WO2022126654A1 - 解调参考信号映射、装置、设备及其存储介质 - Google Patents

解调参考信号映射、装置、设备及其存储介质 Download PDF

Info

Publication number
WO2022126654A1
WO2022126654A1 PCT/CN2020/137770 CN2020137770W WO2022126654A1 WO 2022126654 A1 WO2022126654 A1 WO 2022126654A1 CN 2020137770 W CN2020137770 W CN 2020137770W WO 2022126654 A1 WO2022126654 A1 WO 2022126654A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
transmission resource
demodulation reference
actual transmission
symbol
Prior art date
Application number
PCT/CN2020/137770
Other languages
English (en)
French (fr)
Inventor
李媛媛
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2020/137770 priority Critical patent/WO2022126654A1/zh
Priority to CN202080003946.7A priority patent/CN112703701B/zh
Publication of WO2022126654A1 publication Critical patent/WO2022126654A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT

Definitions

  • the present invention relates to the field of mobile communication technologies, and in particular, to a demodulation reference signal mapping, an apparatus, a device, and a storage medium thereof.
  • the protocol supports PUSCH (Physical uplink shared channel, physical uplink shared channel) to obtain a larger receiving SNR (SIGNAL NOISE RATIO, signal-to-noise ratio) through repeated transmission.
  • PUSCH Physical uplink shared channel
  • SNR SIGNAL NOISE RATIO, signal-to-noise ratio
  • the embodiment of the first aspect of the present invention proposes a demodulation reference signal mapping method.
  • the method is applied to a terminal device and includes: determining a plurality of actual transmission resources corresponding to logical transmission resources that satisfy the splitting condition; The signals are mapped onto valid symbols adjacent to the split position in at least one actual transmission resource.
  • the split position includes: a time slot; and/or an invalid symbol.
  • the mapping the demodulation reference signal to a valid symbol adjacent to the split position in at least one actual transmission resource includes: mapping the demodulation reference signal to an actual transmission resource before a time slot boundary On the last valid symbol of , where the actual transmission resource before the slot boundary contains multiple valid symbols.
  • mapping the demodulation reference signal to a valid symbol adjacent to the split position in at least one actual transmission resource includes: mapping the demodulation reference signal to an actual transmission resource before a time slot boundary , wherein the actual transmission resource before the slot boundary contains one valid symbol.
  • the mapping of the demodulation reference signal to a valid symbol adjacent to the split position in at least one actual transmission resource includes: mapping the demodulation reference signal to an actual transmission resource after a slot boundary On the first valid symbol of , where an actual transmission resource after the slot boundary includes multiple valid symbols.
  • the mapping of the demodulation reference signal to a valid symbol adjacent to the split position in at least one actual transmission resource includes: mapping the demodulation reference signal to an actual transmission resource after a slot boundary , where an actual transmission resource after the slot boundary contains one valid symbol.
  • the mapping the demodulation reference signal to the valid symbols adjacent to the split position in at least one actual transmission resource includes: mapping the demodulation reference signal to the valid symbol in the actual transmission resource preceding the invalid symbol. On the last valid symbol, wherein, the previous actual transmission resource of the invalid symbol includes multiple valid symbols.
  • the mapping the demodulation reference signal to the valid symbols adjacent to the split position in at least one actual transmission resource includes: mapping the demodulation reference signal to the valid symbol in the actual transmission resource preceding the invalid symbol. On the valid symbols, wherein, the actual transmission resource before the invalid symbol includes one valid symbol.
  • the mapping of the demodulation reference signal to a valid symbol adjacent to the split position in at least one actual transmission resource includes: mapping the demodulation reference signal to a valid symbol in an actual transmission resource after the invalid symbol. On the first valid symbol, an actual transmission resource after the invalid symbol includes multiple valid symbols.
  • the mapping of the demodulation reference signal to a valid symbol adjacent to the split position in at least one actual transmission resource includes: mapping the demodulation reference signal to a valid symbol in an actual transmission resource after the invalid symbol. On the valid symbols, the actual transmission resource after the invalid symbols includes one valid symbol.
  • the embodiment of the second aspect of the present invention provides a demodulation reference signal mapping apparatus, the apparatus is applied to terminal equipment, and includes: a splitting module, configured to determine a plurality of actual transmissions corresponding to logical transmission resources satisfying splitting conditions resource; a mapping module, configured to map the demodulation reference signal to a valid symbol adjacent to the split position in at least one actual transmission resource.
  • An embodiment of a third aspect of the present invention provides a communication device, including a processor, a transceiver, a memory, and a computer program stored on the memory, where the processor runs the computer program to implement the implementation of the first aspect Example of the proposed demodulation reference signal mapping method.
  • Embodiments of the fourth aspect of the present invention provide a processor-readable storage medium, where the processor-readable storage medium stores a computer program, and the computer program is used to cause the processor to execute the storage medium provided by the embodiment of the first aspect. Demodulation reference signal mapping method.
  • a plurality of actual transmission resources corresponding to the logical transmission resources satisfying the splitting condition are determined, and then the demodulation reference signal is mapped to the valid symbols adjacent to the splitting position in at least one actual transmission resource.
  • the utilization rate of transmission resources is improved, technical support is provided for scenarios such as retransmission of information to improve coverage quality, and resource consumption during demodulation reference signal mapping is reduced.
  • FIG. 1 is a schematic diagram of an information transmission scenario of a transmission resource according to an embodiment of the present invention
  • FIG. 2 is a flowchart of a method for mapping a demodulation reference signal according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a demodulation reference signal mapping scenario according to the first embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a demodulation reference signal mapping scenario according to a second embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a demodulation reference signal mapping scenario according to a third embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a demodulation reference signal mapping scenario according to a fourth embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a demodulation reference signal mapping scenario according to a fifth embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a demodulation reference signal mapping scenario according to a sixth embodiment of the present invention.
  • FIG. 9 is a schematic diagram of a demodulation reference signal mapping scenario according to a seventh embodiment of the present invention.
  • FIG. 10 is a schematic diagram of a demodulation reference signal mapping scenario according to an eighth embodiment of the present invention.
  • FIG. 11 is a schematic diagram of a demodulation reference signal mapping scenario according to a ninth embodiment of the present invention.
  • FIG. 12 is a schematic diagram of a demodulation reference signal mapping scenario according to a tenth embodiment of the present invention.
  • FIG. 13 is a schematic diagram of a demodulation reference signal mapping scenario according to an eleventh embodiment of the present invention.
  • FIG. 14 is a schematic diagram of a demodulation reference signal mapping scenario according to a twelfth embodiment of the present invention.
  • FIG. 15 is a schematic structural diagram of a demodulation reference signal mapping apparatus according to the present invention.
  • FIG. 16 is a structural block diagram of a communication device according to an embodiment of the present invention.
  • the present invention proposes a demodulation reference signal mapping method to fully utilize transmission resources such as channels.
  • This demodulation reference signal mapping method can be applied to any scenario where there is a pair of transmission resources.
  • the protocol supports PUSCH to obtain a larger received SNR through repeated transmission.
  • R16 proposes repetition
  • the retransmission mode of type B is applicable to scheduled PUSCH and authorization-free scheduled PUSCH.
  • the base station sends an uplink grant or a grant-free indication to repeat transmission of one or more nominal PUSCHs.
  • the terminal transmits one or more actual PUSCH copies in one time slot, or transmits two or more actual PUSCH copies in consecutively available time slots.
  • the remaining symbols may be considered as potentially valid symbols. If the number of consecutive potentially valid symbols of a nominal PUSCH in a slot is greater than 0, it can be mapped to an actual PUSCH replica, and the time domain resources of a nominal PUSCH replica may include time domain resources of one or more actual PUSCH replicas.
  • the terminal device does not send a single symbol copy of the actual PUSCH unless the single symbol is the duration L of the nominal PUSCH indicated by the base station.
  • an actual PUSCH replica contains only one time domain resource (a time domain resource is represented by a cell in the figure, and the time domain resource can also be understood as a symbol unit in a retransmission scenario), then Not for sending the actual PUSCH copy, resulting in a waste of time domain resources corresponding to the actual PUSCH copy.
  • this part of the time domain resources can be used, it will definitely have a positive impact on retransmission. For example, it will increase the retransmission rate. transmission efficiency, etc.
  • the demodulation reference signal mapping method according to the embodiment of the present invention is described in detail below with reference to specific embodiments, wherein the method is applied to terminal equipment, and the terminal equipment includes but is not limited to communication equipment such as mobile phones and wearable terminal equipment.
  • FIG. 2 is a flowchart of a demodulation reference signal mapping method provided according to an embodiment of the present invention, wherein the method includes:
  • Step 201 Determine a plurality of actual transmission resources corresponding to the logical transmission resources satisfying the splitting condition.
  • the logical transmission resource can be understood as a theoretically transmissible transmission resource defined by the protocol.
  • the nominal PUSCH time domain resource in the retransmission scenario can be a possible example of the logical transmission resource
  • the actual transmission resource can be It is understood as the transmission resources available for transmission according to the actual transmission environment, for example, the actual PUSCH time domain resources in the retransmission scenario may be a possible example of the actual transmission resources.
  • the logical transmission resource when the logical transmission resource satisfies the split condition, the logical transmission resource will be split. Therefore, in this embodiment, a plurality of actual transmission resources corresponding to the logical transmission resource satisfying the split condition are determined. , so as to transmit information based on actual transmission resources.
  • splitting conditions are different, and the methods for determining multiple actual transmission resources corresponding to the logical transmission resources satisfying the splitting conditions are different. Examples are as follows:
  • the transmission resources on both sides of the logical transmission resource across the time slot boundary are respectively determined as an actual transmission resource.
  • the logical transmission resource in this embodiment is divided into multiple time slots in the time domain, and each time slot contains a fixed number of symbols. Therefore, each time slot is defined by the fixed number of symbols to be different from other time slots. If there is a logical transmission resource across time slots, the transmission resource whose logical transmission resource is located on one side of the time slot boundary is directly determined as an actual transmission resource, and the logical transmission resource is located on the other side of the time slot boundary. The transmission resource is determined to be another actual transmission resource.
  • each time slot includes 14 symbols, resulting in a time slot boundary between time slots.
  • the divided logical transmission resource Nominal#1 spans time slots, 1 symbol is in the S time slot, and 2 symbols are in the U time slot. Therefore, continue to refer to Fig.
  • the logical transmission resources that cross the time slot boundary can be determined as two actual transmission resources at the time slot boundary, that is, the 14th symbol (ie, symbol 13) of the S time slot is determined as an actual transmission resource Actual#1, and the The first and second (ie, symbols 0 and 1) symbols of the U slot are determined as an actual transmission resource Actual#2.
  • the logical transmission resources located on both sides of the invalid symbol and belonging to the same time slot are divided into two actual transmission resources. If there is an invalid symbol in the logical transmission resource, the logical transmission resource is directly located in the invalid symbol. The transmission resource on one side of the symbol is determined as an actual transmission resource, and the transmission resource whose logical transmission resource is located on the other side of the invalid symbol is determined as another actual transmission resource.
  • the logical transmission resource in this embodiment is divided into multiple time slots in the time domain, and each time slot contains a fixed number of symbols, which can be understood as the smallest unit of time slots.
  • the symbol can be an Orthogonal Frequency Division Multiplexing (OFDM) symbol, and each symbol may be valid or invalid due to its transmission performance. In practical applications, it will be able to carry the current user to send
  • the symbol of the data is defined as a valid symbol, and the symbol that cannot carry the data sent by the current user is defined as an invalid symbol. Since the invalid transmission symbol cannot carry the data currently sent by the user, in this embodiment, the invalid symbol is used as the boundary. Transmission resources belonging to the same logical transmission resource on both sides of the invalid symbol are determined as two actual transmission resources.
  • multiple logical transmission resources namely Nominal# in the figure, are preset. If the symbol 3 in Nominal#2 is an invalid transmission symbol, then as shown in FIG. 4 , the Nominal#2 The symbol 2 in is set as an actual transmission resource Actual#3, and the symbol 4 is determined as an actual transmission resource Actual#4.
  • transmission resources belonging to the same logical transmission resource on both sides of the time slot boundary are determined as two actual transmission resources.
  • the logical transmission resource in this embodiment is divided into multiple time slots in the time domain, and each time slot contains a fixed number of symbols. Therefore, each time slot is defined by the fixed number of symbols to be different from other time slots. time slot boundary. Also, the logical transmission resources that cross the slot boundary can be determined as two actual transmission resources at the slot boundary.
  • the logical transmission resource in this embodiment is divided into multiple time slots in the time domain, each time slot contains a fixed number of symbols, and each symbol may be valid or invalid due to its transmission performance, Since the invalid transmission symbol cannot carry the data currently sent by the user, in this embodiment, the invalid symbol is also used as the boundary to split the same logical transmission resource located on both sides of the invalid symbol into two actual transmission resources.
  • the number of symbols included in each time slot is preset to be fixed.
  • each time slot includes 14 symbols, thus resulting in a slot boundary between the time slots, the divided logical transmission resource Nominal#1 spans time slots, 1 symbol is in the S time slot, and 2 symbols are in the U time slot. Therefore, continue to refer to the figure 5.
  • the transmission resources belonging to the same logical transmission resource on both sides of the time slot boundary can be determined as two actual transmission resources at the time slot boundary, that is, the 14th symbol of the S time slot is determined as an actual transmission resource Actual#1,
  • the first and second (ie, symbols 0 and 1) symbols of the U slot are determined as an actual transmission resource Actual#2.
  • multiple logical transmission resources namely Nominal# in the figure, are preset. If the symbol 3 in Nominal#2 is an invalid transmission resource, then as shown in FIG. 5, the symbol 2 in Nominal#2 is set For an actual transmission resource Actual#3, the symbol 4 is determined as an actual transmission resource Actual#4.
  • Step 202 Map the demodulation reference signal to a valid symbol adjacent to the split position in at least one actual transmission resource.
  • the demodulation reference signal can be understood as guiding information used to guide the information in the transmission resource to be demodulated.
  • a possible example of the demodulation reference signal is DMRS (DeModulation-Reference Signal, Demodulation-Reference Signal) in a retransmission scenario.
  • demodulation reference signal for the convenience of description, in all the embodiments of the present invention, the DMRS is used as an example of the demodulation reference signal for description.
  • the demodulation reference signal is mapped to at least one actual transmission resource on the valid symbol adjacent to the split position.
  • the demodulation reference signal is mapped to at least one actual transmission resource on the valid symbol adjacent to the split position. For example, taking the scenario shown in FIG. 5 as an example, as shown in FIG. 6 , the The DMRS is mapped to the 14th symbol of the S slot, that is, symbol 13.
  • mapping the demodulation reference signal on the valid symbol adjacent to the split position on the one hand, it can be ensured that even if the actual transmission resource only contains one valid symbol, it can be mapped to it, avoiding the waste of the transmission resource; On the one hand, since it is mapped to a valid signal adjacent to the split position, it can be guaranteed that one mapping can be used by at least two adjacent actual transmission resources, which further reduces resource consumption.
  • the demodulation reference signal mapping method determines a plurality of actual transmission resources corresponding to the logical transmission resources satisfying the splitting condition, and further maps the demodulation reference signal to at least one actual transmission resource and splits it. on adjacent valid symbols.
  • the utilization rate of transmission resources is improved, technical support is provided for scenarios such as retransmission of information to improve coverage quality, and resource consumption during demodulation reference signal mapping is reduced.
  • the split position may include time slot boundaries, invalid symbols, or time slot boundaries and invalid symbols. Therefore, in this embodiment, the actual transmission resources are diverse, and therefore, the The manner in which the demodulation reference signal is mapped to the valid symbols adjacent to the split position in at least one actual transmission resource must also be diverse.
  • the following examples illustrate:
  • the manner of mapping the demodulation reference signal to the valid symbol adjacent to the split position in at least one actual transmission resource includes at least one or more of the following:
  • the demodulation reference signal is mapped to the last valid symbol in an actual transmission resource before the slot boundary, where the actual transmission resource before the slot boundary contains multiple valid symbols.
  • the DMRS is mapped to the 14th symbol of the S slot, so that the mapped DMRS can be used as either the demodulation reference signal of Actual#1 or the demodulation reference signal of Actual#2, It can even be used as a demodulation reference signal for subsequent actual transmission resources such as Actual#3. Since the demodulation reference signal is ahead of the time slots of other actual transmission resources, the demodulation efficiency of subsequent actual transmission resources can be improved.
  • the demodulation reference signal is mapped to the valid symbol in the actual transmission resource before the time slot boundary, wherein the actual transmission resource before the time slot boundary contains one valid symbol, that is, the implementation of the present invention
  • a transmission resource containing only one valid symbol is fully utilized.
  • the symbol 13 in Nominal#1 is a valid transmission symbol
  • the symbol 13 in Nominal#1 is determined as an actual transmission resource Actual#1
  • symbols 0 and 1 are determined as an actual transmission resource.
  • Actual#2 as shown in FIG. 7
  • the DMRS is mapped to the 14th symbol of the S slot, that is, the symbol corresponding to Actual#1. Therefore, the mapped DMRS can be used as the demodulation reference signal of Actual#1. It can also be used as a demodulation reference signal for Actual#2, or even as a demodulation reference signal for subsequent actual transmission resources such as Actual#3. Since the demodulation reference signal is ahead of the time slots of other actual transmission resources, it can improve the subsequent actual transmission resources. Demodulation efficiency of transmission resources.
  • the demodulation reference signal is mapped to the first valid symbol in an actual transmission resource after the slot boundary, where the actual transmission resource after the slot boundary includes multiple valid symbols. That is, in this embodiment, if the actual transmission resource after the time slot boundary includes multiple valid symbols, the first symbol of the actual transmission resource after the disaster is used as the mapping object of the demodulation reference signal.
  • the divided logical transmission resource Nominal#1 spans time slots, 1 symbol is in the S time slot, and 2 symbols are in the U time slot. Therefore, referring to FIG. 8, that is, the S time slot
  • the 14th symbol is determined as an actual transmission resource Actual#1
  • the first and second (ie symbols 0 and 1) symbols of the U slot are determined as an actual transmission resource Actual#2
  • the demodulation reference can be The signal is mapped to the first symbol in Actual#2, which is symbol 0 of the U slot. Therefore, the mapped DMRS can be used as both the demodulation reference signal of Actual#1, the demodulation reference signal of Actual#2, and even the demodulation reference signal of subsequent actual transmission resources such as Actual#3.
  • the reference signal Actual#2 is located in the first symbol of itself, so the information transmission efficiency in Actual#2 is improved, and the time slot of the subsequent actual transmission resources is higher than that of other subsequent actual transmission resources, which can improve the solution of the subsequent actual transmission resources.
  • the adjustment efficiency is relatively close to Actual#1, and it can also be used for information transmission of Actual#1.
  • the demodulation reference signal is mapped to a valid symbol in an actual transmission resource after the slot boundary, where the actual transmission resource after the slot boundary contains one valid symbol.
  • multiple logical transmission resources namely Nominal# in the figure, are preset. If symbols 12 and 13 in Nominal#1 are located in the same time slot, symbol 0 is located in the same time slot. One time slot, symbols 12 and 13 are determined as an actual transmission resource Actual#1, and symbol 0 is determined as an actual transmission resource Actual#2, wherein the demodulation reference signal can be mapped to the symbol 0 in Actual#2 . Therefore, the mapped DMRS can be used as both the demodulation reference signal of Actual#1, the demodulation reference signal of Actual#2, and even the demodulation reference signal of subsequent actual transmission resources such as Actual#3.
  • the reference signal Actual#2 is located in the first symbol of itself, so the information transmission efficiency in Actual#2 is improved, and the time slot of the subsequent actual transmission resources is higher than that of other subsequent actual transmission resources, which can improve the solution of the subsequent actual transmission resources.
  • the adjustment efficiency is relatively close to Actual#1, and it can also be used for information transmission of Actual#1.
  • the manner of mapping the demodulation reference signal to the valid symbols adjacent to the splitting position in at least one actual transmission resource includes at least one or more of the following:
  • the demodulation reference signal is mapped to the last valid symbol in the actual transmission resource preceding the invalid symbol, where the actual transmission resource preceding the invalid symbol includes a plurality of valid symbols.
  • multiple logical transmission resources are preset, namely Nominal# in the figure. If the symbol 2 in Nominal#2 is an invalid transmission symbol, then as shown in FIG. 10 , in Nominal#1
  • the symbols 0 and 1 are an actual transmission resource Actual#2, and the symbols 3 and 4 are an actual transmission resource Actual#3, then the DMRS can be mapped to the last valid symbol in Actual#2, that is, symbol 1. Therefore, the mapped DMRS can be used as both the demodulation reference signal of Actual#2, the demodulation reference signal of Actual#3, and even the demodulation reference signal of subsequent actual transmission resources such as Actual#4.
  • the reference signal is positioned ahead of time slots of other actual transmission resources, which can improve the demodulation efficiency of subsequent actual transmission resources.
  • the demodulation reference signal is mapped to a valid symbol in an actual transmission resource preceding the invalid symbol, wherein the actual transmission resource preceding the invalid symbol includes one valid symbol.
  • multiple logical transmission resources are preset, namely Nominal# in the figure. If the symbol 3 in Nominal#2 is an invalid transmission symbol, then as shown in FIG. 10 , in Nominal#2
  • the symbol 2 is an actual transmission resource Actual#3, and the symbol 4 is an actual transmission resource Actual#4, then the DMRS can be mapped to the effective symbol in Actual#3, that is, symbol 2. Therefore, the mapped DMRS can be used as both the demodulation reference signal of Actual#3, the demodulation reference signal of Actual#4, and even the demodulation reference signal of subsequent actual transmission resources such as Actual#5.
  • the reference signal is positioned ahead of time slots of other actual transmission resources, which can improve the demodulation efficiency of subsequent actual transmission resources.
  • the demodulation reference signal is mapped to the first valid symbol in the actual transmission resource after the invalid symbol, where the actual transmission resource after the invalid symbol includes a plurality of valid symbols.
  • multiple logical transmission resources are preset, namely Nominal# in the figure. If the symbol 2 in Nominal#2 is an invalid transmission symbol, then as shown in FIG. 12 , in Nominal#2
  • the symbols 3 and 4 are an actual transmission resource Actual#3, then the DMRS can be mapped to the first valid symbol in Actual#3, that is, symbol 3. Therefore, the mapped DMRS can be used as both the demodulation reference signal of Actual#3, the demodulation reference signal of Actual#2, and even the demodulation reference signal of subsequent actual transmission resources such as Actual#4.
  • the reference signal is positioned ahead of time slots of other actual transmission resources, which can improve the demodulation efficiency of subsequent actual transmission resources.
  • the demodulation reference signal is mapped to a valid symbol in an actual transmission resource after the invalid symbol, where the actual transmission resource after the invalid symbol includes one valid symbol.
  • multiple logical transmission resources are preset, namely Nominal# in the figure. If the symbol 3 in Nominal#2 is an invalid transmission symbol, then as shown in FIG. 13 , in Nominal#2
  • the symbol 2 is an actual transmission resource Actual#3, and the symbol 4 is an actual transmission resource Actual#4, then the DMRS can be mapped to the effective symbol in Actual#4, that is, symbol 4. Therefore, the mapped DMRS can be used as both the demodulation reference signal of Actual#3, the demodulation reference signal of Actual#4, and even the demodulation reference signal of subsequent actual transmission resources such as Actual#5.
  • the reference signal is positioned ahead of time slots of other actual transmission resources, which can improve the demodulation efficiency of subsequent actual transmission resources.
  • the way of mapping the demodulation reference signal to the valid symbols adjacent to the splitting position in at least one actual transmission resource can refer to the combination of the above embodiments,
  • the demodulation reference signal is mapped to the last valid symbol in the actual transmission resource before the slot boundary, where the actual transmission resource before the slot boundary contains multiple valid symbols, and the The demodulation reference signal is mapped to the last valid symbol in the actual transmission resource preceding the invalid symbol, wherein the actual transmission resource preceding the invalid symbol includes multiple valid symbols.
  • the DMRS is mapped to the 14th symbol of the S slot, so that the mapped DMRS can be used as both the demodulation reference signal of Actual#1 and the demodulation signal of Actual#2.
  • the reference signal can even be used as a demodulation reference signal for subsequent actual transmission resources such as Actual#3. Since the demodulation reference signal is ahead of the time slots of other actual transmission resources, the demodulation efficiency of subsequent actual transmission resources can be improved.
  • the DMRS can be mapped to the last valid symbol in Actual#3, that is, symbol 3. Therefore, the mapped DMRS can be used as both the demodulation reference signal of Actual#3, the demodulation reference signal of Actual#4, and even the demodulation reference signal of subsequent actual transmission resources such as Actual#5.
  • the reference signal is positioned ahead of time slots of other actual transmission resources, which can improve the demodulation efficiency of subsequent actual transmission resources.
  • the demodulation reference signal mapping method of the embodiment of the present invention flexibly maps the demodulation reference signal according to the actual transmission resources before and after the split position, which balances the effective utilization of transmission resources and the consumption of transmission resources.
  • the present invention also provides a demodulation reference signal mapping apparatus. Therefore, the implementation manner of the demodulation reference signal mapping method is also applicable to the demodulation reference signal mapping apparatus provided in this embodiment, which will not be described in detail in this embodiment.
  • FIG. 15 is a schematic structural diagram of a demodulation reference signal mapping apparatus according to the present invention.
  • FIG. 15 is a schematic structural diagram of a demodulation reference signal mapping apparatus according to an embodiment of the present invention.
  • the apparatus is applied to a first terminal.
  • the demodulation reference signal mapping apparatus includes: a splitting module 1501, a mapping module 1502, of which,
  • a splitting module 1501 configured to determine a plurality of actual transmission resources corresponding to the logical transmission resources satisfying the splitting condition
  • the mapping module 1502 is configured to map the demodulation reference signal to a valid symbol adjacent to the split position in at least one actual transmission resource.
  • the demodulation reference signal mapping apparatus determines a plurality of actual transmission resources corresponding to the logical transmission resources satisfying the splitting condition, and further maps the demodulation reference signal to at least one actual transmission resource and splits it. on the adjacent valid symbols.
  • the utilization rate of transmission resources is improved, technical support is provided for scenarios such as retransmission of information to improve coverage quality, and resource consumption during demodulation reference signal mapping is reduced.
  • the present invention also provides a communication device and a readable storage medium.
  • FIG. 16 it is a block diagram of a communication device for demodulating reference signal mapping according to an embodiment of the present invention.
  • Communication devices are intended to represent various forms of digital computers, such as laptop computers, desktop computers, workstations, personal digital assistants, servers, blade servers, mainframe computers, and other suitable computers.
  • Communication devices may also represent various forms of mobile devices, such as personal digital processors, cellular phones, smart phones, wearable devices, and other similar computing devices.
  • the components shown herein, their connections and relationships, and their functions are by way of example only, and are not intended to limit implementations of the inventions described and/or claimed herein.
  • the communication device includes: one or more processors 1401, a memory 1402, and interfaces for connecting various components, including a high-speed interface and a low-speed interface.
  • the various components are interconnected using different buses and may be mounted on a common motherboard or otherwise as desired.
  • the processor may process instructions executed within the communication device, including instructions stored in or on memory to display graphical information of the GUI on an external input/output device, such as a display device coupled to the interface.
  • multiple processors and/or multiple buses may be used with multiple memories and multiple memories, if desired.
  • multiple communication devices may be connected, with each device providing some of the necessary operations (eg, as a server array, a group of blade servers, or a multi-processor system).
  • a processor 1601 is used as an example.
  • the memory 1602 is the non-transitory computer-readable storage medium provided by the present invention.
  • the memory stores instructions executable by at least one processor, so that the at least one processor executes the demodulation reference signal mapping method provided by the present invention.
  • the non-transitory computer-readable storage medium of the present invention stores computer instructions, and the computer instructions are used to make the computer execute the demodulation reference signal mapping method provided by the present invention.
  • the memory 1602 can be used to store non-transitory software programs, non-transitory computer-executable programs and modules, such as program instructions/modules corresponding to the demodulation reference signal mapping method in the embodiment of the present invention.
  • the processor 1601 executes various functional applications and data processing of the server by running the non-transitory software programs, instructions and modules stored in the memory 1602, ie, implements the demodulation reference signal mapping method in the above method embodiments.
  • the memory 1602 may include a storage program area and a storage data area, wherein the storage program area may store an operating system, an application program required for at least one function; the storage data area may store data created according to the use of the positioning communication device, and the like. Additionally, memory 1602 may include high-speed random access memory, and may also include non-transitory memory, such as at least one magnetic disk storage device, flash memory device, or other non-transitory solid-state storage device. Optionally, memory 1602 may optionally include memory located remotely from processor 1601, and these remote memories may be connected to the positioning communication device via a network. Examples of such networks include, but are not limited to, the Internet, an intranet, a local area network, a mobile communication network, and combinations thereof.
  • the communication device that performs demodulation reference signal mapping may further include: input means 1603 and output means 1604 .
  • the processor 1601, the memory 1602, the input device 1603, and the output device 1604 may be connected by a bus or in other ways, and the connection by a bus is taken as an example in FIG. 16 .
  • the input device 1603 can receive input numerical or character information and generate key signal input related to user settings and functional control of the positioning communication device, such as a touch screen, keypad, mouse, trackpad, touchpad, pointing stick, one or more Input devices such as mouse buttons, trackballs, joysticks, etc.
  • Output devices 1604 may include display devices, auxiliary lighting devices (eg, LEDs), haptic feedback devices (eg, vibration motors), and the like.
  • the display device may include, but is not limited to, a liquid crystal display (LCD), a light emitting diode (LED) display, and a plasma display. In some implementations, the display device may be a touch screen.
  • Various implementations of the systems and techniques described herein can be implemented in digital electronic circuitry, integrated circuit systems, application specific ASICs (application specific integrated circuits), computer hardware, firmware, software, and/or combinations thereof. These various embodiments may include being implemented in one or more computer programs executable and/or interpretable on a programmable system including at least one programmable processor that The processor, which may be a special purpose or general-purpose programmable processor, may receive data and instructions from a storage system, at least one input device, and at least one output device, and transmit data and instructions to the storage system, the at least one input device, and the at least one output device an output device.
  • the processor which may be a special purpose or general-purpose programmable processor, may receive data and instructions from a storage system, at least one input device, and at least one output device, and transmit data and instructions to the storage system, the at least one input device, and the at least one output device an output device.
  • machine-readable medium and “computer-readable medium” refer to any computer program product, apparatus, and/or apparatus for providing machine instructions and/or data to a programmable processor ( For example, magnetic disks, optical disks, memories, programmable logic devices (PLDs), including machine-readable media that receive machine instructions as machine-readable signals.
  • machine-readable signal refers to any signal used to provide machine instructions and/or data to a programmable processor.
  • the systems and techniques described herein may be implemented on a computer having a display device (eg, a CRT (cathode ray tube) or LCD (liquid crystal display) monitor) for displaying information to the user ); and a keyboard and pointing device (eg, a mouse or trackball) through which a user can provide input to the computer.
  • a display device eg, a CRT (cathode ray tube) or LCD (liquid crystal display) monitor
  • a keyboard and pointing device eg, a mouse or trackball
  • Other kinds of devices can also be used to provide interaction with the user; for example, the feedback provided to the user can be any form of sensory feedback (eg, visual feedback, auditory feedback, or tactile feedback); and can be in any form (including acoustic input, voice input, or tactile input) to receive input from the user.
  • the systems and techniques described herein may be implemented on a computing system that includes back-end components (eg, as a data server), or a computing system that includes middleware components (eg, an application server), or a computing system that includes front-end components (eg, a user computer having a graphical user interface or web browser through which a user may interact with implementations of the systems and techniques described herein), or including such backend components, middleware components, Or any combination of front-end components in a computing system.
  • the components of the system may be interconnected by any form or medium of digital data communication (eg, a communication network). Examples of communication networks include: Local Area Networks (LANs), Wide Area Networks (WANs), and the Internet.
  • a computer system can include clients and servers.
  • Clients and servers are generally remote from each other and usually interact through a communication network.
  • the relationship of client and server arises by computer programs running on the respective computers and having a client-server relationship to each other.
  • the server for executing the method for mapping a demodulation reference signal determines a plurality of actual transmission resources corresponding to the logical transmission resources satisfying the splitting condition, and further maps the demodulation reference signal to at least one actual transmission resource and splits it. on adjacent valid symbols.
  • the utilization rate of transmission resources is improved, technical support is provided for scenarios such as retransmission of information to improve coverage quality, and resource consumption during demodulation reference signal mapping is reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提出了一种解调参考信号映射、装置、设备及其存储介质,其中,方法应用于终端设备,包括:确定与满足拆分条件的逻辑传输资源对应的多个实际传输资源;将解调参考信号映射到至少一个实际传输资源中与拆分位置相邻的有效符号上。由此,充分利用传输资源,为重传信息以提高覆盖质量等场景提供了技术支撑。

Description

解调参考信号映射、装置、设备及其存储介质 技术领域
本发明涉及移动通信技术领域,特别涉及一种解调参考信号映射、装置、设备及其存储介质。
背景技术
在移动通信技术迅速发展的今天,基于信道等传输资源进行信息的传递成为普遍。
相关技术中,实现对传输资源的充分利用尤为重要,比如,覆盖是运营商在将蜂窝网络商业化时考虑的关键因素之一,因为它将直接影响到服务质量以及资本支出和运营成本。
为了增加覆盖,协议支持PUSCH(Physical uplink shared channel,物理上行共享信道)通过重复传输来获得更大的接收SNR(SIGNAL NOISE RATIO,信噪比),其中R16提出了repetition typeB的重传方式,适用于调度的PUSCH和免授权调度的PUSCH。因此,若是在重传时,对信道等传输资源充分利用,将会为增加覆盖带来积极的影响。
发明内容
本发明第一方面实施例提出了一种解调参考信号映射方法,所述方法应用于终端设备,包括:确定与满足拆分条件的逻辑传输资源对应的多个实际传输资源;将解调参考信号映射到至少一个实际传输资源中与拆分位置相邻的有效符号上。
可选地,所述拆分位置,包括:时隙;和/或,无效符号。
可选地,所述将解调参考信号映射到至少一个实际传输资源中与拆分位置相邻的有效符号上,包括:将所述解调参考信号映射到时隙边界前一个实际传输资源中的最后一个有效符号上,其中,所述时隙边界前一个实际传输资源包含多个有效符号。
可选地,所述将解调参考信号映射到至少一个实际传输资源中与拆分位置相邻的有效符号上,包括:将所述解调参考信号映射到时隙边界前一个实际传输资源中的有效符号上,其中,所述时隙边界前一个实际传输资源包含一个有效符号。
可选地,所述将解调参考信号映射到至少一个实际传输资源中与拆分位置相邻的有效符号上,包括:将所述解调参考信号映射到时隙边界后一个实际传输资源中的第一个有效符号上,其中,所述时隙边界后一个实际传输资源包含多个有效符号。
可选地,所述将解调参考信号映射到至少一个实际传输资源中与拆分位置相邻的有效符号上,包括:将所述解调参考信号映射到时隙边界后一个实际传输资源中的有效符号上,其中,所述时隙边界后一个实际传输资源包含一个有效符号。
可选地,所述将解调参考信号映射到至少一个实际传输资源中与拆分位置相邻的有效符号上,包括:将所述解调参考信号映射到无效符号前一个实际传输资源中的最后一个有效符号上,其中,所述无效符号前一个实际传输资源包含多个有效符号。
可选地,所述将解调参考信号映射到至少一个实际传输资源中与拆分位置相邻的有效符号上,包括:将所述解调参考信号映射到无效符号前一个实际传输资源中的有效符号上,其中,所述无效符号前一个实际传输资源包含一个有效符号。
可选地,所述将解调参考信号映射到至少一个实际传输资源中与拆分位置相邻的有效符号上,包括:将所述解调参考信号映射到无效符号后一个实际传输资源中的第一个有效符号上,其中,所述无效符号后一个实际传输资源包含多个有效符号。
可选地,所述将解调参考信号映射到至少一个实际传输资源中与拆分位置相邻的有效符号上,包括:将所述解调参考信号映射到无效符号后一个实际传输资源中的有效符号上,其中,所述无效符号后一个实际传输资源包含一个有效符号。
本发明第二方面实施例提出了一种解调参考信号映射装置,所述装置应用于终端设备,包括:拆分模块,用于确定与满足拆分条件的逻辑传输资源对应的多个实际传输资源;映射模块,用于将解调参考信号映射到至少一个实际传输资源中与拆分位置相邻的有效符号上。
本发明第三方面实施例提出了一种通信设备,包括处理器、收发器、存储器以及存储在所述存储器上的计算机程序,所述处理器运行所述计算机程序,以实现如第一方面实施例提出的解调参考信号映射方法。
本发明第四方面实施例提出了一种处理器可读存储介质,所述处理器可读存储介质存储有计算机程序,所述计算机程序用于使所述处理器执行第一方面实施例提出的解调参考信号映射方法。
本发明提出的实施例,至少具有如下技术效果:
确定与满足拆分条件的逻辑传输资源对应的多个实际传输资源,进而,将解调参考信号映射到至少一个实际传输资源中与拆分位置相邻的有效符号上。由此,提高了对传输资源的利用率,为重传信息以提高覆盖质量等场景提供了技术支撑,并且降低了解调参考信号映射时的资源消耗。
本发明附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
本发明上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1是根据本发明一个实施例的传输资源的信息传输场景示意图;
图2是根据本发明实施例提供的一种解调参考信号映射方法的流程图;
图3是根据本发明第一个实施例的解调参考信号映射场景示意图;
图4是根据本发明第二个实施例的解调参考信号映射场景示意图;
图5是根据本发明第三个实施例的解调参考信号映射场景示意图;
图6是根据本发明第四个实施例的解调参考信号映射场景示意图;
图7是根据本发明第五个实施例的解调参考信号映射场景示意图;
图8是根据本发明第六个实施例的解调参考信号映射场景示意图;
图9是根据本发明第七个实施例的解调参考信号映射场景示意图;
图10是根据本发明第八个实施例的解调参考信号映射场景示意图;
图11是根据本发明第九个实施例的解调参考信号映射场景示意图;
图12是根据本发明第十个实施例的解调参考信号映射场景示意图;
图13是根据本发明第十一个实施例的解调参考信号映射场景示意图;
图14是根据本发明第十二个实施例的解调参考信号映射场景示意图;
图15是根据本发明提出的一种解调参考信号映射装置的结构示意图;以及
图16是根据本发明一个实施例的通信设备的结构框图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
为了充分利用传输资源,本发明提出了一种解调参考信号映射方法,以实现对信道等传输资源的充分利用。
该解调参考信号映射方法可以应用于任意存在对传输资源的场景中,继续以重传场景为例,为了增加覆盖,协议支持PUSCH通过重复传输来获得更大的接收SNR,其中R16提出了repetition typeB的重传方式,适用于调度的PUSCH和免授权调度的PUSCH。
具体的,基站发送一个上行授权或者一个免授权指示一个或多个名义PUSCH重复传输。终端在一个时隙中传输一个或多个实际PUSCH副本,或者在连续多个可用的时隙中传输两个或者多个实际PUSCH副本。终端在确定基于TypeB的PUSCH重复在每个名义PUSCH时域资源内的无效符号后,其余的符号可以认为是潜在有效符号。如果一个名义PUSCH在时隙内连续潜在有效符号的个数大于0,则可以映射为一个实际PUSCH副本,一个名义PUSCH副本的时域资源可包含一个或者多个实际PUSCH副本的时域资源。终端设备不发送单个符号的实际PUSCH副本,除非单个符号是基站指示的名义PUSCH的持续时间L。
即如图1所示,当一个实际PUSCH副本包含仅仅一个时域资源(图中以一个单元格表示一个时域资源,该时域资源也可以理解为重传场景中的符号单元),则并不针对发送该实际PUSCH副本,导致该实际PUSCH副本对应的时域资源浪费,显然,若是能够将这一部分的时域资源利用起来,必然会对重传带来积极的影响,比如,会提高重传效率等。
下面结合具体的实施例,详细说明本发明实施例的解调参考信号映射方法,其中,该方法应用于终端设备上,该终端设备包括但不限于移动手机、可穿戴式终端设备等通信设备。
图2是根据本发明实施例提供的一种解调参考信号映射方法的流程图,其中,包括:
步骤201,确定与满足拆分条件的逻辑传输资源对应的多个实际传输资源。
其中,逻辑传输资源可以理解为根据协议定义的理论上可传输的传输资源,比如,在重传场景中的名义PUSCH时域资源可以为逻辑传输资源的一种可能的示例,而实际传输资源可以理解为根据实际传输环境可用于传输的传输资源,比如,在重传场景中的实际PUSCH时域资源可以为实际传输资源的一种可能的示例。
在执行执行过程中,当逻辑传输资源满足拆分条件时,会将逻辑传输资源进行拆分,因此,在本实施例中,确定与满足拆分条件的逻辑传输资源对应的多个实际传输资源,以便于基于实际传输资源进行信息的传输。
需要说明的是,在不同的应用场景中,上述拆分条件不同,确定与满足拆分条件的逻辑传输资源对应的多个实际传输资源的方式不同,示例说明如下:
示例一:
在本示例中,将跨时隙边界的逻辑传输资源在时隙边界两侧的传输资源,分别确定为一个实际传输资源。其中,本实施例中的逻辑传输资源在时域上划分为多个时隙,每个时隙包含固定个数的符号,因此,每个时隙通过固定个数的符号限定出与其他时隙的时隙边界,若是存在逻辑传输资源跨时隙,则直接将该逻辑传输资源位于时隙边界一侧的传输资源确定为一个实际传输资源,将该逻辑传输资源位于时隙边界另一侧的传输资源确定为另一个实际传输资源。
举例而言,如图3所示,预先设置每个时隙包括的符号个数是固定的,比如图3所示的,当传输资源包括S时隙和U时隙时,每个时隙包括14个符号,从而,导致时隙之间会存在时隙边界,划分出的逻辑传输资源Nominal#1跨时隙,1个符号在S时隙,2个符号在U时隙,因此,继续参照图3,可以将跨越时隙边界的逻辑传输资源在时隙边界确定成两个实际传输资源,即将S时隙的第14个符号(即符号13)确定为一个实际传输资源Actual#1,将U时隙的第1和第2(即符号0和1)个符号确定为一个实际传输资源Actual#2。
示例二:
在本示例中,将位于无效符号的两侧且属于同一个时隙的逻辑传输资源拆分成两个实际传输资源,若是存在逻辑传输资源中包括无效符号,则直接将该逻辑传输资源位于无效符号一侧的传输资源确定为一个实际传输资源,将该逻辑传输资源位于无效符号另一侧的传输资源确定为另一个实际传输资源。
其中,本实施例中的逻辑传输资源在时域上划分为多个时隙,每个时隙包含固定个数的符号,该符号可以理解为时隙的最小组成单位,在一些可能的示例中,该符号可以为正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号,每个符号可能由于其传输性能可能是有效的也可能是无效的,在实际应用中,将可以承载当前用户发送数据的符号定义为有效符号,将不可以承载当前用户发送数据的符号定义为无效符号,由于无效传输符号无法承载用户当前发送的数据,因此,在本实施例 中,以无效符号为边界,在无效符号的两侧的属于同一个逻辑传输资源的传输资源确定为两个实际传输资源。
举例而言,如图4所示,预先设置多个逻辑传输资源即图中的Nominal#,其中,若是Nominal#2中的符号3是无效传输符号,则如图4所示,将Nominal#2中的符号2设置为一个实际传输资源Actual#3,将符号4确定为一个实际传输资源Actual#4。
示例三:
在本示例中,将时隙边界的两侧属于同一个逻辑传输资源的传输资源,确定为两个实际传输资源。其中,本实施例中的逻辑传输资源在时域上划分为多个时隙,每个时隙包含固定个数的符号,因此,每个时隙通过固定个数的符号限定出与其他时隙的时隙边界。并且,可以将跨越时隙边界的逻辑传输资源在时隙边界确定成两个实际传输资源。其中,本实施例中的逻辑传输资源在时域上划分为多个时隙,每个时隙包含固定个数的符号,每个符号可能由于其传输性能可能是有效的也可能是无效的,由于无效传输符号无法承载用户当前发送的数据,因此,在本实施例中,还以无效符号为边界,将位于无效符号的两侧且属于同一个逻辑传输资源拆分成两个实际传输资源。
举例而言,如图5所示,预先设置每个时隙包括的符号个数是固定的,比如图5所示的,当传输资源包括S时隙和U时隙时,每个时隙包括14个符号,从而,导致时隙之间存在时隙边界,划分出的逻辑传输资源Nominal#1跨时隙,1个符号在S时隙,2个符号在U时隙,因此,继续参照图5,可以将时隙边界两侧属于同一个逻辑传输资源的传输资源,在时隙边界确定成两个实际传输资源,即将S时隙的第14个符号确定为一个实际传输资源Actual#1,将U时隙的第1和第2(即符号0和1)个符号确定为一个实际传输资源Actual#2。在图5中,预先设置多个逻辑传输资源即图中的Nominal#,其中,若是Nominal#2中的符号3是无效传输资源,则如图5所示,将Nominal#2中的符号2设置为一个实际传输资源Actual#3,将符号4确定为一个实际传输资源Actual#4。
步骤202,将解调参考信号映射到至少一个实际传输资源中与拆分位置相邻的有效符号上。
其中,解调参考信号可以理解为用于引导传输资源中的信息被解调的引导信息,比如,解调参考信号的一种可能的示例为重传场景中的DMRS(DeModulation-Reference Signal,解调参考信号),为了便于描述,本发明的所有实施例中,以DMRS作为解调参考信号示例说明。
在本实施例中,将解调参考信号映射到至少一个实际传输资源中,与拆分位置相邻的有效符号上,比如,以图5所示的场景为例,如图6所示,将DMRS映射到S时隙的第14个符号即符号13。
由此,通过在与拆分位置相邻的有效符号上映射解调参考信号,一方面,可以保证即使实际传输资源仅仅包含一个有效符号,也可以被映射到,避免了传输资源被浪费;另一方面,由于映射到与拆分位置相邻的有效信号,则可以保证一个映射至少可以被相邻的两个实际传输资源使用,进一步降低了资源的消耗。
综上,本发明实施例的解调参考信号映射方法,确定与满足拆分条件的逻辑传输资源对应的多个实际传输资源,进而,将解调参考信号映射到至少一个实际传输资源中与拆分位置相邻的有效符号上。由此,提高了对传输资源的利用率,为重传信息以提高覆盖质量等场景提供了技术支撑,并且降低了解调参考信号映射时的资源消耗。
在实际执行过程中,拆分位置即可包括时隙边界,也可以包括无效符号,也可以包括时隙边界和无效符号,因此,在本实施例中,实际传输资源具有多样性,因此,将解调参考信号映射到至少一个实际传输资源中与拆分位置相邻的有效符号上的方式也必然具有多样性,下面示例说明:
当拆分位置包括时隙边界时,将解调参考信号映射到至少一个实际传输资源中与拆分位置相邻的有效符号上的方式,至少具有如下的一种或多种:
示例一:
在本示例中,将解调参考信号映射到时隙边界前一个实际传输资源中的最后一个有效符号上,其中,时隙边界前一个实际传输资源包含多个有效符号。
即如图6所示,将DMRS映射到S时隙的第14个符号,由此,映射的DMRS既可以作为Actual#1 的解调参考信号,也可以作为Actual#2的解调参考信号,甚至可以作为Actual#3等后续实际传输资源的解调参考信号,由于解调参考信号相对于其他实际传输资源的时隙靠前,可以提高后续实际传输资源的解调效率。
示例二:
在本实施中,将解调参考信号映射到时隙边界前一个实际传输资源中的有效符号上,其中,时隙边界前一个实际传输资源包含一个有效符号,也即是说,本发明的实施例中,充分利用仅仅包含一个有效符号的传输资源。
以图7所示的场景为例,若是Nominal#1中的符号13是有效传输符号,Nominal#1中的符号13确定为一个实际传输资源Actual#1,符号0和1确定为一个实际传输资源Actual#2,则如图7所示,将DMRS映射到S时隙的第14个符号,即Actual#1对应的符号,由此,映射的DMRS既可以作为Actual#1的解调参考信号,也可以作为Actual#2的解调参考信号,甚至可以作为Actual#3等后续实际传输资源的解调参考信号,由于解调参考信号相对于其他实际传输资源的时隙靠前,可以提高后续实际传输资源的解调效率。
示例三:
在本示例中,将解调参考信号映射到时隙边界后一个实际传输资源中的第一个有效符号上,其中,时隙边界后一个实际传输资源包含多个有效符号。即在本实施例中,如时隙边界后的实际传输资源包括多个有效符号,则将该灾后的实际传输资源的第一个符号作为解调参考信号的映射对象。
举例而言,如图8所示,划分出的逻辑传输资源Nominal#1跨时隙,1个符号在S时隙,2个符号在U时隙,因此,继续参照图8,即将S时隙的第14个符号确定为一个实际传输资源Actual#1,将U时隙的第1和第2(即符号0和1)个符号确定为一个实际传输资源Actual#2,则可以将解调参考信号映射到Actual#2中的第一个符号,即U时隙的符号0。由此,映射的DMRS既可以作为Actual#1的解调参考信号,也可以作为Actual#2的解调参考信号,甚至可以作为Actual#3等后续实际传输资源的解调参考信号,由于解调参考信号Actual#2位于其本身的第一个符号,因此,提高了Actual#2中的信息传输效率,并且,相对于其他后续实际传输资源的时隙靠前,可以提高后续实际传输资源的解调效率,且相对于Actual#1相对靠近,也可以用于Actual#1的信息传输。
示例四:
在本示例中,将解调参考信号映射到时隙边界后一个实际传输资源中的有效符号上,其中,时隙边界后一个实际传输资源包含一个有效符号。
举例而言,如图9所示,在本示例中,预先设置多个逻辑传输资源即图中的Nominal#,其中,若是Nominal#1中的符号12和13位于同一个时隙,符号0位于一个时隙,则将符号12和13确定一个实际传输资源Actual#1,将符号0确定为一个实际传输资源Actual#2,其中,可以将解调参考信号映射到Actual#2中的符号0上。由此,映射的DMRS既可以作为Actual#1的解调参考信号,也可以作为Actual#2的解调参考信号,甚至可以作为Actual#3等后续实际传输资源的解调参考信号,由于解调参考信号Actual#2位于其本身的第一个符号,因此,提高了Actual#2中的信息传输效率,并且,相对于其他后续实际传输资源的时隙靠前,可以提高后续实际传输资源的解调效率,且相对于Actual#1相对靠近,也可以用于Actual#1的信息传输。
当拆分位置包括无效符号时,将解调参考信号映射到至少一个实际传输资源中与拆分位置相邻的有效符号上的方式,至少具有如下的一种或多种:
示例一:
在本示例中,将解调参考信号映射到无效符号前一个实际传输资源中的最后一个有效符号上,其中,无效符号前一个实际传输资源包含多个有效符号。
举例而言,如图10所示,预先设置多个逻辑传输资源即图中的Nominal#,其中,若是Nominal#2中的符号2是无效传输符号,则如图10所示,Nominal#1中的符号0和1为一个实际传输资源Actual#2,符号3和4为一个实际传输资源Actual#3,则可以将DMRS映射到Actual#2中的最后一个有效符号即符号1中。由此,映射的DMRS既可以作为Actual#2的解调参考信号,也可以作为Actual#3的解调参 考信号,甚至可以作为Actual#4等后续实际传输资源的解调参考信号,由于解调参考信号相对于其他实际传输资源的时隙靠前,可以提高后续实际传输资源的解调效率。
示例二:
在本示例中,将解调参考信号映射到无效符号前一个实际传输资源中的有效符号上,其中,无效符号前一个实际传输资源包含一个有效符号。
举例而言,如图11所示,预先设置多个逻辑传输资源即图中的Nominal#,其中,若是Nominal#2中的符号3是无效传输符号,则如图10所示,Nominal#2中的符号2为一个实际传输资源Actual#3,符号4为一个实际传输资源Actual#4,则可以将DMRS映射到Actual#3中的有效符号即符号2上。由此,映射的DMRS既可以作为Actual#3的解调参考信号,也可以作为Actual#4的解调参考信号,甚至可以作为Actual#5等后续实际传输资源的解调参考信号,由于解调参考信号相对于其他实际传输资源的时隙靠前,可以提高后续实际传输资源的解调效率。
示例三:
在本示例中,将解调参考信号映射到无效符号后一个实际传输资源中的第一个有效符号上,其中,无效符号后一个实际传输资源包含多个有效符号。
举例而言,如图12所示,预先设置多个逻辑传输资源即图中的Nominal#,其中,若是Nominal#2中的符号2是无效传输符号,则如图12所示,Nominal#2中的符号3和4为一个实际传输资源Actual#3,则可以将DMRS映射到Actual#3中的第一个有效符号即符号3上。由此,映射的DMRS既可以作为Actual#3的解调参考信号,也可以作为Actual#2的解调参考信号,甚至可以作为Actual#4等后续实际传输资源的解调参考信号,由于解调参考信号相对于其他实际传输资源的时隙靠前,可以提高后续实际传输资源的解调效率。
示例四:
在本示例中,将解调参考信号映射到无效符号后一个实际传输资源中的有效符号上,其中,无效符号后一个实际传输资源包含一个有效符号。
举例而言,如图13所示,预先设置多个逻辑传输资源即图中的Nominal#,其中,若是Nominal#2中的符号3是无效传输符号,则如图13所示,Nominal#2中的符号2为一个实际传输资源Actual#3,符号4为一个实际传输资源Actual#4,则可以将DMRS映射到Actual#4中有效符号即符号4中。由此,映射的DMRS既可以作为Actual#3的解调参考信号,也可以作为Actual#4的解调参考信号,甚至可以作为Actual#5等后续实际传输资源的解调参考信号,由于解调参考信号相对于其他实际传输资源的时隙靠前,可以提高后续实际传输资源的解调效率。
当拆分位置既包括无效符号又包括时隙边界后时,将解调参考信号映射到至少一个实际传输资源中与拆分位置相邻的有效符号上的方式,可以参照上述实施例的结合,作为一种可能的实现方式,将解调参考信号映射到时隙边界前一个实际传输资源中的最后一个有效符号上,其中,时隙边界前一个实际传输资源包含多个有效符号,并且,将解调参考信号映射到无效符号前一个实际传输资源中的最后一个有效符号上,其中,所述无效符号前一个实际传输资源包含多个有效符号。
举例而言,如图14所示,将DMRS映射到S时隙的第14个符号,由此,映射的DMRS既可以作为Actual#1的解调参考信号,也可以作为Actual#2的解调参考信号,甚至可以作为Actual#3等后续实际传输资源的解调参考信号,由于解调参考信号相对于其他实际传输资源的时隙靠前,可以提高后续实际传输资源的解调效率。预先设置多个逻辑传输资源即图中的Nominal#,其中,若是Nominal#2中的符号4是无效传输符号,则如图14所示,Nominal#2中的符号2和3为一个实际传输资源Actual#3,则可以将DMRS映射到Actual#3中的最后一个有效符号即符号3中。由此,映射的DMRS既可以作为Actual#3的解调参考信号,也可以作为Actual#4的解调参考信号,甚至可以作为Actual#5等后续实际传输资源的解调参考信号,由于解调参考信号相对于其他实际传输资源的时隙靠前,可以提高后续实际传输资源的解调效率。从而,不但没有针对每个DMRS既可以实际传输资源映射DMRS,而且没有仅仅针对实际传输资源出现时隙边界或者无效符号的位置映射DMRS,结合时隙边界和无效符号的位置共同来确定DMRS,平衡了传输资源的有效利用和传输资源的消耗。
综上,本发明实施例的解调参考信号映射方法,灵活根据拆分位置前后的实际传输资源的情况映射解调参考信号,平衡了传输资源的有效利用和传输资源的消耗。
与上述几种实施例提供的解调参考信号映射方法相对应,本发明还提供一种解调参考信号映射装置,由于本发明实施例提供的解调参考信号映射装置与上述几种实施例提供的方法相对应,因此在解调参考信号映射方法的实施方式也适用于本实施例提供的解调参考信号映射装置,在本实施例中不再详细描述。
图15是根据本发明提出的一种解调参考信号映射装置的结构示意图。
图15是根据本发明一个实施例的解调参考信号映射装置的结构示意图,该装置应用在第一终端,如图15所示,该解调参考信号映射装置包括:拆分模块1501、映射模块1502,其中,
拆分模块1501,用于确定与满足拆分条件的逻辑传输资源对应的多个实际传输资源;
映射模块1502,用于将解调参考信号映射到至少一个实际传输资源中与拆分位置相邻的有效符号上。
综上,本发明实施例的解调参考信号映射装置,确定与满足拆分条件的逻辑传输资源对应的多个实际传输资源,进而,将解调参考信号映射到至少一个实际传输资源中与拆分位置相邻的有效符号上。由此,提高了对传输资源的利用率,为重传信息以提高覆盖质量等场景提供了技术支撑,并且降低了解调参考信号映射时的资源消耗。
根据本发明的实施例,本发明还提供了一种通信设备和一种可读存储介质。
如图16所示,是根据本发明实施例的解调参考信号映射的通信设备的框图。通信设备旨在表示各种形式的数字计算机,诸如,膝上型计算机、台式计算机、工作台、个人数字助理、服务器、刀片式服务器、大型计算机、和其它适合的计算机。通信设备还可以表示各种形式的移动装置,诸如,个人数字处理、蜂窝电话、智能电话、可穿戴设备和其它类似的计算装置。本文所示的部件、它们的连接和关系、以及它们的功能仅仅作为示例,并且不意在限制本文中描述的和/或者要求的本发明的实现。
如图16所示,该通信设备包括:一个或多个处理器1401、存储器1402,以及用于连接各部件的接口,包括高速接口和低速接口。各个部件利用不同的总线互相连接,并且可以被安装在公共主板上或者根据需要以其它方式安装。处理器可以对在通信设备内执行的指令进行处理,包括存储在存储器中或者存储器上以在外部输入/输出装置(诸如,耦合至接口的显示设备)上显示GUI的图形信息的指令。在其它实施方式中,若需要,可以将多个处理器和/或多条总线与多个存储器和多个存储器一起使用。同样,可以连接多个通信设备,各个设备提供部分必要的操作(例如,作为服务器阵列、一组刀片式服务器、或者多处理器系统)。图16中以一个处理器1601为例。
存储器1602即为本发明所提供的非瞬时计算机可读存储介质。其中,所述存储器存储有可由至少一个处理器执行的指令,以使所述至少一个处理器执行本发明所提供的解调参考信号映射方法。本发明的非瞬时计算机可读存储介质存储计算机指令,该计算机指令用于使计算机执行本发明所提供的解调参考信号映射方法。
存储器1602作为一种非瞬时计算机可读存储介质,可用于存储非瞬时软件程序、非瞬时计算机可执行程序以及模块,如本发明实施例中的解调参考信号映射方法对应的程序指令/模块。处理器1601通过运行存储在存储器1602中的非瞬时软件程序、指令以及模块,从而执行服务器的各种功能应用以及数据处理,即实现上述方法实施例中的解调参考信号映射方法。
存储器1602可以包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需要的应用程序;存储数据区可存储根据定位通信设备的使用所创建的数据等。此外,存储器1602可以包括高速随机存取存储器,还可以包括非瞬时存储器,例如至少一个磁盘存储器件、闪存器件、或其他非瞬时固态存储器件。可选地,存储器1602可选包括相对于处理器1601远程设置的存储器,这些远程存储器可以通过网络连接至定位通信设备。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
执行解调参考信号映射的通信设备还可以包括:输入装置1603和输出装置1604。处理器1601、存储器1602、输入装置1603和输出装置1604可以通过总线或者其他方式连接,图16中以通过总线连接 为例。
输入装置1603可接收输入的数字或字符信息,以及产生与定位通信设备的用户设置以及功能控制有关的键信号输入,例如触摸屏、小键盘、鼠标、轨迹板、触摸板、指示杆、一个或者多个鼠标按钮、轨迹球、操纵杆等输入装置。输出装置1604可以包括显示设备、辅助照明装置(例如,LED)和触觉反馈装置(例如,振动电机)等。该显示设备可以包括但不限于,液晶显示器(LCD)、发光二极管(LED)显示器和等离子体显示器。在一些实施方式中,显示设备可以是触摸屏。
此处描述的系统和技术的各种实施方式可以在数字电子电路系统、集成电路系统、专用ASIC(专用集成电路)、计算机硬件、固件、软件、和/或它们的组合中实现。这些各种实施方式可以包括:实施在一个或者多个计算机程序中,该一个或者多个计算机程序可在包括至少一个可编程处理器的可编程系统上执行和/或解释,该可编程处理器可以是专用或者通用可编程处理器,可以从存储系统、至少一个输入装置、和至少一个输出装置接收数据和指令,并且将数据和指令传输至该存储系统、该至少一个输入装置、和该至少一个输出装置。
这些计算程序(也称作程序、软件、软件应用、或者代码)包括可编程处理器的机器指令,并且可以利用高级过程和/或面向对象的编程语言、和/或汇编/机器语言来实施这些计算程序。如本文使用的,术语“机器可读介质”和“计算机可读介质”指的是用于将机器指令和/或数据提供给可编程处理器的任何计算机程序产品、设备、和/或装置(例如,磁盘、光盘、存储器、可编程逻辑装置(PLD)),包括,接收作为机器可读信号的机器指令的机器可读介质。术语“机器可读信号”指的是用于将机器指令和/或数据提供给可编程处理器的任何信号。
为了提供与用户的交互,可以在计算机上实施此处描述的系统和技术,该计算机具有:用于向用户显示信息的显示装置(例如,CRT(阴极射线管)或者LCD(液晶显示器)监视器);以及键盘和指向装置(例如,鼠标或者轨迹球),用户可以通过该键盘和该指向装置来将输入提供给计算机。其它种类的装置还可以用于提供与用户的交互;例如,提供给用户的反馈可以是任何形式的传感反馈(例如,视觉反馈、听觉反馈、或者触觉反馈);并且可以用任何形式(包括声输入、语音输入或者、触觉输入)来接收来自用户的输入。
可以将此处描述的系统和技术实施在包括后台部件的计算系统(例如,作为数据服务器)、或者包括中间件部件的计算系统(例如,应用服务器)、或者包括前端部件的计算系统(例如,具有图形用户界面或者网络浏览器的用户计算机,用户可以通过该图形用户界面或者该网络浏览器来与此处描述的系统和技术的实施方式交互)、或者包括这种后台部件、中间件部件、或者前端部件的任何组合的计算系统中。可以通过任何形式或者介质的数字数据通信(例如,通信网络)来将系统的部件相互连接。通信网络的示例包括:局域网(LAN)、广域网(WAN)和互联网。
计算机系统可以包括客户端和服务器。客户端和服务器一般远离彼此并且通常通过通信网络进行交互。通过在相应的计算机上运行并且彼此具有客户端-服务器关系的计算机程序来产生客户端和服务器的关系。
本发明实施例的执行解调参考信号映射方法的服务器,确定与满足拆分条件的逻辑传输资源对应的多个实际传输资源,进而,将解调参考信号映射到至少一个实际传输资源中与拆分位置相邻的有效符号上。由此,提高了对传输资源的利用率,为重传信息以提高覆盖质量等场景提供了技术支撑,并且降低了解调参考信号映射时的资源消耗。
应该理解,可以使用上面所示的各种形式的流程,重新排序、增加或删除步骤。例如,本发申请中记载的各步骤可以并行地执行也可以顺序地执行也可以不同的次序执行,只要能够实现本发明公开的技术方案所期望的结果,本文在此不进行限制。
上述具体实施方式,并不构成对本发明保护范围的限制。本领域技术人员应该明白的是,根据设计要求和其他因素,可以进行各种修改、组合、子组合和替代。任何在本发明的精神和原则之内所作的修改、等同替换和改进等,均应包含在本发明保护范围之内。

Claims (13)

  1. 一种解调参考信号映射方法,其特征在于,所述方法应用于终端设备,包括:
    确定与满足拆分条件的逻辑传输资源对应的多个实际传输资源;
    将解调参考信号映射到至少一个实际传输资源中与拆分位置相邻的有效符号上。
  2. 根据权利要求1所述的方法,其特征在于,所述拆分位置,包括:
    时隙边界;和/或,
    无效符号。
  3. 根据权利要求1所述的方法,其特征在于,所述将解调参考信号映射到至少一个实际传输资源中与拆分位置相邻的有效符号上,包括:
    将所述解调参考信号映射到时隙边界前一个实际传输资源中的最后一个有效符号上,其中,所述时隙边界前一个实际传输资源包含多个有效符号。
  4. 根据权利要求1所述的方法,其特征在于,所述将解调参考信号映射到至少一个实际传输资源中与拆分位置相邻的有效符号上,包括:
    将所述解调参考信号映射到时隙边界前一个实际传输资源中的有效符号上,其中,所述时隙边界前一个实际传输资源包含一个有效符号。
  5. 根据权利要求1所述的方法,其特征在于,所述将解调参考信号映射到至少一个实际传输资源中与拆分位置相邻的有效符号上,包括:
    将所述解调参考信号映射到时隙边界后一个实际传输资源中的第一个有效符号上,其中,所述时隙边界后一个实际传输资源包含多个有效符号。
  6. 根据权利要求1所述的方法,其特征在于,所述将解调参考信号映射到至少一个实际传输资源中与拆分位置相邻的有效符号上,包括:
    将所述解调参考信号映射到时隙边界后一个实际传输资源中的有效符号上,其中,所述时隙边界后一个实际传输资源包含一个有效符号。
  7. 根据权利要求1所述的方法,其特征在于,所述将解调参考信号映射到至少一个实际传输资源中与拆分位置相邻的有效符号上,包括:
    将所述解调参考信号映射到无效符号前一个实际传输资源中的最后一个有效符号上,其中,所述无效符号前一个实际传输资源包含多个有效符号。
  8. 根据权利要求1所述的方法,其特征在于,所述将解调参考信号映射到至少一个实际传输资源中与拆分位置相邻的有效符号上,包括:
    将所述解调参考信号映射到无效符号前一个实际传输资源中的有效符号上,其中,所述无效符号前一个实际传输资源包含一个有效符号。
  9. 根据权利要求1所述的方法,其特征在于,所述将解调参考信号映射到至少一个实际传输资源中与拆分位置相邻的有效符号上,包括:
    将所述解调参考信号映射到无效符号后一个实际传输资源中的第一个有效符号上,其中,所述无效符号后一个实际传输资源包含多个有效符号。
  10. 根据权利要求1所述的方法,其特征在于,所述将解调参考信号映射到至少一个实际传输资源中与拆分位置相邻的有效符号上,包括:
    将所述解调参考信号映射到无效符号后一个实际传输资源中的有效符号上,其中,所述无效符号后一个实际传输资源包含一个有效符号。
  11. 一种解调参考信号映射装置,其特征在于,所述装置应用于终端设备,包括:
    拆分模块,用于确定与满足拆分条件的逻辑传输资源对应的多个实际传输资源;
    映射模块,用于将解调参考信号映射到至少一个实际传输资源中与拆分位置相邻的有效符号上。
  12. 一种通信设备,其特征在于,包括处理器、收发器、存储器以及存储在所述存储器上的计算机程序,所述处理器运行所述计算机程序,以实现如权利要求1-10任一项所述的解调参考信号映射方法。
  13. 一种处理器可读存储介质,其特征在于,所述处理器可读存储介质存储有计算机程序,所述计算机程序用于使所述处理器执行权利要求1-10任一项所述的解调参考信号映射方法。
PCT/CN2020/137770 2020-12-18 2020-12-18 解调参考信号映射、装置、设备及其存储介质 WO2022126654A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/137770 WO2022126654A1 (zh) 2020-12-18 2020-12-18 解调参考信号映射、装置、设备及其存储介质
CN202080003946.7A CN112703701B (zh) 2020-12-18 2020-12-18 解调参考信号映射、装置、设备及其存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/137770 WO2022126654A1 (zh) 2020-12-18 2020-12-18 解调参考信号映射、装置、设备及其存储介质

Publications (1)

Publication Number Publication Date
WO2022126654A1 true WO2022126654A1 (zh) 2022-06-23

Family

ID=75514811

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/137770 WO2022126654A1 (zh) 2020-12-18 2020-12-18 解调参考信号映射、装置、设备及其存储介质

Country Status (2)

Country Link
CN (1) CN112703701B (zh)
WO (1) WO2022126654A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110890948A (zh) * 2018-09-07 2020-03-17 中国移动通信有限公司研究院 解调参考信号的传输方法、网络侧设备及用户设备
CN111727644A (zh) * 2018-02-14 2020-09-29 Lg电子株式会社 无线通信系统中通过跳频执行上行链路发送的方法及其装置
WO2020223976A1 (zh) * 2019-05-09 2020-11-12 Oppo广东移动通信有限公司 无线通信方法、终端设备和网络设备
US20200382354A1 (en) * 2019-08-16 2020-12-03 Intel Corporation Spectrum sharing between fifth generation new radio and long term evolution in licensed and unlicensed bands

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020226391A1 (ko) * 2019-05-03 2020-11-12 엘지전자 주식회사 Pusch를 전송하는 방법, 사용자기기, 장치 및 저장매체, 그리고 pusch를 수신하는 방법 및 기지국

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111727644A (zh) * 2018-02-14 2020-09-29 Lg电子株式会社 无线通信系统中通过跳频执行上行链路发送的方法及其装置
CN110890948A (zh) * 2018-09-07 2020-03-17 中国移动通信有限公司研究院 解调参考信号的传输方法、网络侧设备及用户设备
WO2020223976A1 (zh) * 2019-05-09 2020-11-12 Oppo广东移动通信有限公司 无线通信方法、终端设备和网络设备
US20200382354A1 (en) * 2019-08-16 2020-12-03 Intel Corporation Spectrum sharing between fifth generation new radio and long term evolution in licensed and unlicensed bands

Also Published As

Publication number Publication date
CN112703701A (zh) 2021-04-23
CN112703701B (zh) 2023-11-14

Similar Documents

Publication Publication Date Title
US20120151084A1 (en) Asynchronous virtual machine replication
WO2020200001A1 (zh) 一种速率匹配方法、装置和存储介质
WO2022126318A1 (zh) 直连通信方法、装置、通信设备和存储介质
US11831735B2 (en) Method and device for processing mini program data
US20230421335A1 (en) Transmission method and apparatus
WO2022126654A1 (zh) 解调参考信号映射、装置、设备及其存储介质
US11516276B1 (en) Dynamically switching between synchronous and asynchronous communication channels
WO2022147657A1 (zh) 一种天线切换配置的切换方法及设备
WO2022082652A1 (zh) 用于无线制式切换的通信方法、装置和电子设备
WO2022165760A1 (zh) 提前终止方法、装置、通信设备及存储介质
WO2022141525A1 (zh) 解调参考信号dmrs配置方法、装置、设备及其存储介质
WO2022141588A1 (zh) 通信方法及装置
US20230413330A1 (en) Data transmission method and apparatus, base station, user terminal, and electronic device
WO2022134061A1 (zh) 调度信息发送方法、调度信息接收方法及装置
WO2022116164A1 (zh) 定位方法、装置、通信设备和存储介质
WO2022165761A1 (zh) 提前终止方法、装置、设备及存储介质
WO2022116097A1 (zh) 一种搜索空间的确定方法及装置
WO2022151102A1 (zh) 调度请求资源的确定方法、装置及通信设备
WO2022151228A1 (zh) 一种pucch资源指示方法以及装置
WO2022133924A1 (zh) 一种数据重传确定方法及设备
WO2022188171A1 (zh) 非连续接收处理方法、装置、终端设备和存储介质
WO2022147733A1 (zh) 非连续接收方法及装置
WO2023138633A1 (zh) 信息传输方法、装置、网络侧设备及终端
US20240137925A1 (en) Semi-persistent resource determination method and apparatus, and communication device
US20240088974A1 (en) Beam indication method and apparatus, and beam determination method and apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20965668

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20965668

Country of ref document: EP

Kind code of ref document: A1