WO2010102450A1 - 识别不同帧结构的方法、装置和系统 - Google Patents

识别不同帧结构的方法、装置和系统 Download PDF

Info

Publication number
WO2010102450A1
WO2010102450A1 PCT/CN2009/070751 CN2009070751W WO2010102450A1 WO 2010102450 A1 WO2010102450 A1 WO 2010102450A1 CN 2009070751 W CN2009070751 W CN 2009070751W WO 2010102450 A1 WO2010102450 A1 WO 2010102450A1
Authority
WO
WIPO (PCT)
Prior art keywords
radio frame
frame
frame structure
uplink
original
Prior art date
Application number
PCT/CN2009/070751
Other languages
English (en)
French (fr)
Inventor
万蕾
吕永霞
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2009/070751 priority Critical patent/WO2010102450A1/zh
Priority to EP09841319.8A priority patent/EP2408162B1/en
Priority to CN200980119200.6A priority patent/CN102282822B/zh
Publication of WO2010102450A1 publication Critical patent/WO2010102450A1/zh
Priority to US13/228,788 priority patent/US8780769B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2603Signal structure ensuring backward compatibility with legacy system

Definitions

  • the present invention relates to the field of wireless communication technologies, and in particular, to a method, apparatus, and system for identifying different frame structures. Background technique
  • TDD time division duplex
  • FDD frequency division duplex
  • Figure 1 shows the existing FDD frame structure of 3GPP LTE (Long Term Evolution), a 10ms radio frame, including 10 radio subframes, each radio subframe is a downlink subframe of lms, each The downlink subframe consists of two 0.5 ms slots. Since the FDD's Sounding Reference Symbol (SRS) can only be transmitted on the uplink carrier, the base station cannot obtain the channel information of the downlink carrier according to the measurement of the SRS in the conventional uplink frequency band.
  • SRS Sounding Reference Symbol
  • Advanced multi-antenna technologies including Coordinated Multi-Point Transmission (CoMP) and Beamforming (BF) technologies, require the base station to learn the channel information of the complete downlink carrier.
  • the FDD system can only feed back the channel information of the quantized and encoded downlink carriers through the uplink control channel of the uplink carrier.
  • the channel information of the downlink carrier obtained by the base station based on this uplink feedback has a great loss in system performance compared to the system performance of obtaining the channel information of the complete downlink carrier.
  • the prior art provides a scheme for carrying an uplink listening pilot symbol SRS on a downlink carrier, which can effectively obtain uplink channel reciprocity of a downlink carrier, thereby obtaining downlink channel information.
  • the base station obtains the downlink channel information by measuring the uplink signal SRS transmitted on the downlink carrier, which may be very It is easy to obtain complete and accurate downlink channel information, which can effectively use advanced multi-antenna technologies such as CoMP, BF, etc., and can significantly reduce the overhead of uplink frequency band, which is beneficial to improve the uplink and downlink imbalance of existing FDD systems. problem.
  • the uplink monitoring pilot symbol SRS is carried on the FDD downlink carrier, so that two frame structures may be carried on the FDD downlink carrier, and one is the existing frame structure of the LTE network shown in FIG. One is a new frame structure with upstream time slots/subframes. Moreover, after introducing such a new frame structure, for LTE-Advanced (LTE-A) users, it is necessary to recognize the new frame structure when initializing the access network, and then to communicate normally; For the original LTE users, it is necessary to detect the change of the frame structure, and the initialization access process is still normally completed in the LTE-A network, thereby ensuring the backward compatibility of the LTE-A network.
  • LTE-A LTE-Advanced
  • the embodiments of the present invention provide a method, an apparatus, and a system for identifying different frame structures, which can ensure backward compatibility of an LTE-A network.
  • a method for identifying different frame structures includes: receiving a radio frame on a frequency division duplex downlink carrier, where the radio frame includes an identifier of a frame structure; and determining, according to a frame structure of the radio frame Perform frame structure recognition.
  • a user terminal includes: a receiving unit, configured to receive a radio frame on a frequency division duplex downlink carrier, where the radio frame includes an identifier of a frame structure; and an identifying unit, configured to use, according to the radio frame The identification of the included frame structure performs frame structure identification.
  • a base station includes: a generating unit, configured to generate a radio frame, where the radio frame includes an identifier of a frame structure, and a sending unit, configured to send the generating unit on a frequency division duplex downlink carrier Wireless frame.
  • a system for identifying different frame structures includes: a base station and a user terminal, where the base station includes: a generating unit, configured to generate a radio frame, where the radio frame includes an identifier of a frame structure; a sending unit, configured to send the generation order on a frequency division duplex downlink carrier a radio frame generated by the UE; the user terminal includes: a receiving unit, configured to receive a radio frame on a frequency division duplex downlink carrier; and an identifying unit, configured to perform frame structure identification according to an identifier of a frame structure included in the radio frame .
  • a radio frame including an identifier of a frame structure is received on a frequency division duplex downlink carrier, and frame structure identification is performed according to an identifier of a frame structure included in the radio frame, so that
  • the LTE-A user When the LTE-A user initializes the access network, it can identify the frame structure carried on the FDD downlink carrier and perform normal network access.
  • the LTE user can not detect the frame structure change, thus ensuring LTE-A.
  • Backward compatibility of the network BRIEF DESCRIPTION OF THE DRAWINGS
  • Figure 1 shows the FDD frame structure already existing in 3GPP LTE
  • FIG. 2 is a schematic diagram of an FDD frame structure with an uplink slot/subframe according to an embodiment of the present invention
  • FIG. 3 is another FDD frame structure with an uplink slot/subframe according to an embodiment of the present invention
  • 4 is a schematic diagram of steps of a method for identifying different frame structures according to an embodiment of the present invention
  • FIG. 5 is a schematic structural diagram of a user terminal according to an embodiment of the present invention
  • FIG. 6 is a schematic structural diagram of a base station according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of a system for identifying different frame structures according to an embodiment of the present invention. detailed description
  • the physical broadcast channel (PBCH, Physical Broadcast Channel) is decoded, and the PBCH is decoded to obtain a certain information, and then receives a Physical Control Format Indicator Channel (PCFICH), and then receives a Physical Downlink Control Channel (PDCCH, Physical Downlink Control Channel). Then, the physical downlink shared channel (PDSCH) is decoded to obtain the content of the dynamic broadcast channel (DBCH), and some information about the random access channel (RACH, Random Access Channel) is obtained.
  • DBCH dynamic broadcast channel
  • RACH Random Access Channel
  • the downlink synchronization channel of the LTE network is mainly composed of two primary synchronization signals (PSS, Primary Synchronization Symbol) and two secondary synchronization signals (SSS, Secondary Synchronization Symbol).
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Symbol
  • the two FDD PSSs are respectively located.
  • the last symbol of the first slot of subframes 0 and 5 and the two FDD SSSs are located on the penultimate symbol of the first slot of subframes 0 and 5, respectively, that is, respectively located in PSS On a symbol before the symbol.
  • the two TDD PSSs are respectively located on the third symbol in the DwPTS, and the two TDD SSSs are located on the last symbol of the second slot of the 0th and 5th subframes, respectively.
  • the PBCH of LTE is located on the first 4 symbols of the second slot of subframe 0.
  • the DBCH of the LTE is located on the PDSCH, and the specific frequency position of the DBCH at the PDSCH is required to be given by the PDCCH of the current subframe.
  • the PCFICH is always located on the first OFDM symbol of each downlink subframe, indicating the number of symbols occupied by the PDCCH.
  • FIG. 2 shows a new FDD frame structure with an uplink slot/subframe according to an embodiment of the present invention.
  • a 10 ms radio frame is composed of 10 subframes having a length of 1 ms, and there are 8 normal downlink subframes and 2 special subframes.
  • a normal subframe consists of two 0.5ms time slots.
  • the special subframe consists of an uplink time slot, a guard time, and a downlink time slot.
  • the uplink time slot can be an uplink channel.
  • Uplink Pilot Time Slot (UpPTS) the downlink time slot can be a Downlink Pilot Time Slot (DwPTS)!
  • the uplink time slot can carry the SRS, thereby implementing uplink monitoring on the FDD downlink carrier.
  • the purpose of the pilot symbol SRS The purpose of the pilot symbol SRS.
  • the present invention also provides another new FDD frame structure, in which one or two special subframes (N takes an integer greater than 1) appear in N 10ms radio frames, and the value of N can pass the reserved bits of the PBCH or the DBCH. To inform.
  • Figure 3 shows another new FDD frame structure provided by the present invention.
  • N 2
  • the first radio frame includes 2 special subframes, for example, They are located on subframes 1 and 6, respectively, and there are no special subframes in the second radio frame.
  • Each special subframe is still composed of an uplink time slot and/or 0 or a downlink time slot and 3 time slots.
  • the uplink time slot can carry the SRS, thereby implementing the uplink monitoring pilot symbol SRS on the FDD downlink carrier. the goal of.
  • the LTE user can also access the LTE-A network normally, and can normally perform the uplink base station with the FDD downlink carrier carrying the uplink SRS (referred to as the LTE-A base station, the same below).
  • the LTE-A base station the same below.
  • Communication it can be seen from the above LTE user access network flow that the new frame structure carried on the FDD downlink carrier of the LTE-A base station must have the same synchronization structure in the original LTE FDD user access process, and The same physical broadcast channel PBCH, physical control indication channel PCFICH, physical downlink control channel PDCCH, and physical downlink shared channel PDSCH.
  • the LTE-A network can be normally accessed, and the LTE user is not scheduled on the special subframe, so that the LTE user can normally communicate with the LTE-A base station, thereby ensuring the backward compatibility of the LTE-A network.
  • LTE-A users it must be distinguished from the FDD downlink carrier. The different frame structures are carried so that a new frame structure can be identified when the access network is initialized to ensure normal communication.
  • the embodiment of the present invention provides a method for identifying different frame structures.
  • the base station adds at least one primary synchronization signal PSS based on the original synchronization structure. For example, two PSSs can be added.
  • the two new PSSs can be carried on the third symbol of the DwPTS. Of course, they can also be located on other symbols, but the position must be fixed.
  • the LTE-A user only needs to detect more than two primary synchronization signals in a 10ms, for example, detecting 3-4 primary synchronization signals, and considers that the FDD downlink carrier carries a new frame structure.
  • the new primary synchronization signal PSS may be the same as the primary synchronization signal PSS of the TDD, and the FDD downlink carrier may not carry the TDD again in order to prevent the LTE TDD user from accessing the LTE FDD downlink carrier.
  • Auxiliary synchronization signal SSS may be used to prevent the user of the LTE TDD cannot be downlink-synchronized with the LTE FDD downlink carrier, and thus cannot access the FDD downlink carrier.
  • the embodiment of the present invention further provides a method for identifying different frame structures.
  • the base station adds at least one auxiliary synchronization signal SSS based on the original synchronization structure, for example, two SSSs can be added, and two new SSSs are added. It can be carried on the last symbol of subframe 0 and subframe 5, respectively. Of course, it can also be located on other symbols, but the position must be fixed. In this way, the LTE-A user only needs to detect more than two auxiliary synchronization signals in a 10ms, for example, detecting 3-4 auxiliary synchronization signals, and considers that the FDD downlink carrier carries a new frame structure.
  • the newly added auxiliary synchronization signal SSS is the same as the auxiliary synchronization signal SSS of the TDD, and the FDD downlink carrier can no longer carry the TDD in order to avoid the LTE TDD user accessing the LTE FDD downlink carrier.
  • the primary synchronization signal PSS in this way, the user of the LTE TDD must not be downlink synchronized with the LTE FDD downlink carrier, and thus cannot access the FDD downlink carrier.
  • the embodiment of the present invention proposes another method for identifying different frame structures, and the base station is in the original physical broadcast channel.
  • the reserved 1 bit is used to directly indicate whether the FDD downlink carrier carries a new frame structure or an original frame structure.
  • the network can be accessed according to the previous access procedure, so that the LTE FDD user can access the LTE-A network normally, and the special subframe does not.
  • the LTE user is scheduled to ensure that the LTE user communicates with the LTE-A base station normally, thereby ensuring backward compatibility of the LTE-A network.
  • the embodiment of the present invention provides another method for identifying different frame structures.
  • the base station directly uses the reserved 1 bit on the original dynamic broadcast channel DBCH to directly indicate whether the FDD downlink carrier carries a new frame structure, or is the original Frame structure.
  • a state reserved by the uplink and downlink subframe matching domain existing on the dynamic broadcast channel DBCH directly indicates whether the FDD downlink carrier carries a new frame structure or an original frame structure.
  • the network can be accessed according to the previous access procedure, so that the LTE FDD user can access the network normally, and the special subframe
  • the LTE users are not scheduled, and the LTE users are normally communicated with the LTE-A base station, thereby ensuring backward compatibility of the LTE-A network.
  • the future LTE-A system may support a wider bandwidth by two or more carriers for aggregation, and each carrier may also be referred to as a component carrier.
  • a user terminal can simultaneously receive one or more component carriers according to its capabilities and service requirements, and can simultaneously transmit data of one or more component carriers.
  • the aggregated carrier may be aggregated by multiple carriers of a continuous spectrum, or may be a carrier aggregation of discontinuous spectrum.
  • the bandwidth of the aggregated carrier may be the same or different. For example, a 5 MHz + 10 MHz aggregation is also possible.
  • the specific carrier aggregation also depends on the capabilities of the user terminal, the service requirements, and the network configuration.
  • some high-capacity user terminals can use N downlink carriers and M uplink carriers; some low-capacity user terminals can only A part of the downlink carriers of the N downlink carriers are used, and data can only be transmitted on a part of the M uplink carriers or one uplink carrier.
  • the foregoing multiple methods for identifying different frame structures provided by the embodiments of the present invention can also be applied to the case of carrier aggregation, where the one or more downlink carriers that are aggregated by the paired carrier and the unpaired carrier carry different frame structures. Case.
  • the new FDD frame structure indicated by the embodiment of the present invention is not limited to a new FDD frame structure with an uplink slot/subframe given by the prior art, nor is it limited to the present invention.
  • Another new FDD frame structure with an uplink slot/subframe is applicable to the technical solution provided by the embodiment of the present invention as long as it is a new FDD frame structure that ensures the backward compatibility of the LTE-A network. .
  • the technical solution provided by the embodiments of the present invention is not limited to the LTE or LTE-A standard system, and can be directly applied to other communication systems, such as a WCDMA (Wideband Code Division Multiple Access) system and its enhanced system. And there is no need to add new processes.
  • WCDMA Wideband Code Division Multiple Access
  • the method for identifying different frame structures includes: Step 41: A user terminal receives a radio frame on a frequency division duplex downlink carrier, where the radio frame includes an identifier of a frame structure;
  • the step 42 may be specifically: detecting, according to detecting, the number of primary synchronization signals or auxiliary synchronization signals included in the radio frame in one radio frame period, if the number is greater than the number included in the original synchronization structure, identifying
  • the radio frame is a frame structure carrying uplink monitoring pilot symbols. If the number is the same, the radio frame is an original frame structure. Or,
  • the radio frame is an original frame structure, or is a frame structure carrying an uplink listening pilot symbol.
  • the radio frame is an original frame structure, or is a frame carrying an uplink monitoring pilot symbol. structure.
  • the embodiment of the present invention further provides a user terminal and a base station, respectively.
  • a user terminal provided by an embodiment of the present invention includes:
  • the receiving unit 51 is configured to receive a radio frame on a frequency division duplex downlink carrier, where the radio frame includes an identifier of a frame structure;
  • the identifying unit 52 is configured to perform frame structure identification according to the identifier of the frame structure included in the radio frame.
  • the identification unit includes any one of the following modules:
  • the number identification module 521 is configured to detect, according to the number of primary synchronization signals or auxiliary synchronization signals included in the radio frame period of the radio frame, if the number is greater than the number of the original synchronization structure,
  • the radio frame is a frame structure carrying an uplink listening pilot symbol, and if the number is the same, the original frame structure is used;
  • the bit identification module 522 is configured to identify, according to the original physical broadcast channel of the radio frame or a direct indication of reserved bits on the dynamic broadcast channel, the radio frame as an original frame structure, or carry an uplink monitoring pilot.
  • the state identification module 523 is configured to identify, according to the direct indication of the reserved state of the uplink and downlink subframe matching domain existing on the dynamic broadcast channel of the radio frame, that the radio frame is the original frame structure, or is carried The frame structure of the uplink monitoring pilot symbol.
  • a base station provided by an embodiment of the present invention includes:
  • the generating unit 61 is configured to generate a radio frame, where the radio frame includes an identifier of a frame structure, and the sending unit 62 is configured to send the radio frame generated by the generating unit on the frequency division duplex downlink carrier.
  • the generating unit 61 includes any one of the following modules:
  • a first generating module 611 configured to generate a radio frame, where the radio frame adds at least one primary synchronization signal or an auxiliary synchronization signal based on the original synchronization structure;
  • a second generating module 612 configured to generate a radio frame, where the radio frame is in an original physical broadcast channel
  • the reserved bit on the upper or dynamic broadcast channel directly indicates that the radio frame is an original frame structure, or is a frame structure carrying an uplink listening pilot symbol
  • the third generation module 613 is configured to generate a radio frame, where the radio frame directly indicates that the radio frame is the original frame structure or is carried by the reserved state of the uplink and downlink subframe matching domain existing on the dynamic broadcast channel.
  • the frame structure of the uplink monitoring pilot symbol is configured to generate a radio frame, where the radio frame directly indicates that the radio frame is the original frame structure or is carried by the reserved state of the uplink and downlink subframe matching domain existing on the dynamic broadcast channel.
  • an embodiment of the present invention further provides a system for identifying different frame structures, including a base station 60 and a user terminal 50.
  • the base station 60 includes:
  • a generating unit 61 configured to generate a radio frame, where the radio frame includes an identifier of a frame structure; and, a sending unit 62, configured to send, by using a frequency division duplex downlink carrier, a radio frame generated by the generating unit;
  • the user terminal 50 includes:
  • a receiving unit 51 configured to receive a radio frame on a frequency division duplex downlink carrier
  • the identifying unit 52 is configured to perform frame structure identification according to the identifier of the frame structure included in the radio frame.
  • the generating unit 61 included in the base station includes: a first generating module 611, configured to generate a radio frame, where the radio frame adds at least one primary synchronization based on the original synchronization structure. Signal or auxiliary synchronization signal;
  • the second generation module 612 is configured to generate a radio frame, where the radio frame uses the reserved bit on the original physical broadcast channel or the dynamic broadcast channel to directly indicate that the radio frame is the original frame structure, or carries the uplink monitoring a frame structure of pilot symbols;
  • the third generation module 613 is configured to generate a radio frame, where the radio frame directly indicates that the radio frame is the original frame structure or is carried by the reserved state of the uplink and downlink subframe matching domain existing on the dynamic broadcast channel.
  • the frame structure of the uplink monitoring pilot symbol is configured to generate a radio frame, where the radio frame directly indicates that the radio frame is the original frame structure or is carried by the reserved state of the uplink and downlink subframe matching domain existing on the dynamic broadcast channel.
  • the identification unit 52 included in the user terminal includes:
  • a number identifying module 521 configured to detect, according to the number of primary synchronization signals or auxiliary synchronization signals included in the radio frame period of the radio frame, if the number is greater than the number of the original synchronization structure, Identifying that the radio frame is a frame structure carrying an uplink listening pilot symbol, and if the number is the same, the original frame structure;
  • the bit identification module 522 is configured to identify, according to the original physical broadcast channel of the radio frame or a direct indication of reserved bits on the dynamic broadcast channel, the radio frame as an original frame structure, or carry an uplink monitoring pilot.
  • the state identification module 523 is configured to identify, according to the direct indication of the reserved state of the uplink and downlink subframe matching domain existing on the dynamic broadcast channel of the radio frame, that the radio frame is the original frame structure, or is carried The frame structure of the uplink monitoring pilot symbol.
  • the base station adds at least one primary synchronization signal or auxiliary synchronization signal on the basis of the original synchronization structure, or directly uses the reserved bit on the original PBCH to directly indicate, or in the original
  • the reserved frame or the existing uplink and downlink subframe matching domain reservation state is used to directly indicate the used frame structure on the DBCH.
  • the LTE-A base station communicates to ensure backward compatibility of the LTE-A network.
  • the new frame structure can be identified when the access network is initialized to complete the normal communication.
  • RAM random access memory
  • ROM read only memory
  • electrically programmable ROM electrically erasable programmable ROM
  • registers hard disk, removable disk, CD-ROM, or any other form of storage medium.

Description

识别不同帧结构的方法、 装置和系统
技术领域
本发明涉及无线通信技术领域, 特别涉及一种识别不同帧结构的方法、 装置和系统。 背景技术
迄今为止, 只有非对称的时分双工( time division duplex,TDD )频谱和对 称的频分双工 ( frequency division duplex,FDD )频谱。 在 TDD系统里面, 上 下行在同一载波上时分发送,具有上下行信道的互易性; 而在 FDD系统里面, 实现接收和传送的双向通信是在分离的两个对称频率信道上, 用保护频段来 分离接收与传送信道, 上行载波上只发送上行信号, 下行载波只发送下行信 号。
图 1所示为 3GPP LTE ( Long Term Evolution, 长期演进) 已经存在的 FDD帧结构, 一个 10ms的无线帧, 包含 10个无线子帧, 每个无线子帧都是 lms的下行子帧, 每个下行子帧由两个 0.5ms的时隙 (slot )组成。 由于 FDD 的监听导频符号 ( Sounding Reference Symbol,SRS )只能在上行载波上发送, 基站无法根据传统的上行频段的 SRS的测量, 而获得下行载波的信道信息。
先进的多天线技术, 包括下行协作多点传输 (Coordinated Multi-Point transmission,CoMP )技术和波束成形 (Beam forming,BF )技术等, 都需要基 站获知完整的下行载波的信道信息, 而现有的 FDD系统只能通过在上行载波 的上行控制信道反馈量化后和编码后的下行载波的信道信息。 基站基于这个 上行反馈获得的下行载波的信道信息 , 其系统性能相比较获得完整的下行载 波的信道信息的系统性能将有很大的损失。
现有技术给出一种方案, 是在下行载波上承载一种上行监听导频符号 SRS, 能有效获得下行载波的上行行信道互易性, 从而获得下行信道信息。 基 站通过测量在下行载波发送的上行信号 SRS而获得该下行信道信息, 可以很 容易获得完整和精确的下行信道信息, 从而能够有效釆用先进的多天线技术 例如 CoMP, BF等技术, 并且能够显著降低上行频段开销的占用, 有益于改 善现有 FDD系统的上下行不平衡的问题。
在实现本发明过程中, 发明人研究发现:
在 FDD下行载波上承载上行监听导频符号 SRS, 这样在 FDD下行载波 上就可能承载两种帧结构, 一种是图 1所示的 LTE网絡已经存在的帧结构。 一种是带有上行时隙 /子帧的新的帧结构。 而且引入这种新的帧结构后, 对于 LTE增强 (LTE- Advanced, LTE-A )用户而言, 需要在初始化接入网絡的时 候就能识别这种新的帧结构, 然后才能正常通信; 而对于原有 LTE用户而言, 则需要觉察不到帧结构的改变,在 LTE-A网絡中仍正常完成初始化接入过程, 从而保证 LTE- A网絡的后向兼容性。 发明内容
鉴于此, 本发明实施例提供一种识别不同帧结构的方法、 装置和系统, 能够保证 LTE-A网絡的后向兼容性。
本发明实施例提供的一种识别不同帧结构的方法, 包括: 在频分双工下 行载波上接收无线帧, 所述无线帧包含帧结构的标识; 根据所述无线帧包含 的帧结构的标识进行帧结构识别。
本发明实施例提供的一种用户终端, 包括: 接收单元, 用于在频分双工 下行载波上接收无线帧, 所述无线帧包含帧结构的标识; 识别单元, 用于根 据所述无线帧包含的帧结构的标识进行帧结构识别。
本发明实施例提供的一种基站, 包括: 生成单元, 用于生成无线帧, 所 述无线帧包含帧结构的标识; 发送单元, 用于在频分双工下行载波上发送所 述生成单元生成的无线帧。
本发明实施例提供的一种识别不同帧结构的系统, 其特征在于, 包括基 站和用户终端, 所述基站包括: 生成单元, 用于生成无线帧, 所述无线帧包 含帧结构的标识; 和发送单元, 用于在频分双工下行载波上发送所述生成单 元生成的无线帧; 所述用户终端包括: 接收单元, 用于在频分双工下行载波 上接收无线帧; 和识别单元, 用于根据所述无线帧包含的帧结构的标识进行 帧结构识别。
根据本发明实施例提供的以上技术方案可知, 通过在频分双工下行载波 上接收包含有帧结构的标识的无线帧, 并根据所述无线帧包含的帧结构的标 识进行帧结构识别, 使得 LTE-A用户在初始化接入网絡的时候就能识别出在 FDD下行载波上承载的帧结构, 进行正常的网絡接入, 而 LTE用户由于觉察不 到帧结构的改变, 从而保证了 LTE-A网絡的后向兼容性。 附图说明 施例或现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面 描述中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动性的前提下, 还可以根据这些附图获得其他的附图。
图 1为 3GPP LTE已经存在的 FDD帧结构;
图 2为本发明提供实施例的一种带有上行时隙 /子帧的 FDD帧结构; 图 3为本发明提供实施例的另一种带有上行时隙 /子帧的 FDD帧结构; 图 4为本发明实施例提供的识别不同帧结构的方法的步骤示意图; 图 5为本发明实施例提供的用户终端的结构示意图;
图 6为本发明实施例提供的基站的结构示意图;
图 7为本发明实施例提供的识别不同帧结构的系统的结构示意图。 具体实施方式
下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进行 清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而 不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有作 出创造性劳动前提下所获得的所有其他实施例 , 都属于本发明保护的范围。 一个 LTE用户 (包括 FDD用户和 TDD用户),正常接入网絡的流程如下: 初始开机时, 用户需要根据同步信道进行下行同步, 获得下行同步后, 获得 下行解调导频的信息, 然后到固定位置接收物理广播信道(PBCH, Physical Broadcast channel ), 解码 PBCH, 获得一定信息后, 然后接收物理控制指示信 道 ( PCFICH, Physical Control Format Indicator Channel ), 进而接收物理下行 控制信道(PDCCH, Physical Downlink Control Channel ), 然后解码物理下行 共享信道(PDSCH, Physical Downlink Share Channel ), 获得动态广播信道 ( DBCH , Dynamic Broadcast Channel)的内容, 并在获得有关上行随机接入信 道(RACH, Random Access Channel )的一些信息后, 进行上行同步, 获得上 行同步后, 用户发起注册, 注册之后会建立一条缺省承载, 从而用户就可接 入网絡进行正常通信。
LTE 网絡的下行同步信道主要由 2 个主同步信号 ( PSS, Primary Synchronization Symbol )和 2个辅助同步信号 ( SSS, Secondary Synchronization Symbol )组成, 对于图 1的 FDD帧结构, 这 2个 FDD PSS分别位于第 0和 5号子帧的第一个 slot的最后一个符号上,而 2个 FDD SSS分别位于第 0和 5 号子帧的第一个 slot的倒数第二个符号上, 也就是分别位于 PSS符号之前的 一个符号上。 对于 TDD帧结构而言, 这 2个 TDD PSS分别位于 DwPTS里面 的第 3个符号上, 而 2个 TDD SSS分别位于第 0和 5号子帧的第二个 slot的 最后一个符号上。 LTE的 PBCH位于第 0号子帧的第二个 slot的前 4个符号 上。 LTE 的 DBCH位于 PDSCH上, DBCH位于 PDSCH的具体的频率位置 需要当前子帧的 PDCCH 给出; PCFICH 总是位于每个下行子帧的第一个 OFDM符号上, 指明 PDCCH所占的符号数目。
图 2所示, 为本发明实施例一种带有上行时隙 /子帧的新的 FDD帧结构。 在图 2所示帧结构中, 10ms的无线帧由 10个长度为 1ms的子帧组成, 其中 有 8个普通的下行子帧和 2个特殊子帧。 普通子帧由两个 0.5ms的时隙组成, 特殊子帧由上行时隙、 保护时间和 \或下行时隙组成, 上行时隙可以是上行导 频时隙 (Uplink Pilot Time Slot , UpPTS ), 下行时隙可以是下行导频时隙 ( Downlink Pilot Time Slot, DwPTS )„ 上行时隙里面可以承载 SRS, 从而实 现了在 FDD下行载波上承载上行监听导频符号 SRS的目的。
另外,考虑到特殊子帧里面的 UpPTS时隙都用于监听导频符号 SRS的话, 那么一个 LTE-A用户就不需要每 10ms(即每个无线帧)就出现 2个特殊子帧, 就可完成下行载波信道的全部带宽的监听(Sounding )。 由此。 本发明还提供 另一种新的 FDD帧结构, N个 10ms的无线帧才出现 1个或 2个特殊子帧(N 取大于 1的整数), N的值可以通过 PBCH或 DBCH的预留比特来通知。
图 3所示, 为本发明提供的另一种新的 FDD帧结构。 在图 3所示帧结构 中, N=2, 即每 2个无线帧构成一个帧结构周期, 在每个帧结构周期内, 第 1 个无线帧中包括有 2个特殊子帧, 例如仍可以分别位于第 1号和第 6号子帧 上, 第 2个无线帧中没有特殊子帧。 每个特殊子帧仍由上行时隙和\或0?和\ 或下行时隙 3个时隙组成, 上行时隙里面可以承载 SRS, 从而实现了在 FDD 下行载波上承载上行监听导频符号 SRS的目的。
为了保证 LTE-A 网絡的后向兼容性, 也就是说 LTE 用户也能正常接入 LTE-A网絡, 能正常与 FDD 下行载波承载上行 SRS的基站(简称为 LTE-A 基站, 下同)进行通信, 从上述 LTE用户接入网絡的流程可以看出, LTE-A 基站的 FDD下行载波上承载的这个新的帧结构中, 必须具有原有 LTE FDD 用户接入过程中一样的同步结构, 以及一样的物理广播信道 PBCH、物理控制 指示信道 PCFICH、 物理下行控制信道 PDCCH和物理下行共享信道 PDSCH。 对于同步结构而言, 也即是 2个 FDD PSS还是必须分别位于第 0和 5号子帧 的第一个 slot的最后一个符号上, 而 2个 FDD SSS还是必须分别位于第 0和 5号子帧的第一个 slot的倒数第二个符号上。
这样对于 LTE用户而言, 就能正常接入 LTE-A网絡, 特殊子帧上不调度 LTE 用户, 保证 LTE用户正常与 LTE-A基站进行通信, 从而保证了 LTE-A 网絡的后向兼容性。但是对于 LTE-A用户而言, 必须区分出 FDD下行载波上 承载的不同帧结构, 从而在初始化接入网絡的时候就能识别新的帧结构, 以 保证正常通信。
为此, 本发明实施例提出一种识别不同帧结构的方法, 基站在原有同步 结构的基础上, 增加至少 1个主同步信号 PSS。 例如可以增加 2个 PSS, 新增 的 2个 PSS可以分别承载在 DwPTS的第 3个符号上,当然也可以位于别的符 号上, 但是位置必须固定。 这样 LTE-A用户在一个 10ms里面只要检测出超 过 2个主同步信号的话, 例如检测出 3-4个主同步信号, 就认为 FDD下行载 波上承载了新的帧结构。
本实施例需要说明的是,由于新增的主同步信号 PSS可能会与 TDD的主 同步信号 PSS位置相同, 而为了避免让 LTE TDD的用户接入 LTE FDD下行 载波, FDD下行载波不可再承载 TDD的辅助同步信号 SSS。 这样, LTE TDD 的用户肯定不能与 LTE FDD下行载波下行同步, 从而也就不能接入 FDD下 行载波。
相对应地, 本发明实施例还提出一种识别不同帧结构的方法, 基站在原 有同步结构的基础上, 增加至少 1个辅助同步信号 SSS, 例如可以增加 2个 SSS,新增的 2个 SSS可以分别承载在子帧 0和子帧 5的最后一个符号上, 当 然也可以位于别的符号上, 但是位置必须固定。 这样 LTE-A用户在一个 10ms 里面只要检测出超过 2个辅助同步信号的话,例如检测出 3-4个辅助同步信号, 就认为 FDD下行载波上承载了新的帧结构。
本实施例需要说明的是,由于新增的辅助同步信号 SSS会与 TDD的辅助 同步信号 SSS位置相同, 而为了避免让 LTE TDD的用户接入 LTE FDD下行 载波, FDD下行载波不可再承载 TDD的主同步信号 PSS, 这样, LTE TDD 的用户肯定不能与 LTE FDD下行载波下行同步, 从而也就不能接入 FDD下 行载波。
在基站不新增主同步信号 PSS或不新增辅助同步信号 SSS的情形下, 本 发明实施例提出另一种识别不同帧结构的方法, 基站在原有的物理广播信道 PBCH上, 利用预留的 1比特来直接指示 FDD下行载波上承载的是新的帧结 构, 还是原有的帧结构。
对于 LTE用户而言, 因为 PBCH里面预留的比特, 不需要解读, 所以按 照以前的接入流程接入网絡即可,这样 LTE FDD用户就能正常接入 LTE-A网 絡, 特殊子帧里面不调度 LTE 用户, 保证 LTE用户正常与 LTE-A基站进行 通信, 从而保证了 LTE-A网絡的后向兼容性。
本发明实施例提出再一种识别不同帧结构的方法, 基站在原有的动态广 播信道 DBCH上,利用预留的 1比特来直接指示 FDD下行载波上承载的是新 的帧结构, 还是原有的帧结构。 或者, 通过动态广播信道 DBCH上已有的上 下行子帧配比域预留的一个状态来直接指示 FDD下行载波上承载的是新的帧 结构, 还是原有的帧结构。
对于 LTE用户而言, 因为 DBCH里面预留的比特或者预留的状态, 不需 要解读, 所以按照以前的接入流程接入网絡即可, 这样 LTE FDD用户就能正 常接入网絡, 特殊子帧里面不调度 LTE用户, 保证 LTE用户正常与 LTE-A 基站进行通信, 从而保证了 LTE-A网絡的后向兼容性。
还需要说明的是, 未来的 LTE-A系统为了更好的兼容 LTE系统, 可能的 支持更宽带宽的方式是两个或是更多个载波进行聚合, 每个载波也可以被称 为成员载波。 一个用户终端可以根据它的能力和业务需求同时接收一个或多 个成员载波, 也可以同时传输一个或多个成员载波的数据。
聚合的载波可以是连续频谱的多个载波进行聚合, 也可能是不连续频谱 的载波聚合。 聚合载波的带宽可以是相同的也可以是不同的, 比如, 5MHz + 10MHz的聚合也是可能的, 具体的载波聚合也依赖用户终端的能力、 业务的 需求及网絡配置等等。 比如, 对于网絡配置的 N个下行载波, M个上行载波, 根据用户终端能力的差别, 有的高能力的用户终端可以使用 N个下行载波, M个上行载波; 有的低能力用户终端可以只使用该 N个下行载波中部分下行 载波, 且只能在该 M个上行载波中的部分或一个上行载波上传输数据。 可以理解, 本发明实施例提供的上述多种识别不同帧结构的方法, 同样 可以应用于载波聚合的情况下, 这包括成对载波和不成对载波聚合的一个或 者多个下行载波承载不同帧结构的情况。
同样可以理解, 本发明实施例所指示的新的 FDD帧结构, 并不限于现有 技术给出的一种带有上行时隙 /子帧的新的 FDD帧结构,也不限于本发明提供 的另一种带有上行时隙 /子帧的新的 FDD帧结构, 只要是保证了 LTE-A网絡 的后向兼容性的新的 FDD帧结构,都适用于本发明实施例所提供的技术方案。
而且可以理解, 本发明实施例所提供的技术方案, 并不局限于 LTE 或 LTE-A标准系统, 对于其他通信系统, 例如 WCDMA (宽带码分多址) 系统 及其增强系统都可以直接应用, 而且不需要增加新的过程。
综上, 参见图 4, 本发明实施例提供的识别不同帧结构的方法, 包括: 步骤 41 , 用户终端在频分双工下行载波上接收无线帧, 所述无线帧包含 帧结构的标识; 其中, 所述步骤 42可以具体为: 根据检测所述无线帧在一个无线帧周期 内包括的主同步信号或辅助同步信号的个数, 如果个数大于原有同步结构包 括的个数, 则识别出该无线帧为承载了上行监听导频符号的帧结构, 如果个 数相同则该无线帧为原有的帧结构。 或者,
根据所述无线帧原有的物理广播信道或动态广播信道上预留比特的直接 指示, 识别出该无线帧为原有的帧结构, 或为承载了上行监听导频符号的帧 结构。 或者,
根据所述无线帧的动态广播信道上已有的上下行子帧配比域预留状态的 直接指示, 识别出该无线帧为原有的帧结构, 或为承载了上行监听导频符号 的帧结构。
以上几种帧结构识别的具体方法分别对应上述的方法实施例, 在此不再 赘述。 在上述方法实施例的基础上, 本发明实施例还分别提供一种用户终端和 基站。
参见图 5, 本发明实施例提供的用户终端, 包括:
接收单元 51 , 用于在频分双工下行载波上接收无线帧, 所述无线帧包含 帧结构的标识;
识别单元 52,用于根据所述无线帧包含的帧结构的标识进行帧结构识别。 其中, 所述识别单元包括如下任一模块:
个数识别模块 521 ,用于根据检测所述无线帧在一个无线帧周期内包括的 主同步信号或辅助同步信号的个数, 如果个数大于原有同步结构包括的个数, 则识别出该无线帧为承载了上行监听导频符号的帧结构, 如果个数相同则为 原有的帧结构;
比特识别模块 522,用于根据所述无线帧原有的物理广播信道或动态广播 信道上预留比特的直接指示, 识别出该无线帧为原有的帧结构, 或为承载了 上行监听导频符号的帧结构;
状态识别模块 523 ,用于根据所述无线帧的动态广播信道上已有的上下行 子帧配比域预留状态的直接指示, 识别出该无线帧为原有的帧结构, 或为承 载了上行监听导频符号的帧结构。
参见图 6, 本发明实施例提供的基站, 包括:
生成单元 61 , 用于生成无线帧, 所述无线帧包含帧结构的标识; 发送单元 62, 用于在频分双工下行载波上发送所述生成单元生成的无线 帧。
其中, 所述生成单元 61包括如下任一模块:
第一生成模块 611 , 用于生成无线帧, 所述无线帧在原有同步结构的基础 上, 增加至少一个主同步信号或辅助同步信号;
第二生成模块 612, 用于生成无线帧, 所述无线帧在原有的物理广播信道 上或动态广播信道上使用预留比特直接指示该无线帧为原有的帧结构, 或为 承载了上行监听导频符号的帧结构;
第三生成模块 613 , 用于生成无线帧, 所述无线帧通过动态广播信道上已 有的上下行子帧配比域预留状态直接指示该无线帧为原有的帧结构, 或为承 载了上行监听导频符号的帧结构。
相应于方法实施例, 参见图 7, 本发明实施例还提供一种识别不同帧结构 的系统, 包括基站 60和用户终端 50 ,
所述基站 60包括:
生成单元 61 , 用于生成无线帧, 所述无线帧包含帧结构的标识; 和, 发送单元 62, 用于在频分双工下行载波上发送所述生成单元生成的无线 帧;
所述用户终端 50包括:
接收单元 51 , 用于在频分双工下行载波上接收无线帧; 和,
识别单元 52,用于根据所述无线帧包含的帧结构的标识进行帧结构识别。 针对不同的方法实施例, 更具体地, 所述基站包括的生成单元 61包括: 第一生成模块 611 , 用于生成无线帧, 所述无线帧在原有同步结构的基础 上, 增加至少一个主同步信号或辅助同步信号;
第二生成模块 612, 用于生成无线帧, 所述无线帧在原有的物理广播信道 上或动态广播信道上使用预留比特直接指示该无线帧为原有的帧结构, 或为 承载了上行监听导频符号的帧结构;
第三生成模块 613 , 用于生成无线帧, 所述无线帧通过动态广播信道上已 有的上下行子帧配比域预留状态直接指示该无线帧为原有的帧结构, 或为承 载了上行监听导频符号的帧结构。
所述用户终端包括的识别单元 52包括:
个数识别模块 521 ,用于根据检测所述无线帧在一个无线帧周期内包括的 主同步信号或辅助同步信号的个数, 如果个数大于原有同步结构包括的个数, 则识别出该无线帧为承载了上行监听导频符号的帧结构, 如果个数相同则为 原有的帧结构;
比特识别模块 522,用于根据所述无线帧原有的物理广播信道或动态广播 信道上预留比特的直接指示, 识别出该无线帧为原有的帧结构, 或为承载了 上行监听导频符号的帧结构;
状态识别模块 523 ,用于根据所述无线帧的动态广播信道上已有的上下行 子帧配比域预留状态的直接指示, 识别出该无线帧为原有的帧结构, 或为承 载了上行监听导频符号的帧结构。
通过本发明实施例提供的以上技术方案, 基站在原有同步结构的基础上, 增加至少 1个主同步信号或辅助同步信号, 或在原有的 PBCH上利用预留比 特来直接指示, 或在原有的 DBCH上利用预留的比特或已有的上下行子帧配 比域预留状态来直接指示使用的帧结构, 对于 LTE用户而言, 因为 PBCH里 面预留的比特, 或 DBCH里面预留的比特或者预留的状态, 不需要解读, 所 以按照以前的接入流程接入网絡即可, 这样 LTE用户就能正常接入 LTE-A网 絡, 特殊子帧里面不调度 LTE 用户, 保证 LTE用户正常与 LTE-A基站进行 通信, 从而保证了 LTE-A网絡的后向兼容性。 而对于 LTE-A用户而言, 通过 识别无线帧包含帧结构的标识, 从而在初始化接入网絡的时候就能识别新的 帧结构, 以完成正常通信。
专业人员还可以意识到, 结合本文中所公开的实施例描述的各示例的单 元及算法步骤, 能够以电子硬件、 计算机软件或者二者的结合来实现, 为了 清楚地说明硬件和软件的可互换性, 在上述说明中已经按照功能一般性地描 述了各示例的组成及步骤。 这些功能究竟以硬件还是软件方式来执行, 取决 于技术方案的特定应用和设计约束条件。 专业技术人员可以对每个特定的应 用来使用不同方法来实现所描述的功能, 但是这种实现不应认为超出本发明 的范围。
结合本文中所公开的实施例描述的方法或算法的步骤可以用硬件、 处理 器执行的软件模块, 或者二者的结合来实施。 软件模块可以置于随机存储器
( RAM ),内存、只读存储器(ROM )、电可编程 ROM、电可擦除可编程 ROM、 寄存器、 硬盘、 可移动磁盘、 CD-ROM、 或任意其它形式的存储介质中。
以上所述仅为本发明的较佳实施例而已, 并不用以限制本发明, 凡在本 发明的精神和原则之内所作的任何修改、 等同替换和改进等, 均应包含在本 发明的保护范围之内。

Claims

权 利 要 求 书
1、 一种识别不同帧结构的方法, 其特征在于, 包括:
在频分双工下行载波上接收无线帧, 所述无线帧包含帧结构的标识;
2、 根据权利要求 1所述的方法, 其特征在于, 所述根据所述无线帧包含的 帧结构的标识进行帧结构识别具体为:
根据检测所述无线帧在一个无线帧周期内包括的主同步信号或辅助同步信 号的个数, 如果个数大于原有同步结构包括的个数, 则识别出该无线帧为承载 了上行监听导频符号的帧结构, 如果个数相同则该无线帧为原有的帧结构。
3、 根据权利要求 1所述的方法, 其特征在于, 所述根据所述无线帧包含的 帧结构的标识进行帧结构识别具体为:
根据所述无线帧原有的物理广播信道或动态广播信道上预留比特的直接指 示, 识别出该无线帧为原有的帧结构, 或为承载了上行监听导频符号的帧结构。
4、 根据权利要求 1所述的方法, 其特征在于, 所述根据所述无线帧包含的 帧结构的标识进行帧结构识别具体为:
根据所述无线帧的动态广播信道上已有的上下行子帧配比域预留状态的直 接指示, 识别出该无线帧为原有的帧结构, 或为承载了上行监听导频符号的帧 结构。
5、 根据权利要求 2-4任一项所述的方法, 其特征在于, 所述承载了上行监 听导频符号的帧结构为:
10ms的无线帧由 10个长度为 1ms的子帧组成, 其中有 8个普通的下行子 帧和 2个特殊子帧; 普通子帧由两个 0.5ms的时隙组成, 特殊子帧由上行时隙、 保护时间和\或下行时隙组成, 并在上行时隙里面可以承载监听导频符号。
6、 根据权利要求 2-4任一项所述的方法, 其特征在于, 所述承载了上行监 听导频符号的帧结构为: 由 N个 10ms无线帧构成一个帧结构周期, 每个无线帧由 10个长度为 1ms 的子帧组成, 在每个帧结构周期内, 包括至少 1个特殊子帧, 其余为普通子帧; 普通子帧由两个 0.5ms的时隙组成, 特殊子帧由上行时隙、 保护时间和 \或下行 时隙组成, 并在上行时隙里面可以承载监听导频符号。
7、 一种用户终端, 其特征在于, 包括:
接收单元, 用于在频分双工下行载波上接收无线帧, 所述无线帧包含帧结 构的标识;
识别单元, 用于根据所述无线帧包含的帧结构的标识进行帧结构识别。
8、 根据权利要求 7所述的用户终端, 其特征在于, 所述识别单元包括如下 任一模块:
个数识别模块, 用于根据检测所述无线帧在一个无线帧周期内包括的主同 步信号或辅助同步信号的个数, 如果个数大于原有同步结构包括的个数, 则识 别出该无线帧为承载了上行监听导频符号的帧结构, 如果个数相同则为原有的 帧结构;
比特识别模块, 用于根据所述无线帧原有的物理广播信道或动态广播信道 上预留比特的直接指示, 识别出该无线帧为原有的帧结构, 或为承载了上行监 听导频符号的帧结构;
状态识别模块, 用于根据所述无线帧的动态广播信道上已有的上下行子帧 配比域预留状态的直接指示, 识别出该无线帧为原有的帧结构, 或为承载了上 行监听导频符号的帧结构。
9、 一种基站, 其特征在于, 包括:
生成单元, 用于生成无线帧, 所述无线帧包含帧结构的标识;
发送单元, 用于在频分双工下行载波上发送所述生成单元生成的无线帧。
10、 根据权利要求 9所述的基站, 其特征在于, 所述生成单元包括如下任 一模块:
第一生成模块, 用于生成无线帧, 所述无线帧在原有同步结构的基础上, 增加至少一个主同步信号或辅助同步信号;
第二生成模块, 用于生成无线帧, 所述无线帧在原有的物理广播信道上或 动态广播信道上使用预留比特直接指示该无线帧为原有的帧结构, 或为承载了 上行监听导频符号的帧结构;
第三生成模块, 用于生成无线帧, 所述无线帧通过动态广播信道上已有的 上下行子帧配比域预留状态直接指示该无线帧为原有的帧结构, 或为承载了上 行监听导频符号的帧结构。
11、 一种识别不同帧结构的系统, 其特征在于, 包括基站和用户终端, 所述基站包括:
生成单元, 用于生成无线帧, 所述无线帧包含帧结构的标识; 和, 发送单元, 用于在频分双工下行载波上发送所述生成单元生成的无线帧; 所述用户终端包括:
接收单元, 用于在频分双工下行载波上接收无线帧; 和,
识别单元, 用于根据所述无线帧包含的帧结构的标识进行帧结构识别。
12、 根据权利要求 11所述的系统, 其特征在于, 所述基站包括的生成单元 包括:
第一生成模块, 用于生成无线帧, 所述无线帧在原有同步结构的基础上, 增加至少一个主同步信号或辅助同步信号;
第二生成模块, 用于生成无线帧, 所述无线帧在原有的物理广播信道上或 动态广播信道上使用预留比特直接指示该无线帧为原有的帧结构, 或为承载了 上行监听导频符号的帧结构;
第三生成模块, 用于生成无线帧, 所述无线帧通过动态广播信道上已有的 上下行子帧配比域预留状态直接指示该无线帧为原有的帧结构, 或为承载了上 行监听导频符号的帧结构。
13、 根据权利要求 11所述的系统, 其特征在于, 所述用户终端包括的识别 单元包括: 个数识别模块, 用于根据检测所述无线帧在一个无线帧周期内包括的主同 步信号或辅助同步信号的个数, 如果个数大于原有同步结构包括的个数, 则识 别出该无线帧为承载了上行监听导频符号的帧结构, 如果个数相同则为原有的 帧结构;
比特识别模块, 用于根据所述无线帧原有的物理广播信道或动态广播信道 上预留比特的直接指示, 识别出该无线帧为原有的帧结构, 或为承载了上行监 听导频符号的帧结构;
状态识别模块, 用于根据所述无线帧的动态广播信道上已有的上下行子帧 配比域预留状态的直接指示, 识别出该无线帧为原有的帧结构, 或为承载了上 行监听导频符号的帧结构。
PCT/CN2009/070751 2009-03-11 2009-03-11 识别不同帧结构的方法、装置和系统 WO2010102450A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2009/070751 WO2010102450A1 (zh) 2009-03-11 2009-03-11 识别不同帧结构的方法、装置和系统
EP09841319.8A EP2408162B1 (en) 2009-03-11 2009-03-11 Method, device and system for identifying different frame structures
CN200980119200.6A CN102282822B (zh) 2009-03-11 2009-03-11 识别不同帧结构的方法、装置和系统
US13/228,788 US8780769B2 (en) 2009-03-11 2011-09-09 Method, apparatus, and system for identifying different frame structures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2009/070751 WO2010102450A1 (zh) 2009-03-11 2009-03-11 识别不同帧结构的方法、装置和系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/228,788 Continuation US8780769B2 (en) 2009-03-11 2011-09-09 Method, apparatus, and system for identifying different frame structures

Publications (1)

Publication Number Publication Date
WO2010102450A1 true WO2010102450A1 (zh) 2010-09-16

Family

ID=42727783

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/070751 WO2010102450A1 (zh) 2009-03-11 2009-03-11 识别不同帧结构的方法、装置和系统

Country Status (4)

Country Link
US (1) US8780769B2 (zh)
EP (1) EP2408162B1 (zh)
CN (1) CN102282822B (zh)
WO (1) WO2010102450A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017020578A1 (zh) * 2015-07-31 2017-02-09 中兴通讯股份有限公司 Srs的指示发送方法、srs的发送方法和装置
CN106961739A (zh) * 2013-12-20 2017-07-18 射频数字信号处理公司 频分双工多输入输出无线网络中信道状态信息的获取方法
WO2018126958A1 (zh) * 2017-01-05 2018-07-12 华为技术有限公司 传输数据的方法、网络设备和终端设备

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5544416B2 (ja) 2009-04-09 2014-07-09 エルジー エレクトロニクス インコーポレイティド リレー方式の通信システムにおける信号送信方法及び装置
CN102300158B (zh) * 2010-06-28 2015-03-11 中国移动通信集团公司 时分双工系统中获知载波信息及载波信息指示方法和设备
US9143984B2 (en) * 2012-04-13 2015-09-22 Intel Corporation Mapping of enhanced physical downlink control channels in a wireless communication network
US9660931B2 (en) * 2012-07-25 2017-05-23 Lg Electronics Inc. Method and apparatus for receiving or transmitting radio frequency (RF) signal
US8811332B2 (en) 2012-10-31 2014-08-19 Sharp Laboratories Of America, Inc. Systems and methods for carrier aggregation
KR102096895B1 (ko) * 2013-02-13 2020-04-03 삼성전자주식회사 무선 통신 시스템에서 기기간 직접 통신을 위한 초기 접속 방법 및 장치
EP3716712B1 (en) * 2013-02-22 2022-05-04 Huawei Technologies Co., Ltd. Method and device for generating subframe, method for determining subframe and user equipment
US9559817B2 (en) 2013-07-19 2017-01-31 Sharp Kabushiki Kaisha Systems and methods for carrier aggregation
US10237020B2 (en) 2013-07-19 2019-03-19 Sharp Kabushiki Kaisha Systems and methods for carrier aggregation
US9591644B2 (en) * 2013-08-16 2017-03-07 Qualcomm Incorporated Downlink procedures for LTE/LTE-A communication systems with unlicensed spectrum
US20150163036A1 (en) * 2013-12-11 2015-06-11 Nokia Solutions And Networks Oy High Resolution Channel Sounding for FDD Communications
CN106464461A (zh) * 2014-05-15 2017-02-22 诺基亚通信公司 用于发射和/或接收参考信号的方法和装置
RU2019102777A (ru) 2015-01-22 2019-02-28 Хуавей Текнолоджиз Ко., Лтд. Способ и устройство для индикации структуры кадра передачи и система
US9748990B2 (en) * 2015-02-09 2017-08-29 Huawei Technologies Co., Ltd. System and method for training signals for full-duplex communications systems
US20160233904A1 (en) * 2015-02-09 2016-08-11 Huawei Technologies Co., Ltd. System and Method for Full-Duplex Operation in a Wireless Communications System
CN105635160B (zh) * 2016-01-09 2018-08-10 中国人民解放军63686部队 一种多变数据网络通信的设计方法
CN106982465B (zh) * 2016-01-15 2021-02-23 华为技术有限公司 一种无线帧的传输方法以及无线网络设备
CN115379573A (zh) 2016-11-04 2022-11-22 中兴通讯股份有限公司 一种数据传输方法、基站、用户设备及系统
WO2018137219A1 (zh) * 2017-01-25 2018-08-02 华为技术有限公司 一种信息传输方法及装置
CN114205426B (zh) * 2021-12-08 2024-02-06 西安讯智通达科技有限公司 一种无线自组织网的帧结构、节点及节点通讯方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1960209A (zh) * 2005-10-31 2007-05-09 上海原动力通信科技有限公司 频分双工模式下的通信方法及设备
CN101106395A (zh) * 2007-08-15 2008-01-16 中兴通讯股份有限公司 控制信令和测量导频的发射方法
WO2008070761A1 (en) * 2006-12-06 2008-06-12 Sr Télécom & Co, S.E.C. Half duplex frenquency division duplex scheduling
CN101286798A (zh) * 2008-04-17 2008-10-15 清华大学 可灵活配置的移动通信方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI98172C (fi) 1995-05-24 1997-04-25 Nokia Telecommunications Oy Menetelmä pilottisignaalin lähettämiseksi ja solukkoradiojärjestelmä
BR9911693B1 (pt) 1998-06-30 2012-12-25 dispositivo para adaptaÇço de taxas de transmissço em sistemas de telecomunicaÇÕes entre aparelhos transceptores màveis e/ou fixos.
US6999446B2 (en) * 2000-10-27 2006-02-14 L-3 Communications Corporation Adaptive, multi-rate waveform and frame structure for a synchronous, DS-CDMA system
EP1422832B1 (en) * 2002-10-11 2009-07-22 STMicroelectronics S.r.l. Process and device for synchronization and codegroup identification in CDMA cellular communication systens
US8233462B2 (en) * 2003-10-15 2012-07-31 Qualcomm Incorporated High speed media access control and direct link protocol
US7742390B2 (en) * 2005-08-23 2010-06-22 Agere Systems Inc. Method and apparatus for improved long preamble formats in a multiple antenna communication system
CN1964222B (zh) 2005-11-11 2014-11-05 华为技术有限公司 无线中转通信系统及方法
CN1941665B (zh) 2005-09-30 2011-06-01 华为技术有限公司 基于中转站实现无线中转的方法
CN1960352A (zh) 2005-10-31 2007-05-09 华为技术有限公司 基于ofdma-fdd的无线中转通信系统及方法
CN1964221A (zh) 2005-11-11 2007-05-16 华为技术有限公司 无线中转通信正交频分复用接入系统及方法
CN101394219A (zh) 2007-09-18 2009-03-25 华为技术有限公司 发送与时分双工系统兼容的频分双工的帧的方法和装置
CN101453293A (zh) 2007-11-30 2009-06-10 华为技术有限公司 一种f-fdd的扩展传输方法和设备
EP2101459B1 (en) * 2008-03-12 2011-06-08 TELEFONAKTIEBOLAGET LM ERICSSON (publ) Method and apparatus for investigating whether a given signal is received in a given set of OFDMA resource elements
US9203564B2 (en) * 2008-10-20 2015-12-01 Qualcomm Incorporated Data transmission via a relay station in a wireless communication system
CN101741452B (zh) 2008-11-07 2013-09-25 华为技术有限公司 中继传输方法和网络节点
CN101754230B (zh) 2008-12-17 2012-09-05 华为技术有限公司 频分双工fdd系统中载波聚合方法及其装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1960209A (zh) * 2005-10-31 2007-05-09 上海原动力通信科技有限公司 频分双工模式下的通信方法及设备
WO2008070761A1 (en) * 2006-12-06 2008-06-12 Sr Télécom & Co, S.E.C. Half duplex frenquency division duplex scheduling
CN101106395A (zh) * 2007-08-15 2008-01-16 中兴通讯股份有限公司 控制信令和测量导频的发射方法
CN101286798A (zh) * 2008-04-17 2008-10-15 清华大学 可灵活配置的移动通信方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2408162A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106961739A (zh) * 2013-12-20 2017-07-18 射频数字信号处理公司 频分双工多输入输出无线网络中信道状态信息的获取方法
CN106961739B (zh) * 2013-12-20 2020-07-24 射频数字信号处理公司 频分双工多输入输出无线网络中信道状态信息的获取方法
WO2017020578A1 (zh) * 2015-07-31 2017-02-09 中兴通讯股份有限公司 Srs的指示发送方法、srs的发送方法和装置
WO2018126958A1 (zh) * 2017-01-05 2018-07-12 华为技术有限公司 传输数据的方法、网络设备和终端设备
US10931416B2 (en) 2017-01-05 2021-02-23 Huawei Technologies Co., Ltd. Data transmission method, network device, and terminal device
US11683134B2 (en) 2017-01-05 2023-06-20 Huawei Technologies Co., Ltd. Data transmission method, network device, and terminal device

Also Published As

Publication number Publication date
EP2408162A4 (en) 2012-04-25
CN102282822A (zh) 2011-12-14
CN102282822B (zh) 2013-11-06
EP2408162A1 (en) 2012-01-18
US8780769B2 (en) 2014-07-15
US20110317597A1 (en) 2011-12-29
EP2408162B1 (en) 2013-06-05

Similar Documents

Publication Publication Date Title
WO2010102450A1 (zh) 识别不同帧结构的方法、装置和系统
JP7227679B2 (ja) 時分割複信ワイヤレス通信システム
CN110266462B (zh) 发射机传输方法和由接收机通过未授权带信道执行的方法
US10440726B2 (en) Scaled symbols for a self-contained time division duplex (TDD) subframe structure
EP3026946B1 (en) Method for notifying and obtaining uplink/downlink configuration information, base station, and user equipment
JP6400671B2 (ja) 通信装置および方法
US8837397B2 (en) Apparatus and method for co-existence between different radio access technologies
CN106936558B (zh) 一种增强的探测参考信号映射的方法及装置
JP7043746B2 (ja) 通信装置、通信方法及びコンピュータプログラム
WO2014047927A1 (zh) 控制信息发送方法、接收方法和设备
EP3648536B1 (en) Method for transmitting and receiving downlink data and apparatus therefor
CN115226110A (zh) 用于无执照频谱的物联网设计
WO2014042373A1 (ko) 무선 통신 시스템에서 브로드캐스트 신호를 수신 또는 전송하기 위한 방법 및 이를 위한 장치
WO2016050196A2 (zh) 一种蜂窝通信中的laa传输的基站、ue中的方法和设备
KR20190038329A (ko) 통신 시스템에서 프리엠션의 지시 방법
US10609661B2 (en) Timing indication through DMRS/PBCH in different modes
KR20190082806A (ko) 기준 신호 전송 방법 및 통신 기기
CN104040920A (zh) 用于接收数据的方法和无线装置
US11750342B2 (en) Spatially multiplexing physical uplink control channel (PUCCH) and sounding reference signal (SRS)
WO2015072720A1 (ko) 간섭 정보를 전송하기 위한 방법 및 이를 위한 장치
CN111867038B (zh) 一种通信方法及装置
US11888623B2 (en) Multiplexing of HARQ and CSI on PUCCH
WO2014119865A1 (ko) 무선 통신 시스템에서 하향링크 제어 신호를 수신 또는 전송하기 위한 방법 및 이를 위한 장치
CN112771964A (zh) 用于v2x通信的带宽部分配置
CN113411172A (zh) 上行参考信号传输方法、用户终端及基站

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980119200.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09841319

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009841319

Country of ref document: EP