WO2020223976A1 - 无线通信方法、终端设备和网络设备 - Google Patents

无线通信方法、终端设备和网络设备 Download PDF

Info

Publication number
WO2020223976A1
WO2020223976A1 PCT/CN2019/086287 CN2019086287W WO2020223976A1 WO 2020223976 A1 WO2020223976 A1 WO 2020223976A1 CN 2019086287 W CN2019086287 W CN 2019086287W WO 2020223976 A1 WO2020223976 A1 WO 2020223976A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
rule
network device
terminal device
data
Prior art date
Application number
PCT/CN2019/086287
Other languages
English (en)
French (fr)
Inventor
徐婧
林亚男
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to CN201980019824.4A priority Critical patent/CN112219419B/zh
Priority to PCT/CN2019/086287 priority patent/WO2020223976A1/zh
Priority to EP19928093.4A priority patent/EP3955629B1/en
Priority to JP2021566594A priority patent/JP2022537252A/ja
Publication of WO2020223976A1 publication Critical patent/WO2020223976A1/zh
Priority to US17/522,586 priority patent/US20220070892A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames

Definitions

  • the embodiments of the present application relate to the field of communication, and more specifically, to wireless communication methods, terminal devices, and network devices.
  • PUSCH Physical Uplink Shared Channel
  • Each time slot can have one or more There are two PUSCHs, and the time domain resources where the PUSCH is located can be different, for example, the PUSCH time domain resources can be laid out across time slots.
  • one PUSCH may be split into two or more PUSCHs, for example, one PUSCH will split into two independent PUSCHs across time slots.
  • the size of the time domain resources occupied by the PUSCH after the PUSCH split is different, it will have a certain impact on data transmission. Therefore, how to send data on the split PUSCH is a technical problem to be solved urgently.
  • the embodiments of the present application provide a wireless communication method, terminal equipment, and network equipment, which can realize the combination and/or discard of channel resources after splitting.
  • Reference signal mapping and data transmission block mapping can be performed according to different channel resource assumptions. It can not only improve system efficiency, avoid waste of resources, but also avoid DMRS and data collision, which affects normal data demodulation.
  • a wireless communication method which includes:
  • the terminal device determines a first channel to which at least one data transport block (TB) is mapped, where the first channel is obtained by combining at least two second channels;
  • the terminal device transmits the at least one data TB on the first channel.
  • a wireless communication method in a second aspect, includes:
  • the network device determines a first channel to which at least one data TB is mapped, where the first channel is obtained by combining at least two second channels;
  • the network device transmits the at least one data TB on the first channel.
  • a terminal device which is used to execute the method in the foregoing first aspect or each of its implementation manners.
  • the terminal device includes a functional module for executing the method in the foregoing first aspect or each implementation manner thereof.
  • a network device configured to execute the method in the second aspect or its implementation manners.
  • the network device includes a functional module for executing the method in the foregoing second aspect or each implementation manner thereof.
  • a terminal device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the method in the above-mentioned first aspect or each of its implementation modes.
  • a network device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the method in the above-mentioned second aspect or each of its implementation modes.
  • a device for implementing any one of the first aspect to the second aspect or the method in each implementation manner thereof.
  • the device includes: a processor, configured to call and run a computer program from the memory, so that the device installed with the device executes any one of the above-mentioned first aspect to the second aspect or any of its implementation modes method.
  • a computer-readable storage medium for storing a computer program that enables a computer to execute any one of the first aspect to the second aspect or the method in each implementation manner thereof.
  • a computer program product which includes computer program instructions that cause a computer to execute any one of the above-mentioned first aspect to the second aspect or the method in each implementation manner thereof.
  • a computer program which when running on a computer, causes the computer to execute any one of the above-mentioned first aspect to the second aspect or the method in each implementation manner thereof.
  • the terminal device can transmit at least one data TB on the first channel obtained by combining at least two second channels, thereby improving system efficiency and avoiding resource waste.
  • the network device can transmit at least one data TB on the first channel obtained by combining at least two second channels, thereby improving system efficiency and avoiding resource waste.
  • Fig. 1 is a schematic diagram of a communication system architecture provided by an embodiment of the present application.
  • Fig. 2 is a schematic diagram of PUSCH repeated splitting provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of another PUSCH repeated splitting provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of repeated PUSCH discarding provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of mutual interference between data and DMRS after repeated PUSCH concatenation according to an embodiment of the present application.
  • Fig. 6 is a schematic flowchart of a wireless communication method according to an embodiment of the present application.
  • Fig. 7 is a schematic diagram of time-domain resources for PUSCH repetition provided according to an embodiment of the present application.
  • Fig. 8 is a schematic diagram of another PUSCH repeated time domain resource provided according to an embodiment of the present application.
  • Fig. 9 is a schematic diagram of pilot alignment among multiple UEs according to an embodiment of the present application.
  • Fig. 10 is a schematic diagram of another PUSCH repeated time domain resource provided according to an embodiment of the present application.
  • FIG. 11 is a schematic diagram of another PUSCH repeated time domain resource provided by an embodiment of the present application.
  • Fig. 12 is another schematic diagram of pilot alignment among multiple UEs according to an embodiment of the present application.
  • FIG. 13 is a schematic diagram of another PUSCH repeated time domain resource provided according to an embodiment of the present application.
  • FIG. 14 is a schematic diagram of another PUSCH repeated time domain resource provided according to an embodiment of the present application.
  • Fig. 15 is a schematic flowchart of another wireless communication method provided according to an embodiment of the present application.
  • Fig. 16 is a schematic block diagram of a terminal device according to an embodiment of the present application.
  • Fig. 17 is a schematic block diagram of a network device according to an embodiment of the present application.
  • Fig. 18 is a schematic block diagram of a communication device according to an embodiment of the present application.
  • Fig. 19 is a schematic block diagram of an apparatus according to an embodiment of the present application.
  • Fig. 20 is a schematic block diagram of a communication system according to an embodiment of the present application.
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Advanced Long Term Evolution
  • New Radio, NR evolution system of NR system
  • LTE LTE-based access to unlicensed spectrum
  • LTE-U Universal Mobile Telecommunication System
  • UMTS Universal Mobile Telecommunication System
  • WLAN Wireless Local Area Networks
  • WiFi Wireless Fidelity
  • D2D Device to Device
  • M2M Machine to Machine
  • MTC machine type communication
  • V2V vehicle to vehicle
  • the communication system in the embodiments of the present application can be applied to a carrier aggregation (Carrier Aggregation, CA) scenario, can also be applied to a dual connectivity (DC) scenario, and can also be applied to a standalone (SA) deployment.
  • CA Carrier Aggregation
  • DC dual connectivity
  • SA standalone
  • the embodiment of this application does not limit the applied spectrum.
  • the embodiments of this application can be applied to licensed spectrum or unlicensed spectrum.
  • the communication system 100 applied in the embodiment of the present application is shown in FIG. 1.
  • the communication system 100 may include a network device 110, and the network device 110 may be a device that communicates with a terminal device 120 (or called a communication terminal or terminal).
  • the network device 110 may provide communication coverage for a specific geographic area, and may communicate with terminal devices located in the coverage area.
  • Figure 1 exemplarily shows one network device and two terminal devices.
  • the communication system 100 may include multiple network devices and the coverage of each network device may include other numbers of terminal devices. The embodiment does not limit this.
  • the communication system 100 may also include other network entities such as a network controller and a mobility management entity, which are not limited in the embodiment of the present application.
  • network entities such as a network controller and a mobility management entity, which are not limited in the embodiment of the present application.
  • the devices with communication functions in the network/system in the embodiments of the present application may be referred to as communication devices.
  • the communication device may include a network device 110 and a terminal device 120 with communication functions, and the network device 110 and the terminal device 120 may be the specific devices described above, which will not be repeated here.
  • the communication device may also include other devices in the communication system 100, such as other network entities such as a network controller and a mobility management entity, which are not limited in this embodiment of the application.
  • terminal equipment may also be called User Equipment (UE), access terminal, subscriber unit, user station, mobile station, mobile station, and remote Station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device, etc.
  • UE User Equipment
  • access terminal subscriber unit
  • subscriber unit user station
  • mobile station mobile station
  • mobile station mobile station
  • remote Station remote terminal
  • mobile device user terminal
  • terminal wireless communication device
  • user agent or user device etc.
  • the terminal equipment can be a station (STAION, ST) in a WLAN, a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, and a personal digital processing (Personal Digital Assistant, PDA) devices, handheld devices with wireless communication functions, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, and next-generation communication systems, such as terminal devices in the NR network or Terminal equipment in the future evolved Public Land Mobile Network (PLMN) network.
  • STAION, ST station
  • WLAN Wireless Local Loop
  • PDA Personal Digital Assistant
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices. It is a general term for the application of wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is directly worn on the body or integrated into the user's clothes or accessories. Wearable devices are not only a hardware device, but also realize powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-sized, complete or partial functions that can be achieved without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, and need to cooperate with other devices such as smart phones.
  • a network device can be a device used to communicate with a mobile device.
  • the network device can be an access point (AP) in WLAN, a base station (BTS) in GSM or CDMA, or a device in WCDMA
  • a base station (NodeB, NB) can also be an Evolutional Node B (eNB or eNodeB) in LTE, or a relay station or access point, or a vehicle-mounted device, a wearable device, and a network device or base station in the NR network ( gNB) or network equipment in the future evolved PLMN network.
  • AP access point
  • BTS base station
  • NB can also be an Evolutional Node B (eNB or eNodeB) in LTE, or a relay station or access point, or a vehicle-mounted device, a wearable device, and a network device or base station in the NR network (gNB) or network equipment in the future evolved PLMN network.
  • gNB NR network
  • the network equipment provides services for the cell, and the terminal equipment communicates with the network equipment through the transmission resources (for example, frequency domain resources, or spectrum resources) used by the cell.
  • the cell may be a network equipment (for example, The cell corresponding to the base station.
  • the cell can belong to a macro base station or a base station corresponding to a small cell.
  • the small cell here can include: Metro cell, Micro cell, Pico Cells, Femto cells, etc. These small cells have the characteristics of small coverage and low transmit power, and are suitable for providing high-rate data transmission services.
  • NR Rel 16 enhances PUSCH repetition and relaxes some restrictions. That is, there can be one or more PUSCHs in each time slot, and the time domain resources where PUSCHs are located can be different, as shown in Figure 2 and Figure 3. Show. Figure 2 contains the case where PUSCH spans time slots, and Figure 3 contains the case where multiple PUSCHs are included in one time slot. Since there are no more restrictions on application scenarios, data can be dispatched in real time, thereby reducing data transmission delay.
  • D represents the downlink symbol in the time slot
  • F represents the flexible symbol in the time slot
  • U represents the uplink symbol in the time slot.
  • a PUSCH when the restriction is relaxed, a PUSCH will split into two or more PUSCHs. As shown in Figure 2, when a PUSCH is split into two independent PUSCHs across time slots, that is, independent transport blocks (TB) are transmitted. As shown in Figure 3, when a PUSCH encounters downlink and flexible resources, it will be split automatically, and the split two PUSCHs transmit independent TBs.
  • TB transport blocks
  • PUSCH repetitions with a short duration may be formed, and these PUSCH repetitions are too short to achieve effective transmission.
  • one way is to not send the short PUSCH repetition, which will cause a waste of resources, as shown in Figure 4.
  • Another way is to connect a short PUSCH repetition with an adjacent PUSCH repetition to form a new long PUSCH repetition, which will cause the DMRS to be misaligned and interfere with the DMRS detection performance, as shown in Figure 5.
  • this application proposes a PUSCH repetition cascade and drop combination method.
  • DMRS mapping and TB mapping are performed according to different PUSCH repetition resource assumptions, which can improve system efficiency, avoid resource waste, and avoid DMRS and Data collision affects normal data demodulation.
  • FIG. 6 is a schematic flowchart of a wireless communication method 200 according to an embodiment of the present application. As shown in FIG. 6, the method 200 may include some or all of the following contents:
  • the terminal device determines a first channel to which at least one data TB is mapped, where the first channel is obtained by combining at least two second channels;
  • the terminal device transmits the at least one data TB on the first channel.
  • the first channel mapped by at least one data TB that is, the data TB is mapped according to the combined channel.
  • the channel described in the embodiment of the present application includes an uplink channel and/or a downlink channel. That is, the first channel may be an uplink channel or a downlink channel.
  • the second channel may be an uplink channel or a downlink channel.
  • first channel and the second channel are the same type of channel, that is, the first channel and the second channel are both downlink channels, or the first channel and the second channel are both uplink channels. channel.
  • the uplink channel is PUSCH or physical uplink control channel (Physical Uplink Control Channel, PUCCH).
  • PUCCH Physical Uplink Control Channel
  • the downlink channel is a physical downlink shared channel (Physical Downlink Shared Channel, PDSCH) or a physical downlink control channel (Physical Downlink Control Channel, PDCCH).
  • PDSCH Physical Downlink Shared Channel
  • PDCCH Physical Downlink Control Channel
  • S220 may specifically be that the terminal device sends the at least one data TB on the first channel.
  • S220 may specifically be that the terminal device receives the at least one data TB on the first channel.
  • two channel combinations can also be understood as two channels cascaded.
  • At least one of the at least two second channels is obtained by splitting the third channel.
  • the at least one second channel is formed after the third channel is split across the slot boundary.
  • the at least one second channel is formed after the third channel is automatically split (split).
  • the third channel and the second channel are the same type of channel, that is, the third channel and the second channel are both downlink channels, or the third channel and the second channel are both uplink channels .
  • the third channel may be configured by a network device.
  • the terminal device receives first configuration information sent by the network device, where the first configuration information is used to configure at least one third channel.
  • the at least one third channel may be a third channel repetition.
  • the number of repetitions of the third channel is 4, that is, 4 third channels, and the 4 third channels are continuously distributed in the time domain.
  • the network device may configure PUSCH repetition resources through uplink grant (UL grant).
  • UL grant uplink grant
  • whether the second channel supports combination is configurable. Similarly, whether the second channel supports discarding is configurable.
  • the terminal device receives first indication information sent by the network device, where the first indication information is used to indicate whether to support the second channel to be combined and/or discarded.
  • the second channel may also support combination and discard by default.
  • the terminal device determines whether to combine or discard the second channel according to the first rule and the second rule.
  • the first rule is at least one of the following:
  • the time domain length of the second channel is less than or equal to the first threshold, whether the equivalent code rate (Code Rate) of the data to be transmitted on the second channel is greater than or equal to k, where k is a positive number, and whether the second channel Have data transmission resources.
  • Code Rate equivalent code rate
  • the second rule is whether the second channel has an adjacent second channel.
  • the first threshold value is pre-configured, or the first threshold value is configured by a network device.
  • k is 1 or 0.93.
  • equivalent code rate can be used to determine the available data transmission resources, as well as the modulation mode and bits.
  • the terminal device determines that the second channel meets the first rule:
  • the time domain length of the second channel is less than or equal to the first threshold, the equivalent code rate of the data to be transmitted on the second channel is greater than or equal to k, and the second channel does not have data transmission resources.
  • the terminal device determines that the second channel meets the second rule.
  • the first rule and/or the second rule may be configured by the network device through radio resource control (Radio Resource Control, RRC) signaling.
  • RRC Radio Resource Control
  • the value of the first threshold may be 1 symbol to 4 symbols.
  • the terminal device may specifically determine whether to combine or discard the second channel in the following manner:
  • the terminal device determines not to combine or discard the second channel; and/or,
  • the terminal device determines to discard the second channel; and/or,
  • the terminal device determines to combine the second channel; and/or,
  • the terminal device independently transmits data TB on the second channel.
  • the terminal device in the case that the second channel supports combination and/or discarding, the terminal device combines the second channel with its adjacent second channel.
  • the reference signal is mapped according to the first channel.
  • the reference signal is mapped according to the second channel.
  • the reference signal is mapped according to a third channel, where the third channel is a configured channel.
  • the reference signal includes a front-loaded demodulation reference signal (Demodulation Reference Signal, DMRS) and/or an additional (additional) DMRS.
  • DMRS Demodulation Reference Signal
  • the network device when the aforementioned channel is PUSCH repetition, the network device sends a PUSCH repetition parameter to the terminal device; the terminal device may send uplink data according to the PUSCH repetition parameter.
  • the terminal device can transmit at least one data TB on the first channel obtained by combining at least two second channels, thereby improving system efficiency and avoiding resource waste.
  • the above-mentioned channel is the PUSCH
  • the network device configures the PUSCH repetitive resource for the terminal device as an example, and the solution of this application is described in detail in conjunction with specific embodiments.
  • the network equipment configures the PUSCH repetition times for the terminal equipment to 4 times (4 third channels), and the time domain position of the first PUSCH repetition is the 5th symbol-the 12th symbol of the nth time slot, and the subsequent PUSCH The repetition is immediately following the previous PUSCH repetition resource in the time domain. Therefore, the time domain resource of 4 PUSCH repetitions (4 third channels) can be as shown in a in FIG. 7.
  • the second PUSCH repetition crosses the slot boundary, the second PUSCH repetition is split into part A (2 symbols) and part B (6 symbols) (2 second channels) in the time domain, 4 times
  • the PUSCH repetition (4 third channels) is split into 5 PUSCH repetitions (5 second channels), as shown in b in FIG. 7.
  • this part A is 2 symbols, which is less than ConcatenationThrethold, this part A is repeatedly concatenated with the previous PUSCH (to form the first channel); because of this part B is 6 symbols, which is greater than ConcatenationThrethold, then this part B will not be repeatedly cascaded with the following PUSCH, as shown in c in Figure 7.
  • the DMRS and the TB are repeatedly mapped according to the cascaded PUSCH, as shown in c in Figure 7.
  • the cascading action improves the system efficiency and avoids waste caused by discarding.
  • setting the threshold value of cascading can not only realize short PUSCH repeated cascading, improve system efficiency, but also avoid long PUSCH repeated cascading, reduce processing delay or increase code rate.
  • the length of the PUSCH repetition is used as the decision threshold to cascade the decision threshold, which not only improves system efficiency, but also avoids resource waste caused by discarding.
  • the network equipment configures the PUSCH repetition times for the terminal equipment to 4 (4 third channels), and the time domain position of the first PUSCH repetition is the 13th symbol of the nth slot-the thirteenth symbol of the n+1th slot
  • the subsequent PUSCH repetition is immediately following the previous PUSCH repetition resource in the time domain. Therefore, it can be known that the time domain resource of 4 PUSCH repetitions (4 third channels) can be shown as a in FIG. 8.
  • the first PUSCH repetition and the fourth PUSCH repetition cross the slot boundary, the first PUSCH repetition is split into part A (2 symbols) and part B (6 symbols) in the time domain.
  • the fourth PUSCH repetition is split into part C (6 symbols) and part D (2 symbols) (2 second channels) in the time domain, and 4 PUSCH repetitions (4 third channels) It is split into 6 PUSCH repetitions (6 second channels), as shown in b in Figure 8.
  • the concatenation decision threshold is 3 symbols
  • the part A is 2 symbols, which is less than the concatenation decision threshold, but because there is no PUSCH repetition that can be cascaded before, this part A is discarded
  • the part B has 6 symbols , Is greater than the cascading decision threshold, then this part B does not repeat the cascade with the next PUSCH
  • the part C is 6 symbols and is greater than the cascade decision threshold, then this part C does not repeat the cascade with the previous PUSCH
  • this part D is 2 symbols, which is less than the cascading decision threshold, but since there is no PUSCH repetition that can be cascaded, this part D is discarded, as shown in c in FIG. 8.
  • DMRS and TB are repeatedly mapped according to the cascaded PUSCH, as shown in c in Figure 8.
  • the discarding action avoids the interference caused by the misalignment of DMRS and data.
  • the length of the PUSCH repetition is used as the decision threshold to cascade the decision threshold, which not only improves system efficiency, but also avoids resource waste caused by discarding. For PUSCH repetition without cascading conditions, abandoning cascading will not cause significant waste of resources, and can also avoid DMRS and data interference, which affects the demodulation of normal data.
  • FIG. 9 shows a comparison diagram of PUSCH repetitions of 4 UEs.
  • the PUSCH repetitions of 4 UEs overlap in the time and frequency domains, and the positions of the PUSCH repetitions in the time domain are successively set back by one PUSCH repetition. It can be seen from FIG. 9 that after PUSCH repetition cascading/dropping is performed based on the rules in the above-mentioned embodiment 1 and embodiment 2, there is no problem of collision between DMRS and data.
  • the network equipment configures the PUSCH repetition times for the terminal equipment to 4 times (4 third channels), and the time domain position of the first PUSCH repetition is the 9th symbol of the nth slot-the n+1th slot For the second symbol, the subsequent PUSCH repetition is immediately following the previous PUSCH repetition resource in the time domain. Therefore, the time domain resources of 4 PUSCH repetitions (4 third channels) can be known, as shown in a in FIG. 10. In addition, since the first PUSCH repetition and the third PUSCH repetition cross the slot boundary, the first PUSCH repetition is split into part A (6 symbols) and part B (2 symbols) in the time domain.
  • the third PUSCH repetition is split into part C (4 symbols) and part D (4 symbols) (2 second channels) in the time domain, and 4 PUSCH repetitions (4 third channels) It is split into 6 PUSCH repetitions (6 second channels), as shown in b in Figure 10.
  • the DMRS is repeatedly mapped according to the split PUSCH, as shown in b in Figure 10.
  • the split PUSCH is repeatedly cascaded with adjacent PUSCHs.
  • this part A is used as an independent PUSCH repeat, and this part B is repeatedly cascaded with the following PUSCH (forming The first channel), this part C is repeatedly cascaded with the previous PUSCH (to form the first channel), and this part D is repeatedly cascaded with the next PUSCH (to form the first channel) to form a cascaded PUSCH repetition, and a TB at the same time
  • the mapping is in a cascaded PUSCH repetition, as shown in c in Figure 10.
  • the DMRS is inserted according to the split PUSCH repetition to ensure the DMRS alignment between different PUSCH repetitions; the TB is mapped according to the cascaded PUSCH repetition, which avoids the appearance of orphan symbols and improves transmission effectiveness.
  • the network equipment configures the PUSCH repetition times for the terminal equipment to 4 times (4 third channels), and the time domain position of the first PUSCH repetition is the 3rd symbol of the n+1th time slot-the n+1th time For the 10th symbol of the slot, the subsequent PUSCH repetition is immediately following the previous PUSCH repetition resource in the time domain. Therefore, the time domain resources of 4 PUSCH repetitions (4 third channels) can be seen, as shown in a in Figure 11 . In addition, since the second PUSCH repetition and the fourth PUSCH repetition cross the slot boundary, the second PUSCH repetition is split into part A (4 symbols) and part B (4 symbols) in the time domain (2nd PUSCH).
  • the fourth PUSCH repetition is split into part C (2 symbols) and part D (6 symbols) (2 second channels) in the time domain, and 4 PUSCH repetitions (4 third channels) It is split into 6 PUSCH repetitions (6 second channels), as shown in b in Figure 11.
  • the DMRS is repeatedly mapped according to the split PUSCH, as shown in b in FIG. 11.
  • the split PUSCH is repeatedly cascaded with adjacent PUSCHs. Specifically, this part A is repeatedly cascaded with the previous PUSCH (forms the first channel), and this part B is repeatedly cascaded with the next PUSCH (forms the first channel). Channel), this part C is repeatedly cascaded with the previous PUSCH (to form the first channel). Since this part D has no adjacent PUSCH repeats, this part D is repeated as an independent PUSCH to form a cascaded PUSCH repeat, and a TB The mapping is in a cascaded PUSCH repetition, as shown in c in Figure 11.
  • the DMRS mapping refers to the PUSCH repetition after splitting, ensuring that the DMRS is always aligned, ensuring the DMRS demodulation performance, and the DMRS is always at the front end of the PUSCH repetition, improving the detection speed.
  • the TB is mapped according to the cascaded PUSCH repetition, which avoids the appearance of orphan symbols and improves the transmission efficiency.
  • FIG. 12 shows a comparison diagram of PUSCH repetitions of 4 UEs.
  • the PUSCH repetitions of 4 UEs overlap in the time and frequency domains, and the positions of the PUSCH repetitions in the time domain are sequentially backed up by one PUSCH repetition. It can be seen from FIG. 12 that after PUSCH repetition cascading/dropping is performed based on the rules in the third and fourth embodiments above, there is no problem of DMRS and data collision.
  • the network equipment configures the PUSCH repetition times for the terminal equipment to 4 times (4 third channels), and the time domain position of the first PUSCH repetition is the 9th symbol of the nth slot-the n+1th slot For the second symbol, the subsequent PUSCH repetition is immediately followed by the previous PUSCH repetition resource in the time domain. Therefore, it can be seen that the time domain resources of 4 PUSCH repetitions (4 third channels) are repeated according to the initial PUSCH (before splitting). PUSCH repeat) mapping, where the DMRS resource is configured by the network device, as shown in a in FIG. 13. In addition, since the first PUSCH repetition and the third PUSCH repetition cross the slot boundary, the first PUSCH repetition is split into part A (6 symbols) and part B (2 symbols) in the time domain.
  • the third PUSCH repetition is split into part C (4 symbols) and part D (4 symbols) (2 second channels) in the time domain, and 4 PUSCH repetitions (4 third channels) It is split into 6 PUSCH repetitions (6 second channels).
  • the split PUSCH is repeatedly cascaded with adjacent PUSCHs.
  • this part A is used as an independent PUSCH repeat, and this part B is repeatedly cascaded with the following PUSCH (forming The first channel), this part C is repeatedly cascaded with the previous PUSCH (to form the first channel), and this part D is repeatedly cascaded with the next PUSCH (to form the first channel) to form a cascaded PUSCH repetition, and a TB at the same time
  • the mapping is in a cascaded PUSCH repetition, as shown in b in Figure 13.
  • the DMRS mapping is repeated with reference to the initial PUSCH to ensure that the DMRS is always aligned, and the DMRS demodulation performance is guaranteed.
  • the DMRS overhead is less.
  • the TB is mapped according to the cascaded PUSCH repetition, which avoids the appearance of orphan symbols and improves the transmission efficiency.
  • the network equipment configures the PUSCH repetition times for the terminal equipment to 4 times (4 third channels), and the time domain position of the first PUSCH repetition is the 3rd symbol of the n+1th time slot-the n+1th time For the 10th symbol of the slot, the subsequent PUSCH repetition is immediately followed by the previous PUSCH repetition resource in the time domain. Therefore, it can be seen that the time domain resources of 4 PUSCH repetitions (4 third channels) are repeated according to the initial PUSCH (split The previous PUSCH is repeated) for mapping, where the DMRS resource is configured by the network device, as shown in a in FIG. 14. For the last split PUSCH repetition, since there are no adjacent PUSCH repetitions that can be cascaded, it is regarded as an independent PUSCH repetition.
  • DMRS is also inserted, as shown in b in FIG. 14.
  • the second PUSCH repetition and the fourth PUSCH repetition cross the slot boundary, the second PUSCH repetition is split into part A (4 symbols) and part B (4 symbols) in the time domain (2nd PUSCH).
  • the fourth PUSCH repetition is split into part C (2 symbols) and part D (6 symbols) (2 second channels) in the time domain, and 4 PUSCH repetitions (4 third channels) It is split into 6 PUSCH repetitions (6 second channels).
  • the split PUSCH is repeatedly cascaded with adjacent PUSCHs.
  • this part A is repeatedly cascaded with the previous PUSCH (forms the first channel), and this part B is repeatedly cascaded with the next PUSCH (forms the first channel).
  • this part C is repeatedly cascaded with the previous PUSCH (to form the first channel). Since this part D has no adjacent PUSCH repeats, this part D is repeated as an independent PUSCH to form a cascaded PUSCH repeat, and a TB
  • the mapping is in a cascaded PUSCH repetition, as shown in b in Figure 14.
  • the DMRS mapping is repeated with reference to the initial PUSCH to ensure that the DMRS is always aligned, and the DMRS demodulation performance is guaranteed.
  • the DMRS overhead is less.
  • the TB is mapped according to the cascaded PUSCH repetition, which avoids the appearance of orphan symbols and improves the transmission efficiency.
  • FIG. 15 is a schematic flowchart of a wireless communication method 300 according to an embodiment of the present application. As shown in FIG. 15, the method 300 may include some or all of the following contents:
  • the network device determines a first channel to which at least one data TB is mapped, where the first channel is obtained by combining at least two second channels;
  • the network device transmits the at least one data TB on the first channel.
  • the first channel mapped by at least one data TB that is, the data TB is mapped according to the combined channel.
  • the channel described in the embodiment of the present application includes an uplink channel and/or a downlink channel. That is, the first channel may be an uplink channel or a downlink channel.
  • the second channel may be an uplink channel or a downlink channel.
  • first channel and the second channel are the same type of channel, that is, the first channel and the second channel are both downlink channels, or the first channel and the second channel are both uplink channels. channel.
  • the uplink channel is PUSCH or physical uplink control channel (Physical Uplink Control Channel, PUCCH).
  • PUCCH Physical Uplink Control Channel
  • the downlink channel is a physical downlink shared channel (Physical Downlink Shared Channel, PDSCH) or a physical downlink control channel (Physical Downlink Control Channel, PDCCH).
  • PDSCH Physical Downlink Shared Channel
  • PDCCH Physical Downlink Control Channel
  • S220 may specifically be that the network device receives the at least one data TB on the first channel.
  • S220 may specifically be that the network device sends the at least one data TB on the first channel.
  • two channel combinations can also be understood as two channels cascaded.
  • At least one of the at least two second channels is obtained by splitting the third channel.
  • the at least one second channel is formed after the third channel is split across the slot boundary.
  • the at least one second channel is formed after the third channel is automatically split (split).
  • the third channel and the second channel are the same type of channel, that is, the third channel and the second channel are both downlink channels, or the third channel and the second channel are both uplink channels .
  • the network device sends first configuration information to the terminal device, where the first configuration information is used to configure at least one third channel.
  • the at least one third channel may be a third channel repetition.
  • the number of repetitions of the third channel is 4, that is, 4 third channels, and the 4 third channels are continuously distributed in the time domain.
  • the network device may configure the PUSCH repetition resource for the terminal device through uplink grant (UL grant).
  • UL grant uplink grant
  • whether the second channel supports combination is configurable. Similarly, whether the second channel supports discarding is configurable.
  • the network device sends first indication information, where the first indication information is used to indicate whether to support combination and/or discard of the second channel.
  • the second channel may also support combination and discard by default.
  • the network device determines whether to combine or discard the second channel according to the first rule and the second rule, among them,
  • the first rule is at least one of the following: whether the time domain length of the second channel is less than or equal to a first threshold, whether the equivalent code rate of the data to be transmitted on the second channel is greater than or equal to k, where k is A positive number, whether the second channel has data transmission resources;
  • the second rule is whether the second channel has an adjacent second channel.
  • k is 1 or 0.93.
  • equivalent code rate can be used to determine the available data transmission resources, as well as the modulation mode and bits.
  • the network device sends second configuration information, and the second configuration information is used to configure the first threshold.
  • the network device determines that the second channel meets the first rule:
  • the time domain length of the second channel is less than or equal to the first threshold, the equivalent code rate of the data to be transmitted on the second channel is greater than or equal to k, and the second channel does not have data transmission resources;
  • the network device determines that the second channel meets the second rule.
  • the first rule and/or the second rule may be configured by the network device for the terminal device through radio resource control (Radio Resource Control, RRC) signaling.
  • RRC Radio Resource Control
  • the network device may specifically determine whether to combine or discard the second channel in the following manner:
  • the network device determines not to combine or discard the second channel; and/or,
  • the network device determines to discard the second channel; and/or,
  • the network device determines to combine the second channel; and/or,
  • the network device independently transmits data TB on the second channel.
  • the network device combines the second channel with its adjacent second channel.
  • the reference signal is mapped according to the first channel.
  • the reference signal is mapped according to the second channel.
  • the reference signal is mapped according to a third channel, where the third channel is a configured channel.
  • the reference signal includes front loaded DMRS and/or additional DMRS.
  • the steps and descriptions in the wireless communication method 300 can refer to the corresponding steps and descriptions in the wireless communication method 200. For brevity, details are not repeated here.
  • the network device can transmit at least one data TB on the first channel obtained by combining at least two second channels, thereby improving system efficiency and avoiding resource waste.
  • FIG. 16 shows a schematic block diagram of a terminal device 400 according to an embodiment of the present application.
  • the terminal device 400 includes:
  • the processing unit 410 is configured to determine a first channel to which at least one data TB is mapped, where the first channel is obtained by combining at least two second channels;
  • the communication unit 420 is configured to transmit the at least one data TB on the first channel.
  • At least one of the at least two second channels is obtained by splitting the third channel.
  • the communication unit 420 is further configured to receive first configuration information, where the first configuration information is used to configure at least one third channel.
  • the communication unit 420 is further configured to receive first indication information, where the first indication information is used to indicate whether the second channel is supported for combining and/or discarding.
  • processing unit 410 is further configured to determine whether to combine or discard the second channel according to the first rule and the second rule, where:
  • the first rule is at least one of the following: whether the time domain length of the second channel is less than or equal to a first threshold, whether the equivalent code rate of the data to be transmitted on the second channel is greater than or equal to k, where k is A positive number, whether the second channel has data transmission resources;
  • the second rule is whether the second channel has an adjacent second channel.
  • the first threshold value is pre-configured, or the first threshold value is configured by a network device.
  • the processing unit is further configured to determine that the second channel meets the first rule: the time domain length of the second channel is less than or equal to the first threshold, and the second channel The equivalent code rate of the data to be transmitted on the channel is greater than or equal to k, and the second channel does not have data transmission resources;
  • the processing unit is further configured to determine that the second channel meets the second rule.
  • processing unit 410 is specifically configured to:
  • the second channel does not meet the first rule, it is determined not to combine or discard the second channel; and/or,
  • the second channel satisfies the first rule and satisfies the second rule, determine to combine the second channel; and/or,
  • the data TB is independently transmitted on the second channel.
  • processing unit 410 is further configured to combine the second channel with its adjacent second channel.
  • the reference signal is mapped according to the first channel.
  • the reference signal is mapped according to the second channel.
  • the reference signal is mapped according to a third channel, where the third channel is a configured channel.
  • the reference signal includes a pre-DMRS and/or an additional DMRS.
  • the channel includes an uplink channel and/or a downlink channel.
  • terminal device 400 may correspond to the terminal device in the method embodiment of the present application, and the above-mentioned and other operations and/or functions of each unit in the terminal device 400 are to implement the method shown in FIG. 6 respectively.
  • the corresponding process of the terminal equipment in 200 will not be repeated here.
  • FIG. 17 shows a schematic block diagram of a network device 500 according to an embodiment of the present application.
  • the network device 500 includes:
  • the processing unit 510 is configured to determine a first channel mapped by at least one data transmission block TB, where the first channel is obtained by combining at least two second channels;
  • the communication unit 520 is configured to transmit the at least one data TB on the first channel.
  • At least one of the at least two second channels is obtained by splitting the third channel.
  • the communication unit 520 is further configured to send first configuration information, where the first configuration information is used to configure at least one third channel.
  • the communication unit 520 is further configured to send first indication information, where the first indication information is used to indicate whether the second channel is supported for combining and/or discarding.
  • processing unit 510 is further configured to determine whether to combine or discard the second channel according to the first rule and the second rule, where:
  • the first rule is at least one of the following: whether the time domain length of the second channel is less than or equal to a first threshold, whether the equivalent code rate of the data to be transmitted on the second channel is greater than or equal to k, where k is A positive number, whether the second channel has data transmission resources;
  • the second rule is whether the second channel has an adjacent second channel.
  • the communication unit 520 is further configured to send second configuration information, where the second configuration information is used to configure the first threshold value.
  • the processing unit is further configured to determine that the second channel meets the first rule: the time domain length of the second channel is less than or equal to the first threshold, and the second channel The equivalent code rate of the data to be transmitted on the channel is greater than or equal to k, and the second channel does not have data transmission resources;
  • the processing unit is further configured to determine that the second channel meets the second rule.
  • processing unit 510 is specifically configured to:
  • the second channel does not meet the first rule, it is determined not to combine or discard the second channel; and/or,
  • the second channel satisfies the first rule and satisfies the second rule, determine to combine the second channel; and/or,
  • the data TB is independently transmitted on the second channel.
  • processing unit 510 is further configured to combine the second channel with its adjacent second channel.
  • the reference signal is mapped according to the first channel.
  • the reference signal is mapped according to the second channel.
  • the reference signal is mapped according to a third channel, where the third channel is a configured channel.
  • the reference signal includes a pre-DMRS and/or an additional DMRS.
  • the channel includes an uplink channel and/or a downlink channel.
  • the network device 500 may correspond to the network device in the method embodiment of the present application, and the foregoing and other operations and/or functions of each unit in the network device 500 are to implement the method shown in FIG. 15 respectively.
  • the corresponding process of the network equipment in 300 will not be repeated here.
  • FIG. 18 is a schematic structural diagram of a communication device 600 provided by an embodiment of the present application.
  • the communication device 600 shown in FIG. 18 includes a processor 610, and the processor 610 can call and run a computer program from a memory to implement the method in the embodiment of the present application.
  • the communication device 600 may further include a memory 620.
  • the processor 610 may call and run a computer program from the memory 620 to implement the method in the embodiment of the present application.
  • the memory 620 may be a separate device independent of the processor 610, or may be integrated in the processor 610.
  • the communication device 600 may further include a transceiver 630, and the processor 610 may control the transceiver 630 to communicate with other devices. Specifically, it may send information or data to other devices, or receive other devices. Information or data sent by the device.
  • the transceiver 630 may include a transmitter and a receiver.
  • the transceiver 630 may further include an antenna, and the number of antennas may be one or more.
  • the communication device 600 may specifically be a network device in an embodiment of the present application, and the communication device 600 may implement the corresponding process implemented by the network device in each method of the embodiment of the present application. For brevity, details are not repeated here. .
  • the communication device 600 may specifically be a mobile terminal/terminal device of an embodiment of the application, and the communication device 600 may implement the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiment of the application.
  • I won’t repeat it here.
  • FIG. 19 is a schematic structural diagram of a device in an embodiment of the present application.
  • the apparatus 700 shown in FIG. 19 includes a processor 710, and the processor 710 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
  • the apparatus 700 may further include a memory 720.
  • the processor 710 may call and run a computer program from the memory 720 to implement the method in the embodiment of the present application.
  • the memory 720 may be a separate device independent of the processor 710, or may be integrated in the processor 710.
  • the device 700 may further include an input interface 730.
  • the processor 710 may control the input interface 730 to communicate with other devices or chips, and specifically, may obtain information or data sent by other devices or chips.
  • the device 700 may further include an output interface 740.
  • the processor 710 can control the output interface 740 to communicate with other devices or chips, and specifically, can output information or data to other devices or chips.
  • the device can be applied to the network equipment in the embodiments of the present application, and the device can implement the corresponding processes implemented by the network equipment in the various methods of the embodiments of the present application.
  • the device can implement the corresponding processes implemented by the network equipment in the various methods of the embodiments of the present application.
  • details are not described herein again.
  • the device can be applied to the mobile terminal/terminal device in the embodiment of this application, and the device can implement the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of this application.
  • the device can implement the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of this application.
  • the device can implement the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of this application.
  • the device mentioned in the embodiment of the present application may also be a chip.
  • it can be a system-level chip, a system-on-chip, a system-on-chip, or a system-on-chip.
  • FIG. 20 is a schematic block diagram of a communication system 800 according to an embodiment of the present application. As shown in FIG. 20, the communication system 800 includes a terminal device 810 and a network device 820.
  • the terminal device 810 can be used to implement the corresponding function implemented by the terminal device in the above method
  • the network device 820 can be used to implement the corresponding function implemented by the network device in the above method. For brevity, it will not be repeated here. .
  • the processor of the embodiment of the present application may be an integrated circuit chip with signal processing capability.
  • the steps of the foregoing method embodiments can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the aforementioned processor may be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (ASIC), a ready-made programmable gate array (Field Programmable Gate Array, FPGA) or other Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC application specific integrated circuit
  • FPGA ready-made programmable gate array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), and electrically available Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • DDR SDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • Enhanced SDRAM, ESDRAM Enhanced Synchronous Dynamic Random Access Memory
  • Synchronous Link Dynamic Random Access Memory Synchronous Link Dynamic Random Access Memory
  • DR RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be static random access memory (static RAM, SRAM), dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM), etc. That is to say, the memory in the embodiment of the present application is intended to include but not limited to these and any other suitable types of memory.
  • the embodiment of the present application also provides a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium may be applied to the network device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program causes the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer-readable storage medium can be applied to the mobile terminal/terminal device in the embodiment of the present application, and the computer program enables the computer to execute the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application For the sake of brevity, I won’t repeat it here.
  • the embodiments of the present application also provide a computer program product, including computer program instructions.
  • the computer program product may be applied to the network device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program product can be applied to the mobile terminal/terminal device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application, For brevity, I won't repeat them here.
  • the embodiment of the present application also provides a computer program.
  • the computer program can be applied to the network device in the embodiment of the present application.
  • the computer program runs on the computer, the computer is caused to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • I won’t repeat it here.
  • the computer program can be applied to the mobile terminal/terminal device in the embodiment of the present application.
  • the computer program runs on the computer, the computer executes each method in the embodiment of the present application. For the sake of brevity, the corresponding process will not be repeated here.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • each unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of this application essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the method described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种无线通信方法、终端设备和网络设备,可以实现拆分之后的信道资源的组合和/或丢弃,参考信号映射和数据传输块映射可以按照不同的信道资源假设进行,既可以提高系统效率,避免资源浪费,又可以避免DMRS和数据碰撞,影响正常数据解调。该方法包括:终端设备确定至少一个数据TB映射的第一信道,其中,该第一信道是由至少两个第二信道组合得到的;该终端设备在该第一信道上传输该至少一个数据TB。

Description

无线通信方法、终端设备和网络设备 技术领域
本申请实施例涉及通信领域,并且更具体地,涉及无线通信方法、终端设备和网络设备。
背景技术
在新无线(New Radio,NR)版本16(Release 16,Rel 16)中对物理上行共享信道(Physical Uplink Shared Channel,PUSCH)重复(repetition)做了增强,每个时隙内可以有一个或多个PUSCH,且PUSCH所在的时域资源可以不同,例如PUSCH时域资源可以跨时隙布局。同时,在PUSCH重复资源中可能会出现一个PUSCH分裂成两个或多个PUSCH的情况,例如一个PUSCH会跨时隙会分裂为两个独立的PUSCH。然而,由于PUSCH拆分之后PUSCH所占用的时域资源大小不一,会对数据传输造成一定的影响。因此,如何在那些拆分之后的PUSCH上发送数据,是一个亟待解决的技术问题。
发明内容
本申请实施例提供了一种无线通信方法、终端设备和网络设备,可以实现拆分之后的信道资源的组合和/或丢弃,参考信号映射和数据传输块映射可以按照不同的信道资源假设进行,既可以提高系统效率,避免资源浪费,又可以避免DMRS和数据碰撞,影响正常数据解调。
第一方面,提供了一种无线通信方法,该方法包括:
终端设备确定至少一个数据传输块(Transport block,TB)映射的第一信道,其中,该第一信道是由至少两个第二信道组合得到的;
该终端设备在该第一信道上传输该至少一个数据TB。
第二方面,提供了一种无线通信方法,该方法包括:
网络设备确定至少一个数据TB映射的第一信道,其中,该第一信道是由至少两个第二信道组合得到的;
该网络设备在该第一信道上传输该至少一个数据TB。
第三方面,提供了一种终端设备,用于执行上述第一方面或其各实现方式中的方法。
具体地,该终端设备包括用于执行上述第一方面或其各实现方式中的方法的功能模块。
第四方面,提供了一种网络设备,用于执行上述第二方面或其各实现方式中的方法。
具体地,该网络设备包括用于执行上述第二方面或其各实现方式中的方法的功能模块。
第五方面,提供了一种终端设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第一方面或其各实现方式中的方法。
第六方面,提供了一种网络设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第二方面或其各实现方式中的方法。
第七方面,提供了一种装置,用于实现上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
具体地,该装置包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该装置的设备执行如上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第八方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第九方面,提供了一种计算机程序产品,包括计算机程序指令,所述计算机程序指令使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第十方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
通过上述技术方案,终端设备可以在至少两个第二信道组合得到的第一信道上传输至少一个数据TB,从而可以提高系统效率,避免资源浪费。
网络设备可以在至少两个第二信道组合得到的第一信道上传输至少一个数据TB,从而可以提高系统效率,避免资源浪费。
附图说明
图1是本申请实施例提供的一种通信系统架构的示意性图。
图2是本申请实施例提供的一种PUSCH重复分裂的示意图。
图3是本申请实施例提供的另一种PUSCH重复分裂的示意图。
图4是本申请实施例提供的一种PUSCH重复丢弃的示意图。
图5是本申请实施例提供的一种PUSCH重复级联之后数据与DMRS相互干扰的示意图。
图6是根据本申请实施例提供的一种无线通信方法的示意性流程图。
图7是根据本申请实施例提供的一种PUSCH重复的时域资源示意图。
图8是根据本申请实施例提供的另一种PUSCH重复的时域资源示意图。
图9是根据本申请实施例提供的一种多UE间导频对齐的示意图。
图10是根据本申请实施例提供的另一种PUSCH重复的时域资源示意图。
图11是根据本申请实施例提供的另一种PUSCH重复的时域资源示意图。
图12是根据本申请实施例提供的另一种多UE间导频对齐的示意图。
图13是根据本申请实施例提供的再一种PUSCH重复的时域资源示意图。
图14是根据本申请实施例提供的再一种PUSCH重复的时域资源示意图。
图15是根据本申请实施例提供的另一种无线通信方法的示意性流程图。
图16是根据本申请实施例提供的一种终端设备的示意性框图。
图17是根据本申请实施例提供的一种网络设备的示意性框图。
图18是根据本申请实施例提供的一种通信设备的示意性框图。
图19是根据本申请实施例提供的一种装置的示意性框图。
图20是根据本申请实施例提供的一种通信系统的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。针对本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、新无线(New Radio,NR)系统、NR系统的演进系统、免授权频谱上的LTE(LTE-based access to unlicensed spectrum,LTE-U)系统、免授权频谱上的NR(NR-based access to unlicensed spectrum,NR-U)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、下一代通信系统或其他通信系统等。
通常来说,传统的通信系统支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信系统将不仅支持传统的通信,还将支持例如,设备到设备(Device to Device,D2D)通信,机器到机器(Machine to Machine,M2M)通信,机器类型通信(Machine Type Communication,MTC),以及车辆间(Vehicle to Vehicle,V2V)通信等,本申请实施例也可以应用于这些通信系统。
可选地,本申请实施例中的通信系统可以应用于载波聚合(Carrier Aggregation,CA)场景,也可以应用于双连接(Dual Connectivity,DC)场景,还可以应用于独立(Standalone,SA)布网场景。
本申请实施例对应用的频谱并不限定。例如,本申请实施例可以应用于授权频谱,也可以应用于免授权频谱。
示例性的,本申请实施例应用的通信系统100如图1所示。该通信系统100可以包括网络设备110,网络设备110可以是与终端设备120(或称为通信终端、终端)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。
图1示例性地示出了一个网络设备和两个终端设备,可选地,该通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
可选地,该通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图1示出的通信系统100为例,通信设备可包括具有通信功能的网络设备110和终端设备120,网络设备110和终端设备120可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信系统100中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是 一种“或”的关系。
本申请实施例结合终端设备和网络设备描述了各个实施例,其中:终端设备也可以称为用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。终端设备可以是WLAN中的站点(STAION,ST),可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备以及下一代通信系统,例如,NR网络中的终端设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的终端设备等。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
网络设备可以是用于与移动设备通信的设备,网络设备可以是WLAN中的接入点(Access Point,AP),GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB,NB),还可以是LTE中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者车载设备、可穿戴设备以及NR网络中的网络设备或者基站(gNB)或者未来演进的PLMN网络中的网络设备等。
在本申请实施例中,网络设备为小区提供服务,终端设备通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与网络设备进行通信,该小区可以是网络设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(Small cell)对应的基站,这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
应理解,NR Rel 16对PUSCH重复做了增强,放松了一些限制条件,即每个时隙内可以有一个或多个PUSCH,且PUSCH所在的时域资源可以不同,如图2和图3所示。图2包含了PUSCH跨时隙的情况,图3包含了一个时隙内包括多个PUSCH的情况。由于不再对应用场景做限制,数据可以做到即时调度,进而降低了数据传输时延。
需要说明的是,在图3中,D表示时隙内的下行符号,F表示时隙内的灵活符号,U表示时隙内的上行符号。
但是当限制被放松后,会出现一个PUSCH分裂成两个或多个PUSCH的情况。如图2所示,当一个PUSCH跨时隙会分裂为两个独立的PUSCH,即传输独立的传输块(Transport block,TB)。如图3所示,当一个PUSCH遇到下行和灵活资源,会自动拆分,拆分后的两个PUSCH传输独立的TB。
PUSCH repetition拆分后可能形成持续时间较短的PUSCH repetition,这些PUSCH repetition太短以至于无法实现有效传输。对于这些持续时间较短的PUSCH repetition,一种方式是短PUSCH repetition不发送,这样会造成资源浪费,如图4所示。另外一种方式是短PUSCH repetition与相邻的PUSCH repetition接连,形成一个新的长的PUSCH repetition,此时会导致DMRS不对齐,干扰DMRS检测性能,如图5所示。
基于上述问题,本申请提出一种PUSCH repetition级联和丢弃组合的方式,同时,DMRS映射和TB映射按照不同的PUSCH repetition资源假设进行,既可以提高系统效率,避免资源浪费,又可以避免DMRS和数据碰撞,影响正常数据解调。
以下详细阐述本申请针对上述技术问题而设计的技术方案。
图6是根据本申请实施例的无线通信方法200的示意性流程图,如图6所示,该方法200可以包括如下内容中的部分或全部:
S210,终端设备确定至少一个数据TB映射的第一信道,其中,该第一信道是由至少两个第二信道组合得到的;
S220,该终端设备在该第一信道上传输该至少一个数据TB。
至少一个数据TB映射的第一信道,也就是说,数据TB按照组合之后的信道进行映射。
可选地,在本申请实施例中所述的信道包括上行信道和/或下行信道。即该第一信道可以是上行信道,也可以是下行信道。该第二信道可以是上行信道,也可以是下行信道。
但需要注意的是,该第一信道与该第二信道为同一类型的信道,即该第一信道与该第二信道同为下行信道,或者,该第一信道与该第二信道同为上行信道。
例如,上行信道为PUSCH或物理上行控制信道(Physical Uplink Control Channel,PUCCH)。
又例如,下行信道为物理下行共享信道(Physical Downlink Shared Channel,PDSCH)或物理下行控制信道(Physical Downlink Control Channel,PDCCH)。
在该第一信道为上行信道时,S220具体可以是,该终端设备在该第一信道上发送该至少一个数据TB。在该第一信道为下行信道时,S220具体可以是,该终端设备在该第一信道上接收该至少一个数据TB。
需要说明的是,在本申请实施例中,两个信道组合也可以理解为是两个信道级联。
可选地,在本申请实施例中,该至少两个第二信道中的至少一个第二信道由第三信道分裂得到。
例如,第三信道跨时隙边界分裂之后形成该至少一个第二信道。
又例如,第三信道自动分裂(拆分)之后形成该至少一个第二信道。
需要说明的是,该第三信道与该第二信道为同一类型的信道,即该第三信道与该第二信道同为下行信道,或者,该第三信道与该第二信道同为上行信道。
可选地,在本申请实施例中,该第三信道可以是网络设备配置的。
例如,终端设备接收网络设备发送的第一配置信息,该第一配置信息用于配置至少一个第三信道。
可选地,该至少一个第三信道可以是第三信道重复(repetition)。
例如,该第三信道重复次数为4次,即为4个第三信道,这4个第三信道在时域上连续分布。
可选地,网络设备可以通过上行授权(uplink grant,UL grant)配置PUSCH repetition的资源。
可选地,在本申请实施例中,该第二信道是否支持组合是可以配置的。同理,该第二信道是否支持丢弃是可以配置的。
例如,终端设备接收网络设备发送的第一指示信息,该第一指示信息用于指示是否支持该第二信道进行组合和/或丢弃。
可选地,在本申请实施例中,也可以默认该第二信道支持组合和丢弃。
可选地,在该第二信道支持组合和/或丢弃的情况下,该终端设备根据第一规则和第二规则,判断是否对该第二信道进行组合或者丢弃。
该第一规则为以下中的至少一种:
该第二信道时域长度是否小于或者等于第一门限值,该第二信道上待传输数据的等效码率(Code Rate)是否大于或者等于k,k为正数,该第二信道是否具有数据传输资源。
该第二规则为该第二信道是否存在相邻的第二信道。
可选地,该第一门限值为预配置的,或者,该第一门限值为网络设备配置的。
例如,k为1或者0.93。
需要说明的是,等效码率可用于确定可用的数据传输资源,也可以用于确定调制方式和比特。
具体地,若满足以下情况中的至少一种,该终端设备确定该第二信道满足该第一规则:
该第二信道时域长度小于或者等于第一门限值,该第二信道上待传输数据的等效码率大于或者等于k,第二信道不具有数据传输资源。
具体地,若该第二信道存在相邻的第二信道,该终端设备确定该第二信道满足该第二规则。
可选地,在本申请实施例中,该第一规则和/或该第二规则可以是网络设备通过无线资源控制(Radio Resource Control,RRC)信令配置的。
例如,在该第一规则中,该第一门限值的取值可以是1个符号至4个符号。
可选地,在本申请实施例中,该终端设备具体可以通过如下方式判断是否对所述第二信道进行组合或者丢弃:
若该第二信道不满足该第一规则,该终端设备判断不对该第二信道进行组合或者丢弃;和/或,
若该第二信道满足该第一规则且不满足该第二规则,该终端设备判断对该第二信道进行丢弃;和/或,
若该第二信道满足该第一规则且满足该第二规则,该终端设备判断对该第二信道进行组合;和/或,
若该第二信道不满足该第一规则,该终端设备在该第二信道上独立传输数据TB。
可选地,在本申请实施例中,在该第二信道支持组合和/或丢弃的情况下,该终端设备将该第二信道与其相邻的第二信道进行组合。
可选地,在本申请实施例中,参考信号是根据该第一信道映射的。
可选地,在本申请实施例中,参考信号是根据该第二信道映射的。
可选地,在本申请实施例中,参考信号是根据第三信道映射的,其中,该第三信道为配置的信道。
可选地,该参考信号包括前置(front loaded)解调参考信号(Demodulation Reference Signal,DMRS)和/或附加(additional)DMRS。
可选地,在本申请实施例中,在上述信道为PUSCH重复的情况下,网络设备向终端设备发送PUSCH重复参数;终端设备可以根据该PUSCH重复参数,发送上行数据。
因此,在本申请实施例中,终端设备可以在至少两个第二信道组合得到的第一信道上传输至少一个数据TB,从而可以提高系统效率,避免资源浪费。
以下以上述信道为PUSCH,且网络设备为终端设备配置PUSCH重复资源为例,并结合具体实施例详细阐述本申请方案。
可选地,作为实施例一,
网络设备为终端设备配置PUSCH的重复次数为4次(4个第三信道),第一个PUSCH重复的时域位置为第n个时隙的第5个符号-第12个符号,后续的PUSCH重复在时域上紧接着前一个PUSCH重复资源,因此,4次PUSCH重复(4个第三信道)的时域资源可以如图7中的a所示。此外,由于第二个PUSCH重复跨时隙边界,第二个PUSCH重复在时域上被分裂为部分A(2个符号)和部分B(6个符号)(2个第二信道),4次PUSCH重复(4个第三信道)被分裂为5次PUSCH重复(5个第二信道),如图7中的b所示。假设级联判决门限(ConcatenationThrethold)为3个符号(symbol),由于该部分A为2个符号,小于ConcatenationThrethold,则该部分A与前面一个PUSCH重复进行级联(形成第一信道);由于该部分B为6个符号,大于ConcatenationThrethold,则该部分B不与后面一个PUSCH重复进行级联,如图7中的c所示。DMRS和TB按照级联后的PUSCH重复进行映射,如图7中的c所示。
因此,在实施例一中,级联动作提高了系统效率,避免丢弃造成的浪费。同时设置门限值的级联,既可以实现短PUSCH重复级联,提高系统效率,又可以避免长PUSCH重复级联,降低处理时延或提升码率。进一步地,通过PUSCH repetition长度作为判决门限级联判决门限,既提高系统效率,避免丢弃导致的资源浪费。
可选地,作为实施例二,
网络设备为终端设备配置PUSCH的重复次数为4(4个第三信道),第一个PUSCH重复的时域位置为第n个时隙的第13个符号-第n+1个时隙的第6个符号,后续的PUSCH重复在时域上紧接着前一个PUSCH重复资源,因此,可知4次PUSCH重复(4个第三信道)的时域资源可以如图8中的a所示。此外,由于第一个PUSCH重复和第四个PUSCH重复跨时隙边界,第一个PUSCH重复在时域上被分裂为部分A(2个符号)和部分B(6个符号)(2个第二信道),第四个PUSCH重复在时域上被分裂为部分C(6个符号)和部分D(2个符号)(2个第二信道),4次PUSCH重复(4个第三信道)被分裂为6次PUSCH重复(6个第二信道),如图8中的b所示。假设级联判决门限为3个符号,由于该部分A为2个符号,小于级联判决门限,但由于前面没有可以级联的PUSCH重复,则该部分A丢弃;由于该部分B为6个符号,大于级联判决门限,则该部分B不与后面一个PUSCH重复进行级联;由于该部分C为6个符号,大于级联判决门限,则该部分C不与前面一个PUSCH重复进行级联;由于该部分D为2个符号,小于级联判决门限,但由于后面没有可以级联的PUSCH重复,则该部分D丢弃,如图8中的c所示。DMRS和TB按照级联后的PUSCH重复进行映射,如图8中的c所示。
因此,在实施例二中,丢弃动作避免了DMRS和数据不对齐造成的干扰。进一步地,通过PUSCH repetition长度作为判决门限级联判决门限,既提高系统效率,避免丢弃导致的资源浪费。对于无级联条件的PUSCH repetition放弃级联,既不会造成显著的资源浪费,也可以避免DMRS和数据干扰,影响正常数据的解调。
可选地,图9示出了4个UE的PUSCH repetition对比图,4个UE的PUSCH repetition在时频域上有重叠,且时域上依次退后一个PUSCH repetition的位置。从图9可以看出,基于上述实施例一和实施例二中的规则进行PUSCH repetition级联/丢弃后,无DMRS与数据碰撞问题。
可选地,作为实施例三,
网络设备为终端设备配置PUSCH的重复次数为4次(4个第三信道),第一个PUSCH重复的时域位置为第n个时隙的第9个符号-第n+1个时隙的第2个符号,后续的PUSCH重复在时域上紧接着前一个PUSCH重复资源,因此,可知4次PUSCH重复(4个第三信道)的时域资源,如图10中的a所示。此外,由于第一个PUSCH重复和第三个PUSCH重复跨时隙边界,第一个PUSCH重复在时域上被分裂为部分A(6个符号)和部分B(2个符号)(2个第二信道),第三个PUSCH重复在时域上被分裂为部分C(4个符号)和部分D(4个符号)(2个第二信道),4次PUSCH重复(4个 第三信道)被分裂为6次PUSCH重复(6个第二信道),如图10中的b所示。DMRS按照分裂后的PUSCH重复进行映射,如图10中的b所示。分裂后的PUSCH重复与相邻的PUSCH重复级联,具体地,由于该部分A无相邻的PUSCH重复,该部分A作为独立的PUSCH重复,该部分B与后面一个PUSCH重复进行级联(形成第一信道),该部分C与前面一个PUSCH重复进行级联(形成第一信道),该部分D与后面一个PUSCH重复进行级联(形成第一信道),形成级联PUSCH重复,同时一个TB映射在一个级联PUSCH重复中,如图10中的c所示。
因此,在实施例三中,根据分裂后的PUSCH repetition插入DMRS,保证不同多个PUSCH repetition之间DMRS对齐;根据级联后的PUSCH repetition映射TB,避免了孤立(orphan)符号出现,提高了传输效率。
可选地,作为实施例四,
网络设备为终端设备配置PUSCH的重复次数为4次(4个第三信道),第一个PUSCH重复的时域位置为第n+1个时隙的第3个符号-第n+1个时隙的第10个符号,后续的PUSCH重复在时域上紧接着前一个PUSCH重复资源,因此,可知4次PUSCH重复(4个第三信道)的时域资源,如图11中的a所示。此外,由于第二个PUSCH重复和第四个PUSCH重复跨时隙边界,第二个PUSCH重复在时域上被分裂为部分A(4个符号)和部分B(4个符号)(2个第二信道),第四个PUSCH重复在时域上被分裂为部分C(2个符号)和部分D(6个符号)(2个第二信道),4次PUSCH重复(4个第三信道)被分裂为6次PUSCH重复(6个第二信道),如图11中的b所示。DMRS按照分裂后的PUSCH重复进行映射,如图11中的b所示。分裂后的PUSCH重复与相邻的PUSCH重复级联,具体地,该部分A与前面一个PUSCH重复进行级联(形成第一信道),该部分B与后面一个PUSCH重复进行级联(形成第一信道),该部分C与前面一个PUSCH重复进行级联(形成第一信道),由于该部分D无相邻的PUSCH重复,该部分D作为独立的PUSCH重复,形成级联PUSCH重复,同时一个TB映射在一个级联PUSCH重复中,如图11中的c所示。
因此,在实施例四中,DMRS映射参考分裂后的PUSCH重复,保证DMRS总是对齐的,保证了DMRS解调性能,以及DMRS总是在PUSCH重复前端,提高检测速度。进一步地,根据级联后的PUSCH repetition映射TB,避免了孤立(orphan)符号出现,提高了传输效率。
图12示出了4个UE的PUSCH repetition对比图,4个UE的PUSCH repetition在时频域上有重叠,且时域上依次退后一个PUSCH repetition的位置。从图12可以看出,基于上述实施例三和实施例四中的规则进行PUSCH repetition级联/丢弃后,无DMRS与数据碰撞问题。
可选地,作为实施例五,
网络设备为终端设备配置PUSCH的重复次数为4次(4个第三信道),第一个PUSCH重复的时域位置为第n个时隙的第9个符号-第n+1个时隙的第2个符号,后续的PUSCH重复在时域上紧接着前一个PUSCH重复资源,因此,可知4次PUSCH重复(4个第三信道)的时域资源,DMRS按照初始的PUSCH重复(分裂之前的PUSCH重复)进行映射,其中DMRS资源是网络设备配置的,如图13中的a所示。此外,由于第一个PUSCH重复和第三个PUSCH重复跨时隙边界,第一个PUSCH重复在时域上被分裂为部分A(6个符号)和部分B(2个符号)(2个第二信道),第三个PUSCH重复在时域上被分裂为部分C(4个符号)和部分D(4个符号)(2个第二信道),4次PUSCH重复(4个第三信道)被分裂为6次PUSCH重复(6个第二信道)。分裂后的PUSCH重复与相邻的PUSCH重复级联,具体地,由于该部分A无相邻的PUSCH重复,该部分A作为独立的PUSCH重复,该部分B与后面一个PUSCH重复进行级联(形成第一信道),该部分C与前面一个PUSCH重复进行级联(形成第一信道),该部分D与后面一个PUSCH重复进行级联(形成第一信道),形成级联PUSCH重复,同时一个TB映射在一个级联PUSCH重复中,如图13中的b所示。
因此,在实施例五中,DMRS映射参考初始PUSCH重复,保证DMRS总是对齐的,保证了DMRS解调性能,与上述实施例四相比,DMRS开销较少。进一步地,根据级联后的PUSCH repetition映射TB,避免了orphan符号出现,提高了传输效率。
可选地,作为实施例六,
网络设备为终端设备配置PUSCH的重复次数为4次(4个第三信道),第一个PUSCH重复的时域位置为第n+1个时隙的第3个符号-第n+1个时隙的第10个符号,后续的PUSCH重复在时域上紧接着前一个PUSCH重复资源,因此,可知4次PUSCH重复(4个第三信道)的时域资源,DMRS按照初始的PUSCH重复(分裂之前的PUSCH重复)进行映射,其中DMRS资源是网络设备配置的,如图14中的a所示。对于最后一个分裂的PUSCH重复,由于没有相邻的PUSCH重复可以级联,则作为一个独立的PUSCH重复,对于这一独立的PUSCH重复,也插入DMRS,如图14中的b所示。此外,由于第二个PUSCH重复和第四个PUSCH重复跨时隙边界,第二个PUSCH重复在时域上被分 裂为部分A(4个符号)和部分B(4个符号)(2个第二信道),第四个PUSCH重复在时域上被分裂为部分C(2个符号)和部分D(6个符号)(2个第二信道),4次PUSCH重复(4个第三信道)被分裂为6次PUSCH重复(6个第二信道)。分裂后的PUSCH重复与相邻的PUSCH重复级联,具体地,该部分A与前面一个PUSCH重复进行级联(形成第一信道),该部分B与后面一个PUSCH重复进行级联(形成第一信道),该部分C与前面一个PUSCH重复进行级联(形成第一信道),由于该部分D无相邻的PUSCH重复,该部分D作为独立的PUSCH重复,形成级联PUSCH重复,同时一个TB映射在一个级联PUSCH重复中,如图14中的b所示。
因此,在实施例六中,DMRS映射参考初始PUSCH重复,保证DMRS总是对齐的,保证了DMRS解调性能,与上述实施例四相比,DMRS开销较少。进一步地,根据级联后的PUSCH repetition映射TB,避免了orphan符号出现,提高了传输效率。
图15是根据本申请实施例的无线通信方法300的示意性流程图,如图15所示,该方法300可以包括如下内容中的部分或全部:
S310,网络设备确定至少一个数据TB映射的第一信道,其中,该第一信道是由至少两个第二信道组合得到的;
S320,该网络设备在该第一信道上传输该至少一个数据TB。
至少一个数据TB映射的第一信道,也就是说,数据TB按照组合之后的信道进行映射。
可选地,在本申请实施例中所述的信道包括上行信道和/或下行信道。即该第一信道可以是上行信道,也可以是下行信道。该第二信道可以是上行信道,也可以是下行信道。
但需要注意的是,该第一信道与该第二信道为同一类型的信道,即该第一信道与该第二信道同为下行信道,或者,该第一信道与该第二信道同为上行信道。
例如,上行信道为PUSCH或物理上行控制信道(Physical Uplink Control Channel,PUCCH)。
又例如,下行信道为物理下行共享信道(Physical Downlink Shared Channel,PDSCH)或物理下行控制信道(Physical Downlink Control Channel,PDCCH)。
在该第一信道为上行信道时,S220具体可以是,该网络设备在该第一信道上接收该至少一个数据TB。在该第一信道为下行信道时,S220具体可以是,该网络设备在该第一信道上发送该至少一个数据TB。
需要说明的是,在本申请实施例中,两个信道组合也可以理解为是两个信道级联。
可选地,在本申请实施例中,该至少两个第二信道中的至少一个第二信道由第三信道分裂得到。
例如,第三信道跨时隙边界分裂之后形成该至少一个第二信道。
又例如,第三信道自动分裂(拆分)之后形成该至少一个第二信道。
需要说明的是,该第三信道与该第二信道为同一类型的信道,即该第三信道与该第二信道同为下行信道,或者,该第三信道与该第二信道同为上行信道。
可选地,在本申请实施例中,该网络设备向终端设备发送第一配置信息,该第一配置信息用于配置至少一个第三信道。
可选地,该至少一个第三信道可以是第三信道重复(repetition)。
例如,该第三信道重复次数为4次,即为4个第三信道,这4个第三信道在时域上连续分布。
可选地,网络设备可以通过上行授权(uplink grant,UL grant)给终端设备配置PUSCH repetition的资源。
可选地,在本申请实施例中,该第二信道是否支持组合是可以配置的。同理,该第二信道是否支持丢弃是可以配置的。
例如,该网络设备发送第一指示信息,该第一指示信息用于指示是否支持该第二信道进行组合和/或丢弃。
可选地,在本申请实施例中,也可以默认该第二信道支持组合和丢弃。
可选地,在本申请实施例中,在该第二信道支持组合和/或丢弃的情况下,该网络设备根据第一规则和第二规则,判断是否对该第二信道进行组合或者丢弃,其中,
该第一规则为以下中的至少一种:该第二信道时域长度是否小于或者等于第一门限值,该第二信道上待传输数据的等效码率是否大于或者等于k,k为正数,该第二信道是否具有数据传输资源;
该第二规则为该第二信道是否存在相邻的第二信道。
例如,k为1或者0.93。
需要说明的是,等效码率可用于确定可用的数据传输资源,也可以用于确定调制方式和比特。
可选地,在本申请实施例中,该网络设备发送第二配置信息,该第二配置信息用于配置该第一门限值。
可选地,在本申请实施例中,若满足以下情况中的至少一种,该网络设备确定该第二信道满足该第一规则:
该第二信道时域长度小于或者等于第一门限值,该第二信道上待传输数据的等效码率大于或者等于k,第二信道不具有数据传输资源;
和/或,
若该第二信道存在相邻的第二信道,该网络设备确定该第二信道满足该第二规则。
可选地,在本申请实施例中,该第一规则和/或该第二规则可以是网络设备通过无线资源控制(Radio Resource Control,RRC)信令给终端设备配置的。
可选地,在本申请实施例中,该网络设备具体可以通过如下方式判断是否对所述第二信道进行组合或者丢弃:
若该第二信道不满足该第一规则,该网络设备判断不对该第二信道进行组合或者丢弃;和/或,
若该第二信道满足该第一规则且不满足该第二规则,该网络设备判断对该第二信道进行丢弃;和/或,
若该第二信道满足该第一规则且满足该第二规则,该网络设备判断对该第二信道进行组合;和/或,
若该第二信道不满足该第一规则,该网络设备在该第二信道上独立传输数据TB。
可选地,在本申请实施例中,该网络设备将该第二信道与其相邻的第二信道进行组合。
可选地,在本申请实施例中,参考信号是根据该第一信道映射的。
可选地,在本申请实施例中,参考信号是根据该第二信道映射的。
可选地,在本申请实施例中,参考信号是根据第三信道映射的,其中,该第三信道为配置的信道。
可选地,该参考信号包括front loaded DMRS和/或additional DMRS。
应理解,无线通信方法300中的步骤和描述可以参考无线通信方法200中的相应步骤和描述,为了简洁,在此不再赘述。
因此,在本申请实施例中,网络设备可以在至少两个第二信道组合得到的第一信道上传输至少一个数据TB,从而可以提高系统效率,避免资源浪费。
图16示出了根据本申请实施例的终端设备400的示意性框图。如图16所示,该终端设备400包括:
处理单元410,用于确定至少一个数据TB映射的第一信道,其中,该第一信道是由至少两个第二信道组合得到的;
通信单元420,用于在该第一信道上传输该至少一个数据TB。
可选地,该至少两个第二信道中的至少一个第二信道由第三信道分裂得到。
可选地,该通信单元420还用于接收第一配置信息,该第一配置信息用于配置至少一个第三信道。
可选地,该通信单元420还用于接收第一指示信息,该第一指示信息用于指示是否支持该第二信道进行组合和/或丢弃。
可选地,该处理单元410还用于根据第一规则和第二规则,判断是否对该第二信道进行组合或者丢弃,其中,
该第一规则为以下中的至少一种:该第二信道时域长度是否小于或者等于第一门限值,该第二信道上待传输数据的等效码率是否大于或者等于k,k为正数,该第二信道是否具有数据传输资源;
该第二规则为该第二信道是否存在相邻的第二信道。
可选地,该第一门限值为预配置的,或者,该第一门限值为网络设备配置的。
可选地,若满足以下情况中的至少一种,该处理单元还用于确定该第二信道满足该第一规则:该第二信道时域长度小于或者等于第一门限值,该第二信道上待传输数据的等效码率大于或者等于k,第二信道不具有数据传输资源;
和/或,
若该第二信道存在相邻的第二信道,该处理单元还用于确定该第二信道满足该第二规则。
可选地,该处理单元410具体用于:
若该第二信道不满足该第一规则,判断不对该第二信道进行组合或者丢弃;和/或,
若该第二信道满足该第一规则且不满足该第二规则,判断对该第二信道进行丢弃;和/或,
若该第二信道满足该第一规则且满足该第二规则,判断对该第二信道进行组合;和/或,
若该第二信道不满足该第一规则,在该第二信道上独立传输数据TB。
可选地,该处理单元410还用于将该第二信道与其相邻的第二信道进行组合。
可选地,参考信号是根据该第一信道映射的。
可选地,参考信号是根据该第二信道映射的。
可选地,参考信号是根据第三信道映射的,其中,该第三信道为配置的信道。
可选地,该参考信号包括前置DMRS和/或附加DMRS。
可选地,该信道包括上行信道和/或下行信道。
应理解,根据本申请实施例的终端设备400可对应于本申请方法实施例中的终端设备,并且终端设备400中的各个单元的上述和其它操作和/或功能分别为了实现图6所示方法200中终端设备的相应流程,为了简洁,在此不再赘述。
图17示出了根据本申请实施例的网络设备500的示意性框图。如图17所示,该网络设备500包括:
处理单元510,用于确定至少一个数据传输块TB映射的第一信道,其中,该第一信道是由至少两个第二信道组合得到的;
通信单元520,用于在该第一信道上传输该至少一个数据TB。
可选地,该至少两个第二信道中的至少一个第二信道由第三信道分裂得到。
可选地,该通信单元520还用于发送第一配置信息,该第一配置信息用于配置至少一个第三信道。
可选地,该通信单元520还用于发送第一指示信息,该第一指示信息用于指示是否支持该第二信道进行组合和/或丢弃。
可选地,该处理单元510还用于根据第一规则和第二规则,判断是否对该第二信道进行组合或者丢弃,其中,
该第一规则为以下中的至少一种:该第二信道时域长度是否小于或者等于第一门限值,该第二信道上待传输数据的等效码率是否大于或者等于k,k为正数,该第二信道是否具有数据传输资源;
该第二规则为该第二信道是否存在相邻的第二信道。
可选地,该通信单元520还用于发送第二配置信息,该第二配置信息用于配置该第一门限值。
可选地,若满足以下情况中的至少一种,该处理单元还用于确定该第二信道满足该第一规则:该第二信道时域长度小于或者等于第一门限值,该第二信道上待传输数据的等效码率大于或者等于k,第二信道不具有数据传输资源;
和/或,
若该第二信道存在相邻的第二信道,该处理单元还用于确定该第二信道满足该第二规则。
可选地,该处理单元510具体用于:
若该第二信道不满足该第一规则,判断不对该第二信道进行组合或者丢弃;和/或,
若该第二信道满足该第一规则且不满足该第二规则,判断对该第二信道进行丢弃;和/或,
若该第二信道满足该第一规则且满足该第二规则,判断对该第二信道进行组合;和/或,
若该第二信道不满足该第一规则,在该第二信道上独立传输数据TB。
可选地,该处理单元510还用于将该第二信道与其相邻的第二信道进行组合。
可选地,参考信号是根据该第一信道映射的。
可选地,参考信号是根据该第二信道映射的。
可选地,参考信号是根据第三信道映射的,其中,该第三信道为配置的信道。
可选地,该参考信号包括前置DMRS和/或附加DMRS。
可选地,该信道包括上行信道和/或下行信道。
应理解,根据本申请实施例的网络设备500可对应于本申请方法实施例中的网络设备,并且网络设备500中的各个单元的上述和其它操作和/或功能分别为了实现图15所示方法300中网络设备的相应流程,为了简洁,在此不再赘述。
图18是本申请实施例提供的一种通信设备600示意性结构图。图18所示的通信设备600包括处理器610,处理器610可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图18所示,通信设备600还可以包括存储器620。其中,处理器610可以从存储器620中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器620可以是独立于处理器610的一个单独的器件,也可以集成在处理器610中。
可选地,如图18所示,通信设备600还可以包括收发器630,处理器610可以控制该收发器630与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器630可以包括发射机和接收机。收发器630还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备600具体可为本申请实施例的网络设备,并且该通信设备600可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备600具体可为本申请实施例的移动终端/终端设备,并且该通信设备600可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
图19是本申请实施例的装置的示意性结构图。图19所示的装置700包括处理器710,处理器710可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图19所示,装置700还可以包括存储器720。其中,处理器710可以从存储器720中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器720可以是独立于处理器710的一个单独的器件,也可以集成在处理器710中。
可选地,该装置700还可以包括输入接口730。其中,处理器710可以控制该输入接口730与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该装置700还可以包括输出接口740。其中,处理器710可以控制该输出接口740与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该装置可应用于本申请实施例中的网络设备,并且该装置可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该装置可应用于本申请实施例中的移动终端/终端设备,并且该装置可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
可选地,本申请实施例提到的装置也可以是芯片。例如可以是系统级芯片,系统芯片,芯片系统或片上系统芯片等。
图20是本申请实施例提供的一种通信系统800的示意性框图。如图20所示,该通信系统800包括终端设备810和网络设备820。
其中,该终端设备810可以用于实现上述方法中由终端设备实现的相应的功能,以及该网络设备820可以用于实现上述方法中由网络设备实现的相应的功能为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序产品可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序可应用于本申请实施例中的移动终端/终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。针对这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (66)

  1. 一种无线通信方法,其特征在于,包括:
    终端设备确定至少一个数据传输块TB映射的第一信道,其中,所述第一信道是由至少两个第二信道组合得到的;
    所述终端设备在所述第一信道上传输所述至少一个数据TB。
  2. 根据权利要求1所述的方法,其特征在于,所述至少两个第二信道中的至少一个第二信道由第三信道分裂得到。
  3. 根据权利要求2所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收第一配置信息,所述第一配置信息用于配置至少一个第三信道。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收第一指示信息,所述第一指示信息用于指示是否支持所述第二信道进行组合和/或丢弃。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备根据第一规则和第二规则,判断是否对所述第二信道进行组合或者丢弃,其中,
    所述第一规则为以下中的至少一种:所述第二信道时域长度是否小于或者等于第一门限值,所述第二信道上待传输数据的等效码率是否大于或者等于k,k为正数,所述第二信道是否具有数据传输资源;
    所述第二规则为所述第二信道是否存在相邻的第二信道。
  6. 根据权利要求5所述的方法,其特征在于,所述第一门限值为预配置的,或者,所述第一门限值为网络设备配置的。
  7. 根据权利要求5或6所述的方法,其特征在于,所述方法还包括:
    若满足以下情况中的至少一种,所述终端设备确定所述第二信道满足所述第一规则:
    所述第二信道时域长度小于或者等于第一门限值,所述第二信道上待传输数据的等效码率大于或者等于k,第二信道不具有数据传输资源;
    和/或,
    若所述第二信道存在相邻的第二信道,所述终端设备确定所述第二信道满足所述第二规则。
  8. 根据权利要求7所述的方法,其特征在于,所述终端设备根据第一规则和第二规则,判断是否对所述第二信道进行组合或者丢弃,包括:
    若所述第二信道不满足所述第一规则,所述终端设备判断不对所述第二信道进行组合或者丢弃;和/或,
    若所述第二信道满足所述第一规则且不满足所述第二规则,所述终端设备判断对所述第二信道进行丢弃;和/或,
    若所述第二信道满足所述第一规则且满足所述第二规则,所述终端设备判断对所述第二信道进行组合;和/或,
    若所述第二信道不满足所述第一规则,所述终端设备在所述第二信道上独立传输数据TB。
  9. 根据权利要求1至4中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备将所述第二信道与其相邻的第二信道进行组合。
  10. 根据权利要求1至9中任一项所述的方法,其特征在于,参考信号是根据所述第一信道映射的。
  11. 根据权利要求1至9中任一项所述的方法,其特征在于,参考信号是根据所述第二信道映射的。
  12. 根据权利要求1至9中任一项所述的方法,其特征在于,参考信号是根据第三信道映射的,其中,所述第三信道为配置的信道。
  13. 根据权利要求10至12中任一项所述的方法,其特征在于,所述参考信号包括前置解调参考信号DMRS和/或附加DMRS。
  14. 根据权利要求1至13中任一项所述的方法,其特征在于,所述信道包括上行信道和/或下行信道。
  15. 一种无线通信方法,其特征在于,包括:
    网络设备确定至少一个数据传输块TB映射的第一信道,其中,所述第一信道是由至少两个第二信道组合得到的;
    所述网络设备在所述第一信道上传输所述至少一个数据TB。
  16. 根据权利要求15所述的方法,其特征在于,所述至少两个第二信道中的至少一个第二信道 由第三信道分裂得到。
  17. 根据权利要求16所述的方法,其特征在于,所述方法还包括:
    所述网络设备发送第一配置信息,所述第一配置信息用于配置至少一个第三信道。
  18. 根据权利要求15至17中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备发送第一指示信息,所述第一指示信息用于指示是否支持所述第二信道进行组合和/或丢弃。
  19. 根据权利要求15至18中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备根据第一规则和第二规则,判断是否对所述第二信道进行组合或者丢弃,其中,
    所述第一规则为以下中的至少一种:所述第二信道时域长度是否小于或者等于第一门限值,所述第二信道上待传输数据的等效码率是否大于或者等于k,k为正数,所述第二信道是否具有数据传输资源;
    所述第二规则为所述第二信道是否存在相邻的第二信道。
  20. 根据权利要求19所述的方法,其特征在于,所述方法还包括:
    所述网络设备发送第二配置信息,所述第二配置信息用于配置所述第一门限值。
  21. 根据权利要求19或20所述的方法,其特征在于,所述方法还包括:
    若满足以下情况中的至少一种,所述网络设备确定所述第二信道满足所述第一规则:
    所述第二信道时域长度小于或者等于第一门限值,所述第二信道上待传输数据的等效码率大于或者等于k,第二信道不具有数据传输资源;
    和/或,
    若所述第二信道存在相邻的第二信道,所述网络设备确定所述第二信道满足所述第二规则。
  22. 根据权利要求21所述的方法,其特征在于,所述网络设备根据第一规则和第二规则,判断是否对所述第二信道进行组合或者丢弃,包括:
    若所述第二信道不满足所述第一规则,所述网络设备判断不对所述第二信道进行组合或者丢弃;和/或,
    若所述第二信道满足所述第一规则且不满足所述第二规则,所述网络设备判断对所述第二信道进行丢弃;和/或,
    若所述第二信道满足所述第一规则且满足所述第二规则,所述网络设备判断对所述第二信道进行组合;和/或,
    若所述第二信道不满足所述第一规则,所述网络设备在所述第二信道上独立传输数据TB。
  23. 根据权利要求15至18中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备将所述第二信道与其相邻的第二信道进行组合。
  24. 根据权利要求15至23中任一项所述的方法,其特征在于,参考信号是根据所述第一信道映射的。
  25. 根据权利要求15至23中任一项所述的方法,其特征在于,参考信号是根据所述第二信道映射的。
  26. 根据权利要求15至23中任一项所述的方法,其特征在于,参考信号是根据第三信道映射的,其中,所述第三信道为配置的信道。
  27. 根据权利要求24至26中任一项所述的方法,其特征在于,所述参考信号包括前置解调参考信号DMRS和/或附加DMRS。
  28. 根据权利要求15至27中任一项所述的方法,其特征在于,所述信道包括上行信道和/或下行信道。
  29. 一种终端设备,其特征在于,包括:
    处理单元,用于确定至少一个数据传输块TB映射的第一信道,其中,所述第一信道是由至少两个第二信道组合得到的;
    通信单元,用于在所述第一信道上传输所述至少一个数据TB。
  30. 根据权利要求29所述的终端设备,其特征在于,所述至少两个第二信道中的至少一个第二信道由第三信道分裂得到。
  31. 根据权利要求30所述的终端设备,其特征在于,所述通信单元还用于接收第一配置信息,所述第一配置信息用于配置至少一个第三信道。
  32. 根据权利要求29至31中任一项所述的终端设备,其特征在于,所述通信单元还用于接收第一指示信息,所述第一指示信息用于指示是否支持所述第二信道进行组合和/或丢弃。
  33. 根据权利要求29至32中任一项所述的终端设备,其特征在于,所述处理单元还用于根据第 一规则和第二规则,判断是否对所述第二信道进行组合或者丢弃,其中,
    所述第一规则为以下中的至少一种:所述第二信道时域长度是否小于或者等于第一门限值,所述第二信道上待传输数据的等效码率是否大于或者等于k,k为正数,所述第二信道是否具有数据传输资源;
    所述第二规则为所述第二信道是否存在相邻的第二信道。
  34. 根据权利要求33所述的终端设备,其特征在于,所述第一门限值为预配置的,或者,所述第一门限值为网络设备配置的。
  35. 根据权利要求33或34所述的终端设备,其特征在于,
    若满足以下情况中的至少一种,所述处理单元还用于确定所述第二信道满足所述第一规则:
    所述第二信道时域长度小于或者等于第一门限值,所述第二信道上待传输数据的等效码率大于或者等于k,第二信道不具有数据传输资源;
    和/或,
    若所述第二信道存在相邻的第二信道,所述处理单元还用于确定所述第二信道满足所述第二规则。
  36. 根据权利要求35所述的终端设备,其特征在于,所述处理单元具体用于:
    若所述第二信道不满足所述第一规则,判断不对所述第二信道进行组合或者丢弃;和/或,
    若所述第二信道满足所述第一规则且不满足所述第二规则,判断对所述第二信道进行丢弃;和/或,
    若所述第二信道满足所述第一规则且满足所述第二规则,判断对所述第二信道进行组合;和/或,
    若所述第二信道不满足所述第一规则,在所述第二信道上独立传输数据TB。
  37. 根据权利要求29至32中任一项所述的终端设备,其特征在于,所述处理单元还用于将所述第二信道与其相邻的第二信道进行组合。
  38. 根据权利要求29至37中任一项所述的终端设备,其特征在于,参考信号是根据所述第一信道映射的。
  39. 根据权利要求29至37中任一项所述的终端设备,其特征在于,参考信号是根据所述第二信道映射的。
  40. 根据权利要求29至39中任一项所述的终端设备,其特征在于,参考信号是根据第三信道映射的,其中,所述第三信道为配置的信道。
  41. 根据权利要求38至40中任一项所述的终端设备,其特征在于,所述参考信号包括前置解调参考信号DMRS和/或附加DMRS。
  42. 根据权利要求29至41中任一项所述的终端设备,其特征在于,所述信道包括上行信道和/或下行信道。
  43. 一种网络设备,其特征在于,包括:
    处理单元,用于确定至少一个数据传输块TB映射的第一信道,其中,所述第一信道是由至少两个第二信道组合得到的;
    通信单元,用于在所述第一信道上传输所述至少一个数据TB。
  44. 根据权利要求43所述的网络设备,其特征在于,所述至少两个第二信道中的至少一个第二信道由第三信道分裂得到。
  45. 根据权利要求44所述的网络设备,其特征在于,所述通信单元还用于发送第一配置信息,所述第一配置信息用于配置至少一个第三信道。
  46. 根据权利要求43至45中任一项所述的网络设备,其特征在于,所述通信单元还用于发送第一指示信息,所述第一指示信息用于指示是否支持所述第二信道进行组合和/或丢弃。
  47. 根据权利要求43至46中任一项所述的网络设备,其特征在于,所述处理单元还用于根据第一规则和第二规则,判断是否对所述第二信道进行组合或者丢弃,其中,
    所述第一规则为以下中的至少一种:所述第二信道时域长度是否小于或者等于第一门限值,所述第二信道上待传输数据的等效码率是否大于或者等于k,k为正数,所述第二信道是否具有数据传输资源;
    所述第二规则为所述第二信道是否存在相邻的第二信道。
  48. 根据权利要求47所述的网络设备,其特征在于,所述通信单元还用于发送第二配置信息,所述第二配置信息用于配置所述第一门限值。
  49. 根据权利要求47或48所述的网络设备,其特征在于,
    若满足以下情况中的至少一种,所述处理单元还用于确定所述第二信道满足所述第一规则:
    所述第二信道时域长度小于或者等于第一门限值,所述第二信道上待传输数据的等效码率大于或者等于k,第二信道不具有数据传输资源;
    和/或,
    若所述第二信道存在相邻的第二信道,所述处理单元还用于确定所述第二信道满足所述第二规则。
  50. 根据权利要求49所述的网络设备,其特征在于,所述处理单元具体用于:
    若所述第二信道不满足所述第一规则,判断不对所述第二信道进行组合或者丢弃;和/或,
    若所述第二信道满足所述第一规则且不满足所述第二规则,判断对所述第二信道进行丢弃;和/或,
    若所述第二信道满足所述第一规则且满足所述第二规则,判断对所述第二信道进行组合;和/或,
    若所述第二信道不满足所述第一规则,在所述第二信道上独立传输数据TB。
  51. 根据权利要求43至46中任一项所述的网络设备,其特征在于,所述处理单元还用于将所述第二信道与其相邻的第二信道进行组合。
  52. 根据权利要求43至51中任一项所述的网络设备,其特征在于,参考信号是根据所述第一信道映射的。
  53. 根据权利要求43至51中任一项所述的网络设备,其特征在于,参考信号是根据所述第二信道映射的。
  54. 根据权利要求43至51中任一项所述的网络设备,其特征在于,参考信号是根据第三信道映射的,其中,所述第三信道为配置的信道。
  55. 根据权利要求52至54中任一项所述的网络设备,其特征在于,所述参考信号包括前置解调参考信号DMRS和/或附加DMRS。
  56. 根据权利要求43至55中任一项所述的网络设备,其特征在于,所述信道包括上行信道和/或下行信道。
  57. 一种终端设备,其特征在于,包括:处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至14中任一项所述的方法。
  58. 一种网络设备,其特征在于,包括:处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求15至28中任一项所述的方法。
  59. 一种装置,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述装置的设备执行如权利要求1至14中任一项所述的方法。
  60. 一种装置,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述装置的设备执行如权利要求15至28中任一项所述的方法。
  61. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至14中任一项所述的方法。
  62. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求15至28中任一项所述的方法。
  63. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至14中任一项所述的方法。
  64. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求15至28中任一项所述的方法。
  65. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1至14中任一项所述的方法。
  66. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求15至28中任一项所述的方法。
PCT/CN2019/086287 2019-05-09 2019-05-09 无线通信方法、终端设备和网络设备 WO2020223976A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201980019824.4A CN112219419B (zh) 2019-05-09 2019-05-09 无线通信方法、终端设备和网络设备
PCT/CN2019/086287 WO2020223976A1 (zh) 2019-05-09 2019-05-09 无线通信方法、终端设备和网络设备
EP19928093.4A EP3955629B1 (en) 2019-05-09 2019-05-09 Wireless communication method, terminal device, and network device
JP2021566594A JP2022537252A (ja) 2019-05-09 2019-05-09 無線通信方法、端末機器及びネットワーク機器
US17/522,586 US20220070892A1 (en) 2019-05-09 2021-11-09 Wireless communication method, terminal device, and network device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/086287 WO2020223976A1 (zh) 2019-05-09 2019-05-09 无线通信方法、终端设备和网络设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/522,586 Continuation US20220070892A1 (en) 2019-05-09 2021-11-09 Wireless communication method, terminal device, and network device

Publications (1)

Publication Number Publication Date
WO2020223976A1 true WO2020223976A1 (zh) 2020-11-12

Family

ID=73051428

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/086287 WO2020223976A1 (zh) 2019-05-09 2019-05-09 无线通信方法、终端设备和网络设备

Country Status (5)

Country Link
US (1) US20220070892A1 (zh)
EP (1) EP3955629B1 (zh)
JP (1) JP2022537252A (zh)
CN (1) CN112219419B (zh)
WO (1) WO2020223976A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112703701A (zh) * 2020-12-18 2021-04-23 北京小米移动软件有限公司 解调参考信号映射、装置、设备及其存储介质

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11711842B2 (en) * 2018-11-02 2023-07-25 Qualcomm Incorporated Aggregation factor associations in uplink and downlink transmissions
US11996941B2 (en) * 2020-09-11 2024-05-28 Qualcomm Incorporated Techniques for providing dedicated demodulation reference signals for transmission repetitions

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101212813A (zh) * 2007-12-25 2008-07-02 中兴通讯股份有限公司 一种动态无线信道的管理系统和管理方法
US20130322270A1 (en) * 2012-06-02 2013-12-05 International Business Machines Corporation Techniques for Segregating Circuit-Switched Traffic from Packet-Switched Traffic in Radio Access Networks
CN104025647A (zh) * 2011-11-07 2014-09-03 高通股份有限公司 自适应灵活带宽无线系统
WO2018228176A1 (zh) * 2017-06-15 2018-12-20 华为技术有限公司 通信方法、终端设备和网络设备
CN109150379A (zh) * 2017-06-16 2019-01-04 华为技术有限公司 一种通信方法、网络设备及终端设备

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9325483B2 (en) * 2013-03-15 2016-04-26 Wi-Lan Labs, Inc. Flexible MIMO resource allocation through cross-correlation nulling and frequency domain segmented receiver processing
EP3332499A1 (en) * 2015-08-06 2018-06-13 Telefonaktiebolaget LM Ericsson (PUBL) Uplink harq procedure for mtc operation
CN108023671B (zh) * 2016-11-04 2022-03-29 中兴通讯股份有限公司 一种数据传输方法、基站、用户设备及系统
CN108418659A (zh) * 2017-02-10 2018-08-17 中兴通讯股份有限公司 一种数据传输方法、装置及相关设备
CN113728714B (zh) * 2019-02-15 2024-09-06 瑞典爱立信有限公司 用于多段pusch的传送格式

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101212813A (zh) * 2007-12-25 2008-07-02 中兴通讯股份有限公司 一种动态无线信道的管理系统和管理方法
CN104025647A (zh) * 2011-11-07 2014-09-03 高通股份有限公司 自适应灵活带宽无线系统
US20130322270A1 (en) * 2012-06-02 2013-12-05 International Business Machines Corporation Techniques for Segregating Circuit-Switched Traffic from Packet-Switched Traffic in Radio Access Networks
WO2018228176A1 (zh) * 2017-06-15 2018-12-20 华为技术有限公司 通信方法、终端设备和网络设备
CN109150379A (zh) * 2017-06-16 2019-01-04 华为技术有限公司 一种通信方法、网络设备及终端设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3955629A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112703701A (zh) * 2020-12-18 2021-04-23 北京小米移动软件有限公司 解调参考信号映射、装置、设备及其存储介质
WO2022126654A1 (zh) * 2020-12-18 2022-06-23 北京小米移动软件有限公司 解调参考信号映射、装置、设备及其存储介质
CN112703701B (zh) * 2020-12-18 2023-11-14 北京小米移动软件有限公司 解调参考信号映射、装置、设备及其存储介质

Also Published As

Publication number Publication date
EP3955629A4 (en) 2022-05-04
JP2022537252A (ja) 2022-08-25
CN112219419A (zh) 2021-01-12
EP3955629A1 (en) 2022-02-16
US20220070892A1 (en) 2022-03-03
CN112219419B (zh) 2022-08-02
EP3955629B1 (en) 2024-05-01

Similar Documents

Publication Publication Date Title
US11368339B2 (en) Sounding reference signal transmission method, network device and terminal device
WO2019213845A1 (zh) 无线通信方法、通信设备、芯片和系统
WO2020087509A1 (zh) 无线通信方法、终端设备和网络设备
US11477307B2 (en) Media access control protocol data unit processing method and apparatus
US20220070892A1 (en) Wireless communication method, terminal device, and network device
WO2021163938A1 (zh) 天线切换方法、终端设备和通信设备
WO2020211096A1 (zh) 无线通信方法、终端设备和网络设备
WO2020186532A1 (zh) 无线通信方法、终端设备和网络设备
WO2019034130A1 (zh) 传输方法、发送端和接收端
WO2019214660A1 (zh) 通信方法和通信装置
US20210194637A1 (en) Method for determining harq-ack codebook, terminal device and network device
US20220052796A1 (en) Harq information feedback method and device
WO2020073257A1 (zh) 无线通信方法和终端设备
WO2020073336A1 (zh) 一种重复传输信息的方法、终端设备及网络设备
WO2020034223A1 (zh) Harq信息的传输方法、网络设备和终端设备
WO2019191987A1 (zh) 传输上行数据的方法、终端设备和网络设备
WO2019084800A1 (zh) 上报射频能力的方法、终端设备和网络设备
TWI771519B (zh) 傳輸數據的方法和設備
US20230198678A1 (en) Wireless communication method, terminal device and network device
WO2022217443A1 (zh) 信道估计方法、终端设备、网络设备、芯片和存储介质
WO2021062869A1 (zh) 无线通信方法和终端设备
EP3751930B1 (en) Method and apparatus for transmitting harq information, and computer storage medium
WO2021120009A1 (zh) 信号检测方法、信号传输方法、终端设备和网络设备
WO2020199219A1 (zh) 功率控制的方法、终端设备和网络设备
WO2021196147A1 (zh) 信息传输的方法、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19928093

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021566594

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019928093

Country of ref document: EP

Effective date: 20211111