WO2019088787A1 - 무선 통신 시스템에서 다수의 슬롯 기반 긴 pucch를 송수신하기 위한 방법 및 이를 위한 장치 - Google Patents

무선 통신 시스템에서 다수의 슬롯 기반 긴 pucch를 송수신하기 위한 방법 및 이를 위한 장치 Download PDF

Info

Publication number
WO2019088787A1
WO2019088787A1 PCT/KR2018/013330 KR2018013330W WO2019088787A1 WO 2019088787 A1 WO2019088787 A1 WO 2019088787A1 KR 2018013330 W KR2018013330 W KR 2018013330W WO 2019088787 A1 WO2019088787 A1 WO 2019088787A1
Authority
WO
WIPO (PCT)
Prior art keywords
slot
pucch
slots
transmission
transmitting
Prior art date
Application number
PCT/KR2018/013330
Other languages
English (en)
French (fr)
Inventor
김재형
양석철
김선욱
박창환
안준기
박한준
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to CN201880071350.3A priority Critical patent/CN111316589B/zh
Priority to EP18874353.8A priority patent/EP3661103B1/en
Priority to CN202211266112.2A priority patent/CN115664614A/zh
Priority to JP2020514561A priority patent/JP7018127B2/ja
Publication of WO2019088787A1 publication Critical patent/WO2019088787A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0016Time-frequency-code
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/1469Two-way operation using the same type of signal, i.e. duplex using time-sharing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates generally to wireless communication systems and, more particularly, to a method for transmitting and receiving a multi-slot based long PUCCH (physical uplink control channel) and a device supporting the same.
  • PUCCH physical uplink control channel
  • the mobile communication system has been developed to provide voice service while ensuring the user 's activity.
  • the mobile communication system has expanded the area from voice to data service.
  • Due to an explosion of traffic a shortage of resources is caused and users demand a higher speed service. Therefore, a more advanced mobile communication system is required .
  • next-generation mobile communication system largely depend on the acceptance of explosive data traffic, the dramatic increase in the rate per user, the acceptance of a significantly increased number of connected devices, very low end-to-end latency, Should be able to.
  • a dual connectivity a massive multiple input multiple output (MIMO), an in-band full duplex, a non-orthogonal multiple access (NOMA) wideband support, and device networking.
  • MIMO massive multiple input multiple output
  • NOMA non-orthogonal multiple access
  • the present disclosure provides a method for setting a multi-slot long PUCCH for repeatedly transmitting a long PUCCH based on numerology, slot format indicator, etc. for coverage extension. .
  • the present disclosure provides a method for transmitting a multi-slot based long PUCCH (physical uplink control channel) in a wireless communication system.
  • PUCCH physical uplink control channel
  • a method performed by a terminal includes receiving first information on a time division duplex (UL) downlink (DL) slot configuration from a base station; Receiving from the base station second information including a first parameter indicating a number of slots used for PUCCH transmission and a second parameter indicating a PUCCH symbol duration in a PUCCH slot; Determining slots for transmitting the plurality of slot-based long PUCCHs based on the first information and the second information; And transmitting the plurality of slot-based long PUCCHs on the determined slots to the base station.
  • UL time division duplex
  • DL downlink
  • slots for transmitting the plurality of slot-based long PUCCHs are determined by a predetermined number of slots from a set start slot.
  • the predetermined number of slots are characterized by being composed of an UL slot or an unknown slot.
  • the UL slot is characterized in that the number of UL symbols available for intra-slot PUCCH transmission is greater than or equal to the second parameter.
  • the plurality of slot-based long PUCCHs are not transmitted on the specific slot do.
  • the method may further include receiving a slot format indicator (SFI) from the base station for informing a specific TDD UL-DL slot format.
  • SFI slot format indicator
  • the plurality of slot-based long PUCCHs are transmitted using a pre-DFT (discrete fourier transform) orthogonal cover code (OCC).
  • pre-DFT discrete fourier transform
  • OCC orthogonal cover code
  • the plurality of slot-based long PUCCH resources are characterized by pairing an OCC associated with a UCI (uplink control information) part and a cyclic shift (CS) associated with a reference signal .
  • OCC uplink control information
  • CS cyclic shift
  • the present invention relates to a terminal for transmitting a plurality of slots (multi-slot) based long uplink control channel (PUCCH) in a wireless communication system, including a radio frequency (RF) module for transmitting and receiving a radio signal; And a processor operatively coupled to the RF module, the processor receiving first information for a time division duplex (TDD) uplink (DL) slot configuration from a base station; From the base station, second information including a first parameter indicating a number of slots used for PUCCH transmission and a second parameter indicating a PUCCH symbol duration in a PUCCH slot; Determine slots for transmitting the plurality of slot-based long PUCCHs based on the first information and the second information; And to transmit the plurality of slot-based long PUCCHs on the determined slots to the base station.
  • TDD time division duplex
  • DL uplink
  • the processor when the number of UL symbols usable for PUCCH transmission in a specific slot in the determined slots is smaller than the second parameter, the processor prevents the slot-based long PUCCH from being transmitted on the specific slot .
  • the processor is configured to receive a slot format indicator (SFI) for informing a specific TDD UL-DL slot format from the base station.
  • SFI slot format indicator
  • the present specification has the effect of expanding coverage by transmitting a PUCCH using a plurality of slots in a Dynamic TDD situation.
  • FIG. 1 is a diagram showing an example of the overall system structure of NR to which the method suggested in the present specification can be applied.
  • FIG. 2 illustrates a relationship between an uplink frame and a downlink frame in a wireless communication system to which the method proposed in the present invention can be applied.
  • FIG. 3 shows an example of a resource grid supported in a wireless communication system to which the method proposed here can be applied.
  • FIG. 4 shows an example of a self-contained subframe structure to which the method proposed herein can be applied.
  • FIG. 5 is a flowchart illustrating an example of a method of operating a terminal for transmitting a multi-slot-based long PUCCH proposed in the present specification.
  • FIG. 6 is a flowchart illustrating an example of a method of operating a base station for receiving a multi-slot-based long PUCCH proposed in the present specification.
  • FIG. 7 illustrates a block diagram of a wireless communication device to which the methods proposed herein may be applied.
  • FIG. 8 illustrates a block diagram of a communication apparatus according to an embodiment of the present invention.
  • FIG. 9 is a diagram showing an example of an RF module of a wireless communication apparatus to which the method suggested in the present specification can be applied.
  • FIG. 10 is a diagram showing another example of an RF module of a wireless communication apparatus to which the method suggested in the present specification can be applied.
  • a base station has a meaning as a terminal node of a network that directly communicates with a terminal.
  • the specific operation described herein as performed by the base station may be performed by an upper node of the base station, as the case may be. That is, it is apparent that various operations performed for communication with a terminal in a network composed of a plurality of network nodes including a base station can be performed by a network node other than the base station or the base station.
  • 'base station' refers to a term such as a fixed station, a Node B, an evolved NodeB, a base transceiver system (BTS), an access point (AP), a gNB (general NB) Lt; / RTI >
  • a 'terminal' may be fixed or mobile and may be a mobile station (UE), a mobile station (MS), a user terminal (UT), a mobile subscriber station (MSS), a subscriber station (SS) Advanced Mobile Station (WT), Wireless Terminal (WT), Machine-Type Communication (MTC), Machine-to-Machine (M2M), and Device-to-Device (D2D) devices.
  • UE mobile station
  • MS mobile station
  • UT user terminal
  • MSS mobile subscriber station
  • SS Subscriber station
  • WT Wireless Terminal
  • MTC Machine-Type Communication
  • M2M Machine-to-Machine
  • D2D Device-to-Device
  • a downlink means communication from a base station to a terminal
  • an uplink means communication from a terminal to a base station.
  • the transmitter may be part of the base station, and the receiver may be part of the terminal.
  • the transmitter may be part of the terminal and the receiver may be part of the base station.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC- single carrier frequency division multiple access
  • CDMA can be implemented with radio technology such as universal terrestrial radio access (UTRA) or CDMA2000.
  • TDMA can be implemented with wireless technologies such as global system for mobile communications (GSM) / general packet radio service (GPRS) / enhanced data rates for GSM evolution (EDGE).
  • OFDMA can be implemented with wireless technologies such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, and evolved UTRA (E-UTRA).
  • UTRA is part of the universal mobile telecommunications system (UMTS).
  • 3GPP (3rd Generation Partnership Project) LTE (Long Term Evolution) is part of E-UMTS (evolved UMTS) using E-UTRA, adopting OFDMA in downlink and SC-FDMA in uplink.
  • LTE-A (advanced) is the evolution of 3GPP LTE.
  • 5G NR new radio
  • eMBB enhanced mobile broadband
  • mMTC massive machine type communications
  • URLLC ultra-reliable low latency communications
  • V2X vehicle-to-everything
  • the 5G NR standard distinguishes between standalone (SA) and non-standalone (NSA) depending on the co-existence between the NR system and the LTE system.
  • the 5G NR supports various subcarrier spacing, CP-OFDM in the downlink, CP-OFDM in the uplink, and DFT-s-OFDM (SC-OFDM).
  • Embodiments of the present invention may be supported by standard documents disclosed in at least one of the wireless access systems IEEE 802, 3GPP and 3GPP2. That is, the steps or portions of the embodiments of the present invention which are not described in order to clearly illustrate the technical idea of the present invention can be supported by the documents. In addition, all terms disclosed in this document may be described by the standard document.
  • 3GPP LTE / LTE-A / NR New Radio
  • 3GPP LTE / LTE-A / NR New Radio
  • the eLTE eNB is an eNB evolution that supports connectivity to EPC and NGC.
  • gNB node that supports NR as well as connection to NGC.
  • New RAN A wireless access network that supports NR or E-UTRA or interacts with NGC.
  • Network slice is a network defined by an operator to provide an optimized solution for a specific market scenario that requires specific requirements with end-to-end coverage.
  • Network function is a logical node within a network infrastructure with well-defined external interfaces and well-defined functional behavior.
  • NG-C Control plane interface used for NG2 reference point between new RAN and NGC.
  • NG-U User plane interface used for NG3 reference points between new RAN and NGC.
  • Non-standalone NR A configuration in which gNB requests an LTE eNB as an anchor for EPC control plane connection or an eLTE eNB as an anchor for control plane connection to NGC.
  • Non-stand-alone E-UTRA A deployment configuration in which the eLTE eNB requires the gNB as an anchor for the control plane connection to the NGC.
  • User plane gateway Endpoint of the NG-U interface.
  • FIG. 1 is a diagram showing an example of the overall system structure of NR to which the method suggested in the present specification can be applied.
  • the NG-RAN comprises gNBs providing a control plane (RRC) protocol termination for the NG-RA user plane (new AS sublayer / PDCP / RLC / MAC / PHY) and UE do.
  • RRC control plane
  • the gNBs are interconnected via the Xn interface.
  • the gNB is also connected to the NGC via the NG interface.
  • the gNB is connected to an Access and Mobility Management Function (AMF) through an N2 interface and a UPF (User Plane Function) through an N3 interface.
  • AMF Access and Mobility Management Function
  • UPF User Plane Function
  • the memoryless can be defined by the subcarrier spacing and the CP (Cyclic Prefix) overhead.
  • the plurality of subcarrier intervals are set to a constant N (or alternatively, ) ≪ / RTI >
  • the utilized memoryless can be chosen independently of the frequency band.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the number of OFDM neuron rolls supported in the NR system can be defined as shown in Table 1.
  • the size of the various fields in the time domain is Lt; / RTI > units of time. From here, ego, to be.
  • the downlink and uplink transmissions are And a radio frame having a duration of.
  • FIG. 2 illustrates a relationship between an uplink frame and a downlink frame in a wireless communication system to which the method proposed in the present invention can be applied.
  • the transmission of the uplink frame number i from the User Equipment (UE) is shorter than the start of the corresponding downlink frame in the corresponding UE You have to start before.
  • Not all terminals can transmit and receive at the same time, meaning that not all OFDM symbols of a downlink slot or an uplink slot can be used.
  • Table 2 & , And Table 3 shows the number of OFDM symbols per slot for a normal CP Represents the number of OFDM symbols per slot for an extended CP in the slot.
  • An antenna port, a resource grid, a resource element, a resource block, a carrier part, and the like are associated with a physical resource in the NR system. Can be considered.
  • the antenna port is defined such that the channel on which the symbols on the antenna port are carried can be deduced from the channel on which the other symbols on the same antenna port are carried. If a large-scale property of a channel on which a symbol on one antenna port is carried can be deduced from a channel on which symbols on another antenna port are carried, the two antenna ports may be quasi co-located (QC / QCL) quasi co-location relationship.
  • the broad characteristics include at least one of a delay spread, a Doppler spread, a frequency shift, an average received power, and a received timing.
  • FIG. 3 shows an example of a resource grid supported in a wireless communication system to which the method proposed here can be applied.
  • Subcarriers if the resource grid is in the frequency domain Subcarriers, and one subframe consists of 14 x 2 u OFDM symbols, but is not limited thereto.
  • antenna port p can be set to one resource grid.
  • each element of the resource grid for antenna port p is referred to as a resource element, ≪ / RTI > From here, Is an index in the frequency domain, Quot; refers to the position of a symbol in a subframe.
  • a resource element in a slot From here, to be.
  • a physical resource block is a block in the frequency domain Are defined as consecutive subcarriers. On the frequency domain, .
  • a terminal may be configured to receive or transmit using only a subset of the resource grid. At this time, a set of resource blocks set to be received or transmitted by the UE is set to 0 .
  • a time division duplexing (TDD) structure considered in the NR system is a structure that processes both an uplink (UL) and a downlink (DL) in one subframe. This is to minimize the latency of data transmission in the TDD system, and the structure is referred to as a self-contained subframe structure.
  • FIG. 4 shows an example of a self-contained subframe structure to which the method proposed in this specification can be applied.
  • Fig. 4 is merely for convenience of explanation and does not limit the scope of the present invention.
  • one subframe is composed of 14 orthogonal frequency division multiplexing (OFDM) symbols as in legacy LTE.
  • OFDM orthogonal frequency division multiplexing
  • an area 402 refers to a downlink control region
  • an area 404 refers to an uplink control region.
  • an area other than the area 402 and the area 404 that is, an area without a separate mark
  • the uplink control information and the downlink control information are transmitted in one self-contained subframe.
  • uplink data or downlink data is transmitted in one self-contained subframe.
  • downlink transmission and uplink transmission proceed sequentially, and downlink data transmission and uplink ACK / NACK reception can be performed .
  • a base station eNodeB, eNB, gNB
  • UE terminal
  • a time gap is required for the process of switching from the reception mode to the transmission mode.
  • some OFDM symbol may be set as a guard period (GP).
  • the communication environment considered in the embodiments of the present invention includes all the multi-carrier supporting environments. That is, the multi-carrier system or the carrier aggregation (CA) system used in the present invention refers to a system in which one or more carriers having a bandwidth smaller than a target bandwidth when configuring a target wide- And a component carrier (CC) is aggregated and used.
  • CA carrier aggregation
  • a multi-carrier refers to the merging of carriers (or carrier aggregation), where the merging of carriers means both merging between contiguous carriers as well as merging between non-contiguous carriers.
  • the number of component carriers aggregated between the downlink and the uplink may be set differently.
  • a case in which the number of downlink component carriers (hereinafter, referred to as 'DL CC') and an uplink component carrier (hereinafter referred to as 'UL CC') are the same is referred to as symmetric aggregation, It is called asymmetric aggregation.
  • Such carrier merging can be used interchangeably with terms such as carrier aggregation, bandwidth aggregation, spectrum aggregation, and the like.
  • Carrier merging in which two or more component carriers are combined is aimed at supporting up to 100 MHz bandwidth in the LTE-A system.
  • the bandwidth of the combining carrier can be limited to the bandwidth used in the existing system to maintain backward compatibility with the existing IMT system.
  • the carrier merging system used in the present invention may define a new bandwidth to support carrier merging regardless of the bandwidth used in the existing system.
  • the LTE-A system uses the concept of a cell to manage radio resources.
  • the carrier merging environment described above may be referred to as a multiple cells environment.
  • a cell is defined as a combination of a downlink resource (DL CC) and a pair of uplink resources (UL CC), but the uplink resource is not essential. Therefore, the cell can be composed of downlink resources alone or downlink resources and uplink resources.
  • DL CC downlink resource
  • UL CC uplink resources
  • the cell can be composed of downlink resources alone or downlink resources and uplink resources.
  • DL CC downlink resource
  • UL CC uplink resources
  • DL CC and UL CC may be configured. That is, a carrier merging environment in which UL CC is larger than the number of DL CCs can also be supported when a specific UE has a plurality of set serving cells. That is, carrier aggregation can be understood as the merging of two or more cells, each having a different carrier frequency (center frequency of the cell).
  • the term 'cell' should be distinguished from a 'cell' as an area covered by a commonly used base station.
  • Cells used in the LTE-A system include a primary cell (PCell) and a secondary cell (SCell).
  • PCell primary cell
  • SCell secondary cell
  • P and S cells can be used as Serving Cells.
  • the serving cell (P-cell and S-cell) can be set via the RRC parameter.
  • PhysCellId is the physical layer identifier of the cell and has an integer value from 0 to 503.
  • SCellIndex is a short identifier used to identify the S cell and has an integer value from 1 to 7.
  • ServCellIndex is a short identifier used to identify a serving cell (P-cell or S-cell) and has an integer value from 0 to 7. A value of 0 is applied to P cell, and SCellIndex is given in advance for application to S cell. That is, the cell having the smallest cell ID (or cell index) in the ServCellIndex becomes the P cell.
  • P cell refers to a cell operating on the primary frequency (or primary CC).
  • the UE may be used to perform an initial connection establishment process or to perform a connection re-establishment process, and may refer to a cell indicated in the handover process.
  • P cell means a cell that is the center of control-related communication among the serving cells set in the carrier merging environment. That is, the UE can transmit and receive PUCCHs only in its own P-cell, and can use only P-cells to acquire system information or change the monitoring procedure.
  • Evolved Universal Terrestrial Radio Access uses a RRC connection re-establishment message (RRConnectionReconfiguration) message of an upper layer including mobility control information (mobilityControlInfo) to a UE supporting a carrier merging environment to change only P cells It is possible.
  • RRConnectionReconfiguration RRC connection re-establishment message
  • mobilityControlInfo mobility control information
  • the S-cell may refer to a cell operating on a secondary frequency (or secondary CC). Only one P-cell is allocated to a specific terminal, and one or more S-cells can be allocated.
  • the S-cell is configurable after the RRC connection is established and can be used to provide additional radio resources.
  • the serving cells set in the carrier merging environment there are no PUCCHs in the remaining cells except for the P cell, i.e., the S cell.
  • the E-UTRAN adds an S-cell to a terminal supporting a carrier merging environment, it can provide all the system information related to the operation of the associated cell in the RRC_CONNECTED state through a dedicated signal.
  • the change of the system information can be controlled by releasing and adding the related S cell, and the RRC connection re-establishment message of the upper layer can be used at this time.
  • the E-UTRAN may perform dedicated signaling with different parameters for each UE rather than broadcast within the associated S-cell.
  • the E-UTRAN may configure a network including one or more S cells in addition to the P cell initially configured in the connection establishment process.
  • P-cells and S-cells can operate as respective component carriers.
  • the primary component carrier (PCC) may be used in the same sense as the P cell
  • the secondary component carrier (SCC) may be used in the same meaning as the S cell.
  • the NR system includes a physical uplink control channel (PUCCH), which is a physical channel for transmitting uplink control information (UCI) including information such as HARQ-ACK, scheduling request (SR) .
  • PUCCH physical uplink control channel
  • UCI uplink control information
  • SR scheduling request
  • the PUCCH supports a small PUCCH and a large UCI payload (eg, more than 2 bits and up to hundreds of bits) supporting a small UCI payload (eg, 1 to 2-bit UCI) Supported big PUCCH can be divided into.
  • the Small PUCCH and the Big PUCCH can be further divided into a short PUCCH having a short duration (eg, 1 to 2-symbol duration) and a long PUCCH having a long duration (eg, 4 to 14-symbol duration).
  • a short PUCCH having a short duration eg, 1 to 2-symbol duration
  • a long PUCCH having a long duration eg, 4 to 14-symbol duration
  • Table 4 below shows an example of the PUCCH format.
  • PUCCH formats 1, 3 and 4 may be referred to as long PUCCH, and PUCCH format 0 and 2 may be referred to as short PUCCH.
  • the long PUCCH can be used to transmit medium / large UCI payloads or to improve the coverage of small UCI payloads.
  • the operation of transmitting a long PUCCH using a plurality of slots may include repeatedly transmitting a long PUCCH in a plurality of slots.
  • coverage may be secured through gain by repeated transmission using multi-slot long PUCCH.
  • the LTE system only supports 15 kHz subcarrier spacing except for special cases such as MBMS and NB-IoT
  • the NR system can be used for 15 kHz, 30 kHz, 60 kHz, 120 kHz, 240 kHz and various numerology are supported.
  • numerology refers to subcarrier spacing and cyclic prefix (CP).
  • the present invention proposes a method of configuring and operating the number of slots of a multi-slot long PUCCH in consideration of various numerologies in NR and its coverage effect.
  • the NR system sets a plurality of slot lengths spanned by the multi-slot long PUCCH for each UE considering the difference in path loss due to the location of the UE Can be selected.
  • the number of multi-slot long PUCCH slots X ⁇ x0, x1, x2, x3 ⁇
  • the largest value (e.g., x3) of the number of multi-slot long PUCCH slots X may be set to satisfy at least the maximum coverage / link budget / MCL required in the cell.
  • the intermediate values (e.g., x1, x2) may be set to values less than the largest value (e.g., x3) to allocate the minimum number of slots required in a given situation.
  • the number of slots of a multi-slot long PUCCH can be configured through a UE-specific RRC configuration or a dynamic indication via DCI.
  • a UE-specifically RRC configuration of a plurality of (e.g., four) multi-slot long PUCCH slot lengths, and then dynamically indication through DCI can be considered.
  • the PUCCH coverage is correlated not only with the number of slots in the multi-slot long PUCCH, but also with the long PUCCH duration and the subcarrier spacing.
  • the long PUCCH duration and the subcarrier spacing assumed herein are referred to as a reference long PUCCH duration Lref, a reference subcarrier spacing Sref, and the thus determined number of multi-slot long PUCCH slots are referred to as Xref.
  • the long PUCCH duration and the subcarrier spacing, which are actually used in the long PUCCH transmission in the NR may be equal to or different from the above reference values.
  • the values used for actual transmission are called actual long PUCCH duration L and actual subcarrier spacing S, respectively.
  • the reference or actual long PUCCH duration refers to 1) the total number of symbols combined with the UCI symbols constituting the PUCCH and the DMRS symbols, or 2) the number of UCI symbols used for UCI transmission among the symbols constituting the PUCCH It can mean.
  • NR can support various long PUCCH durations and subcarrier spacing as described above besides Lref and Sref values.
  • a method of configuring the number of multi-slot long PUCCH slots in NR is as follows Lt; / RTI >
  • the long PUCCH duration L may be different from the reference long PUCCH duration Lref.
  • the UE can select one of a plurality of multi-slot long PUCCH slot numbers (e.g., Y, Z, ...) configured according to a long PUCCH duration configured in a separate method.
  • a plurality of multi-slot long PUCCH slot numbers e.g., Y, Z, ...) configured according to a long PUCCH duration configured in a separate method.
  • a multi-slot long PUCCH can be configured by configuring one of the values of the number of selected multi-slot long PUCCH slots by the above-mentioned indication method of multi-slot long PUCCH slot number.
  • a multi-slot long PUCCH slot number Y is selected by the long PUCCH duration L, one of the Y values, e.g., ⁇ y0, y1, y2, y3 ⁇ It can be configured via a dynamic indication through.
  • a slot length of a multi-slot long PUCCH of a plurality may be configured UE-specifically RRC, and then dynamically configured through DCI.
  • the above method has a disadvantage in that signaling overhead is large because a separate multi-slot long PUCCH slot number is set for each long PUCCH duration.
  • the long PUCCH duration is L
  • the number of multi-slot long PUCCH slots corresponding thereto is Y.
  • the UE can obtain Y for the long PUCCH duration that it has configured to itself using L, Lref, and Xref as shown in Equation (2).
  • the integerization may be a ceiling operation such as Equation (3) and Equation (4) to find the smallest value among the integers satisfying the coverage / link budget / MCL.
  • the UE can construct a multi-slot long PUCCH using Y obtained by the above method.
  • ceiling operation may be replaced by other integerization methods such as floor, truncation, and so on.
  • the number of multi-slot long PUCCH slots to be applied to the actual transmission can be set by the following method.
  • the actual number of slots y can be set as shown in equation (5).
  • the PUCCH coverage is correlated not only with the number of slots and the long PUCCH duration in the multi-slot long PUCCH, but also with the subcarrier spacing.
  • the long PUCCH duration is given as the number of symbols, even if the long PUCCH duration is N times, if the transmission power is constant, the absolute time of the long PUCCH length becomes 1 / PUCCH coverage is proportionally reduced.
  • the proportionality is generally inversely proportional to the square of the distance between the transmitter and the receiver
  • the coverage converted to the distance is the transmission energy, that is, the transmission power Inversely proportional to the square of the transmission duration.
  • the distance-converted PUCCH coverage is It doubles.
  • the PUCCH coverage requirements may vary according to the subcarrier spacing. This may be expressed as a maximum TA (maximum timing advance) setting method according to the following subcarrier spacing.
  • max TA may be set for each subcarrier spacing, or may be set to the same max TA value regardless of subcarrier spacing, or may be configured by SIB (System Information Block).
  • SIB System Information Block
  • max TA may be set to have a relationship inversely proportional to the subcarrier spacing or inversely proportional to the square root.
  • Max TA is scaled in inverse proportion to subcarrier spacing (eg, max TA is 1 / N times when subcarrier spacing is N times Sref or , It is expected that the PUCCH coverage according to the subcarrier spacing will be reduced to the same ratio.
  • the UE can construct a multi-slot long PUCCH by applying the same value set on the basis of Sref.
  • the long PUCCH duration L equal to Lref can be obtained by multiplying the long PUCCH duration L
  • the number of multi-slot long PUCCH slots Y can be applied.
  • the UE can construct a multi-slot long PUCCH using Y obtained by Equation (6).
  • the number of multi-slot long PUCCH slots may need to be adjusted considering that coverage is reduced according to subcarrier spacing.
  • the temporal coverage is reduced to the inverse proportion to the square root .
  • the PUCCH transmission power is increased to N times, or the number of multi-slot long PUCCH slots is increased N times in the same PUCCH transmission power so that the PUCCH transmission duration is set to be the same as that of Sref .
  • the UE can obtain Y for the long PUCCH duration L that is configured by the UE using the subcarrier spacing S, Sref, and Xref for the same long PUCCH duration L as Lref.
  • the UE can construct a multi-slot long PUCCH using Y obtained by Equation (7).
  • the max TA is configurable by the SIB, etc.
  • the maximum TA of the reference multi-slot long PUCCH slot number Xref is TAmaxref
  • the configured max TA is TAmax.
  • the received power is generally inversely proportional to the square of the distance between the transmitter and the receiver.
  • the transmission energy must be increased N 2 times.
  • the UE assumes the same PUCCH transmission power as in the Xref determination, and calculates the multi-slot long PUCCH slot number Y for the long PUCCH duration L configured to the UE by using the relation between TAmax and TAmaxref Can be obtained in the same manner as in Equation (8).
  • the UE can obtain the number of multi-slot long PUCCH slots Y with respect to the long PUCCH duration L that it has configured to itself, as in Equation (9).
  • M may have a value of 1 or 2, and may be a value determined in consideration of a path loss situation of a channel and the like.
  • the UE can calculate the multi-slot long PUCCH slot number Y with respect to the long PUCCH duration L configured by the UE using Equation (10).
  • the UE can construct a multi-slot long PUCCH using Y obtained by the method of Equation (10).
  • RRC parameters according to long PUCCH duration and / or subcarrier spacing and / or max TA can be set using the above relational expression.
  • the UE can construct a multi-slot long PUCCH by calculating the number of multi-slot long PUCCH slots from Xref using Equation (11).
  • One of the obtained multi-slot long PUCCH slot number Y values (eg, ⁇ y0, y1, y2, y3 ⁇ ) can be set to '1'.
  • the multi-slot long PUCCH may be turned off by replacing the most value of the Y values with '1' (e.g., ⁇ 1, y1, y2, y3 ⁇ ).
  • '1' is basically supported for the above purpose, and the remaining values can be set to scale with a relation of long PUCCH duration, subcarrier spacing, and max TA as in the above methods.
  • the power of the received signal is an antenna whose power is constant and is proportional to the wavelength of the carrier frequency of the transmitted signal, do.
  • the UE can apply the same value of the multi-slot long PUCCH slot number Y determined at the UL reference carrier frequency.
  • the UE may set the multi-slot long PUCCH slot number Y value for each carrier frequency in consideration of the variation of the antenna size and the received power at the eNB due to the beamforming.
  • the UE may scale the path loss ratio measured by beam to reflect the fact that path loss may be different for each beam when beamforming is applied.
  • the number of multi-slot long PUCCH slots in beam2 transmission can be determined as Y2 using PL2 ratio.
  • the UE has a power limitation and transmits with the same transmission power P
  • the received power of P * PL1 for the signal transmitted to beam1 is P * PL1
  • the received power of beam2 is P * PL2
  • the number of PUCCH slots can be scaled by the ratio of PL1 / PL2.
  • the PUCCH symbol duration L and the PUCCH transmission period or the corresponding multi-slot long PUCCH slot number may be a RRC configured value or a value indicated or determined through the DCI among a plurality of RRC configured candidate values have. (RRC configuration + DCI indication)
  • the actual PUCCH symbol value La in a particular PUCCH slot may be less than L due to a DL symbol or gap period or other UL resources (e.g., short PUCCH, SRS).
  • the La value may be a value dynamically indicated through DCI or the like, or a value determined by another dynamic parameter (s) transmitted through DCI or the like.
  • the La value may be a value indicated or determined by a slot format indicator (SFI) indicating the type of the slot to the UE through the DCI.
  • SFI slot format indicator
  • the PUCCH symbol duration L and the PUCCH transmission period or the corresponding multi-slot long PUCCH slot number are indicated / set by the RRC configuration or the RRC configuration + DCI indication method as described above, Or if the PUCCH symbol duration La that can be transmitted in a specific PUCCH slot dynamically determined by other UL resources (eg, short PUCCH, SRS) is smaller than L, the following method is suggested.
  • Method 1 is to skip PUCCH transmission in the slot.
  • the number of long PUCCH slots actually transmitted is reduced by skipping the PUCCH transmission, compared to the number of multi-slot long PUCCH slots configured by the RRC configuration or the RRC configuration + DCI indication method.
  • Method 2 is a method of skipping PUCCH transmission in a corresponding slot, and extending the number of slots by skip by reflecting the number of slots in the set period or multi-slot long PUCCH slot.
  • the number of multi-slot long PUCCH slots configured by the RRC configuration or the RRC configuration + DCI indication method is the same as the number of long PUCCH slots actually transmitted.
  • the method 3 transmits the PUCCH at the corresponding La symbol duration when the PUCCH symbol duration La is equal to or greater than P% of L or when (L-La) is equal to or less than Q symbols, and when La is less than P% of L , Or (L-La) exceeds Q symbols, the method 1 or 2 is applied.
  • the method 1 or 2 may be applied.
  • UCI coded bits are generated by puncturing (L-La) symbols with L symbols generated, or rate-matched to La symbols or UCI coded bits based on La symbols And mapping / transmission.
  • methods 1 and 2 are applied for the time-domain OCC-based long PUCCH (eg, for up to 2 bits), and for the long PUCCH (eg, more than 2 bits)
  • a method of applying the methods 1, 2, and 3 is also possible.
  • the number of symbols L or La corresponding to the PUCCH symbol duration means the total number of symbols combining the UCI symbols constituting the PUCCH and the DMRS symbols or the number of symbols transmitting the UCI among the symbols constituting the PUCCH .
  • the UE may operate one of the above methods in a higher layer (configure), or may specify in the spec that the UE operates only in one of the above methods.
  • a method of transmitting long PUCCH based on pre-DFT (discrete fourier transform) OCC can be considered.
  • OCC means an orthogonal cover code used for user classification, and may be a Walsh code or a DFT sequence.
  • the OCC length can be set considering the user multiplexing capacity to support and the UCI payload to be transmitted.
  • the UCI payload that can be transmitted on the long PUCCH based on the pre-DFT is inversely proportional to the OCC length.
  • the OCC length can be set to be flexible through higher layer signaling or dynamic indication through DCI considering UCI payload and user multiplexing capacity.
  • RS reference signal
  • the following method can be considered as an orthogonal RS transmission method for channel separation between users.
  • CDM code division multiplexing
  • the CDM transmission method is a method of superposing quasi- orthogonal codes.
  • the orthogonal sequence may be a different time domain cyclic shift (CS) in the same sequence.
  • FDM frequency division multiplexing
  • the FDM transmission method is a method of transmitting using different frequency resources, and the frequency resources can be allocated to each UE continuously (contiguous FDM), or may be transmitted in a comb type (comb type FDM).
  • Method 1-A PUCCH resource definition by pairing OCC (UCI) and comb index (RS)
  • Method 1-B Defining PUCCH resource by pairing OCC (UCI) and contiguous FDM index (RS)
  • the length-N OCC is set in the UCI part and the number of subcarriers used in the PUCCH transmission is NPUCCHSC
  • Method 1-C PUCCH resource definition by pairing OCC (UCI) and CS (RS)
  • Method 1-D Defining PUCCH resources by pairing a combination of OCC (for UCI) and (comb type FDM, CS) (for RS)
  • N Ncomb Ncs.
  • Method 1-E Defining PUCCH resources by pairing a combination of OCC (for UCI) and (contiguous FDM, CS) (for RS)
  • Method 1-A to Method 1-E specify a one-to-one relationship in advance for N UCI OCC indexes and N RS indexes (eg, CS index, comb index, contiguous FDM index) It is a way to make N combinations.
  • N RS indexes eg, CS index, comb index, contiguous FDM index
  • the one-to-one correspondence relationship between the OCC (UCI) and the RS may be fixed in the specification as one of the above methods 1-A to E, or may be configured in one of the above methods by RRC signaling.
  • Method 2 is to define a combination of UCI part and RS as PUCCH resource.
  • method 2 is a method for defining a PUCCH resource so that all or a plurality of RSs can be selected for one OCC.
  • the two indexes may be different comb indexes, different contiguous FDM indexes, or different CS indexes.
  • each symbol OCC is used to support multiplexing between users.
  • the inter-cell interference may be interference between UEs using the same OCC code of different cells.
  • this specification proposes to apply cell-specific symbol- / hop- / slot-level OCC hopping in long PUCCH based on pre-DFT OCC for inter-cell interference randomization in this situation.
  • the cycle of the cell-specific OCC hopping may be a symbol unit or a frequency hop unit or a slot unit inter-slot OCC hopping when frequency hopping is set.
  • the OCC hopping according to the cell-specific symbol- / hop- / slot-level OCC hopping can be performed according to the random hopping pattern classified by the cell.
  • a random hopping pattern generation method induced by a physical cell ID or a virtual cell ID can be used.
  • it can be configured by higher layer signaling to select between physical cell ID and virtual cell ID as a parameter used in the random hopping pattern generation method.
  • UE can transmit UCI information by generating cell-specific symbol- / hop- / slot-level OCC hopping pattern without additional signaling through OCC index, symbol / hop / slot index, .
  • the UE In case of applying the cell-specific symbol- / hop- / slot-level OCC hopping to the UCI in the long PUCCH based on the Pre-DFT OCC, the UE paired the RS with the UCI part (OCC) And generates a PUCCH RS necessary for channel estimation of the UCI transmission channel by referring to the CS / comb index / contiguous FDM index of the RS paired with the OCC (UCI part)
  • the UE can refer to the CS / comb index / contiguous FDM index of the RS set for the OCC (UCI part) allocated to the UE by the method of defining the combination of all of the UCI part and RS as the PUCCH resource. have.
  • RS in case of RS, 1) it is determined that the same RS in the slot is set and the RS is paired with an OCC used for a particular (eg first) symbol or a particular (eg first) frequency hop in the long PUCCH, Or 2) an RS is set per frequency hop and the RS can be determined to be paired with the OCC used for the particular (eg first) symbol in the corresponding frequency hop or frequency hop.
  • a resource is allocated by pre-pairing an OCC (for UCI) and a CS / comb index / contiguous FDM index (for RS)
  • a CS / comb index / the UE performs the contiguous FDM index (for RS) hopping, and the UE acquires OCC information to be applied to the (paired) UCI through the RS hopping information and applies the UCI part to the UCI part.
  • the operation of transmitting a long PUCCH using a plurality of slots may include repeatedly transmitting a long PUCCH in a plurality of slots.
  • TDD may be referred to as unpaired spectrum or frame structure type 2
  • FDD frequency division duplex
  • a 'multi-slot long PUCCH' the transmission of a long PUCCH using a plurality of slots.
  • NR dynamically adapts to changes in the amount of UL (uplink) traffic and / or DL (downlink) traffic, and efficiently supports TDD between different services (eg, low latency service and high data rate service)
  • different services eg, low latency service and high data rate service
  • the DL slot, the UL slot, the unknown slot, and the reserved slot can be semi-static or dynamic in a manner supporting dynamic TDD.
  • the 'reserved slot' is a slot set by TDD with another system or set for use by the gNB for a specific purpose other than DL and / or UL data transmission of the NR, and UL and / or DL data transmission of the NR is allowed It can mean slot not.
  • 'Unknown slot' can be used for the same or similar purpose as reserved slot.
  • 'Unknown slot' means a slot where the gNB supports dynamic DL and / or UL transmission according to need, and can override the slot format.
  • slot formats such as DL / UL / unknown slot can be semi-static or dynamically set by gNB.
  • the slot format thus configured may be indicated to the UE by a semi-static slot format indicator (SFI) (for semi-static configuration) or a dynamic SFI (for dynamic configuration).
  • SFI semi-static slot format indicator
  • dynamic SFI for dynamic configuration
  • the Reserved slot can be semi-static configured by the gNB and can be indicated to the UE by semi-static RRC signaling.
  • the DL / UL / unknown / reserved may be semi-static or dynamically configured in symbol units.
  • a transmission duration of a multi-slot long PUCCH is set by a starting slot and a number of slots
  • the multi-slot long PUCCH may operate in the following manners (options 1-1 to 1-2).
  • Option 1-1 sends the first slot of a multi-slot long PUCCH (regardless of UL or unknown) in the slot designated as the starting slot, and then the (N-1) slot (s) dynamic SFI) to the UL slot.
  • next (N-1) slot (s) may be transmitted only in a slot set to UL by semi-static SFI, or may be set to a slot set to UL by semi-static SFI and additionally set to UL by dynamic SFI slot. < / RTI >
  • (N-1) slot (s) refers to slots to which the multi-slot long PUCCH is transmitted.
  • next (N-1) slot (s) may be transmitted only in a slot set to UL by semi-static SFI, or may be set to a slot set to UL by semi-static SFI and additionally set to UL by dynamic SFI slot. < / RTI >
  • the first slot transmission in options 1-1 and 1-2 can be valid only when the starting slot is set to unknown or UL through semi-static SFI (or dynamic SFI).
  • 'specific slot is set to UL' means that all the symbols in the PUCCH transmission interval in the slot or most symbols are set to UL.
  • the 'specific slot is set to UL' in the above description means that the number of uplink symbols usable for PUCCH transmission in the slot is greater than or equal to the configured PUCCH duration (in symbols) .
  • the number of uplink symbols usable for PUCCH transmission in the slot is smaller than the configured PUCCH duration (in symbols), it is determined that the corresponding slot is not UL or unknown and can operate.
  • the number of the uplink symbols may include only UL symbols or UL symbols and unknown symbols.
  • the corresponding slot may be determined to be neither UL nor unknown.
  • the interval consisting of consecutive uplink symbols that can be used for PUCCH transmission does not completely include the interval according to the configured PUCCH starting symbol index and PUCCH duration (in symbols), it is determined that the corresponding slot is not UL or unknown .
  • the starting slot through which the multi-slot long PUCCH is transmitted is not set to UL via semi-static SFI (or dynamic SFI), or to UL or unknown, the following schemes (Option 2-1 to Option 2- 2).
  • Option 2-1 is a method of transmitting a multi-slot long PUCCH only to N slots set to UL through semi-static SFI (or dynamic SFI) among the subsequent slots including the slot designated as the starting slot.
  • Option 2-2 is a method of transmitting a multi-slot long PUCCH only to N slots set to UL or unknown via semi-static SFI (or dynamic SFI) among the subsequent slots including the slot designated as the starting slot.
  • the meaning that the specific slot is set to UL may mean that all symbols or most symbols in the PUCCH transmission interval in the slot are set to UL.
  • the meaning that the specific slot is set to UL means that the number of uplink symbols usable for PUCCH transmission in the slot is greater than or equal to the configured PUCCH duration (in symbols).
  • the corresponding slot can be determined to be not UL or unknown and operate.
  • the number of the uplink symbols may include only UL symbols or include UL symbols and unknown symbols.
  • the corresponding slot can be determined to be not UL or unknown.
  • the interval set by the consecutive uplink symbols that can be used for the PUCCH transmission does not completely include the interval according to the configured PUCCH starting symbol index and the PUCCH duration (in symbols), it is determined that the corresponding slot is not UL or unknown .
  • a particular method can be set semi-static or dynamically to work with any of the four options discussed above.
  • the DCI indicating the PUCCH transmission For example, through the DCI indicating the PUCCH transmission, which one of the four options is to be applied, which of the options 1-1 and 1-2 is to be applied, or whether the options 2-1 and 2-2 Can be dynamically indicated to the mobile station.
  • the above multi-slot long PUCCH may omit PUCCH transmission for slots set to DL and / or reserved through semi-static SFI (or dynamic SFI).
  • the omitted slot may be counted or not counted in one of the N slots allocated for the PUCCH transmission.
  • the slot to be actually transmitted can be determined by the following steps.
  • the number of transmission slots set in the corresponding multi-slot long PUCCH is N, and the transmission symbol region in the transmission slot can be set (or indicated) from symbols # K1 to K symbols.
  • slot # 0 / # 1 / # 2 / # 3 / # 4 / # 5 / # 6 are all DL symbol / DL symbol / 10 DL symbol / 4 unknown symbol / both unknown symbol / symbol / All UL symbol, slots # 3 / # 4 / # 5 / # 6 may be determined as corresponding multi-slot long PUCCH transmission slots.
  • a second step (step 2) of determining a slot for transmission of a multi-slot long PUCCH is performed by setting a symbol set to unknown by a semi-static DL / UL configuration when dynamic SFI (or group common-PDCCH) (Or semi-static DL / UL configuration is not set) for the DL / unknown / UL slot.
  • Step 1 A long PUCCH transmission may not be performed for that slot, and a rule may be set such that a long PUCCH transmission is performed for that slot.
  • Step 1 in the case of a multi-slot long PUCCH (or a multi-slot PUSCH) indicated by dynamic L1 signaling (eg, DL assignment, UL grant), only Step 1 is applied without applying Step 2, a slot long PUCCH (or multi-slot PUSCH) transmission may be performed.
  • multi-slot long PUCCH eg, scheduling request, periodic CSI transmission or multi-slot PUSCH
  • RRC signaling or a combination of RRC signaling and DCI, eg, semi-persistent transmission
  • multi-slot long PUCCH (or multi-slot PUSCH) transmission may be omitted in some of the N slots.
  • multi-slot long PUCCH transmission can be performed during N slots by always applying Step 1 without applying Step 2 regardless of the trigger means (L1 signaling or RRC signaling).
  • transmission of a (multi-slot) PUSCH may be omitted in some of N slots by applying both step 1 and step 2.
  • the multi-slot long PUCCH transmission operation in the dynamic TDD situation can be similarly applied to the multi-slot PUSCH transmission operation in which the PUSCH is transmitted over a plurality of slots to extend the uplink coverage of the PUSCH.
  • the multi-slot long PUCCH transmission operation can be applied as follows in a multi-slot PDSCH transmission that transmits a PDSCH over a plurality of slots to extend a downlink coverage.
  • the first slot of the multi-slot PDSCH is transmitted in the slot designated as the starting slot (DL or unknown), and then the (N-1) slots are set to DL through the semi-static SFI (or dynamic SFI) Lt; / RTI >
  • (N-1) slots may be transmitted only in a slot set as a semi-static SFI slot, or in a slot set as a DL in a semi-static SFI and in a slot set as a DL in addition to a dynamic SFI.
  • the first slot of the multi-slot PDSCH is transmitted in the slot designated as the starting slot (DL or unknown), and then the (N-1) slots are DL or unknown through the semi-static SFI (or dynamic SFI) It is transmitted only in the set slot.
  • (N-1) slots may be transmitted only in a slot set as a semi-static SFI slot, or in a slot set as a DL in a semi-static SFI and in a slot set as a DL in addition to a dynamic SFI.
  • the first slot transmission can be valid only when the starting slot is set to unknown or DL through semi-static SFI (or dynamic SFI).
  • a specific slot is set to DL, which means that all the symbols of the PDSCH transmission interval in the slot or most symbols are set to DL.
  • the meaning of a specific slot being set to DL may be limited to the case where the number of downlink symbols usable for PDSCH transmission in the slot is equal to or greater than the configured PDSCH duration (in symbols).
  • the corresponding slot can be determined to be neither DL nor unknown.
  • the number of downlink symbols may be a count of only DL symbols, or DL symbols and unknown symbols.
  • the corresponding slot can be determined to be not DL or unknown.
  • the corresponding slot may be determined to be not DL or unknown.
  • the starting slot is not set to DL via semi-static SFI (or dynamic SFI), or to DL or unknown, it may operate in the following manner.
  • it may be transmitted only in the slots set to the DL with the semi-static SFI among the subsequent slots including the slot designated as the starting slot, or to the slot set as DL with the semi-static SFI and also to the slot set as DL with dynamic SFI. have.
  • it may be transmitted only in the slots set to the DL with the semi-static SFI among the following slots including the slot designated as the starting slot, or to the slot set as DL with the semi-static SFI and also to the slot set as DL with dynamic SFI. have.
  • the fact that the specific slot is set to DL may mean that all the symbols of the PDSCH transmission interval in the slot or most symbols are set to DL.
  • the meaning that the specific slot is set to DL may be limited to a case where the number of downlink symbols usable for PDSCH transmission in the slot is equal to or greater than the configured PDSCH duration (in symbols).
  • the corresponding slot can be determined to be neither DL nor unknown.
  • the number of downlink symbols may be a count of only DL symbols, or may include DL symbols and unknown symbols.
  • the corresponding slot may be determined to be neither DL nor unknown.
  • the corresponding slot may be determined to be not DL or unknown.
  • it may be set semi-static or dynamic to operate as one of the above options.
  • the multi-slot PDSCH may omit PDSCH transmission for slots set to UL and / or reserved through a semi-static SFI (or dynamic SFI).
  • the omitted slots may be counted or not counted in one of the N slots allocated for the PDSCH transmission.
  • the PDSCH transmission may mean a PDSCH reception operation in the UE.
  • the multi-slot PDSCH reception operation in the dynamic TDD situation can be similarly applied to the multi-slot PDCCH transmission operation in which the PDCCH is transmitted over a plurality of slots to extend the downlink coverage of the PDCCH.
  • inter-slot frequency hopping may be applied to obtain frequency diversity gain in addition to repetition gain.
  • Inter-slot frequency hopping is an operation that changes the position of a transmission frequency resource every slot to obtain frequency diversity.
  • Inter-slot frequency hopping is possible with random frequency hopping and deterministic methods.
  • the random frequency hopping scheme generates a frequency hopping pattern through a random number generator for each slot.
  • the deterministic frequency hopping scheme can be implemented by, for example, determining a plurality of frequency positions and shifting them to one of the frequency positions determined for each slot.
  • the frequency hopping pattern of the inter-slot frequency hopping can be defined as a function of the slot index.
  • the present invention proposes an inter-slot frequency hopping method.
  • dynamic TDD has limited slots that can transmit PUCCH, and it can also be semi-static or dynamic.
  • the PUCCH transmission is skipped, which means that the PUCCH is considered to have been transmitted and the multi-slot long PUCCH transmission count is counted.
  • hold or defer means that the PUCCH transmission is not counted by the number of transmissions of the multi-slot long PUCCH.
  • a new frequency hopping pattern is generated at every slot index, ns.
  • slot index, ns means an index that counts regardless of slot format (UL / DL / unknown / reserved).
  • the frequency hopping pattern is continuously generated in all slots, but the generated value is not applied to actual frequency hopping.
  • the newly generated frequency hopping pattern value is applied using the corresponding slot index.
  • the frequency diversity gain may not be sufficiently obtained because the PUCCH is transmitted only by the value of f1 or f2.
  • This method generates a new frequency hopping pattern for every UL slot index.
  • UL slot index, ns_u means an index that counts only slots set to UL.
  • the frequency hopping pattern generation is also held (hold) or defer).
  • Method 1 The difference between Method 1 and Method 2 is as follows.
  • the frequency hopping of the frequency f1 and the frequency f2 may be performed even when even or odd slots are set to UL,
  • the frequency diversity gain can be obtained as in the case where all the slots are set to UL.
  • a method for generating a frequency hopping pattern based on a UL slot index based on a semi-static slot format configuration is provided.
  • UL slot index and ns_u_ss are indexes that count only slots set to UL by semi-static slot format configuration.
  • FIG. 5 is a flowchart illustrating an example of a method of operating a terminal for transmitting a multi-slot-based long PUCCH proposed in the present specification.
  • the UE receives first information on a time division duplex (UL) DL (downlink) slot configuration from a base station (S510).
  • UL time division duplex
  • S510 base station
  • the UE receives from the BS second information including a first parameter indicating the number of slots used for PUCCH transmission and a second parameter indicating a PUCCH symbol duration in the PUCCH slot (S520 ).
  • the terminal determines slots for transmitting the plurality of slot-based long PUCCHs based on the first information and the second information (S530).
  • the slots for transmitting the plurality of slot-based long PUCCHs may be determined by a predetermined number of slots from a set start slot.
  • the specific number of slots may be UL slots or unknown slots.
  • the particular number of slots may comprise UL slots or unknown slots.
  • the UL slot may mean a slot in which the number of UL symbols available for PUCCH transmission in a slot is equal to or greater than the second parameter.
  • the terminal transmits the slot-based long PUCCHs to the base station on the determined slots (S540).
  • the multiple slot-based long PUCCHs may not be transmitted on the particular slot.
  • the terminal may receive a slot format indicator (SFI) from the base station for informing a specific TDD UL-DL slot format after step S510.
  • SFI slot format indicator
  • the plurality of slot-based long PUCCHs may be transmitted using a pre-DFT (discrete fourier transform) orthogonal cover code (OCC).
  • pre-DFT discrete fourier transform
  • OCC orthogonal cover code
  • the plurality of slot-based long PUCCH resources may be determined by pairing an OCC associated with a UCI (uplink control information) part and a cyclic shift (CS) associated with a reference signal.
  • OCC uplink control information
  • CS cyclic shift
  • the multi-slot based long PUCCH transmission proposed in the present specification is implemented in a terminal device.
  • a terminal for transmitting a plurality of multi-slot based physical uplink control channels (PUCCHs) in a wireless communication system includes a radio frequency (RF) module for transmitting and receiving radio signals; And a processor operatively coupled to the RF module.
  • RF radio frequency
  • a processor of the UE controls the RF module to receive first information on a time division duplex (UL) downlink (DL) slot configuration from a base station.
  • UL time division duplex
  • DL downlink
  • the processor is further configured to receive second information from the base station, the second information including a first parameter indicating a number of slots used for PUCCH transmission and a second parameter indicating a PUCCH symbol duration in a PUCCH slot, Control the module.
  • the processor determines slots for transmitting the plurality of slot-based long PUCCHs based on the first information and the second information.
  • the slots for transmitting the plurality of slot-based long PUCCHs may be determined by a predetermined number of slots from a set start slot.
  • the specific number of slots may be UL slots or unknown slots.
  • the particular number of slots may comprise UL slots or unknown slots.
  • the UL slot may mean a slot in which the number of UL symbols available for PUCCH transmission in a slot is equal to or greater than the second parameter.
  • the processor then controls the RF module to transmit the plurality of slot-based long PUCCHs to the base station on the determined slots.
  • the multiple slot-based long PUCCHs may not be transmitted on the particular slot.
  • the processor may control the RF module to receive a slot format indicator (SFI) from the base station to inform a particular TDD UL-DL slot format.
  • SFI slot format indicator
  • the plurality of slot-based long PUCCHs may be transmitted using a pre-DFT (discrete fourier transform) orthogonal cover code (OCC).
  • pre-DFT discrete fourier transform
  • OCC orthogonal cover code
  • the plurality of slot-based long PUCCH resources may be determined by pairing an OCC associated with a UCI (uplink control information) part and a cyclic shift (CS) associated with a reference signal.
  • OCC uplink control information
  • CS cyclic shift
  • FIG. 6 is a flowchart illustrating an example of a method of operating a base station for receiving a multi-slot-based long PUCCH proposed in the present specification.
  • the base station transmits first information on a time division duplex (UL) DL (downlink) slot configuration to the UE (S610).
  • UL time division duplex
  • S610 the UE
  • the BS transmits second information including a first parameter indicating the number of slots used for PUCCH transmission and a second parameter indicating a PUCCH symbol duration in the PUCCH slot to the MS (S620 ).
  • the base station receives a long PUCCH from the terminal on a plurality of slots (S630).
  • the plurality of slots may be determined to be a predetermined number of slots from a set start slot.
  • the specific number of slots may be UL slots or unknown slots.
  • the particular number of slots may comprise UL slots or unknown slots.
  • the UL slot may mean a slot in which the number of UL symbols available for PUCCH transmission in a slot is equal to or greater than the second parameter.
  • the long PUCCH may not be received on the particular slot.
  • the BS may transmit a slot format indicator (SFI) to inform the UE of a specific TDD UL-DL slot format.
  • SFI slot format indicator
  • the long PUCCH may be received using a pre-DFT (discrete fourier transform) orthogonal cover code (OCC).
  • pre-DFT discrete fourier transform
  • OCC orthogonal cover code
  • the long PUCCH resource may be determined by pairing an OCC associated with a UCI (uplink control information) part and a cyclic shift (CS) associated with a reference signal.
  • OCC uplink control information
  • CS cyclic shift
  • a base station receiving a plurality of slots (multi-slot) based physical uplink control channels (PUCCHs) in a wireless communication system includes a radio frequency (RF) module for transmitting and receiving radio signals; And a processor operatively coupled to the RF module.
  • RF radio frequency
  • the processor of the base station controls the RF module to transmit first information on a time division duplex (UL) downlink (DL) slot configuration to the terminal.
  • UL time division duplex
  • DL downlink
  • the processor is configured to transmit second information including a first parameter indicating a number of slots used for PUCCH transmission and a second parameter indicating a PUCCH symbol duration in a PUCCH slot to the terminal, Control the module.
  • the base station controls the RF module to receive a long PUCCH from the terminal on a plurality of slots.
  • the plurality of slots may be determined to be a predetermined number of slots from a set start slot.
  • the specific number of slots may be UL slots or unknown slots.
  • the particular number of slots may comprise UL slots or unknown slots.
  • the UL slot may mean a slot in which the number of UL symbols available for PUCCH transmission in a slot is equal to or greater than the second parameter.
  • the long PUCCH may not be received on the particular slot.
  • the processor may control the RF module to transmit a slot format indicator (SFI) to inform the terminal of a specific TDD UL-DL slot format.
  • SFI slot format indicator
  • the long PUCCH may be received using a pre-DFT (discrete fourier transform) orthogonal cover code (OCC).
  • pre-DFT discrete fourier transform
  • OCC orthogonal cover code
  • the long PUCCH resource may be determined by pairing an OCC associated with a UCI (uplink control information) part and a cyclic shift (CS) associated with a reference signal.
  • OCC uplink control information
  • CS cyclic shift
  • FIG. 7 illustrates a block diagram of a wireless communication device to which the methods proposed herein may be applied.
  • a wireless communication system includes a plurality of terminals 720 located in a region of a base station 710 and a base station 710.
  • the BS and the MS may be represented by wireless devices, respectively.
  • the base station 710 includes a processor 711, a memory 712, and a radio frequency module 713.
  • the processor 711 implements the functions, procedures and / or methods suggested in FIGS. 1-6 above.
  • the layers of the air interface protocol may be implemented by a processor.
  • the memory 712 is coupled to the processor and stores various information for driving the processor.
  • the RF module 713 is coupled to the processor to transmit and / or receive wireless signals.
  • the terminal 720 includes a processor 721, a memory 722, and an RF module 723.
  • Processor 721 implements the functions, processes and / or methods suggested in Figures 1-6 above.
  • the layers of the air interface protocol may be implemented by a processor.
  • the memory 722 is coupled to the processor and stores various information for driving the processor.
  • the RF module 723 is coupled to the processor to transmit and / or receive wireless signals.
  • the memories 712 and 722 may be internal or external to the processors 711 and 721 and may be coupled to the processors 711 and 721 in various well known ways.
  • the base station 710 and / or the terminal 720 may have a single antenna or multiple antennas.
  • FIG. 8 illustrates a block diagram of a communication apparatus according to an embodiment of the present invention.
  • FIG. 8 illustrates the terminal of FIG. 7 in more detail.
  • a terminal includes a processor (or a digital signal processor (DSP) 810, an RF module (or RF unit) 835, a power management module 805 An antenna 840, a battery 855, a display 815, a keypad 820, a memory 830, a SIM (Subscriber Identification Module ) card 825 (this configuration is optional), a speaker 845 and a microphone 850.
  • the terminal may also include a single antenna or multiple antennas .
  • Processor 810 implements the functions, processes and / or methods suggested in FIGS. 1-6 above.
  • the layer of the air interface protocol may be implemented by a processor.
  • Memory 830 is coupled to the processor and stores information related to the operation of the processor.
  • the memory may be internal or external to the processor and may be coupled to the processor by any of a variety of well known means.
  • the user inputs command information such as a telephone number or the like by, for example, pressing (or touching) a button on the keypad 820 or by voice activation using the microphone 850.
  • the processor receives such command information and processes it to perform appropriate functions, such as dialing a telephone number. Operational data may be extracted from the sim card 825 or memory.
  • the processor may also display command information or drive information on the display 815 for the user to recognize and for convenience.
  • the RF module 835 is coupled to the processor to transmit and / or receive RF signals.
  • the processor communicates command information to the RF module to transmit, for example, a radio signal that constitutes voice communication data, to initiate communication.
  • the RF module consists of a receiver and a transmitter for receiving and transmitting radio signals.
  • the antenna 840 functions to transmit and receive a radio signal. When receiving a radio signal, the RF module can transmit the signal for processing by the processor and convert the signal to baseband. The processed signal may be converted to audible or readable information output via the speaker 845.
  • FIG. 9 is a diagram showing an example of an RF module of a wireless communication apparatus to which the method suggested in the present specification can be applied.
  • FIG. 9 shows an example of an RF module that can be implemented in an FDD (Frequency Division Duplex) system.
  • FDD Frequency Division Duplex
  • the processor described in FIGS. 7 and 8 processes the data to be transmitted and provides an analog output signal to the transmitter 910.
  • the analog output signal is filtered by a low pass filter (LPF) 911 to remove images caused by a digital-to-analog conversion (ADC) 912) and amplified by a Variable Gain Amplifier (VGA) 913.
  • the amplified signal is filtered by a filter 914 and amplified by a power amplifier Amplifier 950 and is routed through the duplexer (s) 950 / antenna switch (s) 960 and transmitted via the antenna 970.
  • antenna 970 receives signals from the outside and provides received signals that are routed through antenna switch (s) 960 / duplexers 950, .
  • the received signals are amplified by a Low Noise Amplifier (LNA) 923, filtered by a bandpass filter 924, and filtered by a down converter (Mixer 925) And downconverted to the baseband.
  • LNA Low Noise Amplifier
  • the down-converted signal is filtered by a low pass filter (LPF) 926 and amplified by VGA 927 to obtain an analog input signal, which is provided to the processor described in FIGS.
  • LPF low pass filter
  • a local oscillator (LO) generator 940 also provides transmit and receive LO signals to the upconverter 912 and downconverter 925, respectively.
  • phase locked loop (PLL) 930 receives control information from the processor to generate transmit and receive LO signals at appropriate frequencies and provides control signals to LO generator 940.
  • PLL phase locked loop
  • circuits shown in Fig. 9 may be arranged differently from the configuration shown in Fig.
  • FIG. 10 is a diagram showing another example of an RF module of a wireless communication apparatus to which the method suggested in the present specification can be applied.
  • FIG. 10 shows an example of an RF module that can be implemented in a TDD (Time Division Duplex) system.
  • TDD Time Division Duplex
  • the transmitter 1010 and receiver 1020 of the RF module in the TDD system are identical in structure to the transmitter and receiver of the RF module in the FDD system.
  • the signal amplified by the power amplifier (PA) 1015 of the transmitter is routed through a band select switch 1050, a band pass filter (BPF) 1060 and an antenna switch (s) And transmitted through the antenna 1080.
  • PA power amplifier
  • BPF band pass filter
  • s antenna switch
  • antenna 1080 receives signals from the outside and provides received signals that are passed through antenna switch (s) 1070, band pass filter 1060 and band select switch 1050 And is provided to the receiver 1020.
  • Embodiments in accordance with the present invention may be implemented by various means, for example, hardware, firmware, software, or a combination thereof.
  • an embodiment of the present invention may include one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs) field programmable gate arrays, processors, controllers, microcontrollers, microprocessors, and the like.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • an embodiment of the present invention may be implemented in the form of a module, a procedure, a function, or the like which performs the functions or operations described above.
  • the software code can be stored in memory and driven by the processor.
  • the memory is located inside or outside the processor and can exchange data with the processor by various means already known.
  • the present invention is applicable to various wireless communication systems It is possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 명세서는 무선 통신 시스템에서 다수의 슬롯 기반 long PUCCH을 전송하는 방법을 제공한다. 보다 구체적으로, 단말에 의해 수행되는 방법은, TDD UL-DL 슬롯 설정에 대한 제 1 정보를 기지국으로부터 수신하는 단계; PUCCH 전송에 이용되는 슬롯의 개수를 나타내는 제 1 파라미터 및 PUCCH 슬롯 내 PUCCH 심볼 구간을 나타내는 제 2 파라미터를 포함하는 제 2 정보를 상기 기지국으로부터 수신하는 단계; 상기 제 1 정보 및 상기 제 2 정보에 기초하여 상기 다수의 슬롯 기반 long PUCCH를 전송하기 위한 슬롯들을 결정하는 단계; 및 상기 결정된 슬롯들 상에서 상기 다수의 슬롯 기반 long PUCCH를 상기 기지국으로 전송하는 단계를 포함하는 것을 특징으로 한다.

Description

무선 통신 시스템에서 다수의 슬롯 기반 긴 PUCCH를 송수신하기 위한 방법 및 이를 위한 장치
본 명세서는 무선 통신 시스템에 관한 것으로써, 특히 다수의 슬롯(multi-slot) 기반 long PUCCH(physical uplink control channel)를 송수신하기 위한 방법 및 이를 지원하는 장치에 관한 것이다.
이동 통신 시스템은 사용자의 활동성을 보장하면서 음성 서비스를 제공하기 위해 개발되었다. 그러나 이동통신 시스템은 음성뿐 아니라 데이터 서비스까지 영역을 확장하였으며, 현재에는 폭발적인 트래픽의 증가로 인하여 자원의 부족 현상이 야기되고 사용자들이 보다 고속의 서비스를 요구하므로, 보다 발전된 이동 통신 시스템이 요구되고 있다.
차세대 이동 통신 시스템의 요구 조건은 크게 폭발적인 데이터 트래픽의 수용, 사용자 당 전송률의 획기적인 증가, 대폭 증가된 연결 디바이스 개수의 수용, 매우 낮은 단대단 지연(End-to-End Latency), 고에너지 효율을 지원할 수 있어야 한다. 이를 위하여 이중 연결성(Dual Connectivity), 대규모 다중 입출력(Massive MIMO: Massive Multiple Input Multiple Output), 전이중(In-band Full Duplex), 비직교 다중접속(NOMA: Non-Orthogonal Multiple Access), 초광대역(Super wideband) 지원, 단말 네트워킹(Device Networking) 등 다양한 기술들이 연구되고 있다.
본 명세서는 커버리지(coverage) 확장을 위해 뉴머롤러지(numerology), 슬롯 포멧 지시 정보(slot format indicator) 등에 기초하여 long PUCCH를 반복하여 전송하기 위한 multi-slot long PUCCH를 설정하는 방법을 제공함에 목적이 있다.
본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 명세서는 무선 통신 시스템에서 다수의 슬롯(multi-slot) 기반 long PUCCH(physical uplink control channel)을 전송하는 방법을 제공한다.
보다 구체적으로, 단말에 의해 수행되는 방법은, TDD(time division duplex) UL(uplink)-DL(downlink) 슬롯 설정(configuration)에 대한 제 1 정보를 기지국으로부터 수신하는 단계; PUCCH 전송에 이용되는 슬롯의 개수를 나타내는 제 1 파라미터 및 PUCCH 슬롯 내 PUCCH 심볼(symbol) 구간(duration)을 나타내는 제 2 파라미터를 포함하는 제 2 정보를 상기 기지국으로부터 수신하는 단계; 상기 제 1 정보 및 상기 제 2 정보에 기초하여 상기 다수의 슬롯 기반 long PUCCH를 전송하기 위한 슬롯들을 결정하는 단계; 및 상기 결정된 슬롯들 상에서 상기 다수의 슬롯 기반 long PUCCH를 상기 기지국으로 전송하는 단계를 포함하는 것을 특징으로 한다.
또한, 본 명세서에서 상기 다수의 슬롯 기반 long PUCCH를 전송하기 위한 슬롯들은 설정된 시작 슬롯부터 특정 개수의 슬롯만큼 결정되는 것을 특징으로 한다.
또한, 본 명세서에서 상기 특정 개수의 슬롯은 UL 슬롯 또는 알려지지 않은(unknown) 슬롯으로 구성되는 것을 특징으로 한다.
또한, 본 명세서에서 상기 UL 슬롯은 슬롯 내 PUCCH 전송을 위해 이용 가능한 UL 심볼의 개수가 상기 제 2 파라미터보다 크거나 같은 것을 특징으로 한다.
또한, 본 명세서에서 상기 결정된 슬롯들에서 특정 슬롯 내 PUCCH 전송을 위해 이용 가능한 UL 심볼의 개수가 상기 제 2 파라미터보다 작은 경우, 상기 특정 슬롯 상에서 상기 다수의 슬롯 기반 long PUCCH는 전송되지 않는 것을 특징으로 한다.
또한, 본 명세서에서 상기 방법은 특정 TDD UL-DL 슬롯 포맷을 알리기 위한 슬롯 포맷 지시자(slot format indicator, SFI)를 상기 기지국으로부터 수신하는 단계를 더 포함하는 것을 특징으로 한다.
또한, 본 명세서에서 상기 다수의 슬롯 기반 long PUCCH는 pre-DFT(discrete fourier transform) OCC(orthogonal cover code)를 이용하여 전송되는 것을 특징으로 한다.
또한, 본 명세서에서 상기 다수의 슬롯 기반 long PUCCH 자원은 UCI(uplink control information) 파트와 관련된 OCC와 참조 신호(reference signal)와 관련된 cyclic shift(CS)를 페어링(pairing)하여 결정되는 것을 특징으로 한다.
또한, 본 명세서는 무선 통신 시스템에서 다수의 슬롯(multi-slot) 기반 long PUCCH(physical uplink control channel)을 전송하는 단말은, 무선 신호를 송수신하기 위한 RF(Radio Frequency) 모듈; 및 상기 RF 모듈과 기능적으로 연결되어 있는 프로세서를 포함하고, 상기 프로세서는, TDD(time division duplex) UL(uplink)-DL(downlink) 슬롯 설정(configuration)에 대한 제 1 정보를 기지국으로부터 수신하며; PUCCH 전송에 이용되는 슬롯의 개수를 나타내는 제 1 파라미터 및 PUCCH 슬롯 내 PUCCH 심볼(symbol) 구간(duration)을 나타내는 제 2 파라미터를 포함하는 제 2 정보를 상기 기지국으로부터 수신하며; 상기 제 1 정보 및 상기 제 2 정보에 기초하여 상기 다수의 슬롯 기반 long PUCCH를 전송하기 위한 슬롯들을 결정하며; 및 상기 결정된 슬롯들 상에서 상기 다수의 슬롯 기반 long PUCCH를 상기 기지국으로 전송하도록 설정되는 것을 특징으로 한다.
또한, 본 명세서에서 상기 프로세서는 상기 결정된 슬롯들에서 특정 슬롯 내 PUCCH 전송을 위해 이용 가능한 UL 심볼의 개수가 상기 제 2 파라미터보다 작은 경우, 상기 특정 슬롯 상에서 상기 다수의 슬롯 기반 long PUCCH가 전송되지 않도록 설정되는 것을 특징으로 한다.
또한, 본 명세서에서 상기 프로세서는, 특정 TDD UL-DL 슬롯 포맷을 알리기 위한 슬롯 포맷 지시자(slot format indicator, SFI)를 상기 기지국으로부터 수신하도록 설정되는 것을 특징으로 한다.
본 명세서는 Dynamic TDD 상황에서 복수의 슬롯들을 이용하여 PUCCH를 전송함으로써 커버리지를 확장할 수 있다는 효과가 있다.
또한, Pre-DFT OCC기반으로 PUCCH를 전송함으로써, 다중 사용자와 큰 UCI 페이로드를 동시에 지원할 수 있다는 효과가 있다.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도면은 본 발명에 대한 실시 예를 제공하고, 상세한 설명과 함께 본 발명의 기술적 특징을 설명한다.
도 1은 본 명세서에서 제안하는 방법이 적용될 수 있는 NR의 전체적인 시스템 구조의 일례를 나타낸 도이다.
도 2는 본 명세서에서 제안하는 방법이 적용될 수 있는 무선 통신 시스템에서 상향링크 프레임과 하향링크 프레임 간의 관계를 나타낸다.
도 3은 본 명세서에서 제안하는 방법이 적용될 수 있는 무선 통신 시스템에서 지원하는 자원 그리드(resource grid)의 일 예를 나타낸다.
도 4는 본 명세서에서 제안하는 방법이 적용될 수 있는 self-contained 서브프레임 구조의 일례를 나타낸다.
도 5는 본 명세서에서 제안하는 multi-slot 기반 long PUCCH를 전송하기 위한 단말의 동작 방법의 일례를 나타낸 순서도이다.
도 6은 본 명세서에서 제안하는 multi-slot 기반 long PUCCH를 수신하기 위한 기지국의 동작 방법의 일례를 나타낸 순서도이다.
도 7은 본 명세서에서 제안하는 방법들이 적용될 수 있는 무선 통신 장치의 블록 구성도를 예시한다.
도 8은 본 발명의 일 실시 예에 따른 통신 장치의 블록 구성도를 예시한다.
도 9은 본 명세서에서 제안하는 방법이 적용될 수 있는 무선 통신 장치의 RF 모듈의 일례를 나타낸 도이다.
도 10는 본 명세서에서 제안하는 방법이 적용될 수 있는 무선 통신 장치의 RF 모듈의 또 다른 일례를 나타낸 도이다.
이하, 본 발명에 따른 바람직한 실시 형태를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 발명의 예시적인 실시형태를 설명하고자 하는 것이며, 본 발명이 실시될 수 있는 유일한 실시형태를 나타내고자 하는 것이 아니다. 이하의 상세한 설명은 본 발명의 완전한 이해를 제공하기 위해서 구체적 세부사항을 포함한다. 그러나, 당업자는 본 발명이 이러한 구체적 세부사항 없이도 실시될 수 있음을 안다.
몇몇 경우, 본 발명의 개념이 모호해지는 것을 피하기 위하여 공지의 구조 및 장치는 생략되거나, 각 구조 및 장치의 핵심기능을 중심으로 한 블록도 형식으로 도시될 수 있다.
본 명세서에서 기지국은 단말과 직접적으로 통신을 수행하는 네트워크의 종단 노드(terminal node)로서의 의미를 갖는다. 본 문서에서 기지국에 의해 수행되는 것으로 설명된 특정 동작은 경우에 따라서는 기지국의 상위 노드(upper node)에 의해 수행될 수도 있다. 즉, 기지국을 포함하는 다수의 네트워크 노드들(network nodes)로 이루어지는 네트워크에서 단말과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수행될 수 있음은 자명하다. '기지국(BS: Base Station)'은 고정국(fixed station), Node B, eNB(evolved-NodeB), BTS(base transceiver system), 액세스 포인트(AP: Access Point), gNB(general NB) 등의 용어에 의해 대체될 수 있다. 또한, '단말(Terminal)'은 고정되거나 이동성을 가질 수 있으며, UE(User Equipment), MS(Mobile Station), UT(user terminal), MSS(Mobile Subscriber Station), SS(Subscriber Station), AMS(Advanced Mobile Station), WT(Wireless terminal), MTC(Machine-Type Communication) 장치, M2M(Machine-to-Machine) 장치, D2D(Device-to-Device) 장치 등의 용어로 대체될 수 있다.
이하에서, 하향링크(DL: downlink)는 기지국에서 단말로의 통신을 의미하며, 상향링크(UL: uplink)는 단말에서 기지국으로의 통신을 의미한다. 하향링크에서 송신기는 기지국의 일부이고, 수신기는 단말의 일부일 수 있다. 상향링크에서 송신기는 단말의 일부이고, 수신기는 기지국의 일부일 수 있다.
이하의 설명에서 사용되는 특정 용어들은 본 발명의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access), NOMA(non-orthogonal multiple access) 등과 같은 다양한 무선 접속 시스템에 이용될 수 있다. CDMA는 UTRA(universal terrestrial radio access)나 CDMA2000과 같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(global system for mobile communications)/GPRS(general packet radio service)/EDGE(enhanced data rates for GSM evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. UTRA는 UMTS(universal mobile telecommunications system)의 일부이다. 3GPP(3rd generation partnership project) LTE(long term evolution)은 E-UTRA를 사용하는 E-UMTS(evolved UMTS)의 일부로써, 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다. LTE-A(advanced)는 3GPP LTE의 진화이다.
5G NR(new radio)은 usage scenario에 따라 eMBB(enhanced Mobile Broadband), mMTC(massive Machine Type Communications), URLLC(Ultra-Reliable and Low Latency Communications), V2X(vehicle-to-everything)을 정의한다.
그리고, 5G NR 규격(standard)는 NR 시스템과 LTE 시스템 사이의 공존(co-existence)에 따라 standalone(SA)와 non-standalone(NSA)으로 구분한다.
그리고, 5G NR은 다양한 서브캐리어 간격(subcarrier spacing)을 지원하며, 하향링크에서 CP-OFDM을, 상향링크에서 CP-OFDM 및 DFT-s-OFDM(SC-OFDM)을 지원한다.
본 발명의 실시 예들은 무선 접속 시스템들인 IEEE 802, 3GPP 및 3GPP2 중 적어도 하나에 개시된 표준 문서들에 의해 뒷받침될 수 있다. 즉, 본 발명의 실시 예들 중 본 발명의 기술적 사상을 명확히 드러내기 위해 설명하지 않은 단계들 또는 부분들은 상기 문서들에 의해 뒷받침될 수 있다. 또한, 본 문서에서 개시하고 있는 모든 용어들은 상기 표준 문서에 의해 설명될 수 있다.
설명을 명확하게 하기 위해, 3GPP LTE/LTE-A/NR(New Radio)를 위주로 기술하지만 본 발명의 기술적 특징이 이에 제한되는 것은 아니다.
용어 정의
eLTE eNB: eLTE eNB는 EPC 및 NGC에 대한 연결을 지원하는 eNB의 진화(evolution)이다.
gNB: NGC와의 연결뿐만 아니라 NR을 지원하는 노드.
새로운 RAN: NR 또는 E-UTRA를 지원하거나 NGC와 상호 작용하는 무선 액세스 네트워크.
네트워크 슬라이스(network slice): 네트워크 슬라이스는 종단 간 범위와 함께 특정 요구 사항을 요구하는 특정 시장 시나리오에 대해 최적화된 솔루션을 제공하도록 operator에 의해 정의된 네트워크.
네트워크 기능(network function): 네트워크 기능은 잘 정의된 외부 인터페이스와 잘 정의된 기능적 동작을 가진 네트워크 인프라 내에서의 논리적 노드.
NG-C: 새로운 RAN과 NGC 사이의 NG2 레퍼런스 포인트(reference point)에 사용되는 제어 평면 인터페이스.
NG-U: 새로운 RAN과 NGC 사이의 NG3 레퍼런스 포인트(reference point)에 사용되는 사용자 평면 인터페이스.
비 독립형(Non-standalone) NR: gNB가 LTE eNB를 EPC로 제어 플레인 연결을 위한 앵커로 요구하거나 또는 eLTE eNB를 NGC로 제어 플레인 연결을 위한 앵커로 요구하는 배치 구성.
비 독립형 E-UTRA: eLTE eNB가 NGC로 제어 플레인 연결을 위한 앵커로 gNB를 요구하는 배치 구성.
사용자 평면 게이트웨이: NG-U 인터페이스의 종단점.
시스템 일반
도 1은 본 명세서에서 제안하는 방법이 적용될 수 있는 NR의 전체적인 시스템 구조의 일례를 나타낸 도이다.
도 1을 참조하면, NG-RAN은 NG-RA 사용자 평면(새로운 AS sublayer/PDCP/RLC/MAC/PHY) 및 UE(User Equipment)에 대한 제어 평면(RRC) 프로토콜 종단을 제공하는 gNB들로 구성된다.
상기 gNB는 Xn 인터페이스를 통해 상호 연결된다.
상기 gNB는 또한, NG 인터페이스를 통해 NGC로 연결된다.
보다 구체적으로는, 상기 gNB는 N2 인터페이스를 통해 AMF (Access and Mobility Management Function)로, N3 인터페이스를 통해 UPF (User Plane Function)로 연결된다.
NR(New Rat) 뉴머롤로지(Numerology) 및 프레임(frame) 구조
NR 시스템에서는 다수의 뉴머롤로지(numerology)들이 지원될 수 있다. 여기에서, 뉴머롤로지는 서브캐리어 간격(subcarrier spacing)과 CP(Cyclic Prefix) 오버헤드에 의해 정의될 수 있다. 이 때, 다수의 서브캐리어 간격은 기본 서브캐리어 간격을 정수 N(또는,
Figure PCTKR2018013330-appb-I000001
)으로 스케일링(scaling) 함으로써 유도될 수 있다. 또한, 매우 높은 반송파 주파수에서 매우 낮은 서브캐리어 간격을 이용하지 않는다고 가정될지라도, 이용되는 뉴머롤로지는 주파수 대역과 독립적으로 선택될 수 있다.
또한, NR 시스템에서는 다수의 뉴머롤로지에 따른 다양한 프레임 구조들이 지원될 수 있다.
이하, NR 시스템에서 고려될 수 있는 OFDM(Orthogonal Frequency Division Multiplexing) 뉴머롤로지 및 프레임 구조를 살펴본다.
NR 시스템에서 지원되는 다수의 OFDM 뉴머롤로지들은 표 1과 같이 정의될 수 있다.
Figure PCTKR2018013330-appb-T000001
NR 시스템에서의 프레임 구조(frame structure)와 관련하여, 시간 영역의 다양한 필드의 크기는
Figure PCTKR2018013330-appb-I000002
의 시간 단위의 배수로 표현된다. 여기에서,
Figure PCTKR2018013330-appb-I000003
이고,
Figure PCTKR2018013330-appb-I000004
이다. 하향링크(downlink) 및 상향링크(uplink) 전송은
Figure PCTKR2018013330-appb-I000005
의 구간을 가지는 무선 프레임(radio frame)으로 구성된다. 여기에서, 무선 프레임은 각각
Figure PCTKR2018013330-appb-I000006
의 구간을 가지는 10 개의 서브프레임(subframe)들로 구성된다. 이 경우, 상향링크에 대한 한 세트의 프레임들 및 하향링크에 대한 한 세트의 프레임들이 존재할 수 있다.
도 2는 본 명세서에서 제안하는 방법이 적용될 수 있는 무선 통신 시스템에서 상향링크 프레임과 하향링크 프레임 간의 관계를 나타낸다.
도 2에 나타난 것과 같이, 단말(User Equipment, UE)로 부터의 상향링크 프레임 번호 i의 전송은 해당 단말에서의 해당 하향링크 프레임의 시작보다
Figure PCTKR2018013330-appb-I000007
이전에 시작해야 한다.
뉴머롤로지
Figure PCTKR2018013330-appb-I000008
에 대하여, 슬롯(slot)들은 서브프레임 내에서
Figure PCTKR2018013330-appb-I000009
의 증가하는 순서로 번호가 매겨지고, 무선 프레임 내에서
Figure PCTKR2018013330-appb-I000010
의 증가하는 순서로 번호가 매겨진다. 하나의 슬롯은
Figure PCTKR2018013330-appb-I000011
의 연속하는 OFDM 심볼들로 구성되고,
Figure PCTKR2018013330-appb-I000012
는, 이용되는 뉴머롤로지 및 슬롯 설정(slot configuration)에 따라 결정된다. 서브프레임에서 슬롯
Figure PCTKR2018013330-appb-I000013
의 시작은 동일 서브프레임에서 OFDM 심볼
Figure PCTKR2018013330-appb-I000014
의 시작과 시간적으로 정렬된다.
모든 단말이 동시에 송신 및 수신을 할 수 있는 것은 아니며, 이는 하향링크 슬롯(downlink slot) 또는 상향링크 슬롯(uplink slot)의 모든 OFDM 심볼들이 이용될 수는 없다는 것을 의미한다.
표 2는 뉴머롤로지
Figure PCTKR2018013330-appb-I000015
에서의 일반(normal) CP에 대한 슬롯 당 OFDM 심볼의 수를 나타내고, 표 3은 뉴머롤로지
Figure PCTKR2018013330-appb-I000016
에서의 확장(extended) CP에 대한 슬롯 당 OFDM 심볼의 수를 나타낸다.
Figure PCTKR2018013330-appb-T000002
Figure PCTKR2018013330-appb-T000003
NR 물리 자원( NR Physical Resource)
NR 시스템에서의 물리 자원(physical resource)과 관련하여, 안테나 포트(antenna port), 자원 그리드(resource grid), 자원 요소(resource element), 자원 블록(resource block), 캐리어 파트(carrier part) 등이 고려될 수 있다.
이하, NR 시스템에서 고려될 수 있는 상기 물리 자원들에 대해 구체적으로 살펴본다.
먼저, 안테나 포트와 관련하여, 안테나 포트는 안테나 포트 상의 심볼이 운반되는 채널이 동일한 안테나 포트 상의 다른 심볼이 운반되는 채널로부터 추론될 수 있도록 정의된다. 하나의 안테나 포트 상의 심볼이 운반되는 채널의 광범위 특성(large-scale property)이 다른 안테나 포트 상의 심볼이 운반되는 채널로부터 추론될 수 있는 경우, 2 개의 안테나 포트는 QC/QCL(quasi co-located 혹은 quasi co-location) 관계에 있다고 할 수 있다. 여기에서, 상기 광범위 특성은 지연 확산(Delay spread), 도플러 확산(Doppler spread), 주파수 쉬프트(Frequency shift), 평균 수신 파워(Average received power), 수신 타이밍(Received Timing) 중 하나 이상을 포함한다.
도 3은 본 명세서에서 제안하는 방법이 적용될 수 있는 무선 통신 시스템에서 지원하는 자원 그리드(resource grid)의 일 예를 나타낸다.
도 3을 참고하면, 자원 그리드가 주파수 영역 상으로
Figure PCTKR2018013330-appb-I000017
서브캐리어들로 구성되고, 하나의 서브프레임이 14 x 2u OFDM 심볼들로 구성되는 것을 예시적으로 기술하나, 이에 한정되는 것은 아니다.
NR 시스템에서, 전송되는 신호(transmitted signal)는
Figure PCTKR2018013330-appb-I000018
서브캐리어들로 구성되는 하나 또는 그 이상의 자원 그리드들 및
Figure PCTKR2018013330-appb-I000019
의 OFDM 심볼들에 의해 설명된다. 여기에서,
Figure PCTKR2018013330-appb-I000020
이다. 상기
Figure PCTKR2018013330-appb-I000021
는 최대 전송 대역폭을 나타내고, 이는, 뉴머롤로지들뿐만 아니라 상향링크와 하향링크 간에도 달라질 수 있다.
이 경우, 도 3과 같이, 뉴머롤로지
Figure PCTKR2018013330-appb-I000022
및 안테나 포트 p 별로 하나의 자원 그리드가 설정될 수 있다.
뉴머롤로지
Figure PCTKR2018013330-appb-I000023
및 안테나 포트 p에 대한 자원 그리드의 각 요소는 자원 요소(resource element)로 지칭되며, 인덱스 쌍
Figure PCTKR2018013330-appb-I000024
에 의해 고유적으로 식별된다. 여기에서,
Figure PCTKR2018013330-appb-I000025
는 주파수 영역 상의 인덱스이고,
Figure PCTKR2018013330-appb-I000026
는 서브프레임 내에서 심볼의 위치를 지칭한다. 슬롯에서 자원 요소를 지칭할 때에는, 인덱스 쌍
Figure PCTKR2018013330-appb-I000027
이 이용된다. 여기에서,
Figure PCTKR2018013330-appb-I000028
이다.
뉴머롤로지
Figure PCTKR2018013330-appb-I000029
및 안테나 포트 p에 대한 자원 요소
Figure PCTKR2018013330-appb-I000030
는 복소 값(complex value)
Figure PCTKR2018013330-appb-I000031
에 해당한다. 혼동(confusion)될 위험이 없는 경우 혹은 특정 안테나 포트 또는 뉴머롤로지가 특정되지 않은 경우에는, 인덱스들 p 및
Figure PCTKR2018013330-appb-I000032
는 드롭(drop)될 수 있으며, 그 결과 복소 값은
Figure PCTKR2018013330-appb-I000033
또는
Figure PCTKR2018013330-appb-I000034
이 될 수 있다.
또한, 물리 자원 블록(physical resource block)은 주파수 영역 상의
Figure PCTKR2018013330-appb-I000035
연속적인 서브캐리어들로 정의된다. 주파수 영역 상에서, 물리 자원 블록들은 0부터
Figure PCTKR2018013330-appb-I000036
까지 번호가 매겨진다. 이 때, 주파수 영역 상의 물리 자원 블록 번호(physical resource block number)
Figure PCTKR2018013330-appb-I000037
와 자원 요소들
Figure PCTKR2018013330-appb-I000038
간의 관계는 수학식 1과 같이 주어진다.
Figure PCTKR2018013330-appb-M000001
또한, 캐리어 파트(carrier part)와 관련하여, 단말은 자원 그리드의 서브셋(subset)만을 이용하여 수신 또는 전송하도록 설정될 수 있다. 이 때, 단말이 수신 또는 전송하도록 설정된 자원 블록의 집합(set)은 주파수 영역 상에서 0부터
Figure PCTKR2018013330-appb-I000039
까지 번호가 매겨진다.
Self-contained 서브프레임 구조
NR 시스템에서 고려되는 TDD(Time Division Duplexing) 구조는 상향링크(Uplink, UL)와 하향링크(Downlink, DL)를 하나의 서브프레임(subframe)에서 모두 처리하는 구조이다. 이는, TDD 시스템에서 데이터 전송의 지연(latency)을 최소화하기 위한 것이며, 상기 구조는 self-contained 서브프레임(self-contained subframe) 구조로 지칭된다.
도 4 본 명세서에서 제안하는 방법이 적용될 수 있는 self-contained 서브프레임 구조의 일례를 나타낸다. 도 4는 단지 설명의 편의를 위한 것일 뿐, 본 발명의 범위를 제한하는 것이 아니다.
도 4를 참고하면, legacy LTE의 경우와 같이, 하나의 서브프레임이 14개의 OFDM(Orthogonal Frequency Division Multiplexing) 심볼(symbol)들로 구성되는 경우가 가정된다.
도 4에서, 영역 402는 하향링크 제어 영역(downlink control region)을 의미하고, 영역 404는 상향링크 제어 영역(uplink control region)을 의미한다. 또한, 영역 402 및 영역 404 이외의 영역(즉, 별도의 표시가 없는 영역)은 하향링크 데이터(downlink data) 또는 상향링크 데이터(uplink data)의 전송을 위해 이용될 수 있다.
즉, 상향링크 제어 정보(uplink control information) 및 하향링크 제어 정보(downlink control information)는 하나의 self-contained 서브프레임에서 전송된다. 반면, 데이터(data)의 경우, 상향링크 데이터 또는 하향링크 데이터가 하나의 self-contained 서브프레임에서 전송된다.
도 4에 나타난 구조를 이용하는 경우, 하나의 self-contained 서브프레임 내에서, 하향링크 전송과 상향링크 전송이 순차적으로 진행되며, 하향링크 데이터의 전송 및 상향링크 ACK/NACK의 수신이 수행될 수 있다.
결과적으로, 데이터 전송의 에러가 발생하는 경우, 데이터의 재전송까지 소요되는 시간이 감소할 수 있다. 이를 통해, 데이터 전달과 관련된 지연이 최소화될 수 있다.
도 4와 같은 self-contained 서브프레임 구조에서, 기지국(eNodeB, eNB, gNB) 및/또는 단말(terminal, UE(User Equipment))이 전송 모드(transmission mode)에서 수신 모드(reception mode)로 전환하는 과정 또는 수신 모드에서 전송 모드로 전환하는 과정을 위한 시간 갭(time gap)이 요구된다. 상기 시간 갭과 관련하여, 상기 self-contained 서브프레임에서 하향링크 전송 이후에 상향링크 전송이 수행되는 경우, 일부 OFDM 심볼(들)이 보호 구간(Guard Period, GP)으로 설정될 수 있다.
캐리어 병합 일반
본 발명의 실시예들에서 고려하는 통신 환경은 멀티 캐리어(Multi-carrier) 지원 환경을 모두 포함한다. 즉, 본 발명에서 사용되는 멀티 캐리어 시스템 또는 캐리어 병합(CA: Carrier Aggregation) 시스템이라 함은 광대역을 지원하기 위해서, 목표로 하는 광대역을 구성할 때 목표 대역보다 작은 대역폭(bandwidth)을 가지는 1개 이상의 컴포넌트 캐리어(CC: Component Carrier)를 병합(aggregation)하여 사용하는 시스템을 말한다.
본 발명에서 멀티 캐리어는 캐리어의 병합(또는, 반송파 집성)을 의미하며, 이때 캐리어의 병합은 인접한(contiguous) 캐리어 간의 병합뿐 아니라 비 인접한(non-contiguous) 캐리어 간의 병합을 모두 의미한다. 또한, 하향링크와 상향링크 간에 집성되는 컴포넌트 캐리어들의 수는 다르게 설정될 수 있다. 하향링크 컴포넌트 캐리어(이하, 'DL CC'라 한다.) 수와 상향링크 컴포넌트 캐리어(이하, 'UL CC'라 한다.) 수가 동일한 경우를 대칭적(symmetric) 집성이라고 하고, 그 수가 다른 경우를 비대칭적(asymmetric) 집성이라고 한다. 이와 같은 캐리어 병합은 반송파 집성, 대역폭 집성(bandwidth aggregation), 스펙트럼 집성(spectrum aggregation) 등과 같은 용어와 혼용되어 사용될 수 있다.
두 개 이상의 컴포넌트 캐리어가 결합되어 구성되는 캐리어 병합은 LTE-A 시스템에서는 100MHz 대역폭까지 지원하는 것을 목표로 한다. 목표 대역보다 작은 대역폭을 가지는 1개 이상의 캐리어를 결합할 때, 결합하는 캐리어의 대역폭은 기존 IMT 시스템과의 호환성(backward compatibility) 유지를 위해서 기존 시스템에서 사용하는 대역폭으로 제한할 수 있다. 예를 들어서 기존의 3GPP LTE 시스템에서는 {1.4, 3, 5, 10, 15, 20}MHz 대역폭을 지원하며, 3GPP LTE-advanced 시스템(즉, LTE-A)에서는 기존 시스템과의 호환을 위해 상기의 대역폭들만을 이용하여 20MHz보다 큰 대역폭을 지원하도록 할 수 있다. 또한, 본 발명에서 사용되는 캐리어 병합 시스템은 기존 시스템에서 사용하는 대역폭과 상관없이 새로운 대역폭을 정의하여 캐리어 병합을 지원하도록 할 수도 있다.
LTE-A 시스템은 무선 자원을 관리하기 위해 셀(cell)의 개념을 사용한다.
상술한 캐리어 병합 환경은 다중 셀(multiple cells) 환경으로 일컬을 수 있다. 셀은 하향링크 자원(DL CC)과 상향링크 자원(UL CC) 한 쌍의 조합으로 정의되나, 상향링크 자원은 필수 요소는 아니다. 따라서, 셀은 하향링크 자원 단독, 또는 하향링크 자원과 상향링크 자원으로 구성될 수 있다. 특정 단말이 단 하나의 설정된 서빙 셀(configured serving cell)을 가지는 경우 1개의 DL CC와 1개의 UL CC를 가질 수 있으나, 특정 단말이 2개 이상의 설정된 서빙 셀을 가지는 경우에는 셀의 수만큼의 DL CC를 가지며 UL CC의 수는 그와 같거나 그보다 작을 수 있다.
또는, 그 반대로 DL CC와 UL CC가 구성될 수도 있다. 즉, 특정 단말이 다수의 설정된 서빙 셀을 가지는 경우 DL CC의 수보다 UL CC가 더 많은 캐리어 병합 환경도 지원될 수 있다. 즉, 캐리어 병합(carrier aggregation)은 각각 캐리어 주파수(셀의 중심 주파수)가 서로 다른 둘 이상의 셀들의 병합으로 이해될 수 있다. 여기서, 말하는 '셀(Cell)'은 일반적으로 사용되는 기지국이 커버하는 영역으로서의 '셀'과는 구분되어야 한다.
LTE-A 시스템에서 사용되는 셀은 프라이머리 셀(PCell: Primary Cell) 및 세컨더리 셀(SCell: Secondary Cell)을 포함한다. P셀과 S셀은 서빙 셀(Serving Cell)로 사용될 수 있다. RRC_CONNECTED 상태에 있지만 캐리어 병합이 설정되지 않았거나 캐리어 병합을 지원하지 않는 단말의 경우, P셀로만 구성된 서빙 셀이 단 하나 존재한다. 반면, RRC_CONNECTED 상태에 있고 캐리어 병합이 설정된 단말의 경우 하나 이상의 서빙 셀이 존재할 수 있으며, 전체 서빙 셀에는 P셀과 하나 이상의 S셀이 포함된다.
서빙 셀(P셀과 S셀)은 RRC 파라미터를 통해 설정될 수 있다. PhysCellId는 셀의 물리 계층 식별자로 0부터 503까지의 정수값을 가진다. SCellIndex는 S셀을 식별하기 위하여 사용되는 간략한(short) 식별자로 1부터 7까지의 정수값을 가진다. ServCellIndex는 서빙 셀(P셀 또는 S셀)을 식별하기 위하여 사용되는 간략한(short) 식별자로 0부터 7까지의 정수값을 가진다. 0값은 P셀에 적용되며, SCellIndex는 S셀에 적용하기 위하여 미리 부여된다. 즉, ServCellIndex에서 가장 작은 셀 ID (또는 셀 인덱스)을 가지는 셀이 P셀이 된다.
P셀은 프라이머리 주파수(또는, primary CC) 상에서 동작하는 셀을 의미한다. 단말이 초기 연결 설정(initial connection establishment) 과정을 수행하거나 연결 재-설정 과정을 수행하는데 사용될 수 있으며, 핸드오버 과정에서 지시된 셀을 지칭할 수도 있다. 또한, P셀은 캐리어 병합 환경에서 설정된 서빙 셀 중 제어관련 통신의 중심이 되는 셀을 의미한다. 즉, 단말은 자신의 P셀에서만 PUCCH를 할당 받아 전송할 수 있으며, 시스템 정보를 획득하거나 모니터링 절차를 변경하는데 P셀만을 이용할 수 있다. E-UTRAN(Evolved Universal Terrestrial Radio Access)은 캐리어 병합 환경을 지원하는 단말에게 이동성 제어 정보(mobilityControlInfo)를 포함하는 상위 계층의 RRC 연결 재설정(RRCConnectionReconfigutaion) 메시지를 이용하여 핸드오버 절차를 위해 P셀만을 변경할 수도 있다.
S셀은 세컨더리 주파수(또는, Secondary CC) 상에서 동작하는 셀을 의미할 수 있다. 특정 단말에 P셀은 하나만 할당되며, S셀은 하나 이상 할당될 수 있다. S셀은 RRC 연결이 설정이 이루어진 이후에 구성 가능하고 추가적인 무선 자원을 제공하는데 사용될 수 있다. 캐리어 병합 환경에서 설정된 서빙 셀 중에서 P셀을 제외한 나머지 셀들, 즉 S셀에는 PUCCH가 존재하지 않는다. E-UTRAN은 S셀을 캐리어 병합 환경을 지원하는 단말에게 추가할 때, RRC_CONNECTED 상태에 있는 관련된 셀의 동작과 관련된 모든 시스템 정보를 특정 시그널(dedicated signal)을 통해 제공할 수 있다. 시스템 정보의 변경은 관련된 S셀의 해제 및 추가에 의하여 제어될 수 있으며, 이 때 상위 계층의 RRC 연결 재설정 (RRCConnectionReconfigutaion) 메시지를 이용할 수 있다. E-UTRAN은 관련된 S셀 안에서 브로드캐스트하기 보다는 단말 별로 상이한 파라미터를 가지는 특정 시그널링(dedicated signaling) 할 수 있다.
초기 보안 활성화 과정이 시작된 이후에, E-UTRAN은 연결 설정 과정에서 초기에 구성되는 P셀에 부가하여 하나 이상의 S셀을 포함하는 네트워크를 구성할 수 있다. 캐리어 병합 환경에서 P셀 및 S셀은 각각의 컴포넌트 캐리어로서 동작할 수 있다. 이하의 실시 예에서는 프라이머리 컴포넌트 캐리어(PCC)는 P셀과 동일한 의미로 사용될 수 있으며, 세컨더리 컴포넌트 캐리어(SCC)는 S셀과 동일한 의미로 사용될 수 있다.
NR 시스템은 HARQ-ACK, SR (scheduling request), CSI (channel state information) 등의 정보를 포함하는 UCI (uplink control information)를 전송하기 위한 물리 채널(physical channel)인 PUCCH (physical uplink control channel)를 지원할 수 있다.
이 때, PUCCH는 UCI 페이로드(payload)에 따라서 small UCI payload(e.g., 1~2-bit UCI)를 지원하는 small PUCCH와 large UCI payload(e.g., more than 2 bits and up to hundreds of bits)를 지원하는 big PUCCH로 구분될 수 있다.
더하여, Small PUCCH와 big PUCCH는 각각 다시 short duration(e.g., 1~2-symbol duration)을 갖는 short PUCCH와 long duration(e.g., 4~14-symbol duration)을 갖는 long PUCCH로 구분될 수 있다.
아래 표 4는 PUCCH 포맷의 일례를 나타낸다.
Figure PCTKR2018013330-appb-T000004
표 4에서,
Figure PCTKR2018013330-appb-I000040
는 OFDM symbol들에서 PUCCH 전송의 길이를 나타내며, PUCCH format 1, 3 및 4는 long PUCCH로, PUCCH format 0 및 2는 short PUCCH로 지칭될 수 있다.
본 명세서에서 사용되는 기호 '/'는 '및/또는'과 동일한 의미로 해석될 수 있으며, 'A 및/또는 B'는 'A 또는 B 중 적어도 하나를 포함한다'와 동일하게 해석될 수 있다.
그리고, Long PUCCH는 주로 medium/large UCI payload를 전송해야 하거나 small UCI payload의 커버리지(coverage)를 개선하기 위해서 사용할 수 있다.
그리고, 상기의 long PUCCH 대비 추가적으로 커버리지(coverage)를 확장해야 할 필요가 있을 때 동일 UCI 정보가 다수의 slot에 걸쳐서 전송되는 다중 슬롯(multi-slot) long PUCCH를 지원할 수 있다.
여기서, 다수의 슬롯들을 이용하여 long PUCCH를 전송하는 동작은 다수의 슬롯들에서 long PUCCH를 반복하여 전송하는 동작을 포함할 수 있다.
예를 들면, 주어진 UCI payload와 code rate 하에서 coverage 확보가 불가능한 경우에 multi-slot long PUCCH를 사용하여 반복 전송에 의한 gain을 통해서 coverage를 확보하고자 하는 경우가 있을 수 있다.
LTE system은 MBMS나 NB-IoT와 같은 특별한 경우를 제외하고는 15 kHz subcarrier spacing만 지원하는데 반하여, NR system은 앞서 살핀 바와 같이 다양한 use case와 deployment scenario 들을 고려하여 15 kHz, 30 kHz, 60 kHz, 120 kHz, 240kHz 등 다양한 numerology를 지원한다.
여기서 numerology는 subcarrier spacing과 cyclic prefix (CP) 를 말한다.
NR에서 large subcarrier를 사용할 경우에(e.g., 30 kHz 이상의 subcarrier spacing)는, 줄어든 slot duration 때문에 slot내 14 symbol을 모두 사용하는 long PUCCH를 사용하더라도 물리적인 요인에 의해서 LTE PUCCH 대비 coverage 축소가 불가피하다.
따라서, 이러한 경우에 multi-slot long PUCCH를 사용해서 coverage를 개선하는 것이 필요할 수 있다.
또한, LTE와 동일한 15 kHz subcarrier spacing를 사용하는 경우에도 LTE에서 HARQ-ACK repetition하는 수준의 coverage를 확보하여 LTE와 동일한 deployment scenario를 지원하도록 하기 위해서 multi-slot long PUCCH 사용이 필요할 수 있다.
이하, 본 명세서는 NR에서의 다양한 numerology와 그에 따른 coverage 영향 등을 고려하여 multi-slot long PUCCH의 slot 개수를 configure하고 운영하는 방법을 제안한다.
Multi-slot long PUCCH에서 slot 개수를 설정하는 방법
NR 시스템은 상기의 이유로 multi-slot long PUCCH를 사용할 때, UE의 위치 등에 따라서 path loss 등의 차이가 있음을 감안하여 UE 별로 multi-slot long PUCCH가 span하는 슬롯(slot) 길이 다수 개를 설정하여 선택하도록 할 수 있다.
예를 들어, multi-slot long PUCCH의 slot 개수 4개를 설정하여 선택하도록 할 경우, multi-slot long PUCCH slot 개수 X={x0, x1, x2, x3}와 같은 형태일 수 있다.
여기서, x0<=x1<=x2<=x3의 관계를 가질 수 있으며, x0=1로 설정하여 non-multi-slot 또는 single slot long PUCCH를 선택하도록 할 수 있다.
이 때, multi-slot long PUCCH slot 개수 X 중 가장 큰 값(e.g., x3)는 최소한 셀(cell)에서 요구되는 최대 coverage/link budget/MCL을 만족시키도록 설정될 수 있다.
또한, 중간 값들(e.g., x1, x2)은 가장 큰 값(e.g., x3) 보다 작은 값들을 설정하여 주어진 상황에서 필요한 최소의 slot 개수를 할당하도록 할 수 있다.
또한, Multi-slot long PUCCH의 slot 개수는 UE-specific RRC configuration이나, DCI를 통한 dynamic indication을 통해서 configure 될 수 있다.
또한, 다수 개(e.g., 4개)의 multi-slot long PUCCH slot 길이를 UE-specifically RRC configure한 후, DCI를 통해서 dynamic 하게 지시(indication)하는 방법을 고려할 수 있다.
이 때, PUCCH coverage는 multi-slot long PUCCH에서 slot 개수뿐 아니라, long PUCCH duration, subcarrier spacing 등 과도 상관관계가 있다.
그러므로, 상기와 같이 다양한 coverage를 지원하는 multi-slot long PUCCH에서 slot 개수 값을 결정하기 위해서는 특정 long PUCCH duration과 subcarrier spacing을 가정해야 한다.
이하 본 명세서에서는 이 때 가정한 long PUCCH duration과 subcarrier spacing을 각각 reference long PUCCH duration Lref, reference subcarrier spacing Sref, 그리고 이렇게 결정된 multi-slot long PUCCH slot 개수를 Xref라고 칭한다.
또한, NR에서 실제로 long PUCCH 전송에 사용되는 long PUCCH duration 과 subcarrier spacing은 상기의 reference 값들과 같거나 다를 수 있다.
이 때에는, 실제 전송에 사용되는 값들을 각각 actual long PUCCH duration L 과 actual subcarrier spacing S 라고 부른다.
상기에서 reference 또는 actual long PUCCH duration 이라 함은, 1) PUCCH를 구성하는 UCI 심볼과 DMRS 심볼을 합친 전체 심볼 수를 의미하거나, 2) PUCCH를 구성하는 심볼들 중 UCI 전송에 사용되는 UCI 심볼 수를 의미할 수 있다.
이 때, NR에서는 Lref과 Sref 값 외에 앞서 언급한 바와 같이 다양한 long PUCCH duration과 subcarrier spacing을 지원할 수 있는데, 이러한 상황을 고려하여 NR에서 multi-slot long PUCCH slot 개수를 configure하는 방법으로 다음과 같은 방법들을 제안한다.
동일 subcarrier spacing에서 long PUCCH duration에 따른 multi-slot long PUCCH에서 slot 개수를 설정하는 방법
동일 subcarrier spacing(e.g., reference subcarrier spacing) 에서 long PUCCH duration L이 reference long PUCCH duration Lref와 다른 경우가 있을 수 있다.
이 때, long PUCCH duration 별로 별도의 multi-slot long PUCCH slot 개수 값들, 예를 들어, long PUCCH duration 별로 4개의 값을 설정할 수 있다고 가정하면 Y={y0, y1, y2, y3}, Z={z0, z1, z2, z3} 등으로 구성하도록 할 수 있다.
이 때, UE는 별도의 방법으로 configure 된 long PUCCH duration에 따라서 configure된 다수의 multi-slot long PUCCH slot 개수 들(e.g., Y, Z, ... ) 중 하나를 선택할 수 있다.
그리고, 선택된 multi-slot long PUCCH slot 개수의 값들 중에서 하나를 상기의 multi-slot long PUCCH slot 개수 indication 방법에 의해서 configure 받아 multi-slot long PUCCH를 구성할 수 있다.
예를 들어, long PUCCH duration L에 의해서 multi-slot long PUCCH slot 개수 Y가 선택되었다면, Y 값들, 예를 들어, {y0, y1, y2, y3}, 중 하나를 UE-specific RRC configuration이나, DCI를 통한 dynamic indication을 통해서 configure 받을 수 있다.
또는 다수 개(e.g., 4개), 의 multi-slot long PUCCH의 slot 길이를 UE-specifically RRC configure한 후, DCI를 통해서 dynamic 하게 configure 받을 수 있다.
다만, 상기 방법은 long PUCCH duration 별로 별도의 multi-slot long PUCCH slot 개수를 설정하기 때문에, 시그널링 오버헤드(signaling overhead)가 크다는 단점이 있다.
따라서, 이러한 단점을 개선하기 위해서 Lref, Sref를 가정한 reference multi-slot long PUCCH slot 개수 Xref만 설정한 후, UE가 configure 받은 long PUCCH duration에 따른 multi-slot long PUCCH slot 값은 Xref와 Lref를 통해서 implicit indication할 수 있다.
이 때, long PUCCH duration을 L, 그에 따른 multi-slot long PUCCH slot 개수를 Y라 할 수 있다.
그 후, UE는 다음과 같이 L과 Lref, 그리고 Xref를 이용하여 자신에게 configure 받은 long PUCCH duration에 대한 Y를 수학식 2와 같이 구할 수 있다.
Figure PCTKR2018013330-appb-M000002
이 때, Lref 는 multi-slot long PUCCH의 주요 목적(motivation)이 커버리지(coverage) 확장인 점을 고려하여 가장 긴 long PUCCH duration, (즉, Lref=14) 일 수 있다.
Lref/L이 정수가 아닌 경우(e.g., Lref=14 and L=10 인 경우), ceiling, floor, truncation 등을 통해서 정수화 시킬 수 있다.
정수화는 coverage/link budget/MCL을 만족시키는 정수 중 가장 작은 값을 찾기 위해서 수학식3, 수학식 4와 같은 ceiling 동작일 수 있다.
Figure PCTKR2018013330-appb-M000003
Figure PCTKR2018013330-appb-M000004
여기서,
Figure PCTKR2018013330-appb-I000041
는 ceiling 동작을 의미한다.
예를 들어, Lref=14 인 경우에 Xref={1, 4, 16, 64} 라면, L=10 인 경우,
Figure PCTKR2018013330-appb-I000042
이고, ceiling을 적용한 최종 Y 값은 Y={1, 3, 12, 64} 이 된다.
이 때, UE는 위와 같은 방법으로 구한 Y를 이용하여 multi-slot long PUCCH를 구성할 수 있다.
또한, 상기의 ceiling 동작은 floor, truncation, 등과 같은 다른 정수화 방법으로 대체될 수 있다.
더하여, Reference PUCCH symbol duration Lref (e.g., Lref = 14 symbols) 에 대해 configure 될 수 있는 슬롯의 수(configurable number of slots)에 대한 집합 Xref = {1, x1, x2, x3}을 정의한 상태에서, UE는 해당 Xref 내 하나의 값(e.g., x1=2, x2=4, x3=6 or 8)을 gNB로부터 설정 받을 수 있다.
이 때, gNB로부터 할당 받은 Xref 중 하나의 값을 xref 라 하면, 실제 전송에 적용할 multi-slot long PUCCH slot 개수 y는 다음과 같은 방법에 의해 설정될 수 있다.
(방법 1)
xref > 1이고 actual PUCCH symbol duration이 L symbols로 주어지면, actual number of slots y 는 수학식 5와 같이 설정될 수 있다.
Figure PCTKR2018013330-appb-M000005
여기서
Figure PCTKR2018013330-appb-I000043
는 ceiling, flooring, truncation 등의 함수일 수 있다.
(방법 2)
xref = 1인 경우, 임의의 actual PUCCH symbol duration L에 대해, actual number of slots y는 y = 1로 설정될 수 있다.
Subcarrier spacing이 달라질 때, multi-slot long PUCCH에서 slot 개수를 설정하는 방법
상술한 바와 같이, PUCCH coverage는 multi-slot long PUCCH에서 slot 개수, long PUCCH duration 뿐 아니라, subcarrier spacing과도 상관관계가 있다.
따라서, Long PUCCH duration이 symbol 개수로 주어질 경우, 동일 long PUCCH duration이라 하더라도 subcarrier spacing이 N배가 되면, long PUCCH 길이의 절대 시간이 1/N배가 되기 때문에, 전송 전력(transmission power)이 일정할 경우, PUCCH coverage가 비례하여 축소된다.
또한, 비례관계는 일반적으로 수신 전력(received power)은 전송단(transmitter)과 수신단(receiver) 간의 거리의 제곱에 반비례하기 때문에, 거리로 환산한 coverage는 transmission energy, 즉, transmission power
Figure PCTKR2018013330-appb-I000044
transmission duration의 제곱에 반비례한다.
따라서, 상기의 예시에서 subcarrier spacing이 N배가 되면, long PUCCH transmission energy가 1/N배가 되기 때문에, 거리로 환산한 PUCCH coverage는
Figure PCTKR2018013330-appb-I000045
배가 된다.
또한, subcarrier spacing에 따라서 PUCCH coverage 요구사항이 달라질 수 있는데, 이는 다음과 같은 subcarrier spacing에 따른 max TA (maximum Timing Advance) 설정 방법으로 표현될 수 있다.
이 때, max TA는 subcarrier spacing별로 설정되거나, subcarrier spacing와 무관하게 동일한 max TA 값으로 설정되거나, SIB (System Information Block) 등으로 configure 될 수 있다.
또한, Subcarrier spacing 별로 설정되는 경우에, max TA는 subcarrier spacing에 반비례 또는 제곱근에 반비례하는 관계를 갖도록 설정될 수 있다.
따라서, 각각의 경우에 대해서 다음과 같은 multi-slot long PUCCH slot 개수 설정 방법을 고려할 수 있다.
Subcarrier spacing에 따라서 max TA가 scale 되는 경우
Max TA가 subcarrier spacing에 반비례하는 관계로 scale 되는 경우, (e.g., subcarrier spacing이 Sref 대비 N배가 될 때 max TA가 1/N배 또는
Figure PCTKR2018013330-appb-I000046
가 되도록 scale하는 경우) subcarrier spacing에 따른 PUCCH coverage도 같은 비율로 축소될 것으로 기대할 수 있다.
따라서, UE는 PUCCH 전송에 사용되는 subcarrier spacing이 Sref와 다른 값을 갖더라도 Sref를 기준으로 설정한 값을 동일하게 적용하여 multi-slot long PUCCH를 구성할 수 있다.
즉, UE는 Lref와 Sref를 가정한 reference multi-slot long PUCCH slot 개수 Xref라 하면, Lref와 동일한 long PUCCH duration L에 대해서, subcarrier spacing에 상관없이 Xref 값을 그대로 자신에게 configure 받은 long PUCCH duration L에 대한 multi-slot long PUCCH slot 개수 Y로 적용할 수 있다.
Figure PCTKR2018013330-appb-M000006
이 때, UE는 위와 같은 수학식 6을 이용하여 구한 Y를 이용하여 multi-slot long PUCCH를 구성할 수 있다.
Subcarrier spacing에 상관없이 max TA가 고정인 경우
다음은, Max TA가 subcarrier spacing에 상관없이 고정된 된 값일 경우, multi-slot long PUCCH slot 개수를 설정하는 방법에 관한 것이다.
다시 말해서 다양한 subcarrier spacing으로 동작하는 모든 UE가 동일한 PUCCH coverage를 지원하도록 설정된 경우, subcarrier spacing에 따라서 coverage가 축소되는 점을 감안하여 multi-slot long PUCCH slot 개수를 조절해야 할 수 있다.
상술한 바와 같이 subcarrier spacing S가 N배가 되면, 즉, S = N*Sref, PUCCH transmission duration이 1/N배가 되기 때문에, 동일 PUCCH transmission power를 가정하면 시간적인 coverage 는 제곱근에 반비례하는 관계로 축소된다.
따라서, 상기의 경우에 coverage 축소를 보상하기 위해서는 PUCCH transmission power를 N배로 증가시키거나, 동일한 PUCCH transmission power에서 multi-slot long PUCCH slot 개수를 N배 증가시켜 PUCCH transmission duration을 Sref의 경우와 동일하도록 설정할 수 있다.
이 때, 다양한 subcarrier spacing이 공존하는 NR에서 subcarrier spacing에 상관없이 동일한 coverage 또는 max TA를 지원하기 위한 경우가 있을 수 있다.
이 때, UE는 Lref와 동일한 long PUCCH duration L에 대해서, 다음 수학식 7과 같이 subcarrier spacing S와 Sref, 그리고 Xref를 이용하여 자신에게 configure 받은 long PUCCH duration L에 대한 Y를 구할 수 있다.
Figure PCTKR2018013330-appb-M000007
이 때, UE는 위와 같은 수학식 7의 방법으로 구한 Y를 이용하여 multi-slot long PUCCH를 구성할 수 있다.
Max TA가 SIB configurable인 경우
Max TA가 SIB 등으로 configurable한 경우, reference multi-slot long PUCCH slot 개수 Xref 결정 시 가정한 max TA를 TAmaxref, configure 된 max TA를 TAmax라 하면, TAmax와 TAmaxref와의 관계를 이용하여 multi-slot long PUCCH slot 개수를 결정할 수 있다.
상술한 바와 같이 일반적으로 received power는 transmitter와 receiver 간의 거리의 제곱에 반비례하기 때문에, 다시 말해서 거리로 환산한 coverage를 N배 증가시키려면 transmission energy를 N2배 증가시켜야 한다.
이러한, Transmission energy를 N2배 증가시키기 위해서는 transmission power를 N2배 증가시키거나, 동일 transmission power의 경우에는 transmission duration을 N2배 증가시켜야 한다.
그러나, Coverage limited 상황처럼 transmission power를 증가시킬 수 없는 경우가 있을 수 있다.
이 때, UE는 Xref 결정 시와 동일한 PUCCH transmission power를 가정하여 다음 수학식 8과 같이 TAmax와 TAmaxref의 관계를 이용하여 자신에게 configure 받은 long PUCCH duration L에 대한 multi-slot long PUCCH slot 개수 Y를 아래 수학식 8과 같은 방법으로 구할 수 있다.
Figure PCTKR2018013330-appb-M000008
좀 더 일반적으로는, 다음과 같이 TAmax와 TAmaxref의 관계를 이용하여 UE는 자신에게 configure 받은 long PUCCH duration L에 대한 multi-slot long PUCCH slot 개수 Y를 수학식 9와 같은 방법으로 구할 수 있다.
Figure PCTKR2018013330-appb-M000009
상기 수학식 9에서 M은 대표적으로 1 또는 2 등의 값을 가질 수 있으며, channel의 path loss 상황 등을 고려하여 결정되는 값일 수 있다.
더하여, subcarrier spacing S가 Sref와 다른 경우를 고려하여, 수학식 10을 이용하여 UE는 자신에게 configure 받은 long PUCCH duration L에 대한 multi-slot long PUCCH slot 개수 Y를 구할 수 있다.
Figure PCTKR2018013330-appb-M000010
UE는 상기 수학식 10과 같은 방법으로 구한 Y를 이용하여 multi-slot long PUCCH를 구성할 수 있다.
상기의 방법들을 일반화하면 수학식 11과 같이 표현할 수 있다.
Figure PCTKR2018013330-appb-M000011
상기의 관계식을 이용하여 long PUCCH duration and/or subcarrier spacing and/or max TA 에 따른 RRC parameter를 설정할 수 있다.
이 때, UE는 상기의 수학식 11을 이용하여 Xref로부터 multi-slot long PUCCH slot 개수를 계산하여 multi-slot long PUCCH를 구성할 수 있다.
상기의 방식으로 UE가 multi-slot long PUCCH를 구성하는 경우에, single-slot long PUCCH (즉, number of slots of the multi-slot long PUCCH = 1)를 선택할 수 있도록 하기 위해서 상기의 관계를 이용하여 구한 multi-slot long PUCCH slot 개수 Y 값들(e.g., {y0, y1, y2, y3}) 중 하나를 '1'로 설정할 수 있다.
예를 들어, Y 값들 중 가장 값을 '1'로 치환하여(e.g., {1, y1, y2, y3}), multi-slot long PUCCH를 off하도록 할 수 있다.
또는 상기의 목적으로 '1'을 기본적으로 지원하고, 나머지 값 들에 대해서 상기의 방법들과 같이 long PUCCH duration, subcarrier spacing, max TA 과의 관계식을 가지고 scale 되도록 설정할 수 있다.
여기에서, 수신신호의 전력은, 전송신호의 전력이 일정하고 전송 신호의 캐리어 주파수(carrier frequency)의 파장(wavelength) 크기에 비례하는 안테나(antenna)를 사용한다고 가정하면, 중심주파수의 제곱에 반비례한다.
이 경우에, UL 전송 범위와 축소와 셀 범위(cell range) 축소가 동일한 관계로 축소되기 때문에, UE는 UL reference carrier frequency에서 결정한 multi-slot long PUCCH slot 개수 Y 값을 동일하게 적용할 수 있다.
또한, UE는 antenna 크기의 변화와 beamforming 에 의한 eNB 에서의 received power 가 다를 수 있음을 고려하여 캐리어 주파수(carrier frequency) 별로 multi-slot long PUCCH slot 개수 Y 값 설정하도록 할 수 있다.
또한 UE는 beamforming을 적용하는 경우에, beam 별로 path loss가 다를 수 있다는 점을 반영하여, beam 별로 measure된 path loss비율로 scale하여 적용하도록 할 수 있다.
예를 들어, DL 또는 UL을 통해서 채널 상태 정보(channel state information, CSI)나 sounding reference signal(SRS) 등을 이용하여 측정한 beam1, beam2의 path loss를 각각 PL1, PL2라고 하면, UE는 PL1과 PL2의 비율을 이용하여 beam2 전송 시 multi-slot long PUCCH slot 개수를 Y2를 결정할 수 있다.
예를 들어, UE가 power limitation이 걸려서 동일 transmission power P로 전송하고, beam1으로 전송한 신호에 대한 eNB received power 가 P*PL1, 그리고 beam2의 received power가 P*PL2 인 경우에, multi-slot long PUCCH slot 개수를 PL1/PL2의 비율로 scale하여 적용하도록 할 수 있다.
다시 말해서, beam1을 이용하여 multi-slot long PUCCH를 전송하던 UE가 동일 transmission power로 beam2로 beam change해서 전송할 경우, beam1으로 전송 시 multi-slot long PUCCH slot 개수를 Y1 이라 하면, beam2로 전송 시 multi-slot long PUCCH slot 개수를 Y2값은 다음 수학식 12와 같은 관계를 가지도록 결정될 수 있다.
Figure PCTKR2018013330-appb-M000012
Multi-slot long PUCCH에서의 skipping 또는 rate matching 동작
PUCCH symbol duration L과 PUCCH 전송 period 또는 그에 대응하는 multi-slot long PUCCH slot 개수는 RRC configure 되는 값이거나 (RRC configuration), 다수 개의 RRC configure 된 candidate values 들 중, DCI 를 통해서 지시하는 또는 결정되는 값일 수 있다. (RRC configuration + DCI indication)
이에 반해, DL symbol 혹은 gap period 혹은 다른 업링크 자원(other UL resource (e.g. short PUCCH, SRS))으로 인해 특정 PUCCH slot내 실제 가능한 PUCCH symbol 값 La 는 L 보다 작을 수 있다.
이러한 경우, La 값은 DCI 등을 통해서 dynamic 하게 지시되는 값이 거나, DCI 등을 통해 전송되는 다른 dynamic parameter(s) 에 의해서 결정되는 값일 수 있다.
예를 들면, La 값은 DCI를 통해서 UE 에게 slot 의 type 을 알려주는 slot format indicator (SFI) 등에 의해서 지시 또는 결정되는 값일 수 있다.
이에 본 명세서에서는, PUCCH symbol duration L과 PUCCH 전송 period 또는 그에 대응하는 multi-slot long PUCCH slot 개수가 상기와 같이 RRC configuration 또는 RRC configuration + DCI indication 방법에 의해서 지시/설정된 상태에서, DL symbol 혹은 gap period 혹은 other UL resource(e.g. short PUCCH, SRS)로 인해 dynamic 하게 결정되는 특정 PUCCH slot내 PUCCH 전송이 가능한 PUCCH symbol duration La가 L보다 작아질 경우, 다음과 같은 방법으로 동작할 것을 제안한다.
(방법 1)
방법 1은 해당 slot에서의 PUCCH 전송을 생략 (skip) 하는 것이다.
이 방법에서는 RRC configuration 또는 RRC configuration + DCI indication 방법에 의해서 configure 된 multi-slot long PUCCH slot 개수 대비, 실제 전송한 long PUCCH slot 개수가 PUCCH 전송을 생략 (skip) 한 만큼 줄어 들게 된다.
(방법 2)
방법 2는 해당 slot에서의 PUCCH 전송을 생략 (skip)하되, skip한 만큼의 slot 수를 상기 설정된 period 또는 multi-slot long PUCCH slot 개수에 반영하여 확장하는 방법이다.
이 방법에서는 RRC configuration 또는 RRC configuration + DCI indication 방법에 의해서 configure 된 multi-slot long PUCCH slot 개수와 실제 전송한 long PUCCH slot 개수가 동일하다.
(방법 3)
방법 3은 PUCCH symbol duration La가 L의 P% 이상이 되는 경우, 또는 (L-La) 가 Q symbols 이하인 경우, 해당 La symbol duration으로 PUCCH를 전송하고, La가 L의 P% 미만이 되는 경우에는, 또는 (L-La) 가 Q symbols 를 초과하는 경우에는, 상기 방법 1 혹은 방법 2를 적용하는 것이다.
다시 말하면, RRC configuration 또는 RRC configuration + DCI indication 방법에 의해서 configure 된 long PUCCH duration L 대비, dynamic configuration 에 의해서 실제 가용한 long PUCCH duration이 Q symbol 이하만큼 줄어들게 되면, La symbols 기준으로 rate-matching하여 전송하고, 그렇지 않은 (즉, L 과 La 의 차이가 Q symbol보다 큰) 경우, 상기 방법 1 혹은 방법 2를 적용한다.
또한, RRC/DCI등을 통해 원래 설정/지시된 L개 심볼 위치에서 최초 Q symbol 심볼 이하 혹은 마지막 Q symbol 이하 혹은 최초 일부 심볼과 마지막 일부 심볼을 합쳐 Q symbol 이하가 가용하지 않을 경우에만 La symbol duration으로 rate-matching하여 PUCCH를 전송하고, 그렇지 않은 경우, 상기 방법 1 혹은 방법 2를 적용하는 방식도 가능하다.
상기 방법 3의 경우, UCI coded bit는 L symbols 기준으로 생성한 상태에서 (L-La) symbols 만큼을 puncturing하여 매핑/전송하거나, 혹은 La symbols에 맞게 rate-matching하여 La symbols 기준으로 UCI coded bit을 생성하여 매핑/전송할 수 있다.
상기에서, time-domain OCC 기반 long PUCCH (e.g. for up to 2 bits)의 경우에는 방법 1, 2를 적용하고, time-domain OCC 를 기반으로 하지 않는 long PUCCH (e.g. for more than 2 bits)의 경우에는 방법 1, 2, 3를 적용하는 방식도 가능하다.
상기에서 PUCCH symbol duration에 해당하는 심볼 수 L 또는 La는, PUCCH를 구성하는 UCI 심볼과 DMRS 심볼을 합친 전체 심볼 수를 의미하거나, 또는 PUCCH를 구성하는 심볼들 중 UCI를 전송하는 심볼 수를 의미할 수 있다.
이 때, UE는 상기의 방법 들 중 하나를 상위 계층에서 (higher layer) configure 받아 동작하거나, UE가 상기의 방법 중 하나로만 동작하도록 spec에 명시할 수 있다.
Pre-DFT OCC기반의 long PUCCH에서 PUCCH resource 설정 방법
NR에서 large UCI payload와 user multiplexing 을 동시에 지원하기 위해서 pre-DFT(discrete fourier transform) OCC 기반으로 long PUCCH를 전송하는 방법을 고려할 수 있다.
여기서, OCC는 user 구분을 위해서 사용하는 orthogonal cover code를 의미하는데, 왈시 코드(Walsh code)나 DFT sequence일 수 있다.
이 때, Pre-DFT 기반의 long PUCCH에서 OCC length는 지원하고자 하는 user multiplexing capacity와 전송하고자 하는 UCI payload를 고려하여 설정할 수 있다.
한편, Pre-DFT 기반의 long PUCCH에서 전송 가능한 UCI payload는 OCC length에 반비례한다.
따라서, OCC length는 UCI payload와 user multiplexing capacity를 고려하여 상위 계층 시그널링(higher layer signaling)이나 DCI를 통한 dynamic indication을 통하여 유연하게(flexible) 설정되도록 할 수 있다.
또한, PUCCH의 coherent demodulation을 위해서 UE별로 channel estimation을 위한 reference signal (RS) 전송이 필요하다.
이 때, user 간 channel separation을 위한 orthogonal RS 전송 방법으로 다음과 같은 방법을 고려할 수 있다.
(방법 1)
CDM (code division multiplexing) 전송 방법이다.
CDM 전송 방법은 서로 (quasi-)orthogonal한 code를 중첩하여 전송하는 방법이다.
예를 들어 PUCCH가 1RB에 전송되는 경우, UE별 RS는 1RB 전체에 걸쳐서(sequence length = 12), 전송될 수 있다.
이 때, Orthogonal sequence는 동일한 sequence에 서로 다른 time domain cyclic shift (CS) 일 수 있다.
(방법 2)
FDM (frequency division multiplexing) 전송 방법이다.
FDM 전송 방법은 서로 다른 주파수 자원을 사용하여 전송하는 방법으로, UE 별로 주파수 자원을 연속적으로(contiguous FDM), 할당하여 전송하거나, comb 형태(comb type FDM)로 교차하여 전송할 수 있다.
이하에서, 상기의 UCI 및 RS 전송 방법 들을 고려하여 다음과 같은 pre-DFT OCC 기반 long PUCCH의 PUCCH resource를 정의하는 방법 몇 가지를 제안한다.
(방법 1)
UCI part (OCC) 와 RS를 pairing하여 PUCCH resource를 정의하는 방법
방법 1-A: OCC (UCI) 와 comb index (RS) 를 pairing하여 PUCCH resource를 정의하는 방법
상기의 FDM RS 전송 방법 중 comb 형태의 교차 전송을 사용하는 경우를 예를 들면, UCI part에 length-N OCC가 설정된 경우, N개의 OCC 의 각각의 code index를 n (0<=n<N, n: integer) 이라고 하면, n과 N개의 RS comb {(0, N, 2N, ……), (1, N+1, 2N+1, ……), ....(N-1, 2N-1, 3N-1, ……)} 를 각각 pairing하여 N 개의 PUCCH resource를 설정할 수 있다.
방법 1-B: OCC (UCI) 와 contiguous FDM index (RS) 를 pairing하여 PUCCH resource를 정의하는 방법
예를 들면, UCI part에 length-N OCC가 설정되고, PUCCH 전송에 사용되는 subcarrier 수가 NPUCCHSC인 경우, N개의 OCC 의 각각의 code index를 n (0<=n<N, n: integer) 이라고 하면, n과 N개의 RS FDM {(0, 1, 2, ……), (NPUCCHSC/N, NPUCCHSC/N+1, NPUCCHSC/N+2, ……), .... (NPUCCHSC - NPUCCHSC/N, NPUCCHSC - NPUCCHSC/N+1, NPUCCHSC - NPUCCHSC/N+2, ……)} 을 각각 pairing하여 N 개의 PUCCH resource를 설정할 수 있다.
방법 1-C: OCC (UCI) 와 CS (RS) 를 pairing하여 PUCCH resource를 정의하는 방법
상기의 CDM RS 전송 방법 중 서로 다른 CS로 RS를 구분하는 경우, UCI part에 length-N OCC가 설정된 경우, N개의 OCC 의 각각의 code index를 n (0<=n<N, n: integer) 이라고 하면, n과 N개의 CS index m (0<=m<N, m: integer) 을 각각 pairing하여 N 개의 PUCCH resource를 설정할 수 있다.
User 간에 multiplexing할 경우, user 간의 DMRS CS distance 가 클수록 channel estimation 측면에서 유리할 수 있는데, 이를 감안하여 상기와 같이 pairing 할 때, OCC length 4인 경우에 대해서 OCC code index n=0,1,2,3에 각각 CS=0,3,6,9가 pairing 되도록 정의하여, OCC length 2인 경우 (n=0,1), CS=0,6이 pairing 되도록 할 수 있다.
방법 1-D: OCC (for UCI) 와 (comb type FDM, CS) (for RS)의 조합을 pairing하여 PUCCH resource를 정의하는 방법
예를 들어, UCI part에 length-N OCC가 설정된 경우, N개의 OCC 의 각각의 code index를 n (0<=n<N, n: integer) 이라고 하면, UCI에 적용되는 code index n과 RS 구성을 위한 N개의 (comb, CS)의 조합을 pairing하여 N 개의 PUCCH resource를 설정할 수 있다.
이 때, N개의 RS index 조합을 구성하는 comb의 개수를 Ncomb, CS의 개수를 Ncs 라고 하면, N = Ncomb
Figure PCTKR2018013330-appb-I000047
Ncs 를 만족한다.
예를 들어, N=4인 경우 4개의 RS index에 해당하는 (comb, CS) 조합은 (even subcarrier index, CS = 0), (even subcarrier index, CS = X), (odd subcarrier index, CS = 0), (odd subcarrier index, CS = X)로 설정될 수 있다 (여기서, X > 0).
방법 1-E: OCC (for UCI) 와 (contiguous FDM, CS) (for RS)의 조합을 pairing하여 PUCCH resource를 정의하는 방법
예를 들어, UCI part에 length-N OCC가 설정된 경우, N개의 OCC 의 각각의 code index를 n (0<=n<N, n: integer) 이라고 하면, UCI에 적용되는 code index n과 RS 구성을 위한 N개의 (contiguous FDM, CS)의 조합을 pairing하여 N 개의 PUCCH resource를 설정할 수 있다.
이 때, N개의 RS index 조합을 구성하는 contiguous FDM의 개수를 Nfdm, CS의 개수를 Ncs 라고 하면, N = Nfdm
Figure PCTKR2018013330-appb-I000048
Ncs 를 만족한다.
예를 들어, N=4인 경우 4개의 RS index에 해당하는 (contiguous FDM, CS) 조합은 (subcarrier index 0~NPUCCHSC/2-1, CS = 0), (subcarrier index 0~NPUCCHSC/2-1, CS = X), (subcarrier index NPUCCHSC/2~NPUCCHSC-1, CS = 0), (subcarrier index NPUCCHSC/2~NPUCCHSC-1, CS = X)로 설정될 수 있다 (여기서, X > 0).
방법 1-A 내지 방법 1-E는 N개의 UCI OCC index와 N개의 RS index(e.g., CS index, comb index, contiguous FDM index), 또는 이들의 조합, 에 대해서 사전에 1대 1 관계를 지정하여 N개의 조합을 만드는 방법이다.
이 때, OCC (UCI) 와 RS의 1대 1 대응 관계는 상기의 방법 1-A~E 중 하나로 spec에 고정된 것이거나, RRC signaling에 의해서 상기 방법들 중 하나로 configure 받는 것일 수 있다.
예를 들어, RRC signaling 1 bit을 사용하여 OCC (UCI) 에 RS의 comb index (방법 1-A) 를 pairing하여 PUCCH resource를 정의했는지, RS의 CS index (방법 1-C) 를 pairing 하여 PUCCH resource를 정의했는지를 indication하는 형태일 수 있다.
(방법 2)
방법 2는 UCI part 와 RS의 전부의 조합을 PUCCH resource로 정의하는 방법에 대한 것이다.
다시 말하면, 방법 1이 1개의 OCC에 대해서 1개의 RS index를 대응시킨 것이라면, 방법 2는 하나의 OCC에 대해서 전부 또는 다수의 RS를 대응시켜 선택할 수 있도록 PUCCH resource를 정의하는 방법이다.
예를 들어, 하나의 OCC에 대해서 두 개의 RS index가 대응되도록 PUCCH resource를 정의하여 선택할 수 있도록 하는 방법이다.
이 때, 두 개의 index는 서로 다른 comb index 이거나, 서로 다른 contiguous FDM index 이거나, 서로 다른 CS index 일 수 있다.
Pre- DFT OCC기반의 long PUCCH에서 cell 간 interference randomization 방법
상기의 pre-DFT OCC 기반의 long PUCCH를 전송 방법에서 user 간 multiplexing 을 지원하기 위해서 매 심볼 OCC를 사용한다.
상기의 OCC를 사용하면, 동일 cell 내에서의 서로 다른 OCC code를 사용하는 user간 직교성(orthogonality)이 보장되지만, cell 간 간섭(interference)은 여전히 발생할 수 있다.
예를 들면, 상기의 inter-cell interference는 서로 다른 cell의 동일한 OCC code를 사용하는 UE 들 간의 interference일 수 있다.
따라서, 본 명세서는 이러한 상황에서 inter-cell interference randomization을 위해 pre-DFT OCC 기반의 long PUCCH에서 cell-specific symbol-/hop-/slot-level OCC hopping을 적용할 것을 제안한다.
이 때, Cell-specific OCC hopping 의 주기는 symbol 단위 이거나, 주파수 호핑(frequency hopping)이 설정된 경우 frequency hop 단위이거나, slot 단위의 hopping(inter-slot OCC hopping) 일 수 있다.
또한, Cell-specific symbol-/hop-/slot-level OCC hopping은 cell 별로 구분되는 random hopping pattern 에 따라서 OCC hopping을 수행하도록 할 수 있다.
이 때, cell 별로 특별한 symbol-/hop-/slot-level OCC hopping 패턴을 생성하기 위해서 physical cell ID 또는 virtual cell ID 에 의해서 유도되는 random hopping pattern 생성 방법을 사용할 수 있다.
더하여, random hopping pattern 생성 방법에 사용되는 parameter 로써 physical cell ID 와 virtual cell ID 중 선택하도록 상위 계층 시그널링(higher layer signaling)에 의해서 configure 될 수도 있다.
또한, UE는 할당 받은 OCC index, symbol/hop/slot index, cell ID 등을 통해서 별도의 추가적인 signaling 없이 cell-specific symbol-/hop-/slot-level OCC hopping 패턴을 생성해서 UCI 정보를 전송할 수 있다.
그리고, Pre-DFT OCC 기반의 long PUCCH 에서 UCI 에 cell-specific symbol-/hop-/slot-level OCC hopping 을 적용할 경우, UE는 상기의 "UCI part (OCC) 와 RS를 pairing하여 PUCCH resource를 정의하는 방법"에 의해서 자신에게 할당된 OCC (UCI part) 와 pairing 된 RS 의 CS/comb index/contiguous FDM index 를 참조하여 UCI 전송 channel 의channel estimation 에 필요한 PUCCH RS 를 생성한다.
또는 UE는 상기의 "UCI part 와 RS의 전부의 조합을 PUCCH resource로 정의하는 방법"에 의해서 자신에게 할당된 OCC (UCI part) 에 대해서 설정된 RS 의 CS/comb index/contiguous FDM index 를 참조할 수 있다.
이 때, RS의 경우에는, 1) slot 내 동일한 하나의 RS가 설정되고 해당 RS는 long PUCCH내 특정 (e.g. first) symbol 혹은 특정 (e.g. first) frequency hop에 사용되는 OCC에 pairing된 것으로 결정되거나, 혹은 2) frequency hop별로 하나의 RS가 설정되고 해당 RS는 해당 frequency hop 또는 frequency hop내 특정 (e.g. first) symbol에 사용되는 OCC에 pairing된 것으로 결정될 수 있다.
또는 역으로, OCC (for UCI) 와 CS/comb index/contiguous FDM index (for RS) 가 사전에 pairing 되어 자원이 할당된 경우, inter-cell interference randomization 을 수행하기 위해서 RS 에 대해서 CS/comb index/contiguous FDM index (for RS) hopping 을 수행하고, UE 는 해당 RS hopping 정보를 통해서 (pairing 된) UCI 에 적용할 OCC 정보를 획득하여 UCI part 에 적용할 수 있다.
Dynamic TDD 상황에서의 multi-slot long PUCCH 전송 동작
이하, 동적인(dynamic) TDD(time division duplex) 상황에서 다수의 슬롯(multi-slot)들을 이용하여 long PUCCH를 전송하는 동작에 대해 살펴본다.
여기서, 다수의 슬롯들을 이용하여 long PUCCH를 전송하는 동작은 다수의 슬롯들에서 long PUCCH를 반복하여 전송하는 동작을 포함할 수 있다.
본 명세서에서 TDD는 unpaired spectrum 또는 frame structure type 2로 지칭될 수도 있으며, FDD(frequency division duplex)는 paired spectrum 또는 frame structure type 1로 지칭될 수 있다.
이하 다수의 슬롯들을 이용하여 long PUCCH의 전송은 간략히 'multi-slot long PUCCH'로 표현하기로 한다.
NR은 UL(uplink) traffic 및/또는 DL(downlink) traffic 양의 변화에 dynamic하게 adaptation하고, 서로 다른 서비스들 (예를 들어, low latency service, high data rate service 등)간의 TDD를 효율적으로 지원하기 위해서 dynamic TDD를 지원할 수 있다.
이 때, dynamic TDD를 지원하는 방법으로, DL slot, UL slot, unknown slot, reserved slot이 반-정적(semi-static) 또는 동적(dynamic)으로 설정(configure)될 수 있다.
여기서, 'reserved slot'은 다른 system과 TDD 되거나, gNB 가 NR의 DL 및/또는 UL 데이터 전송이 아닌 다른 특정 용도로 사용하기 위해서 설정하는 slot으로, NR의 UL 및/또는 DL 데이터 전송이 허용되지 않는 slot을 의미할 수 있다.
또한, 'Unknown slot' 은 기본적으로 reserved slot 과 동일하거나 또는 비슷한 목적으로 사용될 수 있다.
다만, 'Unknown slot'은 gNB가 필요에 의해서 dynamic DL 및/또는 UL 전송을 지원하는 slot으로, slot format을 override할 수 있는 slot을 의미한다.
이 때, DL/UL/unknown slot 등의 slot format 은 gNB에 의해서 semi-static 또는 dynamic 하게 설정될 수 있다.
이와 같이 configure된 slot format 은 semi-static SFI(slot format indicator)(semi-static configuration의 경우) 또는 dynamic SFI (dynamic configuration 인 경우) 에 의해서 UE에게 indication 될 수 있다.
또한, Reserved slot 은 gNB에 의해서 semi-static 하게 configure 될 수 있고, semi-static RRC signaling으로 UE에게 indication 될 수 있다.
이 때, 상기 DL/UL/unknown/reserved 는 symbol 단위로 semi-static, 또는 dynamic 하게 configure 되는 것일 수 있다.
여기서, multi-slot long PUCCH가 N개의 slot들에 걸쳐서 전송될 때, 시작 슬롯(starting slot)과 슬롯의 개수(number of slot)에 의해서 multi-slot long PUCCH 의 전송 구간(transmission duration)이 설정되게 되는데, 상기와 같은 semi-static 및/또는 dynamic TDD 상황에서, multi-slot long PUCCH 는 아래와 같은 방식들로(옵션 1-1 내지 옵션 1-2) 동작할 수 있다.
(옵션 1-1)
옵션 1-1은 starting slot 으로 지정된 slot에서 multi-slot long PUCCH 의 첫 번째 slot을 전송하고 (UL 또는 unknown에 상관없이), 이후 (N-1) 개의 slot(들)은 semi-static SFI (혹은 dynamic SFI)를 통해 UL로 설정된 slot에서만 전송하는 방법이다.
보다 구체적으로, 상기 이후 (N-1) 개의 slot(들)은 semi-static SFI에 의해 UL로 설정된 slot에서만 전송되거나, semi-static SFI에 의해 UL 로 설정된 slot과 추가적으로 dynamic SFI에 의해 UL로 설정된 slot 에 대해서도 전송되는 것일 수 있다.
여기서, 상기 이후 (N-1) 개의 slot(들)은 상기 multi-slot long PUCCH가 전송되는 slot들을 의미한다.
(옵션 1-2)
옵션 1-2는 starting slot 으로 지정된 slot에서 multi-slot long PUCCH 의 첫 번째 slot을 전송하고 (UL 또는 unknown에 상관없이), 이후 (N-1) 개의 slot은 semi-static SFI (혹은 dynamic SFI)를 통해 UL 또는 unknown으로 설정된 slot에서만 전송된다.
보다 구체적으로, 상기 이후 (N-1) 개의 slot(들)은 semi-static SFI에 의해 UL로 설정된 slot에서만 전송되거나, semi-static SFI에 의해 UL 로 설정된 slot과 추가적으로 dynamic SFI에 의해 UL로 설정된 slot 에 대해서도 전송되는 것일 수 있다.
단, 상기 옵션 1-1, 1-2에서 첫 번째 slot 전송은 starting slot이 semi-static SFI (혹은 dynamic SFI)를 통해 unknown 혹은 UL로 설정된 경우에만 유효할 수 있다.
상기에서 '특정 slot이 UL로 설정되었다'는 의미는 해당 slot 내 PUCCH 전송 구간의 모든 심볼들이 또는 대부분의 symbol 들이 UL로 설정됨을 의미할 수 있다.
또는, 상기에서 '특정 slot이 UL로 설정되었다'는 의미는 slot 내 PUCCH 전송을 위해서 사용할 수 있는 uplink symbol의 개수가 configure 된 PUCCH duration (in symbols) 보다 크거나 같은 경우로 한정하는 의미일 수 있다.
이 경우, slot 내 PUCCH 전송을 위해서 사용할 수 있는 uplink symbol 개수가 configure 된 PUCCH duration (in symbols) 보다 작으면, 해당 slot은 UL 또는 unknown이 아닌 것으로 판단하여 동작할 수 있다.
이 때, DL/UL/unknown/reserved 가 symbol 단위로 configure 되는 경우, 상기의 uplink symbol 개수라 함은 UL symbol 만을 count하는 것이거나, 또는 UL symbol과 unknown symbol 들을 포함하는 것일 수 있다.
또한, slot 내 PUCCH 전송을 위해서 configure 된 PUCCH duration (in symbols) 중 일부가 UL symbol 이 아닌 경우, 해당 slot은 UL 또는 unknown이 아닌 것으로 판단하여 동작할 수 있다.
예를 들면, slot 내 PUCCH 전송을 위해서 configure 된 PUCCH duration (in symbols) 과 UL symbol 의 차이가 1 symbol을 초과하는 경우, 해당 slot은 UL 또는 unknown이 아닌 것으로 판단하여 동작할 수 있다.
또는, PUCCH 전송을 위해서 사용할 수 있는 연속된 uplink symbol들로 구성된 구간이 configure된 PUCCH starting symbol index 및 PUCCH duration (in symbols)에 따른 구간을 완전히 포함하지 않으면, 해당 slot은 UL 또는 unknown이 아닌 것으로 판단하여 동작할 수 있다.
또는, multi-slot long PUCCH가 전송되는 starting slot이 semi-static SFI (혹은 dynamic SFI)를 통해 UL로, 또는 UL 또는 unknown으로 설정되지 않은 경우 다음과 같은 방식들(옵션 2-1 내지 옵션 2-2)로 동작할 수 있다.
(옵션 2-1)
옵션 2-1은 starting slot 으로 지정된 slot 을 포함한 이후 slot 들 중 semi-static SFI (혹은 dynamic SFI)를 통해 UL로 설정된 N개의 slot 으로만 multi-slot long PUCCH를 전송하는 방법이다.
보다 구체적으로, multi-slot long PUCCH는 starting slot 으로 지정된 slot을 포함한 이후 slot 들 중 semi-static SFI에 의해 UL로 설정된 slot에서만 전송되거나, semi-static SFI에 의해 UL 로 설정된 slot과 추가적으로 dynamic SFI에 의해 UL로 설정된 slot 에 대해서도 전송되는 것일 수 있다.
(옵션 2-2)
옵션 2-2는 starting slot 으로 지정된 slot을 포함한 이후 slot 들 중 semi-static SFI (혹은 dynamic SFI)를 통해 UL 또는 unknown으로 설정된 N개의 slot 으로만 multi-slot long PUCCH를 전송하는 방법이다.
보다 구체적으로, multi-slot long PUCCH는 starting slot 으로 지정된 slot 을 포함한 이후 slot 들 중 semi-static SFI에 의해 UL로 설정된 slot에서만 전송되거나, semi-static SFI에 의해 UL 로 설정된 slot과 추가적으로 dynamic SFI에 의해 UL로 설정된 slot 에 대해서도 전송되는 것일 수 있다.
여기에서, 상기에서 특정 slot이 UL로 설정되었다는 의미는 해당 slot 내 PUCCH 전송 구간의 모든 심볼들이 또는 대부분의 symbol 들이 UL로 설정됨을 의미할 수 있다.
또는, 상기에서 특정 slot이 UL로 설정되었다는 의미는 slot 내 PUCCH 전송을 위해서 사용할 수 있는 uplink symbol의 개수가 configure 된 PUCCH duration (in symbols) 보다 크거나 같은 경우로 한정하는 의미일 수 있다.
이 경우, slot 내 PUCCH 전송을 위해서 사용할 수 있는 uplink symbol의 개수가 configure된 PUCCH duration (in symbols) 보다 작으면, 해당 slot은 UL 또는 unknown이 아닌 것으로 판단하여 동작할 수 있다.
또한, DL/UL/unknown/reserved 가 symbol 단위로 configure 되는 경우, 상기의 uplink symbol의 개수라 함은 UL symbol 만을 count하는 것이거나, 또는 UL symbol과 unknown symbol 들을 포함하는 것일 수 있다.
또한, slot 내 PUCCH 전송을 위해서 configure 된 PUCCH duration (in symbols) 중 일부가 UL symbol 이 아닌 경우, 해당 slot은 UL 또는 unknown이 아닌 것으로 판단하여 동작할 수 있다.
예를 들면, slot 내 PUCCH 전송을 위해서 configure 된 PUCCH duration (in symbols)과 UL symbol 의 차이가 1 또는 symbol을 초과하는 경우, 해당 slot은 UL 또는 unknown이 아닌 것으로 판단하여 동작할 수 있다.
또는, PUCCH 전송을 위해서 사용할 수 있는 연속된 uplink symbol들로 설정된 구간이 configure된 PUCCH starting symbol index 및 PUCCH duration (in symbols)에 따른 구간을 완전히 포함하지 않으면, 해당 slot은 UL 또는 unknown이 아닌 것으로 판단하여 동작할 수 있다.
앞서 살핀 4가지 옵션들 중 어느 하나로 동작하도록 특정 방법이 semi-static 또는 dynamic 하게 설정되도록 할 수 있다.
일례로, PUCCH 전송을 지시하는 DCI를 통해 상기 4가지 옵션들 중 어느 옵션을 적용할지, 혹은 상기 옵션 1-1과 1-2 중 어느 방식을 적용할지, 혹은 상기 옵션 2-1과 2-2 중 어느 방식을 적용할지를 단말로 dynamic하게 indication해줄 수 있다.
상기의 multi-slot long PUCCH는 semi-static SFI (혹은 dynamic SFI)를 통해 DL 및/또는 reserved 로 설정된 slot에 대해서 PUCCH 전송을 생략할 수 있다.
이 때, 상기 생략된 slot은 PUCCH 전송으로 할당된 N개 slot들 중 하나로 카운트되거나 또는 카운트 되지 않을 수 있다.
상술한 바와 같이 FDD/TDD (혹은 paired/unpaired spectrum) 에서 multi-slot long PUCCH 전송은 다음과 같은 단계(step)들에 의해 실제 전송할 slot 이 결정될 수 있다.
이 때, 해당 multi-slot long PUCCH 에 설정된 전송 slot의 개수는 N 개, 전송 slot 내에 전송 심볼 영역은 symbol #K1부터 K심볼들로 설정(또는 지시)될 수 있다.
(Step 1)
Multi-slot long PUCCH 전송을 위한 slot을 결정하는 첫 번째 step(step 1)은 semi-static DL/UL configuration 에 의해 설정된 경우, symbol #K1부터 K개의 UL 심볼들이 unknown 혹은 UL 로 설정된 slot 으로 구성된 N개 slot 들을 multi-slot long PUCCH 전송 slot 으로 결정한다.
일 예로, slot #0부터 4개의 slot 동안 multi-slot long PUCCH가 지시(또는 설정)되고, K1=5, K=6으로 지시(또는 설정)되었을 때, slot #0/#1/#2/#3/#4/#5/#6 은 semi-static DL/UL configuration 에 의해 각각 모두 DL symbol/모두 DL symbol/ 10개의 DL 심볼+ 4개의 unknown 심볼/모두 unknown symbol/모두 UL symbol/모두 UL symbol/All UL symbol로 설정될 때, slot#3/#4/#5/#6은 해당 multi-slot long PUCCH 전송 slot 들로 결정될 수 있다.
(Step 2)
다음으로, multi-slot long PUCCH 전송을 위한 slot을 결정하는 두 번째 step(step 2)는 dynamic SFI (혹은 group common-PDCCH) 가 설정된 경우, semi-static DL/UL configuration 에 의해 unknown 으로 설정된 심볼(또는 slot)에 대해 (혹은 semi-static DL/UL configuration 이 설정되지 않은 경우) DL/unknown/UL 영역을 signaling 해 줄 수 있다.
즉,dynamic SFI 가 설정되고, 상기 Step 1에서 multi-slot long PUCCH 전송용으로 결정된 slot들 중(특히 semi-static DL/UL configuration 에 의해 unknown 으로 설정된 slot들 중)에서, dynamic SFI가 지시한 해당 slot 에 대해 symbol #K1부터 K개의 UL 심볼들이 UL (및/혹은 unknown)로 설정되지 않은 경우에는 해당 slot 에 대해 long PUCCH 전송을 수행하지 않을 수 있다.
또한, dynamic SFI 가 설정되었으나, 상기 Step 1에서 multi-slot long PUCCH 전송용으로 결정된 slot들(특히 semi-static DL/UL configuration 에 의해 unknown 으로 설정된 slot 들)에 대한 dynamic SFI 정보를 수신하지 못한 경우, 해당 slot 에 대해 long PUCCH 전송이 수행되지 않을 수도 있고, 해당 slot 에 대해 long PUCCH 전송이 수행되도록 규칙이 설정될 수 있다.
이 때, dynamic L1 signaling (e.g., DL assignment, UL grant) 등에 의해 지시된 multi-slot long PUCCH (혹은 multi-slot PUSCH) 의 경우, Step 2의 적용 없이 Step 1만 적용하여 N 개의 slot 동안 multi-slot long PUCCH (혹은 multi-slot PUSCH) 전송이 수행될 수 있다.
그리고, RRC signaling (혹은 RRC signaling 과 DCI 의 조합, e.g., semi-persistent 전송)에 의해 지시된 multi-slot long PUCCH (e.g., scheduling request, periodic CSI 전송 혹은 multi-slot PUSCH)의 경우는 Step 1 및 Step 2를 모두 적용하여 N 개의 slot 들 중 일부 slot 에서는 multi-slot long PUCCH (혹은 multi-slot PUSCH) 전송이 생략될 수 있다.
혹은, UCI 전송에 있어서는 trigger 수단 (L1 signaling 인지 또는 RRC signaling인지) 에 관계없이 항상 Step 2의 적용 없이 Step 1 만 적용하여 N 개의 slot 동안 multi-slot long PUCCH 전송이 수행될 수 있다.
보다 구체적으로, UCI 를 포함하지 않은(multi-slot) data 전송에 있어서는 상기 step 1 및 step 2를 모두 적용하여 N 개의 slot 들 중 일부 slot 에서 (multi-slot) PUSCH 전송이 생략될 수 있다.
상기의 dynamic TDD 상황에서의 multi-slot long PUCCH 전송 동작은 PUSCH 를 uplink coverage 확장을 위해서 다수 개의 slot들에 걸쳐서 PUSCH를 전송하는 multi-slot PUSCH 전송 동작에도 동일하게 적용될 수 있다.
Dynamic TDD 상황에서의 multi-slot PDSCH 수신 동작
또한, 상기의 multi-slot long PUCCH 전송 동작은 downlink coverage 확장을 위해서 다수개의 slot에 걸쳐서 PDSCH를 전송하는 multi-slot PDSCH 전송에서도 다음과 같이 적용될 수 있다.
(옵션 1-1)
Starting slot 으로 지정된 slot에서 multi-slot PDSCH 의 첫 번째 slot을 전송하고 (DL 또는 unknown에 상관없이), 이후 (N-1) 개의 slot은 semi-static SFI (혹은 dynamic SFI)를 통해 DL로 설정된 slot에서만 전송한다.
더하여, 이후 (N-1) 개의 slot은 semi-static SFI 로 DL로 설정된 slot에서만 전송하거나, semi-static SFI로 DL 로 설정된 slot과 추가적으로 dynamic SFI로 DL로 설정된 slot 에 대해서도 전송하는 것일 수 있다.
(옵션 1-2)
Starting slot 으로 지정된 slot에서 multi-slot PDSCH 의 첫 번째 slot을 전송하고 (DL 또는 unknown에 상관없이), 이후 (N-1) 개의 slot은 semi-static SFI (혹은 dynamic SFI)를 통해 DL또는 unknown으로 설정된 slot에서만 전송한다.
더하여, 이후 (N-1) 개의 slot은 semi-static SFI 로 DL로 설정된 slot에서만 전송하거나, semi-static SFI로 DL 로 설정된 slot과 추가적으로 dynamic SFI로 DL로 설정된 slot 에 대해서도 전송하는 것일 수 있다.
단, 상기에서 첫 번째 slot 전송은 starting slot이 semi-static SFI (혹은 dynamic SFI)를 통해 unknown 혹은 DL로 설정된 경우에만 유효할 수 있다.
단, 상기에서 특정 slot이 DL로 설정되었다는 의미는 해당 slot 내 PDSCH 전송 구간의 모든 심볼이 또는 대부분의 symbol 들이 DL로 설정됨을 의미할 수 있다.
또는, 상기에서 특정 slot이 DL로 설정되었다는 의미는 slot 내 PDSCH 전송을 위해서 사용할 수 있는 downlink symbol 개수가 configure 된 PDSCH duration (in symbols) 보다 크거나 같은 경우에 한정하는 의미일 수 있다.
이 경우, slot 내 PDSCH 전송을 위해서 사용할 수 있는 downlink symbol 개수가 configure 된 PDSCH duration (in symbols) 보다 작으면, 해당 slot은 DL이나 unknown이 아닌 것으로 판단하여 동작할 수 있다.
그리고, DL/UL/unknown/reserved 가 symbol 단위로 configure 되는 경우, 상기의 downlink symbol 개수라 함은 DL symbol 만을 count하는 것이거나, DL symbol과 unknown symbol 들을 포함하는 것일 수 있다.
또한 slot 내 PDSCH 전송을 위해서 configure 된 PDSCH duration (in symbols) 중 일부가 DL symbol 이 아닌 경우, 해당 slot은 DL이나 unknown이 아닌 것으로 판단하여 동작할 수 있다.
예를 들면, slot 내 PDSCH 전송을 위해서 configure 된 PDSCH duration (in symbols) 과DL symbol 의 차이가 1 또는 symbol을 초과하는 경우, 해당 slot은 DL이나 unknown이 아닌 것으로 판단하여 동작할 수 있다.
또는, starting slot이 semi-static SFI (혹은 dynamic SFI)를 통해 DL로, 또는 DL이나 unknown으로 설정되지 않은 경우 다음과 같은 방식으로 동작할 수 있다.
(옵션 2-1)
Starting slot 으로 지정된 slot 을 포함한 이후 slot 들 중 semi-static SFI (혹은 dynamic SFI)를 통해 DL로 설정된 N개의 slot 으로만 multi-slot PDSCH를 전송한다.
더하여, starting slot 으로 지정된 slot 을 포함한 이후 slot 들 중 semi-static SFI 로 DL로 설정된 slot에서만 전송하거나, semi-static SFI로 DL 로 설정된 slot과 추가적으로 dynamic SFI로 DL로 설정된 slot 에 대해서도 전송하는 것일 수 있다.
(옵션 2-2)
Starting slot 으로 지정된 slot 을 포함한 이후 slot 들 중 semi-static SFI (혹은 dynamic SFI)를 통해 DL 또는 unknown으로 설정된 N개의 slot 으로만 multi-slot PDSCH를 전송한다.
더하여, starting slot 으로 지정된 slot 을 포함한 이후 slot 들 중 semi-static SFI 로 DL로 설정된 slot에서만 전송하거나, semi-static SFI로 DL 로 설정된 slot과 추가적으로 dynamic SFI로 DL로 설정된 slot 에 대해서도 전송하는 것일 수 있다.
다만, 상기 특정 slot이 DL로 설정되었다는 의미는 해당 slot 내 PDSCH 전송 구간의 모든 심볼이 또는 대부분의 symbol 들이 DL로 설정됨을 의미할 수 있다.
또는, 상기 특정 slot이 DL로 설정되었다는 의미는 slot 내 PDSCH 전송을 위해서 사용할 수 있는 downlink symbol 개수가 configure 된 PDSCH duration (in symbols) 보다 크거나 같은 경우에 한정하는 의미일 수 있다.
이 경우, slot 내 PDSCH 전송을 위해서 사용할 수 있는 downlink symbol 개수가 configure 된 PDSCH duration (in symbols) 보다 작으면, 해당 slot은 DL이나 unknown이 아닌 것으로 판단하여 동작할 수 있다.
그리고, DL/UL/unknown/reserved 가 symbol 단위로 configure 되는 경우, 상기 downlink symbol 개수라 함은 DL symbol 만을 카운트(count)하는 것이거나, DL symbol과 unknown symbol 들을 포함하는 것일 수 있다.
또한, slot 내 PDSCH 전송을 위해서 configure 된 PDSCH duration (in symbols) 중 일부가 DL symbol 이 아닌 경우, 해당 slot은 DL이나 unknown이 아닌 것으로 판단하여 동작할 수 있다.
예를 들면, slot 내 PDSCH 전송을 위해서 configure 된 PDSCH duration (in symbols) 과DL symbol 의 차이가 1 또는 symbol을 초과하는 경우, 해당 slot은 DL이나 unknown이 아닌 것으로 판단하여 동작할 수 있다.
이 때, 상기의 옵션들 중 하나로 동작하도록 semi-static 또는 dynamic 하게 설정하도록 할 수 있다.
일례로, PDSCH 를 scheduling하는 DCI를 통해 상기 4가지 옵션들 중 어느 방식을 적용할지, 혹은 상기 옵션 1-1과 1-2중 어느 방식을 적용할지, 혹은 상기 옵션 2-1과 2-2중 어느 방식을 적용할지를 dynamic하게 indication해줄 수 있다.
상기 multi-slot PDSCH는 semi-static SFI (혹은 dynamic SFI)를 통해 UL and/or reserved 로 설정된 slot에 대해서는 PDSCH 전송을 생략할 수 있다.
상기 생략된 slot은 PDSCH 전송으로 할당된 N개 slot중 하나로 카운트 되거나 카운트 되지 않을 수 있다.
상기 PDSCH 전송이라 함은 UE 입장에서는 PDSCH 수신 동작을 의미할 수 있다.
또한, 상기 dynamic TDD 상황에서의 multi-slot PDSCH 수신 동작은 PDCCH 를 downlink coverage 확장을 위해서 다수개의 slot에 걸쳐서 PDCCH를 전송하는 multi-slot PDCCH 전송 동작에도 동일하게 적용될 수 있다.
Dynamic TDD 상황에서의 multi-slot long PUCCH 의 frequency hopping 동작
PUCCH 의 coverage 향상을 위해서 PUCCH를 다수의 slot 에 걸쳐서 반복해서 전송할 때, repetition gain 외에 추가적으로 주파수 다이버시티 이득 (frequency diversity gain)을 얻기 위해서 inter-slot frequency hopping 을 적용할 수 있다.
Inter-slot frequency hopping은 frequency diversity를 획득하기 위해서 매 slot 마다 전송 주파수 자원의 위치를 변화시키는 동작을 의미한다.
이러한, Inter-slot frequency hopping은 random frequency hopping 방식과 deterministic 방법이 가능하다.
상기 Random frequency hopping 방식은 frequency hopping pattern을 매 slot 마다 random number generator를 통해서 생성하는 것이다.
더하여, deterministic frequency hopping 방식은 예를 들어, 다수의 주파수 위치를 정해서 slot 마다 정해진 주파수 위치 중 하나로 옮겨 다니도록 하는 식으로 구현할 수 있다.
간단한 예시로, f1과 f2, 두 개의 frequency resource를 higher layer and/or L1 signaling으로 configure 받은 후, 매 slot 마다 f1과 f2를 번갈아 가면서 옮겨 다니도록 할 수 있다.
이 때, Inter-slot frequency hopping의 frequency hopping pattern은 slot index의 함수로 정의될 수 있다.
이에 본 명세서에서는 이하 inter-slot frequency hopping 방법을 제안한다.
이는 dynamic TDD 에서는 PUCCH 전송이 가능한 slot 이 제한되어 있으며, 또한 semi-static 또는 dynamic하게 변할 수 있는 점을 감안 한 것이다.
먼저, 하기의 제안에서 특정 slot이 UL로 설정되었다는 의미는 3.5절 (Dynamic TDD 상황에서의 multi-slot long PUCCH 전송 동작)의 정의를 따른다.
또한, 하기에서 PUCCH 전송을 생략(skip)한다는 의미는 PUCCH를 전송한 것으로 간주하고 multi-slot long PUCCH 전송 회수로 count 하는 것을 의미한다.
또한, 하기에서 PUCCH 전송을 홀드(hold or defer)한다는 의미는 multi-slot long PUCCH 전송 회수로 count 하지 않는 것을 의미한다.
(방법 1)
매 slot index, ns 마다 새로운 주파수 호핑 패턴(frequency hopping pattern)을 생성한다.
여기서 slot index, ns는, slot format (UL/DL/unknown/reserved)에 상관없이 count하는 index를 의미한다.
방법 1의 경우, UL로 설정되지 않은 slot에 대해서는, PUCCH 전송은 생략(skip) 또는 홀드(hold or defer) 되지만, frequency hopping pattern 생성은 slot format 에 상관없이 생성하고, 다만, 해당 slot 에서의 적용은 생략(skip)하는 것이다.
즉, frequency hopping pattern은 모든 slot에서 계속 생성되지만, 생성된 값이 실제 frequency hopping에 적용되지 않는다.
이 후, UL로 설정된slot에서 PUCCH 전송이 다시 시작될 때는, 해당 slot index를 이용하여 새롭게 생성한 frequency hopping pattern 값을 적용한다.
방법 1의 경우 상기의 f1, f2 frequency hopping의 예를 들면, 짝수 또는 홀수 slot만 UL로 설정될 경우, f1 또는 f2 값만으로 PUCCH를 전송하게 되어 frequency diversity gain을 충분히 얻지 못하는 경우가 생길 수 있다.
(방법 2)
매 UL slot index 마다 새로운 frequency hopping pattern을 생성하는 방법이다.
여기서 UL slot index, ns_u는, UL로 설정된 slot만을 count하는 index를 의미한다.
방법 2에서는, 상기의 UL로 설정되지 않은 slot에 대해서 PUCCH 전송이 생략(skip) 또는 홀드(hold or defer)되는 경우에 대해서, 해당 UL slot index가 증가하지 않으므로 frequency hopping pattern 생성도 같이 홀드(hold or defer)된다.
방법 1과 방법 2의 차이는 다음과 같다.
예를 들어, 상기 f1, f2 frequency hopping는, 방법 2의 경우 짝수 또는 홀수 slot만 UL로 설정될 경우에도,
Figure PCTKR2018013330-appb-I000049
형태의 frequency hopping pattern을 유지하기 때문에 모든 slot이 UL로 설정된 경우와 동일하게 주파수 다이버시티 이득(frequency diversity gain)을 얻을 수 있다.
(방법 3)
Semi-static slot format configuration 기반의 UL slot index를 기준으로 frequency hopping pattern을 생성하는 방법이다.
여기서 UL slot index, ns_u_ss는, semi-static slot format configuration에 의해서 UL로 설정된 slot만을 count하는 index를 의미한다.
방법 3의 경우, semi-static UL/DL configuration에 기반하여 방법 2와 같이 frequency hopping pattern을 생성한 후, dynamic SFI 에 의해서 기존에 UL로 설정된 slot 중 일부가 DL로 변경될 경우 (e.g., UL 전송이 가능한 unknown slot 이 DL 전송용으로 DCI에 의해서 지정되는 경우), frequency hopping pattern의 적용을 생략한다.
도 5는 본 명세서에서 제안하는 multi-slot 기반 long PUCCH를 전송하기 위한 단말의 동작 방법의 일례를 나타낸 순서도이다.
먼저, 단말은 TDD(time division duplex) UL(uplink)-DL(downlink) 슬롯 설정(configuration)에 대한 제 1 정보를 기지국으로부터 수신한다(S510).
그리고, 상기 단말은 PUCCH 전송에 이용되는 슬롯의 개수를 나타내는 제 1 파라미터 및 PUCCH 슬롯 내 PUCCH 심볼(symbol) 구간(duration)을 나타내는 제 2 파라미터를 포함하는 제 2 정보를 상기 기지국으로부터 수신한다(S520).
그리고, 상기 단말은 상기 제 1 정보 및 상기 제 2 정보에 기초하여 상기 다수의 슬롯 기반 long PUCCH를 전송하기 위한 슬롯들을 결정한다(S530).
상기 다수의 슬롯 기반 long PUCCH를 전송하기 위한 슬롯들은 설정된 시작 슬롯부터 특정 개수의 슬롯만큼 결정될 수 있다.
상기 특정 개수의 슬롯은 UL 슬롯 또는 알려지지 않은(unknown) 슬롯으로 구성될 수 있다. 또는, 상기 특정 개수의 슬롯은 UL 슬롯 또는 알려지지 않은(unknown) 슬롯을 포함할 수 있다.
상기 UL 슬롯은 슬롯 내 PUCCH 전송을 위해 이용 가능한 UL 심볼의 개수가 상기 제 2 파라미터보다 크거나 같은 슬롯을 의미할 수 있다.
그리고, 상기 단말은 상기 결정된 슬롯들 상에서 상기 다수의 슬롯 기반 long PUCCH를 상기 기지국으로 전송한다(S540).
만약, 상기 결정된 슬롯들에서 특정 슬롯 내 PUCCH 전송을 위해 이용 가능한 UL 심볼의 개수가 상기 제 2 파라미터보다 작은 경우, 상기 특정 슬롯 상에서 상기 다수의 슬롯 기반 long PUCCH는 전송되지 않을 수 있다.
추가적으로, 상기 단말은 S510 단계 이후에 특정 TDD UL-DL 슬롯 포맷을 알리기 위한 슬롯 포맷 지시자(slot format indicator, SFI)를 상기 기지국으로부터 수신할 수 있다.
그리고, 상기 다수의 슬롯 기반 long PUCCH는 pre-DFT(discrete fourier transform) OCC(orthogonal cover code)를 이용하여 전송될 수 있다.
보다 구체적으로, 상기 다수의 슬롯 기반 long PUCCH 자원은 UCI(uplink control information) 파트와 관련된 OCC와 참조 신호(reference signal)와 관련된 cyclic shift(CS)를 페어링(pairing)하여 결정될 수 있다.
도 5 및 도 7 내지 도 10을 참고하여 본 명세서에서 제안하는 multi-slot 기반 long PUCCH 전송이 단말 장치에서 구현되는 내용에 대해 살펴본다.
무선 통신 시스템에서 다수의 슬롯(multi-slot) 기반 long PUCCH(physical uplink control channel)을 전송하는 단말은 무선 신호를 송수신하기 위한 RF(Radio Frequency) 모듈; 및 상기 RF 모듈과 기능적으로 연결되어 있는 프로세서를 포함할 수 있다.
먼저, 단말의 프로세서는 TDD(time division duplex) UL(uplink)-DL(downlink) 슬롯 설정(configuration)에 대한 제 1 정보를 기지국으로부터 수신하도록 상기 RF 모듈을 제어한다.
그리고, 상기 프로세서는 PUCCH 전송에 이용되는 슬롯의 개수를 나타내는 제 1 파라미터 및 PUCCH 슬롯 내 PUCCH 심볼(symbol) 구간(duration)을 나타내는 제 2 파라미터를 포함하는 제 2 정보를 상기 기지국으로부터 수신하도록 상기 RF 모듈을 제어한다.
그리고, 상기 프로세서는 상기 제 1 정보 및 상기 제 2 정보에 기초하여 상기 다수의 슬롯 기반 long PUCCH를 전송하기 위한 슬롯들을 결정한다.
상기 다수의 슬롯 기반 long PUCCH를 전송하기 위한 슬롯들은 설정된 시작 슬롯부터 특정 개수의 슬롯만큼 결정될 수 있다.
상기 특정 개수의 슬롯은 UL 슬롯 또는 알려지지 않은(unknown) 슬롯으로 구성될 수 있다. 또는, 상기 특정 개수의 슬롯은 UL 슬롯 또는 알려지지 않은(unknown) 슬롯을 포함할 수 있다.
상기 UL 슬롯은 슬롯 내 PUCCH 전송을 위해 이용 가능한 UL 심볼의 개수가 상기 제 2 파라미터보다 크거나 같은 슬롯을 의미할 수 있다.
그리고, 상기 프로세서는 상기 결정된 슬롯들 상에서 상기 다수의 슬롯 기반 long PUCCH를 상기 기지국으로 전송하도록 상기 RF 모듈을 제어한다.
만약, 상기 결정된 슬롯들에서 특정 슬롯 내 PUCCH 전송을 위해 이용 가능한 UL 심볼의 개수가 상기 제 2 파라미터보다 작은 경우, 상기 특정 슬롯 상에서 상기 다수의 슬롯 기반 long PUCCH는 전송되지 않을 수 있다.
추가적으로, 상기 프로세서는 특정 TDD UL-DL 슬롯 포맷을 알리기 위한 슬롯 포맷 지시자(slot format indicator, SFI)를 상기 기지국으로부터 수신하도록 상기 RF 모듈을 제어할 수 있다.
그리고, 상기 다수의 슬롯 기반 long PUCCH는 pre-DFT(discrete fourier transform) OCC(orthogonal cover code)를 이용하여 전송될 수 있다.
보다 구체적으로, 상기 다수의 슬롯 기반 long PUCCH 자원은 UCI(uplink control information) 파트와 관련된 OCC와 참조 신호(reference signal)와 관련된 cyclic shift(CS)를 페어링(pairing)하여 결정될 수 있다.
도 6은 본 명세서에서 제안하는 multi-slot 기반 long PUCCH를 수신하기 위한 기지국의 동작 방법의 일례를 나타낸 순서도이다.
먼저, 기지국은 TDD(time division duplex) UL(uplink)-DL(downlink) 슬롯 설정(configuration)에 대한 제 1 정보를 단말로 전송한다(S610).
그리고, 상기 기지국은 PUCCH 전송에 이용되는 슬롯의 개수를 나타내는 제 1 파라미터 및 PUCCH 슬롯 내 PUCCH 심볼(symbol) 구간(duration)을 나타내는 제 2 파라미터를 포함하는 제 2 정보를 상기 단말로 전송한다(S620).
그리고, 상기 기지국은 다수의 슬롯들 상에서 long PUCCH를 상기 단말로부터 수신한다(S630).
상기 다수의 슬롯들은 설정된 시작 슬롯부터 특정 개수의 슬롯만큼으로 결정될 수 있다.
상기 특정 개수의 슬롯은 UL 슬롯 또는 알려지지 않은(unknown) 슬롯으로 구성될 수 있다. 또는, 상기 특정 개수의 슬롯은 UL 슬롯 또는 알려지지 않은(unknown) 슬롯을 포함할 수 있다.
상기 UL 슬롯은 슬롯 내 PUCCH 전송을 위해 이용 가능한 UL 심볼의 개수가 상기 제 2 파라미터보다 크거나 같은 슬롯을 의미할 수 있다.
만약 다수의 슬롯들에서 특정 슬롯 내 PUCCH 전송을 위해 이용 가능한 UL 심볼의 개수가 상기 제 2 파라미터보다 작은 경우, 상기 특정 슬롯 상에서 상기 long PUCCH는 수신되지 않을 수 있다.
추가적으로, 상기 기지국은 S610 단계 이후에 특정 TDD UL-DL 슬롯 포맷을 알리기 위한 슬롯 포맷 지시자(slot format indicator, SFI)를 상기 단말로 전송할 수 있다.
그리고, 상기 long PUCCH는 pre-DFT(discrete fourier transform) OCC(orthogonal cover code)를 이용하여 수신될 수 있다.
보다 구체적으로, 상기 long PUCCH 자원은 UCI(uplink control information) 파트와 관련된 OCC와 참조 신호(reference signal)와 관련된 cyclic shift(CS)를 페어링(pairing)하여 결정될 수 있다.
도 6 내지 도 10을 참고하여 본 명세서에서 제안하는 multi-slot 기반 long PUCCH 수신이 기지국 장치에서 구현되는 내용에 대해 살펴본다.
무선 통신 시스템에서 다수의 슬롯(multi-slot) 기반 long PUCCH(physical uplink control channel)을 수신하는 기지국은 무선 신호를 송수신하기 위한 RF(Radio Frequency) 모듈; 및 상기 RF 모듈과 기능적으로 연결되어 있는 프로세서를 포함할 수 있다.
먼저, 기지국의 프로세서는 TDD(time division duplex) UL(uplink)-DL(downlink) 슬롯 설정(configuration)에 대한 제 1 정보를 단말로 전송하도록 상기 RF 모듈을 제어한다.
그리고, 상기 프로세서는 PUCCH 전송에 이용되는 슬롯의 개수를 나타내는 제 1 파라미터 및 PUCCH 슬롯 내 PUCCH 심볼(symbol) 구간(duration)을 나타내는 제 2 파라미터를 포함하는 제 2 정보를 상기 단말로 전송하도록 상기 RF 모듈을 제어한다.
그리고, 상기 기지국은 다수의 슬롯들 상에서 long PUCCH를 상기 단말로부터 수신하도록 상기 RF 모듈을 제어한다.
상기 다수의 슬롯들은 설정된 시작 슬롯부터 특정 개수의 슬롯만큼으로 결정될 수 있다.
상기 특정 개수의 슬롯은 UL 슬롯 또는 알려지지 않은(unknown) 슬롯으로 구성될 수 있다. 또는, 상기 특정 개수의 슬롯은 UL 슬롯 또는 알려지지 않은(unknown) 슬롯을 포함할 수 있다.
상기 UL 슬롯은 슬롯 내 PUCCH 전송을 위해 이용 가능한 UL 심볼의 개수가 상기 제 2 파라미터보다 크거나 같은 슬롯을 의미할 수 있다.
만약 다수의 슬롯들에서 특정 슬롯 내 PUCCH 전송을 위해 이용 가능한 UL 심볼의 개수가 상기 제 2 파라미터보다 작은 경우, 상기 특정 슬롯 상에서 상기 long PUCCH는 수신되지 않을 수 있다.
추가적으로, 상기 프로세서는 특정 TDD UL-DL 슬롯 포맷을 알리기 위한 슬롯 포맷 지시자(slot format indicator, SFI)를 상기 단말로 전송하도록 상기 RF 모듈을 제어할 수 있다.
그리고, 상기 long PUCCH는 pre-DFT(discrete fourier transform) OCC(orthogonal cover code)를 이용하여 수신될 수 있다.
보다 구체적으로, 상기 long PUCCH 자원은 UCI(uplink control information) 파트와 관련된 OCC와 참조 신호(reference signal)와 관련된 cyclic shift(CS)를 페어링(pairing)하여 결정될 수 있다.
앞서 살핀 방법들은 독립적으로 수행되거나 또는 각 방법이 다양하게 결합 또는 조합되어 수행됨으로써 본 명세서에서 제안하는 multi-slot 기반 long PUCCH 송수신을 수행할 수 있다.
본 발명이 적용될 수 있는 장치 일반
도 7은 본 명세서에서 제안하는 방법들이 적용될 수 있는 무선 통신 장치의 블록 구성도를 예시한다.
도 7을 참조하면, 무선 통신 시스템은 기지국(710)과 기지국(710) 영역 내에 위치한 다수의 단말(720)을 포함한다.
상기 기지국과 단말은 각각 무선 장치로 표현될 수도 있다.
기지국(710)은 프로세서(processor, 711), 메모리(memory, 712) 및 RF 모듈(radio frequency module, 713)을 포함한다.
프로세서(711)는 앞서 도 1 내지 도 6에서 제안된 기능, 과정 및/또는 방법을 구현한다.
무선 인터페이스 프로토콜의 계층들은 프로세서에 의해 구현될 수 있다.
메모리(712)는 프로세서와 연결되어, 프로세서를 구동하기 위한 다양한 정보를 저장한다.
RF 모듈(713)는 프로세서와 연결되어, 무선 신호를 송신 및/또는 수신한다.
단말(720)은 프로세서(721), 메모리(722) 및 RF 모듈(723)을 포함한다.
프로세서(721)는 앞서 도 1 내지 도 6에서 제안된 기능, 과정 및/또는 방법을 구현한다.
무선 인터페이스 프로토콜의 계층들은 프로세서에 의해 구현될 수 있다.
메모리(722)는 프로세서와 연결되어, 프로세서를 구동하기 위한 다양한 정보를 저장한다.
RF 모듈(723)는 프로세서와 연결되어, 무선 신호를 송신 및/또는 수신한다.
메모리(712, 722)는 프로세서(711, 721) 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서(711, 721)와 연결될 수 있다.
또한, 기지국(710) 및/또는 단말(720)은 한 개의 안테나(single antenna) 또는 다중 안테나(multiple antenna)를 가질 수 있다.
도 8은 본 발명의 일 실시 예에 따른 통신 장치의 블록 구성도를 예시한다.
특히, 도 8에서는 앞서 도 7의 단말을 보다 상세히 예시하는 도면이다.
도 8을 참조하면, 단말은 프로세서(또는 디지털 신호 프로세서(DSP: digital signal processor)(810), RF 모듈(RF module)(또는 RF 유닛)(835), 파워 관리 모듈(power management module)(805), 안테나(antenna)(840), 배터리(battery)(855), 디스플레이(display)(815), 키패드(keypad)(820), 메모리(memory)(830), 심카드(SIM(Subscriber Identification Module) card)(825)(이 구성은 선택적임), 스피커(speaker)(845) 및 마이크로폰(microphone)(850)을 포함하여 구성될 수 있다. 단말은 또한 단일의 안테나 또는 다중의 안테나를 포함할 수 있다.
프로세서(810)는 앞서 도 1 내지 도 6에서 제안된 기능, 과정 및/또는 방법을 구현한다. 무선 인터페이스 프로토콜의 계층은 프로세서에 의해 구현될 수 있다.
메모리(830)는 프로세서와 연결되고, 프로세서의 동작과 관련된 정보를 저장한다. 메모리는 프로세서 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서와 연결될 수 있다.
사용자는 예를 들어, 키패드(820)의 버튼을 누르거나(혹은 터치하거나) 또는 마이크로폰(850)를 이용한 음성 구동(voice activation)에 의해 전화 번호 등과 같은 명령 정보를 입력한다. 프로세서는 이러한 명령 정보를 수신하고, 전화 번호로 전화를 거는 등 적절한 기능을 수행하도록 처리한다. 구동 상의 데이터(operational data)는 심카드(825) 또는 메모리로부터 추출할 수 있다. 또한, 프로세서는 사용자가 인지하고 또한 편의를 위해 명령 정보 또는 구동 정보를 디스플레이(815) 상에 디스플레이할 수 있다.
RF 모듈(835)는 프로세서에 연결되어, RF 신호를 송신 및/또는 수신한다. 프로세서는 통신을 개시하기 위하여 예를 들어, 음성 통신 데이터를 구성하는 무선 신호를 전송하도록 명령 정보를 RF 모듈에 전달한다. RF 모듈은 무선 신호를 수신 및 송신하기 위하여 수신기(receiver) 및 전송기(transmitter)로 구성된다. 안테나(840)는 무선 신호를 송신 및 수신하는 기능을 한다. 무선 신호를 수신할 때, RF 모듈은 프로세서에 의해 처리하기 위하여 신호를 전달하고 기저 대역으로 신호를 변환할 수 있다. 처리된 신호는 스피커(845)를 통해 출력되는 가청 또는 가독 정보로 변환될 수 있다.
도 9은 본 명세서에서 제안하는 방법이 적용될 수 있는 무선 통신 장치의 RF 모듈의 일례를 나타낸 도이다.
구체적으로, 도 9은 FDD(Frequency Division Duplex) 시스템에서 구현될 수 있는 RF 모듈의 일례를 나타낸다.
먼저, 전송 경로에서, 도 7 및 도 8에서 기술된 프로세서는 전송될 데이터를 프로세싱하여 아날로그 출력 신호를 송신기(910)에 제공한다.
송신기(910) 내에서, 아날로그 출력 신호는 디지털-대-아날로그 변환(ADC)에 의해 야기되는 이미지들을 제거하기 위해 저역 통과 필터(Low Pass Filter, LPF)(911)에 의해 필터링되고, 상향 변환기(Mixer, 912)에 의해 기저대역으로부터 RF로 상향 변환되고, 가변이득 증폭기(Variable Gain Amplifier,VGA)(913)에 의해 증폭되며, 증폭된 신호는 필터(914)에 의해 필터링되고, 전력 증폭기(Power Amplifier,PA)(915)에 의해 추가로 증폭되며, 듀플렉서(들)(950)/안테나 스위치(들)(960)을 통해 라우팅되고, 안테나(970)을 통해 전송된다.
또한, 수신 경로에서, 안테나(970)은 외부로부터 신호들을 수신하여 수신된 신호들을 제공하며, 이 신호들은 안테나 스위치(들)(960)/듀플렉서들 (950)을 통해 라우팅되고, 수신기(920)으로 제공된다.
수신기(920)내에서, 수신된 신호들은 저잡음 증폭기(Low Noise Amplifier, LNA)(923)에 의해 증폭되며, 대역통과 필터(924)에 의해 필터링되고, 하향 변환기(Mixer,925)에 의해 RF로부터 기저대역으로 하향 변환된다.
상기 하향 변환된 신호는 저역 통과 필터(LPF,926)에 의해 필터링되며, VGA(927)에 의해 증폭되어 아날로그 입력 신호를 획득하고, 이는 도 7 및 도 8에서 기술된 프로세서에 제공된다.
또한, 로컬 오실레이터 (local oscillator, LO) 발생기(940)는 전송 및 수신 LO 신호들을 발생 및 상향 변환기(912) 및 하향 변환기(925)에 각각 제공한다.
또한, 위상 고정 루프(Phase Locked Loop, PLL)(930)은 적절한 주파수들에서 전송 및 수신 LO 신호들을 생성하기 위해 프로세서로부터 제어 정보를 수신하고, 제어 신호들을 LO 발생기(940)에 제공한다.
또한, 도 9에 도시된 회로들은 도 9에 도시된 구성과 다르게 배열될 수도 있다.
도 10는 본 명세서에서 제안하는 방법이 적용될 수 있는 무선 통신 장치의 RF 모듈의 또 다른 일례를 나타낸 도이다.
구체적으로, 도 10는 TDD(Time Division Duplex) 시스템에서 구현될 수 있는 RF 모듈의 일례를 나타낸다.
TDD 시스템에서의 RF 모듈의 송신기(1010) 및 수신기(1020)은 FDD 시스템에서의 RF 모듈의 송신기 및 수신기의 구조와 동일하다.
이하, TDD 시스템의 RF 모듈은 FDD 시스템의 RF 모듈과 차이가 나는 구조에 대해서만 살펴보기로 하고, 동일한 구조에 대해서는 도 9의 설명을 참조하기로 한다.
송신기의 전력 증폭기(Power Amplifier,PA)(1015)에 의해 증폭된 신호는 밴드 선택 스위치(Band Select Switch,1050), 밴드 통과 필터(BPF,1060) 및 안테나 스위치(들)(1070)을 통해 라우팅되고, 안테나(1080)을 통해 전송된다.
또한, 수신 경로에서, 안테나(1080)은 외부로부터 신호들을 수신하여 수신된 신호들을 제공하며, 이 신호들은 안테나 스위치(들)(1070), 밴드 통과 필터(1060) 및 밴드 선택 스위치(1050)을 통해 라우팅되고, 수신기(1020)으로 제공된다.
이상에서 설명된 실시 예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시 예를 구성하는 것도 가능하다. 본 발명의 실시 예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시 예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시 예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.
본 발명에 따른 실시 예는 다양한 수단, 예를 들어, 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다. 하드웨어에 의한 구현의 경우, 본 발명의 일 실시 예는 하나 또는 그 이상의 ASICs(application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays), 프로세서, 콘트롤러, 마이크로 콘트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 일 실시 예는 이상에서 설명된 기능 또는 동작들을 수행하는 모듈, 절차, 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리는 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
본 발명은 본 발명의 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 통상의 기술자에게 자명하다. 따라서, 상술한 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니 되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
본 발명의 무선 통신 시스템에서 multi-slot long PUCCH를 전송하는 방법은 3GPP LTE/LTE-A 시스템, 5G 시스템(New RAT 시스템)에 적용되는 예를 중심으로 설명하였으나, 이외에도 다양한 무선 통신 시스템에 적용하는 것이 가능하다.

Claims (14)

  1. 무선 통신 시스템에서 다수의 슬롯(multi-slot) 기반 long PUCCH(physical uplink control channel)을 전송하는 방법에 있어, 단말에 의해 수행되는 방법은,
    TDD(time division duplex) UL(uplink)-DL(downlink) 슬롯 설정(configuration)에 대한 제 1 정보를 기지국으로부터 수신하는 단계;
    PUCCH 전송에 이용되는 슬롯의 개수를 나타내는 제 1 파라미터 및 PUCCH 슬롯 내 PUCCH 심볼(symbol) 구간(duration)을 나타내는 제 2 파라미터를 포함하는 제 2 정보를 상기 기지국으로부터 수신하는 단계;
    상기 제 1 정보 및 상기 제 2 정보에 기초하여 상기 다수의 슬롯 기반 long PUCCH를 전송하기 위한 슬롯들을 결정하는 단계; 및
    상기 결정된 슬롯들 상에서 상기 다수의 슬롯 기반 long PUCCH를 상기 기지국으로 전송하는 단계를 포함하는 것을 특징으로 하는 방법.
  2. 제 1항에 있어서,
    상기 다수의 슬롯 기반 long PUCCH를 전송하기 위한 슬롯들은 설정된 시작 슬롯부터 특정 개수의 슬롯만큼 결정되는 것을 특징으로 하는 방법.
  3. 제 2항에 있어서,
    상기 특정 개수의 슬롯은 UL 슬롯 또는 알려지지 않은(unknown) 슬롯으로 구성되는 것을 특징으로 하는 방법.
  4. 제 3항에 있어서,
    상기 UL 슬롯은 슬롯 내 PUCCH 전송을 위해 이용 가능한 UL 심볼의 개수가 상기 제 2 파라미터보다 크거나 같은 것을 특징으로 하는 방법.
  5. 제 1항에 있어서,
    상기 결정된 슬롯들에서 특정 슬롯 내 PUCCH 전송을 위해 이용 가능한 UL 심볼의 개수가 상기 제 2 파라미터보다 작은 경우, 상기 특정 슬롯 상에서 상기 다수의 슬롯 기반 long PUCCH는 전송되지 않는 것을 특징으로 하는 방법.
  6. 제 1항에 있어서,
    특정 TDD UL-DL 슬롯 포맷을 알리기 위한 슬롯 포맷 지시자(slot format indicator, SFI)를 상기 기지국으로부터 수신하는 단계를 더 포함하는 것을 특징으로 하는 방법.
  7. 제 1항에 있어서,
    상기 다수의 슬롯 기반 long PUCCH는 pre-DFT(discrete fourier transform) OCC(orthogonal cover code)를 이용하여 전송되는 것을 특징으로 하는 방법.
  8. 제 7항에 있어서,
    상기 다수의 슬롯 기반 long PUCCH 자원은 UCI(uplink control information) 파트와 관련된 OCC와 참조 신호(reference signal)와 관련된 cyclic shift(CS)를 페어링(pairing)하여 결정되는 것을 특징으로 하는 방법.
  9. 무선 통신 시스템에서 다수의 슬롯(multi-slot) 기반 long PUCCH(physical uplink control channel)을 전송하는 단말은,
    무선 신호를 송수신하기 위한 RF(Radio Frequency) 모듈; 및
    상기 RF 모듈과 기능적으로 연결되어 있는 프로세서를 포함하고, 상기 프로세서는,
    TDD(time division duplex) UL(uplink)-DL(downlink) 슬롯 설정(configuration)에 대한 제 1 정보를 기지국으로부터 수신하며;
    PUCCH 전송에 이용되는 슬롯의 개수를 나타내는 제 1 파라미터 및 PUCCH 슬롯 내 PUCCH 심볼(symbol) 구간(duration)을 나타내는 제 2 파라미터를 포함하는 제 2 정보를 상기 기지국으로부터 수신하며;
    상기 제 1 정보 및 상기 제 2 정보에 기초하여 상기 다수의 슬롯 기반 long PUCCH를 전송하기 위한 슬롯들을 결정하며; 및
    상기 결정된 슬롯들 상에서 상기 다수의 슬롯 기반 long PUCCH를 상기 기지국으로 전송하도록 설정되는 것을 특징으로 하는 단말.
  10. 제 9항에 있어서,
    상기 다수의 슬롯 기반 long PUCCH를 전송하기 위한 슬롯들은 설정된 시작 슬롯부터 특정 개수의 슬롯만큼 결정되는 것을 특징으로 하는 단말.
  11. 제 10항에 있어서,
    상기 특정 개수의 슬롯은 UL 슬롯 또는 알려지지 않은(unknown) 슬롯으로 구성되는 것을 특징으로 하는 단말.
  12. 제 11항에 있어서,
    상기 UL 슬롯은 슬롯 내 PUCCH 전송을 위해 이용 가능한 UL 심볼의 개수가 상기 제 2 파라미터보다 크거나 같은 것을 특징으로 하는 단말.
  13. 제 9항에 있어서, 상기 프로세서는,
    상기 결정된 슬롯들에서 특정 슬롯 내 PUCCH 전송을 위해 이용 가능한 UL 심볼의 개수가 상기 제 2 파라미터보다 작은 경우, 상기 특정 슬롯 상에서 상기 다수의 슬롯 기반 long PUCCH가 전송되지 않도록 설정되는 것을 특징으로 하는 단말.
  14. 제 9항에 있어서, 상기 프로세서는,
    특정 TDD UL-DL 슬롯 포맷을 알리기 위한 슬롯 포맷 지시자(slot format indicator, SFI)를 상기 기지국으로부터 수신하도록 설정되는 것을 특징으로 하는 단말.
PCT/KR2018/013330 2017-11-03 2018-11-05 무선 통신 시스템에서 다수의 슬롯 기반 긴 pucch를 송수신하기 위한 방법 및 이를 위한 장치 WO2019088787A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880071350.3A CN111316589B (zh) 2017-11-03 2018-11-05 发送基于多个时隙的长pucch的方法和设备
EP18874353.8A EP3661103B1 (en) 2017-11-03 2018-11-05 Method for transmitting plurality of slot-based long pucchs in wireless communication system and apparatus therefor
CN202211266112.2A CN115664614A (zh) 2017-11-03 2018-11-05 接收长pucch的方法和基站以及计算机可读介质
JP2020514561A JP7018127B2 (ja) 2017-11-03 2018-11-05 無線通信システムにおいて複数のスロットベースのロングpucchを送受信する方法及びその装置

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
US201762581087P 2017-11-03 2017-11-03
US62/581,087 2017-11-03
US201762586918P 2017-11-16 2017-11-16
US62/586,918 2017-11-16
US201762591776P 2017-11-29 2017-11-29
US62/591,776 2017-11-29
US201762593812P 2017-12-01 2017-12-01
US62/593,812 2017-12-01
US201762595062P 2017-12-05 2017-12-05
US62/595,062 2017-12-05
US201862616467P 2018-01-12 2018-01-12
US62/616,467 2018-01-12

Publications (1)

Publication Number Publication Date
WO2019088787A1 true WO2019088787A1 (ko) 2019-05-09

Family

ID=66327941

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/013330 WO2019088787A1 (ko) 2017-11-03 2018-11-05 무선 통신 시스템에서 다수의 슬롯 기반 긴 pucch를 송수신하기 위한 방법 및 이를 위한 장치

Country Status (6)

Country Link
US (1) US10887872B2 (ko)
EP (1) EP3661103B1 (ko)
JP (1) JP7018127B2 (ko)
KR (3) KR20190050728A (ko)
CN (2) CN115664614A (ko)
WO (1) WO2019088787A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3711414A4 (en) * 2017-11-16 2021-08-25 Sharp Kabushiki Kaisha MULTI-INTERVAL LONG PHYSICAL UPRIGHT (PUCCH) CONTROL CHANNEL DESIGN FOR NEW 5TH GENERATION (5G) RADIO (NR)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11910388B2 (en) * 2017-03-24 2024-02-20 Qualcomm Incorporated Uplink control channel configuration for wireless communications
CN109803394B (zh) 2017-11-17 2022-07-12 大唐移动通信设备有限公司 多时隙传输的方法和设备
SG11202006437TA (en) * 2018-01-11 2020-08-28 Guangdong Oppo Mobile Telecommunications Corp Ltd Resource configuration method and device, computer storage medium
BR112020014029A2 (pt) * 2018-01-11 2020-12-01 Ntt Docomo, Inc. terminal, método de controle de rádio para um terminal e estação base
US11101950B2 (en) * 2018-01-12 2021-08-24 Qualcomm Incorporated Demodulation reference signal (DMRS) bundling in slot aggregation and slot format considerations for new radio
CN109302272B (zh) * 2018-02-13 2022-06-03 中兴通讯股份有限公司 Csi报告的发送、接收方法及装置、电子装置
US11546924B2 (en) * 2018-04-27 2023-01-03 Qualcomm Incorporated Group physical control channel for autonomous uplink transmissions
US11283547B2 (en) * 2018-09-12 2022-03-22 Qualcomm Incorporated Discrete Fourier transform-spread (DFT-S) based interlace physical uplink control channel (PUCCH) with user multiplexing
US11658780B2 (en) * 2019-01-09 2023-05-23 Qualcomm Incorporated Demodulation reference signal multiplexing scheme selection for uplink transmission
MX2022005519A (es) * 2019-11-08 2022-08-15 Guangdong Oppo Mobile Telecommunications Corp Ltd Procedimiento de indicacion de informacion y dispositivos relacionados.
WO2021159423A1 (en) * 2020-02-14 2021-08-19 Qualcomm Incorporated Multi-slot aperiodic sounding reference signal
CA3119114A1 (en) * 2020-05-18 2021-11-18 Comcast Cable Communications, Llc Transmission using a plurality of wireless resources
US11871408B2 (en) * 2020-06-16 2024-01-09 Qualcomm Incorporated Physical uplink control channel repetition across slot types
US11937235B2 (en) * 2020-07-02 2024-03-19 Qualcomm Incorporated Slot format indicator (SFI) enhancement for sub-band full-duplex
US20230379915A1 (en) * 2020-07-03 2023-11-23 Qualcomm Incorporated Uplink control information (uci) multiplexing for multi-slot physical uplink shared channel (pusch) with transport block size (tbs) scaling
US11902977B2 (en) * 2020-09-21 2024-02-13 Qualcomm Incorporated Enhanced PUCCH transmission for repetition or frequency hopping
JP2023182861A (ja) * 2020-10-26 2023-12-27 株式会社Nttドコモ 端末、及び基地局
CN114598434A (zh) * 2020-12-03 2022-06-07 华为技术有限公司 数据传输方法及装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170163388A1 (en) * 2015-12-07 2017-06-08 Telefonaktiebolaget Lm Ericsson (Publ) Uplink mac protocol aspects

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010123304A2 (en) * 2009-04-24 2010-10-28 Samsung Electronics Co., Ltd. Multiplexing large payloads of control information from user equipments
JP5518198B2 (ja) * 2009-09-16 2014-06-11 エルジー エレクトロニクス インコーポレイティド 多重アンテナシステムにおける参照信号送信方法及び装置
CN102598530B (zh) * 2009-09-16 2015-07-15 Lg电子株式会社 在多天线系统中发射基准信号的方法和设备
KR20110055367A (ko) * 2009-11-17 2011-05-25 엘지전자 주식회사 다중 안테나 시스템에서 harq 수행 방법 및 장치
KR101733489B1 (ko) * 2010-01-17 2017-05-24 엘지전자 주식회사 무선 통신 시스템에서 제어 정보의 전송 방법 및 장치
US8325685B2 (en) * 2010-02-12 2012-12-04 Research In Motion Limited System and method for improved control channel transmit diversity
US20110235599A1 (en) * 2010-03-29 2011-09-29 Samsung Electronics Co., Ltd. Method and system for uplink acknowledgement signaling in carrier-aggregated wireless communication systems
US8509155B2 (en) * 2010-07-16 2013-08-13 Samsung Electronics Co., Ltd. Method and system for multiplexing acknowledgement signals and sounding reference signals
EP2600581A4 (en) * 2010-07-26 2017-09-27 LG Electronics Inc. Method and device for transmitting sounding reference signal and extended uplink control information in wireless communication system
US9172513B2 (en) * 2010-10-11 2015-10-27 Qualcomm Incorporated Resource assignments for uplink control channel
US9686110B2 (en) * 2012-02-20 2017-06-20 Lg Electronics Inc. Method and apparatus for transmitting uplink signal in wireless communication system
EP3242435B1 (en) * 2014-12-31 2019-10-23 LG Electronics Inc. Method and apparatus for allocating resources in wireless communication system
US10326493B2 (en) * 2015-05-13 2019-06-18 Samsung Electronics Co., Ltd. Control channel transmission and frequency error correction
US10277270B2 (en) * 2015-12-08 2019-04-30 Lg Electronics Inc. Method for transmitting uplink signal in a wireless communication system and apparatus for the same
US10524237B2 (en) * 2016-03-07 2019-12-31 Samsung Electronics Co., Ltd. Control signaling for supporting multiple services in advanced communication systems
US10708938B2 (en) * 2016-10-31 2020-07-07 Samsung Electronics Co., Ltd. Transmission of UL control channels with dynamic structures
US11528729B2 (en) * 2016-11-01 2022-12-13 Ntt Docomo, Inc. User terminal and radio communication method
CN108023671B (zh) * 2016-11-04 2022-03-29 中兴通讯股份有限公司 一种数据传输方法、基站、用户设备及系统
US11166262B2 (en) * 2017-01-05 2021-11-02 FG Innovation Company Limited Long physical uplink control channel (PUCCH) design for 5th generation (5G) new radio (NR)
US10609689B2 (en) * 2017-02-02 2020-03-31 Sharp Kabushiki Kaisha Long physical uplink control channel (PUCCH) design for 5th generation (5G) new radio (NR)
EP3530029A4 (en) * 2017-08-10 2019-11-06 ZTE Corporation SYSTEMS AND METHODS FOR INDICATING AND DETERMINING CHANNEL STRUCTURE INFORMATION
WO2019032741A1 (en) * 2017-08-10 2019-02-14 Sharp Laboratories Of America, Inc. LONG UPLINK CONTROL (LONG PUCCH) PHYSICAL CHANNEL DESIGN INTERVAL STRUCTURE FOR A NEW 5TH GENERATION (5G) RADIO (NR)
AU2018313837B2 (en) * 2017-08-10 2023-08-10 FG Innovation Company Limited Multiple slot long physical uplink control channel (PUCCH) design for 5th generation (5G) new radio (NR)
US11139941B2 (en) * 2017-09-11 2021-10-05 Qualcomm Incorporated Uplink acknowledgment mapping and resource allocation
JP6951044B2 (ja) * 2017-10-23 2021-10-20 トヨタ自動車株式会社 キーユニット、施解錠システム、プログラム、記憶媒体
US10616888B2 (en) * 2017-11-16 2020-04-07 Sharp Laboratories Of America, Inc. Multiple slot long physical uplink control channel (PUCCH) design for 5th generation (5G) new radio (NR)
US10778378B2 (en) * 2017-12-04 2020-09-15 Samsung Electronics Co., Ltd Method and apparatus for transmitting uplink data in wireless communication system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170163388A1 (en) * 2015-12-07 2017-06-08 Telefonaktiebolaget Lm Ericsson (Publ) Uplink mac protocol aspects

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "On PUCCH Resource Allocation", 3GPP TSG RAN WG1 MEETING 2LI90BIS, no. R1-1718811, 9 October 2017 (2017-10-09), Prague, Czech Republic, XP051353297 *
HUAWEI ET AL.: "Support of Long-PUCCH over Multiple Slots", R1-1717071, 3GPP TSG RAN WG1 MEETING #90BIS, 2 October 2017 (2017-10-02), Prague. Czech Republic, XP051352177 *
SAMSUNG: "DL and UL Assignment for NR TDD", 3GPP TSG RAN WG1 MEETING NR#3, no. R1-1715986, 12 September 2017 (2017-09-12), Nagoya, Japan, XP051339445 *
SAMSUNG: "Multi-slot Long PUCCH Transmission", R1-1717653, 3GPP TSG RAN WG1 MEETING #90B, 2 October 2017 (2017-10-02), Prague, CZ, XP051352262 *
See also references of EP3661103A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3711414A4 (en) * 2017-11-16 2021-08-25 Sharp Kabushiki Kaisha MULTI-INTERVAL LONG PHYSICAL UPRIGHT (PUCCH) CONTROL CHANNEL DESIGN FOR NEW 5TH GENERATION (5G) RADIO (NR)

Also Published As

Publication number Publication date
EP3661103B1 (en) 2022-07-13
EP3661103A1 (en) 2020-06-03
KR20200084858A (ko) 2020-07-13
US20190141698A1 (en) 2019-05-09
KR20190050728A (ko) 2019-05-13
JP7018127B2 (ja) 2022-02-09
CN111316589B (zh) 2022-11-04
JP2020533895A (ja) 2020-11-19
KR102364767B1 (ko) 2022-02-18
EP3661103A4 (en) 2020-07-29
KR102133003B1 (ko) 2020-07-13
CN111316589A (zh) 2020-06-19
KR20190114946A (ko) 2019-10-10
US10887872B2 (en) 2021-01-05
CN115664614A (zh) 2023-01-31

Similar Documents

Publication Publication Date Title
WO2019088787A1 (ko) 무선 통신 시스템에서 다수의 슬롯 기반 긴 pucch를 송수신하기 위한 방법 및 이를 위한 장치
WO2018212628A1 (ko) 무선 통신 시스템에서 상향링크 전송을 수행하는 방법 및 이를 위한 장치
WO2018225927A1 (ko) 무선 통신 시스템에서 참조 신호를 송수신하기 위한 방법 및 이를 위한 장치
WO2020032578A1 (ko) 무선 통신 시스템에서 노드의 자원 사용 방법 및 상기 방법을 이용하는 장치
WO2018199704A1 (ko) 무선 통신 시스템에서 채널 상태 정보를 보고하기 위한 방법 및 이를 위한 장치
WO2019190236A1 (ko) 무선 통신 시스템에서 사운딩 참조 신호(srs)를 전송하는 방법 및 이를 위한 장치
WO2019147000A1 (ko) 무선 통신 시스템에서 물리 상향 링크 제어 채널 상에서 다수의 상향 링크 제어 정보를 전송하는 방법 및 이를 위한 장치
WO2019098762A1 (ko) 무선 통신 시스템에서 채널 상태 정보를 송수신하는 방법 및 이를 위한 장치
WO2018084661A1 (ko) 무선 통신 시스템에서 단말과 기지국 간 물리 상향링크 제어 채널 송수신 방법 및 이를 지원하는 장치
WO2018182256A1 (ko) 무선 통신 시스템에서의 채널 상태 정보 보고 방법 및 이를 위한 장치
WO2019066618A1 (ko) 무선 통신 시스템에서 qcl에 기초하여 데이터를 송수신하기 위한 방법 및 이를 위한 장치
WO2018079969A1 (ko) 무선 통신 시스템에서 빔 관리를 수행하는 방법 및 이를 위한 장치
WO2019088676A1 (ko) 무선 통신 시스템에서 대역폭 부분에 할당되는 자원 영역을 결정하는 방법 및 이를 위한 장치
WO2018203592A1 (ko) 무선 통신 시스템에서 참조 신호를 송수신하기 위한 방법 및 이를 위한 장치
WO2017135674A1 (ko) 면허 및 비면허 대역을 지원하는 네트워크에서 통신 방법
WO2018199703A1 (ko) 무선 통신 시스템에서 채널 상태 정보를 보고하기 위한 방법 및 이를 위한 장치
WO2019194545A1 (ko) 무선 통신 시스템에서 임의 접속 프리앰블을 송수신하기 위한 방법 및 이를 위한 장치
WO2019050380A1 (ko) 무선 통신 시스템에서 빔 복구를 수행하는 방법 및 이를 위한 장치
WO2018026253A1 (ko) 무선 통신 시스템에서 스케줄링 요청을 전송하는 방법 및 이를 위한 장치
WO2018225935A1 (ko) 무선 통신 시스템에서 참조 신호를 송수신하기 위한 방법 및 이를 위한 장치
WO2018182150A1 (ko) 무선 통신 시스템에서 참조 신호를 송수신하기 위한 방법 및 이를 위한 장치
WO2019004756A1 (ko) 무선 통신 시스템에서 채널 상태 정보 참조 신호를 송수신하는 방법 및 이를 위한 장치
WO2019098800A1 (ko) 무선 통신 시스템에서 사운딩 참조 신호를 전송하는 방법 및 이를 위한 장치
WO2019031856A1 (ko) 무선 통신 시스템에서 참조 신호를 송수신하기 위한 방법 및 이를 위한 장치
WO2019017755A9 (ko) 무선 통신 시스템에서 참조 신호들 간 멀티플렉싱을 수행하기 위한 방법 및 이를 위한 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18874353

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018874353

Country of ref document: EP

Effective date: 20200228

ENP Entry into the national phase

Ref document number: 2020514561

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE