WO2018103702A1 - 一种上行信息处理的方法及装置 - Google Patents

一种上行信息处理的方法及装置 Download PDF

Info

Publication number
WO2018103702A1
WO2018103702A1 PCT/CN2017/115035 CN2017115035W WO2018103702A1 WO 2018103702 A1 WO2018103702 A1 WO 2018103702A1 CN 2017115035 W CN2017115035 W CN 2017115035W WO 2018103702 A1 WO2018103702 A1 WO 2018103702A1
Authority
WO
WIPO (PCT)
Prior art keywords
time interval
uplink
time
control information
domain resource
Prior art date
Application number
PCT/CN2017/115035
Other languages
English (en)
French (fr)
Inventor
李�远
官磊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to BR112019011530-7A priority Critical patent/BR112019011530A2/pt
Priority to MX2019006650A priority patent/MX2019006650A/es
Priority to EP17878069.8A priority patent/EP3541133B1/en
Priority to KR1020197019294A priority patent/KR102233105B1/ko
Priority to JP2019530679A priority patent/JP6860672B2/ja
Priority to RU2019120688A priority patent/RU2752846C2/ru
Publication of WO2018103702A1 publication Critical patent/WO2018103702A1/zh
Priority to US16/432,088 priority patent/US10764914B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/115Grant-free or autonomous transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0808Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using carrier sensing, e.g. as in CSMA
    • H04W74/0816Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using carrier sensing, e.g. as in CSMA carrier sensing with collision avoidance

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a method and an apparatus for uplink information processing.
  • the Long Term Evolution (LTE) system uses Orthogonal Frequency Division Multiplexing (OFDM) technology.
  • the uplink resource allocation of the LTE system is based on the Transmission Time Interval (TTI).
  • TTI Transmission Time Interval
  • the length of one TTI is 14 OFDM symbols, that is, one subframe, and the length of one TTI is 1 ms.
  • the base station indicates the uplink shared channel of the user equipment (English: User Equipment, UE) in the corresponding uplink subframe by using the uplink grant (English: UL grant) included in the downlink control channel.
  • the UL grant has a fixed timing relationship with its scheduled PUSCH, and the UL grant scheduled PUSCH included in the downlink control channel of the nth subframe (denoted as subframe #n) is located in the (n+4)th subframe (denoted as Subframe #n+4).
  • the frequency domain resources occupied by the scheduled PUSCH are indicated by the resource allocation (English: Resource Allocation, RA) information carried in the UL grant.
  • each PUSCH of the conventional LTE can only be scheduled by one UL grant with a fixed timing relationship, when the uplink service demand is greater than the downlink service requirement, the base station only needs to carry a small amount of downlink data, but needs to configure a large number of downlink subframes to pass.
  • the UL grant schedules sufficient PUSCH resources, causing waste of time domain resources, and frequently performing a Listen-Before-Talk (LBT) channel access mechanism. If the LBT fails, the UL grant cannot be sent, and the uplink PUSCH cannot be scheduled, resulting in limited channel access opportunities. Furthermore, due to the fixed timing relationship of the UL grant, the base station cannot schedule further uplink subframes. Therefore, how to support efficient uplink transmission on unlicensed spectrum when the uplink and downlink services are unbalanced is an urgent problem to be solved.
  • LBT Listen-Before-Talk
  • multi-subframe scheduling is introduced in an enhanced license-assisted access (eLAA).
  • eLAA enhanced license-assisted access
  • the base station device can send multiple UL grants in one downlink subframe, and schedule multiple consecutive uplink subframes in one UL grant, which can reduce the waste of channel resources by frequently transmitting UL grants, and the timing of the UL grant is flexible.
  • the minimum scheduling delay of the UL grant is 4 ms (the delay is used for the UE to receive the detected UL grant and the PUSCH transmitted on the uplink resource indicated by the UL grant), when the downlink is performed, When the burst is less than 4 subframes, there is still idle time (Gap) between the downlink burst and the scheduled uplink burst. The UE cannot use the idle time for uplink transmission, and cannot effectively utilize channel resources.
  • the present application provides a method and an apparatus for processing uplink information, which can improve utilization of time domain resources and improve processing efficiency of uplink information.
  • the first aspect provides a method for transmitting uplink information, which may include:
  • the terminal device Determining, by the terminal device, the time domain resource according to the first control information, where the time domain resource includes at least one uplink transmission time interval, and the start time unit of the time domain resource is later than the first downlink in time a transmission time interval, where the start time unit is a first uplink transmission time interval of the at least one uplink transmission time interval;
  • the terminal device sends data information on an uplink data channel, where the uplink data channel corresponds to at least one uplink transmission time interval in the time domain resource.
  • the terminal device may receive the first control information sent by the base station device, and determine the time domain resource after the downlink transmission time interval of the first control information according to the first control information.
  • the time interval between the start time unit in the time domain resource indicated by the first control information and the downlink transmission time interval is short, and the terminal device may send the uplink data information on the time domain resource without waiting for the scheduling of the uplink grant.
  • Increased utilization of time domain resources the terminal device can send the uplink data information in a shorter time than the scheduling delay of the uplink grant scheduling, thereby improving the transmission efficiency of the uplink data information, and the processing of the uplink data information is more flexible and more applicable.
  • the determining, by the terminal device, the time domain resource according to the first control information includes:
  • the terminal device determines the start time unit according to the first control information.
  • the first control information sent by the base station device may indicate a start time unit of the time domain resource of the scheduling-free license, and the terminal device may send the uplink data information from the start time unit.
  • the first control information indicates the start time unit of the time domain resource of the schedule-free license, and the method of resource indication is more flexible, the operation is simpler, and the applicability is higher.
  • the determining, by the terminal device, the time domain resource according to the first control information includes:
  • the terminal device determines, according to the first control information, a length of the time domain resource or an end time of the time domain resource.
  • the first control information sent by the base station device may indicate the length and the end time of the time domain resource of the scheduling-free license, and the manner of the resource indication is more flexible, the operation mode is simpler, and the applicability is higher.
  • the determining, by the terminal device, the time domain resource according to the first control information includes:
  • the length of the time domain resource is a predefined length, or a length obtained according to the first high layer signaling configuration sent by the base station device.
  • the application may determine, by using the first control information sent by the base station device, a start time unit of the time domain resource of the scheduling-free license, and determine the end time of the time domain resource by using a predefined or length of the time domain resource configured according to the high layer signaling.
  • the time domain resource can be determined, and the signaling overhead is small.
  • the length of the time domain resource configured according to the high layer signaling still maintains a certain resource allocation flexibility.
  • the first control information is used to indicate that the base station device is in a downlink burst The number of symbols occupied in the last subframe or the last transmission time interval, the downlink burst includes at least one time-continuous downlink transmission time interval, and the at least one temporally consecutive downlink transmission time interval includes the a downlink transmission time interval;
  • Determining, by the terminal device, the start time unit according to the first control information includes:
  • the terminal device determines the start time unit according to the number of symbols.
  • the first control information sent by the base station device may be used by the base station device to indicate the number of symbols occupied by the base station device in the last subframe or the last transmission time interval of the downlink burst, and the time domain resource of the scheduling-free license is determined according to the number of symbols.
  • the start time unit improves the flexibility of determining the time domain resources of the scheduling-free license, and has higher applicability and less signaling overhead.
  • the start time unit is later than the target time unit in time,
  • the time interval between the target time unit and the start time unit is a first time interval
  • the target time unit is the first downlink transmission time interval, or the target time unit is a subframe in which the first downlink transmission time interval is located, or the target time unit is a downlink burst. a last subframe or a last transmission time interval, the downlink burst includes at least one time-continuous downlink transmission time interval, and the at least one temporally consecutive downlink transmission time interval includes the first downlink transmission time interval .
  • the base station device may send the first control information, and the downlink transmission time interval carrying the first control information, the subframe in which the downlink transmission time interval is located, or the last subframe or the transmission time interval of the downlink burst in which the downlink transmission time interval is located may be determined.
  • the time domain resource after the target time unit is determined as the time domain resource of the scheduling-free license, which can improve the utilization of the time domain resource and improve the processing efficiency of the uplink data.
  • the determining, by the terminal device, the start time unit according to the first control information includes:
  • the first time interval is a predefined time interval, or the first time interval is obtained by the second high-level signaling configuration sent by the base station device.
  • the application may determine, according to the first control information sent by the base station device, a target time unit for determining a time domain resource of the scheduling-free license, and determine a time domain resource for determining the unscheduled license by using a predefined or higher layer signaling configuration.
  • the first time interval in turn, can determine the time domain resources of the scheduling-free license, improve the diversity of the determining manner of the time domain resources, and the signaling overhead is smaller, and the high-level signaling configuration mode maintains certain resource allocation flexibility.
  • the first control information is used to indicate the first time interval
  • Determining, by the terminal device, the start time unit according to the first control information including:
  • the terminal device determines the start time unit according to the first time interval and the target time unit.
  • the application may determine, according to the first control information sent by the base station device, a first time interval for determining a time domain resource of the scheduling-free license, and further may determine a start time unit according to the target time unit, and improve a determining manner of the start time unit.
  • the diversity of operations increases the operational flexibility of the indication of time domain resources.
  • the terminal device before determining the start time unit according to the first time interval and the target time unit, The method also includes:
  • the terminal device determines the target time unit according to the first control information.
  • the application may determine, according to the first control information sent by the base station device, the purpose of determining the time domain resource of the scheduling-free license.
  • the time unit is used to improve the diversity of the determination method of the target time unit.
  • the time between the first downlink transmission time interval and the start time unit The interval is less than the second time interval, where the second time interval is a minimum time interval between the second downlink transmission time interval and the target uplink transmission time interval, and the second downlink transmission time interval includes the uplink authorization, the target The uplink transmission time interval corresponds to the uplink channel of the uplink grant scheduling;
  • the uplink grant is used to indicate a transmission format of the uplink channel.
  • the transmission format of the uplink channel includes at least one of the following information:
  • the time interval between the downlink transmission time interval of the first control information sent by the base station device and the start time unit of the unscheduled time domain resource is smaller than the shortest scheduling delay in the UL grant scheduling, which can improve resources. Utilization, improve the efficiency of uplink data transmission.
  • the shortest scheduling delay in the UL grant scheduling is the time interval between the UL grant and the earliest PUSCH scheduled by the UE. Compared with the traditional UL grant scheduling mode, more time domain resources can be utilized, and the channel usage efficiency is more efficient. High, can improve the processing efficiency of the uplink information, and improve the applicability of the processing method of the uplink information.
  • the uplink grant provided by the application may be used to indicate the transmission format of the uplink channel, and the transmission format of the uplink channel may include one of a plurality of contents, which can improve the processing efficiency of the uplink information and improve the applicability of the processing manner of the uplink information.
  • the first control information is common control information.
  • the application can indicate the time domain resource of the scheduling-free license through the common control information, saves the overhead, is simple in operation, and has high applicability.
  • the method before the terminal device sends the data information on the uplink data channel, the method further includes :
  • the transmission format of the uplink data channel includes at least one of the following information:
  • Any one of the at least one piece of information included in the transmission format of the uplink data channel is pre-defined information or information obtained according to the third high-level signaling configuration sent by the base station device.
  • the uplink data channel provided by the present application has a different transmission format, and the transmission format of the uplink data channel is more flexible, which improves the applicability of the processing method of the uplink information.
  • the method further includes: before the terminal device sends the data information on the uplink data channel, the method further includes:
  • the terminal device performs a listening to send LBT on the carrier where the uplink data channel is located, and detects that the channel is idle.
  • the terminal device can perform the LBT and detect the channel idle before transmitting the uplink data, so as to ensure the validity of the uplink data information transmission, and the applicability is higher.
  • the second aspect provides a method for sending uplink information, which may include:
  • the base station device sends the first control information to the terminal device, where the first control information is used to indicate the time domain resource, and the time domain resource includes at least one uplink transmission time interval, where the time domain is The start time unit of the resource is later than the first downlink transmission time interval, and the start time unit is the first uplink transmission time interval of the at least one uplink transmission time interval;
  • the first control information is used to indicate the start time unit.
  • the first control information is used to indicate a length of the time domain resource or an end of the time domain resource time.
  • the first control information is used to indicate the start time unit
  • the end time of the time domain resource is obtained by the start time unit and the length of the time domain resource;
  • the length of the time domain resource is a predefined length, or a length configured according to the first high layer signaling configured by the base station device to the terminal device.
  • the first control information is used to indicate the base station device
  • the number of symbols occupied in the last subframe or the last transmission time interval of the downlink burst, the downlink burst includes at least one time-continuous downlink transmission time interval, and the at least one temporally consecutive downlink transmission time interval
  • the first downlink transmission time interval is included, and the number of symbols is used to determine the start time unit.
  • the start time unit is later than the target time in time a unit, the time interval between the target time unit and the start time unit is a first time interval;
  • the target time unit is the first downlink transmission time interval, or the target time unit is a subframe in which the first downlink transmission time interval is located, or the target time unit is a downlink burst. a last subframe or a last transmission time interval, the downlink burst includes at least one time-continuous downlink transmission time interval, and the at least one temporally consecutive downlink transmission time interval includes the first downlink transmission time interval .
  • the first control information is used to indicate the target time unit
  • the start time unit is obtained by the target time unit and the first time interval
  • the first time interval is a predefined time interval, or the first time interval is configured by the second high-level signaling configured by the base station device to the terminal device.
  • the first control information is used to indicate the first time interval
  • the start time unit is obtained by the target time unit and the first time interval.
  • the target time unit is indicated by the first control information.
  • the time between the first downlink transmission time interval and the start time unit The interval is less than the second time interval, where the second time interval is a minimum time interval between the second downlink transmission time interval and the target uplink transmission time interval, and the second downlink transmission time interval includes the uplink authorization, the target The uplink transmission time interval corresponds to the uplink channel of the uplink grant scheduling;
  • the uplink grant is used to indicate a transmission format of the uplink channel.
  • the transmission format of the uplink channel includes at least one of the following information:
  • the first control information is common control information.
  • the transmission format of the uplink data channel includes at least one of the following information:
  • Any one of the at least one piece of information included in the transmission format of the uplink data channel is pre-defined information, or configured according to the configuration of the third higher layer signaling configured by the base station device to the terminal device .
  • a third aspect provides a terminal device, which can include:
  • a receiving module configured to receive first control information that is sent by the base station device on the first downlink transmission time interval
  • a determining module configured to determine a time domain resource according to the first control information received by the receiving module, where the time domain resource includes at least one uplink transmission time interval, and a start time unit of the time domain resource is late in time In the first downlink transmission time interval, the start time unit is a first uplink transmission time interval in the at least one uplink transmission time interval;
  • a sending module configured to send data information on the uplink data channel, where the uplink data channel corresponds to at least one uplink transmission time interval of the time domain resources determined by the determining module.
  • the determining module is configured to:
  • the determination module is used to:
  • the determining module is configured to:
  • the length of the time domain resource is a predefined length, or a length obtained according to the first high layer signaling configuration sent by the base station device.
  • the first control information is used to indicate that the base station device is in a downlink burst The number of symbols occupied in the last subframe or the last transmission time interval, the downlink burst includes at least one time-continuous downlink transmission time interval, and the at least one temporally consecutive downlink transmission time interval includes the a downlink transmission time interval;
  • the determining module is used to:
  • the start time unit is determined according to the number of symbols.
  • the start time unit is later than the target time unit in time,
  • the time interval between the target time unit and the start time unit is a first time interval
  • the target time unit is the first downlink transmission time interval, or the target time unit is a subframe in which the first downlink transmission time interval is located, or the target time unit is a downlink burst. a last subframe or a last transmission time interval, the downlink burst includes at least one time-continuous downlink transmission time interval, and the at least one temporally consecutive downlink transmission time interval includes the first downlink transmission time interval .
  • the determining module is used to:
  • the first time interval is a predefined time interval, or the first time interval is obtained by the second high-level signaling configuration sent by the base station device.
  • the first control information is used to indicate the first time interval
  • the determining module is used to:
  • the start time unit is determined according to the first time interval and the target time unit.
  • the determining module is further configured to:
  • the time between the first downlink transmission time interval and the start time unit The interval is less than the second time interval, where the second time interval is a minimum time interval between the second downlink transmission time interval and the target uplink transmission time interval,
  • the second downlink transmission time interval includes the uplink grant, and the target uplink transmission time interval corresponds to an uplink channel scheduled by the uplink grant;
  • the uplink grant is used to indicate a transmission format of the uplink channel.
  • the transmission format of the uplink channel includes at least one of the following information:
  • the first control information is common control information.
  • the determining module is further configured to:
  • the transmission format of the uplink data channel includes at least one of the following information:
  • Any one of the at least one piece of information included in the transmission format of the uplink data channel is pre-defined information or information obtained according to the third high-level signaling configuration sent by the base station device.
  • the terminal device further includes:
  • the detecting module is configured to perform a listening to the LBT on the carrier where the uplink data channel is located, and detect that the channel is idle.
  • a fourth aspect provides a base station device, which can include:
  • a sending module configured to send first control information to the terminal device, where the first control information is used to indicate a time domain resource, and the time domain resource includes at least one uplink transmission time interval, where The start time unit of the time domain resource is later than the first downlink transmission time interval, and the start time unit is the first uplink transmission time interval of the at least one uplink transmission time interval;
  • a receiving module configured to receive data information sent by the terminal device on an uplink data channel, where the uplink data channel corresponds to at least one uplink transmission time interval in the time domain resource.
  • the first control information is used to indicate the start time unit.
  • the first control information is used to indicate a length of the time domain resource or an end of the time domain resource time.
  • the first control information is used to indicate the start time unit
  • the end time of the time domain resource is obtained by the start time unit and the length of the time domain resource;
  • the length of the time domain resource is a predefined length, or a length configured according to the first high layer signaling configured by the base station device to the terminal device.
  • the first control information is used to indicate the base station device
  • the number of symbols occupied in the last subframe or the last transmission time interval of the downlink burst, the downlink burst includes at least one time-continuous downlink transmission time interval, and the at least one temporally consecutive downlink transmission time interval
  • the first downlink transmission time interval is included, and the number of symbols is used to determine the start time unit.
  • the start time unit is later than the target time in time a unit, the time interval between the target time unit and the start time unit is a first time interval;
  • the target time unit is the first downlink transmission time interval, or the target time unit is a subframe in which the first downlink transmission time interval is located, or the target time unit is a downlink burst. a last subframe or a last transmission time interval, the downlink burst includes at least one time-continuous downlink transmission time interval, and the at least one temporally consecutive downlink transmission time interval includes the first downlink transmission time interval .
  • the first control information is used to indicate the target time unit
  • the start time unit is obtained by the target time unit and the first time interval
  • the first time interval is a predefined time interval, or the first time interval is configured by the second high-level signaling configured by the base station device to the terminal device.
  • the first control information is used to indicate the first time interval
  • the start time unit is obtained by the target time unit and the first time interval.
  • the target time unit is indicated by the first control information.
  • the time between the first downlink transmission time interval and the start time unit The interval is less than the second time interval, where the second time interval is a minimum time interval between the second downlink transmission time interval and the target uplink transmission time interval, and the second downlink transmission time interval includes the uplink authorization, the target The uplink transmission time interval corresponds to the uplink channel of the uplink grant scheduling;
  • the uplink grant is used to indicate a transmission format of the uplink channel.
  • the transmission format of the uplink channel includes at least one of the following information:
  • the first control information is common control information.
  • the transmission format of the uplink data channel includes at least one of the following information:
  • Any one of the at least one piece of information included in the transmission format of the uplink data channel is pre-defined information, or configured according to the configuration of the third higher layer signaling configured by the base station device to the terminal device .
  • the fifth aspect provides a system for uplink information processing, which may include: the terminal device provided in the foregoing third aspect, and the base station device provided in the foregoing fourth aspect.
  • a sixth aspect provides a terminal device, which can include: a memory and a processor;
  • the above memory is used to store a set of program codes
  • the above processor is used to call the program code stored in the memory, and performs various implementations provided by the method for transmitting the uplink information provided by the first aspect.
  • a seventh aspect provides a base station device, which can include: a memory and a processor;
  • the above memory is used to store a set of program codes
  • the foregoing processor is configured to call the program code stored in the memory, and implement various implementation manners provided by the method for receiving uplink information provided by the second aspect.
  • the base station device may send the first control information to the terminal device, and indicate, by the first control information, the time domain resource after the downlink transmission time interval carrying the first control information.
  • the time interval between the start time unit in the time domain resource indicated by the first control information and the downlink transmission time interval is short, and the terminal device may send the uplink data information on the time domain resource without waiting for the scheduling of the uplink grant. Increased utilization of time domain resources.
  • the terminal device can send uplink data information in a shorter time than the scheduling delay in the scenario of uplink grant scheduling, thereby improving the transmission efficiency of the uplink data information, and the base station device can receive the information in a shorter time.
  • the uplink data information sent by the terminal device is more flexible and more applicable to the processing of the uplink data information.
  • 1 is a schematic diagram of a positional relationship between uplink/downlink subframes of resource scheduling
  • FIG. 2 is a schematic flowchart of a method for processing uplink information according to an embodiment of the present invention
  • 3 is a schematic diagram of another positional relationship of uplink/downlink subframes of resource scheduling
  • FIG. 4 is a schematic diagram of time domain resources provided by an embodiment of the present invention.
  • FIG. 5 is another schematic diagram of time domain resources according to an embodiment of the present invention.
  • FIG. 6 is another schematic diagram of time domain resources according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a terminal device according to an embodiment of the present disclosure.
  • FIG. 8 is another schematic structural diagram of a terminal device according to an embodiment of the present disclosure.
  • FIG. 9 is another schematic structural diagram of a terminal device according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of a base station device according to an embodiment of the present disclosure.
  • FIG. 11 is another schematic structural diagram of a base station device according to an embodiment of the present invention.
  • FIG. 12 is a schematic structural diagram of an uplink information processing system according to an embodiment of the present invention.
  • the smallest resource unit used for data transmission is a resource element (English: Resource Element, RE), and one RE corresponds to one OFDM symbol in the time domain and one subcarrier in the frequency domain.
  • the Resource Block (RB) consists of multiple OFDM symbols in the time domain and consecutive subcarriers in the frequency domain.
  • RB is the basic unit of resource scheduling.
  • the uplink transmission of the LTE system uses a single carrier, and one RE corresponds to one single carrier frequency division multiple access (SC-FDMA) symbol and one subcarrier in the frequency domain.
  • SC-FDMA single carrier frequency division multiple access
  • the UL grant is UE-specific control signaling, and the UL grant has a fixed timing relationship with its scheduled PUSCH, and the UL grant scheduled PUSCH included in the downlink control channel of the subframe #n is located in the subframe. Frame #n+4.
  • LAA-LTE Lens-Assisted Access using Long Term Evolution
  • CA Carrier Aggregation
  • the spectrum is extended to the unlicensed frequency band, the licensed spectrum is used to achieve seamless coverage, and the services with high delay requirements are carried, and the unlicensed spectrum carries part of the data service.
  • the LAA system adopts the LBT channel access mechanism, and the base station transmits the downlink after detecting the channel idle. information.
  • the LBT of the downlink transmission is a Clear Channel Assessment (CCA) (Type 1 UL channel access) based on a random backoff.
  • CCA Clear Channel Assessment
  • the specific process is: the sending node randomly generates a back-off counter N between 0 and the contention window size (CWS), and listens in the granularity of the listening time slot (English: CCA slot). If the channel is detected to be idle in the listening time slot, the backoff counter is decremented by one, and if the channel is busy, the backoff counter is suspended, that is, the backoff counter N remains unchanged during the channel busy time until it is detected. The channel is idle. When the backoff counter is decremented to 0, the transmitting node can immediately occupy the channel.
  • CCA Clear Channel Assessment
  • the maximum length of time that the information can be continuously sent is the Maximum Channel Occupancy Time (MCOT).
  • MCOT Maximum Channel Occupancy Time
  • the channel needs to be released.
  • the LBT is re-executed, the channel can be re-enabled.
  • the criterion for determining the channel state is that the wireless communication device compares the power on the received channel in the listening time slot with the energy detection threshold. If the threshold is higher than the threshold, the channel is busy. If the threshold is lower than the threshold, the channel is idle.
  • the uplink transmission of the unlicensed spectrum is further supported in the eLAA introduced in Release 14. Consistent with the existing LTE system, the eLAA uplink transmission is completed by the base station transmitting the UL grant scheduling, and the terminal device also needs to confirm the channel idle through the LBT before sending the scheduled uplink transmission.
  • the uplink transmission supports two LBT types: CCA based on random backoff and single-slot CCA. Among them, CCA based on random backoff is similar to downlink transmission.
  • the single-slot CCA procedure is: the transmitting node performs a single-slot CCA listening with a length of 25 us. If the 25-channel CCA slot detects that the channel is idle, the transmitting node can immediately access the channel.
  • the sending node abandons the transmission. Information, and can wait for the next single-slot CCA listening before waiting for the next upstream data channel.
  • the MCOT occupied by the base station can be shared with the terminal device.
  • the terminal device can perform single-slot CCA within the MCOT. If the MCOT is exceeded, the CPA needs to be performed. Specifically, the base station notifies the terminal device of the start time and the duration of the uplink burst by the cell-specific control signaling (English: Common PDCCH, CPDCCH) included in the downlink control channel.
  • the cell-specific control signaling English: Common PDCCH, CPDCCH
  • the uplink transmission of the terminal equipment within the uplink burst may perform a single-slot CCA access channel, and the uplink transmission exceeding the uplink burst needs to perform a random back-off CCA access channel.
  • the CPDCCH is also used to notify the number of symbols of the downlink subframe, trigger two-stage uplink scheduling, and the like.
  • the last downlink subframe of one downlink burst is called a tail subframe.
  • the base station may not occupy all the symbols of the subframe in the downlink subframe, but only occupy the symbol of the front of the subframe, without occupying the back.
  • the symbol transmits the downlink information, the latter symbol remains idle to perform the LBT for the uplink transmission of the next subframe, or the lower symbol is used for the UE to send the uplink control channel, carrying the random access information, the uplink sounding reference signal, and the downlink Hybrid Automatic Repeat reQuest (HARQ) ACK feedback (ie, HARQ-ACK feedback).
  • HARQ downlink Hybrid Automatic Repeat reQuest
  • the last subframe (the tail subframe) of the downlink burst contains 14 symbols, and the base station sends downlink information in the first K symbols in the tail subframe, where K can be 3, 6, 9, 10, 11, One of the values in 12, 14.
  • FIG. 1 is a schematic diagram of a positional relationship between uplink/downlink subframes of resource scheduling. As shown in FIG.
  • the base station needs to schedule four uplink subframes, four downlink subframes need to be configured and one UL grant is sent in each downlink subframe, and these downlink subframes cannot be used for uplink transmission.
  • the UL grant sent in each downlink subframe is used to schedule an uplink subframe corresponding to the downlink subframe. For example, the UL grant sent in the downlink subframe #n is used to schedule the uplink subframe #n+4.
  • the base station may need to stop occupying the channel, so the channel occupation is discontinuous, and the base station after transmitting
  • the LBT still needs to be executed before a UL grant. If the LBT fails, the UL grant cannot be sent, and the uplink PUSCH cannot be scheduled. Furthermore, since the UL grant and the UL grant scheduled PUSCH have a fixed timing relationship, for example, the UL grant in the subframe #n can only schedule the PUSCH base station on the subframe #n+4 to be unable to schedule further uplinks. Subframe.
  • the embodiment of the present invention provides a method and a device for processing uplink information, which can be used to indicate that the time domain resource available to the terminal device is the time domain resource after the downlink transmission ends.
  • the terminal device may send the uplink data on the time domain resource indicated by the downlink control information without the base station device transmitting the UL grant schedule in advance.
  • the terminal device may group the data information to be sent on the PUSCH in advance according to the pre-configured uplink data channel format, and immediately send the uplink data information on the corresponding time domain resource after detecting the downlink control information, and does not need to Before this, the scheduling request (English: Scheduling Request, SR) is sent and the UL grant is awaited, which reduces the delay of the uplink transmission and improves the uplink transmission efficiency.
  • the scheduling request (English: Scheduling Request, SR) is sent and the UL grant is awaited, which reduces the delay of the uplink transmission and improves the uplink transmission efficiency.
  • the embodiments of the present invention can be applied to a wireless communication system operating on an unlicensed spectrum, and can also be applied to a wireless communication system operating on an authorized spectrum.
  • the base station device of the wireless communication system sends downlink information (or downlink data information) on the licensed spectrum or the unlicensed spectrum, and the terminal device of the wireless communication system.
  • the scheduling delay of the uplink transmission based on the UL grant scheduling on the authorized spectrum and the unlicensed spectrum is 4 ms.
  • the scheduling is free (English: Grant Free, or The data information transmitted on the PUSCH of the Grant-less can enjoy the benefits of reduced delay and improved uplink transmission efficiency.
  • the implementation provided by the embodiment of the present invention eliminates the operation of the terminal device to send the SR and wait for the UL grant, and the SR and the UL grant can be prevented from occupying the access opportunity brought by the channel. The loss is highly applicable.
  • the network element involved in the implementation manner provided by the embodiment of the present invention is mainly a base station device and a terminal device (or UE) that can work on a licensed spectrum or an unlicensed spectrum.
  • the foregoing base station device includes a macro base station, a micro cell, a pico cell, a home base station, a remote radio head, and a relay, and may be determined according to an actual application scenario, and is not limited herein.
  • the foregoing terminal device may include a mobile phone, a notebook computer that can access the LTE system, a tablet computer, and the like, and may be determined according to actual application scenarios, and is not limited herein.
  • the method and apparatus for processing uplink information provided by the embodiments of the present invention will be described below with reference to FIG. 2 to FIG.
  • FIG. 2 is a schematic flowchart of a method for processing uplink information according to an embodiment of the present invention.
  • the method provided by the embodiment of the present invention includes the following steps:
  • the base station device sends the first control information to the terminal device at the first downlink transmission time interval.
  • the terminal device receives first control information that is sent by the base station device on the first downlink transmission time interval.
  • the base station device needs to send the uplink data information by using the UL grant scheduling terminal device after receiving the SR sent by the terminal device.
  • the delay of the uplink transmission is large because the base station device receives the delay between the SR sent by the UE and the UL grant sent by the terminal device.
  • the terminal device does not need to send the SR to the base station device, and does not need to receive the UL grant sent by the base station device, but sends the uplink data information directly on the uplink PUSCH resource configured by the base station device. Small delays increase resource utilization.
  • the base station device may send the first control information on the first downlink transmission time interval (ie, the first downlink TTI), where the first control information is used to indicate the time of the scheduling-free permission. Domain resource.
  • the base station device can allocate the time-frequency resources of the same scheduling-free license to the multiple terminal devices, and prevent the terminal device from being wasted by the uplink data transmission.
  • the base station device can control the number of terminal devices configured on the same unscheduled licensed resource, so as to avoid excessive terminal devices, causing multiple terminal devices to simultaneously send data information on a time domain resource, and thus the collision problem of data information transmission occurs. .
  • the time-domain resources and the frequency domain resources of the scheduling-free license may be semi-statically configured by the high-level signaling sent by the base station device.
  • the timing at which the base station device transmits the downlink transmission and the end time of the downlink transmission are dynamic.
  • the LBT needs to be performed before the downlink transmission, so that the dynamic characteristics of the downlink transmission opportunity are more obvious. Therefore, the end time of the downlink transmission is likely to be far from the start time unit of the pre-configured scheduling-free licensed time domain resource, and still cannot be effective.
  • the uplink data information is transmitted using the idle time between the DL-ULs.
  • the implementation manner of dynamically indicating the time domain resource is proposed.
  • the embodiment of the present invention may explicitly or implicitly indicate the time domain resource of the scheduling-free license, including the start time unit of the time domain resource, and/or the length of the time domain resource, by using the first control information delivered by the base station device, and / or the end time of the time domain resource, etc.
  • the terminal device has uplink data transmission requirements, it can be based on the pre-configured uplink number in advance.
  • FIG. 3 is a schematic diagram of another positional relationship of uplink/downlink subframes of resource scheduling. As shown in FIG. 3, the base station device transmits the latest downlink subframe (or downlink TTI) of the UL grant scheduling on the downlink subframe #n to the downlink subframe #n+4.
  • the base station device may send the first control information by using the first control information on the downlink subframe #n.
  • the 3 downlink subframes of #n+1 to downlink subframe #n+3 are indicated as time-domain resources of the scheduling-free license.
  • the terminal device may determine, according to the first control information, that the uplink data information may be sent by using the part of the time domain resource, that is, the terminal device may determine, according to the first control information, that the part of the time domain resource is a scheduling-free license. Time domain resources.
  • the downlink transmission time interval (ie, the downlink TTI) is the minimum time transmission unit of the downlink transmission
  • the uplink transmission time interval ie, the uplink TTI
  • the data information transmitted in the downlink transmission time interval includes downlink control information, and the downlink control information may perform downlink resource scheduling on the downlink data channel included in the same downlink transmission time interval, or may be performed after the downlink transmission time interval.
  • the uplink data channel in the uplink transmission time interval performs uplink resource scheduling.
  • the LTE system before Release 14 uses a TTI of 1 ms in length, that is, the length of the uplink TTI and the downlink TTI are both 1 ms, that is, the lengths of the uplink TTI and the downlink TTI are both 1 subframe.
  • the shorter TTI length is introduced in Release 14 and 5G NR (English: New Radio).
  • the base station equipment and terminal equipment supporting short TTI (sort TTI, sTTI) transmission can support TTI with length of 1ms and length shorter than 1ms. Upstream sTTI/downstream sTTI.
  • the optional length supported by sTTI includes 7 SC-FDMA (English: SC-FDMA Symbol, SS) symbols, 1 SS, 2 SS, 3 SS, 4 SS, and so on. That is, one downlink subframe may include at least two downlink sTTIs, and one uplink subframe may include at least two uplink sTTIs.
  • the downlink TTI in the embodiment of the present invention may be a TTI of 1 ms in length, that is, one subframe, or may be an sTTI whose length is shorter than 1 ms, where an sTTI whose length is shorter than 1 ms includes at least one downlink OFDM symbol.
  • the uplink TTI may be a TTI of 1 ms in length, that is, one subframe, or may be an sTTI whose length is shorter than 1 ms, wherein an sTTI whose length is shorter than 1 ms includes at least one uplink SC-FDMA symbol.
  • a TTI that is, one subframe
  • an sTTI having a length of less than 1 ms is referred to as a TTI, which may be based on a base station device or a terminal device in an actual application scenario.
  • the adopted TTI format is determined, and no limitation is imposed here.
  • the time domain resource indicated by the first control information sent by the base station device is the scheduling-free license resource (or the time-domain resource of the scheduling-free license) described in the embodiment of the present invention.
  • the scheduling-free grant resource described in the embodiment of the present invention is used for the scheduling-free grant PUSCH transmission of the terminal device.
  • the base station device may allocate one time domain resource and/or frequency domain resource to only one terminal device as a scheduling-free license resource, or may allocate the same time domain resource and/or frequency domain resource to at least two terminal devices as a scheduling-free license. Resources.
  • the terminal device may decide whether to use the time domain resource to send uplink data information, and which uplink TTIs in the time domain resource are used to send the uplink data information. That is, when the time-domain resource of the scheduling-free license includes at least two uplink TTIs, after receiving the first control information, the terminal device may send uplink data information on at least one uplink TTI in the time domain resource, which may be occupied. Some uplink TTIs in the time domain resource may also occupy all time domain resources.
  • the time domain resource includes at least one TTI or a subframe, and any one of the at least one TTI/subframe may be a complete TTI/subframe, or may be a partial TTI/subframe, that is, the terminal at this time
  • the device can only send data information on a part of the time domain resource of the TTI/subframe.
  • the time domain resource is located after the first downlink TTI that carries the first control information, that is, the first time domain resource.
  • the TTI or the first subframe is after the first downlink TTI carrying the first control information.
  • the time interval between the start time unit of the time domain resource and the end time of the first downlink TTI may be equal to zero, that is, the foregoing time domain.
  • the start time unit of the resource is followed by the downstream TTI.
  • the time interval between the start time unit of the time domain resource and the end time of the downlink TTI may also be greater than zero, that is to say, the time domain resource starts after a period of time after the end time of the downlink TTI.
  • the time interval may be used for LBT interception.
  • the downlink TTI there may be other downlink TTIs to transmit data information after the downlink TTI, that is, the downlink TTI is not the last downlink TTI of the downlink burst.
  • the foregoing time domain resource is to be transmitted after the data information to be transmitted by other downlink TTIs after the downlink TTI is completed.
  • the base station device does not occupy all the downlink symbols in the downlink subframe, and the time domain resource of the scheduling-free permission indicated by the first control information is in the downlink subframe. After the end.
  • the first control information sent by the base station device may be user-specific control information, or may be user group-specific control information, or may be common control information.
  • the user-specific control information is scrambled by a user-specific Radio Network Temporary Identifier (RNTI), and can only be detected by the specific terminal device, and the control information is valid only for the specific terminal device.
  • RNTI Radio Network Temporary Identifier
  • the user group specific control information can only be detected by the specific group of terminal devices (at least two terminal devices) and the control information is valid only for the terminal devices included in the group.
  • the common control information is scrambled by the cell-specific RNTI, and can be detected by all the activated terminal devices included in the cell, and the common control information is valid for all the terminal devices that detect the common control information.
  • the first control information is common control signaling (ie, common control information)
  • the first control information is used to indicate a time domain resource of the scheduling-free license, and the first control information may be utilized.
  • Existing common control channel English: Common PDCCH, CPDCCH.
  • the base station device may use the common RNTI (Cell Common-RNTI, CC-RNTI) of the cell to scramble the common control signaling.
  • the base station device may also adopt a new common control channel format, or use a new cell-specific RNTI to scramble the common control signaling.
  • the common control signaling may be carried in a PDCCH channel region.
  • the original Physical Hybrid ARQ Indicator Channel (PHICH) channel of the LTE system may not need to be received by the terminal device operating in the unlicensed spectrum or the Release 14 version as the HARQ indicator.
  • the physical resource corresponding to the idle PHICH channel may be used to carry the common control information for indicating the foregoing time domain resource to the terminal device.
  • the terminal device determines a time domain resource according to the first control information.
  • the terminal device may determine, according to the first control information, a time domain resource for the scheduling-free license, including a start time unit of the time domain resource, and a length of the time domain resource.
  • Time domain resource parameters such as (instant) and the end time of the time domain resource.
  • the terminal device may determine the third parameter by determining any two of the three time domain resource parameters, that is, the terminal device determines the time domain resource by determining two of the three time domain resource parameters. .
  • the start time unit of the foregoing time domain resource is later than the target time unit in time, and the time interval between the target time unit and the start time unit is the first time interval.
  • the foregoing start time unit includes a transmission time interval that allows the terminal device to transmit uplink data information at the earliest time in the time domain resource, that is, the first TTI (referred to as a starting TTI) of the at least one TTI included in the time domain resource or the time
  • the first subframe of the at least one subframe included in the domain resource (referred to as a start subframe)
  • the start time of the foregoing time domain resource is a permission terminal The earliest time to send data information on this time domain resource.
  • the start time includes a start subframe or a start TTI of the time domain resource, and/or a location (starting position) that allows the terminal device to start transmitting data information at the start subframe/start TTI.
  • the start time unit includes a start TTI or a start subframe of the time domain resource, and the start TTI/start subframe may be a complete TTI or a complete subframe, or may be a partial TTI or a partial subframe.
  • the terminal device needs to occupy all time domain transmit data information of one complete TTI/complete subframe.
  • the terminal device does not need to occupy all the time domains of a complete TTI/complete subframe, but only takes part of the time domain of the complete TTI/complete subframe to transmit data information, allowing the terminal to
  • the time domain portion occupied by the device in this complete TTI/complete subframe is referred to as a partial TTI/partial subframe.
  • the start boundary of the start time unit is the start position of the start of the data information in the start TTI/start subframe of the terminal device (English: Start position). Specifically, when the starting TTI/starting subframe is a complete TTI/subframe, the starting position of the starting TTI/starting subframe is equal to the starting boundary of the TTI/subframe, and the starting time unit is the Start TTI / start subframe.
  • the starting position of the starting TTI/starting subframe is in the middle of a complete TTI/complete subframe (or at the beginning)
  • the start time unit may be the complete TTI/complete subframe, or may be from the complete TTI/complete subframe, between the start and end boundaries of the complete TTI/complete subframe in which the TTI/starting subframe is located)
  • the starting position is the portion of the end boundary of the starting TTI/starting subframe.
  • the starting position is a time at which the terminal device is allowed to start sending uplink data information at the start TTI/starting subframe.
  • the starting TTI/starting subframe is always a complete TTI/complete subframe, and the starting position may always be at the starting boundary of the starting TTI/starting subframe (eg, the starting boundary of the complete subframe) , called 0us).
  • the starting TTI/starting subframe may be a complete TTI/complete subframe, and the starting position may be at the starting boundary (0us) of the starting TTI/starting subframe.
  • the lower start time unit is the first complete TTI/complete subframe included in the time domain resource, as shown in (a) of FIG.
  • FIG. 4 is a schematic diagram of time domain resources according to an embodiment of the present invention.
  • the starting TTI/starting subframe may also be a partial TTI/partial subframe, and the starting position may also be located in the middle of the complete TTI/complete subframe where the starting TTI/starting subframe is located, and specifically Is the middle of the first upstream symbol or the beginning of the second upstream symbol.
  • the start position may be located at the beginning of the second uplink symbol of the complete TTI/complete subframe, such as (d) in Fig. 4 (referred to as 1 symbol).
  • the start time unit may be the first complete TTI/complete subframe included in the time domain resource, or may be from the beginning of the second symbol to the child in the first complete TTI/complete subframe.
  • the part of the end of the frame (the oblique grid part).
  • the starting position may also be 25us (referred to as 25us) after the start boundary of the complete TTI/complete subframe, in the middle of the first symbol, as shown in (b) of FIG.
  • the start time unit may be the first complete TTI/complete subframe included in the time domain resource, or may be the portion from the 25us to the end of the subframe boundary in the first complete TTI/complete subframe ( Oblique square part).
  • the starting position can also be located 25us+TA (English: Timing Advance) after the starting boundary of the complete TTI/complete subframe (called 25us+TA), in the middle of the first symbol, as in Figure 4 (c ) shown.
  • the start time unit may be the first complete TTI/complete subframe included in the time domain resource, or may be from the 25us+TA to the end of the subframe boundary in the first complete TTI/complete subframe.
  • Part (the oblique square part).
  • One symbol, or 25 us, or (25 us + TA) idle interval is reserved at the front of the starting subframe to facilitate the LBT for the uplink data channel.
  • the target time unit is a downlink transmission time interval (ie, a first downlink TTI) that carries the first control information; or the target time unit is a subframe in which the first downlink TTI is located; or, the target time unit is a downlink
  • the target time unit may be a complete TTI/subframe or a partial TTI/subframe. Wherein, when the base station device does not occupy all time domains in one complete TTI/complete subframe and only takes part of the time domain to transmit downlink information, the occupied time domain portion is referred to as a partial TTI/partial subframe.
  • the first time interval is a time interval between the target time unit and the start time unit.
  • the first time interval is a time interval between a start boundary or a start boundary of the complete TTI/complete subframe where the target time unit is located and a start position corresponding to the start time unit.
  • the target time unit is the last subframe of the downlink burst, that is, the tail subframe.
  • the time domain occupied by the base station in the tail subframe is the first symbol (called symbol #1) to the third symbol (called symbol #3), and the start time unit is the first complete sub-frame after the tail subframe.
  • the frame, the starting position is a subframe boundary
  • the first time interval is a time interval between a start boundary of the tail subframe and a start position corresponding to the start time unit, that is, 1 subframe.
  • the first time interval is a time interval between the end boundary of the tail subframe and the start position corresponding to the start time unit, that is, 0.
  • the first time interval is a time interval between the target time unit and the start time unit.
  • the first time interval is a start boundary or an end boundary and a start of the complete TTI/complete subframe where the target time unit is located.
  • the target time unit is the last subframe of the downlink burst, that is, the tail subframe, and the base station occupies all symbols in the tail subframe
  • the start time unit is the first subframe after the tail subframe, and the start position is the subframe.
  • the first time interval is the time interval between the start boundary of the tail subframe and the start position corresponding to the start time unit, that is, 1 subframe +1 symbol
  • the first time interval is a time interval between the end boundary of the tail subframe and the start position corresponding to the start time unit, that is, 1 symbol.
  • the foregoing end time includes a latest time when the terminal device is allowed to send data information on the time domain resource, where the end time includes the last subframe or the last TTI (referred to as an end time unit) included in the time domain resource, and/or allowed The location (end position) at which the terminal device stops transmitting data information at the last subframe/last TTI.
  • the last subframe/last TTI may be a complete subframe/complete TTI, or may be a partial subframe/partial TTI.
  • the end position may be the start boundary or the end boundary of the complete subframe/complete TTI in which the last subframe/the last TTI is included in the time domain resource, or the complete subframe in the last subframe/last TTI/ In the middle of the complete TTI.
  • the duration of the foregoing time domain resource is the length of time between the start time and the end time.
  • the length of time between the complete TTI/complete subframe and the end time unit (or the complete TTI/complete subframe where the end time unit is located) where the start time unit or the start time unit of the time domain resource is located may be It may also be the length of time between the start position corresponding to the start time unit and the end position corresponding to the end time unit.
  • the embodiment of the present invention is directed to how the terminal device obtains the duration and the start time of the time domain resource, and the method is also applicable to the terminal device acquiring the time duration and the end time of the time domain resource, or acquiring the start time of the time domain resource. And the end moment.
  • the base station device may notify the terminal device of the duration of the time-domain-free resource that is not scheduled by the first control information, and the terminal device may directly determine the duration of the time domain resource according to the first control information.
  • the base station device indicates the duration of the time domain resource by using the first control information, and may be expressed as indicating the number of uplink TTIs, and may also be expressed as indicating the number of uplink subframes, or may be expressed as indicating the number of milliseconds.
  • the terminal device can determine the duration of the time domain resource according to the indication of the first control information, and the operation is simple.
  • the base station device may explicitly indicate the duration of the time domain resource by introducing a new bit field in the CPDCCH.
  • the time domain resources are contiguous in time, wherein the above time consecutively includes consecutive TTIs or subframes.
  • the consecutive TTIs or subframes may be embodied as consecutive between two adjacent TTIs or subframes, or there may be idle intervals between two adjacent TTIs or subframes (eg, an idle interval of one symbol or partial symbols) This idle interval is used to execute the LBT.
  • the base station device may also indicate, by using the first control information, an end time of the unscheduled licensed time domain resource.
  • Terminal Equipment Such a base station device can dynamically notify the terminal device of the duration of the scheduling-free time domain resource by using the first control information to indicate the notification manner of the time-domain resource of the scheduling-free license, at the cost of increasing the notification signaling overhead.
  • the uplink/downlink TTI is a TTI (that is, 1 subframe) with a length of 1 ms
  • the UL grant scheduling delay is 4 ms
  • the length of the downlink burst transmitted by the base station on the unlicensed spectrum is 1 subframe, DL-UL.
  • the idle time between (the time between the downlink burst end subframe and the earliest uplink subframe scheduled by the UL grant included in the downlink burst) is 3 ms. Since the base station device can schedule the uplink data channel by using the UL grant after 3 ms, the duration of the time-domain resource without scheduling permission can be indicated as 3 ms. Similarly, when the downlink burst length sent by the base station device on the unlicensed spectrum is 2 subframes, the idle time between the DL-ULs is 2 ms, and the duration of the time-domain resources without scheduling permission can be indicated as 2 ms.
  • the base station device may notify the terminal device of the duration of the time-free resources of the scheduling-free license by using the first high-level signaling.
  • the terminal device receives the first high layer signaling before receiving the first control information, and configures the duration of the time domain resource by using the first high layer signaling.
  • the base station device configures the duration of the time-domain resource of the scheduling-free license through the first high-level signaling, thereby saving signaling overhead.
  • the first control information is only used to indicate time domain resources for the unscheduled license. Specifically, for the unlicensed spectrum, it is not necessary to additionally introduce a new control signaling bit field.
  • the terminal device triggers the sending of the uplink data information by detecting the existence of the first control information.
  • the first control information is the CPDCCH
  • the CPDCCH indicates that the current subframe or the next subframe is the tail subframe
  • the terminal device detects the CPDCCH if the start time unit is the following immediately after the tail subframe
  • the start time unit is the following immediately after the tail subframe
  • This notification method is also applicable to the scenario where the first control information is user-specific control information or user group-specific control information.
  • the duration of the time-free resources of the scheduling-free license provided by the embodiment of the present invention may be predefined.
  • the duration of the time-domain resource of the scheduling-free license may be defined as 2 subframes or 2 TTIs, or 3 subframes, or 3 TTIs, and may be determined according to an actual application scenario, and is not limited herein.
  • the determining, by the terminal device, the duration of the time domain resource, the time length of the foregoing time domain resource is the duration of the first high-level signaling configuration, or a predefined duration, or the base station device indicates by using the first control information. duration.
  • determining that the end time of the time domain resource is obtained by the start time of the time domain resource plus the duration of the time domain resource. For example, when the first subframe whose start time is the tail subframe of the downlink burst is recorded as subframe #m+1, and the duration is x subframes, the end time is subframe #m +x, the above time domain resource is x subframes immediately following the tail subframe.
  • the duration of the first high-level signaling configuration, or a predefined duration, or the length of time indicated by the base station device by the first control information corresponds to the length of time from the start time to the end time, which is equal to the actual time domain resource. duration.
  • the terminal device determines the duration of the time domain resource, and determines whether the duration of the time domain resource is the duration of the first high-level signaling configuration, or a predefined duration, or the duration indicated by the base station device by using the first control information. Subtract the first time interval. Or determining that the end time of the time domain resource is obtained by the end time of the target time unit (or the first TTI after the target time unit) plus the duration of the time domain resource. In this manner, since the target time unit is fixed, the time domain resource end time determined by the terminal device is independent of the first time interval, and is only related to the duration, and the base station may not need to dynamically indicate the first time interval, but adopts a predefined Or a high-level signaling configuration manner.
  • the manner may also be regarded as a manner of determining an end time of a time domain resource, where the end time is configured or pre-defined by the first high-layer signaling or passed by the base station device.
  • Control information indication For example, it is assumed that the first time interval is a time interval between the end boundary of the tail subframe and the start position corresponding to the start time unit, and when the target time unit is the tail subframe of the downlink burst, the foregoing starting time is the The first subframe immediately following the tail subframe is recorded as subframe #m+1.
  • the duration of the pre-defined or indicated time is x subframes
  • the first time interval is 0
  • the end time is subframe #m+x
  • the time domain resource is x subframes immediately following the tail subframe.
  • the start time is the second subframe immediately after the tail subframe, which is recorded as subframe #m+2
  • the configuration or the predefined or indicated duration is x subframes
  • the first time interval is 1 subframe.
  • the end time is still subframe #m+x
  • the time domain resource is x-1 subframes starting from subframe #m+2.
  • the base station device may trigger, by using the first control information, the terminal device to send or not send the uplink data information of the scheduling-free license.
  • the trigger information may be an independent bit in the first control information, or may be jointly encoded with the information indicating the duration of the time domain resource of the scheduling-free license, and the terminal device sends or does not send the scheduling-free license.
  • One of the two states of the uplink data information is triggered.
  • the first control information is triggered as an independent bit, it may be triggered by an independent bit included in the first control information. Specifically, if the independent bit is “0”, the untriggered terminal device sends the uplink data information. If the independent bit is "1", it means that the terminal device is triggered to send uplink data information.
  • the triggering terminal device sends the uplink data information of the scheduling-free permission on the at least one subframe/TTI of the x subframes/TTI immediately after the target time unit, or triggers the terminal device to start from the start time unit.
  • the uplink data information of the scheduling-free permission is transmitted on at least one subframe/TTI in the subframe/TTI.
  • the above x is indicated by the first control information, that is, the length of the time domain resource that is not scheduled to be scheduled by the first control information, or the above x is a first high layer signaling configuration that is predefined or sent by the base station.
  • the start time unit is determined by the target time unit plus the first time interval, where the first time interval is indicated by the first control information, or the first time interval is a second high-level signaling configuration predefined or sent by the base station.
  • the terminal device can also trigger by detecting the presence of the first control information.
  • the terminal device may determine the target time unit according to the detected CPDCCH. Specifically, the current subframe or the next subframe is determined to be a tail subframe according to the detected CPDCCH. If the start time unit is the first subframe/TTI immediately after the tail subframe, the terminal device may detect the CPDCCH, and may be at least one subframe/TTI of the x subframes/TTI immediately after the target time unit.
  • the uplink data information of the scheduling-free grant is sent, or the terminal device transmits the uplink data information of the scheduling-free license on at least one of the x subframes/TTIs/TTIs starting from the start time unit.
  • the above x is indicated by the first control information, that is, the length of the time domain resource of the scheduling-free permission is indicated by the first control information.
  • the above x is a first high layer signaling configuration that is predefined or sent by the base station.
  • the start time unit is determined by the target time unit plus the first time interval, where the first time interval is indicated by the first control information, or the first time interval is a second high-level signaling configuration predefined or sent by the base station.
  • the trigger information may be jointly encoded with information indicating the duration of the time domain resource of the schedule-free license.
  • the first control information may include a 2-bit bit field, and the 2-bit bit field coding may obtain four states including "00", “01", “10", and "11". The above four states may indicate that the duration of the time domain resource is ⁇ 0, 1, 2, 3 ⁇ , wherein 1, 2, and 3 respectively correspond to the time domain resource duration of 1, 2, and 3 uplink TTI/uplinks. frame.
  • the terminal device may confirm that the time domain resource that does not indicate the scheduling-free permission or the data channel that does not trigger the terminal device to send the scheduling-free permission , does not send upstream data information without scheduling permission.
  • the downlink control information is scrambled by a cell-specific RNTI (for example, CC-RNTI) or a user-specific RNTI, and includes a cyclic redundancy check in addition to the bit field of the effective control information (English: Cyclic Redundancy) Check, CRC) bit field.
  • the terminal device uses a cell-specific RNTI or a user-specific RNTI pair downlink subframe or downlink TTI
  • the control channel region performs blind detection and checks the CRC bit field. If the CRC check is correct, it determines that the downlink control information exists, and further, the downlink control information includes indication information for itself.
  • the notification mode is also applicable to the scenario where the first control information is user-specific control information or user group-specific control information, and details are not described herein again.
  • the terminal device may determine, according to the first control information, a start time unit of the time domain resource of the schedule-free license.
  • the terminal device determines that the start time unit of the time domain resource of the scheduling-free license can be in the following four manners: a predefined start time unit, a second high-level signaling notification start time unit, and the first control information explicit The start time unit is notified, and the first control information implicitly notifies the start time unit and the like.
  • the start time unit of the time domain resource for determining the scheduling-free license by the terminal device includes determining a start subframe/start TTI of the time domain resource of the schedule-free grant, and also determining the start subframe/start The starting position corresponding to the TTI.
  • the terminal device determines that the start time unit of the time domain resource of the schedule-free license can be based on the target time unit, and the start time unit and one The time interval between target time units, ie the first time interval, or the offset of the target time unit (English: Offset) is determined. That is to say, the start time unit is obtained by the target time unit plus the first time interval.
  • the target time unit may be determined by the terminal device according to the detected first control information, and may be a certain TTI (set as a target TTI) or a certain subframe (set as a target subframe).
  • the terminal device may determine the target time unit according to the first control information.
  • the target time unit may be obtained by detecting the existence of the first control information.
  • the target TTI/target subframe is a downlink carrying the first control information.
  • the TTI or the subframe that is, the first downlink TTI
  • the subframe in which the downlink TTI is located if the TTI is sTTI
  • the terminal device monitors the first control information (English: Monitor) or blind detection (English: Blind Detection) If the first control information is detected on a certain downlink TTI/subframe, the downlink TTI/subframe is a target TTI/target subframe.
  • the above definition of the target TTI/target subframe applies to the licensed spectrum and the unlicensed spectrum.
  • the CPDCCH may only appear in the tail subframe, or may appear in a downlink subframe before the tail subframe and the tail subframe, for example, FIG. 5, FIG. 5 is Another schematic diagram of the time domain resource provided by the embodiment of the present invention.
  • the target subframe ie, the target time
  • the unit may be a downlink subframe before the tail subframe as shown in (a) of FIG. 5, or may be a tail subframe as shown in (b) of FIG. 5.
  • the length of the corresponding first time interval is different due to the difference in the target subframe definition.
  • the terminal device may determine the target time unit according to the first control information.
  • the target time unit may be obtained according to the first control information.
  • the target TTI/target subframe may be the last subframe or the last TTI of the downlink burst that carries the first control information, and may only appear in the last subframe/last TTI, or possibly in the last subframe. / The last TTI and the previous subframe/TTI of the last subframe/last TTI appear, so detecting only the presence may not accurately determine the target TTI/target subframe.
  • the definition is applied to the unlicensed spectrum.
  • the terminal device can determine which subframe is the tail subframe by detecting different states of the existing bit field in the first control information, and then determine that the target subframe is the tail subframe.
  • the existing CPDCCH includes 4-bit control information “Subframe configuration for LAA” for indicating the number of base station occupied symbols in the current subframe/next subframe. Since the CPDCCH can only appear in the tail subframe and the previous subframe, and the bit field included in the two subframes The indication state is different. Therefore, after detecting the CPDCCH on a certain subframe, the terminal device may determine whether the subframe is a tail subframe or whether the next subframe is a tail subframe. This notification method is also applicable to the scenario where the first control information is user-specific control information or user group-specific control information.
  • the downlink burst provided by the embodiment of the present invention is a time-continuous downlink transmission time interval (continuous downlink subframe or downlink TTI) sent by the base station occupied channel, and between two adjacent downlink bursts. Not continuous in time.
  • the downlink burst including the first control information may also include data information (downlink data channel PDSCH) or may not include data information. That is, the downlink burst transmits only the PDCCH without transmitting the PDSCH, or the base station device transmits only the UL grant.
  • the subframe may be an entire subframe (ie, 14 symbols) or a partial subframe ( ⁇ 14 symbols), and the partial subframe includes an initial subframe (English: Initial partial subframe). Or tail subframe (English: End partial subframe).
  • the four methods for determining the start time unit or the first time interval of the time domain resource of the scheduling-free license by the terminal device are as follows:
  • the first time interval is a predefined time interval.
  • the terminal device may determine a start time unit of the time-domain resource of the schedule-free license by determining the target time unit in combination with the predefined first time interval. For example, the terminal device may determine the subframe in which the first control information is detected as the target subframe by detecting the presence of the first control information (ie, whether the first control information exists), and after the target subframe and the target subframe The subframe separated by the first time interval is determined as the starting subframe of the time domain resource of the scheduling-free license.
  • the terminal device may determine, by using the information about the target subframe/target TTI included in the first control information, the start time unit of the time-domain resource of the scheduling-free license in combination with the predefined first time interval.
  • the CPDCCH may appear in two subframes (the previous subframe of the tail subframe and the tail subframe), and may be according to the indication status of the “Subframe configuration for LAA” bit field included in the CPDCCH. Determining a tail subframe of the downlink burst, determining that the tail subframe is a target subframe, and determining a subframe of the first time interval after the target subframe from the target subframe as a starter of the time domain resource without scheduling permission frame. For example, when the predefined first time interval is 1 subframe, the first subframe immediately after the tail subframe is determined as the starting subframe (the starting time unit of the real-time domain resource).
  • This notification method is also applicable to the scenario where the first control information is user-specific control information or user group-specific control information.
  • Manner 2 The first time interval is obtained by the second high layer signaling configuration sent by the base station device.
  • the method for determining, by the terminal device, the start time unit of the time-domain resource of the scheduling-free license is similar to the foregoing manner 1,
  • the starting subframe needs to be jointly determined in conjunction with the determined target subframe.
  • the determining of the target subframe may be determined by detecting the presence of the first control information, or may be determined by using the information used to indicate the target subframe/target TTI in the first control information, and details are not described herein.
  • the difference between the mode 1 and the mode 2 is that, in the mode 2, the first time interval is obtained according to the high-level signaling configuration sent by the base station device, which increases the flexibility of determining the start time unit of the time domain resource.
  • Mode 3 The first time interval or start time unit is indicated by the first control information.
  • the first time interval or start time unit may be indicated by a bit field included in the first control information. Further, when the first control information is used to indicate the first time interval, the manner in which the terminal device determines the start time in combination with the target subframe and the first time interval is similar to the manners 1 and 2, and details are not described herein again.
  • the first control information when used to indicate the first time interval or the start time, the first control information may use two independent bit fields to indicate the duration and start time unit (or the first time interval) of the time domain resource respectively (see below) Mode 3-1), a joint bit field may also be used to indicate the duration and start time unit (or first time interval) of the time domain resource (as follows 3-2).
  • Mode 3-1 The duration and start time unit (or the first time interval) of the time domain resource are independently indicated by two independent bit fields.
  • a bit field in the first control information used to indicate a start time unit of the time domain resource and a bit field used to indicate a duration of the time domain resource are independent. That is, for any one of the duration and the start time unit of the time domain resource, the terminal device traverses all the states in the corresponding bit field in the first control information to obtain all the indication contents included in the first control information. .
  • all states of the start time unit of the time domain resource can be arbitrarily combined with all states of the length of the time domain resource.
  • the CPDCCH when the first control information is CPDCCH, the CPDCCH includes 1-bit information for indicating a start time unit (or a first time interval), and among the two states included, the state “0” indicates the start of the time domain resource.
  • the first time interval between the start subframe and the tail subframe of the downlink burst is 1 subframe (the first subframe is the first subframe immediately after the tail subframe), and the state "1" indicates the time domain resource.
  • the first time interval between the start subframe and the tail subframe of the downlink burst is 2 subframes (the start subframe is the second subframe after the tail subframe).
  • the CPDCCH further includes a bit field of another 2 bits indicating the length of the time domain resource, and the four states obtained by the bit field coding of the 2 bit may respectively indicate that the time domain resource has a duration of ⁇ 0, 1, 2, 3 ⁇ subframes, and the terminal The device may determine that the time domain resource includes a time domain range of lengths of ⁇ 0, 1, 2, 3 ⁇ subframes from the start subframe or from the target subframe.
  • the 1-bit information traversing the start time unit (or the first time interval) can acquire all possible starting positions of the time domain resource, and the 2-bit information of the traversal length can acquire all possible lengths of the time domain resource.
  • the two states of the start time unit of the time domain resource may be arbitrarily combined with the four states of the length of the time domain resource, and indicated by the bit information of the CPDCCH.
  • This notification method is also applicable to the scenario where the first control information is user-specific control information or user group-specific control information.
  • Mode 3-2 jointly indicating the duration and start time unit (or the first time interval) of the time domain resource through one bit field.
  • the first control information uses a bit field to jointly indicate the length of the time domain resource start time unit and the time domain resource. That is, for at least one of the duration and start time units of the time domain resource, all bits in the entire bit field are used to indicate the length of the time domain resource and the start time unit are valid states, and only part of the bits are selected. It does not indicate the length of the time domain resource or the valid information of the start time unit.
  • any state of the first time interval corresponds to the same user behavior, that is, The time domain resource is empty.
  • the time interval between the start subframe of the time domain resource and the tail subframe of the downlink burst ie, the first time interval
  • the frame can be scheduled afterwards, and does not need to be indicated as a non-scheduled grant resource.
  • Table 1 is a schematic table of the joint indication corresponding to the above mode 3-2:
  • the "unavailable" shown in the above table 1 indicates that the time domain resource does not exist (instructing the terminal device not to send the uplink information of the scheduling-free permission), "1" indicates that the first time interval is 1 subframe, and "2" indicates The first time interval is 2 subframes. Similarly, the representation of the length is the same, and will not be described again.
  • the joint indication of the length of the time domain resource and the start time unit is that it can indicate discontinuous time domain resources.
  • M subframes/TTI correspond to M bits.
  • up to 3 subframes may be indicated as time-domain resources without scheduling permission (the subframes with time interval greater than 4 may be scheduled), and the bit mapping manner of 3 bits is as shown in Table 2, Table 2 is another schematic table of the joint indication corresponding to the above mode 3-2.
  • “available” means that the time domain resource includes the subframe
  • “not available” means that the time domain resource does not include the subframe.
  • bit state "001" represents the start subframe of the time domain resource and the downlink burst.
  • the first time interval between the tail subframes is 3 subframes (including subframe #n, subframe #n+1, subframe #n+2, and subframe #n+3), that is, the 4th subframe (sub Frame #n+3) is available.
  • Bit state “010” "011” represents that the first time interval is 2 subframes (including subframe #n, subframe #n+1), that is, the third subframe (subframe # n+2) and the 4th subframe (subframe #n+3) are available.
  • the bit states "100”, "101", “110”, “111” represent a first time interval of 1 subframe.
  • Mode 4 The first time interval or start time unit is implicitly indicated by the first control information.
  • the start time unit of the first time interval or the time-free resource of the scheduling-free permission may be determined according to the indication information included in the first control information.
  • the foregoing indication information may include the number of symbols occupied by the base station device in the last subframe (or the tail subframe) or the last TTI of the downlink burst carrying the first control information.
  • the foregoing indication information may also be referred to as: indicating the number of symbols occupied by the base station device in the current subframe/next subframe, or the current TTI/next TTI.
  • the start time unit of the time domain resource without scheduling permission or the first time interval described above is to reserve a corresponding idle interval for the PUSCH transmitted on the time domain resource to perform LBT. Since the time domain resource described in the embodiment of the present invention is after the tail subframe of the downlink burst, it is mainly considered whether the tail subframe has an idle interval. If the base station device does not occupy all the downlink symbols of the tail subframe, that is, there is an idle interval in the tail subframe, the start time unit of the time domain resource may be the first subframe immediately after the tail subframe, To improve the utilization of time domain resources.
  • the start time unit time of the time domain resource is located after the start boundary of the first subframe after the tail subframe, for example, in the middle of the first subframe.
  • the symbol or the second subframe after the tail subframe reserves an idle interval between the tail subframe and the start time unit of the time domain resource to perform the LBT.
  • the terminal device may be occupied by the base station device in the tail subframe.
  • the number of symbols determines the starting subframe. If the terminal device determines that the base station device does not occupy all the downlink symbols of the tail subframe, it may be determined that the first time interval between the start subframe of the time domain resource and the tail subframe of the downlink burst is 1 subframe.
  • the first sub-frame is the first sub-frame immediately following the tail sub-frame).
  • the first time interval between the start subframe of the time domain resource and the tail subframe of the downlink burst is greater than one subframe, including, starting The subframe is the second subframe immediately after the tail subframe, or the starting subframe is the first subframe immediately after the tail subframe and the starting position corresponding to the starting subframe is located at the starting subframe.
  • the first control information is the CPDCCH
  • 4-bit control information (Subframe configuration for LAA) for indicating the number of symbols occupied by the base station device in the current subframe/next subframe.
  • the foregoing first control information may be used to implicitly indicate the start of the time domain resource, in addition to being used to notify the current subframe to occupy the number of symbols, and to indicate which subframe is the tail subframe.
  • Time unit or first time interval When the first control information indicates that the number of symbols occupied by the tail subframe is 14 or the full symbol is occupied, the first time interval between the start subframe of the time domain resource and the tail subframe of the downlink burst is 2 Subframes.
  • FIG. 6 is another schematic diagram of time domain resources provided by an embodiment of the present invention. The start subframe of the time domain resource and the second subframe after the tail subframe of the downlink burst.
  • the subframe of the idle interval between the start subframe of the time domain resource and the tail subframe of the downlink burst is used by the terminal device to perform LBT for the uplink data channel.
  • the first time interval is 1 subframe
  • the start subframe of the real-time domain resource is tail.
  • the first subframe immediately following the sub-frame.
  • the terminal device may perform the LBT in the idle interval in the tail subframe, and does not need to reserve the idle interval of one subframe between the start subframe of the time domain resource and the tail subframe of the downlink burst.
  • This notification method is also applicable to the scenario where the first control information is user-specific control information or user group-specific control information.
  • the start location corresponding to the start subframe/start TTI may also be determined.
  • the starting position can be: predefined (mode a).
  • the starting position of the starting subframe/starting TTI is always at the starting boundary 0us (position 1) of the complete TTI/complete subframe where the starting subframe/starting TTI is located; or the starting subframe/starting
  • the initial TTI is located 25us after the start boundary of the complete TTI/complete subframe (position 2), or after the start boundary of the complete TTI/complete subframe where the start subframe/start TTI is located (25us+TA) (position 3), or the start of the second upstream symbol (1 symbol) (position 4) of the complete TTI/complete subframe of the starting subframe/starting TTI.
  • the foregoing starting location may be: a high-level signaling configuration sent by the base station device (method b).
  • the position selectable at the starting position includes the four types described in the above positions 1 to 4, no longer ⁇ Said.
  • the foregoing starting location may be: the first control information sent by the base station device is explicitly indicated (method c).
  • the position where the starting position is selectable includes the four types described in the above positions 1 to 4, and details are not described herein again.
  • the foregoing starting location may be: a bit field implicit indication (mode d) included in the first control information sent by the base station device for indicating the number of symbols occupied by the downlink burst tail subframe.
  • the above-mentioned starting position is 25us or 1 symbol or (25us+TA) (the above positions 2-4).
  • the above starting position is 0us (the above position 1).
  • the manner in which the terminal device determines the start subframe/start TTI and the manner of determining the start location are independent, and any manner of determining the start subframe/start TTI and determining the start location are arbitrary. A way to match.
  • the terminal device may perform rate matching on the starting subframe/starting TTI (English: Rate matching), or directly (English: Puncture) starting subframe/starting TTI and starting from A time domain signal between the starting positions, such as 25 us, or (25 us + TA), or a time domain signal corresponding to 1 symbol.
  • the terminal device determines the start subframe/start TTI (mode a or b) in a predefined manner or through high-level signaling configuration, and determines according to the manner in which the first control information is explicitly indicated or implicitly indicated. Start position (method c or mode d). Or determining, by the terminal device, the starting subframe/starting TTI (method c or d) according to the manner that the first control information is explicitly indicated or implicitly indicated, and determining the starting location by way of pre-defined or high-level configuration (mode a or Way b).
  • the time domain resource of the scheduling-free license is dynamically indicated by the first control information, although in the uplink transmission based on the scheduling (English: UL grant based), the time domain resource is also by the UL grant.
  • the information dynamic indication is different from the UL grant scheduling uplink channel in that, in the embodiment of the present invention, the scheduling-free permission indicates a more recent time domain resource, or the first time interval (or the downlink where the first control information is located)
  • the interval between the TTI and the start time unit of the indicated scheduling-free licensed time domain resource is shorter than the shortest scheduling delay in the UL grant-based manner.
  • the shortest scheduling delay in the foregoing UL grant scheduling is the time interval between the downlink TTI/downlink subframe in which the UL grant is located and the uplink TTI/uplink subframe corresponding to the earliest uplink channel that may be scheduled.
  • the shortest scheduling delay may be the second time interval provided by the embodiment of the present invention.
  • the first downlink TTI may be a TTI carrying a UL grant
  • the uplink TTI corresponding to the earliest uplink channel scheduled by the UL grant may be a target uplink TTI
  • the second time interval may be the first downlink TTI and the target. The time interval between upstream TTIs.
  • the time interval between the first downlink TTI and the start time unit of the unscheduled time domain resource is smaller than the second time interval, thereby improving resource utilization and improving uplink data transmission efficiency.
  • the target uplink TTI corresponds to the oldest uplink channel in the uplink channels.
  • the shortest scheduling delay ie, the second time interval
  • the PUSCH scheduled by the UL grant and the subframe/TTI in which the UL grant is located is 4 subframes/TTI.
  • the first time interval between the subframe/TTI and the time domain resource start time unit where the first control information is located may be equal to 1 subframe/TTI, or 2 subframes/TTI, or 3 subframes/ TTI.
  • the shortest scheduling delay described in this embodiment is not the latest uplink channel scheduled by the UL grant in a certain scheduling process, but the capability of the latest uplink channel that the base station device can schedule, for example, some
  • the latest PUSCH scheduled by the UL grant of the base station device in the subframe #n is in the subframe #n+5, but the capability of the base station device to schedule the latest PUSCH is the UL grant scheduling subframe # of the subframe #n.
  • the PUSCH of +4) can be scheduled to the PUSCH of subframe #(n+4) in other schedulings, and the shortest scheduling delay is 4 subframes at this time.
  • the terminal device does not start to assemble the uplink channel after receiving the UL grant as in the scheduled uplink transmission, but instead assembles the packet in advance.
  • the terminal device can have an uplink service. After the packet is assembled at any time, the terminal device can immediately transmit the PUSCH after detecting the first control information.
  • the UL grant is used to schedule an uplink channel and indicate a transmission format of the uplink channel, where the uplink channel may be an uplink traffic channel (PUSCH) or an uplink control channel (in the Multefire standard, an uplink control channel is extended). (English: extended PUCCH, ePUCCH) can also be scheduled by UL grant).
  • PUSCH uplink traffic channel
  • ePUCCH uplink control channel
  • the transmission format of the uplink channel indicated by the UL grant includes at least one of the following:
  • the time interval between the downlink TTI/subframe of the UL grant and the uplink channel scheduled by the UL grant is the time interval between the downlink TTI/subframe of the UL grant and the uplink channel scheduled by the UL grant.
  • the time domain resource occupied by the uplink channel includes at least one TTI.
  • the duration of the time domain resources may be determined according to the number of TTIs scheduled by the UL grant.
  • the time interval between the downlink TTI/subframe including the UL grant and the scheduled uplink channel includes a TTI carrying the UL grant and a TTI carrying the uplink channel (or the first one of the at least two TTIs carrying the UL grant schedule) The time interval between TTIs, or the scheduling delay of the UL grant.
  • the time interval between the downlink TTI/subframe including the UL grant and the uplink channel scheduled by the UL grant may be greater than the shortest scheduling delay, in which case the UL grant may include control information indicating the scheduling delay.
  • the frequency domain resource occupied by the uplink channel indicated by the UL grant includes at least one physical resource block (English: Physical Resource Block, PRB).
  • the scheduling delay is a time interval between a downlink TTI/downlink subframe in which the base station device sends the UL grant and an uplink data channel in which the terminal device transmits the UL grant in the uplink TTI/uplink subframe.
  • the base station device can schedule an uplink TTI/uplink subframe that is later than the shortest scheduling delay, with the shortest scheduling delay requirement between the scheduled uplink data channel and the UL grant. For example, when the shortest scheduling delay is 4 ms, the Downlink Control Information (DCI) format (ie, DCI format) 0/4 can be scheduled only 4 ms apart from the bearer UL grant subframe (subframe #n).
  • DCI Downlink Control Information
  • Uplink subframe (subframe #n+4), DCI format 0A/0B/4A/4B can be used to schedule uplink subframes that are greater than 4ms apart from the bearer of the UL grant subframe (eg, subframe #n+p, p>4) , p is an integer), but the uplink TTI/uplink subframe that is earlier than the shortest scheduling delay cannot be scheduled.
  • the minimum TTI of the system is 1 ms TTI or one subframe
  • the shortest scheduling delay is 3 ms or 4 ms, that is, the uplink data channel scheduled by the UL grant of subframe #n is located in subframe #n+3 or subframe. #n+4.
  • the shortest scheduling delay is k uplink sTTIs or downlink sTTIs, and k is an integer greater than or equal to 4, that is, the uplink data channel scheduled by the UL grant of sTTI#n is located at sTTI#n+ k.
  • the information about the transmission format of the uplink data channel includes the time domain resource (method 1: the time interval between the downlink TTI/subframe carrying the UL grant and the scheduled PUSCH is Predefined, for example, 4 ms. At this time, the time domain resource is implicitly indicated.
  • MCS modulation and coding strategy
  • DMRS demodulation reference signal
  • the terminal device performs grouping according to the transport format information indicated by the UL grant, and transmits the PUSCH on the indicated time domain and frequency domain resources.
  • the information contained in the transmission format of the uplink data channel cannot be dynamically indicated by the base station through the UL grant.
  • the implementation manner provided by the embodiment of the present invention is different from the PUSCH where the UL grant is scheduled.
  • the first control information is only used to indicate the time domain resource available to the terminal device, and the terminal device sends the at least one other information related to the transmission format corresponding to the uplink data channel, except for the time domain resource, not according to the first control information. determine.
  • the at least one other information related to the transmission format of the uplink data channel may be predefined, or may be obtained based on a third high-level signaling configuration sent by the base station device.
  • the terminal device sends data information on an uplink data channel.
  • the base station device receives the data information sent by the terminal device on an uplink data channel.
  • the information related to the transmission format of the uplink data channel includes at least one of the following:
  • the transmit power of the uplink data channel
  • the transmission block size (English: Transmission Block Size, TBS) carried by the uplink data channel.
  • the transmission format information of the uplink data channel based on the scheduled PUSCH is indicated by the same indication information (UL grant), and part of the transmission format of the uplink data channel of the PUSCH without scheduling permission in this embodiment. (ie, time-domain resources without scheduling permission) are indicated by first control information (ie, dynamic signaling) sent by the base station device, while another part is predefined, or another part is sent by another signaling (such as a base station device)
  • first control information ie, dynamic signaling
  • the third high-level signaling is configured.
  • the frequency domain resource occupied by the uplink data channel includes at least one PRB
  • the code sequence of the demodulation reference signal includes an orthogonal cover code (OCC) of the DMRS and a cyclic shift (English) : at least one of Cyclic Shift, CS).
  • OCC orthogonal cover code
  • CS Cyclic Shift
  • the data sent from the Media Access Control (MAC) layer to the physical layer is organized in the form of a transport block (English: Transport Block, TB), and the data information is transmitted in the form of TB on the uplink data channel.
  • the TBS is an amount of valid data information (data information before encoding) corresponding to a specific frequency domain resource (specifically, the number of PRBs) and a TB of a specific modulation and coding scheme.
  • the terminal device may determine the TBS according to the frequency domain resource and the modulation and coding mode occupied by the uplink data channel, and may also determine the TBS according to the information of the third high layer signaling configuration that is predefined or sent by the base station device. For example, the size of the TBS is predefined or is based on the third high-level signaling configuration sent by the base station device. In this case, the MCS information may not be included in the transport format related information.
  • the existing eLAA system supports two-stage scheduling (English: two-stage scheduling).
  • the base station device sends the scheduling information to the UL grant included in the downlink burst, but the scheduling delay is not the delay of the PUSCH relative to the subframe in which the UL grant is located, but the delay of the PUSCH relative to the subframe in which the CPDCCH is located.
  • the terminal device does not transmit the PUSCH after receiving only the UL grant, and also transmits the data information by detecting the CPDCCH.
  • the UL grant indicates the time interval of the PUSCH with respect to the CPDCCH, and the CPDCCH triggers the transmission of the data information on the PUSCH.
  • the first control information described in the implementation manner of the embodiment of the present invention is also used to indicate the time domain resource, but is compared to the CPDCCH in the two-level scheduling, which is described in the embodiment of the present invention.
  • the time domain resources of the scheduling-free license (including the length and start time of the time domain resource may be completely indicated by the first control information).
  • the length of the time domain resource is indicated by another control information UL grant, and the start time of the time domain resource is jointly determined according to the CPDCCH and another control information UL grant.
  • the uplink data information is sent on at least one subframe or TTI on the time-domain resource, and the LBT is performed on the carrier where the uplink data channel carrying the uplink data information is located before the uplink data channel is transmitted.
  • the terminal device can send the uplink data information immediately after detecting that the channel is idle.
  • the LBT type includes one of a random backoff-based CCA and a single-slot CCA, and details are not described herein.
  • the base station device may send the first control information to the terminal device, and indicate, by using the first control information, the scheduling-free licensed resource after the downlink TTI or the downlink subframe that carries the first control information.
  • the time interval between the start TTI or the start subframe in the schedule-free grant resource indicated by the first control information and the downlink TTI or the downlink subframe is shorter, and the terminal device may send the uplink data information on the scheduling-free license resource.
  • the utilization of time domain resources is higher.
  • the terminal device can send the uplink data information in a shorter time than the scheduling delay in the UL grant scheduling mode, improve the transmission efficiency of the uplink data information, and the uplink data information is more flexible and applicable. higher.
  • FIG. 7 is a schematic structural diagram of a terminal device according to an embodiment of the present invention.
  • the terminal device provided by the embodiment of the present invention includes:
  • the receiving module 70 is configured to receive first control information that is sent by the base station device on the first downlink transmission time interval.
  • a determining module 71 configured to determine a time domain resource according to the first control information received by the receiving module, where the time domain resource includes at least one uplink transmission time interval, and a start time unit of the time domain resource is in time The starting time unit is later than the first downlink transmission time interval, and the starting time unit is the first uplink transmission time interval of the at least one uplink transmission time interval.
  • the sending module 72 is configured to send data information on the uplink data channel, where the uplink data channel corresponds to at least one uplink transmission time interval of the time domain resources determined by the determining module.
  • the determining module 72 is configured to:
  • the determining module 72 is configured to:
  • the determining module 72 is configured to:
  • the length of the time domain resource is a predefined length, or a length obtained according to the first high layer signaling configuration sent by the base station device.
  • the foregoing first control information is used to indicate the number of symbols occupied by the base station device in a last subframe or a last transmission time interval of a downlink burst, where the downlink burst includes at least one time. a continuous downlink transmission time interval, where the at least one temporally consecutive downlink transmission time interval includes the first downlink transmission time interval;
  • the above determining module 72 is used to:
  • the start time unit is determined according to the number of symbols.
  • the start time unit is later than the target time unit in time, and the time interval between the target time unit and the start time unit is a first time interval;
  • the target time unit is the first downlink transmission time interval, or the target time unit is the a subframe in which the downlink transmission time interval is located, or the target time unit is the last subframe or the last transmission time interval of the downlink burst, and the downlink burst includes at least one time-continuous downlink transmission time interval.
  • the at least one temporally consecutive downlink transmission time interval includes the first downlink transmission time interval.
  • the determining module 72 is configured to:
  • the first time interval is a predefined time interval, or the first time interval is obtained by the second high-level signaling configuration sent by the base station device.
  • the foregoing first control information is used to indicate the first time interval
  • the above determining module 72 is used to:
  • the start time unit is determined according to the first time interval and the target time unit.
  • the determining module 72 is further configured to:
  • the time interval between the first downlink transmission time interval and the start time unit is less than the second time interval, and the second time interval is the second downlink transmission time interval and the target uplink.
  • the uplink grant is used to indicate a transmission format of the uplink channel.
  • the transmission format of the uplink channel includes at least one of the following information:
  • the foregoing first control information is common control information.
  • the determining module 72 is further configured to:
  • the transmission format of the uplink data channel includes at least one of the following information:
  • Any one of the at least one piece of information included in the transmission format of the uplink data channel is pre-defined information or information obtained according to the third high-level signaling configuration sent by the base station device.
  • FIG. 8 is another schematic structural diagram of a terminal device according to an embodiment of the present invention.
  • the terminal device provided by the embodiment of the present invention further includes:
  • the detecting module 74 is configured to perform a listening to the LBT on the carrier where the uplink data channel is located, and detect that the channel is idle.
  • the terminal device can perform the implementation manners in the foregoing embodiments by using the built-in modules, and details are not described herein again.
  • FIG. 9 is another schematic structural diagram of a terminal device according to an embodiment of the present invention.
  • the terminal device provided by the embodiment of the present invention may include: a memory 900 and a processor 910.
  • the above memory 900 is configured to store a set of program codes
  • the foregoing processor 910 is used to invoke the program code stored in the memory, and the implementation manner described in each step of the method for performing the foregoing uplink information transmission is not described herein.
  • the base station device may send the first control information to the terminal device, and indicate, by using the first control information, the scheduling-free licensed resource after the downlink TTI or the downlink subframe that carries the first control information.
  • the time interval between the start TTI or the start subframe in the schedule-free grant resource indicated by the first control information and the downlink TTI or the downlink subframe is shorter, and the terminal device may send the uplink data information on the scheduling-free license resource.
  • the utilization of time domain resources is higher.
  • the terminal device can send the uplink data information in a shorter time than the scheduling delay in the UL grant scheduling mode, improve the transmission efficiency of the uplink data information, and the uplink data information is more flexible and applicable. higher.
  • FIG. 10 is a schematic structural diagram of a base station device according to an embodiment of the present invention.
  • the base station device provided by the embodiment of the present invention may include:
  • the sending module 91 is configured to send first control information to the terminal device, where the first control information is used to indicate a time domain resource, and the time domain resource includes at least one uplink transmission time interval.
  • the start time unit of the time domain resource is later than the first downlink transmission time interval, and the start time unit is the first uplink transmission time interval of the at least one uplink transmission time interval.
  • the receiving module 92 is configured to receive data information sent by the terminal device on an uplink data channel, where the uplink data channel corresponds to at least one uplink transmission time interval in the time domain resource.
  • the foregoing first control information is used to indicate the start time unit.
  • the first control information is used to indicate a length of the time domain resource or an end time of the time domain resource.
  • the first control information is used to indicate the start time unit
  • the end time of the time domain resource is obtained by the start time unit and the length of the time domain resource;
  • the length of the time domain resource is a predefined length, or a length configured according to the first high layer signaling configured by the base station device to the terminal device.
  • the first control information is used to indicate a number of symbols occupied by the base station device in a last subframe or a last transmission time interval of a downlink burst, where the downlink burst includes at least one The time-continuous downlink transmission time interval, the at least one temporally consecutive downlink transmission time interval includes the first downlink transmission time interval, and the number of symbols is used to determine the start time unit.
  • the start time unit is later in time than the target time unit, and the time interval between the target time unit and the start time unit is a first time interval;
  • the target time unit is the first downlink transmission time interval, or the target time unit is a subframe in which the first downlink transmission time interval is located, or the target time unit is a downlink burst. a last subframe or a last transmission time interval, the downlink burst includes at least one time-continuous downlink transmission time interval, and the at least one temporally consecutive downlink transmission time interval includes the first downlink transmission time interval .
  • the first control information is used to indicate the target time unit
  • the start time unit is obtained by the target time unit and the first time interval
  • the first time interval is a predefined time interval, or the first time interval is configured by the second high-level signaling configured by the base station device to the terminal device.
  • the first control information is used to indicate the first time interval
  • the start time unit is obtained by the target time unit and the first time interval.
  • the target time unit is indicated by the first control information.
  • the time interval between the first downlink transmission time interval and the start time unit is less than a second time interval, and the second time interval is a second downlink transmission time interval and a target. a minimum time interval between uplink transmission time intervals, where the second downlink transmission time interval includes the uplink grant, and the target uplink transmission time interval corresponds to an uplink channel scheduled by the uplink grant;
  • the uplink grant is used to indicate a transmission format of the uplink channel.
  • the transmission format of the uplink channel includes at least one of the following information:
  • the first control information is common control information.
  • the transmission format of the uplink data channel includes at least one of the following information:
  • Any one of the at least one piece of information included in the transmission format of the uplink data channel is pre-defined information, or configured according to the configuration of the third higher layer signaling configured by the base station device to the terminal device .
  • the base station device can perform the implementation manners performed by the base station device in the description of the foregoing embodiments by using the built-in modules, and details are not described herein again.
  • FIG. 11 is another schematic structural diagram of a base station device according to an embodiment of the present invention.
  • the base station device provided by the embodiment of the present invention may include: a memory 110 and a processor 111.
  • the above memory 110 is configured to store a set of program codes
  • the foregoing processor 111 is used to invoke the program code stored in the memory, and the implementation manner described in each step of the method for performing the foregoing uplink information transmission is not described herein.
  • the base station device may send the first control information to the terminal device, and indicate, by using the first control information, the scheduling-free licensed resource after the downlink TTI or the downlink subframe that carries the first control information.
  • the time interval between the start TTI or the start subframe in the schedule-free grant resource indicated by the first control information and the downlink TTI or the downlink subframe is shorter, and the terminal device may send the uplink data information on the scheduling-free license resource.
  • the utilization of time domain resources is higher.
  • the terminal device may send the uplink in a shorter time than the scheduling delay in the UL grant scheduling mode.
  • the data information improves the transmission efficiency of the uplink data information, and the transmission of the uplink data information is more flexible and more applicable.
  • FIG. 12 is a schematic structural diagram of a system for processing uplink information according to an embodiment of the present invention.
  • the system provided by the embodiment of the present invention may include the foregoing terminal device 120 and the foregoing base station device 121.
  • the foregoing terminal device and the base station device may implement the implementation manners described in the foregoing steps in the foregoing embodiments, and details are not described herein again.
  • the base station device may send the first control information to the terminal device, and indicate, by using the first control information, the scheduling-free licensed resource after the downlink TTI or the downlink subframe that carries the first control information.
  • the time interval between the start TTI or the start subframe in the schedule-free grant resource indicated by the first control information and the downlink TTI or the downlink subframe is shorter, and the terminal device may send the uplink data information on the scheduling-free license resource.
  • the utilization of time domain resources is higher.
  • the terminal device can send the uplink data information in a shorter time than the scheduling delay in the UL grant scheduling mode, improve the transmission efficiency of the uplink data information, and the uplink data information is more flexible and applicable. higher.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (ROM), or a random access memory (RAM).

Abstract

本发明实施例公开了一种上行信息处理的方法及装置,所述方法包括:终端设备接收基站设备在第一下行传输时间间隔上发送的第一控制信息;所述终端设备根据所述第一控制信息确定时域资源,所述时域资源包括至少一个上行传输时间间隔,所述时域资源的起始时间单元在时间上晚于所述第一下行传输时间间隔,所述起始时间单元为所述至少一个上行传输时间间隔中的第一个上行传输时间间隔;所述终端设备在上行数据信道上发送数据信息,所述上行数据信道对应于所述时域资源中的至少一个上行传输时间间隔。采用本发明实施例,具有可提高时域资源的利用率,提高上行信息的处理效率的优点。

Description

一种上行信息处理的方法及装置 技术领域
本发明涉及通信技术领域,尤其涉及一种上行信息处理的方法及装置。
背景技术
长期演进(英文:Long Term Evolution,LTE)系统采用正交频分复用(英文:Orthogonal Frequency Division Multiplexing,OFDM)技术。LTE系统的上行资源分配以传输时间间隔(Transmission Time Interval,TTI)为粒度,1个TTI的长度为14OFDM符号,即1个子帧,一个TTI的长度为1ms。在LTE系统的上行传输中,基站通过在下行控制信道中包含的上行授权(英文:UL grant)指示用户设备(英文:User Equipment,UE)在对应的上行子帧上的上行共享信道(英文:Physical Uplink Shared Channel,PUSCH)上发送的数据信息。UL grant与其调度的PUSCH之间具有固定的时序关系,第n个子帧(记为子帧#n)的下行控制信道中包含的UL grant调度的PUSCH位于第(n+4)个子帧(记为子帧#n+4)。被调度的PUSCH所占的频域资源由UL grant中携带的资源分配(英文:Resource Allocation,RA)信息指示。
由于传统LTE的每个PUSCH只能由具有固定时序关系的一个UL grant调度,当上行业务需求大于下行业务需求时,基站只需要承载少量的下行数据,但是却需要配置大量的下行子帧以通过UL grant调度足够的PUSCH资源,造成时域资源的浪费,并需要频繁地执行先听后发(英文:Listen-Before-Talk,LBT)信道接入机制。LBT失败会导致UL grant无法发送,进而上行PUSCH也无法被调度,导致信道接入机会受限。再者,由于UL grant固定的时序关系的约束,基站无法调度到更远的上行子帧。因此,如何在上下行业务不均衡的时候支持非授权频谱上高效率的上行传输是亟待解决的问题。
现有技术中,增强授权辅助接入(英文:enhanced Licensed-Assisted Access,eLAA)中引入多子帧调度。基站设备可以在一个下行子帧中发送多个UL grant,以及在一个ULgrant中调度多个连续的上行子帧,可以减少频繁发送UL grant对信道资源的浪费,并且UL grant的定时是灵活的,能够支持调度到更远的UL子帧。然而,在现有技术中,由于UL grant的最小调度时延是4ms(该时延用于UE接收检测UL grant以及在被UL grant指示的上行资源上发送的PUSCH进行组包),因此当下行突发小于4个子帧时,下行突发与被调度的上行突发之间仍然存在空闲时间(Gap),UE无法使用该空闲时间进行上行传输,无法高效利用信道资源。
发明内容
本申请提供一种上行信息处理的方法及装置,可提高时域资源的利用率,提高上行信息的处理效率。
第一方面提供了一种上行信息发送的方法,其可包括:
终端设备接收基站设备在第一下行传输时间间隔上发送的第一控制信息;
所述终端设备根据所述第一控制信息确定时域资源,所述时域资源包括至少一个上行传输时间间隔,所述时域资源的起始时间单元在时间上晚于所述第一下行传输时间间隔,所述起始时间单元为所述至少一个上行传输时间间隔中的第一个上行传输时间间隔;
所述终端设备在上行数据信道上发送数据信息,所述上行数据信道对应于所述时域资源中的至少一个上行传输时间间隔。
在本申请中,终端设备可接收基站设备发送的第一控制信息,根据第一控制信息确定承载第一控制信息的下行传输时间间隔之后的时域资源。第一控制信息指示的时域资源中的起始时间单元与上述下行传输时间间隔之间的时间间隔较短,终端设备可在上述时域资源上发送上行数据信息,无需等待上行授权的调度,提高了时域资源的利用率。在本申请中,终端设备可在比上行授权调度的调度时延更短的时间内发送上行数据信息,提高了上行数据信息的发送效率,上行数据信息的处理更灵活,适用性更高。
结合第一方面,在第一种可能的实现方式中,所述终端设备根据所述第一控制信息确定时域资源包括:
所述终端设备根据所述第一控制信息确定所述起始时间单元。
本申请可通过基站设备发送的第一控制信息指示免调度许可的时域资源的起始时间单元,从该起始时间单元开始,终端设备则可发送上行数据信息。通过第一控制信息指示免调度许可的时域资源的起始时间单元,资源指示的方式更灵活,操作更简单,适用性更高。
结合第一方面或者第一方面第一种可能的实现方式,在第二种可能的实现方式中,所述终端设备根据所述第一控制信息确定时域资源包括:
所述终端设备根据所述第一控制信息确定所述时域资源的长度或者所述时域资源的结束时刻。
本申请可通过基站设备发送的第一控制信息指示免调度许可的时域资源的长度和结束时刻,资源指示的方式更灵活,操作方式更简单,适用性更高。
结合第一方面,在第三种可能的实现方式中,所述终端设备根据所述第一控制信息确定时域资源包括:
所述终端设备根据所述第一控制信息确定所述起始时间单元,并根据所述起始时间单元和所述时域资源的长度确定所述时域资源的结束时刻;
其中,所述时域资源的长度为预定义长度,或者根据所述基站设备发送的第一高层信令配置得到的长度。
本申请可通过基站设备发送的第一控制信息确定免调度许可的时域资源的起始时间单元,并通过预定义或者根据高层信令配置的时域资源的长度,确定时域资源的结束时刻,进而可确定时域资源,信令开销较小,另外根据高层信令配置的时域资源的长度还保持一定的资源配置灵活性。
结合第一方面第一种可能的实现方式至第一方面第三种可能的实现方式,在第四种可能的实现方式中,所述第一控制信息用于指示所述基站设备在下行突发的最后一个子帧或最后一个传输时间间隔中占用的符号数目,所述下行突发包含至少一个时间上连续的下行传输时间间隔,所述至少一个时间上连续的下行传输时间间隔包含所述第一下行传输时间间隔;
所述终端设备根据所述第一控制信息确定所述起始时间单元包括:
所述终端设备根据所述符号数目确定所述起始时间单元。
本申请可通过基站设备发送的第一控制信息指示基站设备在下行突发的最后一个子帧或最后一个传输时间间隔中占用的符号数目,根据上述符号数目确定免调度许可的时域资源的起始时间单元,提高了免调度许可的时域资源的确定方式的灵活性,适用性更高,信令开销较小。
结合第一方面第一种可能的实现方式至第一方面第三种可能的实现方式,在第五种可能的实现方式中,所述起始时间单元在时间上晚于目标时间单元,所述目标时间单元与所述起始时间单元之间的时间间隔为第一时间间隔;
所述目标时间单元为所述第一下行传输时间间隔,或者,所述目标时间单元为所述第一下行传输时间间隔所在的子帧,或者,所述目标时间单元为下行突发的最后一个子帧或最后一个传输时间间隔,所述下行突发包含至少一个时间上连续的下行传输时间间隔,所述至少一个时间上连续的下行传输时间间隔包含所述第一下行传输时间间隔。
本申请可通过基站设备发送第一控制信息,将承载第一控制信息的下行传输时间间隔,该下行传输时间间隔所在的子帧或者其所在的下行突发的最后一个子帧或者传输时间间隔确定为目标时间单元,将目标时间单元之后的时域资源确定为免调度许可的时域资源,可提高时域资源的利用率,也可提高上行数据的处理效率。
结合第一方面第五种可能的实现方式,在第六种可能的实现方式中,所述终端设备根据所述第一控制信息确定所述起始时间单元,包括:
所述终端设备根据所述第一控制信息确定所述目标时间单元;
所述终端设备根据所述目标时间单元和所述第一时间间隔确定所述起始时间单元;
其中,所述第一时间间隔为预定义时间间隔,或者所述第一时间间隔由所述基站设备发送的第二高层信令配置得到。
本申请可根据基站设备发送的第一控制信息确定用于确定免调度许可的时域资源的目标时间单元,并通过预定义或者高层信令配置等方式确定用于确定免调度许可的时域资源的第一时间间隔,进而可确定免调度许可的时域资源,提高了时域资源的确定方式的多样性,信令开销更小,另外高层信令配置的方式保持了一定的资源配置灵活性。
结合第一方面第五种可能的实现方式,在第七种可能的实现方式中,所述第一控制信息用于指示所述第一时间间隔;
所述终端设备根据所述第一控制信息确定所述起始时间单元,包括:
所述终端设备根据所述第一时间间隔和所述目标时间单元确定所述起始时间单元。
本申请可根据基站设备发送的第一控制信息确定用于确定免调度许可的时域资源的第一时间间隔,进而可根据目标时间单元确定起始时间单元,提高了起始时间单元的确定方式的多样性,提高了时域资源的指示的操作灵活性。
结合第一方面第七种可能的实现方式,在第八种可能的实现方式中,所述终端设备根据所述第一时间间隔和所述目标时间单元确定所述起始时间单元之前,所述方法还包括:
所述终端设备根据所述第一控制信息确定所述目标时间单元。
本申请可根据基站设备发送的第一控制信息确定用于确定免调度许可的时域资源的目 标时间单元,提高了目标时间单元的确定方式的多样性。
结合第一方面至第一方面第八种可能的实现方式中任一种,在第九种可能的实现方式中,所述第一下行传输时间间隔与所述起始时间单元之间的时间间隔小于第二时间间隔,所述第二时间间隔为第二下行传输时间间隔与目标上行传输时间间隔之间的最小时间间隔,所述第二下行传输时间间隔包含所述上行授权,所述目标上行传输时间间隔对应所述上行授权调度的上行信道;
其中,所述上行授权用于指示所述上行信道的传输格式;
所述上行信道的传输格式包括以下信息中的至少一项:
所述上行信道所占的时域资源;
所述上行数据信道所占的频域资源;
所述上行数据信道的调制编码方式;
所述第二下行传输时间间隔与所述目标上行传输时间间隔之间的时间间隔。
在本申请中,承载基站设备发送的第一控制信息的下行传输时间间隔与免调度时域资源的起始时间单元之间的时间间隔小于UL grant调度中的最短调度时延,可提高资源的利用率,提高上行数据传输的效率。其中,上述UL grant调度中的最短调度时延为UL grant与其所调度的最早的PUSCH之间的时间间隔,相比于传统基于UL grant调度方式,可以利用更多时域资源,信道使用效率更高,可提高上行信息的处理效率,提高了上行信息的处理方式的适用性。本申请提供的上行授权可用于指示上行信道的传输格式,上行信道的传输格式可包括多项内容中的一项,可提高上行信息的处理效率,提高了上行信息的处理方式的适用性。
结合第一方面至第二方面第九种可能的实现方式中任一种,在第十种可能的实现方式中,所述第一控制信息为公共控制信息。
本申请可通过公共控制信息指示免调度许可的时域资源,节省开销,操作简单,适用性高。
结合第一方面至第一方面第十种可能的实现方式中任一种,在第十一种可能的实现方式中,所述终端设备在上行数据信道上发送数据信息之前,所述方法还包括:
所述终端设备确定所述上行数据信道的传输格式;
所述上行数据信道的传输格式包括以下信息的至少一项:
所述上行数据信道所占的频域资源;
所述上行数据信道的调制编码方式;
所述上行数据信道的发射功率;
所述上行数据信道中解调参考信号的码序列;
所述上行数据信道承载的传输块大小TBS;
其中,所述上行数据信道的传输格式所包括的至少一项信息中的任意一项为预定义的信息,或者根据所述基站设备发送的第三高层信令配置得到的信息。
本申请提供的上行数据信道的传输格式更多样,上行数据信道的传输格式的设定方式更灵活,提高了上行信息的处理方式的适用性。
结合第一方面至第一方面第十一种可能的实现方式中任一种,在第十二种可能的实现 方式中,所述终端设备在所述上行数据信道上发送所述数据信息之前,所述方法还包括:
所述终端设备在所述上行数据信道所在的载波上执行先听后发LBT,并检测到信道空闲。
本申请提供的上行信息处理方式中,终端设备发送上行数据之前可执行LBT并检测信道空闲,可保证上行数据信息发送的有效性,适用性更高。
第二方面提供了一种上行信息发送的方法,其可包括:
基站设备在第一下行传输时间间隔上向终端设备发送第一控制信息,所述第一控制信息用于指示时域资源,所述时域资源包括至少一个上行传输时间间隔,所述时域资源的起始时间单元在时间上晚于所述第一下行传输时间间隔,所述起始时间单元为所述至少一个上行传输时间间隔中的第一个上行传输时间间隔;
所述基站设备在上行数据信道上接收所述终端设备发送的数据信息,所述上行数据信道对应于所述时域资源中的至少一个上行传输时间间隔。
结合第二方面,在第一种可能的实现方式中,所述第一控制信息用于指示所述起始时间单元。
结合第二方面或第二方面第一种可能的实现方式,在第二种可能的实现方式中,所述第一控制信息用于指示所述时域资源的长度或者所述时域资源的结束时刻。
结合第二方面,在第三种可能的实现方式中,所述第一控制信息用于指示所述起始时间单元;
所述时域资源的结束时刻由所述起始时间单元和所述时域资源的长度得到;
其中,所述时域资源的长度为预定义长度,或者根据所述基站设备配置给所述终端设备的第一高层信令配置得到的长度。
结合第二方面第一种可能的实现方式至第二方面第二种可能的实现方式中任一种,在第四种可能的实现方式中,所述第一控制信息用于指示所述基站设备在下行突发的最后一个子帧或最后一个传输时间间隔中占用的符号数目,所述下行突发包含至少一个时间上连续的下行传输时间间隔,所述至少一个时间上连续的下行传输时间间隔包含所述第一下行传输时间间隔,所述符号数目用于确定所述起始时间单元。
结合第二方面第一种可能的实现方式至第二方面第二种可能的实现方式中任一种,在第五种可能的实现方式中,所述起始时间单元在时间上晚于目标时间单元,所述目标时间单元与所述起始时间单元之间的时间间隔为第一时间间隔;
所述目标时间单元为所述第一下行传输时间间隔,或者,所述目标时间单元为所述第一下行传输时间间隔所在的子帧,或者,所述目标时间单元为下行突发的最后一个子帧或最后一个传输时间间隔,所述下行突发包含至少一个时间上连续的下行传输时间间隔,所述至少一个时间上连续的下行传输时间间隔包含所述第一下行传输时间间隔。
结合第二方面第五种可能的实现方式,在第六种可能的实现方式中,所述第一控制信息用于指示所述目标时间单元;
所述起始时间单元由所述目标时间单元和所述第一时间间隔得到;
其中,所述第一时间间隔为预定义时间间隔,或者所述第一时间间隔由所述基站设备配置给所述终端设备的第二高层信令配置得到。
结合第二方面第五种可能的实现方式,在第七种可能的实现方式中,所述第一控制信息用于指示所述第一时间间隔;
所述起始时间单元由所述目标时间单元和所述第一时间间隔得到。
结合第二方面第六种可能的实现方式,在第八种可能的实现方式中,所述目标时间单元由所述第一控制信息指示。
结合第二方面至第二方面第八种可能的实现方式中任一种,在第九种可能的实现方式中,所述第一下行传输时间间隔与所述起始时间单元之间的时间间隔小于第二时间间隔,所述第二时间间隔为第二下行传输时间间隔与目标上行传输时间间隔之间的最小时间间隔,所述第二下行传输时间间隔包含所述上行授权,所述目标上行传输时间间隔对应所述上行授权调度的上行信道;
其中,所述上行授权用于指示所述上行信道的传输格式;
所述上行信道的传输格式包括以下信息中的至少一项:
所述上行信道所占的时域资源;
所述上行数据信道所占的频域资源;
所述上行数据信道的调制编码方式;
所述第二下行传输时间间隔与所述目标上行传输时间间隔之间的时间间隔。
结合第二方面至第二方面第九种可能的实现方式中任一种,在第十种可能的实现方式中,所述第一控制信息为公共控制信息。
结合第二方面至第二方面第十种可能的实现方式中任一种,在第十一种可能的实现方式中,所述上行数据信道的传输格式包括以下信息的至少一项:
所述上行数据信道所占的频域资源;
所述上行数据信道的调制编码方式;
所述上行数据信道的发射功率;
所述上行数据信道中解调参考信号的码序列;
所述上行数据信道承载的传输块大小TBS;
其中,所述上行数据信道的传输格式所包括的至少一项信息中的任意一项为预定义的信息,或者根据所述基站设备配置给所述终端设备的第三高层信令配置得到的信息。
第三方面提供了一种终端设备,其可包括:
接收模块,用于接收基站设备在第一下行传输时间间隔上发送的第一控制信息;
确定模块,用于根据所述接收模块接收的所述第一控制信息确定时域资源,所述时域资源包括至少一个上行传输时间间隔,所述时域资源的起始时间单元在时间上晚于所述第一下行传输时间间隔,所述起始时间单元为所述至少一个上行传输时间间隔中的第一个上行传输时间间隔;
发送模块,用于在上行数据信道上发送数据信息,所述上行数据信道对应于所述确定模块确定的所述时域资源中的至少一个上行传输时间间隔。
结合第三方面,在第一种可能的实现方式中,所述确定模块用于:
根据所述接收模块接收的所述第一控制信息确定所述起始时间单元。
结合第三方面或者第三方面第一种可能的实现方式,在第二种可能的实现方式中,所 述确定模块用于:
根据所述接收模块接收的所述第一控制信息确定所述时域资源的长度或者所述时域资源的结束时刻。
结合第三方面,在第三种可能的实现方式中,所述确定模块用于:
根据所述接收模块接收的所述第一控制信息确定所述起始时间单元,并根据所述起始时间单元和所述时域资源的长度确定所述时域资源的结束时刻;
其中,所述时域资源的长度为预定义长度,或者根据所述基站设备发送的第一高层信令配置得到的长度。
结合第三方面第一种可能的实现方式至第三方面第三种可能的实现方式,在第四种可能的实现方式中,所述第一控制信息用于指示所述基站设备在下行突发的最后一个子帧或最后一个传输时间间隔中占用的符号数目,所述下行突发包含至少一个时间上连续的下行传输时间间隔,所述至少一个时间上连续的下行传输时间间隔包含所述第一下行传输时间间隔;
所述确定模块用于:
根据所述符号数目确定所述起始时间单元。
结合第三方面第一种可能的实现方式至第三方面第三种可能的实现方式,在第五种可能的实现方式中,所述起始时间单元在时间上晚于目标时间单元,所述目标时间单元与所述起始时间单元之间的时间间隔为第一时间间隔;
所述目标时间单元为所述第一下行传输时间间隔,或者,所述目标时间单元为所述第一下行传输时间间隔所在的子帧,或者,所述目标时间单元为下行突发的最后一个子帧或最后一个传输时间间隔,所述下行突发包含至少一个时间上连续的下行传输时间间隔,所述至少一个时间上连续的下行传输时间间隔包含所述第一下行传输时间间隔。
结合第三方面第五种可能的实现方式,在第六种可能的实现方式中,所述确定模块用于:
根据所述接收模块接收的所述第一控制信息确定所述目标时间单元;
所述终端设备根据所述目标时间单元和所述第一时间间隔确定所述起始时间单元;
其中,所述第一时间间隔为预定义时间间隔,或者所述第一时间间隔由所述基站设备发送的第二高层信令配置得到。
结合第三方面第五种可能的实现方式,在第七种可能的实现方式中,所述第一控制信息用于指示所述第一时间间隔;
所述确定模块用于:
根据所述第一时间间隔和所述目标时间单元确定所述起始时间单元。
结合第三方面第七种可能的实现方式,在第八种可能的实现方式中,所述确定模块还用于:
根据所述接收模块接收的所述第一控制信息确定所述目标时间单元。
结合第三方面至第三方面第八种可能的实现方式中任一种,在第九种可能的实现方式中,所述第一下行传输时间间隔与所述起始时间单元之间的时间间隔小于第二时间间隔,所述第二时间间隔为第二下行传输时间间隔与目标上行传输时间间隔之间的最小时间间隔, 所述第二下行传输时间间隔包含所述上行授权,所述目标上行传输时间间隔对应所述上行授权调度的上行信道;
其中,所述上行授权用于指示所述上行信道的传输格式;
所述上行信道的传输格式包括以下信息中的至少一项:
所述上行信道所占的时域资源;
所述上行数据信道所占的频域资源;
所述上行数据信道的调制编码方式;
所述第二下行传输时间间隔与所述目标上行传输时间间隔之间的时间间隔。
结合第三方面至第三方面第九种可能的实现方式中任一种,在第十种可能的实现方式中,所述第一控制信息为公共控制信息。
结合第三方面至第三方面第十种可能的实现方式中任一种,在第十一种可能的实现方式中,所述确定模块还用于:
确定所述上行数据信道的传输格式;
所述上行数据信道的传输格式包括以下信息的至少一项:
所述上行数据信道所占的频域资源;
所述上行数据信道的调制编码方式;
所述上行数据信道的发射功率;
所述上行数据信道中解调参考信号的码序列;
所述上行数据信道承载的传输块大小TBS;
其中,所述上行数据信道的传输格式所包括的至少一项信息中的任意一项为预定义的信息,或者根据所述基站设备发送的第三高层信令配置得到的信息。
结合第三方面至第三方面第十一种可能的实现方式中任一种,在第十二种可能的实现方式中,所述终端设备还包括:
检测模块,用于在所述上行数据信道所在的载波上执行先听后发LBT,并检测到信道空闲。
第四方面提供了一种基站设备,其可包括:
发送模块,用于在第一下行传输时间间隔上向终端设备发送第一控制信息,所述第一控制信息用于指示时域资源,所述时域资源包括至少一个上行传输时间间隔,所述时域资源的起始时间单元在时间上晚于所述第一下行传输时间间隔,所述起始时间单元为所述至少一个上行传输时间间隔中的第一个上行传输时间间隔;
接收模块,用于在上行数据信道上接收所述终端设备发送的数据信息,所述上行数据信道对应于所述时域资源中的至少一个上行传输时间间隔。
结合第四方面,在第一种可能的实现方式中,所述第一控制信息用于指示所述起始时间单元。
结合第四方面或第四方面第一种可能的实现方式,在第二种可能的实现方式中,所述第一控制信息用于指示所述时域资源的长度或者所述时域资源的结束时刻。
结合第四方面,在第三种可能的实现方式中,所述第一控制信息用于指示所述起始时间单元;
所述时域资源的结束时刻由所述起始时间单元和所述时域资源的长度得到;
其中,所述时域资源的长度为预定义长度,或者根据所述基站设备配置给所述终端设备的第一高层信令配置得到的长度。
结合第四方面第一种可能的实现方式至第四方面第二种可能的实现方式中任一种,在第四种可能的实现方式中,所述第一控制信息用于指示所述基站设备在下行突发的最后一个子帧或最后一个传输时间间隔中占用的符号数目,所述下行突发包含至少一个时间上连续的下行传输时间间隔,所述至少一个时间上连续的下行传输时间间隔包含所述第一下行传输时间间隔,所述符号数目用于确定所述起始时间单元。
结合第四方面第一种可能的实现方式至第四方面第二种可能的实现方式中任一种,在第五种可能的实现方式中,所述起始时间单元在时间上晚于目标时间单元,所述目标时间单元与所述起始时间单元之间的时间间隔为第一时间间隔;
所述目标时间单元为所述第一下行传输时间间隔,或者,所述目标时间单元为所述第一下行传输时间间隔所在的子帧,或者,所述目标时间单元为下行突发的最后一个子帧或最后一个传输时间间隔,所述下行突发包含至少一个时间上连续的下行传输时间间隔,所述至少一个时间上连续的下行传输时间间隔包含所述第一下行传输时间间隔。
结合第四方面第五种可能的实现方式,在第六种可能的实现方式中,所述第一控制信息用于指示所述目标时间单元;
所述起始时间单元由所述目标时间单元和所述第一时间间隔得到;
其中,所述第一时间间隔为预定义时间间隔,或者所述第一时间间隔由所述基站设备配置给所述终端设备的第二高层信令配置得到。
结合第四方面第五种可能的实现方式,在第七种可能的实现方式中,所述第一控制信息用于指示所述第一时间间隔;
所述起始时间单元由所述目标时间单元和所述第一时间间隔得到。
结合第四方面第六种可能的实现方式,在第八种可能的实现方式中,所述目标时间单元由所述第一控制信息指示。
结合第四方面至第四方面第八种可能的实现方式中任一种,在第九种可能的实现方式中,所述第一下行传输时间间隔与所述起始时间单元之间的时间间隔小于第二时间间隔,所述第二时间间隔为第二下行传输时间间隔与目标上行传输时间间隔之间的最小时间间隔,所述第二下行传输时间间隔包含所述上行授权,所述目标上行传输时间间隔对应所述上行授权调度的上行信道;
其中,所述上行授权用于指示所述上行信道的传输格式;
所述上行信道的传输格式包括以下信息中的至少一项:
所述上行信道所占的时域资源;
所述上行数据信道所占的频域资源;
所述上行数据信道的调制编码方式;
所述第二下行传输时间间隔与所述目标上行传输时间间隔之间的时间间隔。
结合第四方面至第四方面第九种可能的实现方式中任一种,在第十种可能的实现方式中,所述第一控制信息为公共控制信息。
结合第四方面至第四方面第十种可能的实现方式中任一种,在第十一种可能的实现方式中,所述上行数据信道的传输格式包括以下信息的至少一项:
所述上行数据信道所占的频域资源;
所述上行数据信道的调制编码方式;
所述上行数据信道的发射功率;
所述上行数据信道中解调参考信号的码序列;
所述上行数据信道承载的传输块大小TBS;
其中,所述上行数据信道的传输格式所包括的至少一项信息中的任意一项为预定义的信息,或者根据所述基站设备配置给所述终端设备的第三高层信令配置得到的信息。
第五方面提供了一种上行信息处理的系统,其可包括:上述第三方面提供的终端设备以及上述第四方面提供的基站设备。
第六方面提供了一种终端设备,其可包括:存储器和处理器;
上述存储器用于存储一组程序代码;
上述处理器用于调用存储器中存储的程序代码,执行上述第一方面提供的上行信息发送的方法提供的各种实现方式。
第七方面提供了一种基站设备,其可包括:存储器和处理器;
上述存储器用于存储一组程序代码;
上述处理器用于调用存储器中存储的程序代码,执行上述第二方面提供的上行信息接收的方法提供的各种实现方式。
在本申请中,基站设备可向终端设备发送第一控制信息,通过第一控制信息指示在承载第一控制信息的下行传输时间间隔之后的时域资源。第一控制信息指示的时域资源中的起始时间单元与上述下行传输时间间隔之间的时间间隔较短,终端设备可在上述时域资源上发送上行数据信息,无需等待上行授权的调度,提高了时域资源的利用率。在本申请中,终端设备可在比上行授权调度的场景下的调度时延更短的时间内发送上行数据信息,提高了上行数据信息的发送效率,基站设备可在更短的时间内接收到终端设备发送的上行数据信息,上行数据信息的处理更灵活,适用性更高。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是资源调度的上行/下行子帧的一位置关系示意图;
图2是本发明实施例提供的上行信息处理的方法流程示意图;
图3是资源调度的上行/下行子帧的另一位置关系示意图;
图4是本发明实施例提供的时域资源的一示意图;
图5是本发明实施例提供的时域资源的另一示意图;
图6是本发明实施例提供的时域资源的另一示意图;
图7是本发明实施例提供的终端设备的一结构示意图;
图8是本发明实施例提供的终端设备的另一结构示意图;
图9是本发明实施例提供的终端设备的另一结构示意图;
图10是本发明实施例提供的基站设备的一结构示意图;
图11是本发明实施例提供的基站设备的另一结构示意图;
图12是本发明实施例提供的上行信息处理系统的结构示意图。
具体实施方式
在LTE系统采用的OFDM技术中,用于数据传输的最小资源单位是资源粒子(英文:Resource Element,RE),一个RE对应时域上的1个OFDM符号和频域上的1个子载波。在此基础上,资源块(英文:Resource Block,RB)由多个时域上连续的OFDM符号和频域上连续的子载波组成,RB是资源调度的基本单位。LTE系统的上行传输采用单载波,1个RE对应1个单载波频分多址接入(英文:Single Carrier Frequency Division Multiplexing Access,SC-FDMA)符号和频域上的1个子载波。在LTE系统的上行传输中,UL grant是UE特定的控制信令,UL grant与其调度的PUSCH之间具有固定的时序关系,子帧#n的下行控制信道中包含的UL grant调度的PUSCH位于子帧#n+4。
为了扩展可使用带宽,Release 13引入授权辅助接入的长期演进(英文:Licensed-Assisted Access using Long Term Evolution,LAA-LTE)技术,通过载波聚合(英文:Carrier Aggregation,CA)技术,可以将可用的频谱扩展到非授权频段,利用授权频谱实现无缝覆盖以及承载部分时延要求高的业务,非授权频谱承载部分数据业务。为了实现在非授权频谱上满足和不同运营商的基站、UE,以及Wi-Fi等异系统无线节点的友好共存,LAA系统采用LBT信道接入机制,基站在侦听到信道空闲后再发送下行信息。具体的,下行传输的LBT为基于随机回退的空闲信道评测(英文:Clear Channel Assessment,CCA)(Type 1UL channel access)。具体流程是:发送节点在0~竞争窗长度(英文:Contention Window Size,CWS)之间均匀随机生成一个回退计数器N,并且以侦听时隙(英文:CCA slot)为粒度进行侦听。如果侦听时隙内检测到信道空闲,则将回退计数器减一,反之检测到信道忙碌,则将回退计数器挂起,即回退计数器N在信道忙碌时间内保持不变,直到检测到信道空闲。当回退计数器减为0时发送节点可以立即占用该信道。发送节点在占用信道后,可以连续发送信息的最大时间长度为最大信道占用时间(英文:Maximum Channel Occupancy Time,MCOT),持续占用信道达到该长度后需要释放信道,重新执行LBT后才能再次接入。信道状态的判断准则为:无线通信设备将侦听时隙内的接收到信道上的功率与能量检测门限比较,如果高于门限,则为信道忙碌,如果低于门限,则为信道空闲。
在Release 14引入的eLAA中进一步地支持非授权频谱的上行传输。与现有LTE系统一致,eLAA上行传输由基站发送UL grant调度完成,终端设备在被调度的上行传输之前也需要通过LBT确认信道空闲才能发送。另外,上行传输支持两种LBT类型:基于随机回退的CCA以及单时隙CCA。其中,基于随机回退的CCA与下行传输类似。单时隙CCA流程是:发送节点执行一个长度为25us的单时隙的CCA侦听,如果25us的CCA时隙检测到信道空闲,则发送节点可以立即接入信道。如果25us的CCA时隙内检测到信道忙碌,发送节点放弃发送 信息,并且可以等待下一个上行数据信道之前再执行下一次的单时隙CCA侦听。为了提高上行接入信道的机会,可以将基站抢占信道后占用的MCOT共享给终端设备使用,终端设备在MCOT以内可以执行单时隙CCA,超出MCOT则需要执行随机回退CCA。具体的,基站通过下行控制信道中包含的小区特定的控制信令(英文:Common PDCCH,CPDCCH)将上行突发的起始时刻和持续时长通知给终端设备。终端设备在上行突发以内的上行传输可以执行单时隙CCA接入信道,而超出上行突发的上行传输需要执行随机回退CCA接入信道。另外,CPDCCH还用于通知下行尾子帧的符号数目、触发两级上行调度等。其中一个下行突发的最后一个下行子帧称为尾子帧,基站在下行尾子帧中可能不占满子帧的全部符号,而是只占用子帧靠前的符号,而不占用靠后的符号发送下行信息,靠后的符号保留空闲以便于给下一个子帧的上行传输执行LBT,或者靠后的符号用于UE发送上行控制信道,承载随机接入信息、上行探测参考信号、下行混合自动重传请求(英文:Hybrid Automatic Repeat reQuest,HARQ)ACK反馈(即HARQ-ACK反馈)等。例如,下行突发的最后一个子帧(尾子帧)包含14个符号,而基站在该尾子帧占用前K个符号发送下行信息,其中K可为3、6、9、10、11、12、14中的一个值。
由于传统LTE的每个PUSCH只能由具有固定时序关系的一个UL grant调度,当上行业务需求大于下行业务需求时,基站只需要承载少量的下行数据,但是却需要配置大量的下行子帧以通过UL grant调度足够的PUSCH资源,造成时域资源的浪费,并需要频繁地执行LBT,导致信道接入机会受限。参见图1,图1为资源调度的上行/下行子帧的一位置关系示意图。如图1,当基站需要调度4个上行子帧时,需要配置4个下行子帧并在每个下行子帧中发送1个UL grant,而这些下行子帧不能用于上行传输。其中,每个下行子帧中发送的UL grant用于调度该下行子帧对应的上行子帧,例如下行子帧#n中发送的UL grant用于调度上行子帧#n+4。其次,当下行子帧中不需要发送下行PDSCH时,相邻的两个承载UL grant的PDCCH之间没有PDSCH信息时,基站可能需要停止占用信道,因此信道占用是不连续的,基站在发送后一个UL grant之前仍然需要执行LBT,LBT失败会导致UL grant无法发送,进而上行PUSCH也无法被调度。再者,由于UL grant与UL grant调度的PUSCH之间具有固定时序的定时关系,例如子帧#n中的UL grant只能调度子帧#n+4上的PUSCH基站无法调度到更远的上行子帧。
由此可见,如何在上下行业务不均衡的时候支持非授权频谱上高效率的上行传输是亟待解决的问题。为此本发明实施例提供了一种上行信息处理的方法及装置,可通过基站设备发送的下行控制信息指示终端设备可用的时域资源为下行传输结束之后的时域资源。终端设备可以在下行控制信息指示的时域资源上发送上行数据而不需要基站设备提前发送UL grant调度。终端设备可以根据预配置好的上行数据信道格式提前对在PUSCH上要发送的数据信息进行组包,在检测到该下行控制信息后立即在对应上述时域资源上发送上行数据信息,并且不需要在此之前发送调度请求(英文:Scheduling Request,SR)并等待UL grant,减小了上行传输的时延,提高了上行传输效率。
需要说明的是,本发明实施例可以应用于工作在非授权频谱上的无线通信系统,也可以应用于工作在授权频谱上的无线通信系统。其中,上述无线通信系统的基站设备在授权频谱或非授权频谱上发送下行信息(或称下行数据信息),上述无线通信系统的终端设备 在授权频谱或非授权频谱上发送上行信息(或称上行数据信息)。授权频谱和非授权频谱上基于UL grant调度的上行传输的调度时延都是4ms,因此采用本发明实施例在调度时延带来的空闲时间内,在免调度许可(英文:Grant Free,或Grant-less)的PUSCH上发送数据信息都可以享受时延减小以及上行传输效率提升带来的好处。另外,对于非授权频谱上的上行传输,本发明实施例提供的实现方式免除了终端设备发送SR以及等待UL grant的操作,可额外避免了SR以及UL grant抢占不到信道带来的接入机会的损失,适用性高。
本发明实施例提供的实现方式中涉及的网元主要是可以工作在授权频谱或非授权频谱上的基站设备和终端设备(或称UE)。其中,上述基站设备包括宏基站、微小区、微微小区、家庭基站、远端射频头以及中继等,具体可根据实际应用场景确定,在此不做限制。上述终端设备可包括手机、能接入LTE系统的笔记本电脑、平板电脑等,具体可根据实际应用场景确定,在此不做限制。下面将结合图2至图12,对本发明实施例提供的上行信息处理的方法及装置进行描述。
参见图2,是本发明实施例提供的上行信息处理的方法流程示意图。本发明实施例提供的方法,包括步骤:
S101,基站设备在第一下行传输时间间隔上向终端设备发送第一控制信息。
S102,终端设备接收基站设备在第一下行传输时间间隔上发送的第一控制信息。
具体实现中,对于传统的UL grant调度的上行传输,基站设备需要在接收到终端设备发送的SR之后,通过UL grant调度终端设备发送上行数据信息。由于基站设备接收UE发送的SR和终端设备接收到基站发送的UL grant之间的时延,导致上行传输的时延较大。本发明实施例通过引入免调度许可机制,终端设备不需要向基站设备发送SR,也不需要接收基站设备发送的UL grant,而是直接在基站设备配置的上行PUSCH资源上发送上行数据信息,减小了时延,提高了资源利用率。
在一些可行的实施方式中,基站设备可在第一下行传输时间间隔(即第一下行TTI)上发送第一控制信息,其中,所述第一控制信息用于指示免调度许可的时域资源。具体实现中,基站设备可以将同一份免调度许可的时频资源分配给多个终端设备,并通过统计复用的方式避免终端设备没有上行数据发送导致资源浪费。同时基站设备可以通过控制配置在同一免调度许可资源上的终端设备数目,以避免终端设备过多导致多个终端设备同时在一份时域资源上发送数据信息,进而出现数据信息发送的碰撞问题。
在一些可行的实施方式中,免调度许可的时域资源和频域资源可通过基站设备发送的高层信令半静态配置。然而,考虑到下行业务到达的随机性,基站设备发送下行传输的时机以及下行传输的结束时刻(例如下行传输的最后一个子帧或者下行传输的最后一个TTI)是动态的。另外,下行传输之前需要执行LBT,使下行传输时机的动态特性更加明显,因此下行传输的结束时刻很有可能和预配置的免调度许可时域资源的起始时间单元相距较远,仍然不能有效利用DL-UL之间的空闲时间传输上行数据信息。基于此,本发明实施例在根据基站设备发送高层信令配置免调度许可的时域资源的实现方式之外,提出了动态指示时域资源的实现方式。本发明实施例可通过基站设备下发的第一控制信息显式或隐式地指示免调度许可的时域资源,包括时域资源的起始时间单元,和/或时域资源的长度,和/或时域资源的结束时刻等。当终端设备有上行数据传输需求时,可以提前根据预配置好的上行数 据信道格式提前对在PUSCH上要发送的数据信息进行组包,并在接收到基站设备发送的第一控制信息之后,根据第一控制信息确定免调度许可的时域资源,进而可在第一控制信息指示的时域资源上发送组包之后的上行数据。如图3,图3是资源调度的上行/下行子帧的另一位置关系示意图。如图3所示,基站设备在下行子帧#n上发送UL grant调度的最近的下行子帧(或下行TTI)为下行子帧#n+4。为了利用下行子帧#n+1至下行子帧#n+3的这3个下行子帧的时域资源,基站设备可以通过在下行子帧#n上发送第一控制信息,将下行子帧#n+1至下行子帧#n+3的这3个下行子帧指示为免调度许可的时域资源。终端设备接收到第一控制信息后,可根据第一控制信息确定可以利用这部分时域资源来发送上行数据信息,即终端设备可根据第一控制信息确定这部分时域资源为免调度许可的时域资源。
应理解,下行传输时间间隔(即下行TTI)是下行传输的最小时间传输单元,上行传输时间间隔(即上行TTI)是上行传输的最小时间传输单元。应理解,下行传输时间间隔中传输的数据信息中包含下行控制信息,该下行控制信息可以对包括在同一下行传输时间间隔内的下行数据信道进行下行资源调度,也可以对该下行传输时间间隔之后的上行传输时间间隔内的上行数据信道进行上行资源调度。Release 14之前的LTE系统都是采用长度为1ms的TTI,即上行TTI和下行TTI的长度都为1ms,也就是上行TTI和下行TTI的长度均为1个子帧的长度。Release 14和5G NR(英文:New Radio)中引入了更短的TTI长度,支持短TTI(英文:short TTI,sTTI)传输的基站设备和终端设备可以支持长度为1ms的TTI和长度短于1ms的上行sTTI/下行sTTI。其中,sTTI支持的可选长度包括7个SC-FDMA(英文:SC-FDMA Symbol,SS)符号,1个SS,2个SS、3个SS、4个SS等。也就是说一个下行子帧中可以包含至少两个下行sTTI,一个上行子帧中可以包含至少两个上行sTTI。本发明实施例中的下行TTI可以是长度为1ms的TTI,也就是一个子帧,也可以是长度短于1ms的sTTI,其中,长度短于1ms的sTTI至少包含一个下行OFDM符号。上行TTI可以是长度为1ms的TTI,也就是一个子帧,也可以是长度短于1ms的sTTI,其中,长度短于1ms的sTTI至少包含一个上行SC-FDMA符号。需要说明的是,在具体实现中,一个长度为1ms的TTI(即一个子帧)或一个长度短于1ms的sTTI都称之为一个TTI,具体可根据实际应用场景中基站设备或者终端设备所采用的TTI格式确定,在此不做限制。
在一些可行的实施方式中,基站设备发送的第一控制信息指示的时域资源即为本发明实施例中描述的免调度许可资源(或称免调度许可的时域资源)。本发明实施例中描述的免调度许可资源用于终端设备的免调度许可PUSCH传输。基站设备可以将一个时域资源和/或频域资源仅分配给一个终端设备作为免调度许可资源,也可以将同一时域资源和/或频域资源分配给至少两个终端设备作为免调度许可资源。对于免调度许可的时域资源,终端设备可以自己决定是否使用该时域资源发送上行数据信息,以及使用该时域资源中的哪些上行TTI发送上行数据信息。也就是说,当免调度许可的时域资源包括至少两个上行TTI时,终端设备接收到第一控制信息后,可以在该时域资源中的至少一个上行TTI上发送上行数据信息,可以占用该时域资源中的部分上行TTI,也可以占用全部的时域资源。该时域资源包含至少一个TTI或子帧,该至少一个TTI/子帧中的任意一个TTI/子帧可以是完整TTI/子帧,也可以是部分TTI/子帧,也就是说此时终端设备只能在该TTI/子帧的一部分时域资源上发送数据信息。上述时域资源位于承载第一控制信息的第一下行TTI之后,即该时域资源的第一 个TTI或者第一个子帧在承载第一控制信息的第一下行TTI之后。
在一些可行的实施方式中,上述时域资源的起始时间单元与该第一下行TTI(以下简称该下行TTI或者上述下行TTI)的结束时刻的时间间隔可以等于零,也就是说上述时域资源的起始时间单元紧跟着该下行TTI。上述时域资源的起始时间单元与该下行TTI的结束时刻之间的时间间隔也可以大于零,也就是说该下行TTI的结束时刻之后隔一段时间后该时域资源才开始。上述时域资源的起始时间单元与该下行TTI的结束时刻之间的时间间隔大于零时,该时间间隔可以用于LBT侦听。或者,在一些实现方式中,该下行TTI之后可能还有其他下行TTI要传输数据信息,即该下行TTI并不是下行突发的最后一个下行TTI。此时,上述时域资源要在该下行TTI之后的其他下行TTI所要传输的数据信息传输完成之后。或者,若该下行TTI包含在下行尾子帧中,基站设备在下行尾子帧没有占满全部的下行符号,此时,第一控制信息指示的免调度许可的时域资源在下行尾子帧结束之后。
在一些可行的实施方式中,基站设备发送的第一控制信息可以是用户特定的控制信息,也可以是用户组特定的控制信息,也可以是公共控制信息。其中,用户特定的控制信息采用用户特定的无线网络临时标识符(英文:Radio Network Temporary Identifier,RNTI)加扰,只能被该特定的终端设备检测到且该控制信息只针对该特定终端设备生效。用户组特定的控制信息只能被该特定的一组终端设备(至少两个终端设备)检测到且该控制信息只针对该组包含的终端设备生效。公共控制信息采用小区特定的RNTI加扰,可以被小区中包含的所有已激活的终端设备检测到且该公共控制信息针对所有检测得到该公共控制信息的终端设备生效。
在一些可行的实施方式中,当第一控制信息为公共控制信令(即公共控制信息)时,该第一控制信息用于指示免调度许可的时域资源,并且该第一控制信息可以利用现有的公共控制信道(英文:Common PDCCH,CPDCCH)。基站设备可采用小区公共的RNTI(英文:Cell Common-RNTI,CC-RNTI)对公共控制信令进行加扰。基站设备也可以采用新的公共控制信道格式,或者说采用新的小区特定RNTI加扰该公共控制信令。具体实现中,该公共控制信令可以承载在PDCCH信道区域。进一步的,考虑到LTE系统原有的物理混合自动重传指示信道(英文:Physical Hybrid ARQ Indicator Channel,PHICH)信道可能不需要被工作在非授权频谱或Release 14版本的终端设备接收用作HARQ指示,该闲置的PHICH信道对应的物理资源可以用于承载该公共控制信息用于向上述终端设备指示上述时域资源。
S103,终端设备根据所述第一控制信息确定时域资源。
在一些可行的实施方式中,终端设备接收到第一控制信息之后可根据第一控制信息确定用于免调度许可的时域资源,包括该时域资源的起始时间单元、时域资源的长度(即时长)、时域资源的结束时刻等时域资源参数。其中,终端设备确定上述三个时域资源参数中的任意两个参数则可以确定第三个参数,即终端设备确定了上述3个时域资源参数中的2个参数则可确定该时域资源。具体的,上述时域资源的起始时间单元在时间上晚于目标时间单元,上述目标时间单元与起始时间单元之间的时间间隔为第一时间间隔。
上述起始时间单元包括允许终端设备在该时域资源最早发送上行数据信息的传输时间间隔,即该时域资源包含的至少一个TTI中的第一个TTI(称为起始TTI)或该时域资源包含的至少一个子帧中的第一个子帧(称为起始子帧),上述时域资源的起始时刻为允许终端设 备在该时域资源上发送数据信息的最早时刻。其中,起始时刻包括时域资源的起始子帧或起始TTI,和/或允许终端设备在起始子帧/起始TTI开始发送数据信息的位置(起始位置)。上述起始时间单元包括该时域资源的起始TTI或起始子帧,该起始TTI/起始子帧可以是完整的TTI或完整的子帧,也可以是部分TTI或部分子帧。其中,对于某些起始TTI/起始子帧,终端设备需要占用一个完整TTI/完整子帧的全部时域发送数据信息。对于另外一些起始TTI/起始子帧,终端设备并不需要占用一个完整TTI/完整子帧的全部时域,而只占用该完整TTI/完整子帧的一部分时域发送数据信息,允许终端设备在该完整TTI/完整子帧中占用的时域部分称为部分TTI/部分子帧。起始时间单元的起始边界为,终端设备在该起始TTI/起始子帧中开始发送数据信息的起始位置(英文:Start position)。具体的,当该起始TTI/起始子帧为完整TTI/子帧时,起始TTI/起始子帧的起始位置等于该TTI/子帧的起始边界,起始时间单元为该起始TTI/起始子帧。具体的,当该起始TTI/起始子帧为部分TTI/部分子帧时,起始TTI/起始子帧的起始位置在一个完整TTI/完整子帧的中间(或者说在起始TTI/起始子帧所在的完整TTI/完整子帧的起始边界和结束边界之间),起始时间单元可以是该完整TTI/完整子帧,也可以是从该完整TTI/完整子帧的起始位置到该起始TTI/起始子帧的结束边界的部分。其中,起始位置为允许终端设备在起始TTI/起始子帧开始发送上行数据信息的时刻。对于授权频谱,起始TTI/起始子帧总是完整TTI/完整子帧,起始位置可以总在起始TTI/起始子帧的起始边界(例如,该完整子帧起始边界处,称为0us)。对于非授权频谱,可选的,起始TTI/起始子帧可以是完整TTI/完整子帧,起始位置可以在起始TTI/起始子帧的起始边界(0us),这种情况下起始时间单元为时域资源包含的第一个完整TTI/完整子帧,如图4中的(a)所示。图4是本发明实施例提供的时域资源的一示意图。可选的,起始TTI/起始子帧也可以是部分TTI/部分子帧,起始位置也可以位于起始TTI/起始子帧所在的完整TTI/完整子帧的中间,具体的可以是第一个上行符号的中间或第二个上行符号起始处。例如,当时域资源紧跟在下行突发的尾子帧之后,且尾子帧占满14个符号时,起始位置可以位于完整TTI/完整子帧的第二个上行符号起始处,如图4中的(d)所示(称为1符号)。这种情况下,起始时间单元可以是时域资源包含的第一个完整TTI/完整子帧,也可以是该第一个完整TTI/完整子帧中从第二个符号起始处到子帧结束边界的部分(斜方格部分)。起始位置也可以位于完整TTI/完整子帧的起始边界之后25us处(称为25us),在第一个符号的中间,如图4中的(b)所示。这种情况下,起始时间单元可以是时域资源包含的第一个完整TTI/完整子帧,也可以是该第一个完整TTI/完整子帧中从25us到子帧结束边界的部分(斜方格部分)。起始位置也可以位于完整TTI/完整子帧的起始边界之后25us+TA(英文:Timing Advance)处(称为25us+TA),在第一个符号的中间,如图4中的(c)所示。这种情况下,起始时间单元可以是时域资源包含的第一个完整TTI/完整子帧,也可以是该第一个完整TTI/完整子帧中从25us+TA到子帧结束边界的部分(斜方格部分)。在起始子帧靠前的位置上预留1个符号,或25us,或(25us+TA)空闲间隔以便于上行数据信道执行LBT。
上述目标时间单元为承载第一控制信息的下行传输时间间隔(即第一下行TTI);或者,上述目标时间单元为第一下行TTI所在的子帧;或者,上述目标时间单元为下行突发的最后一个子帧或最后一个TTI,上述下行突发包含上述目标下行TTI,上述下行突发为时间上连续的至少一个下行TTI。上述目标时间单元可以是完整TTI/子帧,也可以是部分TTI/子帧, 其中,当基站设备在一个完整TTI/完整子帧中不占用全部时域而只占用一部分时域发送下行信息,其占用的时域部分称为部分TTI/部分子帧。
上述第一时间间隔为目标时间单元与起始时间单元之间的时间间隔。可选的,第一时间间隔为目标时间单元所在的完整TTI/完整子帧的起始边界或结束边界与起始时间单元对应的起始位置之间的时间间隔。例如,目标时间单元为下行突发的最后一个子帧,即尾子帧。基站在尾子帧占用的时域范围为第一个符号(称为符号#1)~第三个符号(称为符号#3),起始时间单元为尾子帧之后的第一个完整子帧,起始位置为子帧边界,则第一时间间隔为尾子帧的起始边界到起始时间单元对应的起始位置之间的时间间隔,即1个子帧。或者,第一时间间隔为尾子帧的结束边界到起始时间单元对应的起始位置之间的时间间隔,即0。
上述第一时间间隔为目标时间单元与起始时间单元之间的时间间隔,可选的,第一时间间隔为目标时间单元所在的完整TTI/完整子帧的起始边界或结束边界与起始时间单元所在的完整TTI/完整子帧的起始边界之间的时间间隔。例如,目标时间单元为下行突发的最后一个子帧即尾子帧,基站在尾子帧占用全部符号,起始时间单元为尾子帧之后的第一个子帧,起始位置为子帧的第二个符号的起始处(1符号),则第一时间间隔为尾子帧的起始边界到起始时间单元对应的起始位置之间的时间间隔,即1个子帧+1符号;或者,第一时间间隔为尾子帧的结束边界到起始时间单元对应的起始位置之间的时间间隔,即1符号。
上述结束时刻包括允许终端设备在该时域资源上发送数据信息的最晚时刻,上述结束时刻包括时域资源包含的最后一个子帧或最后一个TTI(称为结束时间单元),和/或允许终端设备在该最后一个子帧/最后一个TTI停止发送数据信息的位置(结束位置)。该最后一个子帧/最后一个TTI可以是完整子帧/完整TTI,也可以是部分子帧/部分TTI。该结束位置可以是该时域资源包含的最后一个子帧/最后一个TTI所在完整子帧/完整TTI的起始边界或结束边界,也可以在最后一个子帧/最后一个TTI所在完整子帧/完整TTI的中间。
上述时域资源的时长为起始时刻和结束时刻之间的时间长度。具体的,可以是该时域资源的起始时间单元或起始时间单元所在的完整TTI/完整子帧与结束时间单元(或结束时间单元所在的完整TTI/完整子帧)之间的时间长度,也可以是起始时间单元对应的起始位置与结束时间单元对应的结束位置之间的时间长度。本发明实施例针对终端设备如何获取该时域资源的时长和起始时刻进行说明,该方法同样适用于终端设备获取该时域资源的时长和结束时刻,或者获取该时域资源的起始时刻和结束时刻。
在一些可行的实施方式中,基站设备可以通过第一控制信息将免调度许可的时域资源的时长通知给终端设备,终端设备可根据第一控制信息直接确定时域资源的时长。需要说明的是,基站设备通过第一控制信息指示该时域资源的时长,可以体现为指示上行TTI的数目,也可以体现为指示上行子帧的数目,也可以体现为指示毫秒数。终端设备可根据第一控制信息的指示确定时域资源的时长,操作简单。具体实现中,当第一控制信息为CPDCCH时,基站设备可以通过在CPDCCH中引入新的比特域用以显式指示该时域资源的时长。应理解,该时域资源在时间上是连续的,其中,上述时间上连续包括连续的TTI或子帧。连续的TTI或者子帧可体现为相邻的两个TTI或子帧之间是连续的,或者相邻的两个TTI或者子帧之间有空闲间隔(例如一个符号或部分符号的空闲间隔),该空闲间隔用于执行LBT。
类似的,基站设备也可以通过第一控制信息将免调度许可时域资源的结束时刻指示给 终端设备。这种基站设备通过第一控制信息指示免调度许可的时域资源的通知方式可以动态地通知终端设备免调度许可时域资源的时长,代价是增加了通知信令开销。例如,当上/下行TTI为长度为1ms的TTI(即1个子帧),UL grant调度时延为4ms,基站在非授权频谱上发送的下行突发的长度为1个子帧时,DL-UL之间的空闲时间(下行突发结束的子帧到下行突发中包含的UL grant所调度到的最早的上行子帧之间的时间)为3ms。由于3ms之后基站设备可以通过UL grant调度上行数据信道,因此免调度许可的时域资源的时长可以指示为3ms。同理,基站设备在非授权频谱上发送的下行突发长度为2个子帧时,DL-UL之间的空闲时间则为2ms,免调度许可的时域资源的时长可以指示为2ms。
在一些可行的实施方式中,基站设备可以通过第一高层信令将免调度许可的时域资源的时长通知给终端设备。终端设备在接收第一控制信息之前接收第一高层信令,并通过第一高层信令配置该时域资源的时长。基站设备通过第一高层信令配置免调度许可的时域资源的时长,可节省信令开销。第一控制信息仅用于指示免调度许可的时域资源。具体的,对于非授权频谱,不需要额外地引入新的控制信令比特域,类似于上述实现方式,终端设备通过检测到第一控制信息的存在性触发上行数据信息的发送。具体地,当第一控制信息为CPDCCH时,由于CPDCCH会指示当前子帧或下一个子帧为尾子帧,终端设备检测到CPDCCH时,若起始时间单元为尾子帧之后紧跟的第一个子帧,可以确定尾子帧之后紧跟的x个子帧为免调度许可的时域资源,x为配置的时域资源的时长。这种通知方式同样适用于第一控制信息为用户特定控制信息或用户组特定的控制信息的场景。
可选的,本发明实施例提供的免调度许可的时域资源的时长可以是预定义的。例如,可预先定义免调度许可的时域资源的时长为2个子帧或2个TTI,或3个子帧或3个TTI等,具体可根据实际应用场景确定,在此不做限制。
可选的,终端设备确定上述时域资源的时长,可以直接确定上述时域资源的时长为上述第一高层信令配置的时长,或预定义的时长,或基站设备通过第一控制信息指示的时长。或者说确定上述时域资源的结束时刻由时域资源的起始时刻加上上述时域资源的时长得到。例如,当上述起始时刻为下行突发的尾子帧之后紧跟的第一个子帧,记为子帧#m+1,上述时长为x个子帧时,上述结束时刻为子帧#m+x,上述时域资源为尾子帧之后紧跟的x个子帧。也就是说,第一高层信令配置的时长,或预定义的时长,或基站设备通过第一控制信息指示的时长对应从起始时刻到结束时刻之间的时间长度,等于时域资源的实际时长。
可选的,终端设备确定上述时域资源的时长,可以确定上述时域资源的时长为上述第一高层信令配置的时长,或预定义的时长,或基站设备通过第一控制信息指示的时长减去第一时间间隔。或者说确定上述时域资源的结束时刻由目标时间单元的结束时刻(或者说目标时间单元后的第一个TTI)加上上述时域资源的时长得到。这种方式下,由于目标时间单元是固定的,终端设备确定的时域资源结束时刻与第一时间间隔无关,而只与时长有关,基站可以不需要动态指示第一时间间隔,而采用预定义或高层信令配置的方式,因此,这种方式也可以看成是确定时域资源的结束时刻的方式,其中该结束时刻由上述第一高层信令配置或预定义或由基站设备通过第一控制信息指示。例如,假设第一时间间隔为尾子帧的结束边界到起始时间单元对应的起始位置之间的时间间隔,当上述目标时间单元为下行突发的尾子帧,上述起始时刻为该尾子帧之后紧跟的第一个子帧,记为子帧#m+1。上述配 置或预定义或指示的时长为x个子帧时,第一时间间隔为0,上述结束时刻为子帧#m+x,上述时域资源为尾子帧之后紧跟的x个子帧。当上述起始时刻为该尾子帧之后紧跟的第二个子帧,记为子帧#m+2,上述配置或预定义或指示的时长为x个子帧时,第一时间间隔为1个子帧,上述结束时刻仍然为子帧#m+x,上述时域资源为从子帧#m+2开始的x-1个子帧。
在一些可行的实施方式中,基站设备可以通过第一控制信息触发终端设备发送或不发送免调度许可的上行数据信息。
可选的,该触发信息可以是第一控制信息中独立的比特位,也可以与用于指示免调度许可的时域资源的时长的信息联合编码,作为终端设备发送或者不发送免调度许可的上行数据信息的两种状态中的其中一种状态进行触发。上述第一控制信息作为独立比特位触发时,可以通过第一控制信息中包含的一个独立比特位进行触发。具体的,若独立比特位为“0”则代表未触发终端设备发送上行数据信息。若独立比特位为“1”则代表触发终端设备发送上行数据信息。具体的,触发终端设备在目标时间单元之后紧跟的x个子帧/TTI中的至少一个子帧/TTI上发送免调度许可的上行数据信息,或者,触发终端设备从起始时间单元开始的x个子帧/TTI中的至少一个子帧/TTI上发送免调度许可的上行数据信息。其中,上述x由第一控制信息指示,即由第一控制信息指示免调度许可的时域资源的长度,或者,上述x为预定义的或者由基站发送的第一高层信令配置。上述起始时间单元由目标时间单元加上第一时间间隔确定,上述第一时间间隔由第一控制信息指示,或者,第一时间间隔为预定义或者由基站发送的第二高层信令配置。
可选的,终端设备也可通过检测到第一控制信息的存在性进行触发。具体的,当第一控制信息为CPDCCH时,终端设备可以根据检测到的CPDCCH确定目标时间单元。具体的,根据检测到的CPDCCH确定当前子帧或下一个子帧为尾子帧。若起始时间单元为尾子帧之后紧跟的第一个子帧/TTI,终端设备检测到CPDCCH则可以在目标时间单元之后紧跟的x个子帧/TTI中的至少一个子帧/TTI上发送免调度许可的上行数据信息,或者,终端设备从起始时间单元开始的x个子帧/TTI中的至少一个子帧/TTI上发送免调度许可的上行数据信息。其中,上述x由第一控制信息指示,即由第一控制信息指示免调度许可的时域资源的长度。或者,上述x为预定义的或者由基站发送的第一高层信令配置。上述起始时间单元由目标时间单元加上第一时间间隔确定,上述第一时间间隔由第一控制信息指示,或者,第一时间间隔为预定义或者由基站发送的第二高层信令配置。
进一步的,触发信息可与用于指示免调度许可的时域资源的时长的信息联合编码。例如,第一控制信息可以包含2bit的比特域,2bit的比特域编码可得到4种状态,包括“00”、“01”、“10”、“11”。上述4种状态可以分别指示时域资源的时长为{0,1,2,3},其中1、2和3分别对应时域资源的时长为1个、2个和3个上行TTI/上行子帧。当基站设备指示免调度许可的时域资源的时长等于0时,终端设备接收到上述第一控制信息之后可确认没有指示免调度许可的时域资源或没有触发终端设备发送免调度许可的数据信道,不发送免调度许可的上行数据信息。
需要说明的是,下行控制信息采用小区特定的RNTI(例如CC-RNTI)或用户特定的RNTI加扰,并且除了有效控制信息的比特域之外,还包含循环冗余校验(英文:Cyclic Redundancy Check,CRC)比特域。终端设备用小区特定RNTI或用户特定的RNTI对下行子帧或下行TTI 的控制信道区域进行盲检测并且对CRC比特域进行校验,如果CRC校验正确,则确定该下行控制信息存在,并且进一步地,该下行控制信息中包含针对自己的指示信息。这种通知方式同样适用于第一控制信息为用户特定控制信息或用户组特定的控制信息的场景,在此不再赘述。
在一些可行的实施方式中,终端设备接收到第一控制信息之后,可根据第一控制信息确定免调度许可的时域资源的起始时间单元。具体实现中,终端设备确定免调度许可的时域资源的起始时间单元可以通过以下四种方式:预定义起始时间单元,第二高层信令通知起始时间单元,第一控制信息显式通知起始时间单元,第一控制信息隐式通知起始时间单元等。
需要说明的是,终端设备确定免调度许可的时域资源的起始时间单元包括确定免调度许可的时域资源的起始子帧/起始TTI,也包括确定该起始子帧/起始TTI对应的起始位置。
需要说明的是,由于免调度许可的时域资源的起始时间单元是动态的,终端设备确定免调度许可的时域资源的起始时间单元可以根据目标时间单元,以及起始时间单元和一个目标时间单元之间的时间间隔,即第一时间间隔,或者说相比于目标时间单元的偏移(英文:Offset)确定。也就是说起始时间单元由目标时间单元加上第一时间间隔得到。其中,目标时间单元可以由终端设备根据检测到的第一控制信息确定,可以是某一个TTI(设为目标TTI)或者某一个子帧(设为目标子帧)。
终端设备可以根据第一控制信息确定目标时间单元,可选的,该目标时间单元可以由检测第一控制信息的存在性得到,具体的,目标TTI/目标子帧是承载第一控制信息的下行TTI或子帧(即第一下行TTI),或者该下行TTI所在的子帧(如果该TTI为sTTI),终端设备对第一控制信息进行监测(英文:Monitor)或者说盲检测(英文:Blind Detection),如果在某个下行TTI/子帧上检测到第一控制信息,则该下行TTI/子帧为目标TTI/目标子帧。上述目标TTI/目标子帧的定义方式适用于授权频谱和非授权频谱。进一步地,在一些可行的实施方式中,对于非授权频谱,CPDCCH可能只出现在尾子帧,也可能出现在尾子帧和尾子帧之前的一个下行子帧,例如图5,图5是本发明实施例提供的时域资源的另一示意图。第一控制信息CPDCCH出现在尾子帧和尾子帧之前的一个下行子帧时,若时域资源的时长和/或起始时间单元由第一控制信息指示时,目标子帧(即目标时间单元)可以如图5中的(a)所示,为尾子帧之前的一个下行子帧,也可以如图5中的(b)所示,为尾子帧。图5中的(a)和(b)所示的两种情况下由于目标子帧定义不同,对应的第一时间间隔的长度也不同。
终端设备可以根据第一控制信息确定目标时间单元,可选的,该目标时间单元可以根据第一控制信息指示得到。具体的,目标TTI/目标子帧可以是承载第一控制信息的下行突发的最后一个子帧或最后一个TTI,可能只在最后一个子帧/最后一个TTI出现,也有可能在最后一个子帧/最后一个TTI以及最后一个子帧/最后一个TTI的前一个子帧/TTI都出现,因此只检测存在性可能无法准确确定目标TTI/目标子帧。这种定义方式适用于非授权频谱,终端设备可以通过检测第一控制信息中已有的比特域的不同状态确定哪个子帧是尾子帧,进而确定目标子帧为尾子帧。例如,当第一控制信息为CPDCCH时,现有的CPDCCH中包含用于指示当前子帧/下一子帧中基站占用符号数目的4比特控制信息“Subframe configuration for LAA”。由于CPDCCH只能出现在尾子帧和前一个子帧,且两个子帧中包含的该比特域 的指示状态不同,因此终端设备在某个子帧上检测到CPDCCH后可以确定该子帧是尾子帧,还是下一个子帧是尾子帧。这种通知方式同样适用于第一控制信息为用户特定控制信息或用户组特定的控制信息的场景。
需要说明的是,本发明实施例提供的下行突发为基站占用信道发送的时间上连续的下行传输时间间隔(连续的下行子帧或下行TTI),并且相邻的两个下行突发之间在时间上不连续。包含所述第一控制信息的下行突发可以也包含数据信息(下行数据信道PDSCH),也可以不包含数据信息。即,下行突发只发送PDCCH而不发送PDSCH,或者说基站设备只发送UL grant。若该下行突发中包含至少一个子帧,该子帧可以是整子帧(即14符号)或部分子帧(<14符号),部分子帧包括初始子帧(英文:Initial partial subframe),或者尾子帧(英文:End partial subframe)。
在一些可行的实施方式中,终端设备确定免调度许可的时域资源的起始时间单元或者第一时间间隔的4种方法具体如下:
方式1:第一时间间隔为预定义时间间隔。
在一些可行的实施方式中,终端设备可以通过确定目标时间单元,结合预定义的第一时间间隔,确定免调度许可的时域资源的起始时间单元。例如,终端设备可以通过检测第一控制信息的存在性(即第一控制信息是否存在),将检测到第一控制信息的子帧确定为目标子帧,并且将目标子帧之后与目标子帧相隔第一时间间隔的子帧确定为免调度许可的时域资源的起始子帧。可选的,终端设备可以通过第一控制信息中包含的用于指示目标子帧/目标TTI的信息,结合该预定义的第一时间间隔确定免调度许可的时域资源的起始时间单元。例如,当第一控制信息为CPDCCH时,CPDCCH可能在两个子帧(尾子帧和尾子帧的前一个子帧)出现,可以根据CPDCCH中包含的“Subframe configuration for LAA”比特域的指示状态确定下行突发的尾子帧,确定该尾子帧为目标子帧,并且将目标子帧之后与目标子帧相隔第一时间间隔的子帧确定为免调度许可的时域资源的起始子帧。例如,当预定义的第一时间间隔为1个子帧时,将紧跟在尾子帧之后的第一个子帧确定为起始子帧(即时域资源的起始时间单元)。这种通知方式同样适用于第一控制信息为用户特定控制信息或用户组特定的控制信息的场景。
方式2:第一时间间隔由基站设备发送的第二高层信令配置得到。
在一些可行的实施方式中,第一时间间隔由基站设备发送的第二高层信令配置得到时,终端设备确定免调度许可的时域资源的起始时间单元的方法类似于上述方式1,也需要结合确定的目标子帧共同确定起始子帧。其中,上述目标子帧的确定可以通过检测第一控制信息的存在性,也可以通过第一控制信息中用于指示目标子帧/目标TTI的信息确定,不再赘述。方式1与方式2的区别在于,方式2中,第一时间间隔是根据基站设备发送的高层信令配置得到的,增加了时域资源的起始时间单元的确定的灵活性。
方式3:第一时间间隔或者起始时间单元由第一控制信息指示。
在一些可行的实施方式中,可通过第一控制信息包含的比特域来指示第一时间间隔或者起始时间单元。进一步的,当第一控制信息用于指示第一时间间隔时,终端设备结合目标子帧和第一时间间隔确定起始时刻的方式类似于方式1和方式2,不再赘述。
在一些可行的实施方式中,当第一控制信息除了用于指示第一时间间隔或者起始时间 单元之外,还用于指示时域资源的时长时,第一控制信息可以使用两个独立的比特域分别用于指示时域资源的时长和起始时间单元(或第一时间间隔)(如下方式3-1),也可以使用一个联合的比特域指示时域资源的时长和起始时间单元(或第一时间间隔)(如下方式3-2)。
方式3-1:通过两个独立的比特域分别独立地指示时域资源的时长和起始时间单元(或者第一时间间隔)。
在一些可行的实施方式中,第一控制信息中用于指示时域资源的起始时间单元的比特域和用于指示时域资源的时长的比特域是独立的。也就是说,对于时域资源的时长和起始时间单元中的任意一者,终端设备遍历第一控制信息中相应的比特域中的所有状态可以得到该第一控制信息中包含的所有指示内容。其中,时域资源的起始时间单元的所有状态可以和时域资源的长度的所有状态任意组合。例如,当第一控制信息为CPDCCH时,CPDCCH中包含1比特信息用于指示起始时间单元(或者第一时间间隔),其包含的两种状态中,状态“0”指示时域资源的起始子帧与下行突发的尾子帧之间的第一时间间隔为1个子帧(起始子帧为尾子帧之后紧跟的第一个子帧),状态“1”指示时域资源的起始子帧与下行突发的尾子帧之间的第一时间间隔为2个子帧(起始子帧为尾子帧之后的第二个子帧)。另外,CPDCCH中还包含另外2bit的比特域指示时域资源的长度,2bit的比特域编码得到的4种状态可以分别指示时域资源的时长为{0,1,2,3}个子帧,终端设备可以确定时域资源包含从起始子帧或从目标子帧开始,长度为{0,1,2,3}个子帧的时域范围。遍历起始时间单元(或者第一时间间隔)的1比特信息可以获取到时域资源的所有可能的起始位置,遍历长度的2比特信息可以获取到时域资源的所有可能的长度。上述时域资源的起始时间单元的2种状态可以和时域资源的长度的4种状态任意组合,并通过CPDCCH的比特信息指示。这种通知方式同样适用于第一控制信息为用户特定控制信息或用户组特定的控制信息的场景。
方式3-2:通过一个比特域联合地指示时域资源的时长和起始时间单元(或者第一时间间隔)。第一控制信息中采用一个比特域联合地指示时域资源起始时间单元和时域资源的长度。也就是说,对于时域资源的时长和起始时间单元中的至少一者,整个比特域中所有比特用于指示一种时域资源的长度和起始时间单元均有效状态,只选取部分比特并不能指示时域资源的长度或者起始时间单元的有效信息。
在一些可行的实施方式中,考虑到两个指示信息独立指示可能会有冗余,例如,时域资源的长度为0时,第一时间间隔的任一状态都对应相同的用户行为,即认为时域资源为空。时域资源的长度为3时,时域资源的起始子帧与下行突发的尾子帧之间的时间间隔(即第一时间间隔)只能是1个子帧(时间间隔大于4的子帧之后可以被调度,不需要指示为免调度许可资源),因此可以节省一部分指示状态;例如,当可选长度为{0,1,2,3}个子帧,可选第一时间间隔为{0,1}个子帧时,如下表1所示,表1为上述方式3-2对应的联合指示的一示意表:
表1
Figure PCTCN2017115035-appb-000001
Figure PCTCN2017115035-appb-000002
其中,上述表1中所示的“不可用”表示时域资源不存在(指示终端设备不发送免调度许可的上行信息),“1”表示第一时间间隔为1个子帧,“2”表示第一时间间隔为2个子帧。同理,长度的表示方式也相同,不再赘述。
另外,时域资源的长度和起始时间单元联合指示的另一个好处是可以指示不连续的时域资源。例如,通过采用比特映射的方式,M个子帧/TTI对应M个比特。例如,考虑第一控制信息之后最多3个子帧可以指示为免调度许可的时域资源(时间间隔大于4的子帧之后可以被调度),3个比特的比特映射方式如下表2所示,表2为上述方式3-2对应的联合指示的另一示意表。其中,“可用”表示时域资源包含该子帧,“不可用”“表示时域资源不包含该子帧。其中,比特状态“001”代表时域资源的起始子帧与下行突发的尾子帧之间的第一时间间隔为3个子帧(包括子帧#n、子帧#n+1、子帧#n+2以及子帧#n+3),即第4个子帧(子帧#n+3)可用。比特状态“010”“011”代表第一时间间隔为2个子帧(包括子帧#n、子帧#n+1),,即第3个子帧(子帧#n+2)和第4个子帧(子帧#n+3)可用。同理,比特状态“100”、“101”、“110”、“111”代表第一时间间隔为1个子帧。
表2
比特域 子帧#n+1 子帧#n+2 子帧#n+3
000 不可用 不可用 不可用
001 不可用 不可用 可用
010 不可用 可用 不可用
011 不可用 可用 可用
100 可用 不可用 不可用
101 可用 不可用 可用
110 可用 可用 不可用
111 可用 可用 可用
方式4:第一时间间隔或者起始时间单元由第一控制信息隐式地指示。
在一些可行的实施方式中,上述第一时间间隔或者免调度许可的时域资源的起始时间单元可根据第一控制信息中包含的指示信息确定。其中,上述指示信息可包括基站设备在承载第一控制信息的下行突发的最后一个子帧(或者说尾子帧)或最后一个TTI中所占符号数目。或者,上述指示信息也可称为:用于指示基站设备在当前子帧/下一子帧,或当前TTI/下一TTI中占用的符号数目。免调度许可的时域资源的起始时间单元或上述第一时间间隔的 选择所考虑的问题,是给时域资源上传输的PUSCH预留相应的空闲间隔用以执行LBT。由于本发明实施例中所描述的时域资源在下行突发的尾子帧之后,因此主要考虑尾子帧是否有空闲间隔。若基站设备未占满尾子帧的所有下行符号,即尾子帧中存在空闲间隔,则上述时域资源的起始时间单元可以是紧跟在尾子帧之后的第一个子帧,用以提高时域资源的利用率。若基站设备占满所有尾子帧的下行符号,则上述时域资源的起始时间单元时刻要位于尾子帧之后的第一个子帧的起始边界之后,例如第一个子帧的中间符号或者尾子帧之后的第二个子帧,以在尾子帧和时域资源的起始时间单元之间预留空闲间隔用以执行LBT。
需要说明的是,考虑到非授权频谱上已经有公共控制信令用于指示尾子帧以及基站设备在尾子帧中所占的符号数目,终端设备可以根据尾子帧中基站设备所占的符号数目确定起始子帧。若终端设备确定基站设备未占满尾子帧的所有下行符号,则可确定上述时域资源的起始子帧与下行突发的尾子帧之间的第一时间间隔为1个子帧(起始子帧为尾子帧之后紧跟的第一个子帧)。若终端设备确定基站设备占满尾子帧的所有下行符号,则上述时域资源的起始子帧与下行突发的尾子帧之间的第一时间间隔大于1个子帧,包括,起始子帧为尾子帧之后紧跟的第二个子帧,或者,起始子帧为尾子帧之后紧跟的第一个子帧且起始子帧对应的起始位置位于起始子帧所在的完整子帧的中间。例如,当第一控制信息为CPDCCH时,不需要在现有的CPDCCH中额外引入新的比特指示上述时域资源的起始时间单元(或者第一时间间隔),可以复用现有的CPDCCH中用于指示当前子帧/下一子帧中基站设备所占用的符号数目的4比特控制信息(Subframe configuration for LAA)。
在一些可行的实施方式中,上述第一控制信息除了用于通知当前子帧占用符号数目,以及用于指示哪个子帧是尾子帧外,还可用于隐式地指示时域资源的起始时间单元或第一时间间隔。当上述第一控制信息指示尾子帧所占的符号数目为14或者说占满全部符号时,时域资源的起始子帧与下行突发的尾子帧之间的第一时间间隔为2个子帧。例如,图6中的(b)所示,图6是本发明实施例提供的时域资源的另一示意图。时域资源的起始子帧与下行突发的尾子帧之后的第2个子帧。时域资源的起始子帧与下行突发的尾子帧之间的空闲间隔的子帧用于终端设备针对上行数据信道执行LBT。当尾子帧所占的符号数目小于14或者说未占满全部符号时,例如图6中的(a)所示,第一时间间隔为1个子帧,即时域资源的起始子帧为尾子帧之后紧跟的第一个子帧。在该应用场景中,终端设备可以在尾子帧中的空闲间隔中执行LBT,无需在时域资源的起始子帧与下行突发的尾子帧之间预留一个子帧的空闲间隔。这种通知方式同样适用于第一控制信息为用户特定控制信息或用户组特定的控制信息的场景。
进一步地,在一些可行的实施方式中,终端设备确定时域资源的起始子帧/起始TTI之后,还可确定起始子帧/起始TTI对应的起始位置。类似的,该起始位置可以是:预定义的(方式a)。例如,起始子帧/起始TTI的起始位置总是位于起始子帧/起始TTI所在完整TTI/完整子帧的起始边界0us处(位置1);或者起始子帧/起始TTI所在完整TTI/完整子帧的起始边界之后25us处(位置2),或者起始子帧/起始TTI所在完整TTI/完整子帧的起始边界之后(25us+TA)处(位置3),或者起始子帧/起始TTI所在完整TTI/完整子帧的第二个上行符号起始处(1符号)(位置4)。或者,上述起始位置可以是:基站设备发送的高层信令配置得到的(方式b)。在方式b中,起始位置可选的位置包括上述位置1至4中描述的四种,不再赘 述。或者,上述起始位置可以是:基站设备发送的第一控制信息显式指示的(方式c)。在方式c中,起始位置可选的位置包括上述位置1至4中描述的四种,在此不再赘述。或者,上述起始位置可以是:基站设备发送的第一控制信息中包含的用于指示下行突发尾子帧占用符号数目的比特域隐式指示得到(方式d)。在方式d中,当尾子帧所占的符号数目为14或占满全部符号时,上述起始位置为25us处或1符号处或(25us+TA)处(上述位置2-4)。当尾子帧所占的符号数目小于14或未占满全部符号时,上述起始位置为0us处(上述位置1)。
需要说明的是,终端设备确定起始子帧/起始TTI的方式和确定起始位置的方式是独立的,确定起始子帧/起始TTI的任意一种方式和确定起始位置的任意一种方式搭配。当起始位置不等于0us时,终端设备可以对起始子帧/起始TTI进行速率匹配(英文:Rate matching),或者直接打掉(英文:Puncture)起始子帧/起始TTI与起始位置之间的时域信号,例如25us,或(25us+TA),或1符号对应的时域信号。例如,终端设备通过预定义的方式或通过高层信令配置的方式确定起始子帧/起始TTI(方式a或b),并根据第一控制信息显式指示或隐式指示的方式确定起始位置(方式c或方式d)。或者终端设备根据第一控制信息显式指示或隐式指示的方式确定起始子帧/起始TTI(方式c或d),并通过预定义或高层配置的方式确定起始位置(方式a或方式b)。
需要说明的是,本发明实施例中免调度许可的时域资源是由第一控制信息动态指示的,虽然在基于调度(英文:UL grant based)的上行传输中,时域资源也是由UL grant信息动态指示,但是,不同于UL grant调度的上行信道的地方在于,本发明实施例中免调度许可指示更近的时域资源,或者说第一时间间隔(或者说第一控制信息所在的下行TTI与其指示的免调度许可时域资源的起始时间单元之间的间隔)相比于基于UL grant调度的方式中的最短调度时延更短。其中,上述UL grant调度中的最短调度时延为UL grant所在的下行TTI/下行子帧与其可能调度的最早的上行信道对应的上行TTI/上行子帧之间的时间间隔。其中,上述最短调度时延可为本发明实施例提供的第二时间间隔。其中,上述第一下行TTI可为承载UL grant的TTI,上述UL grant调度的最早的上行信道对应的上行TTI可设为目标上行TTI,第二时间间隔可为上述第一下行TTI与目标上行TTI之间的时间间隔。
在本发明实施例中,第一下行TTI与免调度时域资源的起始时间单元之间的时间间隔小于上述第二时间间隔,进而可提高资源的利用率,提高上行数据传输的效率。需要说明的是,如果上述UL grant所调度的上行信道多于一个或者说调度的多个上行信道位于多于个上行TTI上,则目标上行TTI对应这些上行信道中时间上最早的一个上行信道。例如,UL grant调度的PUSCH与UL grant所在的子帧/TTI之间的最短调度时延(即第二时间间隔)为4个子帧/TTI。本发明实施例中,第一控制信息所在子帧/TTI与时域资源起始时间单元之间的第一时间间隔可以等于1个子帧/TTI,或者2个子帧/TTI,或者3个子帧/TTI。应理解,本实施例所述的最短调度时延不是针对某一次特定的调度过程中UL grant调度到的最近的上行信道,而是针对基站设备能够调度到的最近的上行信道的能力,例如某一次基站设备在子帧#n发送的UL grant调度的最近的PUSCH在子帧#n+5,但是基站设备的调度到最近的PUSCH的能力是子帧#n的UL grant调度子帧#(n+4)的PUSCH,在其他的调度中可以调度到子帧#(n+4)的PUSCH,此时最短调度时延为4个子帧。终端设备并不像基于调度的上行传输那样在收到UL grant之后才开始组包上行信道,而是提前组包。例如,终端设备可在有了上行业务之 后随时组包,在检测到第一控制信息之后终端设备可以立即发送PUSCH。
需要说明的是,UL grant用于调度上行信道并指示该上行信道的传输格式,其中该上行信道可以是上行业务信道(PUSCH),也可以是上行控制信道(在Multefire标准中,扩展上行控制信道(英文:extended PUCCH,ePUCCH)也可以被UL grant调度)。
其中,UL grant指示的上行信道的传输格式包括以下至少一项:
该上行信道所占的时域资源;
该上行信道所占的频域资源;
该上行信道的调制编码方式;
包含该UL grant的下行TTI/子帧与该UL grant所调度的上行信道之间的时间间隔。
其中,上行信道所占的时域资源包括至少一个TTI。
考虑到UL grant可能调度至少两个TTI,因此时域资源的时长可以根据UL grant调度的TTI的数目确定。包含该UL grant的下行TTI/子帧与被调度的上行信道之间的时间间隔包括承载该UL grant的TTI与承载该上行信道的TTI(或承载UL grant调度的至少两个TTI的第一个TTI)之间的时间间隔,或者该UL grant的调度时延。考虑到包含该UL grant的下行TTI/子帧与该UL grant所调度的上行信道之间的时间间隔可以大于最短调度时延,在这种情况下UL grant可以包括指示该调度时延的控制信息。UL grant指示的上行信道所占的频域资源包括至少一个物理资源块(英文:Physical Resource Block,PRB)。
需要说明的是,上述调度时延为基站设备发送UL grant的下行TTI/下行子帧与终端设备在上行TTI/上行子帧中发送该UL grant调度的上行数据信道之间的时间间隔。考虑到终端设备的检测能力和组包能力,基于调度的上行数据信道与UL grant之间具有最短调度时延要求,基站设备可以调度比最短调度时延更晚的上行TTI/上行子帧。例如,最短调度时延为4ms时,采用下行链路控制信息(Downlink Control Information,DCI)格式(即DCI format)0/4只能调度与承载UL grant子帧(子帧#n)相隔4ms处的上行子帧(子帧#n+4),采用DCI format 0A/0B/4A/4B可以调度与承载UL grant子帧相隔大于4ms的上行子帧(例如子帧#n+p,p>4,p是整数),但是无法调度比最短调度时延更早的上行TTI/上行子帧。当系统的最小TTI是1ms的TTI或一个子帧时,最短调度时延为3ms或4ms,也就是说,子帧#n的UL grant调度的上行数据信道位于子帧#n+3或子帧#n+4。当系统的最小TTI是sTTI时,最短调度时延是k个上行sTTI或下行sTTI,k是大于等于4的整数,也就是说,sTTI#n的UL grant调度的上行数据信道位于sTTI#n+k。
需要说明的是,对于基于调度的上行传输,上行数据信道的传输格式的相关信息,包括时域资源(方式1:承载UL grant的下行TTI/子帧与被调度的PUSCH之间的时间间隔是预定义的,例如4ms。此时,时域资源是隐式指示的。方式2:承载UL grant的下行TTI/子帧与被调度的PUSCH之间的时间间隔是UL grant显式指示的)、频域资源、调制与编码策略(英文:Modulation and Coding Scheme,MCS)、发射功率调整、PUSCH中的解调参考信号(英文:DeModulation Reference Signal,DMRS)等,都是由UL grant通知给终端设备。终端设备根据UL grant指示的传输格式信息进行组包,在指示的时域、频域资源上发送PUSCH。然而,对于免调度许可的上行传输,上述上行数据信道的传输格式包含的信息无法由基站通过UL grant动态指示。本发明实施例提供的实现方式不同于UL grant调度的PUSCH的地方 在于,第一控制信息仅用于指示终端设备可用的时域资源,而除时域资源以外,终端设备发送上行数据信道对应的传输格式相关的至少一项其他信息,则不是根据第一控制信息确定。具体的,上述上行数据信道的传输格式相关的至少一项其他信息可以是预定义的,也可以是基于基站设备发送的第三高层信令配置得到。
S104,终端设备在上行数据信道上发送数据信息。
S105,基站设备在上行数据信道上接收所述终端设备发送的数据信息。
在一些可行的实施方式中,上述上行数据信道的传输格式相关的信息包括以下至少一项:
上行数据信道所占的频域资源;
上行数据信道的调制编码方式;
上行数据信道的发射功率;
上行数据信道中解调参考信号的码序列;
上行数据信道承载的传输块大小(英文:Transmission Block Size,TBS)等。
或者说,基于调度的PUSCH的上行数据信道的传输格式信息都是由同一个指示信息(UL grant)指示的,而本实施例中的免调度许可的PUSCH的上行数据信道的传输格式的一部分信息(即免调度许可的时域资源)是由基站设备发送的第一控制信息(即动态信令)指示的,而另一部分是预定义的,或者另一部分由另一个信令(如基站设备发送的第三高层信令)配置得到的。
需要说明的是,上述上行数据信道所占的频域资源包含至少一个PRB,上述解调参考信号的码序列包括DMRS的正交覆盖码(英文:Orthogonal Cover Code,OCC)以及循环移位(英文:Cyclic Shift,CS)中的至少一项。从介质访问控制(Media Access Control,MAC)层发往物理层的数据是以传输块(英文:Transport Block,TB)的形式组织的,数据信息以TB的形式承载在上行数据信道上发送。TBS为对应特定频域资源(具体可为PRB数目)以及特定调制编码方式的TB中包含的有效数据信息(编码之前的数据信息)量。终端设备可以根据上行数据信道所占的频域资源和调制编码方式确定TBS,也可以根据预定义或基站设备发送的第三高层信令配置的信息确定TBS。例如,TBS的大小是预定义的,或者是基于基站设备发送的第三高层信令配置的,此时传输格式相关信息中可以不包含MCS信息。
需要说明的是,现有的eLAA系统中支持两级调度(英文:two-stage scheduling)。基站设备在下行突发中包含的UL grant发送调度信息,但是调度时延并不是PUSCH相对于ULgrant所在子帧的时延,而是PUSCH相对于CPDCCH所在子帧的时延。终端设备在仅收到ULgrant之后并不会发送PUSCH,还要通过检测到CPDCCH才进行发送数据信息。其中,由ULgrant指示PUSCH相对于CPDCCH的时间间隔,由CPDCCH触发PUSCH上的数据信息的发送。相比于两级调度方案,本发明实施例提供的实现方式中描述的第一控制信息也用于指示时域资源,但是相比于两级调度中的CPDCCH,本发明实施例中所描述的免调度许可的时域资源(包括时域资源的长度和起始时刻等参数可完全由第一控制信息指示)。然而,在两级调度中,时域资源的长度由另一个控制信息UL grant指示,时域资源的起始时刻根据CPDCCH和另一个控制信息UL grant共同确定。
需要说明的是,考虑到在非授权频谱上发送数据信息的情况,若终端设备确定在免调 度许可的时域资源上的至少一个子帧或TTI上发送上行数据信息,则上行数据信道发送之前需要在承载该上行数据信息的上行数据信道所在的载波上执行LBT。终端设备检测到信道空闲才可以立即发送该上行数据信息,其中LBT类型包括基于随机回退的CCA和单时隙CCA中的一种,在此不再赘述。
在本发明实施例中,基站设备可向终端设备发送第一控制信息,通过第一控制信息指示在承载第一控制信息的下行TTI或下行子帧之后的免调度许可资源。第一控制信息指示的免调度许可资源中的起始TTI或者起始子帧与上述下行TTI或者下行子帧之间的时间间隔较短,终端设备可在免调度许可资源上发送上行数据信息,时域资源的利用率更高。在本发明实施例中,终端设备可在比UL grant调度模式下的调度时延更短的时间内发送上行数据信息,提高了上行数据信息的发送效率,上行数据信息的发送更灵活,适用性更高。
参见图7,是本发明实施例提供的终端设备的一结构示意图。本发明实施例提供的终端设备包括:
接收模块70,用于接收基站设备在第一下行传输时间间隔上发送的第一控制信息。
确定模块71,用于根据所述接收模块接收的所述第一控制信息确定时域资源,所述时域资源包括至少一个上行传输时间间隔,所述时域资源的起始时间单元在时间上晚于所述第一下行传输时间间隔,所述起始时间单元为所述至少一个上行传输时间间隔中的第一个上行传输时间间隔。
发送模块72,用于在上行数据信道上发送数据信息,所述上行数据信道对应于所述确定模块确定的所述时域资源中的至少一个上行传输时间间隔。
在一些可行的实施方式中,上述确定模块72用于:
根据所述接收模块接收的所述第一控制信息确定所述起始时间单元。
在一些可行的实施方式中,上述确定模块72用于:
根据所述接收模块接收的所述第一控制信息确定所述时域资源的长度或者所述时域资源的结束时刻。
在一些可行的实施方式中,上述确定模块72用于:
根据所述接收模块接收的所述第一控制信息确定所述起始时间单元,并根据所述起始时间单元和所述时域资源的长度确定所述时域资源的结束时刻;
其中,所述时域资源的长度为预定义长度,或者根据所述基站设备发送的第一高层信令配置得到的长度。
在一些可行的实施方式中,上述第一控制信息用于指示所述基站设备在下行突发的最后一个子帧或最后一个传输时间间隔中占用的符号数目,所述下行突发包含至少一个时间上连续的下行传输时间间隔,所述至少一个时间上连续的下行传输时间间隔包含所述第一下行传输时间间隔;
上述确定模块72用于:
根据所述符号数目确定所述起始时间单元。
在一些可行的实施方式中,上述起始时间单元在时间上晚于目标时间单元,所述目标时间单元与所述起始时间单元之间的时间间隔为第一时间间隔;
所述目标时间单元为所述第一下行传输时间间隔,或者,所述目标时间单元为所述第 一下行传输时间间隔所在的子帧,或者,所述目标时间单元为下行突发的最后一个子帧或最后一个传输时间间隔,所述下行突发包含至少一个时间上连续的下行传输时间间隔,所述至少一个时间上连续的下行传输时间间隔包含所述第一下行传输时间间隔。
在一些可行的实施方式中,上述确定模块72用于:
根据所述接收模块接收的所述第一控制信息确定所述目标时间单元;
所述终端设备根据所述目标时间单元和所述第一时间间隔确定所述起始时间单元;
其中,所述第一时间间隔为预定义时间间隔,或者所述第一时间间隔由所述基站设备发送的第二高层信令配置得到。
在一些可行的实施方式中,上述第一控制信息用于指示所述第一时间间隔;
上述确定模块72用于:
根据所述第一时间间隔和所述目标时间单元确定所述起始时间单元。
在一些可行的实施方式中,上述确定模块72还用于:
根据所述接收模块接收的所述第一控制信息确定所述目标时间单元。
在一些可行的实施方式中,上述第一下行传输时间间隔与所述起始时间单元之间的时间间隔小于第二时间间隔,所述第二时间间隔为第二下行传输时间间隔与目标上行传输时间间隔之间的最小时间间隔,所述第二下行传输时间间隔包含所述上行授权,所述目标上行传输时间间隔对应所述上行授权调度的上行信道;
其中,所述上行授权用于指示所述上行信道的传输格式;
所述上行信道的传输格式包括以下信息中的至少一项:
所述上行信道所占的时域资源;
所述上行数据信道所占的频域资源;
所述上行数据信道的调制编码方式;
所述第二下行传输时间间隔与所述目标上行传输时间间隔之间的时间间隔。
在一些可行的实施方式中,上述第一控制信息为公共控制信息。
在一些可行的实施方式中,上述确定模块72还用于:
确定所述上行数据信道的传输格式;
所述上行数据信道的传输格式包括以下信息的至少一项:
所述上行数据信道所占的频域资源;
所述上行数据信道的调制编码方式;
所述上行数据信道的发射功率;
所述上行数据信道中解调参考信号的码序列;
所述上行数据信道承载的传输块大小TBS;
其中,所述上行数据信道的传输格式所包括的至少一项信息中的任意一项为预定义的信息,或者根据所述基站设备发送的第三高层信令配置得到的信息。
在一些可行的实施方式中,参见图8是本发明实施例提供的终端设备的另一结构示意图。本发明实施例提供的终端设备还包括:
检测模块74,用于在所述上行数据信道所在的载波上执行先听后发LBT,并检测到信道空闲。
具体实现中,终端设备可通过其内置的各个模块执行上述实施例中所描述的实现方式,在此不再赘述。
参见图9,是本发明实施例提供的终端设备的另一结构示意图。本发明实施例提供的终端设备可包括:存储器900和处理器910。
上述存储器900用于存储一组程序代码;
上述处理器910用于调用存储器中存储的程序代码,执行上述上行信息发送的方法实施例中各个步骤所描述的实现方式,在此不再赘述。
在本发明实施例中,基站设备可向终端设备发送第一控制信息,通过第一控制信息指示在承载第一控制信息的下行TTI或下行子帧之后的免调度许可资源。第一控制信息指示的免调度许可资源中的起始TTI或者起始子帧与上述下行TTI或者下行子帧之间的时间间隔较短,终端设备可在免调度许可资源上发送上行数据信息,时域资源的利用率更高。在本发明实施例中,终端设备可在比UL grant调度模式下的调度时延更短的时间内发送上行数据信息,提高了上行数据信息的发送效率,上行数据信息的发送更灵活,适用性更高。
参见图10,是本发明实施例提供的基站设备的一结构示意图。本发明实施例提供的基站设备可包括:
发送模块91,用于在第一下行传输时间间隔上向终端设备发送第一控制信息,所述第一控制信息用于指示时域资源,所述时域资源包括至少一个上行传输时间间隔,所述时域资源的起始时间单元在时间上晚于所述第一下行传输时间间隔,所述起始时间单元为所述至少一个上行传输时间间隔中的第一个上行传输时间间隔。
接收模块92,用于在上行数据信道上接收所述终端设备发送的数据信息,所述上行数据信道对应于所述时域资源中的至少一个上行传输时间间隔。
在一些可行的实施方式中,上述第一控制信息用于指示所述起始时间单元。
在一些可行的实施方式中,所述第一控制信息用于指示所述时域资源的长度或者所述时域资源的结束时刻。
在一些可行的实施方式中,所述第一控制信息用于指示所述起始时间单元;
所述时域资源的结束时刻由所述起始时间单元和所述时域资源的长度得到;
其中,所述时域资源的长度为预定义长度,或者根据所述基站设备配置给所述终端设备的第一高层信令配置得到的长度。
在一些可行的实施方式中,所述第一控制信息用于指示所述基站设备在下行突发的最后一个子帧或最后一个传输时间间隔中占用的符号数目,所述下行突发包含至少一个时间上连续的下行传输时间间隔,所述至少一个时间上连续的下行传输时间间隔包含所述第一下行传输时间间隔,所述符号数目用于确定所述起始时间单元。
在一些可行的实施方式中,所述起始时间单元在时间上晚于目标时间单元,所述目标时间单元与所述起始时间单元之间的时间间隔为第一时间间隔;
所述目标时间单元为所述第一下行传输时间间隔,或者,所述目标时间单元为所述第一下行传输时间间隔所在的子帧,或者,所述目标时间单元为下行突发的最后一个子帧或最后一个传输时间间隔,所述下行突发包含至少一个时间上连续的下行传输时间间隔,所述至少一个时间上连续的下行传输时间间隔包含所述第一下行传输时间间隔。
在一些可行的实施方式中,所述第一控制信息用于指示所述目标时间单元;
所述起始时间单元由所述目标时间单元和所述第一时间间隔得到;
其中,所述第一时间间隔为预定义时间间隔,或者所述第一时间间隔由所述基站设备配置给所述终端设备的第二高层信令配置得到。
在一些可行的实施方式中,所述第一控制信息用于指示所述第一时间间隔;
所述起始时间单元由所述目标时间单元和所述第一时间间隔得到。
在一些可行的实施方式中,所述目标时间单元由所述第一控制信息指示。
在一些可行的实施方式中,所述第一下行传输时间间隔与所述起始时间单元之间的时间间隔小于第二时间间隔,所述第二时间间隔为第二下行传输时间间隔与目标上行传输时间间隔之间的最小时间间隔,所述第二下行传输时间间隔包含所述上行授权,所述目标上行传输时间间隔对应所述上行授权调度的上行信道;
其中,所述上行授权用于指示所述上行信道的传输格式;
所述上行信道的传输格式包括以下信息中的至少一项:
所述上行信道所占的时域资源;
所述上行数据信道所占的频域资源;
所述上行数据信道的调制编码方式;
所述第二下行传输时间间隔与所述目标上行传输时间间隔之间的时间间隔。
在一些可行的实施方式中,所述第一控制信息为公共控制信息。
在一些可行的实施方式中,所述上行数据信道的传输格式包括以下信息的至少一项:
所述上行数据信道所占的频域资源;
所述上行数据信道的调制编码方式;
所述上行数据信道的发射功率;
所述上行数据信道中解调参考信号的码序列;
所述上行数据信道承载的传输块大小TBS;
其中,所述上行数据信道的传输格式所包括的至少一项信息中的任意一项为预定义的信息,或者根据所述基站设备配置给所述终端设备的第三高层信令配置得到的信息。
具体实现中,基站设备可通过其内置的各个模块执行上述实施例的描述中基站设备所执行的实现方式,在此不再赘述。
参见图11,是本发明实施例提供的基站设备的另一结构示意图。本发明实施例提供的基站设备可包括:存储器110和处理器111。
上述存储器110用于存储一组程序代码;
上述处理器111用于调用存储器中存储的程序代码,执行上述上行信息发送的方法实施例中各个步骤所描述的实现方式,在此不再赘述。
在本发明实施例中,基站设备可向终端设备发送第一控制信息,通过第一控制信息指示在承载第一控制信息的下行TTI或下行子帧之后的免调度许可资源。第一控制信息指示的免调度许可资源中的起始TTI或者起始子帧与上述下行TTI或者下行子帧之间的时间间隔较短,终端设备可在免调度许可资源上发送上行数据信息,时域资源的利用率更高。在本发明实施例中,终端设备可在比UL grant调度模式下的调度时延更短的时间内发送上行 数据信息,提高了上行数据信息的发送效率,上行数据信息的发送更灵活,适用性更高。
参见图12,是本发明实施例提供的上行信息处理的系统的结构示意图。本发明实施例提供的系统可包括上述终端设备120和上述基站设备121。
具体实现中,上述终端设备和基站设备可执行上述实施例中各个步骤所描述的实现方式,在此不再赘述。
在本发明实施例中,基站设备可向终端设备发送第一控制信息,通过第一控制信息指示在承载第一控制信息的下行TTI或下行子帧之后的免调度许可资源。第一控制信息指示的免调度许可资源中的起始TTI或者起始子帧与上述下行TTI或者下行子帧之间的时间间隔较短,终端设备可在免调度许可资源上发送上行数据信息,时域资源的利用率更高。在本发明实施例中,终端设备可在比UL grant调度模式下的调度时延更短的时间内发送上行数据信息,提高了上行数据信息的发送效率,上行数据信息的发送更灵活,适用性更高。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(Random Access Memory,RAM)等。
以上所揭露的仅为本发明较佳实施例而已,当然不能以此来限定本发明之权利范围,因此依本发明权利要求所作的等同变化,仍属本发明所涵盖的范围。

Claims (51)

  1. 一种上行信息发送的方法,其特征在于,包括:
    终端设备接收基站设备在第一下行传输时间间隔上发送的第一控制信息;
    所述终端设备根据所述第一控制信息确定时域资源,所述时域资源包括至少一个上行传输时间间隔,所述时域资源的起始时间单元在时间上晚于所述第一下行传输时间间隔,所述起始时间单元为所述至少一个上行传输时间间隔中的第一个上行传输时间间隔;
    所述终端设备在上行数据信道上发送数据信息,所述上行数据信道对应于所述时域资源中的至少一个上行传输时间间隔。
  2. 根据权利要求1所述的方法,其特征在于,所述终端设备根据所述第一控制信息确定时域资源包括:
    所述终端设备根据所述第一控制信息确定所述起始时间单元。
  3. 根据权利要求1或2所述的方法,其特征在于,所述终端设备根据所述第一控制信息确定时域资源包括:
    所述终端设备根据所述第一控制信息确定所述时域资源的长度或者所述时域资源的结束时刻。
  4. 根据权利要求1所述的方法,其特征在于,所述终端设备根据所述第一控制信息确定时域资源包括:
    所述终端设备根据所述第一控制信息确定所述起始时间单元,并根据所述起始时间单元和所述时域资源的长度确定所述时域资源的结束时刻;
    其中,所述时域资源的长度为预定义长度,或者根据所述基站设备发送的第一高层信令配置得到的长度。
  5. 根据权利要求2-4任一项所述的方法,其特征在于,所述第一控制信息用于指示所述基站设备在下行突发的最后一个子帧或最后一个传输时间间隔中占用的符号数目,所述下行突发包含至少一个时间上连续的下行传输时间间隔,所述至少一个时间上连续的下行传输时间间隔包含所述第一下行传输时间间隔;
    所述终端设备根据所述第一控制信息确定所述起始时间单元包括:
    所述终端设备根据所述符号数目确定所述起始时间单元。
  6. 根据权利要求2-4任一项所述的方法,其特征在于,所述起始时间单元在时间上晚于目标时间单元,所述目标时间单元与所述起始时间单元之间的时间间隔为第一时间间隔;
    所述目标时间单元为所述第一下行传输时间间隔,或者,所述目标时间单元为所述第一下行传输时间间隔所在的子帧,或者,所述目标时间单元为下行突发的最后一个子帧或最后一个传输时间间隔,所述下行突发包含至少一个时间上连续的下行传输时间间隔,所 述至少一个时间上连续的下行传输时间间隔包含所述第一下行传输时间间隔。
  7. 根据权利要求6所述的方法,其特征在于,所述终端设备根据所述第一控制信息确定所述起始时间单元,包括:
    所述终端设备根据所述第一控制信息确定所述目标时间单元;
    所述终端设备根据所述目标时间单元和所述第一时间间隔确定所述起始时间单元;
    其中,所述第一时间间隔为预定义时间间隔,或者所述第一时间间隔由所述基站设备发送的第二高层信令配置得到。
  8. 根据权利要求6所述的方法,其特征在于,所述第一控制信息用于指示所述第一时间间隔;
    所述终端设备根据所述第一控制信息确定所述起始时间单元,包括:
    所述终端设备根据所述第一时间间隔和所述目标时间单元确定所述起始时间单元。
  9. 根据权利要求8所述的方法,其特征在于,所述终端设备根据所述第一时间间隔和所述目标时间单元确定所述起始时间单元之前,所述方法还包括:
    所述终端设备根据所述第一控制信息确定所述目标时间单元。
  10. 根据权利要求1-9任一项所述的方法,其特征在于,所述第一下行传输时间间隔与所述起始时间单元之间的时间间隔小于第二时间间隔,所述第二时间间隔为第二下行传输时间间隔与目标上行传输时间间隔之间的最小时间间隔,所述第二下行传输时间间隔包含所述上行授权,所述目标上行传输时间间隔对应所述上行授权调度的上行信道;
    其中,所述上行授权用于指示所述上行信道的传输格式;
    所述上行信道的传输格式包括以下信息中的至少一项:
    所述上行信道所占的时域资源;
    所述上行数据信道所占的频域资源;
    所述上行数据信道的调制编码方式;
    所述第二下行传输时间间隔与所述目标上行传输时间间隔之间的时间间隔。
  11. 根据权利要求1-10任一项所述的方法,其特征在于,所述第一控制信息为公共控制信息。
  12. 根据权利要求1-11任一项所述的方法,其特征在于,所述终端设备在上行数据信道上发送数据信息之前,所述方法还包括:
    所述终端设备确定所述上行数据信道的传输格式;
    所述上行数据信道的传输格式包括以下信息的至少一项:
    所述上行数据信道所占的频域资源;
    所述上行数据信道的调制编码方式;
    所述上行数据信道的发射功率;
    所述上行数据信道中解调参考信号的码序列;
    所述上行数据信道承载的传输块大小TBS;
    其中,所述上行数据信道的传输格式所包括的至少一项信息中的任意一项为预定义的信息,或者根据所述基站设备发送的第三高层信令配置得到的信息。
  13. 根据权利要求1-12任一项所述的方法,其特征在于,所述终端设备在所述上行数据信道上发送所述数据信息之前,所述方法还包括:
    所述终端设备在所述上行数据信道所在的载波上执行先听后发LBT,并检测到信道空闲。
  14. 一种上行信息接收的方法,其特征在于,包括:
    基站设备在第一下行传输时间间隔上向终端设备发送第一控制信息,所述第一控制信息用于指示时域资源,所述时域资源包括至少一个上行传输时间间隔,所述时域资源的起始时间单元在时间上晚于所述第一下行传输时间间隔,所述起始时间单元为所述至少一个上行传输时间间隔中的第一个上行传输时间间隔;
    所述基站设备在上行数据信道上接收所述终端设备发送的数据信息,所述上行数据信道对应于所述时域资源中的至少一个上行传输时间间隔。
  15. 根据权利要求14所述的方法,其特征在于,所述第一控制信息用于指示所述起始时间单元。
  16. 根据权利要求14或15所述的方法,其特征在于,所述第一控制信息用于指示所述时域资源的长度或者所述时域资源的结束时刻。
  17. 根据权利要求14所述的方法,其特征在于,所述第一控制信息用于指示所述起始时间单元;
    所述时域资源的结束时刻由所述起始时间单元和所述时域资源的长度得到;
    其中,所述时域资源的长度为预定义长度,或者根据所述基站设备配置给所述终端设备的第一高层信令配置得到的长度。
  18. 根据权利要求15-17任一项所述的方法,其特征在于,所述第一控制信息用于指示所述基站设备在下行突发的最后一个子帧或最后一个传输时间间隔中占用的符号数目,所述下行突发包含至少一个时间上连续的下行传输时间间隔,所述至少一个时间上连续的下行传输时间间隔包含所述第一下行传输时间间隔,所述符号数目用于确定所述起始时间单元。
  19. 根据权利要求15-17任一项所述的方法,其特征在于,所述起始时间单元在时间 上晚于目标时间单元,所述目标时间单元与所述起始时间单元之间的时间间隔为第一时间间隔;
    所述目标时间单元为所述第一下行传输时间间隔,或者,所述目标时间单元为所述第一下行传输时间间隔所在的子帧,或者,所述目标时间单元为下行突发的最后一个子帧或最后一个传输时间间隔,所述下行突发包含至少一个时间上连续的下行传输时间间隔,所述至少一个时间上连续的下行传输时间间隔包含所述第一下行传输时间间隔。
  20. 根据权利要求19所述的方法,其特征在于,所述第一控制信息用于指示所述目标时间单元;
    所述起始时间单元由所述目标时间单元和所述第一时间间隔得到;
    其中,所述第一时间间隔为预定义时间间隔,或者所述第一时间间隔由所述基站设备配置给所述终端设备的第二高层信令配置得到。
  21. 根据权利要求19所述的方法,其特征在于,所述第一控制信息用于指示所述第一时间间隔;
    所述起始时间单元由所述目标时间单元和所述第一时间间隔得到。
  22. 根据权利要求21所述的方法,其特征在于,所述目标时间单元由所述第一控制信息指示。
  23. 根据权利要求14-22任一项所述的方法,其特征在于,所述第一下行传输时间间隔与所述起始时间单元之间的时间间隔小于第二时间间隔,所述第二时间间隔为第二下行传输时间间隔与目标上行传输时间间隔之间的最小时间间隔,所述第二下行传输时间间隔包含所述上行授权,所述目标上行传输时间间隔对应所述上行授权调度的上行信道;
    其中,所述上行授权用于指示所述上行信道的传输格式;
    所述上行信道的传输格式包括以下信息中的至少一项:
    所述上行信道所占的时域资源;
    所述上行数据信道所占的频域资源;
    所述上行数据信道的调制编码方式;
    所述第二下行传输时间间隔与所述目标上行传输时间间隔之间的时间间隔。
  24. 根据权利要求14-23任一项所述的方法,其特征在于,所述第一控制信息为公共控制信息。
  25. 根据权利要求15-24任一项所述的方法,其特征在于,所述上行数据信道的传输格式包括以下信息的至少一项:
    所述上行数据信道所占的频域资源;
    所述上行数据信道的调制编码方式;
    所述上行数据信道的发射功率;
    所述上行数据信道中解调参考信号的码序列;
    所述上行数据信道承载的传输块大小TBS;
    其中,所述上行数据信道的传输格式所包括的至少一项信息中的任意一项为预定义的信息,或者根据所述基站设备配置给所述终端设备的第三高层信令配置得到的信息。
  26. 一种终端设备,其特征在于,包括:
    接收模块,用于接收基站设备在第一下行传输时间间隔上发送的第一控制信息;
    确定模块,用于根据所述接收模块接收的所述第一控制信息确定时域资源,所述时域资源包括至少一个上行传输时间间隔,所述时域资源的起始时间单元在时间上晚于所述第一下行传输时间间隔,所述起始时间单元为所述至少一个上行传输时间间隔中的第一个上行传输时间间隔;
    发送模块,用于在上行数据信道上发送数据信息,所述上行数据信道对应于所述确定模块确定的所述时域资源中的至少一个上行传输时间间隔。
  27. 根据权利要求26所述的终端设备,其特征在于,所述确定模块用于:
    根据所述接收模块接收的所述第一控制信息确定所述起始时间单元。
  28. 根据权利要求26或27所述的终端设备,其特征在于,所述确定模块用于:
    根据所述接收模块接收的所述第一控制信息确定所述时域资源的长度或者所述时域资源的结束时刻。
  29. 根据权利要求26所述的终端设备,其特征在于,所述确定模块用于:
    根据所述接收模块接收的所述第一控制信息确定所述起始时间单元,并根据所述起始时间单元和所述时域资源的长度确定所述时域资源的结束时刻;
    其中,所述时域资源的长度为预定义长度,或者根据所述基站设备发送的第一高层信令配置得到的长度。
  30. 根据权利要求27-29任一项所述的终端设备,其特征在于,所述第一控制信息用于指示所述基站设备在下行突发的最后一个子帧或最后一个传输时间间隔中占用的符号数目,所述下行突发包含至少一个时间上连续的下行传输时间间隔,所述至少一个时间上连续的下行传输时间间隔包含所述第一下行传输时间间隔;
    所述确定模块用于:
    根据所述符号数目确定所述起始时间单元。
  31. 根据权利要求27-29任一项所述的终端设备,其特征在于,所述起始时间单元在时间上晚于目标时间单元,所述目标时间单元与所述起始时间单元之间的时间间隔为第一时间间隔;
    所述目标时间单元为所述第一下行传输时间间隔,或者,所述目标时间单元为所述第一下行传输时间间隔所在的子帧,或者,所述目标时间单元为下行突发的最后一个子帧或最后一个传输时间间隔,所述下行突发包含至少一个时间上连续的下行传输时间间隔,所述至少一个时间上连续的下行传输时间间隔包含所述第一下行传输时间间隔。
  32. 根据权利要求31所述的终端设备,其特征在于,所述确定模块用于:
    根据所述接收模块接收的所述第一控制信息确定所述目标时间单元;
    所述终端设备根据所述目标时间单元和所述第一时间间隔确定所述起始时间单元;
    其中,所述第一时间间隔为预定义时间间隔,或者所述第一时间间隔由所述基站设备发送的第二高层信令配置得到。
  33. 根据权利要求31所述的终端设备,其特征在于,所述第一控制信息用于指示所述第一时间间隔;
    所述确定模块用于:
    根据所述第一时间间隔和所述目标时间单元确定所述起始时间单元。
  34. 根据权利要求33所述的终端设备,其特征在于,所述确定模块还用于:
    根据所述接收模块接收的所述第一控制信息确定所述目标时间单元。
  35. 根据权利要求26-34任一项所述的终端设备,其特征在于,所述第一下行传输时间间隔与所述起始时间单元之间的时间间隔小于第二时间间隔,所述第二时间间隔为第二下行传输时间间隔与目标上行传输时间间隔之间的最小时间间隔,所述第二下行传输时间间隔包含所述上行授权,所述目标上行传输时间间隔对应所述上行授权调度的上行信道;
    其中,所述上行授权用于指示所述上行信道的传输格式;
    所述上行信道的传输格式包括以下信息中的至少一项:
    所述上行信道所占的时域资源;
    所述上行数据信道所占的频域资源;
    所述上行数据信道的调制编码方式;
    所述第二下行传输时间间隔与所述目标上行传输时间间隔之间的时间间隔。
  36. 根据权利要求26-35任一项所述的终端设备,其特征在于,所述第一控制信息为公共控制信息。
  37. 根据权利要求26-36任一项所述的终端设备,其特征在于,所述确定模块还用于:
    确定所述上行数据信道的传输格式;
    所述上行数据信道的传输格式包括以下信息的至少一项:
    所述上行数据信道所占的频域资源;
    所述上行数据信道的调制编码方式;
    所述上行数据信道的发射功率;
    所述上行数据信道中解调参考信号的码序列;
    所述上行数据信道承载的传输块大小TBS;
    其中,所述上行数据信道的传输格式所包括的至少一项信息中的任意一项为预定义的信息,或者根据所述基站设备发送的第三高层信令配置得到的信息。
  38. 根据权利要求26-37任一项所述的终端设备,其特征在于,所述终端设备还包括:
    检测模块,用于在所述上行数据信道所在的载波上执行先听后发LBT,并检测到信道空闲。
  39. 一种基站设备,其特征在于,包括:
    发送模块,用于在第一下行传输时间间隔上向终端设备发送第一控制信息,所述第一控制信息用于指示时域资源,所述时域资源包括至少一个上行传输时间间隔,所述时域资源的起始时间单元在时间上晚于所述第一下行传输时间间隔,所述起始时间单元为所述至少一个上行传输时间间隔中的第一个上行传输时间间隔;
    接收模块,用于在上行数据信道上接收所述终端设备发送的数据信息,所述上行数据信道对应于所述时域资源中的至少一个上行传输时间间隔。
  40. 根据权利要求39所述的基站设备,其特征在于,所述第一控制信息用于指示所述起始时间单元。
  41. 根据权利要求39或40所述的基站设备,其特征在于,所述第一控制信息用于指示所述时域资源的长度或者所述时域资源的结束时刻。
  42. 根据权利要求39所述的基站设备,其特征在于,所述第一控制信息用于指示所述起始时间单元;
    所述时域资源的结束时刻由所述起始时间单元和所述时域资源的长度得到;
    其中,所述时域资源的长度为预定义长度,或者根据所述基站设备配置给所述终端设备的第一高层信令配置得到的长度。
  43. 根据权利要求40-42任一项所述的基站设备,其特征在于,所述第一控制信息用于指示所述基站设备在下行突发的最后一个子帧或最后一个传输时间间隔中占用的符号数目,所述下行突发包含至少一个时间上连续的下行传输时间间隔,所述至少一个时间上连续的下行传输时间间隔包含所述第一下行传输时间间隔,所述符号数目用于确定所述起始时间单元。
  44. 根据权利要求40-42任一项所述的基站设备,其特征在于,所述起始时间单元在时间上晚于目标时间单元,所述目标时间单元与所述起始时间单元之间的时间间隔为第一 时间间隔;
    所述目标时间单元为所述第一下行传输时间间隔,或者,所述目标时间单元为所述第一下行传输时间间隔所在的子帧,或者,所述目标时间单元为下行突发的最后一个子帧或最后一个传输时间间隔,所述下行突发包含至少一个时间上连续的下行传输时间间隔,所述至少一个时间上连续的下行传输时间间隔包含所述第一下行传输时间间隔。
  45. 根据权利要求44所述的基站设备,其特征在于,所述第一控制信息用于指示所述目标时间单元;
    所述起始时间单元由所述目标时间单元和所述第一时间间隔得到;
    其中,所述第一时间间隔为预定义时间间隔,或者所述第一时间间隔由所述基站设备配置给所述终端设备的第二高层信令配置得到。
  46. 根据权利要求44所述的基站设备,其特征在于,所述第一控制信息用于指示所述第一时间间隔;
    所述起始时间单元由所述目标时间单元和所述第一时间间隔得到。
  47. 根据权利要求46所述的基站设备,其特征在于,所述目标时间单元由所述第一控制信息指示。
  48. 根据权利要求39-47任一项所述的基站设备,其特征在于,所述第一下行传输时间间隔与所述起始时间单元之间的时间间隔小于第二时间间隔,所述第二时间间隔为第二下行传输时间间隔与目标上行传输时间间隔之间的最小时间间隔,所述第二下行传输时间间隔包含所述上行授权,所述目标上行传输时间间隔对应所述上行授权调度的上行信道;
    其中,所述上行授权用于指示所述上行信道的传输格式;
    所述上行信道的传输格式包括以下信息中的至少一项:
    所述上行信道所占的时域资源;
    所述上行数据信道所占的频域资源;
    所述上行数据信道的调制编码方式;
    所述第二下行传输时间间隔与所述目标上行传输时间间隔之间的时间间隔。
  49. 根据权利要求39-48任一项所述的基站设备,其特征在于,所述第一控制信息为公共控制信息。
  50. 根据权利要求39-49任一项所述的基站设备,其特征在于,所述上行数据信道的传输格式包括以下信息的至少一项:
    所述上行数据信道所占的频域资源;
    所述上行数据信道的调制编码方式;
    所述上行数据信道的发射功率;
    所述上行数据信道中解调参考信号的码序列;
    所述上行数据信道承载的传输块大小TBS;
    其中,所述上行数据信道的传输格式所包括的至少一项信息中的任意一项为预定义的信息,或者根据所述基站设备配置给所述终端设备的第三高层信令配置得到的信息。
  51. 一种上行信息处理的方法,其特征在于,包括:如权利要求26-38任一项所述的终端设备,以及如权利要求39-50任一项所述的基站设备。
PCT/CN2017/115035 2016-12-07 2017-12-07 一种上行信息处理的方法及装置 WO2018103702A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
BR112019011530-7A BR112019011530A2 (pt) 2016-12-07 2017-12-07 método de envio de informação de enlace de subida, método de recebimento de informação de enlace de subida, dispositivo terminal, dispositivo de estação base e sistema de processamento de informação de enlace de subida
MX2019006650A MX2019006650A (es) 2016-12-07 2017-12-07 Metodo de procesamiento de informacion de enlace ascendente y aparato.
EP17878069.8A EP3541133B1 (en) 2016-12-07 2017-12-07 Uplink information processing method and device
KR1020197019294A KR102233105B1 (ko) 2016-12-07 2017-12-07 상향링크 정보 처리 방법 및 장치
JP2019530679A JP6860672B2 (ja) 2016-12-07 2017-12-07 アップリンク情報処理方法および装置
RU2019120688A RU2752846C2 (ru) 2016-12-07 2017-12-07 Способ и устройство обработки информации восходящей линии связи
US16/432,088 US10764914B2 (en) 2016-12-07 2019-06-05 Uplink information processing method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611118291.XA CN108174445B (zh) 2016-12-07 2016-12-07 一种上行信息处理的方法及装置
CN201611118291.X 2016-12-07

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/432,088 Continuation US10764914B2 (en) 2016-12-07 2019-06-05 Uplink information processing method and apparatus

Publications (1)

Publication Number Publication Date
WO2018103702A1 true WO2018103702A1 (zh) 2018-06-14

Family

ID=62490749

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/115035 WO2018103702A1 (zh) 2016-12-07 2017-12-07 一种上行信息处理的方法及装置

Country Status (9)

Country Link
US (1) US10764914B2 (zh)
EP (1) EP3541133B1 (zh)
JP (1) JP6860672B2 (zh)
KR (1) KR102233105B1 (zh)
CN (1) CN108174445B (zh)
BR (1) BR112019011530A2 (zh)
MX (1) MX2019006650A (zh)
RU (1) RU2752846C2 (zh)
WO (1) WO2018103702A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021003051A1 (en) * 2019-07-02 2021-01-07 Qualcomm Incorporated Configured grant resource validation
CN112335323A (zh) * 2018-09-27 2021-02-05 松下电器(美国)知识产权公司 上行控制数据传输涉及的用户设备和基站
EP3820100A4 (en) * 2018-08-10 2021-06-30 Guangdong Oppo Mobile Telecommunications Corp., Ltd. DATA TRANSFER METHOD, TERMINAL DEVICE AND NETWORK DEVICE
EP3826401A4 (en) * 2018-08-07 2021-09-22 Huawei Technologies Co., Ltd. INFORMATION TRANSMISSION PROCESS AND DEVICE
JP2022500892A (ja) * 2018-08-09 2022-01-04 オッポ広東移動通信有限公司Guangdong Oppo Mobile Telecommunications Corp., Ltd. 情報の伝送方法、端末機器およびネットワーク機器
US11723078B2 (en) 2018-08-17 2023-08-08 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Signal transmission method, terminal device and network device

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107889266B (zh) * 2016-09-30 2022-09-27 中兴通讯股份有限公司 物理下行共享信道pusch的传输方法及装置
EP3968726A1 (en) * 2017-01-06 2022-03-16 IDAC Holdings, Inc. Collision mitigation procedures for grant-less uplink multiple access
EP3643133A1 (en) 2017-06-23 2020-04-29 IDAC Holdings, Inc. Transmission with restrictions in unlicensed spectrum
CN111096036B (zh) * 2017-07-14 2023-06-02 苹果公司 用于用户设备的无授权上行链路传输的配置
CN111183695B (zh) * 2017-08-11 2024-03-22 交互数字专利控股公司 用于nr的免准许操作的机制
WO2019090720A1 (zh) 2017-11-10 2019-05-16 Oppo广东移动通信有限公司 传输数据的方法和设备
US10863543B2 (en) * 2017-12-01 2020-12-08 Qualcomm Incorporated Subband based uplink access for NR-SS
CN112106427A (zh) * 2018-05-09 2020-12-18 索尼公司 上行数据传输方法及相关电子装置
CN110831136B (zh) * 2018-08-08 2022-11-25 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
CN110831066B (zh) * 2018-08-10 2022-08-30 中国移动通信有限公司研究院 资源处理方法和设备
CN112615703B (zh) * 2018-09-14 2022-04-22 华为技术有限公司 一种信息发送、接收方法、设备及装置
US11363465B2 (en) 2018-09-26 2022-06-14 Qualcomm Incorporated Licensed supplemental uplink as fallback with unlicensed uplink and downlink
CN110971369B (zh) * 2018-09-28 2021-06-15 华为技术有限公司 数据传输方法及装置
CN111050399B (zh) * 2018-10-12 2023-08-18 迪朵无线创新有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
CN111148258B (zh) * 2018-11-02 2021-12-10 中国信息通信研究院 一种免动态授权上行调度方法和应用其的终端设备、网络设备和系统
WO2020097881A1 (zh) * 2018-11-15 2020-05-22 北京小米移动软件有限公司 传输控制信息和数据的方法及装置
CN111224753B (zh) * 2018-11-23 2022-09-09 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
CN111356236B (zh) * 2018-12-24 2022-11-11 华为技术有限公司 上行传输的方法、上行传输的装置、以及终端设备
WO2020163986A1 (zh) * 2019-02-11 2020-08-20 Oppo广东移动通信有限公司 一种资源指示方法、终端设备及网络设备
CN110115088B (zh) * 2019-03-28 2022-04-15 北京小米移动软件有限公司 非授权频谱上的资源指示方法、装置、系统及存储介质
EP3991499A1 (en) * 2019-06-28 2022-05-04 Telefonaktiebolaget Lm Ericsson (Publ) Multi-tti scheduling dci design
CN111818644A (zh) * 2019-07-23 2020-10-23 维沃移动通信有限公司 一种信道发送方法及设备
CN112770350A (zh) * 2019-11-06 2021-05-07 维沃移动通信有限公司 一种失败报告的上报方法及相关设备
WO2021092951A1 (en) * 2019-11-15 2021-05-20 Nec Corporation Methods, devices and computer readable media for communication on unlicensed band
WO2021146950A1 (zh) * 2020-01-21 2021-07-29 Oppo广东移动通信有限公司 一种确定重传资源的方法及装置、终端设备
CN115915440A (zh) * 2021-09-30 2023-04-04 大唐移动通信设备有限公司 上行信息发送方法、接收方法、终端和网络设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105578573A (zh) * 2015-05-28 2016-05-11 宇龙计算机通信科技(深圳)有限公司 一种非授权频段信道占用时间的配置方法及装置
CN106162909A (zh) * 2015-04-13 2016-11-23 中国移动通信集团公司 一种非授权频段下的上行数据传输方法及装置
WO2016184307A1 (zh) * 2015-05-15 2016-11-24 中兴通讯股份有限公司 一种上行资源分配方法、基站和用户终端

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1996806A (zh) * 2006-01-06 2007-07-11 北京三星通信技术研究有限公司 无线通信系统中在竞争资源中传输数据的设备和方法
CN102958183B (zh) * 2011-08-18 2015-09-09 华为技术有限公司 传输增强下行控制信道的方法、设备和系统
CN103209489B (zh) * 2012-01-17 2017-04-12 华为技术有限公司 数据的传输方法、基站和用户设备
US9949292B2 (en) * 2013-09-11 2018-04-17 Qualcomm Incorporated Coupling uplink and downlink CCA in LTE-U
CN105025574B (zh) * 2014-04-16 2019-07-02 中兴通讯股份有限公司 一种数据传输方法及装置
KR20150128515A (ko) * 2014-05-09 2015-11-18 삼성전자주식회사 D2d 시스템에서 자원할당, 디스커버리 및 시그널링 관련 기법
US9917676B2 (en) * 2014-06-11 2018-03-13 Samsung Electronics Co., Ltd. Harq procedure and frame structure for LTE cells on unlicensed spectrum
JP6568872B2 (ja) * 2014-07-03 2019-08-28 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおける上向きリンクデータの送信方法及びこのために装置
US10548019B2 (en) * 2014-12-12 2020-01-28 Huawei Technologies Co., Ltd. Method and system for dynamic optimization of a time-domain frame structure
US10285180B2 (en) * 2015-03-14 2019-05-07 Qualcomm Incorporated Reserved resource pool assisted access resource selection for small data transmission
WO2016163709A1 (ko) * 2015-04-09 2016-10-13 삼성전자 주식회사 비면허 대역을 사용하는 셀룰러 네트워크에서의 자원할당 방법 및 그 장치
EP3472960A1 (en) * 2016-06-15 2019-04-24 Convida Wireless, LLC Grant-less uplink transmission for new radio
US10756868B2 (en) * 2016-07-01 2020-08-25 Qualcomm Incorporated Techniques for transmitting a physical uplink shared channel in an uplink pilot time slot
KR102437621B1 (ko) * 2016-07-18 2022-08-29 삼성전자주식회사 무선 통신 시스템에서 데이터 또는 제어 정보를 송신하기 위한 방법 및 장치
KR20180035642A (ko) * 2016-09-29 2018-04-06 삼성전자주식회사 무선 셀룰라 통신 시스템에서 상향링크 제어신호 전송 방법 및 장치
US10404340B2 (en) * 2016-10-11 2019-09-03 Qualcomm Incorporated Dynamic adjustment of transmission properties with continuous precoding
US11323966B2 (en) * 2016-10-28 2022-05-03 Qualcomm Incorporated Uplink transmission techniques in low latency wireless communication systems
WO2018097947A2 (en) * 2016-11-03 2018-05-31 Convida Wireless, Llc Reference signals and control channels in nr
US11310813B2 (en) * 2017-03-31 2022-04-19 Apple Inc. Maximum channel occupancy time sharing and co-existence

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106162909A (zh) * 2015-04-13 2016-11-23 中国移动通信集团公司 一种非授权频段下的上行数据传输方法及装置
WO2016184307A1 (zh) * 2015-05-15 2016-11-24 中兴通讯股份有限公司 一种上行资源分配方法、基站和用户终端
CN105578573A (zh) * 2015-05-28 2016-05-11 宇龙计算机通信科技(深圳)有限公司 一种非授权频段信道占用时间的配置方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
INTEL CORP: "On the LAA Uplink: Scheduling, LBT, and HARQ", 3GPP TSG RAN WG 1 1-51 MEETING #80, RL-150507, 13 February 2015 (2015-02-13), XP050949030 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3826401A4 (en) * 2018-08-07 2021-09-22 Huawei Technologies Co., Ltd. INFORMATION TRANSMISSION PROCESS AND DEVICE
US11895696B2 (en) 2018-08-07 2024-02-06 Huawei Technologies Co., Ltd. Information transmission method and apparatus
JP2022500892A (ja) * 2018-08-09 2022-01-04 オッポ広東移動通信有限公司Guangdong Oppo Mobile Telecommunications Corp., Ltd. 情報の伝送方法、端末機器およびネットワーク機器
JP7254902B2 (ja) 2018-08-09 2023-04-10 オッポ広東移動通信有限公司 情報の伝送方法、端末機器およびネットワーク機器
US11877270B2 (en) 2018-08-09 2024-01-16 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method for transmitting information, terminal device and network device
EP3820100A4 (en) * 2018-08-10 2021-06-30 Guangdong Oppo Mobile Telecommunications Corp., Ltd. DATA TRANSFER METHOD, TERMINAL DEVICE AND NETWORK DEVICE
US11950265B2 (en) 2018-08-10 2024-04-02 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Data transmission method, terminal device, and network device
US11723078B2 (en) 2018-08-17 2023-08-08 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Signal transmission method, terminal device and network device
CN112335323A (zh) * 2018-09-27 2021-02-05 松下电器(美国)知识产权公司 上行控制数据传输涉及的用户设备和基站
WO2021003051A1 (en) * 2019-07-02 2021-01-07 Qualcomm Incorporated Configured grant resource validation
US11483862B2 (en) 2019-07-02 2022-10-25 Qualcomm Incorporated Configured grant resource validation

Also Published As

Publication number Publication date
CN108174445A (zh) 2018-06-15
EP3541133A4 (en) 2019-11-27
US20190289621A1 (en) 2019-09-19
BR112019011530A2 (pt) 2019-11-05
RU2019120688A (ru) 2021-01-12
KR102233105B1 (ko) 2021-03-26
JP6860672B2 (ja) 2021-04-21
CN108174445B (zh) 2022-02-11
MX2019006650A (es) 2019-08-22
US10764914B2 (en) 2020-09-01
RU2019120688A3 (zh) 2021-01-12
EP3541133B1 (en) 2023-08-23
EP3541133A1 (en) 2019-09-18
KR20190089984A (ko) 2019-07-31
RU2752846C2 (ru) 2021-08-11
JP2020501449A (ja) 2020-01-16

Similar Documents

Publication Publication Date Title
WO2018103702A1 (zh) 一种上行信息处理的方法及装置
EP3820224A1 (en) Wireless communications for scheduling transmissions
JP6838788B2 (ja) アップリンクmacプロトコルの観点
KR102257725B1 (ko) 비스케줄링된 업링크에 대한 harq 피드백
US11140713B2 (en) Preemptive retransmissions on Listen-Before-Talk cells
EP3499996B1 (en) Method for transmitting information
US10681743B2 (en) Method and apparatus for facilitating coexistence of 4th and 5th generation communication systems
KR102477832B1 (ko) 데이터 송신을 위한 방법 및 장치
WO2014176972A1 (zh) D2d通信中的数据发送方法和设备
US20210392618A1 (en) Autonomous low latency communication
JP6592199B2 (ja) アンライセンスド帯域のスケジューリング要求を多重するためのシステム及び方法
WO2017132964A1 (zh) 一种上行数据传输方法及相关设备
WO2013127453A1 (en) Control channels for wireless communication
JP2019505109A (ja) データチャネル及び制御チャネルの両方のスケジューリングを伴うマルチサブフレームグラント

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17878069

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019530679

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017878069

Country of ref document: EP

Effective date: 20190612

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019011530

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20197019294

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112019011530

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190604