设信息包括以下至少之一:上行ACK/NACK、SR、SRS、前导初始接入、上行重传数据包;
配置的第二数量个slot或OFDM符号,用于下行预设信息的下行传输;其中,所述下行预设信息包括以下至少之一:下行控制信道,同步信道,或DRS信号。
配置的第三数量个slot或mini-slot或OFDM符号,作为预留资源或作为空白资源;其中,所述空白资源表征其至少不配置为用于传输数据信息的资源。
控制单元设置为执行以下至少之一:
配置配比集合、或图样、或配比集合和图样,通过动态信令指示配比集合、或图样、或配比集合和图样的索引;
配置一个子帧组/时隙组的大小,动态指示每个子帧组/时隙组内每个子帧/时隙的上下行配置。
所述通过物理层信令指示包括:
通过调度上行数据的上行授权信息确定上行的时域位置;通过调度下行数据的下行授权信息确定下行的时域位置;
通过下行控制信道的公共搜索空间承载一个下行控制信息指示后续k个slot、或m个迷你时隙的上下行配置信息或者空白资源。
所述控制单元设置为将用于下行数据传输的时隙n或时隙n内的mini-slot,调整为上行;
将用于上行数据传输的时隙m或时隙m内的mini-slot,调整为下行。
所述控制单元设置为执行以下处理之一:
丢弃原来在时隙n或时隙n内的mini-slot发送的数据,同时指示终端该数据包被破坏,并且该次调度不计算在重传次数内;或者,丢弃原来在时隙 m或时隙m内的mini-slot发送的数据,同时指示终端该数据包被破坏,并且该次调度不计算在重传次数内;
以减小的功率或降低MCS发送原来在时隙n或时隙n内的mini-slot所要发送的数据包、以及时隙m或时隙m内的mini-slot所要发送的数据包;
将原来在时隙n或时隙n内的mini-slot所要发送的数据包、以及时隙m或时隙m内的mini-slot所要发送的数据包重新调度到其他时频资源处;
将原来在时隙n或时隙n内的mini-slot所要发送的数据包、以及时隙m或时隙m内的mini-slot所要发送的数据包在预留的资源上进行发送。
所述其他时频资源,包括:PRB位置或者新的时隙位置或者还包括一个码本或正交码资源。
所述上下行配置还包括:
对于带宽不同的子带的上下行配置不同,且当相邻两个子带上下行配置不同的时候设置一个保护带。
所述控制单元还设置为
将预设类型的信号/信道设置于指定窗口进行发送;
当发送优先级高于所述预设类型的信号/信道时,将优先级高于所述预设类型的所述信号/信道设置于所述指定窗口进行发送。
另外,还提供一种UE,如图7-2所示,所述UE包括:
接收单元81,设置为接收基站发送的调整后的上下行配置信息或帧结构;
发送单元82,设置为按照调整后的上下行配置信息或帧结构进行数据传输。
所述UE还包括:
调整单元83,设置为基于上下行配置信息或帧结构确定对应的时间单元上下行配置信息产生改变,则将原调度的数据包做以下处理之一:
在预定义时间内盲检基站的新的调度信息;
该调度信息通过专有的标识加扰,该调度信息指示将原来的数据包重新调度到其他时域位置,或者其他的频域位置,或者其他的载波;
当在预定义时间内没有检测到该重新调度的控制信息后,该UE放弃该数据的发送或接收,或者该UE在预留的一些资源上进行数据包的发送或接收。
本公开还提供一种指示系统,如图7-3所示,所述系统包括:
基站91,设置为调整并确定预设时长内每个时间单元的帧结构;将所述调整后的帧结构通知给用户设备UE;根据调整后的帧结构进行数据的传输;
UE92,设置为接收基站发送的调整后的上下行配置信息或帧结构;按照调整后的上下行配置信息或帧结构进行数据传输。
本公开提供的一种基站包括:存储介质以及处理器;
该存储介质包括一组指令,当执行所述指令时,引起至少一个处理器执行包括以下的操作:
调整并确定预设时长内每个时间单元的帧结构;
将所述调整后的帧结构通知给用户设备UE;
根据调整后的帧结构进行数据的传输。
本公开提供的一种UE,包括:存储介质以及处理器;该存储介质包括一组指令,当执行所述指令时,引起至少一个处理器执行包括以下的操作:接收基站发送的调整后的帧结构;按照调整后的帧结构进行数据传输。
本发明实施例还提供了一种计算机可读存储介质,其上存储有计算机可执行指令,所述计算机可执行指令被处理器执行时实现以上描述的任一方法。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步 骤、系统、装置中的功能模块/单元可以被实施为软件、固件、硬件及其适当的组合。在硬件实施方式中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由若干物理组件合作执行。某些组件或所有组件可以被实施为由处理器,如数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。
以上所述,仅为本公开的示例性实施例而已,并非用于限定本公开的保护范围。
工业实用性
本发明实施例提供了一种数据传输方法、基站、用户设备及系统,基站侧能够灵活地调整预设时长内的时间单元的帧结构,并且将调整后的帧结构发送给UE,以使得基站以及UE相互之间能够基于调整后的帧结构进行数据的传输。因此,解决了根据业务需求实现动态上下行数据发送的问题。因此本发明具有工业实用性。

Claims (32)

  1. 一种数据传输方法,包括:
    调整并确定预设时长内每个时间单元的帧结构(101);
    将所述调整后的帧结构通知给用户设备UE(102);
    根据调整后的帧结构进行数据的传输(103)。
  2. 根据权利要求1所述的方法,其中,所述时间单元包括以下之一:一个子帧、一个时隙slot、一个迷你时隙mini-slot、m个正交频分复用OFDM符号,其中,m为大于等于1的整数。
  3. 根据权利要求1所述的方法,其中,将所述调整后的帧结构通知给UE(102),包括以下至少之一:
    通过物理层信令指示调整后的帧结构;
    通过高层信令配置调整后的帧结构;
    通过多播信令或系统消息通知调整后的帧结构。
  4. 根据权利要求1所述的方法,其中,通过以下至少之一调整并确定所述帧结构:
    数据业务的优先级;
    信道或信号或链路的优先级;
    对载波的感知结果;
    相邻小区协调;
    UE的能力。
  5. 根据权利要求1所述的方法,其中,调整所述帧结构包括:
    配置第一数量个slot或mini-slot或OFDM符号,用于上行预设信息的上行传输;其中,所述预设信息包括以下至少之一:上行确认ACK/不确认NACK、调度请求SR、探测参考信号SRS、前导初始接入、上行重传数据包;
    配置第二数量个slot或mini-slot或OFDM符号,用于下行预设信息的下行传输;其中,所述下行预设信息包括以下至少之一:下行控制信道,同步信道,下行广播信道,或发现参考信号DRS;
    配置第三数量个slot或mini-slot或OFDM符号,作为预留资源或作为空白资源;其中,所述空白资源表征其至少不配置为用于传输数据信息的资源。
  6. 根据权利要求1所述的方法,其中,所述将调整后的帧结构通知给UE(102),还包括以下至少之一:
    配置配比集合、或图样、或配比集合和图样,通过动态信令指示配比集合、或图样、或配比集合和图样的索引;
    配置一个子帧组/时隙组的大小,动态指示每个子帧组/时隙组内每个子帧/时隙的上下行配置。
  7. 根据权利要求3所述的方法,其中,所述通过物理层信令指示包括:
    通过调度上行数据的上行授权信息确定上行的时域位置;通过调度下行数据的下行授权信息确定下行的时域位置;
    通过下行控制信道的公共搜索空间承载一个公共下行控制信息指示后续k个slot、或m个迷你时隙的上下行配置信息或者指示为空白资源;k,m为正整数;
    通过下行控制信道的专有搜索空间承载一个专有下行控制信息指示后续第t个slot、或第s个迷你时隙的上下行配置属性改变或者指示为空白资源;t,s为正整数。
  8. 根据权利要求7所述的方法,其中,所述上行授权信息包含调度上行数据传输所在的时域位置信息,所述下行授权信息包含调度下行数据传输所在的时域位置信息。
  9. 根据权利要求1所述的方法,其中,所述调整并确定预设时长内每 个时间单元的帧结构(101)还包括以下至少之一:
    将用于下行数据传输的时隙n或时隙n内的mini-slot,调整为用于上行数据传输的时隙n或时隙n内的mini-slot;
    将用于上行数据传输的时隙m或时隙m内的mini-slot,调整为用于下行数据传输的时隙m或时隙m内的mini-slot;
    将用于下行数据传输的时隙n或时隙n内的mini-slot,调整为空白资源;
    将用于上行数据传输的时隙m或时隙m内的mini-slot,调整为空白资源。
  10. 根据权利要求9所述的方法,其中,所述方法还包括以下之一:
    丢弃原来在时隙n或时隙n内的mini-slot发送的数据,同时指示终端该数据包被破坏,并且该次调度不计算在重传次数内;或者,丢弃原来在时隙m或时隙m内的mini-slot发送的数据,并且该次调度不计算在重传次数内;
    以减小的功率或降低调制编码方式MCS发送原来在时隙n或时隙n内的mini-slot所要发送的数据包、以及时隙m或时隙m内的mini-slot所要发送的数据包;
    将原来在时隙n或时隙n内的mini-slot所要发送的数据包、或原来在时隙m或时隙m内的mini-slot所要发送的数据包、或原来在时隙n或时隙n内的mini-slot所要发送的数据包和时隙m或时隙m内的mini-slot所要发送的数据包,重新调度到其他资源处;
    将原来在时隙n或时隙n内的mini-slot所要发送的数据包、或原来在时隙m或时隙m内的mini-slot所要发送的数据包、或原来在时隙n或时隙n内的mini-slot所要发送的数据包和时隙m或时隙m内的mini-slot所要发送的数据包,在预留的资源上进行发送。
  11. 根据权利要求10所述的方法,其中,所述其他资源包括:其他物理资源块PRB位置、或者时隙位置、或者载波、或者一个码本、或正交码 资源。
  12. 根据权利要求1所述的方法,其中,所述调整后的帧结构还包括:
    配置带宽内不同子带的帧结构不同,且当相邻两个子带上下行配置不同的时候设置一个保护带。
  13. 根据权利要求1所述的方法,其中,所述方法还包括:
    将预设类型的信号/信道设置于指定窗口进行发送;
    当发送优先级高于所述预设类型的信号/信道的数据时,将所述数据优先于所述预设类型的所述信号/信道在所述指定窗口进行发送。
  14. 一种数据传输方法,用于UE,包括:
    接收基站发送的调整后的帧结构(201);
    按照调整后的帧结构进行数据传输(202)。
  15. 根据权利要求14所述的方法,其中,接收基站发送的调整后的帧结构(201)之后,所述方法还包括:
    当所述UE基于调整后的帧结构确定对应的时间单元的上下行数据传输产生改变时,则将原调度的数据包做以下处理:
    UE在预定义时间内盲检基站的新的调度信息;
    该调度信息通过专有的标识加扰,该调度信息指示将原来的数据包重新调度到其他时域位置,或者其他的频域位置,或者其他的载波,或者其他的码本、或其他的正交码资源;
    当在预定义时间内没有检测到该重新调度的控制信息后,该UE放弃该数据的发送或接收,或者该UE在预留的资源上进行数据包的发送或接收。
  16. 一种基站,包括:
    控制单元(71),设置为调整并确定预设时长内每个时间单元的帧结构;
    通信单元(72),设置为将所述调整后的帧结构通知给用户设备UE;根据调整后的帧结构进行数据的传输。
  17. 根据权利要求16所述的基站,其中,所述时间单元包括以下之一:一个子帧、一个时隙slot、一个迷你时隙mini-slot、m个正交频分复用OFDM符号,其中,m为大于等于1的整数。
  18. 根据权利要求16所述的基站,其中,所述通信单元(72)设置为将调整后的帧结构通知给UE,包括以下至少之一:
    通过物理层信令指示调整后的帧结构;
    通过高层信令配置调整后的帧结构;
    通过多播信令或系统消息通知调整后的帧结构。
  19. 根据权利要求16所述的基站,其中,所述控制单元(71)设置为通过以下至少之一调整并确定所述帧结构:
    数据业务的优先级;
    信道或信号或链路的优先级;
    对载波的感知结果;
    相邻小区协调;
    UE的能力。
  20. 根据权利要求16所述的基站,其中,所述通信单元(72)设置为调整所述帧结构,包括:
    配置第一数量个slot或mini-slot或OFDM符号,用于上行预设信息的上行传输;其中,所述预设信息包括以下至少之一:上行确认或者不确认ACK/NACK、调度请求SR、探测参考信号SRS、前导初始接入、上行重传数据包;
    配置第二数量个slot或mini-slot或OFDM符号,用于下行预设信息的下行传输;其中,所述下行预设信息包括以下至少之一:下行控制信道,同步信道,下行广播信道,或DRS信号;
    配置第三数量个slot或mini-slot或OFDM符号,作为预留资源或作为 空白资源;其中,所述空白资源表征其至少不配置为用于传输数据信息的资源。
  21. 根据权利要求16所述的基站,其中,所述通信单元(72)设置为执行以下至少之一:
    配置配比集合、或图样、或配比集合和图样,通过动态信令指示配比集合、或图样、或配比集合和图样的索引;
    配置一个子帧组/时隙组的大小,动态指示每个子帧组/时隙组内每个子帧/时隙的上下行配置。
  22. 根据权利要求18所述的基站,其中,所述通过物理层信令指示包括:
    通过调度上行数据的上行授权信息确定上行的时域位置;通过调度下行数据的下行授权信息确定下行的时域位置;
    通过下行控制信道的公共搜索空间承载一个公共下行控制信息指示后续k个slot、或m个迷你时隙的上下行配置信息或者指示为空白资源;k,m为正整数;
    通过下行控制信道的专有搜索空间承载一个专有下行控制信息指示后续第t个slot、或第s个迷你时隙的上下行配置属性改变或者指示为空白资源;t,s为正整数。
  23. 根据权利要求22所述的基站,其中,所述上行授权信息包含调度上行数据传输所在的时域位置信息,所述下行授权信息包含调度下行数据传输所在的时域位置信息。
  24. 根据权利要求16所述的基站,其中,所述控制单元(71)设置为将用于下行数据传输的时隙n或时隙n内的mini-slot,调整为用于上行数据传输的时隙n或时隙n内的mini-slot;
    将用于上行数据传输的时隙m或时隙m内的mini-slot,调整为用于下行数据传输的时隙m或时隙m内的mini-slot;
    将用于下行数据传输的时隙n或时隙n内的mini-slot,调整为空白资源;
    将用于上行数据传输的时隙m或时隙m内的mini-slot,调整为空白资源。
  25. 根据权利要求24所述的基站,其中,所述控制单元(71)设置为执行以下处理之一:
    丢弃原来在时隙n或时隙n内的mini-slot发送的数据,同时指示终端该数据包被破坏,并且该次调度不计算在重传次数内;或者,丢弃原来在时隙m或时隙m内的mini-slot发送的数据,并且该次调度不计算在重传次数内;
    以减小的功率或降低MCS发送原来在时隙n或时隙n内的mini-slot所要发送的数据包、以及时隙m或时隙m内的mini-slot所要发送的数据包;
    将原来在时隙n或时隙n内的mini-slot所要发送的数据包、或原来在时隙m或时隙m内的mini-slot所要发送的数据包、或原来在时隙n或时隙n内的mini-slot所要发送的数据包和时隙m或时隙m内的mini-slot所要发送的数据包,重新调度到其他资源处;
    将原来在时隙n或时隙n内的mini-slot所要发送的数据包、或原来在时隙m或时隙m内的mini-slot所要发送的数据包、或原来在时隙n或时隙n内的mini-slot所要发送的数据包和时隙m或时隙m内的mini-slot所要发送的数据包,在预留的资源上进行发送;
    其中,所述其他资源,包括:其他PRB位置、或者时隙位置、或者载波、或者一个码本、或正交码资源。
  26. 根据权利要求16所述的基站,其中,所述调整后的帧结构还包括:
    配置带宽内不同子带的上下行配置不同,且当相邻两个子带上下行配置 不同的时候设置一个保护带。
  27. 根据权利要求16所述的基站,其中,
    所述控制单元(71)还设置为将预设类型的信号/信道设置于指定窗口进行发送;当发送优先级高于所述预设类型的信号/信道的数据时,将所述数据优先于所述预设类型的所述信号/信道在所述指定窗口进行发送。
  28. 一种UE,包括:
    接收单元(81),设置为接收基站发送的调整后的帧结构;
    发送单元(82),设置为按照调整后的帧结构进行数据传输。
  29. 根据权利要求28所述的UE,其中,所述UE还包括:
    调整单元(83),设置为基于调整后的帧结构确定对应的时间单元上下行数据传输产生改变,则将原调度的数据包做以下处理:
    在预定义时间内盲检基站的新的调度信息;
    该调度信息通过专有的标识加扰,该调度信息指示将原来的数据包重新调度到其他时域位置,或者其他的频域位置,或者其他的载波,或者其他的码本、或其他的正交码资源;
    当在预定义时间内没有检测到该重新调度的控制信息后,该UE放弃该数据的发送或接收,或者该UE在预留的资源上进行数据包的发送或接收。
  30. 一种数据传输系统,包括:
    基站(91),设置为调整并确定预设时长内每个时间单元的帧结构;将所述调整后的帧结构通知给用户设备UE;根据调整后的帧结构进行数据的传输;
    UE(92),设置为接收基站发送的调整后的帧结构;按照调整后的帧结构进行数据传输。
  31. 一种基站,包括:存储介质以及处理器;
    该存储介质包括一组指令,当执行所述指令时,引起至少一个处理器执 行包括以下的操作:
    调整并确定预设时长内每个时间单元的帧结构;
    将所述调整后的帧结构通知给用户设备UE;
    根据调整后的帧结构进行数据的传输。
  32. 一种UE,包括:存储介质以及处理器;
    该存储介质包括一组指令,当执行所述指令时,引起至少一个处理器执行包括以下的操作:
    接收基站发送的调整后的帧结构;按照调整后的帧结构进行数据传输。
PCT/CN2017/107368 2016-11-04 2017-10-23 一种数据传输方法、基站、用户设备及系统 WO2018082468A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019522943A JP6987858B2 (ja) 2016-11-04 2017-10-23 データ伝送方法、基地局、ユーザ機器およびシステム
US16/347,380 US11044038B2 (en) 2016-11-04 2017-10-23 Data transmission method, base station, user equipment, and system
EP17868352.0A EP3537633B1 (en) 2016-11-04 2017-10-23 Data transmission method, base station and user equipment
US17/353,465 US11863313B2 (en) 2016-11-04 2021-06-21 Data transmission method, base station, user equipment, and system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610966244.4 2016-11-04
CN201610966244.4A CN108023671B (zh) 2016-11-04 2016-11-04 一种数据传输方法、基站、用户设备及系统

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/347,380 A-371-Of-International US11044038B2 (en) 2016-11-04 2017-10-23 Data transmission method, base station, user equipment, and system
US17/353,465 Continuation US11863313B2 (en) 2016-11-04 2021-06-21 Data transmission method, base station, user equipment, and system

Publications (1)

Publication Number Publication Date
WO2018082468A1 true WO2018082468A1 (zh) 2018-05-11

Family

ID=62076673

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/107368 WO2018082468A1 (zh) 2016-11-04 2017-10-23 一种数据传输方法、基站、用户设备及系统

Country Status (5)

Country Link
US (2) US11044038B2 (zh)
EP (1) EP3537633B1 (zh)
JP (1) JP6987858B2 (zh)
CN (2) CN108023671B (zh)
WO (1) WO2018082468A1 (zh)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10523476B2 (en) * 2017-01-11 2019-12-31 Qualcomm Incorporated Signal scrambling sequence techniques for wireless communications
WO2018145019A1 (en) * 2017-02-06 2018-08-09 Intel IP Corporation Transmission of group common pdcch (physical downlink control channel) for nr (new radio)
EP3614760B1 (en) * 2017-05-19 2023-07-12 Huawei Technologies Co., Ltd. Method and apparatus for information transmission
KR20190016767A (ko) * 2017-08-09 2019-02-19 삼성전자주식회사 무선 통신 시스템에서 pdsch를 전송하는 방법 및 장치
BR112020005477A2 (pt) * 2017-09-30 2020-09-29 Guangdong Oppo Mobile Telecommunications Corp., Ltd. método de comunicações sem fio, dispositivo de rede e terminal
WO2019088787A1 (ko) * 2017-11-03 2019-05-09 엘지전자 주식회사 무선 통신 시스템에서 다수의 슬롯 기반 긴 pucch를 송수신하기 위한 방법 및 이를 위한 장치
WO2019098761A1 (ko) * 2017-11-17 2019-05-23 삼성전자 주식회사 무선 통신 시스템에서 제어 정보 송수신 방법 및 장치
US11705982B2 (en) * 2018-01-23 2023-07-18 Qualcomm Incorporated Methods and apparatus for adjusting wireless communication structure
US11171765B2 (en) * 2018-02-15 2021-11-09 Qualcomm Incorporated System and method for indicating preemption of transmissions
US20190261454A1 (en) * 2018-05-11 2019-08-22 Intel Corporation Handling radio resource control (rrc) configured channels and signals with conflict direction
JP2021529456A (ja) 2018-06-26 2021-10-28 オッポ広東移動通信有限公司Guangdong Oppo Mobile Telecommunications Corp., Ltd. 上り信号の伝送方法、端末デバイス及びネットワークデバイス
CN112822784B (zh) * 2018-06-28 2024-03-01 上海朗帛通信技术有限公司 一种被用于无线通信的通信节点中的方法和装置
CN109076497B (zh) 2018-07-04 2022-07-01 北京小米移动软件有限公司 传输信息的方法、装置及基站
CN113727469B (zh) * 2018-08-06 2024-06-14 北京小米移动软件有限公司 信息调度、收发方法及装置、基站和用户设备
CN112586069B (zh) * 2018-08-08 2024-08-02 上海诺基亚贝尔股份有限公司 非调度传输的资源向调度传输的分配
CN110535568B (zh) 2018-08-10 2022-05-03 中兴通讯股份有限公司 应答接收及发送方法、重传方法、通信设备及存储介质
CN110913481B (zh) * 2018-09-17 2023-02-10 华为技术有限公司 数据传输方法及通信装置
CN110958697B (zh) * 2018-09-27 2023-07-18 中兴通讯股份有限公司 帧结构的配置方法及装置、存储介质
CN109462893B (zh) * 2018-11-30 2023-04-07 应急管理部沈阳消防研究所 针对1d调度多u帧结构提高上行资源利用率的dci子帧均衡分配方法
US11252772B2 (en) * 2019-01-03 2022-02-15 Qualcomm Incorporated Single transmitter switching for dual connectivity
CN111756508B (zh) * 2019-03-29 2023-04-18 华为技术有限公司 一种通信方法及装置
WO2020223976A1 (zh) * 2019-05-09 2020-11-12 Oppo广东移动通信有限公司 无线通信方法、终端设备和网络设备
CN112055328B (zh) * 2019-06-06 2021-09-24 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN114270895A (zh) * 2019-08-16 2022-04-01 Lg电子株式会社 用于在支持物联网的无线通信系统中发送/接收下行链路信息的方法及其装置
CN110621072B (zh) * 2019-09-29 2023-05-16 京信网络系统股份有限公司 资源调度方法、装置、基站设备和存储介质
US11832217B2 (en) * 2019-09-30 2023-11-28 Qualcomm Incorporated Sidelink feedback transmission in resource pool
CN110708146B (zh) * 2019-11-22 2022-06-21 北京紫光展锐通信技术有限公司 Harq-ack信息反馈方法及装置
WO2021168243A1 (en) * 2020-02-20 2021-08-26 Atc Technologies, Llc Cdma-ia network concept of operations and media access control (mac) layer
US11382131B2 (en) * 2020-05-05 2022-07-05 Telefonaktiebolaget Lm Ericsson (Publ) Data signaling for high frequency networks
CN114071501A (zh) * 2020-08-05 2022-02-18 维沃移动通信有限公司 下行传输方法、下行传输装置、终端及网络侧设备
US20230155873A1 (en) * 2020-08-05 2023-05-18 Apple Inc. Systems and Methods for Base station configuration of PDCCH Monitoring in a wireless device
CN113207168B (zh) * 2021-07-06 2021-09-24 军事科学院系统工程研究院网络信息研究所 一种基于定向波束合成的敏捷接入方法及系统
WO2023242938A1 (ja) * 2022-06-14 2023-12-21 株式会社エニイワイヤ 制御・監視信号伝送システム

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101399628A (zh) * 2007-09-30 2009-04-01 大唐移动通信设备有限公司 时分双工系统中适应覆盖范围要求的传输方法及装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010102450A1 (zh) * 2009-03-11 2010-09-16 华为技术有限公司 识别不同帧结构的方法、装置和系统
WO2012019321A1 (en) * 2010-08-13 2012-02-16 Telefonaktiebolaget L M Ericsson (Publ) Automatic guard period adjustment in time division duplexed wireless communication
CN102684855A (zh) * 2011-03-11 2012-09-19 北京三星通信技术研究有限公司 一种混合自动重传定时关系的指示方法
CN102158910B (zh) * 2011-04-14 2013-11-20 电信科学技术研究院 一种进行干扰协调的方法、系统和设备
KR20130005192A (ko) * 2011-07-05 2013-01-15 주식회사 팬택 Tdd 시스템의 ul harq 수행 방법 및 장치
CN102238737B (zh) * 2011-07-21 2015-07-15 电信科学技术研究院 Ack/nack/sr资源映射方法和设备
JP5856810B2 (ja) 2011-11-02 2016-02-10 シャープ株式会社 基地局装置、移動局装置、無線通信方法、無線通信システムおよび集積回路
CN103391262A (zh) * 2012-05-07 2013-11-13 北京三星通信技术研究有限公司 一种pdsch数据处理方法
CN103687007B (zh) * 2012-09-18 2017-10-20 电信科学技术研究院 一种时隙分配信息的通知、接收的方法和装置
CN118509125A (zh) 2012-09-26 2024-08-16 交互数字专利控股公司 动态tdd上行链路/下行链路配置方法
CN103068050B (zh) * 2012-12-25 2016-12-28 上海无线通信研究中心 一种时分双工系统中基于干扰感知的上下行时隙资源配置方法
CN104105203B (zh) * 2013-04-03 2019-06-25 中兴通讯股份有限公司 上下行资源配置信息处理方法及装置
EP2802091A1 (en) * 2013-05-08 2014-11-12 Panasonic Intellectual Property Corporation of America Flexible TDD uplink-downlink configuration with flexible subframes
WO2015077973A1 (en) * 2013-11-29 2015-06-04 Qualcomm Incorporated Methods and apparatus for interference mitigation in wireless communication system
US20160183232A1 (en) * 2014-12-19 2016-06-23 Futurewei Technologies, Inc. System and Method for Interference Coordination in Cellular Millimeter Wave Communications Systems
JP6743826B2 (ja) * 2015-09-30 2020-08-19 日本電気株式会社 通信端末、基地局、監視方法、及びプログラム
US10334594B2 (en) 2016-11-04 2019-06-25 Qualcomm Incorporated Ultra-reliable low-latency communication mini-slot control

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101399628A (zh) * 2007-09-30 2009-04-01 大唐移动通信设备有限公司 时分双工系统中适应覆盖范围要求的传输方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZTE MICROELECTRONICS: "URLLC and eMBB frame structure and multiplexing", 3GPP TSG RAN WG1 MEETING #86, no. R1-1608957, 2016, XP051159212 *

Also Published As

Publication number Publication date
EP3537633B1 (en) 2023-08-16
US20210314083A1 (en) 2021-10-07
JP2019537888A (ja) 2019-12-26
US11863313B2 (en) 2024-01-02
EP3537633A4 (en) 2020-07-01
US20200052811A1 (en) 2020-02-13
JP6987858B2 (ja) 2022-01-05
EP3537633A1 (en) 2019-09-11
CN115379573A (zh) 2022-11-22
CN108023671B (zh) 2022-03-29
US11044038B2 (en) 2021-06-22
CN108023671A (zh) 2018-05-11

Similar Documents

Publication Publication Date Title
WO2018082468A1 (zh) 一种数据传输方法、基站、用户设备及系统
US11272538B2 (en) Method, device, and system for transmitting information and computer storage medium
US10574421B2 (en) Method and apparatus for scheduling uplink transmissions with reduced latency
US10278136B2 (en) Method and apparatus for scheduling uplink transmissions with reduced latency
US10813150B2 (en) Method and apparatus for scheduling uplink transmissions with reduced latency
CN108811120B (zh) 数据传输方法及装置
WO2018103702A1 (zh) 一种上行信息处理的方法及装置
WO2018126932A1 (zh) 数据传输方法、装置及存储介质
US10863487B2 (en) Uplink control channel sending method, uplink control channel receiving method, and apparatus
EP3338391B1 (en) Telecommunications apparatuses and methods
JP6702603B2 (ja) クリアチャネルアセスメントにおけるコンテンションウィンドウサイズを決定するための方法および装置
US11405948B2 (en) Joint resource pools for uplink communications
CN115379587A (zh) 用于处理下一代通信系统中的冲突的方法和设备
EP3968561A1 (en) Radio access node, communication terminal and methods performed therein
CN112534907A (zh) 用于在无线通信网络中通信的设备和方法
US11683787B2 (en) Method and apparatus of handling prioritization of signaling for sidelink resource conflict in a wireless communication system
CN116438871A (zh) 在无线通信系统中选择资源的方法和装置
US11825297B2 (en) Method and apparatus of handling control signaling for inter-user equipment (UE) coordination information in a wireless communication system
US20230354302A1 (en) Method and apparatus of scheduling request for sidelink communication in multiple carriers in a wireless communication system
CN118510007A (zh) 一种旁路传输的资源确定方法和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17868352

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019522943

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017868352

Country of ref document: EP

Effective date: 20190604