WO2018182150A1 - 무선 통신 시스템에서 참조 신호를 송수신하기 위한 방법 및 이를 위한 장치 - Google Patents

무선 통신 시스템에서 참조 신호를 송수신하기 위한 방법 및 이를 위한 장치 Download PDF

Info

Publication number
WO2018182150A1
WO2018182150A1 PCT/KR2018/000491 KR2018000491W WO2018182150A1 WO 2018182150 A1 WO2018182150 A1 WO 2018182150A1 KR 2018000491 W KR2018000491 W KR 2018000491W WO 2018182150 A1 WO2018182150 A1 WO 2018182150A1
Authority
WO
WIPO (PCT)
Prior art keywords
dmrs
reference signal
demodulation reference
base station
terminal
Prior art date
Application number
PCT/KR2018/000491
Other languages
English (en)
French (fr)
Inventor
김규석
강지원
김기준
김형태
안민기
윤석현
이길봄
Original Assignee
엘지전자(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자(주) filed Critical 엘지전자(주)
Priority to CN201880027133.4A priority Critical patent/CN110754056B/zh
Priority to KR1020197029168A priority patent/KR102312230B1/ko
Priority to EP18777211.6A priority patent/EP3651398B1/en
Priority to US16/497,780 priority patent/US11108517B2/en
Priority to JP2019552870A priority patent/JP7079262B2/ja
Publication of WO2018182150A1 publication Critical patent/WO2018182150A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • H04L1/0047Decoding adapted to other signal detection operation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0064Rate requirement of the data, e.g. scalable bandwidth, data priority

Definitions

  • the present invention relates to a wireless communication system, and more particularly, to a method and apparatus for generating and transmitting and receiving a demodulation reference signal (DMRS) for decoding data in a wireless communication system.
  • DMRS demodulation reference signal
  • Mobile communication systems have been developed to provide voice services while ensuring user activity.
  • the mobile communication system has expanded not only voice but also data service.As a result of the explosive increase in traffic, a shortage of resources and users are demanding higher speed services, a more advanced mobile communication system is required. have.
  • An object of the present invention is to provide a method and apparatus for generating and transmitting a demodulation reference signal (DMRS) for decoding data.
  • DMRS demodulation reference signal
  • Another object of the present invention is to provide a method and apparatus for generating and transmitting / receiving a DMRS for estimating a Common Phase Error (CPE) / Carrier Frequency Offset (CFO) value due to a Doppler Effect.
  • CPE Common Phase Error
  • CFO Carrier Frequency Offset
  • Another object of the present invention is to provide a method and apparatus for generating and transmitting additional DMRS for channel estimation in a high doppler environment.
  • Another object of the present invention is to provide a method and apparatus for mapping a DMRS for channel estimation and an additional DMRS to a resource region.
  • Another object of the present invention is to provide a method and apparatus for setting a DMRS and an additional DMRS in a time domain and a frequency domain in order to reduce RS overhead when transmitting additional DMRS.
  • the decoding method of the terminal the first demodulation reference signal (DM) and the second demodulation reference signal set according to a specific pattern from the base station through a DMRS symbol Receiving, each of the first demodulation reference signal and the second demodulation reference signal is transmitted on a specific antenna port, and is located on the same time axis symbol as at least one other demodulation reference signal transmitted on another antenna port, The position of the time axis symbol of the 2 demodulation reference signal is determined according to the service type of the data to be transmitted; And decoding the data using at least one of the first demodulation reference signal or the second demodulation reference signal.
  • DM demodulation reference signal
  • the second demodulation reference signal set according to a specific pattern from the base station through a DMRS symbol
  • At least one time axis symbol position of the first demodulation reference signal or the second demodulation reference signal is moved in a specific physical resource block (PRB) unit.
  • PRB physical resource block
  • the specific condition is at least one of the number of demodulation reference signals required according to the service type is greater than or equal to the first number, and the number of antenna ports to which the demodulation reference signal is transmitted is greater than or equal to the second number.
  • the specific physical resource block (PRB) unit is determined according to the bandwidth (band width) allocated to the terminal.
  • the present invention may further include receiving control information indicating the specific physical resource block unit from the base station.
  • the first demodulation reference signal or the second demodulation reference signal is turned off for each specific physical resource block.
  • a wireless unit for transmitting and receiving wireless signals with the outside; And a processor operatively coupled to the wireless unit, wherein the processor receives a first demodulation reference signal (DMRS) and a second demodulation reference signal set according to a specific pattern from a base station through a DMRS symbol.
  • DMRS demodulation reference signal
  • each of the first demodulation reference signal and the second demodulation reference signal is transmitted on a specific antenna port, located on the same time axis symbol as at least one other demodulation reference signal transmitted on another antenna port, and the second demodulation
  • the position of a time axis symbol of a reference signal is determined according to a service type of data to be transmitted, and provides a terminal for decoding the data using at least one of the first demodulation reference signal or the second demodulation reference signal.
  • data can be decoded by estimating Common Phase Error (CPE) and Carrier Frequency Offset (CFO) values due to Doppler Effect through DMRS.
  • CPE Common Phase Error
  • CFO Carrier Frequency Offset
  • the present invention has an effect of estimating a channel through additional DMRS in a high doppler environment.
  • the present invention has the effect of satisfying the requirements of the service by mapping the DMRS and additional DMRS to the resource region according to the characteristics of the service.
  • the present invention has the effect of reducing the RS overhead by adjusting the density of the DMRS and the additional DMRS when transmitting additional DMRS.
  • FIG. 1 illustrates a structure of a radio frame in a wireless communication system to which the present invention can be applied.
  • FIG. 2 is a diagram illustrating a resource grid for one downlink slot in a wireless communication system to which the present invention can be applied.
  • FIG. 3 shows a structure of a downlink subframe in a wireless communication system to which the present invention can be applied.
  • FIG. 4 shows a structure of an uplink subframe in a wireless communication system to which the present invention can be applied.
  • FIG. 5 illustrates a reference signal pattern mapped to a downlink resource block pair in a wireless communication system to which the present invention can be applied.
  • FIG. 6 shows an example of a resource area structure used in a communication system using mmWave to which the present invention can be applied.
  • FIG. 7 and 8 illustrate an example of a pattern of a demodulation reference signal proposed in the present specification.
  • 9 to 14 illustrate an example in which the density of the demodulation reference signal mapped to the resource region proposed in the present specification is greater than the density of the additional demodulation reference signal.
  • 15 and 16 illustrate an example in which the density of the demodulation reference signal mapped to the resource region proposed in the present specification is equal to or greater than the density of the additional demodulation reference signal.
  • 17 to 19 illustrate an example in which the density of a demodulation reference signal mapped to a resource region proposed herein is smaller than the density of an additional demodulation reference signal.
  • 21 to 23 illustrate an example of a method for setting a demodulation reference signal and an additional demodulation reference signal proposed in the present specification.
  • 24 to 28 illustrate an example of a method for shifting a demodulation reference signal and an additional demodulation reference signal proposed in the present specification in the time domain.
  • 29 shows an example of a multiplexing method of a demodulation reference signal proposed in the specification.
  • FIG. 30 shows an example of a method of setting a pattern of a demodulation reference signal proposed in the specification.
  • FIG. 31 is a flowchart illustrating an example of a method for generating and transmitting a demodulation reference signal and an additional demodulation reference signal proposed herein.
  • 32 is a flowchart illustrating an example of a method of decoding data by receiving a demodulation reference signal and an additional demodulation reference signal proposed in the present specification.
  • FIG 33 is a diagram illustrating an example of an internal block diagram of a wireless device to which the present invention can be applied.
  • a base station has a meaning as a terminal node of a network that directly communicates with a terminal.
  • the specific operation described as performed by the base station in this document may be performed by an upper node of the base station in some cases. That is, it is obvious that various operations performed for communication with a terminal in a network composed of a plurality of network nodes including a base station may be performed by the base station or other network nodes other than the base station.
  • a 'base station (BS)' may be replaced by terms such as a fixed station, a Node B, an evolved-NodeB (eNB), a base transceiver system (BTS), an access point (AP), and the like. .
  • a 'terminal' may be fixed or mobile, and may include a user equipment (UE), a mobile station (MS), a user terminal (UT), a mobile subscriber station (MSS), a subscriber station (SS), and an AMS ( Advanced Mobile Station (WT), Wireless Terminal (WT), Machine-Type Communication (MTC) Device, Machine-to-Machine (M2M) Device, Device-to-Device (D2D) Device, etc.
  • UE user equipment
  • MS mobile station
  • UT user terminal
  • MSS mobile subscriber station
  • SS subscriber station
  • AMS Advanced Mobile Station
  • WT Wireless Terminal
  • MTC Machine-Type Communication
  • M2M Machine-to-Machine
  • D2D Device-to-Device
  • downlink means communication from a base station to a terminal
  • uplink means communication from a terminal to a base station.
  • a transmitter may be part of a base station, and a receiver may be part of a terminal.
  • a transmitter may be part of a terminal and a receiver may be part of a base station.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • GSM global system for mobile communications
  • GPRS general packet radio service
  • EDGE enhanced data rates for GSM evolution
  • OFDMA may be implemented in a wireless technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, evolved UTRA (E-UTRA).
  • UTRA is part of a universal mobile telecommunications system (UMTS).
  • 3rd generation partnership project (3GPP) long term evolution (LTE) is a part of evolved UMTS (E-UMTS) using E-UTRA, and employs OFDMA in downlink and SC-FDMA in uplink.
  • LTE-A (advanced) is the evolution of 3GPP LTE.
  • Embodiments of the present invention may be supported by standard documents disclosed in at least one of the wireless access systems IEEE 802, 3GPP and 3GPP2. That is, steps or parts which are not described to clearly reveal the technical spirit of the present invention among the embodiments of the present invention may be supported by the above documents. In addition, all terms disclosed in the present document can be described by the above standard document.
  • FIG. 1 illustrates a structure of a radio frame in a wireless communication system to which the present invention can be applied.
  • 3GPP LTE / LTE-A supports a type 1 radio frame structure applicable to frequency division duplex (FDD) and a type 2 radio frame structure applicable to time division duplex (TDD).
  • FDD frequency division duplex
  • TDD time division duplex
  • Type 1A illustrates the structure of a type 1 radio frame.
  • Type 1 radio frames may be applied to both full duplex and half duplex FDD.
  • a radio frame consists of 10 subframes.
  • One subframe consists of two consecutive slots in the time domain, and subframe i consists of slot 2i and slot 2i + 1.
  • the time taken to transmit one subframe is called a transmission time interval (TTI).
  • TTI transmission time interval
  • one subframe may have a length of 1 ms and one slot may have a length of 0.5 ms.
  • uplink transmission and downlink transmission are distinguished in the frequency domain. While there is no restriction on full-duplex FDD, the terminal cannot simultaneously transmit and receive in half-duplex FDD operation.
  • One slot includes a plurality of orthogonal frequency division multiplexing (OFDM) symbols in the time domain and a plurality of resource blocks (RBs) in the frequency domain. Since 3GPP LTE uses OFDMA in downlink, the OFDM symbol is for representing one symbol period. The OFDM symbol may be referred to as one SC-FDMA symbol or symbol period.
  • a resource block is a resource allocation unit and includes a plurality of consecutive subcarriers in one slot.
  • FIG. 1B illustrates a frame structure type 2.
  • an uplink-downlink configuration is a rule indicating whether uplink and downlink are allocated (or reserved) for all subframes.
  • Table 1 shows an uplink-downlink configuration.
  • 'D' represents a subframe for downlink transmission
  • 'U' represents a subframe for uplink transmission
  • 'S' represents a downlink pilot.
  • a special subframe consisting of three fields: a time slot, a guard period (GP), and an uplink pilot time slot (UpPTS).
  • DwPTS is used for initial cell search, synchronization or channel estimation at the terminal.
  • UpPTS is used for channel estimation at the base station and synchronization of uplink transmission of the terminal.
  • GP is a section for removing interference caused in the uplink due to the multipath delay of the downlink signal between the uplink and the downlink.
  • the uplink-downlink configuration can be classified into seven types, and the location and / or number of downlink subframes, special subframes, and uplink subframes are different for each configuration.
  • Switch-point periodicity refers to a period in which an uplink subframe and a downlink subframe are repeatedly switched in the same manner, and both 5ms or 10ms are supported.
  • the special subframe S exists every half-frame, and in case of having a period of 5ms downlink-uplink switching time, it exists only in the first half-frame.
  • subframes 0 and 5 and DwPTS are sections for downlink transmission only.
  • the subframe immediately following the UpPTS and the subframe subframe is always an interval for uplink transmission.
  • the uplink-downlink configuration may be known to both the base station and the terminal as system information.
  • the base station may notify the terminal of the change of the uplink-downlink allocation state of the radio frame by transmitting only an index of the configuration information.
  • the configuration information is a kind of downlink control information, which may be transmitted through a physical downlink control channel (PDCCH) like other scheduling information, and is commonly transmitted to all terminals in a cell through a broadcast channel as broadcast information. May be
  • PDCCH physical downlink control channel
  • Table 2 shows the configuration of the special subframe (length of DwPTS / GP / UpPTS).
  • the structure of a radio frame according to the example of FIG. 1 is just one example, and the number of subcarriers included in the radio frame or the number of slots included in the subframe and the number of OFDM symbols included in the slot may vary. Can be.
  • FIG. 2 is a diagram illustrating a resource grid for one downlink slot in a wireless communication system to which the present invention can be applied.
  • one downlink slot includes a plurality of OFDM symbols in the time domain.
  • one downlink slot includes seven OFDM symbols, and one resource block includes 12 subcarriers in a frequency domain, but is not limited thereto.
  • Each element on the resource grid is a resource element, and one resource block (RB) includes 12 ⁇ 7 resource elements.
  • the number N ⁇ DL of resource blocks included in the downlink slot depends on the downlink transmission bandwidth.
  • the structure of the uplink slot may be the same as the structure of the downlink slot.
  • FIG. 3 shows a structure of a downlink subframe in a wireless communication system to which the present invention can be applied.
  • up to three OFDM symbols in the first slot in a subframe are control regions to which control channels are allocated, and the remaining OFDM symbols are data regions to which PDSCH (Physical Downlink Shared Channel) is allocated. data region).
  • PDSCH Physical Downlink Shared Channel
  • An example of a downlink control channel used in 3GPP LTE includes a physical control format indicator channel (PCFICH), a physical downlink control channel (PDCCH), a physical hybrid-ARQ indicator channel (PHICH), and the like.
  • the PCFICH is transmitted in the first OFDM symbol of a subframe and carries information about the number of OFDM symbols (ie, the size of the control region) used for transmission of control channels within the subframe.
  • the PHICH is a response channel for the uplink and carries an ACK (Acknowledgement) / NACK (Not-Acknowledgement) signal for a hybrid automatic repeat request (HARQ).
  • Control information transmitted through the PDCCH is called downlink control information (DCI).
  • the downlink control information includes uplink resource allocation information, downlink resource allocation information or an uplink transmission (Tx) power control command for a certain terminal group.
  • the PDCCH is a resource allocation and transmission format of DL-SCH (Downlink Shared Channel) (also referred to as a downlink grant), resource allocation information of UL-SCH (Uplink Shared Channel) (also called an uplink grant), and PCH ( Paging information in paging channel, system information in DL-SCH, resource allocation for upper-layer control message such as random access response transmitted in PDSCH, arbitrary terminal It may carry a set of transmission power control commands for the individual terminals in the group, activation of Voice over IP (VoIP), and the like.
  • the plurality of PDCCHs may be transmitted in the control region, and the terminal may monitor the plurality of PDCCHs.
  • the PDCCH consists of a set of one or a plurality of consecutive CCEs.
  • CCE is a logical allocation unit used to provide a PDCCH with a coding rate according to the state of a radio channel.
  • the CCE corresponds to a plurality of resource element groups.
  • the format of the PDCCH and the number of available bits of the PDCCH are determined according to the association between the number of CCEs and the coding rate provided by the CCEs.
  • the base station determines the PDCCH format according to the DCI to be transmitted to the terminal, and attaches a CRC (Cyclic Redundancy Check) to the control information.
  • the CRC is masked with a unique identifier (referred to as RNTI (Radio Network Temporary Identifier)) according to the owner or purpose of the PDCCH.
  • RNTI Radio Network Temporary Identifier
  • a unique identifier of the terminal for example, a C-RNTI (Cell-RNTI) may be masked to the CRC.
  • a paging indication identifier for example, P-RNTI (P-RNTI) may be masked to the CRC.
  • the system information more specifically, the PDCCH for the system information block (SIB), the system information identifier and the system information RNTI (SI-RNTI) may be masked to the CRC.
  • SI-RNTI system information RNTI
  • RA-RNTI random access-RNTI
  • FIG. 4 shows a structure of an uplink subframe in a wireless communication system to which the present invention can be applied.
  • an uplink subframe may be divided into a control region and a data region in the frequency domain.
  • a physical uplink control channel (PUCCH) carrying uplink control information is allocated to the control region.
  • the data region is allocated a Physical Uplink Shared Channel (PUSCH) that carries user data.
  • PUCCH Physical Uplink Control Channel
  • PUSCH Physical Uplink Shared Channel
  • a PUCCH for one UE is allocated a resource block (RB) pair in a subframe.
  • RBs belonging to the RB pair occupy different subcarriers in each of the two slots.
  • This RB pair allocated to the PUCCH is said to be frequency hopping at the slot boundary (slot boundary).
  • Reference signal ( RS : Reference Signal)
  • the signal Since data is transmitted over a wireless channel in a wireless communication system, the signal may be distorted during transmission. In order to correctly receive the distorted signal at the receiving end, the distortion of the received signal must be corrected using the channel information.
  • a signal transmission method known to both a transmitting side and a receiving side and a method of detecting channel information using a distorted degree when a signal is transmitted through a channel are mainly used.
  • the above-mentioned signal is called a pilot signal or a reference signal (RS).
  • RS can be classified into two types according to its purpose. There are RSs for channel information acquisition and RSs used for data demodulation. Since the former has a purpose for the UE to acquire channel information on the downlink, it should be transmitted over a wide band, and a UE that does not receive downlink data in a specific subframe should be able to receive and measure its RS. It is also used for measurements such as handover.
  • the latter is an RS that the base station sends along with the corresponding resource when the base station transmits the downlink, and the UE can estimate the channel by receiving the RS, and thus can demodulate the data. This RS should be transmitted in the area where data is transmitted.
  • the downlink reference signal is one common reference signal (CRS: common RS) for acquiring information on channel states shared by all terminals in a cell, measurement of handover, etc. and a dedicated reference used for data demodulation only for a specific terminal.
  • CRS common reference signal
  • DRS dedicated RS
  • Such reference signals may be used to provide information for demodulation and channel measurement. That is, DRS is used only for data demodulation and CRS is used for both purposes of channel information acquisition and data demodulation.
  • the receiving side measures the channel state from the CRS and transmits an indicator related to the channel quality such as the channel quality indicator (CQI), precoding matrix index (PMI) and / or rank indicator (RI). Feedback to the base station).
  • CRS is also referred to as cell-specific RS.
  • CSI-RS a reference signal related to feedback of channel state information
  • the DRS may be transmitted through resource elements when data demodulation on the PDSCH is needed.
  • the UE may receive the presence or absence of a DRS through a higher layer and is valid only when a corresponding PDSCH is mapped.
  • the DRS may be referred to as a UE-specific RS or a demodulation RS (DMRS).
  • FIG. 5 illustrates a reference signal pattern mapped to a downlink resource block pair in a wireless communication system to which the present invention can be applied.
  • a downlink resource block pair may be represented by 12 subcarriers in one subframe ⁇ frequency domain in a time domain in a unit in which a reference signal is mapped. That is, one resource block pair on the time axis (x-axis) has a length of 14 OFDM symbols in case of normal cyclic prefix (normal CP) (in case of FIG. 5 (a)), and an extended cyclic prefix ( extended CP: Extended Cyclic Prefix) has a length of 12 OFDM symbols (in case of FIG. 5 (b)).
  • normal CP normal cyclic prefix
  • extended CP Extended Cyclic Prefix
  • the resource elements (REs) described as '0', '1', '2' and '3' in the resource block grid are determined by the CRS of the antenna port indexes '0', '1', '2' and '3', respectively.
  • the location of the resource element described as 'D' means the location of the DRS.
  • the CRS is used to estimate a channel of a physical antenna and is distributed in the entire frequency band as a reference signal that can be commonly received to all terminals located in a cell. That is, this CRS is a cell-specific signal and is transmitted every subframe for the wideband.
  • the CRS may be used for channel quality information (CSI) and data demodulation.
  • CSI channel quality information
  • CRS is defined in various formats depending on the antenna arrangement at the transmitting side (base station).
  • base station In a 3GPP LTE system (eg, Release-8), RS for up to four antenna ports is transmitted according to the number of transmit antennas of a base station.
  • the downlink signal transmitting side has three types of antenna arrangements such as a single transmit antenna, two transmit antennas, and four transmit antennas. For example, if the number of transmitting antennas of the base station is two, CRSs for antenna ports 0 and 1 are transmitted, and if four, CRSs for antenna ports 0 to 3 are transmitted.
  • the reference signal for the single antenna port is arranged.
  • the reference signals for the two transmit antenna ports are arranged using time division multiplexing (TDM) and / or FDM frequency division multiplexing (FDM) scheme. That is, the reference signals for the two antenna ports are assigned different time resources and / or different frequency resources so that each is distinguished.
  • TDM time division multiplexing
  • FDM frequency division multiplexing
  • reference signals for the four transmit antenna ports are arranged using the TDM and / or FDM scheme.
  • the channel information measured by the receiving side (terminal) of the downlink signal may be transmitted by a single transmit antenna, transmit diversity, closed-loop spatial multiplexing, open-loop spatial multiplexing, or It may be used to demodulate data transmitted using a transmission scheme such as a multi-user MIMO.
  • a reference signal when a multiple input / output antenna is supported, when a reference signal is transmitted from a specific antenna port, the reference signal is transmitted to a location of resource elements specified according to a pattern of the reference signal, and the location of resource elements specified for another antenna port. Is not sent to. That is, reference signals between different antennas do not overlap each other.
  • mapping CRSs to resource blocks are defined as follows.
  • Equation 1 k and l represent a subcarrier index and a symbol index, respectively, and p represents an antenna port.
  • ns represents the slot index, Represents a cell ID. mod stands for modulo operation.
  • the position of the reference signal is in the frequency domain It depends on the value. Since is dependent on the cell ID, the position of the reference signal has various frequency shift values according to the cell.
  • the position of the CRS may be shifted in the frequency domain according to the cell in order to improve channel estimation performance through the CRS.
  • reference signals in one cell are allocated to the 3k th subcarrier, and reference signals in another cell are allocated to the 3k + 1 th subcarrier.
  • the reference signals are arranged at six resource element intervals in the frequency domain, and are separated at three resource element intervals from the reference signal allocated to another antenna port.
  • reference signals are arranged at constant intervals starting from symbol index 0 of each slot.
  • the time interval is defined differently depending on the cyclic prefix length.
  • the reference signal In the case of the normal cyclic prefix, the reference signal is located at symbol indexes 0 and 4 of the slot, and in the case of the extended cyclic prefix, the reference signal is located at symbol indexes 0 and 3 of the slot.
  • the reference signal for the antenna port having the maximum value of two antenna ports is defined in one OFDM symbol.
  • the reference signals for reference signal antenna ports 0 and 1 are located at symbol indices 0 and 4 (symbol indices 0 and 3 for extended cyclic prefix) of slots,
  • the reference signal for is located at symbol index 1 of the slot.
  • the positions in the frequency domain of the reference signal for antenna ports 2 and 3 are swapped with each other in the second slot.
  • DRS is used to demodulate data. Precoding weights used for a specific terminal in multiple I / O antenna transmission are used without change to estimate the corresponding channel by combining with the transmission channel transmitted from each transmission antenna when the terminal receives the reference signal.
  • the 3GPP LTE system (eg, Release-8) supports up to four transmit antennas and a DRS for rank 1 beamforming is defined.
  • the DRS for rank 1 beamforming also indicates a reference signal for antenna port index 5.
  • Equation 2 shows a case of a general cyclic transpose
  • Equation 3 shows a case of an extended cyclic transpose
  • Equations 2 and 3 k and l represent subcarrier indexes and symbol indexes, respectively, and p represents an antenna port. Denotes the resource block size in the frequency domain and is expressed as the number of subcarriers. n PRB represents the number of physical resource blocks.
  • n s represents the slot index
  • mod stands for modulo operation.
  • the position of the reference signal is in the frequency domain It depends on the value. Since is dependent on the cell ID, the position of the reference signal has various frequency shift values according to the cell.
  • LTE system evolution In the advanced LTE-A system, it should be designed to support up to eight transmit antennas in the downlink of the base station. Therefore, RS for up to eight transmit antennas must also be supported. Since the downlink RS in the LTE system defines only RSs for up to four antenna ports, when the base station has four or more up to eight downlink transmit antennas in the LTE-A system, RSs for these antenna ports are additionally defined. Must be designed. RS for up to eight transmit antenna ports must be designed for both the RS for channel measurement and the RS for data demodulation described above.
  • an RS for an additional up to eight transmit antenna ports should be additionally defined in the time-frequency domain in which CRS defined in LTE is transmitted every subframe over the entire band.
  • the RS overhead becomes excessively large.
  • the newly designed RS in the LTE-A system is divided into two categories, RS for channel measurement purpose (CSI-RS: Channel State Information-RS, Channel State Indication-RS, etc.) for selection of MCS, PMI, etc. And RS (Data Demodulation? RS) for data demodulation transmitted through 8 transmit antennas.
  • CSI-RS Channel State Information-RS, Channel State Indication-RS, etc.
  • RS Data Demodulation? RS
  • CSI-RS for the purpose of channel measurement has a feature that is designed for channel measurement-oriented purposes, unlike the conventional CRS is used for data demodulation at the same time as the channel measurement, handover, and the like. Of course, this may also be used for the purpose of measuring handover and the like. Since the CSI-RS is transmitted only for the purpose of obtaining channel state information, unlike the CRS, the CSI-RS does not need to be transmitted every subframe. In order to reduce the overhead of the CSI-RS, the CSI-RS is transmitted intermittently on the time axis.
  • DMRS is transmitted to the UE scheduled in the corresponding time-frequency domain for data demodulation. That is, the DM-RS of a specific UE is transmitted only in a region where the UE is scheduled, that is, a time-frequency region in which data is received.
  • the eNB should transmit CSI-RS for all antenna ports. Transmitting CSI-RS for each subframe for up to 8 transmit antenna ports has a disadvantage in that the overhead is too large. Therefore, the CSI-RS is not transmitted every subframe but is transmitted intermittently on the time axis. Can be reduced. That is, the CSI-RS may be periodically transmitted with an integer multiple of one subframe or may be transmitted in a specific transmission pattern. At this time, the period or pattern in which the CSI-RS is transmitted may be set by the eNB.
  • the UE In order to measure the CSI-RS, the UE must transmit the CSI-RS index of the CSI-RS for each CSI-RS antenna port of the cell to which it belongs, and the CSI-RS resource element (RE) time-frequency position within the transmitted subframe. , And information about the CSI-RS sequence.
  • RE resource element
  • the eNB should transmit CSI-RS for up to eight antenna ports, respectively.
  • Resources used for CSI-RS transmission of different antenna ports should be orthogonal to each other.
  • the CSI-RSs for each antenna port may be mapped to different REs so that these resources may be orthogonally allocated in the FDM / TDM manner.
  • the CSI-RSs for different antenna ports may be transmitted in a CDM scheme that maps to orthogonal codes.
  • the eNB informs its cell UE of the information about the CSI-RS, it is necessary to first inform the information about the time-frequency to which the CSI-RS for each antenna port is mapped. Specifically, the subframe numbers through which the CSI-RS is transmitted, or the period during which the CSI-RS is transmitted, the subframe offset through which the CSI-RS is transmitted, and the OFDM symbol number where the CSI-RS RE of a specific antenna is transmitted, and the frequency interval (spacing), the RE offset or shift value in the frequency axis.
  • the error value of the oscillator of the terminal and the base station is defined as a requirement, and is described as follows.
  • the UE modulated carrier frequency shall be accurate to within ⁇ 0.1 PPM observed over a period of one time slot (0.5 ms) compared to the carrier frequency received from the E-UTRA Node B
  • Frequency error is the measure of the difference between the actual BS transmit frequency and the assigned frequency.
  • the maximum difference of the oscillator between the base station and the terminal is ⁇ 0.1ppm, and when an error occurs in one direction, a maximum offset value of 0.2 ppm may occur.
  • This offset value is multiplied by the center frequency and converted into Hz units for each center frequency.
  • the CFO value appears differently according to the frequency tone interval, and in general, even if the large CFO value has a relatively small effect on the OFDM system with a sufficiently large frequency tone interval. Therefore, the actual CFO value (absolute value) needs to be expressed as a relative value affecting the OFDM system, which is called a normalized CFO.
  • the normalized CFO is expressed as the CFO value divided by the frequency tone interval. Table 4 below shows the CFO and normalized CFO for each center frequency and oscillator error value.
  • the frequency tone interval (15 kHz) is assumed for the center frequency of 2 GHz (for example, LTE Rel-8 / 9/10), and the frequency tone interval is 104.25 kHz for the center frequency of 30 GHz and 60 GHz. This prevents performance degradation considering the Doppler effect for each center frequency.
  • Table 2 above is a simple example and it is obvious that other frequency tone spacings may be used for the center frequency.
  • Doppler dispersion causes dispersion in the frequency domain, resulting in distortion of the received signal at the receiver's point of view.
  • Doppler dispersion It can be expressed as.
  • v is the moving speed of the terminal
  • means the wavelength of the center frequency of the transmitted radio waves. Denotes an angle between the received radio wave and the moving direction of the terminal. Below It is assumed that 0 is 0.
  • the coherence time is in inverse proportion to the Doppler variance. If the coherence time is defined as a time interval in which the correlation value of the channel response in the time domain is 50% or more, It is expressed as In the wireless communication system, Equation 4 below, which represents a geometric mean between the equation for Doppler variance and the equation for coherence time, is mainly used.
  • FIG. 6 shows an example of a resource area structure used in a communication system using mmWave to which the present invention can be applied.
  • a communication system using an ultra high frequency band such as mmWave uses a frequency band different in physical properties from the conventional LTE / LTE-A communication system. Accordingly, in a communication system using an ultra high frequency band, a resource structure of a form different from that of the resource region used in the conventional communication system is being discussed. 6 shows an example of a downlink resource structure of a new communication system.
  • the first two (or three) OFDM symbols 610 Is assigned to a control channel (for example, a physical downlink control channel (PDCCH)), and the next one to two OFDM symbols 620 are assigned a DeModulation Reference Signal (DMRS), and the remaining OFDM symbols ( The 630 may be allocated a data channel (eg, a physical downlink shared channel (PDSCH)).
  • a control channel for example, a physical downlink control channel (PDCCH)
  • DMRS DeModulation Reference Signal
  • the 630 may be allocated a data channel (eg, a physical downlink shared channel (PDSCH)).
  • PDSCH physical downlink shared channel
  • the PCRS or PNRS or PTRS for CPE (or CFO) estimation described above may be carried on a part of a resource element (RE) of the region 630 to which the data channel is allocated and transmitted to the terminal.
  • a signal is a signal for estimating phase noise, and may be a pilot signal as described above or a signal whose data signal is changed or duplicated.
  • the present invention proposes a method of transmitting DMRS for channel estimation in downlink or uplink.
  • FIG. 7 and 8 illustrate an example of a pattern of a demodulation reference signal proposed in the present specification.
  • a demodulation reference signal for estimating a channel may be mapped to one symbol or two symbols according to the number of antennas or pods.
  • the uplink DMRS and the downlink DMRS may be generated and mapped to the resource region by the following method.
  • FIG. 7 illustrates an example of an uplink or downlink DMRS mapped to a physical resource according to type 1
  • FIG. 8 illustrates an example of an uplink or downlink DMRS mapped to a physical resource according to type 2.
  • the reference signal sequence r (m) for generating the downlink DMRS is generated by Equation 5 below when transform precoding for a PUSCH is not allowed.
  • an example of a case where transform precoding for a PUSCH is not allowed may be a case of generating a transmission signal of a CP-OFDM scheme.
  • c (i) means the pseudo-random sequence.
  • the reference signal sequence r (m) is generated by Equation 6 below.
  • an example of a case where transform precoding for a PUSCH is allowed may be a case where a transmission signal of a DFT-S-OFDM scheme is generated.
  • the DMRS of the generated PUSCH is mapped to a physical resource according to type 1 or type 2 given by higher layer parameters as shown in FIGS. 7 and 8.
  • the DMRS may be mapped to a single symbol or a double symbol according to the number of antenna ports.
  • the reference signal sequence r (m) may be mapped to a physical resource by Equation 7 below.
  • Equation 7 l is defined relative to the start of PUSCH transmission.
  • Equation 7 Is given by Tables 5 and 6 below.
  • Table 5 below shows an example of parameters for DMRS of the PUSCH for Type 1.
  • Table 6 below shows an example of parameters for DMRS of a PUSCH for type 2.
  • Table 7 below shows an example of the time domain index l 'and the supported antenna port p according to the higher layer parameter UL_DMRS_dur.
  • Table 8 below shows the starting position of DMRS of PUSCH. An example is shown.
  • a reference signal sequence r (m) for generating downlink DMRS is generated by Equation 8 below.
  • c (i) means the pseudo-random sequence.
  • the DMRS of the generated PDSCH is mapped to a physical resource according to Type 1 or Type 2 given by higher layer parameters as shown in FIGS. 7 and 8.
  • the reference signal sequence r (m) may be mapped to a physical resource by Equation 9 below.
  • Equation 9 l is defined relative to the beginning of a slot.
  • Equation 10 Is given by Tables 10 and 11 below.
  • the time axis index l 'and supporting antenna ports p depend on the higher layer parameter DL_DMRS_dur according to Table 12 below. The value depends on the upper layer parameter DL_DMRS_add_pos given in Table 13, depending on the mapping type:
  • PDSCH mapping type B l 0 is mapped to the first OFDM symbol in the PDSCH resource for which DMRS is scheduled.
  • Table 9 shows an example of parameters for DMRS configuration type 1 of the PDSCH.
  • Table 10 below shows an example of parameters for DMRS configuration type 2 of the PDSCH.
  • Table 11 below shows an example of l ′, which is a duration of PDSCH DMRS.
  • Table 12 below shows an example of a start position of the DMRS of the PDSCH.
  • the present invention provides a method of setting additional DMRSs and decoding data by performing channel estimation through the set DMRSs.
  • the RS overhead increases.
  • a method of configuring a DMRS and an additional DMRS is provided.
  • the DMRS set basically in the present invention will be referred to as a first DMRS or front-loaded DMRS, and the additionally set DMRS will be referred to as a second DMRS or additional DMRS.
  • 9 to 14 illustrate an example in which the density of the demodulation reference signal mapped to the resource region proposed in the present specification is greater than the density of the additional demodulation reference signal.
  • the frequency density of the additional DMRS may be adjusted to reduce the RS overhead.
  • FIG. 9 shows that when additional DMRSs and front-loaded DMRSs are mapped together to OFDM symbols, the frequency density of the front-loaded DMRSs is set to be the same as when only the front-loaded DMRSs are mapped, and the frequency density of additional DMRSs is set smaller An example of the method is shown.
  • the frequency axis density of the front-loaded DMRS may be the same as when only the front-loaded DMRS is configured.
  • RS overhead may increase significantly due to the increase in the number of DMRSs.
  • the frequency axis density of the additional DMRS may be set lower than that of the front-loaded DMRS so that the RS overhead is not greatly increased.
  • an additional DMRS set in the ninth OFDM symbol as shown in FIG. 9 (b) may be set to be lower than the front-loaded DMRS on the frequency axis. Can be.
  • the frequency density of the front-loaded DMRS is set to the same density as the frequency when only the front-loaded DMRS is used, and the density of the additional DMRS is set to low density.
  • possible candidates for the frequency density of additional DMRS may be informed through the RRC signaling from the base station to the terminal.
  • the base station may be configured to inform a specific value through DCI signaling from the base station to the terminal to configure a corresponding frequency.
  • C1, C2, C3, and C4 which are the frequency densities of possible additional DMRSs shown in FIG. 10, are set to the UE through RRC signaling, and then the actual additional DMRS patterns are dynamically generated through DCI signaling. Can be set
  • the terminal uses the additional DMRS based on the specific pattern configured through the RRC signaling.
  • the base station may inform the additional DMRS pattern to be used by the terminal through the RRC signaling to eliminate the signaling overhead due to the DCI signaling, and may set the additional DMRS pattern through higher layer signaling.
  • the transceiver may set additional DMR through a preset pattern.
  • the transmitting and receiving end may be set to use a specific pattern of C1, C2, C3, and C4 which are the patterns of additional DMRS shown in FIG.
  • 11 shows an example of a method of setting the frequency density of additional DMRS according to time density.
  • the frequency density of the front-loaded DMRS is the same as when only the front-loaded DMRS is configured, but the frequency density of the additional DMRS may vary depending on the number of ODFM symbols in which additional DMRS is configured.
  • the density of the front-loaded DMRS does not change.
  • the frequency density of the additional DMRS may vary according to the number of ODFM symbols for which additional DMRS is configured as illustrated in FIGS. 11B to 11D.
  • Additional DMRS when set to two OFDM symbols, it may be set to a lower density than when set to one OFDM symbol.
  • the base station may inform the terminal of the frequency density of the additional DMRS determined according to the time density of the additional DMRS through the RRC signaling and / or DCI signaling.
  • the base station may inform the user equipment of one of C1 to C4 configuration values through RRC signaling.
  • Table 13 below shows an example of frequency density according to the number of additional DMRS that the base station informs the user equipment through RRC signaling.
  • the base station sets the frequency density of additional DMRS through the DCI signaling
  • at least one pattern of Table 13 and C1 to C4 of FIG. 10 is set to the terminal through the RRC signaling, and a plurality of patterns are configured through the RRC signaling
  • the DCI signaling it may be instructed to use one of the set terminal pattern.
  • the base station may set the patterns C1 and C2 as a pattern of additional DMRS through the RRC signaling to the terminal, and then instruct the terminal to use the C1 or C2 pattern as a pattern of additional DMRS through 1 bit of DCI signaling. .
  • the transmitting / receiving terminal may have previously set a pattern of additional DMRS according to the time density (or number of OFDM symbols) of additional DMRS.
  • Table 14 below shows an example of an additional DMRS pattern preset in the transceiver.
  • 12 to 14 show an example of a method of setting the frequency density of additional DMRS according to the number of transport layers.
  • the frequency density of the additional DMRS is set equal to the frequency density of the front-loaded DMRS, and if the transport layer is larger than the specific value, the frequency density of the additional DMRS is front-loaded DMRS It can be set smaller than the frequency density of.
  • the base station may transmit a setting value indicating the frequency density, and / or transport layer information indicating the number of layers in which the frequency density of the additional DMRS is changed to the terminal through RRC signaling and / or DCI Signaling.
  • FIG. 13 shows an example of a method for setting, by RRC signaling, transport layer information indicating a set value indicating a frequency density and / or a number of layers whose frequency density of an additional DMRS is changed.
  • the base station may transmit to the terminal through RRC signaling including the setting value and layer information to the terminal.
  • the UE can know the frequency density of additional DMRS used according to the transport layer through the RRC signaling transmitted from the base station.
  • 'C3' may be configured through RRC signaling.
  • the terminal may know the frequency density of additional DMRS used according to the transport layer through the DCI transmitted from the base station.
  • the base station may set the frequency axis pattern of additional DMRS by transmitting setting values and layer information indicating the additional DMRS patterns available through RRC signaling.
  • the base station may instruct the terminal to use a specific DMRS pattern in a specific number of layers or more through DCI signaling.
  • the base station may set the additional DMRS frequency pattern of the terminal by transmitting layer information having a setting value and a value of '3' indicating C1 and C2 of FIG. 10 through RRC signaling.
  • the base station may instruct the terminal to use C1 or C2 as a pattern of additional DMRS through DCI signaling.
  • FIG. 14A illustrates an example of using the “C2” pattern of FIG. 10, and (b) illustrates an example of using the “C3” pattern of FIG. 10.
  • the transceiver may set a pattern and density of additional DMRSs through preset setting values and / or layer information.
  • 15 and 16 illustrate an example in which the density of the demodulation reference signal mapped to the resource region proposed in the present specification is equal to or greater than the density of the additional demodulation reference signal.
  • the density of the front-loaded DMRS and / or additional DMRS may be adjusted to reduce the RS overhead.
  • RS overhead may increase significantly due to an increase in the number of DMRSs.
  • the frequency density of the front-loaded DMRS and the additional DMRS may be set lower than when only the front-loaded DMRS is mapped.
  • the frequency density of the additional DMRS may be equal to or smaller than the frequency density of the front-loaded DMRS.
  • the frequency density of the additional DMRS is also set to a lower density than the frequency density of the front-loaded DMRS shown in Figure 15 (a).
  • the base station may transmit a first setting value indicating the frequency density of the front-loaded DMRS, and / or a second setting value indicating the frequency density of the additional DMRS to the terminal through RRC signaling and / or DCI signaling.
  • the terminal may configure the front-loaded DMRS and additional DMRS based on the received first configuration value and the second configuration value.
  • the BS may inform possible candidates for the frequency density of the front-loaded DMRS and the additional DMRS through the RRC signaling from the base station to the terminal.
  • the base station may be configured to inform a specific value through DCI signaling from the base station to the terminal to configure a corresponding frequency.
  • Table 15 below shows an example of possible candidates of front-loaded DMRS and additional DMRS according to FIG. 10.
  • the base station transmits at least one pattern of Tables 15 and C1 to C4 of FIG. 10 to the terminal through RRC signaling. Subsequently, when the base station wants to set a specific pattern among at least one pattern to a frequency density of front-loaded DMRS and / or additional DMRS, the base station transmits DCI signaling to the terminal to set a specific pattern of front-loaded DMRS and / or additional DMRS You can instruct it to use as a frequency pattern.
  • Table 16 below shows an example of setting different frequency patterns according to the number of additional DMRSs through DCI signaling.
  • FIG. 16 shows an example when only the front-loaded DMRS is set, and (b) to (d) show an example when additional DMRS is additionally set as well as the front-loaded DMRS.
  • the frequency density of the front-loaded DMRS is higher than that of FIG. 16 (a) in which only the front-loaded DMRS is set. It can be set to low density.
  • the frequency density of the front-loaded DMRS and the additional DMRS may be set differently according to the number of OFDM symbols for which additional DMRS is set.
  • the frequency density of the front-loaded DMRS and the additional DMRS may be set to a low density in order to reduce RS overhead as the number of OFDM symbols configured with additional DMRS increases.
  • the transceiver may set the pattern and density of the front-loaded DMRS and the additional DMRS through a first set value and / or a second set value previously set.
  • the method described in FIG. 14 and Table 15 may be applied to the second setting value.
  • first configuration value and the second configuration value may represent the same or different patterns according to the patterns of the front-loaded DMRS and the additional DMRS.
  • the first setting value may be set in association with a time density of additional DMRS. That is, the first configuration value may be determined according to the number of OFDM symbols for which additional DMRS is set.
  • the first setting value and / or the second setting value may be determined according to the number of transport layers.
  • 17 to 19 illustrate an example in which the density of a demodulation reference signal mapped to a resource region proposed herein is smaller than the density of an additional demodulation reference signal.
  • the frequency density of the additional DMRS may be set to a higher density than the frequency density of the front-loaded DMRS.
  • the frequency density of the front-loaded DMRS is the same as when only the front-loaded DMRS is mapped.
  • the frequency density of the additional DMRS can be set higher than that of the front-loaded DMRS.
  • possible candidates for the frequency density of additional DMRS may be informed through the RRC signaling from the base station to the terminal.
  • the base station may be configured to inform a specific value through DCI signaling from the base station to the terminal to configure a corresponding frequency.
  • C1, C2, which are frequency densities of additional DMRSs shown in FIG. 18, may be configured to the UE through RRC signaling, and then the actual additional DMRS patterns may be dynamically configured through DCI signaling. have.
  • the terminal uses the additional DMRS based on the specific pattern configured through the RRC signaling.
  • the base station may inform the additional DMRS pattern to be used by the terminal through the RRC signaling to eliminate the signaling overhead due to the DCI signaling, and may set the additional DMRS pattern through higher layer signaling.
  • the transceiver may set additional DMR through a preset pattern.
  • the transmitter / receiver may be configured to fixedly use a specific pattern of C1 and C2 which are patterns of additional DMRS shown in FIG. 10.
  • FIG. 19A illustrates an example in which additional DMRSs are set according to a pattern of 'C1', and (b) illustrates an example in which additional DMRSs are set according to a pattern of 'C2'.
  • the method of setting the frequency density of the front-loaded DMRS and the additional DMRS described with reference to FIGS. 7 to 19 may be applied to uplink as well as downlink.
  • FIG. 20 shows an example of a front-loaded DMRS and an additional DMRS set to one ODFM symbol
  • (b) shows an example of a front-loaded DMRS and an additional DMRS set to two OFDM symbols.
  • 21 to 23 illustrate an example of a method for setting a demodulation reference signal and an additional demodulation reference signal proposed in the present specification.
  • the base station when the base station configures additional DMRS as well as front-load DMRS, the base station may be referred to as first DMS and same DMRS pattern group (hereinafter, referred to as SPG) indicating frequency axis units having the same DMRS pattern.
  • SPG same DMRS pattern group
  • the second pattern information indicating the time axis interval of the DMRS is transmitted to the terminal.
  • the first pattern information and the second pattern information may be transmitted to the terminal through higher layer signaling (e.g. RRC and / or MAC CE) and / or DCI signaling.
  • higher layer signaling e.g. RRC and / or MAC CE
  • the base station sets the front-load DMRS and the additional DMRS to be located in the same OFDM symbol, respectively.
  • the DMRSs between the SPGs are set to be positioned at intervals of the OFDM symbol indicated by the second pattern information.
  • FIG. 21A illustrates an example in which the first pattern information is set to '12' and the second pattern information is set to '0', which is the same as the case where the front-loaded DMRS and the addition DMRS are set to one symbol.
  • FIG. 21B illustrates an example in which the first pattern information is set to '2' and the second pattern information is set to '3'. Comparing (b) and (a) of FIG. 21, (a) and (b) have the same RS overhead, but (b) sets more DMRS on the time axis.
  • the UE may sample more channels for estimation than the case where the front-loaded DMRS and the additional DMRS are configured as shown in FIG. 21 (a). The value can be obtained.
  • FIG. 21C illustrates an example in which the first pattern information is set to '4' and the second pattern information is set to '3'.
  • RS overhead is the same as when two front-loaded DMRSs and an additional DMRS are configured in one symbol, but as described above, the UE can efficiently perform channel estimation.
  • the channel estimation performance can be improved in time-varying channels by increasing the DMRS density along the time axis while maintaining the same RS overhead.
  • the base station can set the DMRS interval between the two SPGs to the terminal, it is possible to flexibly set the DMRS interval between the two SPGs in various slot structures.
  • the base station may configure the front-loaded DMRS and the additional DMRS through the first pattern information and the second pattern information in consideration of the structure of the slot.
  • the DMRS interval between the SPGs of the front-loaded DMRS and the additional DMRS is taken into account. Can be set.
  • the front-loaded DMRS and the additional DMRS may be set in consideration of multiplexing with other reference signals.
  • the base station may configure front-loaded DMRS and additional DMRS by adjusting first pattern information to be multiplexed with a pattern of other reference signals in consideration of multiplexing with reference signals such as CSI-RS.
  • the front-loaded DMRS and additional DMRS of the antenna ports p0, p1, p2, and p3 are multiplexed with the CSI-RS. It may be set in consideration of.
  • the configuration of the first pattern information, the second pattern information, and the SPG may be set identically between resource block groups (PRGs) to which the same precoding matrix is applied.
  • PRGs resource block groups
  • PRGs resource block groups
  • the channel interpolation performance may be improved by increasing the channel estimation sample in the time domain in the channel estimation process described herein.
  • channel interpolation is not performed between different PRGs, it is possible to set the same first pattern information, setting values of second pattern information, and configuration of SPG between different PRGs.
  • 24 to 28 illustrate an example of a method for shifting a demodulation reference signal and an additional demodulation reference signal proposed in the present specification in the time domain.
  • OFDM symbol positions of additional DMRSs may be differently set at specific intervals.
  • the base station when the base station maps additional DMRSs to OFDM symbols in addition to the front-loaded DMRSs, the base station increases the channel estimation effect due to the transmission of additional DMRSs and resources of the positions of the OFDM symbols to which additional DMRSs are mapped to reduce RS overhead. Different block levels can be set.
  • the base station may move the location of additional DMRS in units of resource blocks.
  • the base station When the base station moves the position of the additional DMRS according to the resource block level, the base station to inform the terminal whether the shift (shifting) of the additional DMRS is applied through higher layer signaling (eg RRC and / or MAC CE) and / or DCI signaling. Can be.
  • higher layer signaling eg RRC and / or MAC CE
  • the movement of additional DMRS may be configured in the terminal through higher layer signaling (e.g. RRC and / or MAC CE) and / or DCI signaling.
  • higher layer signaling e.g. RRC and / or MAC CE
  • the UE may know whether the movement of additional DMRS is applied through higher layer signaling and / or DCI signaling. When the movement of additional DMRS is applied, the UE may be located at resource elements of different locations according to RB levels. DMRS can be received.
  • FIG. 24 shows an example of a case in which positions of additional OFDM symbols of additional DMRS are shifted by 4 OFDM symbols and configured for each specific RB level through higher layer signaling.
  • the position of the additional DMRS of the odd RB is set to the second position shifted by a specific OFDM symbol from the first position.
  • whether additional DMRS is moved may be flexibly set to the terminal through 1 bit information of DCI.
  • the base station may configure the location of additional DMRS to the terminal through higher layer signaling (e.g. RRC and / or MAC CE) and / or DCI signaling.
  • higher layer signaling e.g. RRC and / or MAC CE
  • DCI signaling e.g. RRC and / or MAC CE
  • 25 shows an example of positions of additional DMRSs that can be mapped to RB units.
  • the base station transmits the first location information and the second location information indicating one of (a) to (c) of Figure 25 to the terminal, the terminal based on the transmitted first location information and the second location information of additional DMRS You can set the location.
  • additional DMRS may be set as shown in FIG. 26.
  • FIG. 27 shows an example of a method of moving not only additional DMRSs but also positions of front-loaded DMRSs for each specific PRB unit.
  • the OFDM symbol positions in the slots of the front-loaded DMRS and the additional DMRS may be moved for each specific PRB. have.
  • FIG. 27 shows an example of a method of changing the position of an OFDM symbol in a slot of a front-loaded DMRS and an additional DMRS per PRB.
  • the PRB information indicating the PRB unit to which the positions of the front-loaded DMRS and the additional DMRS are moved may be signaled to the terminal implicitly or explicitly through the following method.
  • Implicit signaling The terminal can recognize the PRB information based on at least one parameter (for example, bandwidth (BW) allocated to the terminal) related to OFDM symbol positioning of the front-loaded DMRS and additional DMRS. .
  • the PRB information may be recognized by the transmitter / receiver.
  • the base station may transmit PRB information to the terminal through higher layer signaling and / or DCI signaling.
  • the base station may inform the terminal whether the location of the front-loaded DMRS and the additional DMRS is applied through higher layer signaling and / or DCI signaling.
  • the operation may be previously defined between the base station and the terminal so that the movement of the positions of the front-loaded DMRS and the additional DMRS is applied under a specific condition.
  • the specific condition may be when the time axis domain density of the DMRS is greater than or equal to 'x' and / or the number of antenna ports is greater than or equal to 'y'.
  • the base station may transmit the specific condition and the PRB information to the terminal, and when the terminal satisfies the specific condition based on the received specific condition and the PRB information, the base station may recognize the position where the DMRS is transmitted for each antenna port.
  • the front-loaded DMRS or additional DMRS may be turned on / off in a specific PRB unit.
  • the base station When the base station satisfies a specific condition and additional DMRS is additionally configured in addition to the front-loaded DMRS, the base station may set the front-loaded DMRS and the additional DMRS on / off for each specific PRB in order to prevent an increase in RS overhead.
  • FIG. 28 shows an example of a method of turning on / off a front-loaded DMRS or an additional DMRS set in two OFDM symbols for each PRB.
  • the PRB information indicating the PRB unit in which the front-loaded DMRS and the additional DMRS are activated or deactivated (or on or off) may be signaled implicitly or explicitly to the terminal through the same method as described above.
  • the base station may inform the terminal of the specific condition that the front-loaded DMRS and additional DMRS is activated or deactivated (or on or off) through higher layer signaling and / or DCI signaling.
  • the specific condition may be when the time axis domain density of the DMRS is greater than or equal to 'x' and / or the number of antenna ports is greater than or equal to 'y'.
  • the base station may transmit the specific condition and the PRB information to the terminal, and when the terminal satisfies the specific condition based on the received specific condition and the PRB information, the base station may recognize the position where the DMRS is transmitted for each antenna port.
  • the base station may inform the terminal whether the front-loaded DMRS and the additional DMRS is activated or deactivated through higher layer signaling and / or DCI signaling.
  • a corresponding operation may be defined in advance between the base station and the terminal so that the operation of activating or deactivating the front-loaded DMRS and additional DMRS is applied under a specific condition.
  • the method of setting the positions of the front-loaded DMRS and the additional DMRS described with reference to FIGS. 20 to 28 may be applied to uplink as well as downlink.
  • 29 shows an example of a multiplexing method of a demodulation reference signal proposed in the specification.
  • DMRS sequences may be multiplexed with different DMRSs, and orthogonal separation may be performed between different waveforms through TD-OCC.
  • the front-loaded DMRS and the additional DMRS may have different DMRS sequences according to uplink or downlink waveforms.
  • a PN sequence may be used for CP-OFDM and a ZC sequence may be used for DFT-S-OFDM.
  • multiplexing may be considered between DMRSs to which different sequences are applied, and when DMRSs to which different sequences are applied are multiplexed, orthogonal separation between different waveforms may be possible using TD-OCC.
  • the DMRS sequence is defined in OFDM symbol units for orthogonal separation between different waveforms, and all DMRS symbols (or front-load DMRS and / or additional DMRS) use the same sequence.
  • the DMRS sequence and TD-OCC are used to separate DMRSs of different waveforms in the time domain.
  • a and b denote DMRS sequences generated in OFDM symbol units based on a PN sequence and a ZC sequence, respectively.
  • the sequences used for the two waveforms are different, but two DMRSs can be orthogonally separated through the TD-OCC.
  • FIG. 30 shows an example of a method of setting a pattern of a demodulation reference signal proposed in the specification.
  • an IFDM type using Comb such as Comb 1 and Comb 2 may be used as a DMRS pattern for DFT-S-OFDM.
  • the base station should transmit an indication on the resources to use for actual DMRS transmission to the terminal.
  • DFT-S-OFDM may be limited to one port transmission.
  • DMRS resources capable of transmitting 1 port may be defined in various forms. For example, it may be defined in consideration of multiplexing between different waveforms or between the same DFT-S-OFDM terminals.
  • the base station may define a DFT-S-OFDM DMRS pattern in the form of a resource, and when the MU is applied, an appropriate resource is transmitted to the DFT-S-OFDM terminal so as to be orthogonal (eg through FDM, TDM, CDM). Can be assigned to.
  • a DFT-S-OFDM DMRS pattern in the form of a resource
  • an appropriate resource is transmitted to the DFT-S-OFDM terminal so as to be orthogonal (eg through FDM, TDM, CDM). Can be assigned to.
  • the base station defines a DMRS pattern of the DFT-S-OFDM in a resource form, configures corresponding information, and informs the terminal.
  • DMRS resources frequency offset (FO), time offset (TO), CS index, time domain sequence (e.g. for TD-OCC), Comb type (e.g. Comb 1, Comb 2)
  • FIG. 31 is a flowchart illustrating an example of a method for generating and transmitting a demodulation reference signal and an additional demodulation reference signal proposed herein.
  • the base station generates a demodulation reference signal based on a pseudo random sequence (S31010).
  • the demodulation reference signal may be the front-loaded DMRS and / or additional DMRS described above.
  • the base station maps the generated demodulation reference signal sequence to a resource element according to transmission precoding (S31020).
  • the base station may map the demodulation reference signal sequence generated according to the specific pattern to the resource element, and the specific pattern may be one of the patterns described with reference to FIGS. 7 to 30.
  • the base station may transmit a demodulation reference signal mapped in a specific resource region to at least one terminal using a specific antenna port (S31030).
  • 32 is a flowchart illustrating an example of a method of decoding data by receiving a demodulation reference signal and an additional demodulation reference signal proposed in the present specification.
  • the terminal receives a first demodulation reference signal (DMRS) and a second demodulation reference signal set according to a specific pattern from a base station through a DMRS symbol (S32010).
  • DMRS first demodulation reference signal
  • S32010 second demodulation reference signal set according to a specific pattern from a base station through a DMRS symbol (S32010).
  • the specific pattern may be one of the patterns described with reference to FIGS. 7 to 30.
  • each of the first demodulation reference signal and the second demodulation reference signal may be transmitted on a specific antenna port and positioned on the same time axis symbol as at least one other demodulation reference signal transmitted on another antenna port.
  • the position of the time axis symbol of the second demodulation reference signal may be determined according to the service type of the transmitted data.
  • the terminal estimates a channel using at least one of the received first demodulation reference signal or the second demodulation reference signal, and receives and decodes data through the estimated channel (S32020).
  • FIG 33 is a diagram illustrating an example of an internal block diagram of a wireless device to which the present invention can be applied.
  • the wireless device may be a base station and a terminal, and the base station includes both a macro base station and a small base station.
  • the base station 3310 and the UE 3320 include a communication unit (transmitter and receiver, RF unit, 3313 and 3323), a processor 3311 and 3321, and a memory 3312 and 3322.
  • the base station and the UE may further include an input unit and an output unit.
  • the communication units 3313 and 3323, the processors 3311 and 3321, the input unit, the output unit, and the memory 3312 and 3322 are functionally connected to perform the method proposed in the present specification.
  • the communication unit transmitter / receiver unit or RF unit, 3313,3323
  • the communication unit receives information generated from the PHY protocol (Physical Layer Protocol)
  • the received information is transferred to the RF-Radio-Frequency Spectrum, filtered, and amplified.
  • the communication unit functions to move an RF signal (Radio Frequency Signal) received from the antenna to a band that can be processed by the PHY protocol and perform filtering.
  • the communication unit may also include a switch function for switching the transmission and reception functions.
  • Processors 3311 and 3331 implement the functions, processes and / or methods proposed herein. Layers of the air interface protocol may be implemented by a processor.
  • the processor may be represented by a controller, a controller, a control unit, a computer, or the like.
  • the memories 3312 and 3322 are connected to a processor and store protocols or parameters for performing an uplink resource allocation method.
  • Processors 3311 and 3321 may include application-specific integrated circuits (ASICs), other chipsets, logic circuits, and / or data processing devices.
  • the memory may include read-only memory (ROM), random access memory (RAM), flash memory, memory card, storage medium and / or other storage device.
  • the communication unit may include a baseband circuit for processing a wireless signal.
  • the module may be stored in memory and executed by a processor.
  • the memory may be internal or external to the processor and may be coupled to the processor by various well known means.
  • the output unit (display unit or display unit) is controlled by a processor and outputs information output from the processor together with a key input signal generated at the key input unit and various information signals from the processor.
  • the method described herein may be embodied as processor readable codes on a processor readable recording medium included in the network device.
  • the processor-readable recording medium includes all kinds of recording devices that store data that can be read by the processor. Examples of the processor-readable recording medium include ROM, RAM, CD-ROM, magnetic tape, floppy disk, optical data storage device, and the like, and may also be implemented in the form of a carrier wave such as transmission over the Internet. .
  • the processor-readable recording medium can also be distributed over network coupled computer systems so that the processor-readable code is stored and executed in a distributed fashion.
  • the method for transmitting and receiving a reference signal in the wireless communication system of the present invention has been described with reference to the example applied to the 3GPP LTE / LTE-A system, it is possible to apply to various wireless communication systems in addition to the 3GPP LTE / LTE-A system. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

무선 통신 시스템에서 단말이 디코딩(Decoding)을 수행하는 방법 및 장치에 관한 것이다. 본 발명에 의하면, 특정 패턴에 따라 설정된 제 1 복조 참조 신호(Demodulation Reference Signal: DMRS) 및 제 2 복조 참조 신호를 DMRS 심볼을 통해 기지국으로부터 수신하되, 상기 제 1 복조 참조 신호 및 상기 제 2 복조 참조 신호 각각은 특정 안테나 포트 상에서 전송되며, 다른 안테나 포트 상에서 전송되는 적어도 하나의 다른 복조 참조 신호와 동일한 시간 축 심볼 상에 위치하고, 상기 제 2 복조 참조 신호의 시간 축 심볼의 위치는 전송되는 데이터의 서비스 타입에 따라 결정되며, 상기 제 1 복조 참조 신호 또는 상기 제 2 복조 참조 신호 중 적어도 하나를 이용하여 상기 데이터를 디코딩하는 방법 및 장치를 제공할 수 있다.

Description

무선 통신 시스템에서 참조 신호를 송수신하기 위한 방법 및 이를 위한 장치
본 발명은 무선 통신 시스템에 관한 것으로써, 보다 상세하게 무선 통신 시스템에서 데이터의 디코딩을 위한 복조 참조 신호(Demodulation Reference Signal: DMRS)의 생성 및 이를 송수신하기 위한 방법 및 장치에 관한 것이다.
이동 통신 시스템은 사용자의 활동성을 보장하면서 음성 서비스를 제공하기 위해 개발되었다. 그러나 이동통신 시스템은 음성뿐 아니라 데이터 서비스까지 영역을 확장하였으며, 현재에는 폭발적인 트래픽의 증가로 인하여 자원의 부족 현상이 야기되고 사용자들이 보다 고속의 서비스에 대한 요구하므로, 보다 발전된 이동 통신 시스템이 요구되고 있다.
차세대 이동 통신 시스템의 요구 조건은 크게 폭발적인 데이터 트래픽의 수용, 사용자 당 전송률의 획기적인 증가, 대폭 증가된 연결 디바이스 개수의 수용, 매우 낮은 단대단 지연(End-to-End Latency), 고 에너지 효율을 지원할 수 있어야 한다. 이를 위하여 이중 연결성(Dual Connectivity), 대규모 다중 입출력(Massive MIMO: Massive Multiple Input Multiple Output), 전이중(In-band Full Duplex), 비직교 다중접속(NOMA: Non-Orthogonal Multiple Access), 초 광대역(Super wideband) 지원, 단말 네트워킹(Device Networking) 등 다양한 기술들이 연구되고 있다.
본 발명은 데이터의 디코딩을 위한 복조 참조 신호(Demodulation Reference Signal: DMRS)의 생성 및 송수신을 위한 방법 및 장치를 제공함에 그 목적이 있다.
또한, 본 발명은 Doppler Effect로 인한 CPE(Common Phase Error)/CFO(Carrier Frequency Offset) 값을 추정하기 위한 DMRS의 생성 및 송수신을 위한 방법 및 장치를 제공함에 그 목적이 있다.
또한, 본 발명은 High Doppler 환경에서, 채널 추정을 위한 추가적인 DMRS을 생성하여 송수신하기 위한 방법 및 장치를 제공함에 그 목적이 있다.
또한, 본 발명은 채널 추정을 위한 DMRS 및 추가적인 DMRS를 자원 영역에 매핑 시키기 위한 방법 및 장치를 제공함에 그 목적이 있다.
또한, 본 발명은 추가적인 DMRS를 전송하는 경우, RS 오버헤드를 감소시키기 위해 DMRS 및 추가적인 DMRS를 시간 영역 및 주파수 영역에 설정하는 방법 및 장치를 제공함에 그 목적이 있다.
또한, 본 발명은 시간 영역 및 주파수 영역에 매핑되는 DMRS 및 추가적인 DMRS의 밀도(density)를 조절하기 위한 방법 및 장치를 제공함에 그 목적이 있다.
본 명세서에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
구체적으로, 본 발명의 일 실시 예에 따른 단말의 디코딩(Decoding) 방법은, 특정 패턴에 따라 설정된 제 1 복조 참조 신호(Demodulation Reference Signal: DMRS) 및 제 2 복조 참조 신호를 DMRS 심볼을 통해 기지국으로부터 수신하는 단계, 상기 제 1 복조 참조 신호 및 상기 제 2 복조 참조 신호 각각은 특정 안테나 포트 상에서 전송되며, 다른 안테나 포트 상에서 전송되는 적어도 하나의 다른 복조 참조 신호와 동일한 시간 축 심볼 상에 위치하고, 상기 제 2 복조 참조 신호의 시간 축 심볼의 위치는 전송되는 데이터의 서비스 타입에 따라 결정되며; 및 상기 제 1 복조 참조 신호 또는 상기 제 2 복조 참조 신호 중 적어도 하나를 이용하여 상기 데이터를 디코딩하는 단계를 포함한다.
또한, 본 발명에서, 특정 조건을 만족하는 경우, 상기 제 1 복조 참조 신호 또는 상기 제 2 복조 참조신호 중 적어도 하나의 시간 축 심볼 위치는 특정 물리 자원 블록(Physical Resource Block: PRB) 단위로 이동된다.
또한, 본 발명에서, 상기 특정 조건은 상기 서비스 타입에 따라 요구되는 복조 참조 신호의 개수가 제 1 개수 이상 또는 상기 복조 참조 신호가 전송되는 안테나 포트의 개수가 제 2 개수 이상 중 적어도 하나이다.
또한, 본 발명에서, 상기 특정 물리 자원 블록(Physical Resource Block: PRB) 단위는 상기 단말에게 할당된 대역폭(Band width)에 따라 결정된다.
또한, 본 발명은, 상기 특정 물리 자원 블록 단위를 나타내는 제어 정보를 기지국으로부터 수신하는 단계를 더 포함한다.
또한, 본 발명에서, 상기 제 1 복조 참조 신호 또는 상기 제 2 복조 참조 신호는 특정 물리 자원 블록 마다 오프(OFF)된다.
또한, 본 발명은, 외부와 무선 신호를 송신 및 수신하는 무선 유닛; 및 상기 무선 유닛과 기능적으로 결합되어 있는 프로세서를 포함하되, 상기 프로세서는, 특정 패턴에 따라 설정된 제 1 복조 참조 신호(Demodulation Reference Signal: DMRS) 및 제 2 복조 참조 신호를 DMRS 심볼을 통해 기지국으로부터 수신하되, 상기 제 1 복조 참조 신호 및 상기 제 2 복조 참조 신호 각각은 특정 안테나 포트 상에서 전송되며, 다른 안테나 포트 상에서 전송되는 적어도 하나의 다른 복조 참조 신호와 동일한 시간 축 심볼 상에 위치하고, 상기 제 2 복조 참조 신호의 시간 축 심볼의 위치는 전송되는 데이터의 서비스 타입에 따라 결정되며, 상기 제 1 복조 참조 신호 또는 상기 제 2 복조 참조 신호 중 적어도 하나를 이용하여 상기 데이터를 디코딩하는 단말을 제공한다.
본 발명은 DMRS를 통해 Doppler Effect로 인한 CPE(Common Phase Error) 및 CFO(Carrier Frequency Offset) 값을 추정하여 데이터를 디코딩할 수 있는 효과가 있다.
또한, 본 발명은 High Doppler 환경에서, 추가적인 DMRS를 통해 채널을 추정할 수 있는 효과가 있다.
또한, 본 발명은 서비스의 특성에 따라 DMRS 및 추가적인 DMRS를 자원 영역에 매핑시켜 서비스의 요구사항을 만족 시킬 수 있는 효과가 있다.
본 발명은 추가적인 DMRS를 전송하는 경우, DMRS 및 추가적인 DMRS의 밀도를 조절하여 RS 오버헤드를 감소시킬 수 있는 효과가 있다.
본 명세서에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도면은 본 발명에 대한 실시예를 제공하고, 상세한 설명과 함께 본 발명의 기술적 특징을 설명한다.
도 1은 본 발명이 적용될 수 있는 무선 통신 시스템에서 무선 프레임의 구조를 나타낸다.
도 2는 본 발명이 적용될 수 있는 무선 통신 시스템에서 하나의 하향링크 슬롯에 대한 자원 그리드(resource grid)를 예시한 도면이다.
도 3은 본 발명이 적용될 수 있는 무선 통신 시스템에서 하향링크 서브 프레임의 구조를 나타낸다.
도 4는 본 발명이 적용될 수 있는 무선 통신 시스템에서 상향링크 서브 프레임의 구조를 나타낸다.
도 5는 본 발명이 적용될 수 있는 무선 통신 시스템에서 하향링크 자원 블록 쌍에 매핑된 참조 신호 패턴을 예시한다.
도 6 은 본 발명이 적용될 수 있는 mmWave를 사용하는 통신 시스템에서 이용되는 자원 영역 구조의 일 예를 나타낸다.
도 7 및 도 8은 본 명세서에서 제안하는 복조 참조 신호의 패턴의 일 예를 나타낸다.
도 9 내지 도 14는 본 명세서에서 제안하는 자원 영역에 매핑되는 복조 참조 신호의 밀도가 추가적인 복조 참조 신호의 밀도보다 큰 경우의 일 예를 나타낸다.
도 15 및 도 16은 본 명세서에서 제안하는 자원 영역에 매핑되는 복조 참조 신호의 밀도가 추가적인 복조 참조 신호의 밀도와 같거나 더 큰 경우의 일 예를 나타낸다.
도 17 내지 도 19는 본 명세서에서 제안하는 자원 영역에 매핑되는 복조 참조 신호의 밀도가 추가적인 복조 참조 신호의 밀도보다 작은 경우의 일 예를 나타낸다.
도 20은 본 명세서에서 제안하는 추가적인 복조 참조 신호를 설정하기 위한 방법의 일 예를 나타낸다.
도 21 내지 도 23는 본 명세서에서 제안하는 복조 참조 신호 및 추가적인 복조 참조 신호를 설정하기 위한 방법의 일 예를 나타낸다.
도 24 내지 도 28은 본 명세서에서 제안하는 복조 참조 신호 및 추가적인 복조 참조 신호를 시간 영역에서 이동(Shifting)시키기 위한 방법의 일 예를 나타낸다.
도 29은 본 명세서에서 제안하는 복조 참조 신호의 다중화 방법의 일 예를 나타낸다.
도 30는 본 명세서에서 제안하는 복조 참조 신호의 패턴을 설정하는 방법의 일 예를 나타낸다.
도 31은 본 명세서에서 제안하는 복조 참조 신호 및 추가적인 복조 참조 신호를 생성하여 전송하는 방법의 일 예를 나타낸 순서도이다.
도 32는 본 명세서에서 제안하는 복조 참조 신호 및 추가적인 복조 참조 신호를 전송 받아 데이터를 디코딩하는 방법의 일 예를 나타낸 순서도이다.
도 33는 본 발명이 적용될 수 있는 무선 장치의 내부 블록도의 일 예를 나타낸 도이다.
이하, 본 발명에 따른 바람직한 실시 형태를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 발명의 예시적인 실시형태를 설명하고자 하는 것이며, 본 발명이 실시될 수 있는 유일한 실시형태를 나타내고자 하는 것이 아니다. 이하의 상세한 설명은 본 발명의 완전한 이해를 제공하기 위해서 구체적 세부사항을 포함한다. 그러나, 당업자는 본 발명이 이러한 구체적 세부사항 없이도 실시될 수 있음을 안다.
몇몇 경우, 본 발명의 개념이 모호해지는 것을 피하기 위하여 공지의 구조 및 장치는 생략되거나, 각 구조 및 장치의 핵심기능을 중심으로 한 블록도 형식으로 도시될 수 있다.
본 명세서에서 기지국은 단말과 직접적으로 통신을 수행하는 네트워크의 종단 노드(terminal node)로서의 의미를 갖는다. 본 문서에서 기지국에 의해 수행되는 것으로 설명된 특정 동작은 경우에 따라서는 기지국의 상위 노드(upper node)에 의해 수행될 수도 있다. 즉, 기지국을 포함하는 다수의 네트워크 노드들(network nodes)로 이루어지는 네트워크에서 단말과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수행될 수 있음은 자명하다. '기지국(BS: Base Station)'은 고정국(fixed station), Node B, eNB(evolved-NodeB), BTS(base transceiver system), 액세스 포인트(AP: Access Point) 등의 용어에 의해 대체될 수 있다. 또한, '단말(Terminal)'은 고정되거나 이동성을 가질 수 있으며, UE(User Equipment), MS(Mobile Station), UT(user terminal), MSS(Mobile Subscriber Station), SS(Subscriber Station), AMS(Advanced Mobile Station), WT(Wireless terminal), MTC(Machine-Type Communication) 장치, M2M(Machine-to-Machine) 장치, D2D(Device-to-Device) 장치 등의 용어로 대체될 수 있다.
이하에서, 하향링크(DL: downlink)는 기지국에서 단말로의 통신을 의미하며, 상향링크(UL: uplink)는 단말에서 기지국으로의 통신을 의미한다. 하향링크에서 송신기는 기지국의 일부이고, 수신기는 단말의 일부일 수 있다. 상향링크에서 송신기는 단말의 일부이고, 수신기는 기지국의 일부일 수 있다.
이하의 설명에서 사용되는 특정 용어들은 본 발명의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access), NOMA(non-orthogonal multiple access) 등과 같은 다양한 무선 접속 시스템에 이용될 수 있다. CDMA는 UTRA(universal terrestrial radio access)나 CDMA2000과 같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(global system for mobile communications)/GPRS(general packet radio service)/EDGE(enhanced data rates for GSM evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. UTRA는 UMTS(universal mobile telecommunications system)의 일부이다. 3GPP(3rd generation partnership project) LTE(long term evolution)은 E-UTRA를 사용하는 E-UMTS(evolved UMTS)의 일부로써, 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다. LTE-A(advanced)는 3GPP LTE의 진화이다.
본 발명의 실시예들은 무선 접속 시스템들인 IEEE 802, 3GPP 및 3GPP2 중 적어도 하나에 개시된 표준 문서들에 의해 뒷받침될 수 있다. 즉, 본 발명의 실시예들 중 본 발명의 기술적 사상을 명확히 드러내기 위해 설명하지 않은 단계들 또는 부분들은 상기 문서들에 의해 뒷받침될 수 있다. 또한, 본 문서에서 개시하고 있는 모든 용어들은 상기 표준 문서에 의해 설명될 수 있다.
설명을 명확하게 하기 위해, 3GPP LTE/LTE-A를 위주로 기술하지만 본 발명의 기술적 특징이 이에 제한되는 것은 아니다.
본 발명이 적용될 수 있는 무선 통신 시스템 일반
도 1은 본 발명이 적용될 수 있는 무선 통신 시스템에서 무선 프레임의 구조를 나타낸다.
3GPP LTE/LTE-A에서는 FDD(Frequency Division Duplex)에 적용 가능한 타입 1 무선 프레임(radio frame) 구조와 TDD(Time Division Duplex)에 적용 가능한 타입 2의 무선 프레임 구조를 지원한다.
도 1에서 무선 프레임의 시간 영역에서의 크기는 T_s=1/(15000*2048)의 시간 단위의 배수로 표현된다. 하향링크 및 상향링크 전송은 T_f=307200*T_s=10ms의 구간을 가지는 무선 프레임으로 구성된다.
도 1의 (a)는 타입 1 무선 프레임의 구조를 예시한다. 타입 1 무선 프레임은 전이중(full duplex) 및 반이중(half duplex) FDD에 모두 적용될 수 있다.
무선 프레임(radio frame)은 10개의 서브프레임(subframe)으로 구성된다. 하나의 무선 프레임은 T_slot=15360*T_s=0.5ms 길이의 20개의 슬롯으로 구성되고, 각 슬롯은 0부터 19까지의 인덱스가 부여된다. 하나의 서브프레임은 시간 영역(time domain)에서 연속적인 2개의 슬롯(slot)으로 구성되고, 서브프레임 i는 슬롯 2i 및 슬롯 2i+1로 구성된다. 하나의 서브프레임을 전송하는데 걸리는 시간을 TTI(transmission time interval)이라 한다. 예를 들어, 하나의 서브 프레임은 길이는 1ms이고, 하나의 슬롯의 길이는 0.5ms일 수 있다.
FDD에서 상향링크 전송 및 하향링크 전송은 주파수 도메인에서 구분된다. 전이중 FDD에 제한이 없는 반면, 반이중 FDD 동작에서 단말은 동시에 전송 및 수신을 할 수 없다.
하나의 슬롯은 시간 영역에서 복수의 OFDM(orthogonal frequency division multiplexing) 심볼을 포함하고, 주파수 영역에서 다수의 자원블록(RB: Resource Block)을 포함한다. 3GPP LTE는 하향링크에서 OFDMA를 사용하므로 OFDM 심볼은 하나의 심볼 구간(symbol period)을 표현하기 위한 것이다. OFDM 심볼은 하나의 SC-FDMA 심볼 또는 심볼 구간이라고 할 수 있다. 자원 블록(resource block)은 자원 할당 단위이고, 하나의 슬롯에서 복수의 연속적인 부 반송파(subcarrier)를 포함한다.
도 1의 (b)는 타입 2 프레임 구조(frame structure type 2)를 나타낸다.
타입 2 무선 프레임은 각 153600*T_s=5ms의 길이의 2개의 하프 프레임(half frame)으로 구성된다. 각 하프 프레임은 30720*T_s=1ms 길이의 5개의 서브프레임으로 구성된다.
TDD 시스템의 타입 2 프레임 구조에서 상향링크-하향링크 구성(uplink-downlink configuration)은 모든 서브프레임에 대하여 상향링크와 하향링크가 할당(또는 예약)되는지 나타내는 규칙이다.
표 1은 상향링크-하향링크 구성을 나타낸다.
Figure PCTKR2018000491-appb-T000001
표 1을 참조하면, 무선 프레임의 각 서브프레임 별로, 'D'는 하향링크 전송을 위한 서브프레임을 나타내고, 'U'는 상향링크 전송을 위한 서브프레임을 나타내며, 'S'는 DwPTS(Downlink Pilot Time Slot), 보호구간(GP: Guard Period), UpPTS(Uplink Pilot Time Slot) 3가지의 필드로 구성되는 스페셜 서브프레임(special subframe)을 나타낸다.
DwPTS는 단말에서의 초기 셀 탐색, 동기화 또는 채널 추정에 사용된다. UpPTS는 기지국에서의 채널 추정과 단말의 상향링크 전송 동기를 맞추는 데 사용된다. GP는 상향링크와 하향링크 사이에 하향링크 신호의 다중경로 지연으로 인해 상향링크에서 생기는 간섭을 제거하기 위한 구간이다.
각 서브프레임 i는 각 T_slot=15360*T_s=0.5ms 길이의 슬롯 2i 및 슬롯 2i+1로 구성된다.
상향링크-하향링크 구성은 7가지로 구분될 수 있으며, 각 구성 별로 하향링크 서브프레임, 스페셜 서브프레임, 상향링크 서브프레임의 위치 및/또는 개수가 다르다.
하향링크에서 상향링크로 변경되는 시점 또는 상향링크에서 하향링크로 전환되는 시점을 전환 시점(switching point)이라 한다. 전환 시점의 주기성(Switch-point periodicity)은 상향링크 서브프레임과 하향링크 서브프레임이 전환되는 양상이 동일하게 반복되는 주기를 의미하며, 5ms 또는 10ms가 모두 지원된다. 5ms 하향링크-상향링크 전환 시점의 주기를 가지는 경우에는 스페셜 서브프레임(S)은 하프-프레임 마다 존재하고, 5ms 하향링크-상향링크 전환 시점의 주기를 가지는 경우에는 첫번째 하프-프레임에만 존재한다.
모든 구성에 있어서, 0번, 5번 서브프레임 및 DwPTS는 하향링크 전송만을 위한 구간이다. UpPTS 및 서브프레임 서브프레임에 바로 이어지는 서브프레임은 항상 상향링크 전송을 위한 구간이다.
이러한, 상향링크-하향링크 구성은 시스템 정보로써 기지국과 단말이 모두 알고 있을 수 있다. 기지국은 상향링크-하향링크 구성 정보가 바뀔 때마다 구성 정보의 인덱스만을 전송함으로써 무선 프레임의 상향링크-하향링크 할당상태의 변경을 단말에 알려줄 수 있다. 또한, 구성 정보는 일종의 하향링크 제어정보로서 다른 스케줄링 정보와 마찬가지로 PDCCH(Physical Downlink Control Channel)를 통해 전송될 수 있으며, 방송 정보로서 브로드캐스트 채널(broadcast channel)을 통해 셀 내의 모든 단말에 공통으로 전송될 수도 있다.
표 2는 스페셜 서브프레임의 구성(DwPTS/GP/UpPTS의 길이)을 나타낸다.
Figure PCTKR2018000491-appb-T000002
도 1의 예시에 따른 무선 프레임의 구조는 하나의 예시에 불과하며, 무선 프레임에 포함되는 부 반송파의 수 또는 서브 프레임에 포함되는 슬롯의 수, 슬롯에 포함되는 OFDM 심볼의 수는 다양하게 변경될 수 있다.
도 2는 본 발명이 적용될 수 있는 무선 통신 시스템에서 하나의 하향링크 슬롯에 대한 자원 그리드(resource grid)를 예시한 도면이다.
도 2를 참조하면, 하나의 하향링크 슬롯은 시간 영역에서 복수의 OFDM 심볼을 포함한다. 여기서, 하나의 하향링크 슬롯은 7개의 OFDM 심볼을 포함하고, 하나의 자원 블록은 주파수 영역에서 12개의 부 반송파를 포함하는 것을 예시적으로 기술하나, 이에 한정되는 것은 아니다.
자원 그리드 상에서 각 요소(element)를 자원 요소(resource element)하고, 하나의 자원 블록(RB: resource block)은 12 × 7 개의 자원 요소를 포함한다. 하향링크 슬롯에 포함되는 자원 블록들의 수 N^DL은 하향링크 전송 대역폭(bandwidth)에 종속한다.
상향링크 슬롯의 구조는 하향링크 슬롯의 구조와 동일할 수 있다.
도 3은 본 발명이 적용될 수 있는 무선 통신 시스템에서 하향링크 서브 프레임의 구조를 나타낸다.
도 3을 참조하면, 서브 프레임내의 첫번째 슬롯에서 앞의 최대 3개의 OFDM 심볼들이 제어 채널들이 할당되는 제어 영역(control region)이고, 나머지 OFDM 심볼들은 PDSCH(Physical Downlink Shared Channel)이 할당되는 데이터 영역(data region)이다. 3GPP LTE에서 사용되는 하향링크 제어 채널의 일례로 PCFICH(Physical Control Format Indicator Channel), PDCCH(Physical Downlink Control Channel), PHICH(Physical Hybrid-ARQ Indicator Channel) 등이 있다.
PCFICH는 서브 프레임의 첫번째 OFDM 심볼에서 전송되고, 서브 프레임 내에 제어 채널들의 전송을 위하여 사용되는 OFDM 심볼들의 수(즉, 제어 영역의 크기)에 관한 정보를 나른다. PHICH는 상향 링크에 대한 응답 채널이고, HARQ(Hybrid Automatic Repeat Request)에 대한 ACK(Acknowledgement)/NACK(Not-Acknowledgement) 신호를 나른다. PDCCH를 통해 전송되는 제어 정보를 하향링크 제어정보(DCI: downlink control information)라고 한다. 하향링크 제어정보는 상향링크 자원 할당 정보, 하향링크 자원 할당 정보 또는 임의의 단말 그룹에 대한 상향링크 전송(Tx) 파워 제어 명령을 포함한다.
PDCCH는 DL-SCH(Downlink Shared Channel)의 자원 할당 및 전송 포맷(이를 하향링크 그랜트라고도 한다.), UL-SCH(Uplink Shared Channel)의 자원 할당 정보(이를 상향링크 그랜트라고도 한다.), PCH(Paging Channel)에서의 페이징(paging) 정보, DL-SCH에서의 시스템 정보, PDSCH에서 전송되는 랜덤 액세스 응답(random access response)과 같은 상위 레이어(upper-layer) 제어 메시지에 대한 자원 할당, 임의의 단말 그룹 내 개별 단말들에 대한 전송 파워 제어 명령들의 집합, VoIP(Voice over IP)의 활성화 등을 나를 수 있다. 복수의 PDCCH들은 제어 영역 내에서 전송될 수 있으며, 단말은 복수의 PDCCH들을 모니터링할 수 있다. PDCCH는 하나 또는 복수의 연속적인 CCE(control channel elements)의 집합으로 구성된다. CCE는 무선 채널의 상태에 따른 부호화율(coding rate)을 PDCCH에 제공하기 위하여 사용되는 논리적 할당 단위이다. CCE는 복수의 자원 요소 그룹(resource element group)들에 대응된다. PDCCH의 포맷 및 사용 가능한 PDCCH의 비트 수는 CCE들의 수와 CCE들에 의해 제공되는 부호화율 간의 연관 관계에 따라 결정된다.
기지국은 단말에게 전송하려는 DCI에 따라 PDCCH 포맷을 결정하고, 제어 정보에 CRC(Cyclic Redundancy Check)를 붙인다. CRC에는 PDCCH의 소유자(owner)나 용도에 따라 고유한 식별자(이를 RNTI(Radio Network Temporary Identifier)라고 한다.)가 마스킹된다. 특정의 단말을 위한 PDCCH라면 단말의 고유한 식별자, 예를 들어 C-RNTI(Cell-RNTI)가 CRC에 마스킹될 수 있다. 또는 페이징 메시지를 위한 PDCCH라면 페이징 지시 식별자, 예를 들어 P-RNTI(Paging-RNTI)가 CRC에 마스킹될 수 있다. 시스템 정보, 더욱 구체적으로 시스템 정보 블록(SIB: system information block)를 위한 PDCCH라면 시스템 정보 식별자, SI-RNTI(system information RNTI)가 CRC에 마스킹될 수 있다. 단말의 랜덤 액세스 프리앰블의 전송에 대한 응답인 랜덤 액세스 응답을 지시하기 위하여, RA-RNTI(random access-RNTI)가 CRC에 마스킹될 수 있다.
도 4는 본 발명이 적용될 수 있는 무선 통신 시스템에서 상향링크 서브 프레임의 구조를 나타낸다.
도 4를 참조하면, 상향링크 서브 프레임은 주파수 영역에서 제어 영역과 데이터 영역으로 나눌 수 있다. 제어 영역에는 상향링크 제어 정보를 나르는 PUCCH(Physical Uplink Control Channel)이 할당된다. 데이터 영역은 사용자 데이터를 나르는 PUSCH(Physical Uplink Shared Channel)이 할당된다. 단일 반송파 특성을 유지하기 위해 하나의 단말은 PUCCH와 PUSCH을 동시에 전송하지 않는다.
하나의 단말에 대한 PUCCH에는 서브 프레임 내에 자원 블록(RB: Resource Block) 쌍이 할당된다. RB 쌍에 속하는 RB들은 2개의 슬롯들의 각각에서 서로 다른 부 반송파를 차지한다. 이를 PUCCH에 할당된 RB 쌍은 슬롯 경계(slot boundary)에서 주파수 도약(frequency hopping)된다고 한다.
참조 신호( RS : Reference Signal)
무선 통신 시스템에서 데이터는 무선 채널을 통해 전송되기 때문에, 신호는 전송 중에 왜곡될 수 있다. 수신단에서 왜곡된 신호를 정확하게 수신하기 위하여, 수신된 신호의 왜곡은 채널 정보를 이용하여 보정되어야 한다. 채널 정보를 검출하기 위하여 송신측과 수신측 모두 알고 있는 신호 전송 방법과 신호가 채널을 통해 전송될 때 왜곡된 정도를 이용하여 채널 정보를 검출하는 방법을 주로 이용한다. 상술한 신호를 파일럿 신호 또는 참조 신호(RS: reference signal)라고 한다.
또한 최근 대부분의 이동통신 시스템에서 패킷을 전송할 때, 지금까지 한 개의 송신안테나와 한 개의 수신안테나를 사용했던 것에서 탈피, 다중송신안테나와 다중수신안테나를 채택해 송수신 데이터 효율을 향상시킬 수 있는 방법을 사용한다. 다중 입출력 안테나를 이용하여 데이터를 송수신할 때, 신호를 정확하게 수신하기 위하여 송신 안테나와 수신 안테나 간의 채널 상태가 검출되어야 한다. 따라서 각 송신 안테나는 개별적인 참조 신호를 가져야 한다.
이동 통신 시스템에서 RS는 그 목적에 따라 크게 두 가지로 구분될 수 있다. 채널 정보 획득을 위한 목적의 RS와 데이터 복조를 위해 사용되는 RS가 있다. 전자는 UE가 하향 링크로의 채널 정보를 획득하는데 그 목적이 있으므로, 광대역으로 전송되어야 하고, 특정 서브 프레임에서 하향 링크 데이터를 수신하지 않는 UE라도 그 RS를 수신하고 측정할 수 있어야 한다. 또한 이는 핸드 오버 등의 측정 등을 위해서도 사용된다. 후자는 기지국이 하향링크를 보낼 때 해당 리소스에 함께 보내는 RS로서, UE는 해당 RS를 수신함으로써 채널 추정을 할 수 있고, 따라서 데이터를 복조할 수 있게 된다. 이 RS는 데이터가 전송되는 영역에 전송되어야 한다.
하향 참조 신호는 셀 내 모든 단말이 공유하는 채널 상태에 대한 정보 획득 및 핸드오버 등의 측정 등을 위한 하나의 공통 참조 신호(CRS: common RS)와 특정 단말만을 위하여 데이터 복조를 위해 사용되는 전용 참조 신호(DRS: dedicated RS)가 있다. 이와 같은 참조 신호들을 이용하여 복조(demodulation)와 채널 측정(channel measurement)을 위한 정보를 제공할 수 있다. 즉, DRS는 데이터 복조용으로만 사용되며 CRS는 채널 정보 획득 및 데이터 복조의 두 가지 목적으로 다 사용된다.
수신 측(즉, 단말)은 CRS로부터 채널 상태를 측정하고, CQI(Channel Quality Indicator), PMI(Precoding Matrix Index) 및/또는 RI(Rank Indicator)와 같은 채널 품질과 관련된 지시자를 송신 측(즉, 기지국)으로 피드백한다. CRS는 셀 특정 기준신호(cell-specific RS)라고도 한다. 반면, 채널 상태 정보(CSI: Channel State Information)의 피드백과 관련된 참조 신호를 CSI-RS라고 정의할 수 있다.
DRS는 PDSCH 상의 데이터 복조가 필요한 경우 자원 요소들을 통해 전송될 수 있다. 단말은 상위 계층을 통하여 DRS의 존재 여부를 수신할 수 있으며, 상응하는 PDSCH가 매핑되었을 때만 유효하다. DRS를 단말 특정 참조 신호(UE-specific RS) 또는 복조 참조 신호(DMRS: Demodulation RS)라고 할 수 있다.
도 5는 본 발명이 적용될 수 있는 무선 통신 시스템에서 하향링크 자원 블록 쌍에 매핑된 참조 신호 패턴을 예시한다.
도 5를 참조하면, 참조 신호가 매핑되는 단위로 하향링크 자원 블록 쌍은 시간 영역에서 하나의 서브 프레임 × 주파수 영역에서 12개의 부 반송파로 나타낼 수 있다. 즉, 시간 축(x축) 상에서 하나의 자원 블록 쌍은 일반 순환 전치(normal CP: normal Cyclic Prefix) 인 경우 14개의 OFDM 심볼의 길이를 가지고(도 5(a)의 경우), 확장 순환 전치(extended CP: extended Cyclic Prefix)인 경우 12개의 OFDM 심볼의 길이를 가진다(도 5(b)의 경우). 자원 블록 격자에서 '0', '1', '2' 및 '3'으로 기재된 자원 요소들(REs)은 각각 안테나 포트 인덱스 '0', '1', '2' 및 '3'의 CRS의 위치를 의미하며, 'D'로 기재된 자원 요소들은 DRS의 위치를 의미한다.
이하 CRS에 대하여 좀 더 상세하게 기술하면, CRS는 물리적 안테나의 채널을 추정하기 위해 사용되고, 셀 내에 위치한 모든 단말에 공통적으로 수신될 수 있는 참조 신호로써 전체 주파수 대역에 분포된다. 즉, 이 CRS는 cell-specific한 시그널로, 광대역에 대해서 매 서브 프레임마다 전송된다. 또한, CRS는 채널 품질 정보(CSI) 및 데이터 복조를 위해 이용될 수 있다.
CRS는 전송 측(기지국)에서의 안테나 배열에 따라 다양한 포맷으로 정의된다. 3GPP LTE 시스템(예를 들어, 릴리즈-8)에서는 기지국의 전송 안테나 개수에 따라서 최대 4개의 안테나 포트에 대한 RS가 전송된다. 하향링크 신호 송신 측은 단일의 송신 안테나, 2개의 송신 안테나 및 4개의 송신 안테나와 같이 3 종류의 안테나 배열을 가진다. 예를 들어 기지국의 송신 안테나의 개수가 두 개일 경우, 0번과 1번 안테나 포트에 대한 CRS가 전송되고, 네 개인 경우 0~3 번 안테나 포트에 대한 CRS가 각각 전송된다.
기지국이 단일의 송신 안테나를 사용하는 경우, 단일 안테나 포트를 위한 참조 신호가 배열된다.
기지국이 2개의 송신 안테나를 사용하는 경우, 2개의 송신 안테나 포트를 위한 참조 신호는 시분할 다중화(TDM: Time Division Multiplexing) 및/또는 주파수 분할 다중화(FDM Frequency Division Multiplexing) 방식을 이용하여 배열된다. 즉, 2개의 안테나 포트를 위한 참조 신호는 각각이 구별되기 위해 서로 다른 시간 자원 및/또는 서로 다른 주파수 자원이 할당된다.
게다가, 기지국이 4개의 송신 안테나를 사용하는 경우, 4개의 송신 안테나 포트를 위한 참조 신호는 TDM 및/또는 FDM 방식을 이용하여 배열된다. 하향링크 신호의 수신 측(단말)에 의하여 측정된 채널 정보는 단일의 송신 안테나 전송, 송신 다이버시티, 폐쇄 루프 공간 다중화(closed-loop spatial multiplexing), 개방 루프 공간 다중화(open-loop spatial multiplexing) 또는 다중 사용자-다중 입출력 안테나(Multi-User MIMO)와 같은 전송 방식을 이용하여 전송된 데이터를 복조하기 위하여 사용될 수 있다.
다중 입출력 안테나가 지원되는 경우 참조 신호가 특정의 안테나 포트로부터 전송될 때, 상기 참조 신호는 참조 신호의 패턴에 따라 특정된 자원 요소들의 위치에 전송되며, 다른 안테나 포트를 위해 특정된 자원 요소들의 위치에 전송되지 않는다. 즉, 서로 다른 안테나 사이의 참조 신호는 서로 겹치지 않는다.
자원 블록에 CRS를 맵핑하는 규칙은 다음과 같이 정의된다.
Figure PCTKR2018000491-appb-M000001
수학식 1에서, k 및 l 은 각각 부반송파 인덱스 및 심볼 인덱스를 나타내고, p 는 안테나 포트를 나타낸다.
Figure PCTKR2018000491-appb-I000001
은 하나의 하향링크 슬롯에서의 OFDM 심볼의 수를 나타내고,
Figure PCTKR2018000491-appb-I000002
은 하향링크에 할당된 무선 자원의 수를 나타낸다. ns 는 슬롯 인덱스를 나타내며,
Figure PCTKR2018000491-appb-I000003
은 셀 ID를 나타낸다. mod 는 모듈로(modulo) 연산을 나타낸다. 참조 신호의 위치는 주파수 영역에서
Figure PCTKR2018000491-appb-I000004
값에 따라 달라진다.
Figure PCTKR2018000491-appb-I000005
는 셀 ID에 종속되므로, 참조 신호의 위치는 셀에 따라 다양한 주파수 편이(frequency shift) 값을 가진다.
보다 구체적으로, CRS를 통해 채널 추정 성능을 향상시키기 위해 CRS의 위치는 셀에 따라 주파수 영역에서 편이될 수 있다. 예를 들어, 참조 신호가 3개의 부 반송파의 간격으로 위치하는 경우, 하나의 셀에서의 참조 신호들은 3k 번째 부반송파에 할당되고, 다른 셀에서의 참조 신호는 3k+1 번째 부반송파에 할당된다. 하나의 안테나 포트의 관점에서 참조 신호들은 주파수 영역에서 6개의 자원 요소 간격으로 배열되고, 또 다른 안테나 포트에 할당된 참조 신호와는 3개의 자원 요소 간격으로 분리된다.
시간 영역에서 참조 신호는 각 슬롯의 심볼 인덱스 0 에서부터 시작하여 동일 간격(constant interval)으로 배열된다. 시간 간격은 순환 전치 길이에 따라 다르게 정의된다. 일반 순환 전치의 경우 참조 신호는 슬롯의 심볼 인덱스 0 과 4에 위치하고, 확장 순환 전치의 경우 참조 신호는 슬롯의 심볼 인덱스 0 과 3에 위치한다. 2개의 안테나 포트 중 최대값을 가지는 안테나 포트를 위한 참조 신호는 하나의 OFDM 심볼 내에 정의된다. 따라서, 4개의 송신 안테나 전송의 경우, 참조 신호 안테나 포트 0 과 1을 위한 참조 신호는 슬롯의 심볼 인덱스 0 과 4 (확장 순환 전치의 경우 심볼 인덱스 0 과 3)에 위치하고, 안테나 포트 2 와 3을 위한 참조 신호는 슬롯의 심볼 인덱스 1에 위치한다. 안테나 포트 2 와 3을 위한 참조 신호의 주파수 영역에서의 위치는 2번째 슬롯에서 서로 맞바꿔진다.
이하 DRS에 대하여 좀 더 상세하게 기술하면, DRS는 데이터를 복조하기 위하여 사용된다. 다중 입출력 안테나 전송에서 특정의 단말을 위해 사용되는 선행 부호화(precoding) 가중치는 단말이 참조 신호를 수신하였을 때 각 송신 안테나에서 전송된 전송 채널과 결합되어 상응하는 채널을 추정하기 위하여 변경 없이 사용된다.
3GPP LTE 시스템(예를 들어, 릴리즈-8)은 최대로 4개의 전송 안테나를 지원하고, 랭크 1 빔포밍(beamforming)을 위한 DRS가 정의된다. 랭크 1 빔포밍을 위한 DRS는 또한 안테나 포트 인덱스 5 를 위한 참조 신호를 나타낸다.
자원 블록에 DRS를 맵핑하는 규칙은 다음과 같이 정의된다. 수학식 2는 일반 순환 전치인 경우를 나타내고, 수학식 3은 확장 순환 전치인 경우를 나타낸다.
Figure PCTKR2018000491-appb-M000002
Figure PCTKR2018000491-appb-M000003
수학식 2 및 3에서, k 및 l 은 각각 부반송파 인덱스 및 심볼 인덱스를 나타내고, p 는 안테나 포트를 나타낸다.
Figure PCTKR2018000491-appb-I000006
은 주파수 영역에서 자원 블록 크기를 나타내고, 부반송파의 수로써 표현된다. nPRB은 물리 자원 블록의 수를 나타낸다.
Figure PCTKR2018000491-appb-I000007
은 PDSCH 전송을 위한 자원 블록의 주파수 대역을 나타낸다. ns는 슬롯 인덱스를 나타내고,
Figure PCTKR2018000491-appb-I000008
는 셀 ID를 나타낸다. mod 는 모듈로(modulo) 연산을 나타낸다. 참조 신호의 위치는 주파수 영역에서
Figure PCTKR2018000491-appb-I000009
값에 따라 달라진다.
Figure PCTKR2018000491-appb-I000010
는 셀 ID에 종속되므로, 참조 신호의 위치는 셀에 따라 다양한 주파수 편이(frequency shift) 값을 가진다.
LTE 시스템의 진화 발전된 형태의 LTE-A 시스템에서 기지국의 하향 링크로 최대 8개의 송신 안테나를 지원할 수 있도록 디자인되어야 한다. 따라서 최대 8개 송신 안테나에 대한 RS 역시 지원되어야 한다. LTE 시스템에서 하향 링크 RS는 최대 4개의 안테나 포트에 대한 RS만 정의되어 있으므로, LTE-A 시스템에서 기지국이 4개 이상 최대 8개의 하향 링크 송신 안테나를 가질 경우 이들 안테나 포트에 대한 RS가 추가적으로 정의되고 디자인되어야 한다. 최대 8개의 송신 안테나 포트에 대한 RS는 위에서 설명한 채널 측정을 위한 RS와 데이터 복조를 위한 RS 두 가지가 모두 디자인되어야 한다.
LTE-A 시스템을 디자인 함에 있어서 중요한 고려 사항 중 하나는 backward compatibility, 즉 LTE 단말이 LTE-A 시스템에서도 아무 무리 없이 잘 동작해야 하고, 시스템 또한 이를 지원해야 한다는 것이다. RS 전송 관점에서 보았을 때, LTE에서 정의되어 있는 CRS가 전 대역으로 매 서브 프레임마다 전송되는 시간-주파수 영역에서 추가적으로 최대 8개의 송신 안테나 포트에 대한 RS가 추가적으로 정의되어야 한다. LTE-A 시스템에서 기존 LTE의 CRS와 같은 방식으로 최대 8개의 송신 안테나에 대한 RS 패턴을 매 서브 프레임마다 전 대역에 추가하게 되면 RS 오버헤드가 지나치게 커지게 된다.
따라서, LTE-A 시스템에서 새로이 디자인되는 RS는 크게 두 가지 분류로 나누게 되는데, MCS, PMI 등의 선택을 위한 채널 측정 목적의 RS (CSI-RS: Channel State Information-RS, Channel State Indication-RS 등)와 8개의 전송 안테나로 전송되는 데이터 복조를 위한 RS(DM-RS: Data Demodulation?RS)이다.
채널 측정 목적의 CSI-RS는 기존의 CRS가 채널 측정, 핸드 오버 등의 측정 등의 목적과 동시에 데이터 복조를 위해 사용되는 것과 달리 채널 측정 위주의 목적을 위해서 디자인되는 특징이 있다. 물론 이 또한 핸드 오버 등의 측정 등의 목적으로도 사용될 수도 있다. CSI-RS가 채널 상태에 대한 정보를 얻는 목적으로만 전송되므로 CRS와 달리 매 서브 프레임마다 전송되지 않아도 된다. CSI-RS의 오버헤드를 줄이기 위하여 CSI-RS는 시간 축 상에서 간헐적으로 전송된다.
데이터 복조를 위해서 해당 시간-주파수 영역에서 스케줄링 된 UE에게 전용적(dedicated)으로 DMRS가 전송된다. 즉, 특정 UE의 DM-RS는 해당 UE가 스케줄링 된 영역, 즉 데이터를 수신 받는 시간-주파수 영역에만 전송되는 것이다.
LTE-A 시스템에서 eNB는 모든 안테나 포트에 대한 CSI-RS를 전송해야 한다. 최대 8개의 송신 안테나 포트에 대한 CSI-RS를 매 서브 프레임마다 전송하는 것은 오버헤드가 너무 큰 단점이 있으므로, CSI-RS는 매 서브 프레임마다 전송되지 않고 시간 축에서 간헐적으로 전송되어야 그 오버헤드를 줄일 수 있다. 즉, CSI-RS는 한 서브 프레임의 정수 배의 주기를 가지고 주기적으로 전송되거나 특정 전송 패턴으로 전송될 수 있다. 이 때 CSI-RS가 전송되는 주기나 패턴은 eNB가 설정할 수 있다.
CSI-RS를 측정하기 위해서 UE는 반드시 자신이 속한 셀의 각각의 CSI-RS 안테나 포트에 대한 CSI-RS의 전송 서브 프레임 인덱스, 전송 서브 프레임 내에서 CSI-RS 자원 요소(RE) 시간-주파수 위치, 그리고 CSI-RS 시퀀스 등에 대한 정보를 알고 있어야 한다.
LTE-A 시스템에 eNB는 CSI-RS를 최대 8개의 안테나 포트에 대해서 각각 전송해야 한다. 서로 다른 안테나 포트의 CSI-RS 전송을 위해 사용되는 자원은 서로 직교(orthogonal)해야 한다. 한 eNB가 서로 다른 안테나 포트에 대한 CSI-RS를 전송할 때 각각의 안테나 포트에 대한 CSI-RS를 서로 다른 RE에 맵핑함으로써 FDM/TDM방식으로 이들 자원을 orthogonal하게 할당할 수 있다. 또는 서로 다른 안테나 포트에 대한 CSI-RS를 서로 orthogonal한 코드에 맵핑시키는 CDM방식으로 전송할 수 있다.
CSI-RS에 관한 정보를 eNB가 자기 셀 UE에게 알려줄 때, 먼저 각 안테나 포트에 대한 CSI-RS가 매핑되는 시간-주파수에 대한 정보를 알려줘야 한다. 구체적으로, CSI-RS가 전송되는 서브 프레임 번호들, 또는 CSI-RS가 전송되는 주기, CSI-RS가 전송되는 서브 프레임 오프셋이며, 특정 안테나의 CSI-RS RE가 전송되는 OFDM 심볼 번호, 주파수 간격(spacing), 주파수 축에서의 RE의 오프셋 또는 쉬프트 값 등이 있다.
초 고주파 대역을 이용한 통신 시스템
LTE(Long Term Evolution)/LTE-A(LTE Advanced) 시스템에서는 단말과 기지국의 오실레이터의 오차값을 요구사항(requirement)로 규정하며, 아래와 같이 기술한다.
- UE side frequency error (in TS 36.101)
The UE modulated carrier frequency shall be accurate to within ±0.1 PPM observed over a period of one time slot (0.5 ms) compared to the carrier frequency received from the E-UTRA Node B
- eNB side frequency error (in TS 36.104)
Frequency error is the measure of the difference between the actual BS transmit frequency and the assigned frequency.
한편, 기지국의 종류에 따른 오실레이터 정확도는 아래의 표 3과 같다.
Figure PCTKR2018000491-appb-T000003
따라서, 기지국과 단말 간의 오실레이터의 최대 차이는 ±0.1ppm 으로, 한쪽 한쪽 방향으로 오차가 발생하였을 경우 최대 0.2ppm의 오프셋 값이 발생할 수 있다. 이러한 오프셋 값은 중심 주파수와 곱해짐으로써 각 중심 주파수에 맞는 Hz 단위로 변환된다.
한편, OFDM 시스템에서는 CFO 값이 주파수 톤 간격에 의해 다르게 나타나며, 일반적으로 큰 CFO 값이라 하더라도 주파수 톤 간격이 충분히 큰 OFDM 시스템에서 미치는 영향은 상대적으로 작다. 따라서, 실제 CFO 값(절대값)은 OFDM 시스템에 영향을 주는 상대적인 값으로 표현될 필요가 있으며, 이를 정규화된 CFO(normalized CFO)라 한다. 정규화된 CFO는 CFO 값을 주파수 톤 간격으로 나눈 값으로 표현되며, 아래의 표 4는 각 중심 주파수와 오실레이터의 오차 값에 대한 CFO와 정규화된 CFO를 나타낸다.
Figure PCTKR2018000491-appb-T000004
표 4에서 중심 주파수가 2GHz인 경우(예를 들어, LTE Rel-8/9/10)에는 주파수 톤 간격(15kHz)를 가정하였으며, 중심 주파수가 30GHz, 60GHz인 경우에는 주파수 톤 간격을 104.25kHz를 사용함으로써 각 중심 주파수에 대해 도플러 영향을 고려한 성능 열화를 방지하였다. 위의 표 2는 단순한 예시이며, 중심 주파수에 대해 다른 주파수 톤 간격이 사용될 수 있음은 자명하다.
한편, 단말이 고속으로 이동하는 상황이나 고주파수 대역에서 이동하는 상황에서는 도플러 분산(Doppler spread) 현상이 크게 발생한다. 도플러 분산은 주파수 영역에서의 분산을 유발하며, 결과적으로 수신기 입장에서 수신 신호의 왜곡을 발생시킨다. 도플러 분산은
Figure PCTKR2018000491-appb-I000011
로 표현될 수 있다. 이때, v는 단말의 이동 속도이며, λ는 전송되는 전파의 중심 주파수의 파장을 의미한다.
Figure PCTKR2018000491-appb-I000012
는 수신되는 전파와 단말의 이동 방향 사이의 각도를 의미한다. 이하에서는
Figure PCTKR2018000491-appb-I000013
가 0인 경우를 전제로 하여 설명한다.
이때, 코히어런스 타임(coherence time)은 도플러 분산과 반비례하는 관계에 있다. 만약, 코히어런스 타임을 시간 영역에서 채널 응답의 상관관계(correlation) 값이 50% 이상인 시간 간격으로 정의하는 경우,
Figure PCTKR2018000491-appb-I000014
로 표현된다. 무선 통신 시스템에서는 도플러 분산에 대한 수식과 코히어런스 타임에 대한 수식 간의 기하 평균(geometric mean)을 나타내는 아래의 수학식 4가 주로 이용된다.
Figure PCTKR2018000491-appb-M000004
도 6은 본 발명이 적용될 수 있는 mmWave를 사용하는 통신 시스템에서 이용되는 자원 영역 구조의 일 예를 나타낸다. mmWave와 같은 초고주파 대역을 이용하는 통신 시스템은 종래의 LTE/LTE-A 통신 시스템과는 물리적 성질이 다른 주파수 대역을 사용한다. 이에 따라, 초고주파 대역을 이용하는 통신 시스템에서는 종래 통신 시스템에서 이용되는 자원 영역의 구조와 다른 형태의 자원 구조가 논의되고 있다. 도 6은 새로운 통신 시스템의 하향링크 자원 구조의 예를 도시한다.
가로축으로 14개의 OFDM(Orthogonal Frequency Division Multiplexing) 심볼과 세로축으로 12개의 주파수 톤으로 구성되는 RB(Resource block) 쌍(RB pair)을 고려할 때, 첫 2개(또는 3개)의 OFDM 심볼(610)은 종래와 유사하게 제어채널(예를 들어, PDCCH(Physical Downlink Control Channel))에 할당되고, 다음 1개에서 2개의 OFDM 심볼(620)은 DMRS(DeModulation Reference Signal)이 할당되고, 나머지 OFDM 심볼(630)은 데이터채널(예를 들어, PDSCH(Physical Downlink Shared Channel))이 할당될 수 있다.
한편, 도 6과 같은 자원 영역 구조에서 앞서 설명한 CPE(또는, CFO) 추정을 위한 PCRS 또는 PNRS 또는 PTRS는 데이터채널이 할당되는 영역 630의 일부 RE(Resource Element)에 실려 단말로 전송될 수 있다. 이러한 신호는 위상 잡음을 추정 하기 위한 신호이며, 앞서 설명했듯이 파일럿 신호가 될 수도 있고 데이터 신호가 변경되거나 복제된 신호일 수도 있다.
본 발명은, 하향링크 또는 상향링크에 있어서 채널 추정을 위한 DMRS를 전송하는 방법을 제안한다.
도 7 및 도 8은 본 명세서에서 제안하는 복조 참조 신호의 패턴의 일 예를 나타낸다.
도 7 및 도 8을 참조하면, 채널을 추정하기 위한 복조 참조 신호는 안터나 포드의 수에 따라 한 개의 심볼 또는 두 개의 심볼에 매핑될 수 있다.
구체적으로, 상향링크 DMRS 및 하향링크 DMRS는 아래의 방법으로 생성되어 자원영역에 매핑될 수 있다. 도 7은 타입 1에 따라 물리 자원에 매핑된 상향링크 또는 하향링크 DMRS의 일 예를 도시하고, 도 8은 타입 2에 따라 물리 자원에 매핑된 상향링크 또는 하향링크 DMRS의 일 예를 도시한다.
Demodulation reference signal for PUSCH
하향링크 DMRS의 생성을 위한 참조 신호 시퀀스 r(m)은 PUSCH에 대한 변환 프리코딩(transform precoding)이 허용되지 않는 경우, 아래 수학식 5에 의해서 생성된다.
이때, PUSCH에 대한 변환 프리코딩(transform precoding)이 허용되지 않는 경우의 일 예로 CP-OFDM 방식의 송신신호를 생성하는 경우가 있을 수 있다.
Figure PCTKR2018000491-appb-M000005
여기서 c(i)는 의사 랜덤 시퀀스(the pseudo-random sequence)를 의미한다.
만약, PUSCH에 대한 변환 프리코딩(transform precoding)이 허용되는 경우, 참조 신호 시퀀스 r(m)은 아래 수학식 6에 의해서 생성된다.
이때, PUSCH에 대한 변환 프리코딩(transform precoding)이 허용되는 경우의 일 예로 DFT-S-OFDM 방식의 송신신호를 생성하는 경우가 있을 수 있다.
Figure PCTKR2018000491-appb-M000006
생성된 PUSCH의 DMRS는 도 7 및 도 8에 도시된 바와 상위 계층 파라미터에 의해서 주어진 타입 1 또는 타입 2에 따라 물리 자원에 매핑된다.
이때, DMRS는 안테나 포트의 개수에 따라 단일 심볼(single symbol) 또는 이중 심볼(double symbol)에 매핑될 수 있다.
만약, 변환 프리코딩이 허용되지 않는 경우, 참조 신호 시퀀스 r(m)은 아래 수학식 7에 의해서 물리 자원에 매핑될 수 있다.
Figure PCTKR2018000491-appb-M000007
상기 수학식 7에서 l은 PUSCH 전송의 시작에 상대적으로 정의되며
Figure PCTKR2018000491-appb-I000015
,
Figure PCTKR2018000491-appb-I000016
Figure PCTKR2018000491-appb-I000017
는 아래 표 5 및 표 6에 의해서 주어진다.
아래 표 5는 타입 1에 대한 PUSCH의 DMRS를 위한 파라미터들의 일 예를 나타낸다.
Figure PCTKR2018000491-appb-T000005
아래 표 6은 타입 2에 대한 PUSCH의 DMRS를 위한 파라미터들의 일 예를 나타낸다.
Figure PCTKR2018000491-appb-T000006
아래 표 7은 상위 계층 파라미터 UL_DMRS_dur에 따른 시간 영역 인덱스 l'와 지원되는 안테나 포트 p 의 일 예를 나타낸다.
Figure PCTKR2018000491-appb-T000007
아래 표 8은 PUSCH의 DMRS의 시작 위치
Figure PCTKR2018000491-appb-I000018
의 일 예를 나타낸다.
Figure PCTKR2018000491-appb-T000008
Demodulation reference signals for PDSCH
하향링크 DMRS의 생성을 위한 참조 신호 시퀀스 r(m)은 아래 수학식 8에 의해서 생성된다.
Figure PCTKR2018000491-appb-M000008
여기서 c(i)는 의사 랜덤 시퀀스(the pseudo-random sequence)를 의미한다.
생성된 PDSCH의 DMRS는 도 7 및 도 8에 도시된 바와 상위 계층 파라미터에 의해서 주어진 타입 1 또는 타입 2에 따라 물리 자원에 매핑된다.
이때, 참조 신호 시퀀스 r(m)은 아래 수학식 9에 의해서 물리 자원에 매핑될 수 있다.
Figure PCTKR2018000491-appb-M000009
상기 수학식 9에서 l은 슬롯의 시작에 상대적으로 정의되며,
Figure PCTKR2018000491-appb-I000019
,
Figure PCTKR2018000491-appb-I000020
Figure PCTKR2018000491-appb-I000021
는 아래 표 10 및 표 11에 의해서 주어진다.
시간 축 인덱스 l’ 및 지원하는 안테나 포트들 p는 아래 표 12에 따라 상위 계층 파라미터인 DL_DMRS_dur 에 따라 다르다.
Figure PCTKR2018000491-appb-I000022
값은 매핑 유형에 따라 표 13에서 주어진 상위 계층 매개 변수 DL_DMRS_add_pos에 따라 달라진다:
- PDSCH 매핑 유형 A에 대해: 상위 계층 파라미터 DL_DMRS_typeA_pos가 3과 같은 경우, l0=3이고, 그렇지 않으면 l0=2이다.
- PDSCH 매핑 유형 B에 대해: l0는 DMRS가 스케줄링된 PDSCH 자원 내의 첫 번째 OFDM 심볼에 매핑된다.
아래 표 9는 PDSCH의 DMRS 구성 타입 1에 대한 파라미터들의 일 예를 나타낸다.
Figure PCTKR2018000491-appb-T000009
아래 표 10은 PDSCH의 DMRS 구성 타입 2에 대한 파라미터들의 일 예를 나타낸다.
Figure PCTKR2018000491-appb-T000010
아래 표 11은 PDSCH DMRS의 Duration인 l’의 일 예를 나타낸다.
Figure PCTKR2018000491-appb-T000011
아래 표 12는 PDSCH의 DMRS의 시작 위치 의 일 예를 나타낸다.
Figure PCTKR2018000491-appb-T000012
위와 같이 OFDM 심볼 단위로 DMRS를 설정하는 경우, 빠른 디코딩 속도를 위해서 심볼 중에서 앞쪽 심볼에 DMRS를 설정하면 채널 보상에 문제점이 생길 수 있다.
즉, High Doppler 환경의 경우, 하나의 슬롯(또는, 서브 프레임) 내에서 채널 변화량이 크기 때문에 앞쪽 심볼에 설정된 DMRS만을 이용하여 적절한 채널 보상을 하기 어렵다.
따라서, 이러한 문제점을 해결하기 위해서 본 발명은 추가적인 DMRS를 설정하고, 설정된 DMRS들을 통해 채널 추정을 하여 데이터를 디코딩하는 방법을 제공한다.
또한, DMRS를 추가적으로 설정하여 전송하는 경우, DMRS의 시간 축 밀도(density)가 증가하게 되면 RS 오버헤드가 증가하는 문제점이 생긴다.
따라서, 이러한 RS 오버헤드를 줄이기 위해서 DMRS 및 추가적인 DMRS를 설정하는 방법을 제공한다.
이하, 본 발명에서 기본적으로 설정되는 DMRS를 제 1 DMRS 또는 front-loaded DMRS라 호칭하고, 추가적으로 설정되는 DMRS를 제 2 DMRS 또는 additional DMRS라 호칭한다.
도 9 내지 도 14는 본 명세서에서 제안하는 자원 영역에 매핑되는 복조 참조 신호의 밀도가 추가적인 복조 참조 신호의 밀도보다 큰 경우의 일 예를 나타낸다.
도 9 내지 도 14를 참조하면, front-loaded DMRS 외에 additional DMRS가 설정되는 경우, RS 오버헤드를 줄이기 위해서 additional DMRS의 주파수 밀도를 조절할 수 있다.
도 9는 additional DMRS와 front-loaded DMRS가 OFDM 심볼에 함께 매핑되는 경우, front-loaded DMRS의 주파수 밀도를 front-loaded DMRS만 매핑되는 경우와 동일하게 설정하고, additional DMRS의 주파수 밀도를 더 작게 설정하는 방법의 일 예를 나타낸다.
구체적으로, front-loaded DMRS외에 additional DMRS가 OFDM 심볼에 추가적으로 설정되는 경우, front-loaded DMRS의 주파수 축 밀도는 front-loaded DMRS만 설정되는 경우와 동일할 수 있다.
하지만, additional DMRS의 주파수 축 밀도도 front-loaded DMRS의 밀도와 동일하게 되면 DMRS의 개수 증가로 인하여 RS 오버헤드가 크게 증가할 수 있다.
따라서, front-loaded DMRS외에 추가적으로 OFDM 심볼에 additional DMRS를 설정하더라도 RS 오버헤드가 크게 증가하지 않도록 additional DMRS의 주파수 축 밀도를 front-loaded DMRS의 밀도보다 낮게 설정할 수 있다.
예를 들면, 도 9의 (a) 도시된 바와 같이, 안테나 포트 p0 및 p1에 대해서 세 번째 ODFM 심볼(l=2)에 front-loaded DMRS가 설정되는 경우, 도 9의 (b)에 도시된 바와 같이 추가 적인 additional DMRS가 9번째 OFDM 심볼(l=8)에 설정되더라도, front-loaded DMRS의 밀도는 변하지 않는다.
하지만, DMRS의 증가로 인한 RS 오버헤드를 감소시키기 위해서 도 9의 (b)에 도시된 바와 같이 9번째 OFDM 심볼에 설정된 additional DMRS는 주파수 축으로 front-loaded DMRS보다 저 밀도(sparse)로 설정될 수 있다.
즉, Additional DMRS를 사용하는 경우, front-loaded DMRS의 주파수 밀도(frequency density)는 front-loaded DMRS만 사용할 때의 주파수 밀도와 동일한 밀도로 설정하고, additional DMRS의 밀도는 저밀도로 설정한다.
이때, additional DMRS의 주파수 밀도에 대한 possible candidates는 기지국에서 단말로 RRC signaling을 통해 알려줄 수 있다. 그리고, 기지국에서 단말로 DCI signaling을 통해 특정 값을 알려줌으로써 해당 주파수를 구성하게 해줄 수 있다.
예를 들면, 도 10에 도시된 가능한 additional DMRS의 frequency density인 C1, C2, C3, C4 중 일부 또는 전체를 RRC signaling을 통해 단말에게 설정해준 뒤, DCI signaling을 통해 동적으로 실제 additional DMRS의 패턴을 설정해줄 수 있다.
이때, RRC signaling을 통해 가능한 additional DMRS의 패턴 중 일부 패턴을 설정하는 경우, DCI signaling에 필요한 signaling overhead가 줄어들 수 있다.
또는, 기지국이 RRC signaling을 통해 특정한 additional DMRS의 패턴을 단말로 알려주는 경우, 단말은 RRC signaling을 통해 구성한 특정 패턴에 기초하여 additional DMRS를 사용한다.
즉, RRC signaling을 통해서 기지국은 단말이 사용할 additional DMRS의 패턴을 알려줌으로써 DCI signaling으로 인한 signaling overhead를 없애고, higher layer signaling을 통해 additional DMRS의 패턴을 설정해 줄 수 있다.
또는, 송수신단은 기 설정된 패턴을 통해서 additional DMR를 설정할 수 있다. 예를 들면, 송수신단은 도 10에 도시된 additional DMRS의 패턴인 C1, C2, C3 및 C4 중 특정 패턴을 고정적으로 사용하도록 설정될 수 있다.
도 11은 additional DMRS의 주파수 밀도를 시간 밀도(time density)에 따라 설정하는 방법의 일 예를 나타낸다.
구체적으로, additional DMRS가 설정되는 경우, front-loaded DMRS의 주파수 밀도는 front-loaded DMRS만 설정되는 경우와 동일하지만, additional DMRS의 주파수 밀도는 additional DMRS가 설정되는 ODFM 심볼 수에 따라 달라질 수 있다.
예를 들면, 도 11에 도시된 바와 같이 안테나 포트 p0 및 p1에 대해서 세 번째 ODFM 심볼(l=2)에 front-loaded DMRS가 설정되는 경우, 도 11의 (b) 내지 (d)에 도시된 바와 같이 추가 적인 additional DMRS가 설정되더라도, front-loaded DMRS의 밀도는 변하지 않는다.
하지만, additional DMRS가 추가적으로 설정되는 경우, 도 11의 (b) 내지 (d)에 도시된 바와 같이 additional DMRS가 설정되는 ODFM 심볼 수에 따라 additional DMRS의 주파수 밀도가 달라질 수 있다.
구체적으로, Additional DMRS가 2개의 OFDM 심볼에 설정되는 경우, 1개의 OFDM 심볼에 설정되는 경우보다 더 낮은 밀도로 설정될 수 있다.
이때, 기지국은 RRC signaling 및/또는 DCI signaling을 통해 additional DMRS의 시간 밀도에 따라 결정되는 additional DMRS의 주파수 밀도를 단말에게 알려줄 수 있다.
예를 들면, additional DMRS가 설정되는 OFDM 심볼의 개수에 따른 additional DMRS의 밀도가 도 10에 도시된 바와 같은 경우, 기지국은 C1 내지 C4 중 하나의 설정 값을 RRC Signaling을 통해 단말에게 알려줄 수 있다.
아래 표 13은 RRC Signaling을 통해 기지국이 단말에게 알려주는 additional DMRS의 개수에 따른 주파수 밀도의 일 예를 나타낸 표이다.
Figure PCTKR2018000491-appb-T000013
기지국이 additional DMRS의 주파수 밀도를 DCI Signaling을 통해 설정하는 경우, 표 13 및 도 10의 C1 내지 C4 중 적어도 하나의 패턴을 RRC Signaling을 통해 단말에 설정하고, 복수의 패턴이 RRC signaling을 통해 설정된 경우에는 DCI Signaling을 통해서 단말이 설정된 패턴 중 하나를 사용하도록 지시할 수 있다.
예를 들면, 기지국은 RRC Signaling을 통해 additional DMRS의 패턴으로 패턴 C1 및 C2를 단말에 설정한 뒤, DCI Signaling의 1bit를 통해 C1 또는 C2 패턴을 additional DMRS의 패턴으로 사용하도록 단말에게 지시할 수 있다.
또는, 송수신단은 사전에 additional DMRS의 시간 밀도(또는 OFDM 심볼의 개수)에 따른 additional DMRS의 패턴이 설정되어 있을 수 있다.
아래 표 14는 송수신단에 기 설정된 Additional DMRS의 패턴의 일 예를 나타낸다.
Figure PCTKR2018000491-appb-T000014
도 12 내지 도 14는 additional DMRS의 주파수 밀도를 전송 레이어(layer)의 수에 따라 설정하는 방법의 일 예를 나타낸다.
구체적으로, 전송 레이어가 특정 값 보다 작은 경우, additional DMRS의 주파수 밀도는 front-loaded DMRS의 주파수 밀도와 동일하게 설정되고, 전송 레이어가 특정 값 보다 큰 경우, additional DMRS의 주파수 밀도는 front-loaded DMRS의 주파수 밀도보다 작게 설정될 수 있다.
예를 들면, 도 12의 (a)에 도시된 바와 같이 DMRS의 전송 레이어가 3보다 작은 경우, 9번째 OFDM 심볼(l=9)에 설정된 additional DMRS는 3번째 OFDM 심볼(l=2)에 설정된 front-loaded DMRS와 동일한 주파수 밀도로 설정된다.
하지만, 도 12의 (b)에 도시된 바와 같이 DMRS가 안테나 포트 p0 및 p1뿐만 아니라, P2 및 p3에서도 전송되어 전송 레이어가 3 이상인 경우, 9번째 OFDM 심볼(l=9)에 설정된 additional DMRS는 3번째 OFDM 심볼(l=2)에 설정된 front-loaded DMRS보다 낮은 주파수 밀도로 설정된다.
기지국은 주파수 밀도를 나타내는 설정 값, 및/또는 additional DMRS의 주파수 밀도가 변경되는 레이어의 개수를 나타내는 전송 레이어 정보를 RRC Signaling 및/또는 DCI Signaling을 통해 단말로 전송할 수 있다.
도 13은 기지국은 주파수 밀도를 나타내는 설정 값, 및/또는 additional DMRS의 주파수 밀도가 변경되는 레이어의 개수를 나타내는 전송 레이어 정보를 RRC Signaling을 통해 설정하기 위한 방법의 일 예를 나타낸다.
예를 들면, 설정 값이 도 10의 ‘C3’이고, 전송 레이어 정보가 ‘5’인 경우, 기지국은 단말에게 설정 값 및 레이어 정보를 포함하는 RRC Signaling을 통해서 단말에게 전송할 수 있다.
단말은 기지국으로부터 전송된 RRC Signaling을 통해서 전송 레이어에 따라 사용되는 additional DMRS의 주파수 밀도를 알 수 있다.
만약, 전송 레이어가 5보다 작은 경우, 9번째(l=8), 및 10번째(l=9) OFDM 심볼에 설정되는 additional DMRS는 도 13의 (a)에 도시된 바와 같이 3번째(l=2) 및 4번째(l=3) OFDM 심볼에 설정되는 front-loaded DMRS와 동일한 주파수 밀도로 설정될 수 있다.
하지만, 전송 레이어가 5보다 큰 경우, 9번째(l=8), 및 10번째(l=9) OFDM 심볼에 설정되는 additional DMRS는 도 13의 (b)에 도시된 바와 같이 3번째(l=2) 및 4번째(l=3) OFDM 심볼에 설정되는 front-loaded DMRS보다 낮은 주파수 밀도로 설정될 수 있다.
예를 들면, 도 10에서 RRC signaling을 통해 ‘C3’으로 설정될 수 있다.
또는, 단말은 기지국으로부터 전송된 DCI을 통해서 전송 레이어에 따라 사용되는 additional DMRS의 주파수 밀도를 알 수 있다.
즉, 기지국은 RRC Signaling을 통해 사용 가능한 additional DMRS의 패턴들을 나타내는 설정 값 및 레이어 정보를 전송하여 additional DMRS의 주파수 축 패턴을 설정할 수 있다.
이후, 기지국은 DCI Signaling을 통해서 단말이 특정 개수 이상의 레이어에서 특정한 DMRS 패턴을 사용하도록 지시할 수 있다.
예를 들면, 기지국이 단말에게 RRC Signaling을 통해서 도 10의 C1 및 C2를 나타내는 설정 값 및 ‘3’의 값을 갖는 레이어 정보를 전송하여 단말의 additional DMRS의 주파수 패턴을 설정할 수 있다.
이후, 기지국은 단말에게 DCI Signaling을 통해서 additional DMRS의 패턴으로 C1 또는 C2를 사용하도록 지시할 수 있다. 도 14의 (a)는 도 10의 ‘C2’ 패턴을 사용하는 일 예를 나타내고, (b)는 도 10의 ‘C3’ 패턴을 사용하는 일 예를 나타낸다.
또는, 송수신단은 사전에 설정된 설정 값 및/또는 레이어 정보를 통해서 additional DMRS의 패턴 및 밀도를 설정할 수 있다.
도 15 및 도 16은 본 명세서에서 제안하는 자원 영역에 매핑되는 복조 참조 신호의 밀도가 추가적인 복조 참조 신호의 밀도와 같거나 더 큰 경우의 일 예를 나타낸다.
도 15 및 도 16을 참조하면, front-loaded DMRS 외에 additional DMRS가 설정되는 경우, RS 오버헤드를 줄이기 위해서 front-loaded DMRS 및/또는 additional DMRS의 density를 조절할 수 있다.
구체적으로, additional DMRS와 front-loaded DMRS가 OFDM 심볼에 함께 매핑되는 경우, DMRS의 개수 증가로 인하여 RS 오버헤드가 크게 증가할 수 있다.
따라서, RS 오버헤드를 줄이기 위해서 front-loaded DMRS 및 additional DMRS의 주파수 밀도를 front-loaded DMRS만 매핑되는 경우보다 낮게 설정될 수 있다.
이 경우, additional DMRS의 주파수 밀도는 front-loaded DMRS의 주파수 밀도와 동일하거나 더 작을 수 있다.
예를 들면, 도 15의 (a) 도시된 바와 같이, 안테나 포트 p0 및 p1에 대해서 세 번째 ODFM 심볼(l=2)에 front-loaded DMRS가 설정되는 경우, 도 15의 (b)에 도시된 바와 같이 추가 적인 additional DMRS가 9번째 OFDM 심볼(l=8)에 설정되면, front-loaded DMRS의 밀도는 도 15의 (a)보다 작게 설정된다.
또한, additional DMRS의 주파수 밀도도 도 15의 (a)에 도시된 front-loaded DMRS의 주파수 밀도보다 저 밀도로 설정된다.
기지국은 front-loaded DMRS의 주파수 밀도를 나타내는 제1 설정 값, 및/또는 additional DMRS의 주파수 밀도를 나타내는 제2 설정 값을 RRC Signaling 및/또는 DCI Signaling을 통해 단말로 전송할 수 있다.
기지국이 RRC Signaling을 통해서 제1 설정 값 및 제2 설정 값을 단말에게 전송하는 경우, 단말은 수신된 제1 설정 값 및 제2 설정 값에 기초하여 front-loaded DMRS 및 additional DMRS를 설정할 수 있다.
DCI Signaling을 통해서 front-loaded DMRS 및 additional DMRS의 밀도를 설정하는 경우, 기지국은 front-loaded DMRS 및 additional DMRS의 주파수 밀도에 대한 possible candidates는 기지국에서 단말로 RRC signaling을 통해 알려줄 수 있다. 그리고, 기지국에서 단말로 DCI signaling을 통해 특정 값을 알려줌으로써 해당 주파수를 구성하게 해줄 수 있다.
아래 표 15는 도 10에 따른 front-loaded DMRS 및 additional DMRS의 possible candidates의 일 예를 나타낸 표이다.
Figure PCTKR2018000491-appb-T000015
예를 들면, 기지국은 표 15 및 도10의 C1 내지 C4 중 적어도 하나의 패턴을 RRC Signaling을 통해 단말에게 전송한다. 이후, 기지국은 적어도 하나의 패턴 중 특정 패턴을 front-loaded DMRS 및/또는 additional DMRS의 주파수 밀도로 설정하고자 하는 경우, 단말로 DCI Signaling을 전송하여 특정 패턴을 front-loaded DMRS 및/또는 additional DMRS의 주파수 패턴으로 사용하라고 지시할 수 있다.
아래 표 16은 DCI Signaling을 통해서 additional DMRS의 수에 따라 서로 다른 주파수 패턴을 설정하는 일 예를 나타낸다.
Figure PCTKR2018000491-appb-T000016
도 16의 (a)는 front-loaded DMRS만 설정된 경우의 일 예를 나타내고, (b) 내지 (d)는 front-loaded DMRS뿐만 아니라 additional DMRS가 추가적으로 설정된 경우의 일 예를 나타낸다.
도 16의 (b) 내지 (d)에 도시된 바와 같이, front-loaded DMRS뿐만 아니라 additional DMRS가 추가적으로 설정된 경우, front-loaded DMRS만 설정된 도 16의 (a)보다 front-loaded DMRS의 주파수 밀도가 저 밀도로 설정될 수 있다.
또한, additional DMRS가 설정된 OFDM 심볼의 수에 따라 front-loaded DMRS 및 Additional DMRS의 주파수 밀도가 다르게 설정될 수 있다.
즉, additional DMRS가 설정된 OFDM 심볼의 개수가 증가할수록 RS 오버헤드를 감소시키기 위해서 front-loaded DMRS 및 additional DMRS의 주파수 밀도가 저 밀도로 설정될 수 있다.
또는, 송수신단은 사전에 설정된 제1 설정 값 및/또는 제2 설정 값을 통해서 front-loaded DMRS 및 additional DMRS의 패턴 및 밀도를 설정할 수 있다.
이 경우, 제2 설정 값은 도 14 및 표 15에서 설명한 방법이 적용될 수 있다.
또한, 제1 설정 값 및 제2 설정 값은 front-loaded DMRS 및 additional DMRS의 패턴에 따라 동일하거나 서로 다른 패턴을 나타낼 수 있다.
또한, 제1 설정 값은 additional DMRS의 시간 밀도와 연관되어 설정될 수 있다. 즉, additional DMRS가 설정된 OFDM 심볼 수에 따라 제1 설정 값이 결정될 수 있다.
또는, 제1 설정 값 및/또는 제2 설정 값은 전송 레이어의 수에 따라 결정될 수 있다.
도 17 내지 도 19는 본 명세서에서 제안하는 자원 영역에 매핑되는 복조 참조 신호의 밀도가 추가적인 복조 참조 신호의 밀도보다 작은 경우의 일 예를 나타낸다.
도 17 내지 도 19를 참조하면, front-loaded DMRS 외에 additional DMRS가 설정되는 경우, additional DMRS의 주파수 밀도를 front-loaded DMRS의 주파수 밀도보다 고 밀도로 설정할 수 있다.
구체적으로, front-loaded DMRS가 OFDM 심볼에 저 밀도로 설정되어 있는 경우, large delay spread 채널 환경에서는 채널 추정 성능이 낮을 수 있다. 따라서, large delay spread 채널 환경에서 채널 추정 성능을 향상 시키기 위해서 additional DMRS와 front-loaded DMRS가 OFDM 심볼에 함께 매핑되는 경우, front-loaded DMRS의 주파수 밀도를 front-loaded DMRS만 매핑되는 경우와 동일하게 설정하고, additional DMRS의 주파수 밀도를 front-loaded DMRS의 주파수 밀도보다 고 밀도로 설정할 수 있다.
예를 들면, 도 17의 (a) 도시된 바와 같이, 안테나 포트 p0 및 p1에 대해서 세 번째 ODFM 심볼(l=2)에 front-loaded DMRS가 저 밀도로 설정되는 경우, 도 17의 (b)에 도시된 바와 같이 추가 적인 additional DMRS가 9번째 OFDM 심볼(l=8)에 front-loaded DMRS의 주파수 밀도보다 고 밀도로 설정될 수 있다.
이때, additional DMRS의 주파수 밀도에 대한 possible candidates는 기지국에서 단말로 RRC signaling을 통해 알려줄 수 있다. 그리고, 기지국에서 단말로 DCI signaling을 통해 특정 값을 알려줌으로써 해당 주파수를 구성하게 해줄 수 있다.
예를 들면, 도 18에 도시된 가능한 additional DMRS의 frequency density인 C1, C2, 중 일부 또는 전체를 RRC signaling을 통해 단말에게 설정해준 뒤, DCI signaling을 통해 동적으로 실제 additional DMRS의 패턴을 설정해줄 수 있다.
이때, RRC signaling을 통해 가능한 additional DMRS의 패턴 중 일부 패턴을 설정하는 경우, DCI signaling에 필요한 signaling overhead가 줄어들 수 있다.
또는, 기지국이 RRC signaling을 통해 특정한 additional DMRS의 패턴을 단말로 알려주는 경우, 단말은 RRC signaling을 통해 구성한 특정 패턴에 기초하여 additional DMRS를 사용한다.
즉, RRC signaling을 통해서 기지국은 단말이 사용할 additional DMRS의 패턴을 알려줌으로써 DCI signaling으로 인한 signaling overhead를 없애고, higher layer signaling을 통해 additional DMRS의 패턴을 설정해 줄 수 있다.
또는, 송수신단은 기 설정된 패턴을 통해서 additional DMR를 설정할 수 있다. 예를 들면, 송수신단은 도 10에 도시된 additional DMRS의 패턴인 C1, 및 C2 중 특정 패턴을 고정적으로 사용하도록 설정될 수 있다.
도 19의 (a)는 ‘C1’의 패턴에 따라 additional DMRS가 설정된 경우의 일 예를 나타내고, (b)는 ‘C2’의 패턴에 따라 additional DMRS가 설정된 경우의 일 예를 나타낸다.
도 7 내지 도 19에서 설명한 front-loaded DMRS 및 additional DMRS의 주파수 밀도를 설정하는 방법은 하향링크뿐만 아니라 상향링크에서도 적용될 수 있다.
도 20은 본 명세서에서 제안하는 추가적인 복조 참조 신호를 설정하기 위한 방법의 일 예를 나타낸다.
시간축으로 변화하는 채널을 추정하기 위해서는 도 20의 (a) 및 (b)에 도시된 바와 같이 front-load DMRS 뿐만 아니라 front-load DMRS와 동일한 pattern을 가지는 DMRS를 시간 축 상에 추가적으로 설정할 필요성이 있다.
도 20의 (a)는 1개의 ODFM 심볼에 설정된 front-loaded DMRS 및 additional DMRS의 일 예를 도시하고, (b)는 2개의 OFDM 심볼에 설정된 front-loaded DMRS 및 additional DMRS의 일 예를 도시한다.
하지만, 빠른 속도로 이동하는 UE (e.g. 500km/h)의 채널 추정을 지원하기 위해서는 많은 수의 추가적인 DMRS가 필요하지만, 이러한 많은 수의 추가적인 DMRS는 앞에서 살펴본 바와 같이 RS 오버헤드를 크게 증가시키게 된다.
따라서, 이하, RS 오버헤드를 낮게 유지하면서 DMRS의 시간 축 밀도를 증가시킬 수 있는 방법을 제안한다.
도 21 내지 도 23는 본 명세서에서 제안하는 복조 참조 신호 및 추가적인 복조 참조 신호를 설정하기 위한 방법의 일 예를 나타낸다.
도 21 내지 도 23을 참조하면, DMRS의 시간 밀도를 증가시키고 주파수 밀도를 감소 시킴으로써, DMRS의 시간 축 상의 밀도 증가로 인한 RS 오버헤드의 증가를 방지할 수 있다.
구체적으로, 기지국이 Front-load DMRS뿐만 아니라 additional DMRS를 설정하는 경우에, 기지국은 동일한 DMRS pattern을 갖는 주파수 축 단위를 나타내는 제1 패턴 정보 및 동일한 DMRS 패턴 그룹(same DMRS pattern group, 이하, SPG라 한다.) 간 DMRS의 시간 축 간격을 나타내는 제2 패턴 정보를 단말에게 전송한다.
이때, 제1 패턴 정보 및 제2 패턴 정보는 상위 계층 signaling(e.g. RRC and/or MAC CE) 및/또는 DCI signaling를 통해 단말에게 전송될 수 있다.
기지국은 SPG 내에서 front-load DMRS 및 additional DMRS는 각각 동일 OFDM symbol에 위치하도록 설정한다. 그리고 SPG 간 DMRS는 서로 제2 패턴 정보가 나타내는 OFDM symbol 간격을 두고 위치하도록 설정한다.
도 21의 (a)는 제1 패턴 정보가 ‘12’로, 제2 패턴 정보가 ‘0’으로 설정된 경우의 일 예로, front-loaded DMRS 및 addition DMRS가 하나의 심볼에 설정된 경우와 동일하다.
도 21의 (b)는 제1 패턴 정보가 ‘2’로, 제2 패턴 정보가 ‘3’으로 설정된 경우의 일 예를 나타낸다. 도 21의 (b)와 (a)를 비교하면 (a)와 (b)는 동일한 RS 오버헤드를 갖지만, (b)가 시간 축으로 더 많은 DMRS가 설정된다.
따라서, 도 21의 (b)와 같이 front-loaded DMRS 및 addition DMRS가 설정될 경우, 단말은 도 21의 (a)와 같이 front-loaded DMRS 및 addition DMRS가 설정된 경우보다 더 많은 채널 추정을 위한 샘플 값을 획득할 수 있다.
도 21의 (c)는 제1 패턴 정보가 ‘4’로, 제2 패턴 정보가 ‘3’으로 설정된 경우의 일 예를 나타낸다. 이 경우, 2개의 front-loaded DMRS 및 addition DMRS가 하나의 심볼에 설정된 경우와 RS 오버헤드는 동일하지만 앞에서 설명한 바와 같이 단말은 채널 추정을 효율적으로 수행할 수 있다.
이와 같은 방법을 통해서 동일한 RS overhead를 유지하면서, 시간축으로 DMRS density를 증가시켜 시변 채널에서 채널 추정 성능을 향상 시킬 수 있다.
또한, 두 SPG 간의 DMRS 간격을 기지국이 단말에게 설정해줄 수 있기 때문에, 다양한 slot 구조에서 두 SPG간 DMRS의 간격을 유동적으로 설정할 수 있다.
본 발명의 또 다른 실시 예로 기지국은 제1 패턴 정보 및 제2 패턴 정보를 통해서 front-loaded DMRS 및 additional DMRS를 설정할 때, 슬롯의 구조를 고려하여 설정할 수 있다.
예를 들면, 도 22에 도시된 바와 같이 다운링크 데이터의 전송을 위한 슬롯에 보호구간(guard period) 또는 업 링크 채널이 설정된 경우, front-loaded DMRS 및 additional DMRS의 SPG 간 DMRS의 간격은 이를 고려하여 설정될 수 있다.
또는, front-loaded DMRS 및 additional DMRS는 다른 참조신호와의 다중화를 고려하여 설정될 수 있다.
구체적으로, 기지국은 CSI-RS등과 같은 참조신호와의 다중화를 고려하여 다른 참조 신호의 패턴과 다중화될 수 있도록 제1 패턴 정보를 조절하여 front-loaded DMRS 및 additional DMRS를 설정할 수 있다.
예를 들면, 도 23의 (a) 및 (b)에 도시된 바와 같이 CSI-RS가 설정되는 경우, 안테나 포트 p0, p1, p2 및 p3의 front-loaded DMRS 및 additional DMRS는 CSI-RS와의 다중화를 고려하여 설정될 수 있다.
제1 패턴 정보, 제 2 패턴 정보 및 SPG의 구성은 동일한 프리코딩 매트릭스가 적용되는 자원 블록 그룹(resource block group: PRG)간에 동일하게 설정될 수 있다.
서로 다른 프리코딩 매트릭스가 적용되는 자원 블록 그룹(resource block group: PRG)간에는 서로 다른 프리코딩 매트릭스가 설정될 수 있기 때문에, 채널 추정과정에서 PRG간 interpolation이 이루어지지 않는다.
이 경우, 본 명세서에서 살펴본 채널 추정과정에서 시간영역으로 채널 추정 샘플을 증가시키는 방법을 통해서 채널 interpolation 성능을 향상시킬 수 있다.
따라서, 서로 다른 PRG 간에 채널 interpolation을 수행하지 않을 것이기 때문에, 서로 다른 PRG 간에는 동일한 제1 패턴 정보, 제2 패턴 정보의 설정 값 및 SPG의 구성을 설정할 수 있다.
도 24 내지 도 28은 본 명세서에서 제안하는 복조 참조 신호 및 추가적인 복조 참조 신호를 시간 영역에서 이동(Shifting)시키기 위한 방법의 일 예를 나타낸다.
도 24 내지 도 28을 참조하면, 추가적인 DMRS의 전송으로 인한 RS 오버헤드를 줄이기 위해서, 추가적인 DMRS의 OFDM 심볼 위치를 특정 간격으로 다르게 설정할 수 있다.
구체적으로, 기지국은 front-loaded DMRS외에 additional DMRS를 OFDM 심볼에 매핑하는 경우, additional DMRS의 전송으로 인한 채널 추정 효과를 증가시키고, RS 오버헤드를 줄이기 위해서 additional DMRS가 매핑되는 OFDM 심볼의 위치를 자원 블록 레벨마다 다르게 설정할 수 있다.
즉, additional DMRS의 시간 밀도는 증가시키고 RS 오버헤드의 증가는 최소화하기 위해서 기지국은 additional DMRS의 위치를 자원 블록 단위로 이동시킬 수 있다.
기지국은 additional DMRS의 위치를 자원 블록 레벨에 따라 이동하는 경우, 상위 계층 signaling(e.g. RRC and/or MAC CE) 및/또는 DCI signaling을 통해 additional DMRS의 이동(shifting)이 적용되었는지 여부를 단말에게 알릴 수 있다.
즉, additional DMRS의 이동을 상위 계층 signaling(e.g. RRC and/or MAC CE) 및/또는 DCI signaling을 통해 단말에 설정할 수 있다.
단말은 상위 계층 signaling 및/또는 DCI signaling을 통해서 additional DMRS의 이동이 적용되었는지 여부를 알 수 있으며, additional DMRS의 이동이 적용된 경우, 단말은 RB 레벨에 따라 서로 다른 위치의 자원 요소(resource element)에서 DMRS를 수신할 수 있다.
도 24는 상위 계층 signaling을 통해서 특정 RB 레벨마다 additional DMRS의 OFDM 심볼의 위치가 4개의 OFDM 심볼만큼 이동되어 설정되는 경우의 일 예를 도시한다.
상위 계층 signaling을 통해 additional DMRS의 이동이 설정되어 even RB의 additional DMRS의 위치가 제1 위치인 경우, odd RB의 additional DMRS의 위치는 제1 위치에서 특정 OFDM 심볼만큼 이동된 제2 위치로 설정된다.
예를 들면, 도 24에서 제1 위치가 8번째 OFDM 심볼(l=7)인 경우, 제2 위치는 12번째 OFDM 심볼(l=11)가 된다.
이 경우, additional DMRS의 이동 여부는 DCI의 1bit 정보를 통해서 유동적으로 단말에게 설정될 수 있다.
또는, 기지국은 상위 계층 signaling(e.g. RRC and/or MAC CE) 및/또는 DCI signaling을 통해 additional DMRS의 위치를 단말에게 설정해줄 수 있다. 이때, even RB의 additional DMRS의 위치를 나타내는 제1 위치 정보 및 odd RB의 additional DMRS의 위치를 나타내는 제2 위치 정보를 단말에게 전송함으로써 단말에게 additional DMRS의 위치를 설정해줄 수 있다.
도 25는 RB 단위마다 매핑 가능한 additional DMRS의 위치의 일 예를 나타낸다.
도 25의 (a)는 additional DMRS가 8번째 OFDM 심볼(l=7)에 설정된 경우의 일 예를 나타내고, 도 25의 (b)는 additional DMRS가 10번째 OFDM 심볼(l=9)에 설정된 경우의 일 예를 나타낸다.
도 25의 (c)는 additional DMRS가 12번째 OFDM 심볼(l=11)에 설정된 경우의 일 예를 나타낸다.
기지국은 도 25의 (a) 내지 (c) 중 하나를 나타내는 제1 위치 정보 및 제2 위치 정보를 단말로 전송하고, 단말은 전송된 제1 위치 정보 및 제2 위치 정보에 기초하여 additional DMRS의 위치를 설정할 수 있다.
예를 들면, 제1 위치 정보가 도 25의 (b)를 나타내고, 제2 위치 정보가 도 25의 (c)를 나타내는 경우, additional DMRS는 도 26과 같이 설정될 수 있다.
도 27은 특정 PRB 단위마다 additional DMRS 뿐만 아니라 front-loaded DMRS의 위치도 이동시키는 방법의 일 예를 나타낸다.
기지국은 특정 조건을 만족하여 front-loaded DMRS외에 additional DMRS가 추가적으로 설정되는 경우, RS 오버헤드의 증가를 방지하기 위해서 front-loaded DMRS 및 additional DMRS의 슬롯내의 OFDM 심볼 위치가 특정 PRB 마다 이동되도록 설정할 수 있다.
도 27은 1 PRB마다 front-loaded DMRS 및 additional DMRS의 슬롯내의 OFDM 심볼 위치가 변경되는 방법의 일 예를 나타낸다.
이 경우, front-loaded DMRS 및 additional DMRS의 위치가 이동되는 PRB 단위를 나타내는 PRB 정보는 아래와 같은 방법을 통해서 암시적 또는 명시적으로 단말에게 signaling될 수 있다.
암시적 signaling: 단말은 front-loaded DMRS 및 additional DMRS의 OFDM 심볼 위치 설정과 관련된 적어도 하나의 파라미터(예를 들면, 단말에게 할당된 대역폭(bandwidth:BW))에 기초하여 PRB 정보를 인식할 수 있다. 또는 송/수신단에서 기 설정된 값을 이용하여 PRB 정보를 인식할 수 있다.
명시적 signaling: 기지국은 PRB 정보를 상위계층 signaling 및/또는 DCI signaling을 통해 단말에게 전송할 수 있다.
기지국은 front-loaded DMRS 및 additional DMRS의 위치가 이동되는 것의 적용 여부를 상위계층 signaling 및/또는 DCI signaling을 통해 단말에게 알려줄 수 있다.
또는, front-loaded DMRS 및 additional DMRS의 위치의 이동이 특정 조건에서 적용되도록 기지국과 단말 사이에 해당 동작을 사전에 정의할 수 있다.
이때, 특정 조건은 DMRS의 시간 축 도메인 밀도가 ‘x’이상 및/또는 안테나 포트의 수가 ‘y’이상인 경우일 수 있다.
기지국은 특정 조건 및 PRB 정보를 단말에게 전송할 수 있으며, 단말은 수신된 특정 조건 및 PRB 정보에 기초하여 특정 조건을 만족하는 경우, 안테나 포트마다 DMRS가 전송되는 위치를 인식할 수 있다.
도 24 내지 도 27에서 설명한 방법은 front-loaded DMRS가 하나의 OFDM 심볼에 설정되는 경우를 예로 들어 설명하였지만, front-loaded DMRS가 두 개의 OFDM 심볼에 설정되는 경우에도 적용될 수 있다.
본 발명의 또 다른 실시 예로 도 28에 도시된 바와 같이 특정 PRB 단위로 front-loaded DMRS 또는 additional DMRS를 온/오프 할 수 있다.
기지국은 특정 조건을 만족하여 front-loaded DMRS외에 additional DMRS가 추가적으로 설정되는 경우, RS 오버헤드의 증가를 방지하기 위해서 front-loaded DMRS 및 additional DMRS를 특정 PRB 마다 온/오프되도록 설정할 수 있다.
도 28은 1 PRB마다 각각 2개의 OFDM 심볼에 설정된 front-loaded DMRS 또는 additional DMRS가 온/오프되는 방법의 일 예를 나타낸다.
이 경우, front-loaded DMRS 및 additional DMRS가 활성화 또는 비활성화(또는, 온 또는 오프)되는 PRB 단위를 나타내는 PRB 정보는 앞에서 설명한 방법과 동일한 방법을 통해 암시적 또는 명시적으로 단말에게 signaling될 수 있다.
또한, 기지국은 front-loaded DMRS 및 additional DMRS가 활성화 또는 비활성화(또는, 온 또는 오프)되는 특정 조건을 상위계층 signaling 및/또는 DCI signaling을 통해 단말에게 알려줄 수 있다.
이때, 특정 조건은 DMRS의 시간 축 도메인 밀도가 ‘x’이상 및/또는 안테나 포트의 수가 ‘y’이상인 경우일 수 있다.
기지국은 특정 조건 및 PRB 정보를 단말에게 전송할 수 있으며, 단말은 수신된 특정 조건 및 PRB 정보에 기초하여 특정 조건을 만족하는 경우, 안테나 포트마다 DMRS가 전송되는 위치를 인식할 수 있다.
또는, 기지국은 front-loaded DMRS 및 additional DMRS가 활성화 또는 비활성화 되는 동작의 적용 여부를 상위계층 signaling 및/또는 DCI signaling을 통해 단말에게 알려줄 수 있다.
또는, front-loaded DMRS 및 additional DMRS가 활성화 또는 비활성화 되는 동작이 특정 조건에서 적용되도록 기지국과 단말 사이에 해당 동작을 사전에 정의할 수 있다.
도 20 내지 도 28에서 설명한 front-loaded DMRS 및 additional DMRS의 위치를 설정하는 방법은 하향링크뿐만 아니라 상향링크에서도 적용될 수 있다.
도 29은 본 명세서에서 제안하는 복조 참조 신호의 다중화 방법의 일 예를 나타낸다.
도 29를 참조하면, DMRS의 시퀀스가 서로 다른 DMRS들을 다중화 할 수 있으며, TD-OCC를 통해 서로 다른 waveform간에 orthogonal한 분리를 할 수 있다.
구체적으로, front-loaded DMRS 및 additional DMRS는 업링크 또는 다운 링크 waveform에 따라 각각 DMRS sequence가 다를 수 있다. 예를 들면, CP-OFDM의 경우 PN sequence가 이용되고, DFT-S-OFDM의 경우 ZC sequence가 이용될 수 있다.
이 경우, 서로 다른 sequence가 적용된 DMRS간에 다중화가 고려될 수 있으며, 서로 다른 sequence가 적용된 DMRS가 다중화된 경우, TD-OCC를 이용하여 서로 다른 waveform간에 orthogonal한 분리가 가능할 수 있다.
즉, 서로 다른 waveform간에 orthogonal한 분리를 위해서 DMRS sequence를 OFDM 심볼 단위로 정의하고, 모든 DMRS 심볼(또는, front-load DMRS 및/또는 additional DMRS의 경우)은 동일한 sequence를 이용한다.
DMRS sequence와 TD-OCC를 이용해 시간영역으로 서로 다른 waveform의 DMRS를 분리한다.
예를 들면, 도 29에서 a, b 는 각각 PN sequence, ZC sequence를 base로 OFDM 심볼 단위로 생성된 DMRS sequence를 의미함.
심볼 단위로 동일한 RS sequence를 사용하므로, 두 waveform에 쓰이는 sequence는 서로 다르지만 TD-OCC를 통해 두 DMRS를 orthogonal하게 분리할 수 있다.
도 30는 본 명세서에서 제안하는 복조 참조 신호의 패턴을 설정하는 방법의 일 예를 나타낸다.
구체적으로, DFT-S-OFDM을 위한 DMRS pattern으로 Comb 1, Comb 2 등 Comb을 이용하는 IFDM 형태를 사용할 수 있다.
이 경우, 기지국은 단말에게 실제 DMRS 전송을 위해 사용할 자원에 대한 indication을 전송해야 한다. 하지만, CP-OFDM과 달리, DFT-S-OFDM은 one port transmission으로 제한될 수 있다.
maximum port가 1로 제한되는 경우, 1 port를 전송할 수 있는 DMRS 자원은 여러 가지 형태로 정의될 수 있다. 예를 들면, 다른 waveform 사이 또는 같은 DFT-S-OFDM 단말 간의 multiplexing을 고려하여 정의될 수 있다.
이때, 기지국은 DFT-S-OFDM DMRS pattern을 resource 형태로 정의할 수 있으며, MU가 적용되는 경우, orthogonal(e.g. through FDM, TDM, CDM)하게 전송될 수 있도록 적절한 resource를 DFT-S-OFDM 단말에게 할당할 수 있다.
예를 들면, 도 30에 도시된 바와 같이 기지국은 DFT-S-OFDM의 DMRS pattern을 resource 형태로 정의하고, 해당 정보를 구성하여 단말에게 알려준다.
DMRS resource의 예: frequency offset(FO), time offset(TO), CS index, time domain sequence(e.g. for TD-OCC), Comb type(e.g. Comb 1, Comb 2)
도 7 내지 도 30에서 설명한 발명은 하향링크 DMRS에 기초하여 설명하였지만, 상향링크 DMRS에도 적용될 수 있음은 자명하다.
도 31은 본 명세서에서 제안하는 복조 참조 신호 및 추가적인 복조 참조 신호를 생성하여 전송하는 방법의 일 예를 나타낸 순서도이다.
도 31을 참조하면, 기지국은 의사 랜덤 시퀀스에 기초하여 복조 참조 신호를 생성한다(S31010). 이때, 복조 참조 신호는 앞에서 살펴본 front-loaded DMRS 및/또는 additional DMRS일 수 있다.
이후, 기지국은 생성된 복조 참조 신호 시퀀스를 전송 프리코딩에 따라 자원 요소에 매핑한다(S31020). 이때, 기지국은 특정 패턴에 따라 생성된 복조 참조 신호 시퀀스를 자원요소에 매핑할 수 있으며, 특정 패턴은 도 7 내지 도 30에서 설명한 패턴 중 하나일 수 있다.
이후, 기지국은 특정 안테나 포트를 이용해서 특정 자원 영역에서 매핑된 복조 참조 신호를 적어도 하나의 단말에게 전송할 수 있다(S31030).
도 32는 본 명세서에서 제안하는 복조 참조 신호 및 추가적인 복조 참조 신호를 전송 받아 데이터를 디코딩하는 방법의 일 예를 나타낸 순서도이다.
구체적으로, 단말은 특정 패턴에 따라 설정된 제 1 복조 참조 신호(Demodulation Reference Signal: DMRS) 및 제 2 복조 참조 신호를 DMRS 심볼을 통해 기지국으로부터 수신한다(S32010). 이때, 특정 패턴은 도 7 내지 도 30에서 설명한 패턴 중 하나일 수 있다.
이때, 제 1 복조 참조 신호 및 제 2 복조 참조 신호 각각은 특정 안테나 포트 상에서 전송되며, 다른 안테나 포트 상에서 전송되는 적어도 하나의 다른 복조 참조 신호와 동일한 시간 축 심볼 상에 위치할 수 있다.
또한, 상기 제 2 복조 참조 신호의 시간 축 심볼의 위치는 전송되는 데이터의 서비스 타입에 따라 결정될 수 있다.
이후, 단말은 수신된 제 1 복조 참조 신호 또는 제 2 복조 참조 신호 중 적어도 하나를 이용하여 채널 추정을 하고, 추정된 채널을 통해서 데이터를 수신하여 디코딩할 수 있다(S32020).
도 33은 본 발명이 적용될 수 있는 무선 장치의 내부 블록도의 일 예를 나타낸 도이다.
여기서, 상기 무선 장치는 기지국 및 단말일 수 있으며, 기지국은 매크로 기지국 및 스몰 기지국을 모두 포함한다.
상기 도 33에 도시된 바와 같이, 기지국(3310) 및 UE(3320)는 통신부(송수신부, RF 유닛, 3313, 3323), 프로세서(3311, 3321) 및 메모리(3312, 3322)를 포함한다.
이외에도 상기 기지국 및 UE는 입력부 및 출력부를 더 포함할 수 있다.
상기 통신부(3313, 3323), 프로세서(3311, 3321), 입력부, 출력부 및 메모리(3312, 3322)는 본 명세서에서 제안하는 방법을 수행하기 위해 기능적으로 연결되어 있다.
통신부(송수신부 또는 RF유닛, 3313,3323)는 PHY 프로토콜(Physical Layer Protocol)로부터 만들어진 정보를 수신하면, 수신한 정보를 RF 스펙트럼(Radio-Frequency Spectrum)으로 옮기고, 필터링(Filtering), 증폭(Amplification) 등을 수행하여 안테나로 송신한다. 또한, 통신부는 안테나에서 수신되는 RF 신호(Radio Frequency Signal)을 PHY 프로토콜에서 처리 가능한 대역으로 옮기고, 필터링을 수행하는 기능을 한다.
그리고, 통신부는 이러한 송신과 수신 기능을 전환하기 위한 스위치(Switch) 기능도 포함할 수 있다.
프로세서(3311,3321)는 본 명세서에서 제안된 기능, 과정 및/또는 방법을 구현한다. 무선 인터페이스 프로토콜의 계층들은 프로세서에 의해 구현될 수 있다.
상기 프로세서는 제어부, controller, 제어 유닛, 컴퓨터 등으로 표현될 수도 있다.
메모리(3312,3322)는 프로세서와 연결되어, 상향링크 자원 할당 방법을 수행하기 위한 프로토콜이나 파라미터를 저장한다.
프로세서(3311,3321)는 ASIC(application-specific integrated circuit), 다른 칩셋, 논리 회로 및/또는 데이터 처리 장치를 포함할 수 있다. 메모리는 ROM(read-only memory), RAM(random access memory), 플래쉬 메모리, 메모리 카드, 저장 매체 및/또는 다른 저장 장치를 포함할 수 있다. 통신부는 무선 신호를 처리하기 위한 베이스밴드 회로를 포함할 수 있다. 실시 예가 소프트웨어로 구현될 때, 상술한 기법은 상술한 기능을 수행하는 모듈(과정, 기능 등)로 구현될 수 있다.
모듈은 메모리에 저장되고, 프로세서에 의해 실행될 수 있다. 메모리는 프로세서 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서와 연결될 수 있다.
출력부(디스플레이부 또는 표시부)는 프로세서에 의해 제어되며, 키 입력부에서 발생되는 키 입력 신호 및 프로세서로부터의 각종 정보 신호와 함께, 상기 프로세서에서 출력되는 정보들을 출력한다.
나아가, 설명의 편의를 위하여 각 도면을 나누어 설명하였으나, 각 도면에 서술되어 있는 실시 예들을 병합하여 새로운 실시 예를 구현하도록 설계하는 것도 가능하다. 그리고, 당업자의 필요에 따라, 이전에 설명된 실시 예들을 실행하기 위한 프로그램이 기록되어 있는 컴퓨터에서 판독 가능한 기록 매체를 설계하는 것도 본 발명의 권리범위에 속한다.
본 명세서에 따른 방법은 상기한 바와 같이 설명된 실시 예들의 구성과 방법이 한정되게 적용될 수 있는 것이 아니라, 상기 실시 예들은 다양한 변형이 이루어질 수 있도록 각 실시 예들의 전부 또는 일부가 선택적으로 조합되어 구성될 수도 있다.
한편, 본 명세서에 기재된 방법은 네트워크 디바이스에 구비된 프로세서가 읽을 수 있는 기록매체에 프로세서가 읽을 수 있는 코드로서 구현하는 것이 가능하다. 프로세서가 읽을 수 있는 기록매체는 프로세서에 의해 읽혀질 수 있는 데이터가 저장되는 모든 종류의 기록장치를 포함한다. 프로세서가 읽을 수 있는 기록 매체의 예로는 ROM, RAM, CD-ROM, 자기 테이프, 플로피디스크, 광 데이터 저장장치 등이 있으며, 또한, 인터넷을 통한 전송 등과 같은 캐리어 웨이브의 형태로 구현되는 것도 포함한다. 또한, 프로세서가 읽을 수 있는 기록매체는 네트워크로 연결된 컴퓨터 시스템에 분산되어, 분산방식으로 프로세서가 읽을 수 있는 코드가 저장되고 실행될 수 있다.
또한, 이상에서는 본 명세서의 바람직한 실시 예에 대하여 도시하고 설명하였지만, 본 명세서는 상술한 특정의 실시 예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변형실시가 가능한 것은 물론이고, 이러한 변형실시들은 본 발명의 기술적 사상이나 전망으로부터 개별적으로 이해돼서는 안 될 것이다.
그리고, 당해 명세서에서는 물건 발명과 방법 발명이 모두 설명되고 있으며, 필요에 따라 양 발명의 설명은 보충적으로 적용될 수가 있다.
본 발명의 무선 통신 시스템에서 참조 신호를 송수신하기 위한 방법은 3GPP LTE/LTE-A 시스템에 적용되는 예를 중심으로 설명하였으나, 3GPP LTE/LTE-A 시스템 이외에도 다양한 무선 통신 시스템에 적용하는 것이 가능하다.

Claims (12)

  1. 무선 통신 시스템에서 단말이 디코딩(Decoding)을 수행하는 방법에 있어서,
    특정 패턴에 따라 설정된 제 1 복조 참조 신호(Demodulation Reference Signal: DMRS) 및 제 2 복조 참조 신호를 DMRS 심볼을 통해 기지국으로부터 수신하는 단계,
    상기 제 1 복조 참조 신호 및 상기 제 2 복조 참조 신호 각각은 특정 안테나 포트 상에서 전송되며, 다른 안테나 포트 상에서 전송되는 적어도 하나의 다른 복조 참조 신호와 동일한 시간 축 심볼 상에 위치하고,
    상기 제 2 복조 참조 신호의 시간 축 심볼의 위치는 전송되는 데이터의 서비스 타입에 따라 결정되며; 및
    상기 제 1 복조 참조 신호 또는 상기 제 2 복조 참조 신호 중 적어도 하나를 이용하여 상기 데이터를 디코딩하는 단계를 포함하는 방법.
  2. 제 1 항에 있어서,
    특정 조건을 만족하는 경우, 상기 제 1 복조 참조 신호 또는 상기 제 2 복조 참조신호 중 적어도 하나의 시간 축 심볼 위치는 특정 물리 자원 블록(Physical Resource Block: PRB) 단위로 이동되는 방법.
  3. 제 2 항에 있어서,
    상기 특정 조건은 상기 서비스 타입에 따라 요구되는 복조 참조 신호의 개수가 제 1 개수 이상 또는 상기 복조 참조 신호가 전송되는 안테나 포트의 개수가 제 2 개수 이상 중 적어도 하나인 방법.
  4. 제 2 항에 있어서,
    상기 특정 물리 자원 블록(Physical Resource Block: PRB) 단위는 상기 단말에게 할당된 대역폭(Band width)에 따라 결정되는 방법.
  5. 제 2 항에 있어서,
    상기 특정 물리 자원 블록 단위를 나타내는 제어 정보를 기지국으로부터 수신하는 단계를 더 포함하는 방법.
  6. 제 1 항에 있어서,
    상기 제 1 복조 참조 신호 또는 상기 제 2 복조 참조 신호는 특정 물리 자원 블록 마다 오프(OFF)되는 방법.
  7. 무선 통신 시스템에서 디코딩(Decoding)을 수행하는 단말에 있어서,
    외부와 무선 신호를 송신 및 수신하는 무선 유닛(Radio Frequency Unit); 및
    상기 통신부와 기능적으로 결합되어 있는 프로세서를 포함하되, 상기 프로세서는,
    특정 패턴에 따라 설정된 제 1 복조 참조 신호(Demodulation Reference Signal: DMRS) 및 제 2 복조 참조 신호를 DMRS 심볼을 통해 기지국으로부터 수신하되,
    상기 제 1 복조 참조 신호 및 상기 제 2 복조 참조 신호 각각은 특정 안테나 포트 상에서 전송되며, 다른 안테나 포트 상에서 전송되는 적어도 하나의 다른 복조 참조 신호와 동일한 시간 축 심볼 상에 위치하고,
    상기 제 2 복조 참조 신호의 시간 축 심볼의 위치는 전송되는 데이터의 서비스 타입에 따라 결정되며,
    상기 제 1 복조 참조 신호 또는 상기 제 2 복조 참조 신호 중 적어도 하나를 이용하여 상기 데이터를 디코딩하는 단말.
  8. 제 7 항에 있어서,
    특정 조건을 만족하는 경우, 상기 제 1 복조 참조 신호 또는 상기 제 2 복조 참조신호 중 적어도 하나의 시간 축 심볼 위치는 특정 물리 자원 블록(Physical Resource Block: PRB) 단위로 이동되는 단말.
  9. 제 8 항에 있어서,
    상기 특정 조건은 상기 서비스 타입에 따라 요구되는 복조 참조 신호의 개수가 제 1 개수 이상 또는 상기 복조 참조 신호가 전송되는 안테나 포트의 개수가 제 2 개수 이상 중 적어도 하나인 단말.
  10. 제 8 항에 있어서,
    상기 특정 물리 자원 블록(Physical Resource Block: PRB) 단위는 상기 단말에게 할당된 대역폭(Band width)에 따라 결정되는 단말.
  11. 제 8 항에 있어서, 상기 프로세서는,
    상기 특정 물리 자원 블록 단위를 나타내는 제어 정보를 기지국으로부터 수신하는 단말.
  12. 제 7 항에 있어서,
    상기 제 1 복조 참조 신호 또는 상기 제 2 복조 참조 신호는 특정 물리 자원 블록 마다 오프(OFF)되는 단말.
PCT/KR2018/000491 2017-03-25 2018-01-10 무선 통신 시스템에서 참조 신호를 송수신하기 위한 방법 및 이를 위한 장치 WO2018182150A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201880027133.4A CN110754056B (zh) 2017-03-25 2018-01-10 在无线通信系统中发送和接收参考信号的方法及其设备
KR1020197029168A KR102312230B1 (ko) 2017-03-25 2018-01-10 무선 통신 시스템에서 참조 신호를 송수신하기 위한 방법 및 이를 위한 장치
EP18777211.6A EP3651398B1 (en) 2017-03-25 2018-01-10 Method for transmitting and receiving reference signal in wireless communication system and device therefor
US16/497,780 US11108517B2 (en) 2017-03-25 2018-01-10 Method for transmitting and receiving reference signal in wireless communication system and device therefor
JP2019552870A JP7079262B2 (ja) 2017-03-25 2018-01-10 無線通信システムにおいて参照信号を送受信するための方法及びそのための装置

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US201762476735P 2017-03-25 2017-03-25
US62/476,735 2017-03-25
US201762479390P 2017-03-31 2017-03-31
US62/479,390 2017-03-31
US201762520698P 2017-06-16 2017-06-16
US62/520,698 2017-06-16
US201762523796P 2017-06-23 2017-06-23
US62/523,796 2017-06-23

Publications (1)

Publication Number Publication Date
WO2018182150A1 true WO2018182150A1 (ko) 2018-10-04

Family

ID=63677612

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/000491 WO2018182150A1 (ko) 2017-03-25 2018-01-10 무선 통신 시스템에서 참조 신호를 송수신하기 위한 방법 및 이를 위한 장치

Country Status (6)

Country Link
US (1) US11108517B2 (ko)
EP (1) EP3651398B1 (ko)
JP (1) JP7079262B2 (ko)
KR (1) KR102312230B1 (ko)
CN (1) CN110754056B (ko)
WO (1) WO2018182150A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111742513A (zh) * 2019-01-24 2020-10-02 联发科技(新加坡)私人有限公司 用于移动通信中的用户设备处理时间轴增强的方法和装置
WO2020237555A1 (en) * 2019-05-30 2020-12-03 Qualcomm Incorporated Phase tracking for user equipment paging
JP7461969B2 (ja) 2019-05-02 2024-04-04 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 送受信処理を実行するユーザ装置及び基地局

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102383906B1 (ko) * 2017-02-28 2022-04-08 삼성전자 주식회사 무선 셀룰라 통신 시스템에서 제어 및 데이터 신호의 사용자 구분 방법 및 장치
WO2018229956A1 (ja) * 2017-06-15 2018-12-20 株式会社Nttドコモ ユーザ端末及び無線通信方法
EP3662584A4 (en) * 2017-08-03 2020-08-05 Nec Corporation METHODS AND DEVICES FOR REFERENCE SIGNAL CONFIGURATION
AU2018442195A1 (en) * 2018-09-21 2021-05-06 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Wireless communication method, transmitting node and receiving node
US11637730B2 (en) * 2020-01-17 2023-04-25 Qualcomm Incorporated Controlling a reference signal pattern based on doppler parameters
CN112237044B (zh) * 2020-09-18 2023-10-10 北京小米移动软件有限公司 资源映射方法、装置、设备及可读存储介质
WO2022149267A1 (ja) * 2021-01-08 2022-07-14 株式会社Nttドコモ 無線基地局及び端末
US11901983B1 (en) * 2021-03-17 2024-02-13 T-Mobile Innovations Llc Selectively assigning uplink transmission layers
EP4393119A1 (en) * 2021-08-25 2024-07-03 Telefonaktiebolaget LM Ericsson (publ) Network node, user equipment and methods in a wireless communications network

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2978272A1 (en) * 2013-03-18 2016-01-27 Sharp Kabushiki Kaisha Base station, terminal, communication system, communication method and integrated circuit
KR101604686B1 (ko) * 2008-09-26 2016-03-18 엘지전자 주식회사 다중안테나를 갖는 무선 통신 시스템에서 레퍼런스 신호를 상향 전송하는 방법
WO2016142862A1 (en) * 2015-03-09 2016-09-15 Telefonaktiebolaget L M Ericsson (Publ) Dmrs with shortened scheduling
WO2016148789A1 (en) * 2015-03-13 2016-09-22 Qualcomm Incorporated Dmrs based dl for low latency
US20170041172A1 (en) * 2012-09-28 2017-02-09 Telefonaktiebolaget Lm Ericsson (Publ) Methods reducing antenna port interference for epdcch and related systems, devices, and networks

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105141402A (zh) * 2009-02-08 2015-12-09 Lg电子株式会社 在无线移动通信系统中发送终端解调的参考信号的方法以及实现该方法的装置
CN104081707B (zh) * 2012-01-13 2017-02-15 华为技术有限公司 用于生成和传输解调参考信号的方法
KR20140132336A (ko) * 2012-01-16 2014-11-17 엘지전자 주식회사 무선 통신 시스템에서 복조참조신호 전송 방법 및 장치
CN108111291B (zh) * 2013-01-25 2021-08-20 华为技术有限公司 解调参考信号传输装置和计算机可读存储介质
US10644849B2 (en) * 2017-03-23 2020-05-05 Innovative Technology Lab Co., Ltd. Method and apparatus for transmitting and receiving demodulation reference signal

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101604686B1 (ko) * 2008-09-26 2016-03-18 엘지전자 주식회사 다중안테나를 갖는 무선 통신 시스템에서 레퍼런스 신호를 상향 전송하는 방법
US20170041172A1 (en) * 2012-09-28 2017-02-09 Telefonaktiebolaget Lm Ericsson (Publ) Methods reducing antenna port interference for epdcch and related systems, devices, and networks
EP2978272A1 (en) * 2013-03-18 2016-01-27 Sharp Kabushiki Kaisha Base station, terminal, communication system, communication method and integrated circuit
WO2016142862A1 (en) * 2015-03-09 2016-09-15 Telefonaktiebolaget L M Ericsson (Publ) Dmrs with shortened scheduling
WO2016148789A1 (en) * 2015-03-13 2016-09-22 Qualcomm Incorporated Dmrs based dl for low latency

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3651398A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111742513A (zh) * 2019-01-24 2020-10-02 联发科技(新加坡)私人有限公司 用于移动通信中的用户设备处理时间轴增强的方法和装置
CN111742513B (zh) * 2019-01-24 2023-10-24 联发科技(新加坡)私人有限公司 用于移动通信中的用户设备处理时间轴增强的方法和装置
JP7461969B2 (ja) 2019-05-02 2024-04-04 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 送受信処理を実行するユーザ装置及び基地局
WO2020237555A1 (en) * 2019-05-30 2020-12-03 Qualcomm Incorporated Phase tracking for user equipment paging

Also Published As

Publication number Publication date
JP7079262B2 (ja) 2022-06-01
CN110754056B (zh) 2022-04-22
JP2020516155A (ja) 2020-05-28
CN110754056A (zh) 2020-02-04
KR20190120371A (ko) 2019-10-23
EP3651398A1 (en) 2020-05-13
US20210105110A1 (en) 2021-04-08
EP3651398B1 (en) 2023-06-07
KR102312230B1 (ko) 2021-10-14
US11108517B2 (en) 2021-08-31
EP3651398A4 (en) 2020-12-16

Similar Documents

Publication Publication Date Title
WO2018225927A1 (ko) 무선 통신 시스템에서 참조 신호를 송수신하기 위한 방법 및 이를 위한 장치
WO2018182150A1 (ko) 무선 통신 시스템에서 참조 신호를 송수신하기 위한 방법 및 이를 위한 장치
WO2018203592A1 (ko) 무선 통신 시스템에서 참조 신호를 송수신하기 위한 방법 및 이를 위한 장치
WO2017200315A1 (ko) 무선 통신 시스템에서 위상 잡음을 추정하기 위한 방법 및 이를 위한 장치
WO2018174546A1 (ko) 무선 통신 시스템에서 단말과 기지국 간 물리 상향링크 제어 채널 송수신 방법 및 이를 지원하는 장치
WO2018182358A1 (ko) 무선 통신 시스템에서 참조 신호를 송수신하기 위한 방법 및 이를 위한 장치
WO2018084661A1 (ko) 무선 통신 시스템에서 단말과 기지국 간 물리 상향링크 제어 채널 송수신 방법 및 이를 지원하는 장치
WO2018143537A1 (ko) 무선 통신 시스템에서 위상 잡음을 추정하기 위한 방법 및 이를 위한 장치
WO2017213326A1 (ko) 무선 통신 시스템에서 위상 잡음 보상 참조 신호를 송수신하기 위한 방법 및 이를 위한 장치
WO2018128399A1 (ko) 무선 통신 시스템에서, 참조 신호를 전송하는 방법 및 이를 위한 장치
WO2019088787A1 (ko) 무선 통신 시스템에서 다수의 슬롯 기반 긴 pucch를 송수신하기 위한 방법 및 이를 위한 장치
WO2017146342A1 (ko) 협대역 iot를 지원하는 무선 통신 시스템에서 시스템 정보를 수신하는 방법 및 이를 위한 장치
WO2018182248A1 (ko) 무선 통신 시스템에서 단말의 위상 트래킹 참조 신호 수신 방법 및 이를 지원하는 장치
WO2018182256A1 (ko) 무선 통신 시스템에서의 채널 상태 정보 보고 방법 및 이를 위한 장치
WO2018174649A1 (ko) 무선 통신 시스템에서 데이터를 송수신하는 방법 및 이를 위한 장치
WO2017135674A1 (ko) 면허 및 비면허 대역을 지원하는 네트워크에서 통신 방법
WO2018225935A1 (ko) 무선 통신 시스템에서 참조 신호를 송수신하기 위한 방법 및 이를 위한 장치
WO2016048055A1 (ko) 하향링크 제어 채널을 수신하는 방법 및 mtc 기기
WO2019194545A1 (ko) 무선 통신 시스템에서 임의 접속 프리앰블을 송수신하기 위한 방법 및 이를 위한 장치
WO2015182970A1 (ko) 탐색 신호 측정 수행 방법 및 사용자 장치
WO2019190236A1 (ko) 무선 통신 시스템에서 사운딩 참조 신호(srs)를 전송하는 방법 및 이를 위한 장치
WO2016175486A1 (ko) 하향링크 제어 채널을 수신하는 방법 및 lc 기기
WO2015163645A1 (ko) 무선 통신 시스템에서의 사운딩 참조 신호 전송 방법 및 단말
WO2016018125A1 (ko) 비면허대역을 지원하는 무선접속시스템에서 전송 기회 구간을 설정하는 방법 및 장치
WO2018151565A1 (ko) 협대역 사물 인터넷을 지원하는 무선 통신 시스템에서 단말과 기지국 간 신호 송수신 방법 및 이를 지원하는 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18777211

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019552870

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197029168

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018777211

Country of ref document: EP

Effective date: 20191025