WO2018080125A1 - 절연층 제조방법 및 다층인쇄회로기판 제조방법 - Google Patents

절연층 제조방법 및 다층인쇄회로기판 제조방법 Download PDF

Info

Publication number
WO2018080125A1
WO2018080125A1 PCT/KR2017/011739 KR2017011739W WO2018080125A1 WO 2018080125 A1 WO2018080125 A1 WO 2018080125A1 KR 2017011739 W KR2017011739 W KR 2017011739W WO 2018080125 A1 WO2018080125 A1 WO 2018080125A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
formula
alkali
metal
manufacturing
Prior art date
Application number
PCT/KR2017/011739
Other languages
English (en)
French (fr)
Inventor
정우재
경유진
최병주
최보윤
이광주
정민수
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170136513A external-priority patent/KR102038106B1/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2018559357A priority Critical patent/JP6732047B2/ja
Priority to CN201780031167.6A priority patent/CN109156084B/zh
Publication of WO2018080125A1 publication Critical patent/WO2018080125A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits

Definitions

  • the present invention relates to a method for manufacturing an insulating layer and a method for manufacturing a multilayer printed circuit board. More specifically, it can be manufactured in a faster and simpler method to improve the efficiency of the process, to prevent physical damage to the insulating layer, and to easily control the thickness of the insulating layer manufacturing method and the insulating layer manufacturing method It relates to a method for manufacturing a multilayer printed circuit board using an insulating layer obtained from the.
  • Multi-layer printed circuit board is capable of three-dimensional wiring from the two-dimensional wiring, particularly in the industrial electronic field "standing ICX integrated ci rcui t), LSI (l arge scal e integrat ion) such as the ability miniaturization of electronic devices with enhanced degree of integration of elements. It is advantageous for light weight, high functionality, structural electrical function integration, assembly time reduction and cost reduction.
  • the present invention is to provide a method for manufacturing an insulating layer that can be manufactured in a faster and simpler method to improve the efficiency of the process, to prevent physical damage of the insulating layer, and to easily control the thickness.
  • the present invention is to provide a method for manufacturing a multilayer printed circuit board using the insulating layer obtained from the insulating layer manufacturing method.
  • the step of sealing the conductor wiring formed with a metal projection on the surface with a polymer resin layer containing an alkali-soluble resin and a thermosetting binder Primary curing the polymer resin worm; Etching the surface of the cured polymer resin layer with an aqueous alkali solution to expose metal projections 3 ⁇ 4; And second curing the polymer resin layer in the exposed state of the metal protrusions.
  • a method of manufacturing a multilayer printed circuit engine including the step of forming a metal pattern worm on the insulating worm manufactured by the method for manufacturing the insulating layer.
  • the step of sealing the conductor wiring formed with a metal projection on the surface with a polymer resin layer containing an alkali-soluble resin and a thermosetting binder Primary curing the polymer resin layer; Etching the surface of the cured polymer resin layer with an aqueous alkali solution to expose metal protrusions; And the polymer resin layer is secondary to the metal protrusions exposed.
  • a curing step there may be provided a method for producing an insulating worm.
  • the present inventors when using the method of manufacturing an insulating layer of the embodiment ⁇ by exposing the metal protrusions sealed by the polymer resin layer through chemical etching with an aqueous alkali solution, it is possible to prevent physical damage of the insulating layer, insulation Not only can the layer thickness be easily adjusted to a desired range, but also an insulating layer can be manufactured through an easier process in a faster time, and the experiment has been confirmed that the efficiency of the process is improved and the invention has been completed.
  • the metal protrusions may be easily exposed to the surface of the insulating insect.
  • the insulating layer manufacturing method of the embodiment comprises the steps of sealing the conductor wiring formed with metal projections on the surface with a polymer resin layer including an alkali-soluble resin and a thermosetting binder; Primary curing the polymer resin layer; Etching the hardened polymer resin surface with an alkaline aqueous solution to expose metal protrusions; And second curing the polymer resin layer in the state where the metal protrusions are exposed.
  • the conductor wiring in the step of sealing the conductor wiring having a metal protrusion on the surface with a polymer resin layer including an alkali-soluble resin and a thermosetting binder, the conductor wiring may be formed with a metal protrusion on the surface.
  • the method of forming the metal protrusions on the conductor wiring surface are not particularly limited.
  • the plating process to the opening part of the photosensitive resin filling pattern, the adhesion process using an adhesive agent, etc. can be used.
  • plating process for the opening of the photosensitive resin layer pattern include laminating a photosensitive resin layer on a conductor wiring; Forming a pattern on the photosensitive resin layer; And a metal protrusion forming method including electroplating.
  • the photosensitive resin layer may exhibit photosensitive and alkali solubility. Accordingly, the light is irradiated to the photosensitive resin layer Deformation of the molecular structure may proceed by the exposure process, and the resin layer may be etched or removed by the developing process of contacting the alkaline developer.
  • a portion of the photosensitive resin is selectively exposed and then alkali developed, the exposed portion is not developed, and only the unexposed portion may be selectively etched and removed. In this manner, a part of the photosensitive resin layer that remains as it is without alkali development by exposure is referred to as a photosensitive resin pattern.
  • a method of exposing the photosensitive resin layer may be performed by contacting a photomask formed with a predetermined pattern on the photosensitive resin layer and irradiating ultraviolet rays or by imaging the predetermined pattern-all projection objective lens included in the mask.
  • ultraviolet rays may be selectively exposed using a method such as directly irradiating ultraviolet rays or irradiating ultraviolet rays using a laser diode as a light source.
  • a method of ultraviolet irradiation conditions irradiation with the light quantity of 5 mJ / cuf-600 mJ / citf is mentioned.
  • an example of a method of developing alkali after exposure to the photosensitive resin impregnation may include a method of treating an alkali developer.
  • the alkali developer are not particularly limited, for example, potassium hydroxide , sodium hydroxide, sodium carbonate. It is possible to control the concentration and silver of alkaline aqueous solutions such as potassium carbonate, sodium phosphate, sodium silicate, ammonia, tetramethylammonium hydroxide, and amines. Alkaline developer sold as a product can also be used.
  • examples of the plating method may include a dry deposition process or a wet deposition process, and specific examples of the dry deposition process may include vacuum deposition, ion plating, and sputtering methods.
  • examples of specific wet deposition processes include electroless plating of various metals, electroless copper plating is common, and before or after deposition. It may further comprise a harmonic treatment process.
  • dry and wet methods There are dry and wet methods according to the conditions in the above roughening process. Examples of the dry method are vacuum, atmospheric pressure. Gas-specific plasma treatment, gas-specific
  • Exc i mer UV treatment etc.
  • a desmear treatment can be used. Through such a roughening process, the surface roughness of the metal thin film may be increased to improve adhesion to the metal deposited on the metal thin film.
  • the method may further include removing the photosensitive resin layer after the electroplating.
  • the method may further include removing the photosensitive resin layer after the electroplating.
  • the photoresist stripping solution may be treated, a desmear process, a plasma etching, or the like may be performed, and the above method may be commonly used.
  • metal protrusions are formed on the surface of a passive element such as mi ce or an active element such as a semiconductor chip, and then the conductor wiring is formed on the opposite side of the formed metal protrusion using an insulating adhesive or the like.
  • a method of adhering to the surface can be used.
  • the method of forming the metal projection on the surface of the passive element or the active element can be used as the method of the plating step for the opening of the photosensitive resin layer pattern described above. For example, after forming a photosensitive resin layer pattern on the surface of a passive element or an active element. The method of plating a metal on the opening part of a pattern can be used.
  • the polymer resin layer has a thickness of 1 to 500 urn, or 3 ⁇ to 500 GPa, or 3 GPa to 200 ⁇ , or 1 GP to 60. Or 5 ⁇ ⁇ to 30, and the metal protrusion may have a height of 1 « ⁇ 20 and a cross-sectional diameter of 5 ⁇ to 30 ⁇ .
  • the cross-sectional diameter is may cut the metal protrusion in a direction perpendicular to the height direction of the metal projections means that the diameter, or the largest diameter of the cross section.
  • the shape of the metal projection is a cylinder lamp, a truncated cone, a polygonal lamp, a polygonal truncated cone. Like an inverted cone or an inverted polygon Can be.
  • the metal component included in the metal protrusions are not particularly limited, and for example, a conductive metal such as copper or aluminum can be used.
  • the conductor wiring having metal projections on the surface may be sealed with a polymer resin layer. More specifically, the conductor wiring may exist in a state formed on a substrate including a semiconductor material such as a circuit board, a sheet, a multilayer printed wiring board, and the like. In such a state that the conductor wiring is present on the substrate, the conductor wiring can be sealed by a method of forming a polymer resin layer on the substrate.
  • Examples of the method of forming the polymer resin layer on the substrate are not particularly limited.
  • the polymer resin composition for forming the polymer resin layer is directly coated on the substrate, or the polymer resin composition is applied on the carrier film.
  • a method of laminating the substrate and the polymer resin layer may be used.
  • all the surfaces of the conductor wiring may contact the polymer resin layer except for the portion in contact with the substrate formed below and the portion in contact with the metal protrusion.
  • all surfaces of the metal protrusions formed on the surface of the conductor wiring may also be sealed by the polymer resin layer to be in contact with the polymer resin layer.
  • the polymer resin layer means a film formed through drying of a polymer resin composition including an alkali-soluble resin and a thermosetting binder.
  • the polymer resin layer may include a thermosetting bar ⁇ 1 part by weight to 150 parts by weight, or 10 parts by weight to 100 parts by weight, or 20 parts by weight to 50 parts by weight based on 100 parts by weight of the alkali-soluble resin.
  • a thermosetting bar ⁇ 1 part by weight to 150 parts by weight, or 10 parts by weight to 100 parts by weight, or 20 parts by weight to 50 parts by weight based on 100 parts by weight of the alkali-soluble resin.
  • thermosetting binder is a thermosetting functional group, oxetanyl group, cyclic ether group, cyclic thio ether group, cyanide group, maleimide group and It may include one or more functional groups and epoxy groups selected from the group consisting of benzoxazine groups.
  • thermosetting binder must include an epoxy group, and in addition to the epoxy group, an oxetanyl group, a cyclic ether group, a cyclic thio ether group, a cyanide group, a maleimide group, a benzoxazine group or these
  • the thermosetting binder may form a crosslinking bond with an alkali-soluble resin or the like by thermosetting to secure heat resistance or mechanical properties of the insulating layer.
  • thermosetting binder the polyfunctional resin compound containing two or more functional groups mentioned above in a molecule
  • numerator can be used.
  • the polyfunctional resin compound may include a resin including two or more cyclic ether groups and / or cyclic thioether groups (hereinafter referred to as cyclic (thio) ether groups) in molecular weight.
  • thermosetting binder including two or more cyclic (thio) ether groups in the molecule includes a compound having at least two or more of three or four or five membered cyclic ether groups or cyclic thioether groups in the molecule. can do.
  • the polyfunctional resin compound is a polyfunctional epoxy compound containing at least two or more epoxy groups in a molecule, a polyfunctional oxetane compound containing at least two or more oxetanyl groups in a molecule, or episulfate containing two or more thioether groups in a molecule
  • a feed resin a polyfunctional cyanate ester compound containing at least two or more cyanide groups in a molecule, or a multifunctional benzoxazine compound containing at least two or more benzoxazine groups in a molecule.
  • bisphenol-A epoxy resin hydrogenated bisphenol-A epoxy resin, brominated bisphenol-A epoxy resin, bisphenol F-type epoxy resin, bisphenol S-type epoxy resin, novolak-type epoxy resin, for example Phenolic novolac epoxy resin, cresol novolac type Epoxy resins, N-glycidyl epoxy resins, novolac epoxy resins of bisphenol A, bixylenol epoxy resins, biphenol epoxy resins, chelate epoxy resins, glyoxal epoxy resins.
  • Phenolic novolac epoxy resin cresol novolac type Epoxy resins
  • N-glycidyl epoxy resins novolac epoxy resins of bisphenol A
  • bixylenol epoxy resins biphenol epoxy resins
  • chelate epoxy resins glyoxal epoxy resins.
  • Amino-group-containing epoxy resin rubber modified epoxy resin, dicyclopentadiene phenolic epoxy resin, diglycidyl phthalate resin, heterocyclic epoxy resin, tetraglycidyl xylenoylethane resin, silicon-modified epoxy resin, ⁇ -caprolactone Modified epoxy resins; and the like.
  • atoms such as inner may be used for the purpose of imparting flame retardancy.
  • thermosetting these epoxy resins By thermosetting these epoxy resins, the adhesiveness of a cured film, solder heat resistance, electroless plating resistance, etc. improve the characteristic.
  • polyfunctional oxetane compound bis [(3-methyl- 3-oxetanylmethoxy) methyl] ether, bis [(3-ethyl-3-oxetanyl methoxy) methyl] ether, 1, 4-bis [( 3-methyl-3-oxetanylmethoxy) methyl] benzene, 1,4-bis [(3-ethyl-3-oxetanylmethoxy) methyl] benzene, (3-methyl-3-oxetanyl) methylacrylic Latex, (3-ethyl-3-3-oxetanyl) methylacrylate; Oxetane alcohols other than polyfunctional oxetanes such as (3-methyl-3 oxetanyl) methyl methacrylate and (3-ethyl-3-oxetanyl) methyl methacrylate and oligomers or copolymers thereof And an etherified product of a novolak resin, a poly ( ⁇ -hydroxy)
  • the copolymer etc. of the unsaturated monomer which has an oxetane ring, and an alkyl (meth) acrylate are mentioned.
  • the polyfunctional cyanate ester compound include bisphenol A type cyanate ester resin, bisphenol E type cyanate ester resin, bisphenol F type cyanate ester resin,.
  • Examples of the multifunctional maleimide compound include 4, 4'—diphenylmethane Bismaleimide (4 , 4'—diphenylmethane bismaleimide), phenylmethane bismaleimide, m_ phenylmethane bismaleimide, m-phenylmethane bismaleimide, bisphenol A diphenyletherbismaleimide (bisphenol A di henyl ether bismaleimide), 3,3'-dime-5,5'-diethyl— 4,4'-diphenylmethane bismaleimide (3,3 ' ⁇ dimethy 1-5, 5' -diethyl -4, 4 '-diphenylmethane bismaleimide), 4-methyl ⁇ 1, 3' phenylene bismaleimide (4_methyl— l, 3_phenylene bismaleimide), 1,6'- bismaleimide- (2,2,4—trimethyl) nucleic acid ( 1,6 '- ⁇ 311131 ⁇ 11 ⁇ 0
  • multifunctional benzoxazine compounds include bisphenol A benzoxazine resins, bisphenol F benzoxazine resins, phenolphthalein benzoxazine resins, thiodiphenol type benzoxazine resins, dicyclopentadiene type benzoxazine resins, and 3,3 '.
  • -(Methylene-1, 4-diphenylene) bis (3, 4-dihydro-2H-1, 3 ⁇ benzoxazine (3, 3 '-(methylene— 1, 4- di pheny 1 ene) bis (3 , 4-di hydr o ⁇ 2H ⁇ 1, 3-benzoxaz i ne) resin, and the like.
  • More specific examples of the multi-functional resin compound Kukdo Chemical Co., Ltd.
  • YDCN-500-80P the phenol novolak-type cyanide ester resin PT-30S of Lonza company, the phenylmethane type maleimide resin BMI-2300 of Daiwa Corporation, P-d-type benzoxazine resin of Shikoku Corporation, etc. are mentioned.
  • the alkali-soluble resin is an acidic functional group; And at least two cyclic imide functional groups each substituted with an amino group.
  • the acidic functional group are not particularly limited, but may include, for example, a carboxyl group or a phenol group.
  • the alkali-soluble resin may include at least two acidic functional groups to exhibit higher alkali developability than the polymer resin layer, and may control the development speed of the polymer resin layer.
  • the cyclic imide functional group substituted with the amino group includes an amino group and a cyclic imide group in the functional group structure, and may be included in at least two or more.
  • the alkali-soluble resin contains at least two or more cyclic imide functional groups substituted with the amino group. Since the alkali-soluble resin has a structure in which a large number of active hydrogens contained in the amino group are present, the reaction resistance with the thermosetting binder is improved during curing, thereby increasing the curing density and improving heat resistance reliability and Improve mechanical properties ⁇
  • the polymer resin layer containing the alkali-soluble resin may increase the interfacial adhesion with the metal layer stacked thereon.
  • the cyclic imide functional group substituted with the amino group may include a functional group represented by Formula 1 below.
  • is an alkylene group or alkenyl group of 1 to 10, or 1 to 5, or 1 to 3 carbon atoms, and means a bonding point.
  • the alkylene group is a divalent functional group derived from alkane, and is, for example, a straight, branched or cyclic methylene group. Ethylene group, propylene group, isobutylene group, sec-butylene group, tert-butylene group, pentylene group, nucleosilane group and the like.
  • One or more hydrogen atoms included in the alkylene group may be substituted with another substituent, and examples of the substituent include an alkyl group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, an alkynyl group having 2 to 10 carbon atoms, and 6 carbon atoms To aryl group having 12 to 12 carbon atoms . Heteroaryl group of 12 to 12, an arylalkyl group of 6 to 12 carbon atoms and a halogen atom. Cyanogi.
  • substituted means that another functional group is bonded instead of a hydrogen atom in the compound, and the position to be substituted is not limited to a position where the hydrogen atom is substituted, that is, a position where a substituent may be substituted, and two or more. When substituted, two or more substituents may be the same or different from each other.
  • the alkenyl group means that the alkylene group contains at least one carbon-carbon double bond in the middle or terminal.
  • cetylene, propylene, butylene, nucleene, acetylene and the like can be mentioned.
  • At least one hydrogen atom of the alkenyl group may be substituted with the same substituent as in the alkylene group.
  • the cyclic imide functional group substituted with the amino group may be a functional group represented by Formula 2 below.
  • Formula 2 Equation means a bonding point.
  • the alkali soluble resin is as described above.
  • Including a cyclic imide functional group substituted with an amino group together with the acidic functional group specifically, an acidic functional group may be bonded to at least one end of the cyclic imide functional group substituted with the amino group.
  • the cyclic imide functional group and the acidic functional group substituted with the amino group may be bonded through a substituted or unsubstituted alkylene group or a substituted or unsubstituted arylene group, and for example, a cyclic imide substituted with the amino group.
  • An acidic functional group may be bonded to a terminal of an amino group included in the functional group by a substituted or unsubstituted alkylene group or a substituted or unsubstituted arylene group, and the imide included in the cyclic imide functional group substituted with the amino group.
  • An acidic functional group may be bonded to a terminal of the functional group via a substituted or unsubstituted alkylene group or a substituted or unsubstituted arylene group. More specifically, the terminal of the amino group included in the cyclic imide functional group substituted with the amino group means a nitrogen atom included in the amino group in Formula 1 and / or the cyclic imide functional group substituted with the amino group.
  • the terminal of the imide functional group included may mean a nitrogen atom included in the cyclic imide functional group in Chemical Formula 1.
  • the alkylene group is a divalent functional group derived from alkane, and is, for example, a linear, branched or cyclic group, such as a methylene group, an ethylene group, a propylene group, an isobutylene group, or a sec-butylene group. It may be ter t- butylene group, pentylene group, nucleene group.
  • One or more hydrogen atoms included in the alkylene group may be substituted with another substituent, and examples of the substituent include an alkyl group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, an alkynyl group having 2 to 10 carbon atoms, and 6 carbon atoms To aryl group of 12.
  • C2-C12 heteroaryl groups C6-C12 arylalkyl groups, halogen atoms, cyano groups, amino groups, amidino groups, nitro groups, amide groups, carbonyl groups, hydroxy groups, sulfonyl groups, carbamate groups, C1-C12 And 10 alkoxy groups.
  • the arylene group may be, for example, a cyclic group, a phenyl group, a naphthyl group, or the like as a divalent functional group derived from arene.
  • One or more hydrogen atoms included in the arylene group may be substituted with another substituent, and examples of the substituent include an alkyl group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, an alkynyl group having 2 to 10 carbon atoms, and 6 carbon atoms
  • Examples of the method for producing the alkali-soluble resin are not particularly limited, for example, a cyclic unsaturated imide compound; And amine compounds.
  • the cyclic unsaturated imide compound; And at least one of the amine compounds may include an acidic functional group substituted at the terminal. That is, an acidic functional group may be substituted at the terminal of the cyclic unsaturated imide compound, the amine compound, or both of these two compounds. Details of the acidic functional group are as described above.
  • the said cyclic imide compound is a compound containing the above-mentioned cyclic imide functional group
  • the said cyclic unsaturated imide compound is a cyclic imide compound It means a compound containing at least one unsaturated bond, ie double bond or triple bond in the.
  • the alkali soluble resin may be prepared through reaction of a double bond or triple bond included in an amino group included in the amine compound and a cyclic unsaturated imide compound.
  • Examples of the weight ratio of reacting the cyclic unsaturated imide compound and the amine compound are not particularly limited. For example, 10 parts by weight to 80 parts by weight of the amine compound is used based on 100 parts by weight of the cyclic unsaturated imide compound. Or by mixing to 30 parts by weight to 60 parts by weight.
  • Examples of the cyclic unsaturated imide compound include N-substituted maleimide compounds.
  • N-substituted means that a functional group is bonded to a hydrogen atom bonded to a nitrogen atom included in a maleimide compound, and the N-substituted maleimide compound is monofunctional N-substituted maleimide depending on the number of N-substituted maleimide compounds.
  • Compounds and polyfunctional N-substituted maleimide compounds are examples of the cyclic unsaturated imide compound.
  • the monofunctional N-substituted maleimide compound is a compound in which a functional group is substituted for a nitrogen atom included in one maleimide compound, and the polyfunctional N-substituted maleimide compound is a nitrogen atom contained in each of two or more maleimide compounds.
  • a functional group substituted with a nitrogen atom included in the maleimide compound is various known aliphatic groups.
  • An alicyclic or aromatic functional group may be included without limitation, and the functional group substituted with the nitrogen atom may include a functional group in which an acidic functional group is substituted with an aliphatic, alicyclic or aromatic functional group. Details of the acidic functional group are as described above.
  • the monofunctional N-substituted maleimide compound examples include 0-methylphenylmaleimide 'p-hydroxyphenylmaleimide. p-carboxyphenyl maleimide, dodecyl maleimide, etc. are mentioned.
  • the functional group that mediates the bond between nitrogen atoms included in each compound may include various known aliphatic, cycloaliphatic or aromatic functional groups, and specific examples include 4,4'-diphenylmethane functional groups. Can be used.
  • the functional group substituted with the nitrogen atom may include a functional group in which an acidic functional group is substituted with an aliphatic, alicyclic or aromatic functional group. Details of the acidic functional group are as described above.
  • polyfunctional N-substituted maleimide compound examples include 4,4'-diphenylmethane bismaleimide (BMI-1000, BMI-1100, etc.) of Daiwakasei, phenylmethane bismaleimide, m-phenylene methane bismaleim Mid, bisphenol A diphenylether bismaleimide, 3,3'-dimethyl-5,5'-diethyl-4,4'-diphenylmethane bismaleimide, 4-methyl-1,3—phenylene bismaleimide Mid, 1,6'-bismaleimide- (2.2, 4-trimethyl) nucleic acid, etc. are mentioned.
  • the amine compound may be a primary amine compound containing at least one amino group (-N3 ⁇ 4) in the molecular structure, more preferably a carboxylic acid compound substituted with an amino group, a polyfunctional amine compound including two or more amino groups or these Mixtures of these may be used.
  • the key-carboxylic acid compound is a compound containing a carboxylic acid ( -C00H ) functional group in a molecule. Depending on the type of hydrocarbon bonded to the carboxylic acid functional group, it may include all aliphatic, alicyclic or aromatic carboxylic acids. While the carboxylic acid compound substituted with the amino group includes a plurality of carboxylic acid functional groups which are acidic functional groups in the alkali-soluble resin. The developability of the alkali-soluble resin can be improved.
  • the alkali-soluble resin prepared through reaction of the carboxylic acid compound substituted with the amino group and the cyclic unsaturated imide compound has an acid value of 50 mgKOH / g to 250 mgKOH / g obtained by K0H titration. Or 70 mgKOH / g to 200 mgKOH / g.
  • the example of the method of measuring the acid value of the said alkali-soluble resin is not restrict
  • alkaline soluble resin as a sample was taken, dissolved in 50 g of dimethylformaldehyde (DMF) solvent, and then added with a marker, followed by titration with a base solvent.
  • the acid value was determined in mg KOH / g by the amount of the base solvent used at the time of titration completion.
  • the acid value of the alkali-soluble resin When the acid value of the alkali-soluble resin is excessively reduced to less than 50 mgKOH / g, the developability of the alkali-soluble resin is low, it may be difficult to proceed with the development process. In addition, when the acid value of the alkali-soluble resin is excessively increased to more than 250 mgK0H / g, phase separation with other resin may occur due to increased polarity.
  • substituted means that another functional group is bonded instead of a hydrogen atom in the compound, and the position at which the amino group is substituted in the carboxylic acid compound is not limited as long as the position at which the hydrogen atom is substituted, and the number of amino groups to be substituted is one or more. Can be.
  • carboxylic acid compound substituted with the amino group examples include 20 kinds of ⁇ -amino acid, 4-aminobutanoic acid, 5-aminopentanoic acid, 6-aminonucleic acid, its aminoheptanoic acid, 8— known as a protein raw material.
  • the polyfunctional amine compound including two or more amino groups is a compound containing two or more amino groups (- ⁇ 2 ) in the molecule, and may include all aliphatic, alicyclic or aromatic polyfunctional amines depending on the type of hydrocarbon bonded to the amino group. have. Through the polyfunctional amine compound including two or more amino groups, flexibility, toughness, copper adhesion, etc. of the alkali-soluble resin may be improved.
  • polyfunctional amine compound containing two or more amino groups include 1,3-cyclonucleic acid diamine, 1,4-cyclonucleic acid diamine, 1,3-bis (aminomethyl) -cyclonucleic acid, and 1,4-bis (Aminomethyl) -cyclonucleic acid, bis (aminomethyl) —norbornene, octahydro ⁇ 4, 7-methanoindene-1 (2), 5 (6) -dimethanamine, 4, 4'-methylenebis ( Cyclonuxylamine), 4,4'-methylenebis (2- Methylcyclonuxylamine), isophoronediamine, 1,3-phenylenediamine, 1,4-phenylenediamine, 2., 5-dimethyl-1,4-phenylenediamine, 2,3,5,6,- Tetramethyl-1,4-phenylenediamine, 2,4,5,6-tetrafluoro-1,3-phenylenediamine, 2,3,5,6-tetrafluoro
  • Alkali soluble resin is a repeating unit represented by the following formula (3); And at least one repeating unit represented by Formula 4 below.
  • R 2 is a direct bond, an alkylene group having 1 to 20 carbon atoms, an alkenyl group having 1 to 20 carbon atoms, or an arylene group having 6 to 20 carbon atoms, and denotes a point of attachment.
  • 3 ⁇ 4 is a direct bond, an alkylene group of 1 to 20 carbon atoms, an alkenyl group of 1 to 20 carbon atoms, or an arylene group of 6 to 20 carbon atoms
  • R 4 is -H, -OH, -NR 5 R 6 , Halogen, or an alkyl group having 1 to 20 carbon atoms
  • 3 ⁇ 4 and R 6 may be each independently hydrogen, an alkyl group having 1 to 20 carbon atoms, or an aryl group having 6 to 20 carbon atoms, and means a bonding point.
  • 3 ⁇ 4 is phenylene
  • 3 ⁇ 4 is phenylene
  • R 4 may be -0H.
  • the alkali-soluble resin is a repeating unit represented by the formula (3); And in addition to the repeating unit represented by the formula 4 may further include a vinyl-based repeating unit ⁇ .
  • the vinyl repeating unit is at least in the molecule.
  • examples of the vinyl monomer are not particularly limited, and for example, ethylene, propylene, isobutylene, butadiene, styrene, acrylic acid, methacrylic acid Maleic anhydride, maleimide, and the like.
  • a repeating unit represented by Chemical Formula 3 described above; And an alkali-soluble resin each containing at least one or more repeating units represented by Formula 3 includes a polymer comprising a repeating unit represented by the following Formula 5, an amine represented by the following Formula 6, and an amine represented by the following Formula 7. It can be prepared as.
  • polymer including the repeating unit represented by Chemical Formula 5 are not particularly limited, for example, Cray valley SMA, Polyscope Xiran, Solenis Scr ipset, Kuraray I sobam, Chevron Phillips Chemical Polyanhydr ide resin , Mai dene of Lindau Chemicals, and the like.
  • repeating unit represented by the above formula (3); And an alkali-soluble resin each containing at least one or more repeating units represented by Formula 3 may be prepared by reaction of a compound represented by Formula 8 and a compound represented by Formula 9 below.
  • R 2 to R 4 are the same as described above in Chemical Formulas 3 and 4.
  • the said alkali-soluble resin can use the well-known conventional carboxyl group-containing resin or phenol group containing resin which contains a carboxyl group or a phenol group in a molecule
  • a phenol group containing resin can be mixed and used for the said carboxyl group-containing resin or the said carboxyl group-containing resin.
  • carboxyl group-containing resin More specific examples of the carboxyl group-containing resin include CCR-
  • novolak resins such as a phenol novolak resin, a cresol novolak resin, bisphenol F (BPF) novolak resin, or 44 '-(1- (4— (2— (4-hydroxyphenyl) propan-2-yl) phenyl) ethane-1 1-diyl) diphenol [4, 4 '-(1- (4- (2- (4-)
  • Bisphenol A resins may be used alone or in combination.
  • the polymer resin is a thermosetting catalyst, an inorganic filler, a leveling agent, a dispersant. It may further include one or more additives selected from the group consisting of a release agent and a metal adhesion promoter.
  • thermosetting catalyst serves to promote thermosetting of the thermosetting binder.
  • thermosetting catalyst for example, imidazole, 2-methylimidazole, 2-ethylimidazole, 2-ethyl- 4-methylimidazole, 2-phenylimidazole, and 4 nilimimidazole.
  • Imidazole derivatives such as 1-cyanoethyl-2-phenylimidazole and 1- (2-cyanoethyl) -2-ethyl-4-methylimidazole; Amines such as dicyandiamide, benzyldimethylamine, 4- (dimethylamino) - ⁇ , ⁇ -dimethylbenzylamine, 4-methoxy- ⁇ , ⁇ -dimethylbenzylamine, 4-methyl ⁇ ⁇ , ⁇ -dimethylbenzylamine Compound; Hydrazine compounds such as adipic dihydrazide and sebacic acid dihydrazide; Phosphorus compounds, such as a triphenylphosphine, etc. are mentioned.
  • 2MZ-A, 2MZ-0, 2PHZ, 2P4BHZ, 2P4MHZ all brand names of imidazole compound
  • U-CAT3503N and UCAT3502T all brand names of block isocyanate compounds of dimethylamine manufactured by Shikoku Kasei Kogyo Co., Ltd.
  • DBU, DBN, U-CATS A102, U-CAT5002 all bicyclic amidine compounds and salts thereof
  • the present invention is not limited thereto, and may be a thermosetting catalyst of an epoxy resin or an oxetane compound, or promote reaction of an epoxy group and / or an oxetanyl group and a carboxyl group, or may be used alone or in combination of two or more thereof. .
  • the compound which functions also as these adhesive imparting agents can be used together with the said thermosetting catalyst.
  • the inorganic filler include silica, barium sulfate, barium titanate, talc, clay, magnesium carbonate, calcium carbonate, aluminum oxide, aluminum hydroxide, mica or two or more kinds thereof.
  • the inorganic filler examples are not limited thereto, but in order to achieve high rigidity of the polymer resin layer, the inorganic filler may be 100 parts by weight or more, based on 100 parts by weight of all the resin components contained in the polymer resin. Or 100 parts by weight to 600 parts by weight, or 100 parts by weight to 500 parts by weight. ⁇
  • release agent examples include polyalkylene waxes such as low molecular weight polypropylene and low molecular weight polyethylene, ester wax, carnauba wax, paraffin wax and the like.
  • the metal adhesion promoter may be a material that does not cause problems in surface alteration or transparency of the metal material, for example, a silane coupling agent or an organometallic coupling agent.
  • the leveling agent serves to remove the surface of the popping or craters during the film coating, for example, BYK-380N, BYK-307, BYK-378, BYK-350 and the like by BYK-Chemi e GmbH.
  • the polymer resin layer may further include a resin or elastomer having a molecular weight of 5000 g / mol or more that can cause phase separation. Consequently, it is possible, be cured of the water conditioning process of the polymer resin layer. Examples of the method for measuring the molecular weight of the resin or the elastomer having a molecular weight of 5000 g / mol or more are not particularly limited, and for example, by the GPC method .
  • the weight average molecular weight of the polystyrene conversion measured In the process of measuring the weight average molecular weight of polystyrene conversion measured by the GPC method, a detector and an analytical column such as a conventionally known analytical device and a differential refractive index detector (Refract ive Index Detector) can be used. Temperature conditions, solvents, f low rate can be applied. Specific examples of the measurement conditions include a temperature of 30 ° C, chloroform solvent (Chloroform) and f low rate of 1 mL / min.
  • a detector and an analytical column such as a conventionally known analytical device and a differential refractive index detector (Refract ive Index Detector) can be used.
  • Temperature conditions, solvents, f low rate can be applied. Specific examples of the measurement conditions include a temperature of 30 ° C, chloroform solvent (Chloroform) and f low rate of 1 mL / min.
  • the polymer resin layer may further include an alkali-soluble water and photoinitiator comprising a thermosetting resin binder or a photoreactive unsaturated group containing a photo-banung unsaturated group in order to impart photocurable properties to the polymer resin layer.
  • an alkali-soluble water and photoinitiator comprising a thermosetting resin binder or a photoreactive unsaturated group containing a photo-banung unsaturated group in order to impart photocurable properties to the polymer resin layer.
  • the thermosetting binder including the photo-banung unsaturated group, the alkali-soluble resin including the photoreactive unsaturated group and the photoinitiator are not particularly limited, and various compounds used in the art related to the photocurable resin composition may be used without limitation.
  • the content of the photoinitiator contained in the polymer resin layer may be less than 0.01% by weight based on the total weight of the polymer resin layer.
  • the content of the photoinitiator contained in the polymer resin is less than 0.01% by weight based on the total weight of the polymer resin layer.
  • the content of the photoinitiator contained in the polymer resin layer is very small, it may mean that the photoinitiator is not included at all. As a result, the interfacial desorption property between the insulating layer and the conductive layer which can be generated by the photoinitiator can be reduced. The adhesion and durability of the insulating layer can be improved.
  • the insulating layer manufacturing method of the embodiment may include the step of primary curing the high, molecular resin worms.
  • the step of curing the polymer resin layer examples of the specific curing method is not particularly limited, and any thermosetting or photocuring method may be used without limitation.
  • the ester in the polymer resin layer A backbone containing a bond can be formed.
  • the method of photocuring through acrylic resin which acrylic acid is ester-bonded, or thermosetting so that ester bond may be formed by reaction of carboxylic acid and an epoxy is mentioned.
  • thermosetting conditions are not limited, and may be performed by adjusting preferred conditions according to the etching method of the polymer resin layer described later.
  • the first curing step of the polymer resin layer may be performed at a temperature of 50 ° C. to 150 ° C. for 0.1 hour to 2 hours.
  • the thermal curing silver degree of the polymer resin worm is too low or the thermal curing time is short, the polymer resin layer may be excessively damaged by the stripping solution, the thermal curing temperature of the polymer resin layer is high, or the thermal curing time is long. If it is, the etching of the polymer resin layer by the stripping solution may be difficult to proceed.
  • the insulating layer manufacturing method of the embodiment may include the step of exposing the metal projection by etching the cured polymer resin layer surface with an aqueous alkali solution. As the surface of the cured polymer resin layer is etched with an aqueous alkali solution to expose the metal protrusions, electrical signals may be connected to the conductor wiring sealed inside the cured polymer resin layer through the exposed metal protrusions.
  • Exposure of the metal protrusions described above may be performed through etching with an aqueous alkali solution.
  • the alkaline aqueous solution may have a temperature of 10 ° C to 100 ° C, or 25 ° C to 60 ° C and a concentration of 1% to 10%, or 1% to 5%, more specifically a photoresist stripping solution Can be used.
  • the alkaline aqueous solution may etch away the polymer resin layer by breaking the ester bond in the polymer resin layer in which the main chain including the ester bond is formed through the primary curing.
  • the concentration and temperature of the alkaline aqueous solution it is possible to control the etching rate of the polymer resin layer by the alkaline aqueous solution, while maintaining the etching rate of the appropriate level within the above range while ensuring the process efficiency easily polymer
  • the thickness of the resin layer can be adjusted.
  • the alkaline aqueous solution is a metal such as potassium hydroxide, sodium hydroxide
  • An aqueous solution of hydroxide can be used, and commercially available products such as Atotech's Res istr ip product family, Oalchem's ORC-731, 0RC-723K, 0RC—740, and SLF-6000 are also available.
  • Etching by the alkaline aqueous solution may proceed from the surface of the cured polymer resin layer.
  • the cured polymer resin layer surface means an area in which the polymer resin layer sealing the conductor wiring with metal protrusions on the surface is in contact with air, and the conductor wiring with metal protrusions on the surface from the cured polymer resin layer surface. As the etching proceeds into the polymer resin filling the sealing, the metal protrusions may be exposed.
  • the alkali aqueous solution may contact the surface of the cured polymer resin layer.
  • the alkaline aqueous solution can be contacted to the surface of the polymer resin layer through a method such as spraying through a spray.
  • the insulating layer manufacturing method of the embodiment may include the step of second curing the polymer resin layer in a state in which the metal projection is exposed. Through the secondary curing step, the chemical resistance of the insulating layer finally manufactured through the secondary curing step can be improved.
  • post-cure stage of the polymer resin may proceed, at a temperature of 150 ° C to 250 ° C 0. 1 to 2 hours.
  • the conductor wiring may be present in a state formed on a substrate including a semiconductor material such as a circuit board, a sheet, a multilayer printed wiring board, and the like.
  • the substrate under the conductor wiring may be removed as necessary, and the substrate may be in an adhesive or adhesive state with the polymer resin layer, and may be physically peeled off.
  • a method of manufacturing a multilayer printed circuit board including forming a metal pattern layer having a pattern formed on the insulating layer manufactured in the above embodiment may be provided.
  • the inventors of the present invention provide that the insulating layer manufactured in the embodiment includes a conductor wiring having a metal protrusion formed on a surface therein, and the metal protrusion is exposed to the outside of the insulating layer, thereby newly stacking a metal pattern layer on the insulating layer.
  • the metal pattern layer can transmit and receive electrical signals to and from the conductor wiring inside the insulation worm through the metal protrusion, and completed the invention.
  • the insulating layer may be used as an interlayer insulating material of a multilayer printed circuit board, and may include a cured product of an alkali-soluble resin and a thermosetting binder, specifically, a thermosetting or photocuring material.
  • the content of the alkali-soluble resin and the thermosetting binder includes the content described above in the embodiment. For example, forming a metal pattern layer on the more insulating layer, forming a metal thin film on the insulating layer; Forming a photosensitive resin layer having a pattern formed on the metal thin film; Depositing a metal on the metal thin film exposed by the photosensitive resin layer pattern; And removing the sing-based photosensitive resin layer and removing the exposed metal thin film.
  • examples of the metal thin film forming method may be a dry deposition process or a wet deposition process, specific examples of the dry deposition process vacuum deposition, ion plating, sputtering method Etc. can be mentioned.
  • Electroless copper plating is common and may further comprise a roughening process before or after deposition. .
  • the roughening process also includes dry and wet methods according to conditions, and examples of the dry method may include vacuum, atmospheric pressure, gas-specific plasma treatment, gas-specific Excimer UV treatment, and the like.
  • a desmear process can be used as an example of the said wet method.
  • the forming of the metal thin film on the insulating layer may further include forming a surface treatment layer on the insulating charge before depositing the metal thin film. Through this, the adhesion between the metal thin film and the insulating layer can be improved.
  • a method of forming a surface treatment layer on the insulating layer at least one of an ion assist reaction method, an ion range treatment method, and a plasma treatment method may be used.
  • the plasma treatment method may include any one of an atmospheric pressure plasma treatment method, a DC plasma treatment method, and an RF plasma treatment method.
  • a surface treatment worm including a semi-active functional group may be formed on the surface of the insulating layer.
  • a method of depositing 5 () nm to 30 im thick cr (Cr) and titanium (Ti) metals on the surface of the insulating layer may be used. have.
  • the forming of the photosensitive resin layer having the pattern formed on the metal thin film may include exposing and developing the photosensitive resin layer formed on the metal thin film.
  • information may include the above-described information in the one embodiment, for example.
  • the pattern formed on the metal thin film is preferably formed so that the openings included in the pattern may contact the metal protrusions exposed to the outside of the insulating layer.
  • the opening included in the pattern means a portion removed through exposure and development of the photosensitive resin layer, and corresponds to a portion where metal is deposited through metal deposition to be described later to form the metal pattern layer. Therefore, the openings included in the pattern must be formed to be in contact with the metal protrusions exposed to the outside of the insulating layer, so that the metal pattern layer can be in contact with the metal protrusions to exchange electrical signals with the conductor wiring inside the insulation layer.
  • the metal thin film exposed by the photosensitive resin filling pattern means a metal thin film portion which is not in contact with the photosensitive resin layer on the surface.
  • the metal to be deposited may use copper, and the deposition Examples of the method are not particularly limited, and various known physical or chemical vapor deposition methods may be used without limitation, and one example of the general purpose may be an electrolytic copper plating method.
  • the metal deposited on the metal thin film exposed by the photosensitive resin filling pattern may form the above-described metal pattern layer, and more specifically, the metal pattern layer is formed to be connected to the conductor wiring through the metal projection. Can be.
  • the metal pattern layer may transmit and receive electrical signals with the conductor wiring included in the insulating layer. More specifically, one end of the metal protrusion may contact the conductor wire, and the other end of the metal protrusion may contact the metal pattern layer to electrically connect the conductor wire and the metal pattern layer.
  • an example of a method of removing the photosensitive resin layer may include a photoresist stripping solution, and the metal thin film may be exposed due to the removal of the photosensitive resin layer.
  • An etching solution can be used as an example of the removal method.
  • the multilayer printed circuit board manufactured by the multilayer printed circuit board manufacturing method may be used again as a buildup material.
  • an insulating layer is formed on the multilayer printed circuit board according to the method of manufacturing the insulating layer of the embodiment.
  • the first step and the second step of forming a metal substrate on the insulating layer according to the method of manufacturing a multi-chip printed circuit board of another embodiment may be repeated.
  • the number of laminated layers included in the multilayer printed circuit board manufactured by the multi-layer printed thin-walled substrate manufacturing method is also not limited to a large number, and for example, one or more layers, or one to twenty layers, depending on the purpose of use and purpose of use.
  • the present invention it is possible to manufacture in a faster and simpler method to improve the efficiency of the process, to prevent physical damage of the insulating layer, and to easily control the thickness of the insulating layer manufacturing method and the insulating layer manufacturing method.
  • Methylethylketone (MEK) as a solvent in a 2-liter reaction vessel with a heated and variable volume equipped with a thermometer, stirring device, reflux tube, and water meter .
  • 516 g, 228 g p-carboxyphenylmaleimide, 85 g p-hydroxyphenylmaleimide, 203 g styrene, 0.12 g azobisisobutyronitrile (AIBN) Mixed after dosing. After slowly raising the temperature of the reactor to 70 ° C. under a nitrogen atmosphere, an alkali soluble resin solution having a solid content of 50% was prepared by continuing for 24 hours.
  • the polymer resin layer was vacuum laminated at 85 ° C. on the copper-clad laminate to seal the circuit and the copper bumps, and the PET film was removed from the polymer resin layer.
  • the laminated polymer resin layer at a temperature of 100 ° C
  • 3% sodium hydroxide resist stripper at 50 ° C. was spray-sprayed on the surface of the polymer resin layer to remove copper bumps from the surface of the polymer resin layer by about 3 depths. Exposed, washed with water and dried. At this time, the process of exposing the copper bumps was performed for 10 seconds to 60 seconds per panel in a continuous process.
  • the insulating layer was manufactured by thermally curing the polymer resin layer having the copper bumps exposed on the surface at a temperature of 200 ° C. for 1 hour.
  • a copper thin film was deposited on the insulating layer using electroless copper plating, heated at 100 silver for 30 minutes to improve adhesion to the electroless copper plating, and then laminated with a dry film (RY ⁇ 5319, Hitachi Chemical). Patterns were formed and electroplated to form circuits using the SAP method. Then, the copper foil laminated plate and the ultrathin copper foil were separated and removed from the insulating layer to complete the multilayer printed circuit board.
  • Example 3 Insulation layer and multi-layer printing in the same manner as in Example 1, except that the alkali-soluble resin synthesized in Preparation Example 2 instead of the alkali , soluble resin synthesized in Preparation Example 1 in the insulating layer manufacturing step of Example 1 A circuit board was prepared.
  • Example 3
  • Example 4 Except for using the alkali-soluble resin synthesized in Preparation Example 3 instead of the alkali-soluble resin synthesized in Preparation Example 1 in the insulating layer manufacturing step of Example 1, the insulating layer and multilayer printed circuit in the same manner as in Example 1 The substrate was prepared.
  • Example 4 Except for using the alkali-soluble resin synthesized in Preparation Example 3 instead of the alkali-soluble resin synthesized in Preparation Example 1 in the insulating layer manufacturing step of Example 1, the insulating layer and multilayer printed circuit in the same manner as in Example 1 The substrate was prepared.
  • Example 4 Except for using the alkali-soluble resin synthesized in Preparation Example 3 instead of the alkali-soluble resin synthesized in Preparation Example 1 in the insulating layer manufacturing step of Example 1, the insulating layer and multilayer printed circuit in the same manner as in Example 1 The substrate was prepared.
  • Example 4 Except for using the alkali-soluble resin synthesized in Preparation Example 3 instead of the alkali-soluble
  • the process of exposing the copper bump was carried out for 10 minutes to 20 minutes per panel as a batch process, it was confirmed that takes a longer time than the embodiment.
  • the laminated polymer resin layer at a temperature of 100 ° C for 1 hour
  • the polymer resin layer was thermally cured at a temperature of 200 ° C for 1 hour and then Polymer resin layer by desmearing in order of sweller (At otech, Swe ler-p, 40%), etching (KMn0 4 9%, NaOH, 6%) and neutralization (H 2 S0 4 9%)
  • sweller Al otech, Swe ler-p, 40%
  • etching KMn0 4 9%, NaOH, 6%
  • neutralization H 2 S0 4 9%
  • the insulating layer and the multilayer printed circuit board were manufactured in the same manner as in Example 1, except that the copper bumps were exposed on the surface by removing the depth of about / m from the surface of the substrate.
  • the desmear process exposing the copper bumps is a continuous batch process, which proceeds 5 minutes to 10 minutes per panel only in an etching step, and takes a longer time than the embodiment, and harmful chemicals such as potassium permanganate As well as to be added, it was confirmed that there is a limit that difficult to control the thickness of the polymer resin layer. Comparative Example 3
  • a dry film (RY-5319, Hitachi Chemical) was laminated on a copper foil laminated plate (LG-500GA VB / VB LG Chemical) to which ultra-thin copper foil was bonded to form a pattern, and electroplated to form a circuit by the MSAP method. Subsequently, a dry film (RY-5319, Hitachi Chemical) was laminated on the circuit to form a pattern and electroplated to obtain a height of 15. A copper bump of diameter 20 was formed.
  • the polymer resin layer was vacuum laminated at 85 ° C. on the copper-clad laminate to seal the circuit and the copper bumps, and the PET film was removed from the polymer resin layer. Then, the step of omitting the first thermal curing of the laminated polymer resin layer for 1 hour at the temperature of the locrc, and the polymer resin layer 3% hydroxy hydroxide stripping solution of the laminated polymer resin layer at a temperature of 50 ° C immediately Spray sprayed on the surface of the.
  • the peel strength of the metal was measured according to the IPOTM-650 standard, and the metal adhesion was obtained therefrom.
  • HASTC Highly Accelerated Temp & Humidity Stress Test Resistance Multilayer printing obtained in the above examples and comparative examples; HAST resistance was confirmed according to JESD22—Al () l criteria for the circuit board. . Specifically, after applying a voltage of 3V to the specimen circuit board having a width, spacing, and thickness of 50 ⁇ , 50 / im, and 12 ⁇ respectively, and leaving it for 168 hours, the specimen circuit board should be inspected under the following criteria. Confirmed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

본 발명은, 보다 빠르면서도 간단한 방법으로 제조가 가능하여 공정의 효율성이 향상될 수 있으며, 절연층의 물리적 손상을 방지할 수 있고, 두께 조절이 용이한 절연층 제조방법 및 상기 절연층 제조방법으로부터 얻어지는 절연층을 이용한 다층인쇄회로기판 제조방법에 관한 것이다.

Description

【발명의 명칭】
절연층 제조방법 및 다층인쇄회로기판 제조방법
[기술분야]
관련 출원 (들)과의 상호 인용
본 출원은 2016년 10월 24일자 한국 특허 출원 제 10-2016-0138673호 및 2017년 10월 20일자 한국 특허 출원 게 10-2017-0136513호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원들의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 절연층 제조방법 및 다층인쇄회로기판 제조방법에 관한 것이다. 보다 상세하게는, 보다 빠르면서도 간단한 방법으로 제조가 가능하여 공정의 효율성이 향상될 수 있으며, 절연층의 물리적 손상을 방지할 수 있고, 두께 조절이 용이한 절연층 제조방법 및 상기 절연층 제조방법으로부터 얻어지는 절연층을 이용한 다층인쇄회로기판 제조방법에 관한 것이다.
【발명의 배경이 되는 기술】
최근의 전자기기는 갈수록 소형화, 경량화, 고기능화되고 있다. 이를 위해, 소형 기기를 중심으로 빌드— -업 PCB(Bui k up Pr inted Ci rcui t Board)의 웅용분야가 빠르게 확대됨에 따라 다층인쇄 회로기판의 사용이 급속히 늘어 가고 있다.
다층 인쇄회로기판은 평면적 배선부터 입체적인 배선이 가능하며, 특히 산업용 전자 분야에 '서는 ICX integrated c i rcui t ) , LSI ( l arge scal e integrat ion) 등 기능소자의 집적도 향상과 함께 전자 기기의 소형화. 경량화, 고기능화, 구조적인 전기적 기능통합, 조립시간 단축 및 원가절감 등에 유리한 제품이다.
이러한 웅용영역에 사용되는 빌드-업 PCB는 반드시 각 층간의 연결이 요구되었고, 이를 위하여 다층 인쇄회로기판의 층간 전기적 연결 통로에 해당되는 비아홀 (vi a hole)을 형성하는 '방식을 사용해 왔으나, 비아홀의 지름을 줄이는테 한계가 있어 고밀도화를 달성하기 어려운 한계가 있었다. 이에, 비아홀 보다 작은 지름을 갖는 미세 돌기를 이용하여 다층 인쇄회로기판의 층간 전기적 연결 통로로 활용하는 방안이 제안되었다. 그러나, 기존에 사용되는 방식은 단일 회로 상에 금속 성분의 미세 돌기를 형성한 후, 절연층으로 미세 돌기를 덮고, 미세 돌기가 표면에 노출될 때까지 절연충을 물리적으로 제거하는 방식이 대부분이었고, 이에 따라, 물리적인 제거 과정에서 절연층이 쉽게 깨지거나, 원하는 두께를 용이하게 맞추기 어려운 한계가 있었다.
【발명의 내용】
【해결하고자 하는 과제】
본 발명은 보다 빠르면서도 간단한 방법으로 제조가 가능하여 공정의 효율성이 향상될 수 있으며, 절연층의 물리적 손상을 방지할 수 있고, 두께 조절이 용이한 절연층 제조방법을 제공하기 위한 것이다.
또한, 본 발명은 상기 절연층 제조방법으로부터 얻어지는 절연층을 이용한 다층인쇄회로기판 제조방법을 제공하기 위한 것이다.
【과제의 해결 수단】
본 명세서에서는, 표면에 금속 돌기가 형성된 도체 배선을 알카리 가용성 수지 및 열경화성 바인더를 포함한 고분자 수지층으로 밀봉하는 단계; 상기 고분자 수지충을 1차 경화시키는 단계; 상기 경화된 고분자 수지층 표면을 알카리 수용액으로 식각하여 금속 돌기 ¾ 노출시키는 단계; 및 상기 금속 돌기가 노출된 상태에서, 고분자 수지층을 2차 경화시키는 단계를 포함하는, 절연층 제조방법이 제공된다.
본 명세서에서는 또한, 상기 절연층 제조방법에 의해 제조된 절연충 상에 금속 패턴충을 형성하는 단계를 포함하는, 다층인쇄회로기관 제조방법이 제공된다.
이하 발명의 구체적인 구현예에 따른 절연충 제조방법 및 다층인쇄회로기판 제조방법에 대하여 보다 상세하게 설명하기로 한다 . 발명의 일 구현예에 따르면, 표면에 금속 돌기가 형성된 도체 배선을 알카리 가용성 수지 및 열경화성 바인더를 포함한 고분자 수지층으로 밀봉하는 단계; 상기 고분자 수지층을 1차 경화시키는 단계; 상기 경화된 고분자 수지층 표면을 알카리 수용액으로 식각하여 금속 돌기를 노출시키는 단계; 및 상기 금속 돌기가 노출된 상태에서, 고분자 수지층을 2차 경화시키는 단계를 포함하는, 절연충 제조방법이 제공될 수 있다.
본 발명자들은, 상기 일 구현예의 절연층 제조방법을 이용하게 되면ᅳ 고분자 수지층에 의해 밀봉된 금속 돌기를 알카리 수용액에 의한 화학적 식각을 통해 노출시킴으로써, 절연층의 물리적 손상을 방지할 수 있고, 절연층 두께를 용이하게 원하는 범위로 조절할 수 있을 뿐 아니라, 보다 빠른 시간 내에 보다 용이한 공정을 통해 절연층을 제조할 수 있어 공정의 효율성이 향상됨을 실험을 통해 확인하고 발명을 완성하였다.
특히, 상기 일 구현예의 절연층 제조방법에서는 특정의 알카리 수용액에 의하여 적정 수준의 안정적인 식각이 진행될 수 있는 신규한 성분의 고분자 수지를 적용하여 절연충 표면으로 용이하게 금속 돌기를 노출시킬 수 있어, 노출된 금속 돌기를 통해 용이하게 다층회로기판을 제조할 수 있는 장점이 있다.
보다 구체적으로, 상기 일 구현예의 절연층 제조방법은 표면에 금속 돌기가 형성된 도체 배선을 알카리 가용성 수지 및 열경화성 바인더를 포함한 고분자 수지층으로 밀봉하는 단계; 상기 고분자 수지층을 1차 경화시키는 단계; 상기 경화된 고분자 수지충 표면을 알카리 수용액으로 식각하여 금속 돌기를 노출시키는 단계 ; 및 상기 금속 돌기가 노출된 상태에서, 고분자 수지층을 2차 경화시키는 단계를 포함할 수 있다.
먼저, 표면에 금속 돌기가 형성된 도체 배선을 알카리 가용성 수지 및 열경화성 바인더를 포함한 고분자 수지층으로 밀봉하는 단계에서, 상기 도체 배선은 표면에 금속 돌기가 형성될 수 있다. 상기 도체 배선 표면에 금속 돌기를 형성하는 방법의 예가 크게 한정되는 것은 아니며. 예를 들어, 감광성 수지충 패턴의 개구부에 대한 도금 공정 또는 접착제를 이용한 접착 공정 등을 사용할 수 있다.
상기 감광성 수지층 패턴의 개구부에 대한 도금 공정의 구체적인 예를 들면, 도체 배선 상에 감광성 수지층을 적층하는 단계 ; 상기 감광성 수지층에 패턴을 형성하는 단계; 및 전기 도금하는 단계를 포함한 금속 돌기 형성방법을 사용할 수 있다.
보다 구체적으로 상기 감광성 수지층은 감광성 및 알카리 가용성을 나타낼 수 있다. 이에 따라, 상기 감광성 수지층에 빛을 조사하는 노광공정에 의해 분자구조의 변형이 진행될 수 있으며, 알카리성의 현상액을 접촉시키는 현상공정에 의해 수지층의 식각 또는 제거가 가능할 수 있다.
따라서, 상기 감광성 수지충에 대하여 선택적으로 일부분을 노광시킨 다음, 알카리 현상하게 되면, 노광된 부분은 현상되지 않고, 노광되지 않은 부분만 선택적으로 식각, 제거될 수 있다. 이와 같이, 노광에 의해 알카리 현상되지 않고 그대로 남아있는 감광성 수지층의 일부분을 감광성 수지 패턴이라 한다.
즉, 상기 감광성 수지층을 노광하는 방법의 예를 들면, 상기 감광성 수지층상에 소정의 패턴의 형성된 포토 마스크를 접촉하고 자외선을 조사하거나, 마스크에 포함된 소정의 패턴올 프로젝션 대물렌즈를 통해 이미징한 다음 자외선을 조사하거나, 레이저 다이오드 (Laser Di ode)를 광원으로 사용하여 직접 이미징한 다음 자외선을 조사하는 등의 방식 등을 통해 선택적으로 노광할 수 있다. 이 때, 자외선 조사 조건의 예로는 5 mJ/cuf 내지 600 mJ/citf의 광량으로 조사하는 것을 들 수 있다.
또한, 상기 감광성 수지충에 대한 노광 이후 알카리 현상하는 방법의 예로는 알카리 현상액을 처리하는 방법을 들 수 있다. 상기 알카리 현상액의 예가 크게 한정되는 것은 아니나, 예를 들어, 수산화칼륨, 수산화나트륨, 탄산나트륨. 탄산칼륨, 인산나트륨, 규산나트륨, 암모니아, 테트라메틸암모늄하이드록사이드, 아민류 등의 알카리 수용액의 농도와 은도를 조절하여 사용할 수 있으며, 상품으로 판매하는 알카리 현상액도 사용 가능하다. 상기 알카리 현상액의 구체적인 사용량은 크게 제한되지 않으나, 상기 감광성 수지 패턴을 손상하지 않는 농도와 은도로 조절이 필요하며, 예를 들어, 25 °C 내지 35 °C의 탄산나트륨 0. 5 % 내지 3 % 수용액을 사용할 수 있다.
한편, 상기 전기 도금 단계에서, 도금 방법의 예로는 건식증착공정 또는 습식증착공정을 들 수 있으며, 구체적인 상기 건식증착공정의 예로는 진공증착, 이온 플레이팅, 스퍼터링 방법 등을 들 수 있다.
한편, 구체적인 습식증착공정의 예로는, 다양한 금속의 무전해 도금 등이 있으며, 무전해 구리 도금이 일반적이고, 증착 이전 또는 이후에 조화처리공정을 더 포함할 수 있다.
상기 조화처리 공정에도 조건에 따라 건식 및 습식방법이 있으며 . 상기 건식 방법의 예로는 진공, 상압. 기체별 플라즈마 처리, 기체별
Exc i mer UV처리 등을 들 수 있고, 상기 습식방법의 예로는, 디스미어 처리를 사용할 수 있다. 이러한 조화처리 공정을 통해, 상기 금속 박막꾀 표면조도를 높여 금속박막 상에 증착되는 금속과의 밀착력을 향상시킬 수 있다.
또한, 금속 돌기만을 남겨두기 위하여, 전기 도금하는 단계 이후에, 감광성 수지층을 제거하는 단계를 더 포함할 수 있다. 상기 감광성 수지 패턴 제거시에는, 하부의 도체 배선과 금속 돌기는 되도록 제거하지 않으면서, 감광성 수지층만을 제거할 수 있는 방법올 사용하는 것이 바람직하다.
상기 감광성 수지 패턴의 박리방법의 구체적인 예를 들면, 포토레지스트 박리액을 처리하거나, 디스미어 ( desmear ) 공정 또는 폴라즈마 에칭 등을 진행할 수 있으며, 상기의 방법을 흔용할 수도 있다.
한편, 상기 접착제를 이용한 접착 공정의 구체적인 예를 들면, m i ce와 같은 수동 소자나 반도체 칩과 같은 능동 소자 표면에 금속 돌기를 형성한 다음, 형성된 금속 돌기의 반대편을 절연 접착제 등을 이용하여 도체 배선 표면에 접착하는 방법을 사용할 수 있다. 이때, 상기 수동 소자 또는 능동 소자 표면에 금속 돌기를 형성하는 방법은 상술한 감광성 수지층 패턴의 개구부에 대한 도금 공정의 방법을 그대로 사용할 수 있다. 예를 들어, 수동 소자 또는 능동 소자 표면에 감광성 수지층 패턴을 형성한 다음. 패턴의 개구분에 금속을 도금하는 방법을 사용할 수 있다.
상기 고분자 수지층의 두께는 1 내지 500 urn, 또는 3 μη 내지 500 卿, 또는 3 卿 내지 200 ηι , 또는 1 卿 내지 60 . 또는 5 μη\ 내지 30 일 수 있고, 상기 금속 돌기는 1 «ᅵ 내지 20 의 높이 및 5 ηι 내지 30 卿의 단면 직경을 가질 수 있다. 상기 단면 직경이란 상기 금속 돌기의 높이 방향에 수직한 방향으로 상기 금속 돌기를 자른 단면의 직경, 또는 최대 직경을'의미할 수 있다. 예를 들어, 상기 금속 돌기의 형상으로는 원기등, 원뿔대 , 다각기등, 다각뿔대 . 역원뿔대 또는 역다각뿔대 등을 들 수 있다. 상기 금속 돌기에 포함된 금속 성분의 예 또한 크게 한정되는 것은 아니며, 예를 들어, 구리, 알루口ᅵ늄 등의 전도성 금속을 사용할 수 있다.
상기 표면에 금속 돌기가 형성된 도체 배선은 고분자 수지층으로 밀봉될 수 있다 . 보다 구체적으로, 상기 도체 배선은 하부에 회로기판, 시트, 다층 프린트 배선판 등의 반도체 재료를 포함한 기재 상에 형성된 상태로 존재할 수 있다. 이처럼 기재 상에 도체 배선이 존재하는 상태에서, 기재상에 고분자 수지층을 형성하는 방법을 통해 상기 도체 배선이 밀봉될 수 있다.
고분자 수지층을 기재상에 형성하는 방법의 예가 크게 한정되는 것은 아니나, 예를 들어 , 상기 고분자 수지층을 형성하기 위한 고분자 수지 조성물을 기재상에 직접 코팅하거나, 캐리어 필름 상에 고분자 수지 조성물을 도포하여 고분자 수지층을 형성한 다음, 기재와 고분자 수지층을 라미네이트 하는 방법 등을 사용할 수 있다.
상기 표면에 금속 돌기가 형성된 도체 배선이 고분자 수지층으로 밀봉됨에 따라, 상기 도체 배선은 하부에 형성된 기재와 접촉하는 부분 및 금속 돌기와 접촉하는 부분를 제외한 모든 표면이 고분자 수지층과 접촉할 수 있다. 또한, 상기 도체 배선 표면에 형성된 금속 돌기의 모든 표면 또한 고분자 수지층에 의해 밀봉되어 고분자 수지층과 접촉할 수 있다.
상기 고분자 수지층은 알카리 가용성 수지 및 열경화성 바인더를 포함한 고분자 수지 조성물의 건조를 통해 형성된 필름을 의미한다. 상기 고분자 수지층은 알카리 가용성 수지 100 중량부에 대해 열경화성 바인 ^ 1 중량부 내지 150 중량부, 또는 10 중량부 내지 100 중량부, 또는 20 중량부 내지 50 중량부를 포함할 수 있다. 상기 열경화성 바인더의 함량이 지나치게 많으면 상기 고분자 수지층의 현상성이 떨어지고, 강도가 저하될 수 있다. 반대로, 열경화성 바인더의 함량이 지나치게 낮아지면, 상기 고분자 수지층이 과도하게 현상될 뿐 아니라, 코팅 시 균일성이 떨어질 수 있다.
' 상기 열경화성 바인더는 열경화 가능한 작용기, 옥세타닐기, 환상 에테르기, 환상 티오 에테르기, 시아나이드기, 말레이미드기 및 벤족사진기로 이루어진 군에서 선택된 1종 이상의 작용기 및 에폭시기를 포함할 수 있다. 즉, 상기 열경화성 바인더는 에폭시기를 반드시 포함하며, 에폭시기이외로 옥세타닐기, 환상 에테르기, 환상 티오 에테르기, 시아나이드 (cyanide)기 , 말레이미드 (maleimide)기, 벤족사진 (benzoxazine)기 또는 이들의 2종 이상을 흔합하여 포함할 수 있다 이러한 열경화성 바인더는 열경화에 의해 알카리 가용성 수지 등과 가교 결합을 형성해 절연층의 내열성 또는 기계적 물성을 담보할 수 있다.
보다 구체적으로, 상기 열경화성 바인더로는, 분자내에 상술한 작용기를 2이상 포함한 다관능성 수지 화합물을 사용할 수 있다.
상기 다관능성 수지화합물은 분자 증에 2개 이상의 환상 에테르기 및 /또는 환상 티오에테르기 (이하, 환상 (티오)에테르기라고 함)를 포함한 수지를 포함할 수 있다.
상기 분자 중에 2개 이상의 환상 (티오)에테르기를 포함한 열경화성 바인더는 분자 중에 3, 4 또는 5원환의 환상 에테르기, 또는 환상 티오에테르기 중 어느 한쪽 또는 2종의 기를 적어도 2개 이상 갖는 화합물을 포함할 수 있다.
상기 분자 중에 2개 이상의 환상 티오에테르기를 갖는 화합물로서는, 예를 들면 재팬 에폭시 레진사 제조의 비스페놀 A형 에피술피드 수지
YL7000 등을 들 수 있다.
또한, 상기 다관능성 수지화합물은 분자 중에 적어도 2개 이상의 에폭시기를 포함한 다관능 에폭시 화합물, 분자 중에 적어도 2개 이상의 옥세타닐기를 포함한 다관능 옥세탄 화합물 또는 분자 중에 2개 이상의 티오에테르기를 포함한 에피술피드 수지, 분자 중에 적어도 2개 이상의 시아나이드기를 포함한 다관능 시아네이트 에스테르 화합물, 또는 분자 중에 적어도 2개 이상의 벤족사진기를 포함한 다관능 벤족사진 화합물 등을 포함할 수 있다.
상기 다관능 에폭시 화합물의 구체예로서는, 예를 들면 비스페놀 A형 에폭시 수지, 수소 첨가 비스페놀 A형 에폭시 수지, 브롬화 비스페놀 A형 에폭시 수지, 비스페놀 F형 에폭시 수지, 비스페놀 S형 에폭시 수지, 노볼락형 에폭시 수지, 페놀 노볼락형 에폭시 수지, 크레졸 노볼락형 에폭시 수지, N-글리시딜형 에폭시 수지, 비스페놀 A의 노볼락형 에폭시 수지, 비크실레놀형 에폭시 수지, 비페놀형 에폭시 수지, 킬레이트형 에폭시 수지, 글리옥살형 에폭시 수지. 아미노기 함유 에폭시 수지, 고무 변성 에폭시 수지, 디시클로펜타디엔 페놀릭형 에폭시 수지, 디글리시딜프탈레이트 수지, 헤테로시클릭 에폭시 수지, 테트라글리시딜크실레노일에탄 수지, 실리콘 변성 에폭시 수지, ε - 카프로락톤 변성 에폭시 수지 등을 들 수 있다. 또한, 난연성 부여를 위해, 안 등의 원자가 그 구조 중에 도입된 것을 사용할 수도 있다. 이들 에폭시 수지는 열경화함으로써, 경화 피막의 밀착성, 땜납 내열성, 무전해 도금 내성 등의、특성을 향상시킨다.
상기 다관능 옥세탄 화합물로서는 비스 [ (3—메틸ᅳ 3- 옥세타닐메톡시 )메틸]에테르, 비스 [ (3-에틸 -3-옥세타닐메록시 )메틸 ]에테르, 1,4-비스 [ (3-메틸 -3—옥세타닐메톡시)메틸]벤젠, 1,4-비스 [ (3-에틸 -3- 옥세타닐메톡시)메틸]벤젠, (3-메틸 -3-옥세타닐)메틸아크릴레이트, (3- 에틸— 3ᅳ옥세타닐)메틸아크릴레이트, . (3-메틸 -3— 옥세타닐 )메틸메타크릴레이트, (3-에틸 -3옥세타닐 )메틸메타크릴레이트나 이들의 올리고머 또는 공중합체 등의 다관능 옥세탄류 이외에, 옥세탄 알코올과 노볼락 수지, 폴리 (Ρ-히드록시스티렌), 카르도형 비스페놀류, 카릭스아렌류, 카릭스레졸신아렌류, 또는 실세스퀴옥산 등의 히드록시기를 갖는 수지와의 에테르화물 등을 들 수 있다. 그 밖의, 옥세탄환을 갖는 불포화 모노머와 알킬 (메트)아크릴레이트와의 공중합체 등도 들 수 있다. 상기 다관능 시아네이트 에스테르 화합물의 예로는 비스페놀 Α형 시아네이트 에스테르 수지, 비스페놀 E형 시아네이트 에스테르 수지, 비스페놀 F형 시아네이트 에스테르 수지, . 비스페놀 S형 시아네이트 에스테르 수지, 비스페놀 M형 시아네이트 에스테르 수지, 노볼락형 시아네이트 에스테르 수지, 페놀노볼락형 시아네이트 에스테르 수지, 크레졸 노볼락형 시아네이트 에스테르 수지, 비스페놀 A의 노볼락형 시아네이트 에스테르 수지 , 바이페놀형 시아네이트 에스테르 수지나 이들의 올리고머 또는 공중합체 등을 들 수 있다.
상기 다관능 말레이미드 화합물의 예로는 4 , 4 '—디페닐메탄 비스말레이미드 (4, 4 '—diphenylmethane bismaleimide) , 페닐메탄 비스말레이미드 (phenylmethane bismaleimide) , m_폐닐메탄 비스말레이미드 (m— phenylmethane bismaleimide) , 비스페놀 A 디페닐에터비스말레이미드 (bisphenol A di henyl ether bismaleimide) , 3,3'-디메 -5,5'-디에틸— 4,4'- 디페닐메탄 비스말레이미드 (3,3'ᅳ dimethy 1-5, 5' -diethyl -4, 4 '-diphenylmethane bismaleimide), 4-메틸ᅳ 1, 3ᅳ 페닐렌 비스말러 1이미드 (4_methyl— l,3_phenylene bismaleimide) , 1,6'- 비스말레이미드-(2,2,4—트리메틸)핵산(1,6'-^311131^11^0^-(2,2,4—
trimethyDhexane) 등을 들 수 있다.
상기 다관능 벤족사진 화합물의 예로는 비스페놀 A형 벤족사진 수지, 비스페놀 F형 벤족사진 수지, 페놀프탈레인형 벤족사진 수지, 티오디페놀형 벤족사진 수지, 디사이클로 펜타디엔형 벤족사진 수지, 3 ,3' - (메틸렌 -1, 4- 디페닐렌)비스 (3 , 4-디하이드로 -2H-1, 3ᅳ벤족사진 (3, 3 ' -(methylene— 1, 4- d i pheny 1 ene ) b i s ( 3 , 4-d i hydr o~2H~ 1 , 3-benzoxaz i ne ) 수지 등을 들 수 있다, 상기 다관능성 수지화합물의 보다 구체적인 예로는, 국도화학사의
YDCN-500-80P, 론자사의 페놀 노볼락형 시아니이트 에스너 수지 PT-30S, 다이와사의 페닐 메탄형 말레이미드 수지 BMI-2300, 시코쿠사의 P-d형 벤족사진 수지 등을 들 수 있다.
한편, 상기 알카리 가용성 수지는 산성 작용기; 및 아미노기로 치환된 고리형 이미드 작용기를 각각 적어도 2 이상 포함할 수 있다. 상기 산성 작용기의 예가 크게 한정되는 것은 아니나, 예를 들어, 카르복시기 또는 페놀기를 포함할 수 있다. 상기 알카리 가용성 수지는 산성 작용기를 적어도 2이상으로 포함하여 상기 고분자 수지층아 보다 높은 알카리 현상성을 나타내게 하며, 고분자 수지층의 현상속도를 조절할 수 있다.
상기 아미노기로 치환된 고리형 이미드 작용기는 작용기 구조 내에 아미노기와 고리형 이미드기를 포함하고 있으며, 적어도 2이상으로 포함될 수 있다. 상기 알카리 가용성 수지가 상기 아미노기로 치환된 고리형 이미드 작용기를 적어도 2이상 함유함에 따라. 상기 알카리 가용성 수지는 아미노기에 포함된 활성수소가 다수 존재하는 구조를 가지게 되에 경화시 열경화성 바인더와의 반웅성이 향상되면서 경화밀도를 높여 내열 신뢰성 및 기계적 성질을 높일 수 있다ᅳ
또한, 상기 고리형 이미드 작용기가 알카리 가용성 수지 내에 다수 존재하게 됨에 따라, 고리형 이미드 작용기에 포함된 카보닐기와 3차 아민기에 의해 극성이 높아져 상기 알카리 가용성 수지의 계면 접착력을 높일 수 있다. 이에 따라, 상기 알카리 가용성 수지가 함유된 고분자 수지층은 상부에 적층되는 금속층과의 계면 접착력이 높아질 수 있다.
보다 구체적으로, 상기 아미노기로 치환된 고리형 이미드 작용기는 하기 화학식 1로 표시되는 작용기를 포함할 수 있다.
[화학식 1]
Figure imgf000011_0001
상기 화학식 1에서, ^은 탄소수 1 내지 10, 또는 1 내지 5, 또는 1 내지 3의 알킬렌기 또는 알케닐기이며, 는 결합지점을 의미한다. 상기 알킬렌기는, 알케인 (alkane)으로부터 유래한 2가의 작용기로, 예를 들어, 직쇄형, 분지형 또는 고리형으로서, 메틸렌기. 에틸렌기, 프로필렌기, 이소부틸렌기, sec-부틸렌기, tert-부틸렌기, 펜틸렌기, 핵실렌기 등이 될 수 있다. 상기 알킬렌기에 포함되어 있는 하나 이상의 수소 원자는 다른 치환기로 치환될 수 있고, 상기 치환기의 예로는 탄소수 1 내지 10의 알킬기, 탄소수 2 내지 10의 알케닐기, 탄소수 2 내지 10의 알키닐기, 탄소수 6 내지 12의 아릴기, 탄소수 2 .내지 12의 헤테로아릴기, 탄소수 6 내지 12의 아릴알킬기ᅳ 할로겐 원자. 시아노기. 아미노기, 아미디노기, 니트로기, 아마이드기, 카보닐기, 히드록시기, 술포닐기, 카바메이트기, 탄소수 1 내지 10의 알콕시기 등을 들 수 있다.
상기 "치환''이라는 용어는 화합물 내의 수소 원자 대신 다른 작용기가 결합하는 것을 의미하며, 치환되는 위치는 수소 원자가 치환되는 위치 즉, 치환기가 치환 가능한 위치라면 한정되지 않으며, 2 이상 치환되는 경우, 2 이상의 치환기는 서로 동일하거나 상이할 수 있다.
상기 알케닐기는, 상술한 알킬렌기의 중간이나 말단에 탄소 -탄소 이증 결합을 1개 이상 함유하고 있는 것을 의미하며. 예를 들어, 쎄틸렌, 프로필렌, 부틸렌, 핵실렌, 아세틸렌 등을 들 수 있다. 상기 알케닐기 중 하나 이상의 수소 원자는 상기 알킬렌기의 경우와 마찬가지의 치환기로 치환 가능하다.
바람직하게는 상기 아미노기로 치환된 고리형이미드 작용기는 하기 화학식 2로 표시되는 작용기일 수 있다.
[화학식 2]
Figure imgf000012_0001
상기 화학식 2에세 는 결합지점을 의미한다 .
상기 알카리 가용성 수지는 상술한 바와 같이 . 산성 작용기와 함께 아미노기로 치환된 고리형 이미드 작용기를 포함하쪄, 구체적으로, 상기 아미노기로 치환된 고리형 이미드 작용기의 적어도 하나의 말단에 산성 작용기가 결합할 수 있다. 이때, 상기 아미노기로 치환된 고리형 이미드 작용기와 산성 작용기는 치환 또는 비치환돤 알킬렌기 또는 치환 또는 비치환된 아릴렌기를 매개로 결합할 수 있으며, 예를 들어, 상기 아미노기로 치환된 고리형 이미드 작용기에 포함된 아미노기의 말단에 치환 또는 비치환된 알킬렌기 또는 치환 또는 비치환된 아릴렌기를 매개로 산성 작용기가 결합할 수 있으며, 상기 아미노기로 치환된 고리형 이미드 작용기에 포함된 이미드 작용기의 말단에 치환 또는 비치환된 알킬렌기 또는 치환 또는 비치환된 아릴렌기를 매개로 산성 작용기가 결합할 수 있다. 보다 구체적으로, 상기 아미노기로 치환된 고리형 이미드 작용기에 포함된 아미노기의 말단이란, 상기 화학식 1에서 아미노기에 포함된 질소원자를 의미하며/ 상기 아미노기로 치환된 고리형 이미드 작용기에 포함된 이미드 작용기의 말단이란, 상기 화학식 1에서 고리형 이미드 작용기에 포함된 질소원자를 의미할 수 있다.
상기 알킬렌기는, 알케인 ( a lkane)으로부터 유래한 2가의 작용기로, 예를 들어, 직쇄형, 분지형 또는 고리형으로서, 메틸렌기, 에틸렌기, 프로필렌기, 이소부틸렌기, sec-부틸렌기, ter t—부틸렌기, 펜틸렌기, 핵실렌기 등이 될 수 있다. 상기 알킬렌기에 포함되어 있는 하나 이상의 수소 원자는 다른 치환기로 치환될 수 있고, 상기 치환기의 예로는 탄소수 1 내지 10의 알킬기, 탄소수 2 내지 10의 알케닐기, 탄소수 2 내지 10의 알키닐기, 탄소수 6 내지 12의 아릴기. 탄소수 2 내지 12의 헤테로아릴기 , 탄소수 6 내지 12의 아릴알킬기, 할로겐 원자, 시아노기, 아미노기, 아미디노기, 니트로기, 아마이드기, 카보닐기, 히드록시기, 술포닐기, 카바메이트기, 탄소수 1 내지 10의 알콕시기 등을 들 수 있다.
상기 아릴렌기는, 아렌 ( arene)으로부터 유래한 2가의 작용기로 예를 들어, 고리형으로서, 페닐기, 나프틸기 등이 될 수 있다. 상기 아릴렌기에 포함되어 있는 하나 이상의 수소 원자는 다른 치환기로 치환될 수 있고, 상기 치환기의 예로는 탄소수 1 내지 10의 알킬기, 탄소수 2 내지 10의 알케닐기 , 탄소수 2 내지 10의 알키닐기, 탄소수 6 내지 ] 2의 아릴기, 탄소수 2 내지 12의 헤테로아릴기, 탄소수 6 내지 12의 아릴알킬기, 할로겐 원자, 시아노기, 아미노기, 아미디노기, 니트로기, 아마이드기, 카보닐기, 히드록시기, 술포닐기, 카바메이트기, 탄소수 1 내지 10의 알콕시기 등을 들 수 있다.
상기 알카리 가용성 수지를 제조하는 방법의 예가 크게 한정되는 것은 아니나, 예를 들어 고리형 불포화 이미드 화합물; 및 아민 화합물의 반응을 통해 제조될 수 있다. 이때, 상기 고리형 불포화 이미드 화합물; 및 아민 화합물 중 적어도 하나 이상은 말단에 치환된 산성 작용기를 포함할 수 있다. 즉, 상기 고리형 불포화 이미드 화합물, 아민 화합물, 또는 이들 2종 화합물 모두의 말단에 산성 작용기가 치환될 수 있다. 상기 산성 작용기에 대한 내용은 상술한 바와 같다.
상기 고리형 이미드 화합물은 상술한 고리형 이미드 작용기를 포함한 화합물이며, 상기 고리형 불포화 이미드 화합물은 고리형 이미드 화합물 내에 불포화 결합, 즉 이중결합 또는 삼중결합을 적어도 1이상 포함한 화합물을 의미한다.
상기 알카리 가용성 수지는 상기 아민 화합물에 포함된 아미노기와 고리형 불포화 이미드 화합물에 포함된 이중결합 또는 삼중결합의 반웅을 통해 제조될 수 있다.
상기 고리형 불포화 이미드 화합물 및 아민 화합물을 반웅시키는 중량비율의 예가 크게 한정되는 것은 아니나, 예를 들어, 상기 고리형 불포화 이미드 화합물 100 중량부에 대하여, 상기 아민 화합물을 10 중량부 내지 80 중량부, 또는 30 중량부 내지 60 중량부로 흔합하여 반응시킬 수 있다.
상기 고리형 불포화 이미드 화합물의 예로는 N-치환 말레이미드 화합물을 들 수 있다. N-치환이란 말레이미드 화합물에 포함된 질소원자에 결합한 수소 원자 대신 작용기가 결합한 것을 의미하며, 상기 N-치환 말레이미드 화합물은 N-치환된 말레이미드 화합물의 개수에 따라 단관능 N- 치환 말레이미드 화합물과 다관능 N-치환 말레이미드 화합물로 분류될 수 있다.
상기 단관능 N-치환 말레이미드 화합물은 하나의 말레이미드 화합물에 포함된 질소원자에 작용기가 치환된 화합물이며, 상기 다관능 N- 치환 말레이미드 화합물은 2이상의 말레이미드 화합물 각각에 포함된 질소원자가 작용기를 매개로 결합한 화합물이다.
상기 단관능 N-치환 말레이미드 화합물에서, 상기 말레이미드 화합물에 포함된 질소 원자에 치환되는 작용기는 공지된 다양한 지방족. 지환족 또는 방향족 작용기를 제한없이 포함할 수 있으며, 상기 질소 원자에 치환되는 작용기는 지방족, 지환족 또는 방향족 작용기에 산성 작용기가 치환된 작용기를 포함할 수도 있다. 상기 산성 작용기에 대한 내용은 상술한 바와 같다.
상기 단관능 N—치환 말레이미드 화합물의 구체적인 예로는 0- 메틸페닐말레이미드 ' p—하이드록시페닐말레이미드. p-카복시페닐말레이미드, 또는 도데실말레이미드 등을 들 수 있다.
'상기 다관능 N—치환 말레이미드 화합물에서, 2이상의 말레이미드 화합물 각각에 포함된 질소원자간 결합을 매개하는 작용기는 공지된 다양한 지방족, 지환족 또는 방향족 작용기를 제한없이 포함할 수 있으며, 구체적인 예를 들면, 4,4'-디페닐메탄 (diphenylmethane) 작용기 등을 사용할 수 있다. 상기 질소 원자에 치환되는 작용기는 지방족, 지환족 또는 방향족 작용기에 산성 작용기가 치환된 작용기를 포함할 수도 있다. 상기 산성 작용기에 대한 내용은 상술한 바와 같다.
상기 다관능 N—치환 말레이미드 화합물의 구체적인 예로는 4,4'— 디페닐메탄 비스말레이미드 (Daiwakasei사의 BMI-1000, BMI-1100 등), 페닐메탄 비스말레이미드, m-페닐렌메탄 비스말레이미드, 비스페놀 A 디페닐에테르 비스말레이미드, 3,3'-디메틸-5,5'-디에틸-4,4'-디페닐메탄 비스말레이미드, 4-메틸 -1,3—페닐렌 비스말레이미드, 1 ,6' -비스말레이미드- (2.2, 4-트리메틸)핵산 등을 들 수 있다.
상기 아민 화합물은 분자구조내에 아미노기 (-N¾)를 적어도 1이상 함유한 1차 아민 화합물을 사용할 수 있으며, 보다 바람직하게는 아미노기로 치환된 카복시산 화합물, 2이상의 아미노기를 포함한 다관능 아민 화합물 또는 이들의 혼합물을 사용할 수 있다.
상기. 아미노기로 치환된 카복시산 화합물에서, 키-복시산 화합물은 분자 내에 카르복시산 (-C00H) 작용기를 포함한 화합물로서. 카르복시산 작용기와 결합한 탄화수소의 종류에 따라 지방족, 지환족 또는 방향족 카복시산을 모두 포함할 수 있다. 상기 아미노기로 치환된 카복시산 화합물을 통해 상기 알카리 가용성 수지 내에 산성 작용기인 카복시산 작용기가 다수 포함되면서 . 상기 알카리 가용성 수지의 현상성이 향상될 수 있다.
구체적으로, 상기 아미노기로 치환된 카복시산 화합물과 고리형 불포화 이미드 화합물의 반웅을 통해 제조된 알카리 가용성 수지는 K0H 적정에 의해 구해지는 산가 (acid value)가 50 mgKOH/g 내지 250 mgKOH/g, 또는 70 mgKOH/g 내지 200 mgKOH/g일 수 있다. 상기 알카리 가용성 수지의 산가를 측정하는 방법의 예가 크게 한정되는 것은 아니나, 예를 들어, 다음과 같은 방법을 사용할 수 있다. 베이스 용매 (base solution)로서 0.1 N의 농도의 K0H 용액 (용매: 메탄올)을 준비하고, 표지자 (indicator)로는 알파—나프를벤제인 (alpha-naphtholbenzein)(pH: 0.8 - 8.2 yellow, 10.0 blue green)을 준비하였다. 이어서, 시료인 알카리 가용성 수지 약 1 내지 2 g을 채취하여 디메틸포름알데히드 (DMF) 용매 50 g에 녹인 후에 표지자를 첨가한 후에 베이스 용매로 적정하였다. 적정 완료 시점에서 사용된 베이스 용매의 양으로 산가 (acid value)를 mg KOH/g의 단위로 구하였다.
상기 알카리 가용성 수지의 산가가 50 mgKOH/g 미만으로 지나치게 감소할 경우, 상기 알카리 가용성 수지의 현상성이 낮아져 현상 공정을 진행하기 어려을 수 있다. 또한, 상기 알카리 가용성 수지의 산가가 250 mgK0H/g 초과로 지나치게 증가할 경우, 극성 증대로 인해 다른 수지와의 상분리가 발생할 수 있다.
상기 "치환"이라는 용어는 화합물 내의 수소 원자 대신 다른 작용기가 결합하는 것을 의미하며, 상기 카복시산 화합물에 아미노기가 치환되는 위치는 수소 원자가 치환되는 위치라면 한정되지 않으며, 치환되는 아미노기의 개수는 1이상일 수 있다.
상기 아미노기로 치환된 카복시산 화합물의 구체적인 예를 들면, 단백질의 원료로 알려진 20여종의 α-아미노산, 4-아미노부탄산, 5- 아미노펜탄산, 6-아미노핵산산, 그아미노헵탄산, 8—아미노옥탄산, 4- 아미노벤조산, 4-아미노페닐아세트산, 4-아미노 시클로핵산 카복시산 등을 들 수 있다.
또한, 상기 2이상의 아미노기를 포함한 다관능 아민 화합물은 분자 내에 2이상의 아미노기 (― ΝΗ2)를 포함한 화합물로서, 아미노기와 결합한 탄화수소의 종류에 따라 지방족, 지환족 또는 방향족 다관능 아민을 모두 포함할 수 있다. 상기 2이상의 아미노기를 포함한 다관능 아민 화합물을 통해 상기 알카리 가용성 수지의 가요성 , 인성, 동박밀착력 등이 향상될 수 있다.
상기 2이상의 아미노기를 포함한 다관능 아민 화합물의 구체적인 예를 들면, 1,3-시클로핵산디아민, 1,4-시클로핵산디아민, 1,3- 비스 (아미노메틸) -시클로핵산, 1,4-비스 (아미노메틸) -시클로핵산, 비스 (아미노메틸)—노보넨, 옥타하이드로ᅳ4,7-메타노인덴 -1(2), 5(6)- 디메탄아민, 4, 4'-메틸렌비스 (시클로핵실아민), 4,4'-메틸렌비스 (2- 메틸시클로핵실아민), 이소포론디아민, 1,3-페닐렌디아민, 1,4- 페닐렌디아민, 2.,5-디메틸-1,4-페닐렌디아민, 2,3,5,6,-테트라메틸 -1,4- 페닐렌디아민, 2,4,5,6-테트라플루오로-1,3-페닐렌디아민, 2,3,5,6- 테트라플루오로 -1,4-페닐렌디아민, 4,6-디아미노레조시놀, 2,5—디아미노- 1,4-벤젠디티올, 3-아미노벤질아민, 4—아미노벤질아민, m-자일렌디아민, P- 자일렌디아민, 1,5-디아미노나프탈렌, 2, 7-디아미노플루오렌, 2,6- 디아미노안트라퀴논, m-를리딘, 0-를리딘, 3,3' ,5, 5'—테트라메틸벤지딘 (TMB) , 0-디아니시딘, 4,4'ᅳ메틸렌비스 (2-클로로아닐린), 3,3'- 디아미노벤지딘, 2,2'-비스 (트리플루오로메틸) -벤지딘, 4,4'- 디아미노옥타플루오로비페닐, 4,4 '―디아미노 -p-터페닐 , 3,3'- 디아미노디페닐메탄, 3,4'-디아미노디페닐메탄, 4, 4'-디아미노디페닐메탄, 4,4'-디아미노-3,3'-디메틸디페닐메탄, 4,4'-메틸렌비스 (2-에틸 -6- 메틸아닐린), 4,4'-메틸렌비스 (2,6-디에틸아닐린), 3,3'-디아미노벤조페논, 4,4'—디아미노벤조페논, 4,4'-에틸렌디아닐린, 4,4'-디아미노 -2,2'- 디메틸비벤질, 2,2'-비스 (3-아미노 -4-하이드록시페닐)프로판, 2,2'-비스 (3- 아미노페닐) -핵사플루오로프로판, 2,2'-비스 (4-아미노페닐) - 핵사플루오로프로판 , 2, 2 ' -비스 (3 아미노 -4-메틸페닐) -핵사플루오로프로판, 2,2'-비스 (3-아미노 -4-하이드록시페닐)—핵사플루오로프로판, α , α '-비스 (4- 아미노페닐) -1, 4—디아이소프로필벤젠, 1, 3—비스 [2-(4-아미노페닐 )-2- 프로필]벤젠, 1,1'—비스 (4-아미노페닐) -시클로핵산, 9,9'-비스 (4一 아미노페닐) -플루오렌, 9,9'-비스 (4—아미노 -3-클로로페닐)플루오렌, 9,9'- 비스 (4-아미노 -3-플루오로페닐)플루오렌, 9,9 '-비스 (4-아미노 -3- 메틸페닐)플루오렌, 3,4'-디아미노디페닐에터, 4,4'—디아미노디페닐에터, 1,3-비스 (3-아미노페녹시) -벤젠, 1,3-비스 (4-아미노페녹시) -벤젠, 1,4- 비스 (4-아미노페녹시) -벤젠, 1, 4-비스 (4-아미노 -2- 트리플루오로메틸페녹시) -벤젠, 4,4'-비스 (4—아미노페녹시) -비페닐, 2,2'- 비스 [4-(4-아미노페녹시) -페닐]프로판, 2,2'—비스 [4-(4-아미노페녹시) - 페닐]핵사플루오로프로판, 비스 (2-아미노페닐)설파이드, 비스 (4- 아미노페닐)설파이드, 비스 (3-아미노페닐)설폰, 비스 (4-아미노페닐)설폰, 비스 (3-아미노 -4-하이드록시)설폰, 비스 [4-(3-아미노페녹시)—페닐]설폰, 비스 [4-(4-아미노페녹시) -페닐]설폰, 0—를리딘 설폰, 3 ,6-디아미노카바졸, 1,3, 5-트리스 (4-아미노페닐)—벤젠, 1,3-비스 (3-아미노프로필) - 테트라메틸디실록산, 4,4'-디아미노벤즈아닐리드ᅳ 2-(3-아미노페닐) -5- 아미노벤즈이미다졸, 2-(4-아미노페닐) -5-아미노벤족사졸, 1-(4- 아미노페닐 )-2, 3-디하이드로 -1', 3 , 3-트리메틸 -1H-인덴 -5—아민 , 4,6— 디아미노레조시놀, 2, 6—피리딘테트라아민, 신에츠 실리콘의 실록산 구조를 포함한 다관능 아민 (PAM-E, KF-8010, X-22-161A, X— 22-161B, KF- 8012, KF-8008, X-22-1660B-3, X-22-9409) , 다우코닝의 실록산 구조를 포함한 다관능 아민 (Dow Corning 3055), 폴리에테르 구조를 포함한 다관능 아민 (Huntsman사, BASF사) 등을 들 수 있다.
또한, 상기 .알카리 가용성 수지는 하기 화학식 3으로 표시되는 반복단위; 및 하기 화학식 4로 표시되는 반복단위를 각각 적어도 1 이상 포함할 수 있다.
[화학식 3]
Figure imgf000018_0001
상기 화학식 3에서. R2는 직접결합, 탄소수 1 내지 20의 알킬렌기 탄소수 1 내지 20의 알케닐기 또는 탄소수 6 내지 20의 아릴렌기이며 는 결합지점을 의미하고
[화학식 4]
Figure imgf000019_0001
상기 화학식 4에서, ¾는 직접결합, 탄소수 1 내지 20의 알킬렌기, 탄소수 1 내지 20의 알케닐기, 또는 탄소수 6 내지 20의 아릴렌기이며 , R4는 -H , -OH , -NR5R6 , 할로겐, 또는 탄소수 1 내지 20의 알킬기이며, 상기 ¾및 R6은 각각 독립적으로 수소, 탄소수 1 내지 20의 알킬기, 또는 탄소수 6 내지 20의 아릴기일 수 있고, 는 결합지점을 의미한다.
바람직하게는 상기 화학식 3에서 ¾는 페닐렌이고, 상기 화학식 4에서, ¾는 페닐렌이며, R4는 -0H일 수 있다.
한편, 상기 알카리 가용성 수지는 상기 화학식 3으로 표시되는 반복단위; 및 상기 화학식 4로 표시되는 반복단위 이외에 추가로 비닐계 반복단위를 더 포함할 수 있다. 상기 비닐계 반복단위는 분자내에 적어도. 1이상의 비닐기를 포함하는 비닐계 단량체의 단독중합체에 포함되는 반복단위로서, 상기 비닐계 단량체의 예가 크게 한정되는 것은 아니며, 예를 들어 에틸렌, 프로필렌, 이소부틸렌, 부타디엔, 스티렌, 아크릴산, 메타아크릴산 무수말레인산, 또는 말레이미드 등을 들 수 있다.
상술한 화학식 3으로 표시되는 반복단위; 및 화학식 3으로 표시되는 반복단위를 각각 적어도 1 이상 포함하는 알카리 가용성 수지는 하기 화학식 5로 표시되는 반복단위를 포함한 증합체, 하기 화학식 6으로 표시되는 아민, 및 하기 화학식 7로 표시되는 아민의 반응으로 제조될 수 있다.
[화학식 5]
Figure imgf000020_0001
[화학식 6]
Figure imgf000020_0002
[화학식 7]
Figure imgf000020_0003
상기 화학식 5 내지 7에서, 내지 는 상기 화학식 3, 4에서 상술한 내용과 동일하며, 는 결합지점을 의미한다.
. 상기 화학식 5로 표시되는 반복단위를 포함한 중합체의 구체적인 예가 크게 한정되는 것은 아니나, 예를 들어, Cray valley사의 SMA, Polyscope사의 Xiran, Solenis사의 Scr ipset , Kuraray사의 I sobam , Chevron Phillips Chemical사의 Polyanhydr ide resin, Lindau Chemicals사의 Mai dene 등을 들 수 있다.
또한, 상술한 화학식 3으로 표시되는 반복단위; 및 화학식 3으로 표시되는 반복단위를 각각 적어도 1 이상 포함하는 알카리 가용성 수지는 하기 화학식 8로 표시되는 화합물 및 하기 화학식 9로 표시되는 화합물의 반웅으로 제조될 수 있다.
[화학식 8]
Figure imgf000021_0001
[화학식 9]
Figure imgf000021_0002
상기 화학식 8 내지 9에서, R2 내지 R4는 상기 화학식 3 , 4에서 상술한 내용과 동일하다.
또한, 상기 알카리 가용성 수지는 분자 중에 카르복시기 또는 페놀기를 함유하고 있는 공지 관용의 카르복시기 함유 수지 또는 페놀기 함유 수지를 사용할 수 있다. 바람직하게는 상기 카르복시기 함유 수지 또는 상기 카르복시기 함유 수지에 페놀기 함유 수지를 흔합하여 사용할 수 있다.
상기 카르복시기 함유 수지의 예로는 하기 열거하는 ( 1 ) 내지 (7)의 수지를 들 수 있다.
( 1) 다관능 에폭시 수지에 포화 또는 불포화 모노카르복시기를 반응시킨 후, 다염기산 무수물을 반웅시켜 얻어지는 카르복시기 함유 수지, (2) 2관능 에폭시 수지에 2관능 페놀 , 및 (또는) 디카르복시기를 반웅시킨 후 다염기산 무수물을 반응시켜 얻어지는 카르복시기 함유 수지,
(3) 다관능 페놀 수지에 분자 내에 1개의 에폭시기를 갖는 화합물을 반웅시킨 후 다염기산 무수물을 반응시켜 얻어지는 카르복시기 함유 수지,
(4) 분자 내에 2개 이상의 알코을성 수산기를 갖는 화합물에 다염기산 무수물을 반응시켜 이루어지는 카르복시기 함유 수지
(5) 디아민 (diamine)과 디안하이드라이드 (dianhydride)를 반응시킨 폴리아믹산 수지 또는 폴리아믹산 수지의 공중합체 수지
(6) 아크릴산을 반응시킨 폴리아크릴산 수지 또는 폴리아크릴산 수지의 공중합체 .
(7) 말레산무수물을 반응시킨 폴리말레산무수물 수지 및 폴리말레산무수물 수지 공중합체의 무수물을 약산, 디아민, 이미다졸 (imidazole), 디메틸설폭사이드 (dimethyl sulfoxide)로 개환시켜 제조한 수지 등을 들 수 있지만, 이들에 한정되는 것은 아니다.
상기 카르복시기 함유 수지의 보다 구체적인 예로는 일본화약의 CCR-
1291H, 신아 T&C의 SHA-1216CA60, Lubriz()l의 Noverite K-700 또는 이들의 2종 이상의 흔합물 등을 들 수 있다.
상기 페놀기 함유 수지의 예가 크게 한정.되는 것은 아니나, 예를 들어 페놀 노볼락 수지, 크레졸 노볼락 수지, 비스페놀 F(BPF) 노볼락 수지 등의 노볼락 수지 또는 44' -(1-(4— (2— (4-하이드록시페닐)프로판 -2- 일 )페닐)에탄 -1 1-다이일 )다이페놀 [4 , 4 ' -( 1-(4-(2-(4-
Hydroxyphenyl )propan-2-yl ) phenyl )ethane—l , 1-diyl Mi'phenol ]등의
비스페놀 A계 수지를 각각 단독으로 사용하거나혼합하여 사용할 수 있다. 상기 고분자 수지충은 열경화 촉매, 무기 필러, 레벨링제, 분산제. 이형제 및 금속 밀착력 증진제로 이루어진 군에서 선택된 1종 이상의 첨가제를 더 포함할 수 있다.
상기 열경화성 촉매는 열경화성 바인더의 열경화를 촉진시키는 역할올 한다. 상기 열경화성 촉매로서는, 예를 들면 이미다졸, 2— 메틸이미다졸, 2-에틸이미다졸, 2-에틸— 4-메틸이미다졸, 2—페닐이미다졸, 4 닐이미다졸. 1-시아노에틸 -2-페닐이미다졸, 1-(2—시아노에틸) -2-에틸- 4-메틸이미다졸 등의 이미다졸 유도체 ; 디시안디아미드, 벤질디메틸아민 , 4- (디메틸아미노) -Ν,Ν-디메틸벤질아민, 4-메록시 -Ν,Ν-디메틸벤질아민, 4- 메틸ᅳ Ν,Ν-디메틸벤질아민 등의 아민 화합물 ; 아디프산 디히드라지드, 세박산 디히드라지드 등의 히드라진 화합물; 트리페닐포스핀 등의 인 화합물 등을 들 수 있다. 또한, 시판되고 있는 것으로서는, 예를 들면 시코쿠 가세이 고교사 제조의 2MZ-A , 2MZ-0 , 2PHZ , 2P4BHZ , 2P4MHZ (모두 이미다졸계 화합물의 상품명), 산아프로사 제조의 U-CAT3503N , UCAT3502T (모두 디메틸아민의 블록이소시아네이트 화합물의 상품명), DBU , DBN , U-CATS A102 , U-CAT5002 모두 이환식 아미딘 화합물 및 그의 염) 등을 들 수 있다. 특히 이들에 한정되는 것이 아나고, 에폭시 수지나 옥세탄 화합물의 열경화 촉매, 또는 에폭시기 및 /또는 옥세타닐기와 카르복시기의 반웅을 촉진하는 것일 수 있고, 단독으로 또는 2종 이상을 흔합하여 사용할 수도 있다. 또한, 구아나민, 아세토구아나민, 벤조구아나민, 멜라민, 2 , 4- 디아미노 -6-메타크릴로일옥시에틸 -S-트리아진 , 2-비닐— 4, 6-디아미노 -S一 트리아진, 2-비닐 -4 , 6-디아미노 -S-트리아진-이소사아누르산 부가물, 2 , 4— 디아미노— 6—메타크릴로일옥시에틸 -S-트리아진-이소사아누르산 부가물 등의 S-트리아진 유도체를 이용할 수도 있고, 바람직하게는 이들 밀착성 부여제로서도 기능하는 화합물을 상기 열경화성 촉매와 병용할 수 있다. 상기 무기 필러의 예로는 실리카, 황산바륨, 티탄산바륨, 탈크, 클레이, 탄산마그네슘, 탄산칼슘, 산화알루미늄, 수산화알루미늄, 마이카 또는 이들의 2종 이상의 흔합물을 들 수 있다.
상기 무기필러의 함량의 예가 크게 한정되는- 것은 아니나, 상기 고분자 수지층의 높은 강성을 달성하기 위해, 고분자 수지충 내 포함된 모든 수지 성분 100 중량부에 대하여, 상기 무기필러를 100 중량부 이상, 또는 100 중량부 내지 600 중량부, 또는 100 중량부 내지 500 중량부로 첨가할 수 있다. ᅳ
상기 이형제의 예로는, 저분자량 폴리프로필렌, 저분자량 폴리에틸텐 등의 폴리알킬렌 왁스, 에스테르 왁스, 카르나우바 ( carnauba) 왁스, 파라핀 왁스 등을 들 수 있다.
상기 금속 밀착력 증진제는 금속소재의 표면 변질이나 투명성에 문제를 발생시키지 않는 물질, 예를 들어, 실란 커플링제 또는 유기금속 커플링제 등을 사용할 수 있다.
상기 레벨링제는 필름 코팅시 표면의 팝핑이나 크레이터를 제거하는 역할을 하며 , 예를 들어 BYK-Chemi e GmbH의 BYK-380N, BYK-307, BYK-378 , BYK-350 등을 사용할 수 있다. 또한, 상기 고분자 수지층은 상분리를 유발할 수 있는 분자량 5000 g/mol이상인 수지 또는 엘라스토머를 더 포함할 수 있다. 이에 따라, 상기 고분자 수지층의 경화물의 조화처리가 가능할 '수 있다. 상기 분자량 5000 g/mol 이상의 수지 또는 엘라스토머의 분자량 측정방법의 예가 크게 한정되는 것은 아니며, 예를 들어, GPC법에 의해 .측정한 폴리스티렌 환산의 중량 평균 분자량을 의미한다. 상기 GPC법에 의해 측정한 폴리스티렌 환산의 중량 평균 분자량을 측정하는 과정에서는, 통상적으로 알려진 분석 장치와 시차 굴절 검출기 (Refract ive Index Detector ) 등의 검출기 및 분석용 컬럼을 사용할 수 있으며, 통상적으로 적용되는 온도 조건, 용매, f low rate를 적용할 수 있다. 상기 측정 조건의 구체적인 예로, 30°C의 온도, 클로로포름 용매 (Chloroform) 및 1 mL/min의 f low rate를 들 수 있다. 또한, 상기 고분자 수지층은 상기 고분자 수지층에 광경화성 성질을 부여하기 위하여, 광반웅성 불포화기를 포함하는 열경.화성 바인더 또는 광반응성 불포화기를 포함하는 알카리 가용성 수자와 광개시제를 더 포함할 수 있다. 상기 광반웅성 불포화기를 포함하는 열경화성 바인더, 광반응성 불포화기를 포함하는 알카리 가용성 수지 및 광개시제의 구체적인 예는 크게 한정되지 않으며, 광경화성 수지 조성물 관련 기술분야에서 사용되는 다양한 화합물을 제한 없이 사용할 수 있다.
상기 고분자 수지층에 함유된 광개시제의 함량 o 전체 고분자 수지층 중량 대비 0.01 중량 % 이하일 수 있다. 상기 고분자 수지충에 함유된 광개시제의 함량이 전체 고분자 수지층 중량 대비 0.01 중량 % 이하라 함은. 상기 고분자 수지층에 함유된 광개시제의 함량이 매우 미미하거나, 광개시제가 전혀 포함되지 않음을 의미할 수 있다. 이에 따라, 광개시제에 의해 발생가능한 절연층이나 도전층과의 계면 탈착성이 감소할 수 있어. 절연층의 접착성 및 내구성이 향상될 수 있다.
또한, 상기 일 구현예의 절연층 제조방법은 상기 고,분자 수지충을 1차 경화시키는 단계를 포함할 수 있다. 상기 고분자 수지층을 경화하는 단계에서, 구체적인 경화방법의 예가 크게 한정되는 것은 아니며, 열경화 또는 광경화 방법을 모두 제한없이 사용할 수 있다.
상기 1차 경화단계를 통해, 상기 고분자 수지층 내에서 에스터 결합을 포함하는 주쇄가 형성될 수 있다. 상기 에스터 결합의 예를 들면, 아크릴산이 에스터 결합되어 있는 아크릴 수지를 통해 광경화하거나, 카복시산과 에폭시의 반응으로 에스터 결합이 형성되도록 열경화하는 방법을 들 수 있다.
이때 구체적인 열경화 조건이 한정되는 것은 아니며, 후술하는 고분자 수지층의 식각 방법에 따라 바람직한 조건을 조절하여 진행할 수 있다. 예를 들어, 포토레지스트 박리액을 처리하여 고분자 수지층을 식각하는 경우, 상기 고분자 수지층의 1차 경화 단계는 50 °C 내지 150 °C 의 온도에서 0. 1 시간 내지 2시간 동안 진행할 수 있다. 상기 고분자 수지충의 열경화 은도가 지나치게 낮거나, 열경화 시간이 짧게되면 박리액에 의해 고분자 수지층이 과도하게 손상받올 수 있고, 상기 고분자 수지층의 열경화 온도가 높거나, 열경화 시간이 길어지게되면 박리액에 의한 고분자 수지층의 식각이 진행되기 어려울 수 있다.
또한, 상기 일 구현예의 절연층 제조방법은 상기 경화된 고분자 수지층 표면을 알카리 수용액으로 식각하여 금속 돌기를 노출시키는 단계를 포함할 수 있다. 상기 경화된 고분자 수지층 표면을 알카리 수용액으로 식각하여 금속 돌기를 노출시킴에 따라, 상기 노출된 금속 돌기를 통해 경화된 고분자 수지층 내부에 밀봉된 도체 배선과 전기적 신호를 연결할 수 있다.
상술한 금속 돌기의 노출은 알카리 수용액에 의한 식각을 통해 진행될 수 있다. 상기 알카리 수용액은 10 °C 내지 100 °C , 또는 25 °C 내지 60 °C 온도 및 1% 내지 10% , 또는 1% 내지 5%의 농도를 가질 수 있으며, 보다 구체적으로는 포토레지스트 박리액을 사용할 수 있다. 상기 알카리 수용액은 상기 1차경화를 통해 에스터 결합을 포함한 주쇄가 형성된 고분자 수지층 내에서 에스터 결합을 끊어냄으로서 고분자 수지층을 식각 제거할 수 있다. 이때, 상기 알카리 수용액의 농도 및 온도를 조절함으로써, 알카리 수용액에 의한 고분자 수지층의 식각 속도를 제어할 수 있고, 상술한 범위 내에서 적정 수준의 식각 속도를 유지하여 공정 효율성을 확보하면서도 용이하게 고분자 수지층의 두께를 조절할 수 있다.
상기 알카리 수용액은 수산화칼륨, 수산화나트륨 등의 금속 수산화물의 수용액을 사용할 수 있으며, Atotech사의 Res i str ip 제품군, 오알켐사의 ORC-731 , 0RC-723K , 0RC— 740, SLF-6000 등 상용으로 판매하는 제품도 사용이 가능하다.
상기 알카리 수용액에 의한 식각은 상기 경화된 고분자 수지층 표면에서부터 진행될 수 있다. 상기 경화된 고분자 수지층 표면은 표면에 금속돌기가 형성된 도체 배선을 밀봉하고 있는 고분자 수지층이 공기중과 접촉하는 면적을 의미하며, 상기 경화된 고분자 수지층 표면에서부터 표면에 금속돌기가 형성된 도체 배선을 밀봉하는 고분자 수지충 내부로 식각이 진행됨에 따라, 금속돌기가 노출될 수 있다.
상기 알카리 수용액에 의한 식각이 상기 경화된 고분자 수지층 표면에서부터 진행되기 위하여, 상기 알카리 수용액은 상기 경화된 고분자 수지층 표면에 접촉될 수 있다. 이 때, 고분자 수지충의 물리적 손상 없이 균일한 제거로 두께 균일성을 확보하기 위하여, 상기 알카리 수용액은 스프레이를 통한 분사 등의 방법을 통해 고분자 수지층 표면으로 접촉시킬 수 있다.
또한, 상기 일 구현예의 절연층 제조방법은 상기 금속 돌기가 노출된 상태에서, 고분자 수지층을 2차 경화시키는 단계를 포함할 수 있다. 상기 2차 경화단계를 통해, 상기 2차 경화단계를 통해 최종 제조되는 절연층의 화학적 내저항성이 향상될 수 있다.
이때 구체적인 경화 조건이 한정되는 것은 아니며, 예를 들어 상기 고분자 수지층의 2차 경화 단계는 150 °C 내지 250 °C 의 온도에서 0. 1 시간 내지 2시간 동안 진행할 수 '있다.
한편, 상기 금속 돌기가 노출된 상태에서, 고분자 수지층을 2차 경화시키는 단계 이후에, 필요에 따라, 도체 배선 하부에 형성된 기재를 제거하는 단계를 더 포함할 수 있다. 상술한 바와 같이, 상기 도체 배선은 하부에 회로기판, 시트, 다층 프린트 배선판 등의 반도체 재료를 포함한 기재 상에 형성된 상태로 존재할 수 있다. 보다 미세한 구조의 다층 회로기판 형성을 위하여, 필요에 따라 도체 배선 하부의 기재를 제거할 수 있으며, 상기 기재는 고분자 수지층과 접착 혹은 점착된 상태로 존재하여, 물리적으로 박리하여 제거될 수 있다. 한편. 발명의 다른 구현예에 따르면, 상기 일 구현예에서 제조된 절연층 상에 패턴이 형성된 금속 패턴층을 형성하는 단계를 포함하는 다층인쇄회로기판 제조방법이 제공될 수 있다.
본 발명자들은 상기 일 구현예에서 제조된 절연층은 내부에 표면에 금속 돌기가 형성된 도체 배선을 포함하며, 상기 금속돌기가 절연층 외부로 노출되어, 상기 절연층 상에 금속 패턴층을 새로 적층할 경우, 상기 금속 패턴층이 금속 돌기를 통해 절연충 내부의 도체 배선과 전기적 신호를 주고받을 수 있다는 것을 확인하고 발명을 완성하였다.
상기 절연층은 다층인쇄회로기판의 층간 절연재료로 사용될 수 있으며, 알카리 가용성 수지 및 열경화성 바인더의 경화물, 구체적으로 열경화물 또는 광경화물을 포함할 수 있다. 상기 알카리 가용성 수지 및 열경화성 바인더에 관한 내용은 상기 일구현예에서 상술한 내용을 포함한다. 보다 구체적인 상기 절연층 상에 금속 패턴층을 형성하는 단계의 예를 들면, 상기 절연층 상에 금속박막을 형성하는 단계; 상기 금속박막 상에 패턴이 형성된 감광성 수지층을 형성하는 단계; 상기 감광성 수지층 패턴에 의해 노출된 금속박막 상에 금속을 증착시키는 단계; 및 싱-기 감광성 수지층을 제거하고, 노출된 금속박막을 제거하는 단계를 포함할 수 있다.
상기 절연층 상에 금속박막을 형성하는 단계에서, 금속 박막의 형성방법의 예로는 건식증착공정 또는 습식증착공정을 들 수 있으며, 구체적인 상기 건식증착공정의 예로는 진공증착, 이온 플레이팅, 스퍼터링 방법 등을 들 수 있다.
한편, 구체적인 상기 습식증착공정의 예로는, 다양한 금속의 무전해 도금 등이 있으며. 무전해 구리 도금이 일반적이고, 증착 이전 또는 이후에 조화처리공정을 더 포함할 수 있다. .
상기 조화처리 공정에도 조건에 따라 건식 및 습식방법이 있으며, 상기 건식 방법의 예로는 진공, 상압, 기체별 플라즈마 처리, 기체별 Excimer UV처리 등을 들 수 있고. 상기 습식방법의 예로는, 디스미어 처리를 사용할 수 있다. 이러한 조화처리 공정을 통해, 상기 금속 박막의 표면조도를 높여 금속박막 상에 증착되는 금속과의 밀착력을 향상시킬 수 있다.
또한, 상기 절연층 상에 금속박막을 형성하는 단계는 상기 금속 박막을 증착하기 전에 상기 절연충 상에 표면처리층을 형성하는 단계를 더 포함할 수 있다. 이를 통해, 상기 금속박막과 절연층간의 접착력이 향상될 수 있다.
구체적으로 상기 절연층 상에 표면처리층을 형성하는 방법의 일례를 들면, 이온보조 반응법, 이온범 처리법, 플라즈마 처리법 중 적어도 어느 하나를 사용할 수 있다. 플라즈마 처리법은 상압 플라즈마 처리법, DC 플라즈마 처리법, RF 플라즈마 처리법 중 어느 하나를 포함할 수 있다. 상기 표면 처리 공정의 결과, 상기 절연층의 표면에 반웅성 작용기를 포함하는 표면 처리 충이 형성될 수 있다. 상기 절연층 상에 표면처리층을 형성하는 방법의 또다른 예로는, 상기 절연층 표면에 5()nm 내지 30이 im 두께의 크름 (Cr ) , 티타늄 (Ti ) 금속을 증착하는 방법을 들 수 있다.
한편, 상기 금속박막 상에 패턴이 형성된 감광성 수지층을 형성하는 단계는 상기 금속박막 상에 형성된 감광성 수지층을 노광 및 현상하는 단계를 포함할 수 있다.. 상기 감광성 수지층과 노광 및 현상에 대한 내용은 상기 일 구현'예에서 상술한 내용을 포함할 수 있다.
특히, 상기 금속박막 상에 형성되는 패턴은, 패턴에 포함된 개구부가 상기 절연층 외부로 노출된 금속 돌기와 서로 맞닿을 수 있도록 형성하는 것이 바람직하다. 상기 패턴에 포함된 개구부는, 상기 감광성 수지층의 노광 및 현상을 통해 제거된 부분을 의미하며, 후술하는 금속 증착을 통해 금속이 증착되어 상기 금속 패턴층을 형성하는 부분에 해당한다. 따라서, 상기 패턴에 포함된 개구부가 상기 절연층 외부로 노출된 금속 돌기와 서로 맞닿을 수 있도록 형성되어야, 금속 패턴층이 금속 돌기와 접촉하면서 껄연층 내부의 도체 배선과 전기적 신호를 주고받을 수 있다.
상기 감광성 수지층 패턴에 의해 노출된 금속박막 상에 금속을 증착시키는 단계에서, 상기 감광성 수지충 패턴에 의해 노출된 금속박막이란, 표면에서 감광성 수지층과 접촉하지 않고 있는 금속박막 부분을 의미한다. 상기 증착되는 금속은 구리를 사용할 수 있고, 상기 증착 방법의 예는 크게 한정되지 않으며, 공지된 다양한 물리적 또는 화학적 증착방법올 제한없이 사용할 수 있으며, 범용되는 일례로는 전해 구리 도금 방법을 사용할 수 있다.
이 때, 상기 감광성 수지충 패턴에 의해 노출된 금속박막 상에 증착되는 금속이 상술한 금속 패턴층을 형성할 수 있으며, 보다 구체적으로 상기 금속 패턴층은 금속 돌기를 매개로 도체 배선과 연결되도록 형성될 수 있다. 이를 통해, 상기 금속 패턴층은 절연층 내부에 포함된 도체 배선과 전기적 신호를 주고 받을 수 있다. 보다 구체적으로, 상기 금속 돌기의 일 말단은 도체 배선과 접촉하며, 상기 금속 돌기의 다른 일 말단은 상기 금속 패턴층과 접촉하여 전기적으로 상기 도체 배선과 금속 패턴층을 연결할 수 있다.
상기 감광성 수지층을 제거하고, 노출된 금속박막을 제거하는 단계에서, 상기 감광성 수지층의 제거방법의 예로는 포토레지스트 박리액을 사용할 수 있으며, 상기 감광성 수지층의 제거로 인해 노출되는 금속박막의 제거방법의 예로는 에칭액을 사용할 수 있다.
상기 다층인쇄회로기판 제조방법에 의해 제조된 다층인쇄회로기판은 다시 빌드업 재료로서 사용될 수 있으며, 예를 들어, 상기 다층인쇄회로기판 상에 상기 일 구현예의 절연층 제조방법에 따라 절연층을 형성하는 제 1공정과, 상기 절연층 상에 상기 다른 구현예의 다충인쇄회로기판 제조방법에 따라 금속 기판을 형성하는 제 2공정을 반복하여 진행할 수 있다.
이에 따라, 상기 다충인쇄희로기판 제조방법에 의해 제조되는 다층인쇄회로기판에 포함된 적층된 층 수 또한 크게 한정되지 않으며, 사용 목적, 용도에 따라 예를 들어 1층 이상, 또는 1층 내지 20층을 가질 수 있다.
[발명의 효과】
본 발명에 따르면, 보다 빠르면서도 간단한 방법으로 제조가 가능하여 공정의 효율성이 향상될 수 있으며, 절연층의 물리적 손상을 방지할 수 있고, 두께 조절이 용이한 절연층 제조방법 및 상기 절연층 제조방법으로부터 얻어지는 절연층을 이용한 다층인쇄회로기판 제조방법이 제공될 수 있다.
【발명을 실시하기 위한 구체적인 내용】
발명을 하기의 실시예에서 보다 상세하게 설명한다. 단, 하기의 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기의 실시예에 의하여 한정되는 것은 아니다.
<제조예: 알카리 가용성 수지의 제조 >
제조여 u
제조 온도계, 교반 장치, 환류넁각관, 수분정량기가 장착된 가열 및 넁각 가능한 용적 2리터의 반웅 용기에 용매로 디메틸포름아마이드 (Dimethylformamide, DMF) 632g, N-치환 말레이미드 화합물로 BMI-1100(Dai\vakasei사 제조) 358g, 아민 화합물로 4- 아미노페닐아세트산 151g을 흔합하고, 85 °C에서 24시간 동안 교반하여, 고형분 함량 50%의 알카리 가용성 수지 용액을 제조하였다. 제조예 2
제조 온도계, 교반 장치, 환류냉각관, 수분정량기가 장착된 가열 및 넁각 가능한 용적 2리터의 반응 용기에 용매로 디메틸포름아마이드 (Dimethylformamide, DMF) 632g, N—치환 말레이미드 화합물로 P-카복시페닐말레이미드 434g, 아민 화합물로 4,4' - 디아미노디페닐메탄 198g을 흔합하고, 85 °C에서 24시간 동안 교반하여, 고형분 함량 50%의 알카리 가용성 수지 용액을 제조하였다. 제조예 3
제조 온도계, 교반 장치, 환류넁각관, 수분정량기가 장착된 가열 및 넁각 가능한 용적 2리터의 반응 용기에 용매로 디메틸아세트아마이드 (Diniethylacetamide, DMAc) 543g을 넣고, Cray Valley사의 SMA1000 350g, 4-아미노벤조익산 (4-aminobenzoic acid, PABA) 144g, 4-아미노페놀 (4-aminophenol, PAP) 49g을 투입 후 혼합하였다. 질소분위기하에서 반웅기의 온도를 80 °C로 하고,ᅳ 24시간 지속하여 산무수물과 아닐린 유도체가 반웅하여 아믹산을 형성하도록 한 후, 반웅기의 온도를 150 °C로 하고 24시간 지속하여 이미드화 반응을 진행하여, 고형분 50%의 알카리 가용성 수지 용액을 제조하였다. 제조여
제조 온도계, 교반 장치, 환류넁각관, 수분정량기가 장착된 가열 및 넁각 가능한 용적 2리터의 반웅 용기에 용매로 메틸에틸케톤 (Methylethylketone, MEK) . 516g을 넣고, p- 카복시페닐말레이미드 (p-carboxyphenylmaleimide) 228g, p- 하이드록시페닐말레이미드 (p-hydroxyphenylmaleimide) 85g, 스티렌 (styrene) 203g, 아조비스이소부티로나이트릴 (AIBN) 0.12g을 투입 후 흔합하였다. 질소분위기하에서 반응기의 온도를 70 °C로 서서히 높인 후, 24시간 지속하여 고형분 50%의 알카리 가용성 수지 용액을 제조하였다. <실시예: 절연층 및 다층인쇄회로기판의 제조 >
실시예 1
(1) 절연층의 제조
상기 제조예 1에서 합성한 알카리 가용성 수지 16g, 열경화성 바인더로 MY-510(Huntsman 제조) 5g, 무기 필러로 SC2050 MTO (고형분 70¾, Adamatech 제조) 35g를 흔합한 고분자 수지 조성물을 25 βηι 두께의 무처리 PET 필름에 도포하고 건조시켜 18 卿 두께의 고분자 수지층을 제조하였다. 그리고. 극박 동박이 접착되어 있는 동박적층판 (LG-500GA VB/VB, LG화학) 상에 드라이 필름 (RY-5319, 히타치 화성 )을 라미네이트 하여 패턴을 형성하고 전기도금을 하여 MSAP 공법으로 회로를 형성하였다. 이후, 상기 회로 상에 드라이 필름 (RY-5319, 히타치 화성)을 라미네이트 하여 패턴을' 형성하고 전기 도금을 하여 높이 1 «η, 지름 20 의 구리범프를 형성하였다.
이후, 상기 동박적층판상에 고분자 수지층을 85°C에서 진공 라미네이트하여 회로와 구리범프를 밀봉시키고, 고분자 수지층으로부터 PET 필름을 제거하였다. 상기 라미네이트된 고분자 수지층을 100°C의 온도에서 1시간 동안 1차 열경화시킨 다음, 50 °C 온도의 3% 수산화 나트륨 레지스트 박리액을 고분자 수지층의 표면에 스프레이 분사하여, 고분자 수지층의 표면으로부터 약 3 깊이만큼 제거하여 구리범프를 표면위로 노출시키고 수세 및 건조시켰다. 이때, 상기 구리범프를 노출시키는 공정은 연속공정으로 1판넬당 10초 내지 60초간 진행되었다.
그리고, 구리범프가 표면에 노출된 고분자 수지층을 200 °C의 온도에서 1시간 동안 열경화시켜 절연층을 제조하였다.
(2) 다층인쇄회로기판의 제조
상기 절연층 상에 무전해 구리도금을 이용하여 구리박막을 증착시키고, 100 은도에서 30분간 가열하여 무전해 구리도금과의 밀착력을 향상시킨 다음, 드라이 필름 (RYᅳ 5319 , 히타치 화성)을 라미네이트 하여 패턴을 형성하고 전기도금을 하여 SAP 공법으로 회로를 형성하였다. 그리고, 상기 절연층으로부터 동박적층판 및 극박동박을 분리 제거하여 다층인쇄회로기판을 완성하였다. 실시예 2
상기 실시예 1의 절연층 제조 단계에서 제조예 1에서 합성한 알카리 , 가용성 수지 대신에 제조예 2에서 합성한 알카리 가용성 수지를 사용한 것을 제외하고, 상기 실시예 1과 동일한 방법으로 절연충 및 다층인쇄회로기판을 제조하였다. 실시예 3
상기 실시예 1의 절연층 제조 단계에서 제조예 1에서 합성한 알카리 가용성 수지 대신에 제조예 3에서 합성한 알카리 가용성 수지를 사용한 것을 제외하고, 상기 실시예 1과 동일한 방법으로 절연층 및 다층인쇄회로기판을 제조하였다. 실시예 4
상기 실시예 1의 절연층 제조 단계에서 제조예 1에서 합성한 알카리 가용성 수지 대신에 제조예 4에서 합성한 알카리 가용성 수지를 사용한 것을 제외하고, 상기 실시예 1과 동일한 방법으로 절연층 및 다층인쇄회로기관을 제조하였다.
<비교예: 절연층 및 다층인쇄회로기판의 제조 >
비교예 1
( 1 ) 절연층의 제조
상기 제조예 1의 고분자 수지층 대신 100 μη\ 두께의 몰딩 시트 (LE- T17B , 아지노모토)를 사용하여, 120 °C에서 진공 라미네이트하고, 170 °C 온도에서 1시간 동안 열경화시킨 후, 상기 열경화된 고분자 수지층 표면을 그라인딩 머신으로 그라인딩하여 구리범프를 노출시킨 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 절연층을 제조하였다.
이때, 상기 구리범프를 노출시키는 공정은 배치공정으로 1판넬당 10분 내지 20분간 진행되어, 실시예에 비해 오랜 시간이 소요되는 것을 확인할 수 있었다.
( 2) 다층인쇄회로기판의 제조
상기 비교예 1에서 얻어진 절연층에 대하여', 실시예 1과 동일한 방법으로 다층인쇄회로기판을 제조하였다, 비교예 2
상기 라미네이트된 고분자 수지층을 100 °C의 온도에서 1시간 동안
1차 열경화시킨 다음, 50 °C 은도의 3% 수산화 나트륨 레지스트 박리액을 고분자 수지층의 표면에 스프레이 분사하는 대신, 고분자 수지층을 200 °C의 온도에서 1시간 동안 열경화시킨 다음 통상적인 방법에 따라 스웰러 (At otech , Swe l l er-p , 40%) , 에칭 (KMn04 9% , NaOH , 6%) 및 중화 (H2S04 9%) 순서로 디스미어 처리하여 고분자 수지층의 표면으로부터 약 /m 깊이만큼 제거하여 구리범프를 표면위로 노출시킨 것을 제외하고, 상기 실시예 1과 동일하게 절연층 및 다층인쇄회로기판을 제조하였다.
이때, 상기 구리범프를 노출시키는 디스미어 공정은 연속배치 공정으로 에칭단계에서만 1판넬당 5분 내지 10분간 진행되어, 실시예에 비해 오랜 시간이 소요되며, 과망간산칼륨과 같은 유해한 화학물질이 투입되어야 할 뿐만 아니라, 고분자 수지층의 두께 조절이 어렵다는 한계가 있다는 것을 확인할 수 있었다. 비교예 3
상기 제조예 1에서 합성한 알카리 가용성 수지 16g , 열경화성 바인더로 MY-510(Hunt sman 제조) , 무기 필러로 SC2050 MTO(Adamatech 제조) 35g를 혼합한 고분자 수지 조성물을 25 두께의 무처리 PET 필름에 도포하고 건조시켜 18 ^ηι 두께의 고분자 수지층을 제조하였다.
그리고. 극박 동박이 접착되어 있는 동박적층판 (LG-500GA VB/VB . LG화학) 상에 드라이 필름 (RY-5319 , 히타치 화성 )을 라미네이트 하여 패턴을 형성하고 전기도금을 하여 MSAP 공법으로 회로를 형성하였다. 이후, 상기 회로 상에 드라이 필름 (RY-5319 , 히타치 화성 )을 라미네이트 하여 패턴을 형성하고 전기 도금을 하여 높이 15 . 지름 20 의 구리범프 형성하였다.
이후, 상기 동박적층판상에 고분자 수지층을 85°C에서 진공 라미네이트하여 회로와 구리범프를 밀봉시키고, 고분자 수지층으로부터 PET 필름을 제거하였다. 이후, 상기 라미네이트된 고분자 수지층을 locrc의 온도에서 1시간 동안 1차 열경화시키는 공정을 생략하고, 상기 라미네이트된 고분자 수지층을 곧바로 50 °C 온도의 3% 수산화 나트룹 레지스트 박리액을 고분자 수지층의 표면에 스프레이 분사하였다.
이때 상기 비교예 3의 경우, 수산화 나트륨 레지스트 박리액이 분사되고나서 10초 이내에 고분자 수지층이 모두 제거되어, 구리범프 및 하부의 회로까지 드러나는 기술적 한계가 확인되었다.
즉, 상기 비교예 3과 같이 박리액 분사 이전에 고분자 수지층에 대한 경화단계를 진행하지 않는 경우, 고분자 수지층이 제거되는 정도를 제어하기가 어려워, 구리범프의 일부만을 고분자 수지층 표면에 노출시.키기에 적합하지 않음을 확인하였다.
<실험예 : 실시예 및 비교예에서 얻어진 절연층 및 다층인쇄회로기판의 물성 측정 > 상기 실시예 및 비교예에서 얻어진 절연층의 물성을 하기 방법으로 측정하였으며, 그 결과를 표 1에 나타내었다.
1. 흡습에 의한금속밀착력
상기 실시예 및 비교예에서 얻어진 다층인쇄회로기판에 대하여
135 °C , 85% 흡습상태에서 48시간 방치시킨 후, IPOTM-650 기준에 따라 금속의 박리강도를 측정하여, 이로부터 금속 밀착력을 구하였다.
2. HASTCHighly Accelerated Temp & Humidity Stress Test) 내성 상기 실시예 및 비교예에서 얻어진 다층인쇄;회로기판에 대하여 JESD22— Al()l기준에 따라 HAST내성을 확인하였다.. 구체적으로 폭, 간격, 두께가 각각 50卿, 50/im, 12卿인 시편회로기판에 대하여, 3V의 전압을 인가하고, 168시간 동안 방치한 이후, 다음 기준 하에 시편회로기판의 외관상 이상 유무를 확인하였다.
0K: 피막 외관에 이상이 관찰되지 않음
NG: 피막에 수포 또는 벗겨짐이 관찰됨
【표 1】
실시예 및 비교예의 실험예 결과
Figure imgf000035_0001

Claims

【청구범위】
【청구항 1】
표면에 금속 돌기가 형성된 도체 배선을 알카리 가용성 수지 및 열경화성 바인더를 포함한 고분자 수지층으로 밀봉하는 단계;
상기 고분자 수지층을 1차 경화시키는 단계 ;
상기 경화된 고분자 수지층 표면을 알카리 수용액으로 식각하여 금속 돌기를 노출시키는 단계 ; 및
상기 금속 돌기가 노출된 상태에서, 고분자 수지춤을 2차 경화시키는 단계를 포함하는, 절연층 제조방법 .
【청구항 2】
거 U항에 있어서,
상기 알카리 가용성 수지는 산성 작용기; 및 아미노기로 치환된 고리형이미드 작용기를 각각 적어도 2 이상 포함하는, 절연층 제조방법 .
【청구항 3]
제 2항에 있어서, .
상기 아미노기로 치환된 고리형 이미드 작용기는 하기 화학식 1로 표시되는 작용기를 포함하는, 절연층 제조방법:
[화학식 1]
Figure imgf000036_0001
상기 화학식 1에서, R은 탄소수
알케닐기이며, 는 결합지점을 의미한다.
【청구항 4】 제 1항에 있어서'
상기 알카리 가용성 수지는 K0H 적정에 의해 구해지는 산가 ( ac i d va 1 ue )가 50 mgKOH/g 내지 250 mgKOH/g인 , 절연층 제조방법.
【청구항 5】
제 1항에 있어서,
상기 알카리 가용성 수지는 고리형 불포화 이미드 화합물; 및 아민 화합물의 반웅을 통해 제조되며 상기 고리형 불포화 이미드 화합물과 아민 화합물 중 적어도 하나 이상은 말단에 치환된 산성 작용기를 포함하는. 절연층 제조방법 .
【청구항 6】
제 5항에 있어서'
상기 아민 화합물은 아미노기로 치환된 카복시산 화합물 및 2이상의 아미노기를 포함한 다관능 아민 화합물로 이루어진 군에서 선택된 1종 이상을 포함하는, 절연충 제조방법 .
[청구항 7】
제 1항에 있어서,
상기 알카리 가용성 수지는 하기 화학식 3으로 표시되는 반복단위 ; 및 하기 화학식 4로 표시되는 반복단위를 각각 적어도 1 이상 포함하는, 절연층 제조방법:
[화학식 3]
Figure imgf000038_0001
상기 화학식 3에서, R2는 직접결합, 탄소수 1 내지 20의 알킬렌기 탄소수 1 내지 20의 알케닐기, 또는 탄소수 6 내지 20의 아릴렌기이며 는 결합지점을 의미하고,
[화학식 4 J
Figure imgf000038_0002
상기 화학식 4에서, R3는 직접결합, 탄소수 1 내지 20의 알킬렌기 , 탄소수 1 내지 20의 알케닐기, 또는 탄소수 6 내지 20의 아릴렌기이며,
R4는 -H , -OH , -NR5R6. 할로겐, 또는 탄소수 1 내지 20의 알킬기이몌 상기 R5 및 은 각각 독립적으로 수소, 탄소수 1 내지 20의 알킬기, 또는 탄소수 6 내지 20의 아릴기일 수 있고,
는 결합지점을 의미한다.
【청구항 8】
제 7항에 있어서,
상기 알카리 가용성 수지는 하기 화학식 5로 표시되는 반복단위를 포함한 중합체, 하기 화학식 6으로 표시되는 아민, 및 하기 화학식 7로 는 아민의 반웅으로 제조되는, 절연층 제조방법:
[화학식 5]
Figure imgf000039_0001
[화학식 7]
F 4
NH2 상기 화학식 5 내지 7에서, R2 내지 R4는 청구항 제 13항에서 정의한 바와 같고, 는 결합지점을 의미한다.
【청구항 9】
제 7항에 있어서,
상기 알카리 가용성 수지는 하기 화학식 8로 표시되는 화합물 및 하기 화학식 9로 표시되는 화합물의 반응으로 제조되는, 절연층 제조방법 :
[화학식 8]
Figure imgf000040_0001
[화학식 9]
Figure imgf000040_0002
상기 화학식 8 내지 9에서, R2 내지 R4는 청구항 제 13항에서 정의한 바와 같다.
【청구항 10]
제 1항에 있어서,
상기 고분자 수지층은 알카리 가용성 수지 100 중량부에 대해 열경화성 바인더 1 중량부 내지 150 중량부를 포함하는, 절연층 제조방법.
[청구항 11】
제 1항에 있어서,
상기 열경화성 바인더는 옥세타닐기, 환상 에테르기, 환상 티오 에테르기, 시아나이드기, 말레이미드기 및 벤족사진기로 이루어진 군에서 선택된 1종 이상의 작용기 및 에폭시기를 포함하는, 절연층 제조방법.
【청구항 12]
제 1항에 있어서 상기 알카리 수용액은 10 °C 내지 100 °C 온도 및 1% 내지 10%의 농도를 갖는, 절연층 제조방법 . .
【청구항 13]
제 1항에 있어서,
상기 1차 경화는 50 °C 내지 150 °C 온도에서 0. 1 시간 내지 2시간 동안 진행하는, 절연층 제조방법 .
【청구항 14]
제 1항에 있어서,
상기 2차 경화는 150 °C 내지 250 °C 온도에서 0. 1 시간 내지 10시간 동안 진행하는, 절연층 제조방법 .
【청구항 15]
제 1항에 있어서,
상기 고분자 수지충은 열경화 촉매, 무기 필러, 레벨링제, 분산제, 이형제 및 금속 밀착력 증진제로 이루어진 군에서 선택된 1종 이상을 더 포함하는, 절연층 제조방법.
【청구항 16】
제 1항 내지 제 15항에 의해 제조된 절연층 상에 금속 패턴충을 형성하는 단계를 포함하는, 다층인쇄회로기판 제조방법.
【청구항 17】
제 16항에 있어서,
상기 절연층은 알카리 가용성 수지 및 열경화성 바인더의 경화물을 포함하는, 다층인쇄회로기판 제조방법.
【청구항 18]
제 17항에 있어서, 상기 절연충 상에 금속 패턴충을 형성하는 단계는, 상기 절연층 상에 금속박막을 형성하는 단계 ;
상기 금속박막 상에 패턴이 형성된 감광성 수지층올 형성하는 단계; 및
상기 감광성 수지층 패턴에 의해 노출된 금속박막 상에 금속을 증착시키는 단계 ; 및
상기 감광성 수지층을 제거하고, 노출된 금속박막을 제거하는 단계를 포함하는, 다층인쇄회로기판 제조방법.
【청구항 19】
제 16항에 있어서,
상기 금속 패턴층은 금속 돌기를 매개로 도체 배선과 연결되는, 다충인쇄회로기판 제조방법 .
PCT/KR2017/011739 2016-10-24 2017-10-23 절연층 제조방법 및 다층인쇄회로기판 제조방법 WO2018080125A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018559357A JP6732047B2 (ja) 2016-10-24 2017-10-23 絶縁層の製造方法および多層印刷回路基板の製造方法
CN201780031167.6A CN109156084B (zh) 2016-10-24 2017-10-23 用于制造绝缘层和多层印刷电路板的方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20160138673 2016-10-24
KR10-2016-0138673 2016-10-24
KR10-2017-0136513 2017-10-20
KR1020170136513A KR102038106B1 (ko) 2016-10-24 2017-10-20 절연층 제조방법 및 다층인쇄회로기판 제조방법

Publications (1)

Publication Number Publication Date
WO2018080125A1 true WO2018080125A1 (ko) 2018-05-03

Family

ID=62025235

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/011739 WO2018080125A1 (ko) 2016-10-24 2017-10-23 절연층 제조방법 및 다층인쇄회로기판 제조방법

Country Status (1)

Country Link
WO (1) WO2018080125A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR960014462B1 (ko) * 1993-12-29 1996-10-15 현대전자산업 주식회사 다층 금속배선 형성 방법
KR970018396A (ko) * 1995-09-11 1997-04-30 김광호 다층배선의 형성 방법
JP2000277923A (ja) * 1999-03-29 2000-10-06 Nec Corp マザーボードプリント配線板およびその製造方法
KR20100049671A (ko) * 2007-10-29 2010-05-12 히다치 가세이듀퐁 마이쿠로시스데무즈 가부시키가이샤 포지티브형 감광성 수지 조성물, 패턴의 제조방법 및 전자부품
KR20160042981A (ko) * 2013-08-13 2016-04-20 다이요 잉키 세이조 가부시키가이샤 알칼리 현상형 광경화성 열경화성 수지 조성물 및 그것을 사용한 프린트 배선판

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR960014462B1 (ko) * 1993-12-29 1996-10-15 현대전자산업 주식회사 다층 금속배선 형성 방법
KR970018396A (ko) * 1995-09-11 1997-04-30 김광호 다층배선의 형성 방법
JP2000277923A (ja) * 1999-03-29 2000-10-06 Nec Corp マザーボードプリント配線板およびその製造方法
KR20100049671A (ko) * 2007-10-29 2010-05-12 히다치 가세이듀퐁 마이쿠로시스데무즈 가부시키가이샤 포지티브형 감광성 수지 조성물, 패턴의 제조방법 및 전자부품
KR20160042981A (ko) * 2013-08-13 2016-04-20 다이요 잉키 세이조 가부시키가이샤 알칼리 현상형 광경화성 열경화성 수지 조성물 및 그것을 사용한 프린트 배선판

Similar Documents

Publication Publication Date Title
KR102040224B1 (ko) 절연층 제조방법 및 다층인쇄회로기판 제조방법
JP6600088B2 (ja) 絶縁層の製造方法および多層印刷回路基板の製造方法
JP6779364B2 (ja) 絶縁層の製造方法及び半導体パッケージの製造方法
JP7325891B2 (ja) 多層印刷回路基板用絶縁層、これを含む多層印刷回路基板およびその製造方法
WO2018030761A1 (ko) 절연층 제조방법 및 다층인쇄회로기판 제조방법
KR102038106B1 (ko) 절연층 제조방법 및 다층인쇄회로기판 제조방법
WO2018080125A1 (ko) 절연층 제조방법 및 다층인쇄회로기판 제조방법
WO2018030694A1 (ko) 절연층 제조방법 및 다층인쇄회로기판 제조방법
KR102040225B1 (ko) 절연층 제조방법 및 다층인쇄회로기판 제조방법
WO2018088754A1 (ko) 절연층 제조방법 및 다층인쇄회로기판 제조방법
KR102711612B1 (ko) 절연층 제조 방법 및 다층 인쇄 회로기판 제조 방법
KR20210047650A (ko) 절연층 제조방법 및 다층인쇄회로기판 제조방법
KR102721332B1 (ko) 폴리이미드계 알칼리 가용성 수지, 이를 이용한 절연층 제조방법 및 다층인쇄회로기판
KR20210048984A (ko) 다층 인쇄 회로기판용 절연층, 이를 포함하는 다층 인쇄 회로기판 및 이의 제조방법
KR20210092100A (ko) 절연 조성물 및 이를 이용한 절연층 제조방법, 다층인쇄회로기판 제조방법
KR20200101751A (ko) 반도체 소자의 빌드 업 용 절연 수지 조성물
KR20210101819A (ko) 알칼리 가용성 수지, 절연층 제조방법 및 다층인쇄회로기판 제조방법
KR20220126893A (ko) 다층인쇄회로기판용 절연층

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018559357

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17864794

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17864794

Country of ref document: EP

Kind code of ref document: A1