WO2018079714A1 - ヒト肝前駆細胞の調製方法 - Google Patents

ヒト肝前駆細胞の調製方法 Download PDF

Info

Publication number
WO2018079714A1
WO2018079714A1 PCT/JP2017/038907 JP2017038907W WO2018079714A1 WO 2018079714 A1 WO2018079714 A1 WO 2018079714A1 JP 2017038907 W JP2017038907 W JP 2017038907W WO 2018079714 A1 WO2018079714 A1 WO 2018079714A1
Authority
WO
WIPO (PCT)
Prior art keywords
progenitor cells
cells
hepatic progenitor
human
hepatocytes
Prior art date
Application number
PCT/JP2017/038907
Other languages
English (en)
French (fr)
Inventor
毅 勝田
孝広 落谷
山田 哲正
Original Assignee
国立研究開発法人国立がん研究センター
株式会社インターステム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人国立がん研究センター, 株式会社インターステム filed Critical 国立研究開発法人国立がん研究センター
Priority to US16/301,166 priority Critical patent/US20190302100A1/en
Priority to EP17866130.2A priority patent/EP3533865A4/en
Priority to JP2018547784A priority patent/JP7134416B2/ja
Priority to CN201780066190.9A priority patent/CN109890956A/zh
Publication of WO2018079714A1 publication Critical patent/WO2018079714A1/ja
Priority to JP2022117083A priority patent/JP7481721B2/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5014Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing toxicity
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/0018Culture media for cell or tissue culture
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/067Hepatocytes
    • C12N5/0672Stem cells; Progenitor cells; Precursor cells; Oval cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N7/00Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/37Digestive system
    • A61K35/407Liver; Hepatocytes

Definitions

  • the present invention relates to a method for preparing human hepatic progenitor cells.
  • liver transplantation is the only effective treatment for severe liver disease, but the lack of donors is a problem. In order to replace this, attempts have been made so far to induce differentiation of hepatocytes from iPS cells and use them in transplantation therapy.
  • iPS cells have totipotency of differentiation and high proliferation ability, there is a report that a malformed species is formed upon transplantation to an immunodeficient mouse, and even if undifferentiated iPS cells are mixed even when hepatocytes are produced from iPS cells. There is a risk of tumor formation after transplantation.
  • an efficient differentiation induction method for endoderm cells such as liver using iPS cells has not been established yet, and it is currently impossible to create hepatocytes from iPS cells that can replace liver function. It is.
  • Non-Patent Documents 1 to 4 disclose the fact that mature hepatocytes are reprogrammed into progenitor cells that have the ability to differentiate into hepatocytes and bile duct epithelial cells during chronic hepatitis.
  • An object of the present invention is to provide a method for reprogramming human mature hepatocytes in vitro into human hepatic progenitor cells having self-replicating ability.
  • the present inventors obtained human mature hepatocytes in vitro with serum, A-83-01 (TGF- ⁇ signal inhibitor) and CHIR99021 (GSK3 inhibitor). By culturing in the contained medium, it was found that reprogramming into human hepatic progenitor cells having self-replicating ability was accomplished, and the present invention was completed.
  • the present invention provides the following method for preparing human hepatic progenitor cells.
  • Item 1 A method for preparing human hepatic progenitor cells, comprising culturing human mature hepatocytes in a medium containing serum, A-83-01 and CHIR99021.
  • Item 2. The method for preparing human liver progenitor cells according to Item 1, wherein the human mature hepatocytes are derived from infants.
  • Item 3. Item 3.
  • Human hepatic progenitor cells prepared by culturing human mature hepatocytes in a medium containing serum, A-83-01 and CHIR99021.
  • Item 5. A mature hepatocyte derived from the human hepatic progenitor cell according to Item 4.
  • Item 6. A screening method for a test substance, which comprises using the mature hepatocyte described in Item 5.
  • Item 7. A method for culturing hepatitis virus, comprising using the mature hepatocyte described in Item 5.
  • Item 8. Item 6. A human liver model animal, wherein the mature hepatocytes described in Item 5 are transplanted into a non-human mammal.
  • kits for evaluating the metabolism and / or hepatotoxicity of a test substance using human hepatic progenitor cells or mature hepatocytes A kit comprising human hepatic progenitor cells prepared by culturing human mature hepatocytes in a medium containing serum, A-83-01 and CHIR99021, or mature hepatocytes derived from the human hepatic progenitor cells.
  • the present invention can provide a method of reprogramming human mature hepatocytes into hepatic progenitor cells having self-replicating ability in vitro.
  • FIG. 1 is a phase contrast micrograph showing the results of culturing human mature hepatocytes in AC-F medium (A), YAC-F medium (B) or YAC medium (C).
  • FIG. 2 is a phase contrast micrograph showing the results of culturing human mature hepatocytes in AC-F medium.
  • FIG. 3 is a phase contrast micrograph showing the results of culturing human mature hepatocytes in AC-F medium or FBS medium.
  • FIG. 4 is a phase contrast micrograph showing the results of culturing human mature hepatocytes in AC-F medium or FBS medium.
  • FIG. 1 is a phase contrast micrograph showing the results of culturing human mature hepatocytes in AC-F medium (A), YAC-F medium (B) or YAC medium (C).
  • FIG. 2 is a phase contrast micrograph showing the results of culturing human mature hepatocytes in AC-F medium.
  • FIG. 3 is a phase contrast micrograph
  • FIG. 5 is a graph showing the time course of blood human-specific albumin after administration of hepatic progenitor cells to cDNA-uPA / SCID mice.
  • FIG. 6 is an immunostaining photograph showing the expression of Human CYP2C9 in the inner right lobe 70 days after administration of hepatic progenitor cells to cDNA-uPA / SCID mice.
  • FIG. 7 is an immunostaining photograph showing the expression of Human CYP2C9 in the inner left lobe 70 days after administration of hepatic progenitor cells to cDNA-uPA / SCID mice.
  • FIG. 8 is a graph showing the time course of serum human-specific albumin after administration of hepatic progenitor cells to TK-NOG mice.
  • FIG. 9 is an immunostaining photograph showing the expression of Human CYP2C9 in the liver 60 days after administration of hepatic progenitor cells to TK-NOG mice.
  • FIG. 10 is an immunostaining photograph showing the expression of Human CYP2C9 in the liver 60 days after administration of hepatic progenitor cells to TK-NOG mice.
  • FIG. 11 is a graph showing the activity of the metabolic enzyme CYP1A2 in hepatic progenitor cells of the present invention or mature hepatocytes differentiated from hepatic progenitor cells (differentiated mature hepatocytes).
  • FIG. 12 is a graph showing the activity ratio of the metabolic enzyme CYP1A2 with or without induction by omeprazole in hepatic progenitor cells of the present invention or mature hepatocytes differentiated from hepatic progenitor cells (differentiated mature hepatocytes).
  • FIG. 13 is a graph showing the activity of metabolic enzyme CYP3A4 in hepatic progenitor cells of the present invention or mature hepatocytes differentiated from hepatic progenitor cells (differentiated mature hepatocytes).
  • FIG. 13 is a graph showing the activity of metabolic enzyme CYP3A4 in hepatic progenitor cells of the present invention or mature hepatocytes differentiated from hepatic progenitor cells (differentiated mature hepatocytes).
  • FIG. 14 is a graph showing the activity ratio of the metabolic enzyme CYP3A4 with or without induction by Penobarbital in the hepatic progenitor cells of the present invention or mature hepatocytes differentiated from hepatic progenitor cells (differentiated mature hepatocytes).
  • FIG. 15 is a graph showing the gene expression level of ALB in hepatic progenitor cells of the present invention or mature hepatocytes differentiated from hepatic progenitor cells (differentiated mature hepatocytes).
  • FIG. 16 is a graph showing the gene expression level of TAT in hepatic progenitor cells of the present invention or mature hepatocytes differentiated from hepatic progenitor cells (differentiated mature hepatocytes).
  • FIG. 17 is a graph showing the expression level of TDO2 gene in hepatic progenitor cells of the present invention or mature hepatocytes differentiated from hepatic progenitor cells (differentiated mature hepatocytes).
  • FIG. 18 is a graph showing the gene expression level of TTR in hepatic progenitor cells of the present invention or mature hepatocytes differentiated from hepatic progenitor cells (differentiated mature hepatocytes).
  • FIG. 17 is a graph showing the expression level of TDO2 gene in hepatic progenitor cells of the present invention or mature hepatocytes differentiated from hepatic progenitor cells (differentiated mature hepatocytes).
  • FIG. 18 is a graph showing
  • FIG. 19 is a graph showing the gene expression level of G6PC in hepatic progenitor cells of the present invention or mature hepatocytes differentiated from hepatic progenitor cells (differentiated mature hepatocytes).
  • FIG. 20 is a graph showing the expression level of NTCP gene in hepatic progenitor cells of the present invention or mature hepatocytes differentiated from hepatic progenitor cells (differentiated mature hepatocytes).
  • FIG. 21 is a graph showing the gene expression level of CYP1A2 in hepatic progenitor cells of the present invention or mature hepatocytes differentiated from hepatic progenitor cells (differentiated mature hepatocytes).
  • FIG. 22 is a graph showing the gene expression level of CYP2B6 in hepatic progenitor cells of the present invention or mature hepatocytes differentiated from hepatic progenitor cells (differentiated mature hepatocytes).
  • FIG. 23 is a graph showing the gene expression level of CYP2C9 in hepatic progenitor cells of the present invention or mature hepatocytes differentiated from hepatic progenitor cells (differentiated mature hepatocytes).
  • FIG. 24 is a graph showing the gene expression level of CYP2C19 in hepatic progenitor cells of the present invention or mature hepatocytes differentiated from hepatic progenitor cells (differentiated mature hepatocytes).
  • FIG. 25 is a graph showing the gene expression level of CYP2D6 in hepatic progenitor cells of the present invention or mature hepatocytes differentiated from hepatic progenitor cells (differentiated mature hepatocytes).
  • FIG. 26 is a graph showing the gene expression level of CYP3A4 in hepatic progenitor cells of the present invention or mature hepatocytes differentiated from hepatic progenitor cells (differentiated mature hepatocytes).
  • FIG. 27 is a graph showing the gene expression level of CYP7A1 in hepatic progenitor cells of the present invention or mature hepatocytes differentiated from hepatic progenitor cells (differentiated mature hepatocytes).
  • FIG. 28 is a photograph of the hepatic progenitor cells of the present invention before transplantation into cDNA-uPA / SCID mice.
  • FIG. 29 is a photograph of cells that were taken out and cultured for 4 days after transplantation of the hepatic progenitor cells of the present invention to cDNA-uPA / SCID mice.
  • FIG. 30 is a graph showing the activity of CYP1A2 in hepatocytes extracted from cDNA-uPA / SCID mice.
  • FIG. 31 is a graph showing the activity of CYP3A4 in hepatocytes taken from cDNA-uPA / SCID mice.
  • FIG. 32 is a photograph of the hepatic progenitor cells of the present invention before transplantation into cDNA-uPA / SCID mice.
  • FIG. 33 is a photograph of cells that were taken out and cultured for 4 days after transplantation of the hepatic progenitor cells of the present invention to cDNA-uPA / SCID mice.
  • FIG. 34 is a graph showing CYP1A2 activity in hepatocytes taken from cDNA-uPA / SCID mice.
  • FIG. 35 is a graph showing the activity of CYP3A4 in hepatocytes taken from cDNA-uPA / SCID mice.
  • FIG. 36 is a photograph of the hepatic progenitor cells of the present invention before transplantation into cDNA-uPA / SCID mice.
  • FIG. 37 is a photograph of cells that were taken out and cultured for 4 days after transplantation of the hepatic progenitor cells of the present invention to cDNA-uPA / SCID mice.
  • FIG. 38 is a graph showing CYP1A2 activity in hepatocytes taken from cDNA-uPA / SCID mice.
  • FIG. 39 is a graph showing CYP3A4 activity in hepatocytes taken from cDNA-uPA / SCID mice.
  • the present invention relates to a method for preparing human hepatic progenitor cells, comprising culturing human mature hepatocytes in a medium containing serum, A-83-01 and CHIR99021.
  • the human mature hepatocytes used in the present invention can be obtained from living liver tissue according to any known method.
  • the biological liver tissue means a liver tissue obtained from a human liver after birth. Individuals supplying living liver tissue may be alive or dead.
  • the age of the individual supplying the living liver tissue is not limited, but from the viewpoint of cell proliferation, it is preferably 20 years or younger, more preferably 10 years old or less, more preferably an infant (0 to 7 years old), most Infants (0-2 years old) are preferred.
  • the mature human hepatocytes used in the present invention need only have characteristics as mature hepatocytes, may be cells cryopreserved after being obtained from living liver tissue, and after being obtained from living liver tissue, It may be a cell that has been repeatedly cryopreserved and thawed.
  • the human mature hepatocytes used in the present invention may be commercially available human-derived hepatocytes.
  • human mature hepatocytes used in the method of the present invention include completely differentiated hepatocytes that do not have the ability to proliferate in vitro.
  • the human mature hepatocytes used in the method of the present invention are hepatocytes differentiated from iPS cells (induced pluripotent stem cells, induced pluripotent stem cells), ES cells (embryonic stem cells, embryonic stem cells), and the like. Also good.
  • serum used in the present invention examples include human serum, fetal bovine serum (FBS), bovine serum, calf serum, goat serum, horse serum, pig serum, sheep serum, rabbit serum, rat serum and the like.
  • FBS fetal bovine serum
  • bovine serum calf serum
  • goat serum horse serum
  • pig serum sheep serum
  • rabbit serum rat serum
  • the serum used in the present invention may be a substance derived from a serum component such as albumin (bovine, pig, human, dog, rabbit, rat, mouse, chicken, etc.), human platelet lysate and the like.
  • the serum used in the present invention may be a commercially available product.
  • the content of serum used in the present invention is 0.1 v / v% to 30 v / v%, preferably 1 v / v% to 20 v / v%, more preferably 5 v / v% with respect to the total amount of the medium. -15 v / v%, even more preferably 8 v / v% to 12 v / v%, most preferably 10 v / v%.
  • A-83-01 (CAS No. 909910-43-6) is a kind of TGF- ⁇ signal inhibitor, including TGF- ⁇ type I / activin receptor-like kinase (ALK5), type I activating / nodal receptor kinase. (ALK4), a type Inodal receptor kinase (ALK7) can be selectively inhibited.
  • A-83-01 CAS No. 909910-43-6
  • A-83-01 is a kind of TGF- ⁇ signal inhibitor, including TGF- ⁇ type I / activin receptor-like kinase (ALK5), type I activating / nodal receptor kinase. (ALK4), a type Inodal receptor kinase (ALK7) can be selectively inhibited.
  • A-83-01 is 3- (6-methyl-2-pyridinyl) -N-phenyl-4- (4-quinolinyl) -1H-pyrazole-1-carbothioamide (3- (6-Methyl-2-pyridinyl) ) -N-phenyl-4- (4-quinolinyl) -1H-pyrazole-1-carbothioamide).
  • A-83-01 can be obtained from Wako Pure Chemical Industries, Ltd.
  • the content of A-83-01 used in the present invention is 0.0001 ⁇ M to 5 ⁇ M, preferably 0.001 ⁇ M to 2 ⁇ M, more preferably 0.01 ⁇ M to 1 ⁇ M, and even more preferably, based on the total amount of the medium. 0.05 ⁇ M to 0.7 ⁇ M, most preferably 0.5 ⁇ M.
  • CHIR99021 (CAS No. 252917-06-9) is a kind of GSK-3 ⁇ (Glycogen Synthase Kinase 3 ⁇ ) inhibitor and is currently known as the most selective inhibitor.
  • CHIR99021 is 6-[[2-[[4- (2,4-dichlorophenyl) -5- (5-methyl-1H-imidazol-2-yl) -2-pyrimidinyl] amino] ethyl] amino] -3-pyridine Carbonitrile (6-[[2-[[4- (2,4-dichlorophenyl) -5- (5-methyl-1H-imidazol-2-yl) -2 pyridine] amino] ethyl] amino] -3-pyridinecarbononitrile ).
  • CHIR99021 can be obtained from Wako Pure Chemical Industries, Ltd.
  • the content of CHIR99021 used in the present invention is 0.001 ⁇ M to 20 ⁇ M, preferably 0.01 ⁇ M to 10 ⁇ M, more preferably 0.1 ⁇ M to 5 ⁇ M, and even more preferably 0.3 ⁇ M to the total amount of the medium. 4 ⁇ M, most preferably 3 ⁇ M.
  • the medium for culturing human mature hepatocytes may further contain a ROCK inhibitor.
  • the ROCK inhibitor is not limited, but Y-27632 (CAS No. 146986-50-7), GSK269996 (CAS No. 850664-21-0), Fasudyl hydrochloride (CAS No. 105628-07-7) ), H-1152 (CAS No. 871543-07-6), and Y-27632 is preferred.
  • Y-27632 is a selective and potent ROCK (Rho-associated coiled forming kinase / Rho binding kinase) inhibitor.
  • Y-27632 is trans-4-[(1R) -1-aminoethyl] -N-4-pyridinyl-cyclohexanecarboxamide (trans-4-[(1R) -1-aminoethyl] -N-4-pyridinyl-cyclohexanecarboxamide). ). Y-27632 may be free, in the form of a salt such as hydrochloride or sulfate, or in the form of a hydrate.
  • GSK269996A is N- [3-[[2- (4-Amino-1,2,5-oxadiazol-3-yl) -1-ethyl-1H-imidazo [4,5-c] pyridin-6-yl].
  • Fastil hydrochloride may be free, in the form of a salt such as hydrochloride or sulfate, or in the form of a hydrate.
  • H-1152 is (S)-(+)-2-methyl-1-[(4-methyl-5-isoquinolinyl) sulfonyl] -hexahydro-1H-1,4-diazepine dihydrochloride ((S) It is also known as-(+)-2-Methyl-1-[(4-methyl-5-isoquinolinyl) sulfonyl] -hexahydro-1H-1,4-diazine dihydrochloride).
  • Y-27632 can be obtained from Wako Pure Chemical Industries, Ltd.
  • SK269996A can be obtained from Axon Medchem, Inc.
  • Fassil hydrochloride can be obtained from Tocris Bioscience, etc.
  • H-1152 can be obtained from Wako Pure Chemical Industries, Ltd.
  • the content of the ROCK inhibitor used in the present invention is 0.001 ⁇ M to 50 ⁇ M, preferably 0.01 ⁇ M to 30 ⁇ M, more preferably 0.1 ⁇ M to 20 ⁇ M, and even more preferably 1 ⁇ M to 15 ⁇ M based on the total amount of the medium. Most preferably, it is 10 ⁇ M.
  • the medium for culturing human mature hepatocytes contains one to a plurality of genes among various genes known as induction techniques for ES cells, iPS cells, etc., or gene products thereof (proteins and mRNAs). Etc.) or drugs can be added.
  • various genes known as induction techniques for ES cells, iPS cells, etc. one or more genes or gene products (proteins, mRNAs, etc.) are expressed or introduced into mammalian cells. be able to.
  • a medium for culturing human mature hepatocytes is supplemented with drugs, compounds, and antibodies known to induce ES cells, iPS cells and the like in order to increase the induction efficiency of hepatic progenitor cells. be able to.
  • FGF receptor tyrosine kinase For example, three small molecule inhibitors of FGF receptor tyrosine kinase, MEK (mitogen activated protein kinase) / ERK (extracellular signal-regulated kinase 1 and 2) pathway, GSK (glycogen synthase kinase) 3 [SU5402 and PD184352], MEK / ERK pathway and small molecule inhibitor of GSK3 [PD0325901], small molecule compound that inhibits histone methylase G9a [BIX-01294 (BIX)], azacitidine, trichostatin A (TSA), 7-hydroxyflavone, lysergic inhibitors of acid ethylamide, kenpaulone, TGF- ⁇ receptor I kinase / activin-like kinase 5 (ALK5) [EMD 61652], inhibitors of TGF- ⁇ receptor 1 (TGF- ⁇ R1) kinas
  • micro RNA used to produce ES cells, iPS cells, etc., in the medium for culturing human mature hepatocytes. It is.
  • each inhibitor or antibody that inhibits or neutralizes the activity of TGF- ⁇ or the like can also be used in the medium for culturing human mature hepatocytes.
  • TGF- ⁇ inhibitors include TGF- ⁇ RI inhibitors and TGF- ⁇ RI kinase inhibitors.
  • the culture of the present invention it is also preferable to perform the culture on a coated culture dish.
  • a coated culture dish As the coating, Matrigel coat, collagen coat, gelatin coat, laminin coat, fibronectin coat and the like can be used.
  • a Matrigel coat is used as the coating.
  • ES media [40% Dulbecco's Modified Eagle Medium (DMEM), 40% F12 medium (Sigma), 2 mM L-glutamine or GlutaMAX (Sigma). ) 1% non essential amino acid (manufactured by Sigma), 0.1 mM ⁇ -mercaptoethanol (manufactured by Sigma), 15-20% Knockout Serum Replacement (manufactured by Invitrogen), 10 ⁇ g / ml gentamicin ( Invitrogen) 4-10 ng / ml bFGF (FGF2)] (hereinafter referred to as ES medium), mouse embryonic fibroblast MEF was cultured for 24 hours in ES medium excluding 0.1 mM ⁇ -mercaptoethanol To the conditioned medium, .1 Medium supplemented with mM ⁇ -mercaptoethanol and 10 ng / ml bFGF (FGF2) (hereinafter MEF-conditioned ES medium), optimal medium
  • DMEM Dulbecco's
  • the optimal culture conditions for preparing human mature hepatocytes into human hepatic progenitor cells can be appropriately changed according to conventional methods.
  • the optimal culture conditions for preparing human mature hepatocytes into human hepatic progenitor cells are, for example, as follows.
  • CO 2 concentration preferably 1% to 10%, more preferably 3% to 8%, most preferably 5%.
  • Culture period preferably 1 day (24 hours) to 30 days, more preferably 3 to 20 days.
  • any method commonly used by those skilled in the art for culturing ES cells, iPS cells and the like can be used as a method for growing or subculturing hepatic progenitor cells.
  • the medium is removed from the cells, washed with PBS ( ⁇ ), added with a cell detachment solution, allowed to stand, and then added with 1 ⁇ antibiotic-antifungal and 10% D-MEM (high glucose) medium containing FBS.
  • the hepatic progenitor cells in the present invention only need to have the ability to differentiate into mature hepatocytes, bile duct epithelial cells, or the like.
  • the hepatic progenitor cells may be cryopreserved cells or cells that have been appropriately cryopreserved and thawed.
  • cryopreservation can be performed by suspending and cooling hepatic progenitor cells in a cryopreservation solution well known to those skilled in the art.
  • the suspension can be performed by detaching the cells with a release agent such as trypsin, transferring the cells to a cryopreservation container, treating them appropriately, and then adding a cryopreservation solution.
  • the cryopreservation solution may contain DMSO (Dimethylsulfoxide) as a frost damage protective agent.
  • DMSO Dimethylsulfoxide
  • glycerol, propylene glycol or polysaccharides are exemplified.
  • DMSO When DMSO is used, it contains a concentration of 5% to 20%, preferably a concentration of 5% to 10%, more preferably a concentration of 10%.
  • additives described in WO2007 / 058308 may be included.
  • cryopreservation solution for example, cryopreservation provided by Bioverde, Nippon Genetics, Reprocell, Xenoac, Cosmo Bio, Kojin Bio, Thermo Fisher Scientific, etc.
  • a liquid may be used.
  • the cooling rate may be appropriately controlled using a program freezer.
  • the cooling rate may be appropriately selected depending on the components of the cryopreservation solution, and may be performed according to the manufacturer's instructions for the cryopreservation solution.
  • the upper limit of the storage period is not particularly limited as long as the cells cryopreserved under the above conditions are thawed and retain the same properties as before freezing, for example, 1 week or more, 2 weeks or more, 3 weeks or more, 4 weeks or more, 2 months or more, 3 months or more, 4 months or more, 5 months or more, 6 months or more, 1 year or more, or more. Since cell damage can be suppressed by storing at a lower temperature, it may be transferred to a gas phase on liquid nitrogen (from about ⁇ 150 ° C. to ⁇ 180 ° C.). When storing in a gas phase on liquid nitrogen, it can be performed using a storage container well known to those skilled in the art. Although not particularly limited, for example, when storing for 2 weeks or more, it is preferable to store in a gas phase on liquid nitrogen.
  • Thawing of cryopreserved hepatic progenitor cells can be performed by methods well known to those skilled in the art. For example, the method performed by standing or shaking in a 37 degreeC thermostat or a hot water bath is illustrated.
  • the hepatic progenitor cells obtained by the present invention can be further cultured to differentiate into mature hepatocytes or bile duct epithelial cells.
  • the thus obtained mature hepatocytes are ALB (Albumin), AFP (Alpha Fetoprotein), TAT (Tyrosine Aminotransferase), TDO2 (Tryptophan 2), compared with hepatic progenitor cells.
  • Differentiation induction from human hepatic progenitor cells into differentiated mature hepatocytes is achieved, for example, by adding Oncostatin M and dexamethasone to a basal medium (the above-mentioned basic medium or the like). It can be carried out.
  • the amount of oncostatin M necessary to give the concentration of each growth differentiation factor in the differentiation-inducing medium is, for example, 1 ⁇ g to 100 ⁇ g, preferably 5 ⁇ g to 50 ⁇ g per liter of the medium.
  • the amount of dexamethasone necessary to give the concentration of each growth differentiation factor in the differentiation-inducing medium is, for example, 0.1 mM to 10 mM, preferably 0.5 mM to 5 mM per liter of the medium.
  • Induction of differentiation from human hepatic progenitor cells to differentiated mature hepatocytes can also be performed by transplanting human hepatic progenitor cells into the liver or spleen of an animal.
  • the animal to be transplanted is not particularly limited as long as it can induce differentiation from human hepatic progenitor cells to differentiated mature hepatocytes, but is preferably a mammal, such as a rabbit, dog, cat, guinea pig, hamster, mouse, Rats, sheep, goats, pigs, minipigs, horses, cows, monkeys and the like are listed, with mice, rats, minipigs, monkeys being more preferred.
  • mature hepatocytes differentiated from hepatic progenitor cells have functions such as glucose production ability, ammonia metabolism ability, albumin production ability, urea synthesis ability and the like.
  • the glucose production ability can be confirmed, for example, by analyzing the glucose level in the culture supernatant by the glucose oxidase method.
  • the ability to metabolize ammonia can be confirmed, for example, by analyzing the ammonia level in the culture medium by the modified indophenol method (Horn DB & Squire CR, Chim. Acta. 14: 185-194.1966).
  • the ability to produce albumin can be confirmed, for example, by analyzing the albumin concentration in the culture solution by a method for measuring the serum albumin concentration.
  • the urea synthesis ability can be confirmed using, for example, Colorimetric assay (Sigma).
  • the present invention can also provide hepatic progenitor cells produced by the method of the present invention and mature hepatocytes differentiated from hepatic progenitor cells (differentiated mature hepatocytes).
  • the function and morphology of hepatic progenitor cells produced by the method of the present invention and mature hepatocytes differentiated from hepatic progenitor cells (differentiated mature hepatocytes) are compared with those of hepatocytes produced by conventional methods. It is characterized by being closer to human mature hepatocytes.
  • hepatic progenitor cells produced by the method of the present invention and mature hepatocytes differentiated from hepatic progenitor cells have a feature that they also function in vivo. Accordingly, the hepatic progenitor cells of the present invention and the mature hepatocytes differentiated from the hepatic progenitor cells (differentiated mature hepatocytes) are useful, for example, in the medical field (for example, the regenerative medicine field).
  • liver diseases can be treated by using the hepatic progenitor cells of the present invention.
  • hepatic progenitor cells or mature hepatocytes differentiated from hepatic progenitor cells are transplanted directly through the hepatic portal vein, embedded in collagen, polyurethane, or other known biocompatible materials Liver disease can be treated by the transplantation method.
  • the present invention also provides the use of hepatic progenitor cells produced by the above process or mature hepatocytes differentiated from hepatic progenitor cells (differentiated mature hepatocytes).
  • the present invention provides a therapeutic agent for liver diseases including hepatic progenitor cells or mature hepatocytes differentiated from hepatic progenitor cells (differentiated mature hepatocytes). Moreover, the therapeutic method of the liver disease using this cell is provided.
  • Specific diseases include cirrhosis, fulminant hepatitis, chronic hepatitis, viral hepatitis, alcoholic hepatitis, liver fibrosis, autoimmune hepatitis, fatty liver, drug allergic liver disorder, hemochromatosis, hemosiderosis, Wilson disease, Examples include, but are not limited to, primary biliary cirrhosis, primary sclerosing cholangitis, liver abscess, chronic active hepatitis, chronic persistent hepatitis biliary atresia, liver cancer and the like.
  • biliary epithelial cells differentiated from hepatic progenitor cells can be confirmed from their morphological characteristics and epithelial cell markers.
  • the present invention can also provide biliary epithelial cells differentiated from hepatic progenitor cells produced by the method of the present invention (hereinafter referred to as “differentiated biliary epithelial cells”).
  • differentiated bile duct epithelial cells differentiated from hepatic progenitor cells produced by the method of the present invention
  • the functions and forms of differentiated bile duct epithelial cells produced by the method of the present invention are characterized by being closer to human bile duct epithelial cells than the functions and forms of cells produced by conventional methods.
  • the differentiated biliary epithelial cells produced by the method of the present invention have a feature that they also function in vivo.
  • the hepatic progenitor cells of the present invention and the bile duct epithelial cells differentiated from the hepatic progenitor cells are useful, for example, in the medical field (for example, the regenerative medicine field).
  • the hepatic progenitor cells or bile duct epithelial cells of the present invention can be converted into bile duct diseases such as gallstones, gallbladder polyps, gallbladder cancer, cholangiocarcinoma, cholangitis, cholangitis, cholangitis, It can be used to treat Alagille syndrome (AGS), gallbladder stones, gallbladder adenomyosis, gallbladder raised lesions, acalculous bile duct pain, primary sclerosing cholangitis (PSC) and the like.
  • Alagille syndrome Alagille syndrome
  • gallbladder stones gallbladder adenomyosis
  • gallbladder raised lesions acalculous bile duct pain
  • PSC primary sclerosing cholangitis
  • the hepatic progenitor cells of the present invention are also useful in the field of research aimed at treating liver diseases, for example.
  • it can be used in the research and development of artificial organs (artificial liver, etc.).
  • the human hepatocytes of the present invention are also useful in the field of development of pharmaceuticals and foods. Specifically, it can be used for the evaluation of the metabolism and hepatotoxicity of a test substance, the screening for hepatic disease therapeutic agent, hepatitis virus infection inhibitor, or viral hepatitis therapeutic agent.
  • hepatic progenitor cells produced by the method of the present invention or mature hepatocytes differentiated from hepatic progenitor cells (differentiated mature hepatocytes) or bile duct epithelial cells (differentiated bile duct epithelial cells), It is possible to evaluate hepatotoxicity.
  • the differentiated mature hepatocytes of the present invention can be used for screening of test substances.
  • the screening of the test substance in the present invention includes analysis of metabolic enzyme, analysis of metabolic pathway, analysis of metabolite, analysis of metabolic activity, analysis of cytotoxicity, analysis of genotoxicity, analysis of carcinogenicity, analysis of mutagenicity. Analysis, analysis of liver toxicity expression, analysis of effects on the liver, and the like can be used as indicators.
  • the present invention provides a method for evaluating the metabolism of a test substance.
  • a test substance is brought into contact with hepatic progenitor cells produced by the method of the present invention or mature hepatocytes differentiated from hepatic progenitor cells (differentiated mature hepatocytes).
  • the metabolism of the test substance brought into contact with the cells is measured.
  • test substance used in the present invention is not particularly limited.
  • xenobiotics natural compounds, organic compounds, inorganic compounds, single compounds such as proteins, peptides, etc., as well as compound libraries, gene library expression products, cell extracts, cell culture supernatants, fermentation microorganism products
  • examples include, but are not limited to, marine organism extracts, plant extracts, pharmaceutical raw materials, cosmetic raw materials, food raw materials, pharmaceutical additives, cosmetic additives, food additives, supplement ingredients, and the like.
  • Examples of the xenobiotic include, but are not limited to, drug and food candidate compounds, candidate substances, existing drugs and foods, and are included in the xenobiotic of the present invention as long as they are foreign for the living body. . More specifically, examples include Rifampin, Dexamethasone, Phenobarbital, Ciglirazone, Phenytoin, Efavirenz, Simvastatin, ⁇ -Naphthoflavone, Omeprazoile, 3-Trimoleol.
  • Contact in the present invention is usually performed by adding a test substance to a medium or a culture solution, but is not limited to this method.
  • test substance is a protein or the like
  • contact can be performed by introducing a DNA vector expressing the protein into the cell.
  • the metabolism of the test substance can be measured by methods well known to those skilled in the art. For example, when a metabolite of the test substance is detected, it is determined that the test substance has been metabolized. Further, when the expression of enzyme genes such as CYP (cytochrome p450), MDR (MultiDrug Resistance, ABCB1), MPR (Multidrug Resistance-associated Protein, ABCC2) is induced by contact with a test substance, the activity of these enzymes In the case where the value rises, it is determined that the test substance has been metabolized.
  • enzyme genes such as CYP (cytochrome p450), MDR (MultiDrug Resistance, ABCB1), MPR (Multidrug Resistance-associated Protein, ABCC2)
  • Analysis of metabolic enzymes is possible by analyzing changes in the structure of the test substance after contacting the test substance with the differentiated mature hepatocytes of the present invention, for example. It is. Specifically, after contacting the test substance with the differentiated mature hepatocytes of the present invention, the change in the structure of the test substance is analyzed by an inhibitor / antagonist of various enzymes or neutralizing antibodies of various enzymes. Examples include identification of an enzyme involved in the metabolism of the test substance, analysis of the enzyme reaction mechanism by analyzing the change in the structure of the test substance due to the contact of the test substance with the cell, and analysis of the substrate specificity.
  • Metabolic pathway analysis and metabolite analysis are performed, for example, by analyzing the structural change of the test substance after contacting the test substance with the differentiated mature hepatocytes of the present invention. And analysis of metabolites.
  • a method for detecting a metabolite of a test substance a known method can be used.
  • a metabolite can be detected by analyzing a medium of differentiated mature hepatocytes contacted with a test substance by liquid chromatography, mass spectrometry, or the like.
  • Analysis of metabolic activity is performed by, for example, contacting a test substance with the differentiated mature hepatocytes of the present invention to detect an increase in the test substance metabolic enzyme activity, an increase in the enzyme amount, or an increase in the transcription amount of the gene encoding the enzyme. By doing so, it is possible to analyze the promotion of the activity of the test substance metabolic enzyme. Specifically, analysis is possible by detecting an increase in cytochrome P450 enzyme activity, an increase in protein amount, and an increase in mRNA. As a detection method, a known method such as measurement of enzyme activity corresponding to various P450s, western blotting corresponding to various P450 proteins, Northern hybridization corresponding to various P450 mRNAs, or RT-PCR method can be used.
  • the present invention also provides a method for evaluating liver toxicity of a test substance.
  • the test substance is brought into contact with the hepatic progenitor cells produced by the method of the present invention and the mature hepatocytes differentiated from the hepatic progenitor cells (differentiated mature hepatocytes).
  • the degree of damage of the cells contacted with the test substance is measured.
  • the degree of damage can be measured using, for example, the liver viability marker such as the survival rate of the cell, GOT (glutamate oxalocate transaminase), GPT (glutamatic pyrotic transaminase) or the like as an index.
  • Analysis of hepatotoxicity expression can be performed, for example, by contacting the test substance with the differentiated mature hepatocytes of the present invention and observing the expression of the cytotoxicity, or after contacting the test substance with the cell, Analyze hepatotoxicity due to the metabolism of the test substance by administering the test substance changed by the cells to other hepatocytes, liver slices, isolated liver or experimental animals and observing the changes in the cells, tissues, and organisms Is possible.
  • test substance when the test substance is added to a culture solution of mature hepatocytes differentiated from hepatic progenitor cells or hepatic progenitor cells (differentiated mature hepatocytes), the test substance When it is determined to have hepatotoxicity and there is no significant change in the survival rate, it is determined that the test substance does not have hepatotoxicity.
  • GOT or GPT in the culture solution rises after adding the test substance to the culture medium of the cell, the test substance is determined to have liver toxicity, and there is a significant change in GOT or GPT. If not, the test substance is determined not to have hepatotoxicity.
  • test substance has hepatotoxicity by using, as a control, a substance that is already known to have hepatotoxicity.
  • the cytotoxicity analysis can be performed, for example, by contacting a test substance with the differentiated mature hepatocytes of the present invention and analyzing the cytotoxicity due to the metabolite of the test substance. Specifically, it is analyzed by observing changes in the morphology of the cells due to contact with the test substance, changes in the number of living cells, leakage of intracellular enzymes, changes in the cell surface structure, or changes in intracellular enzymes, etc. .
  • Analysis of biogenotoxicity is possible, for example, by contacting a test substance with the differentiated mature hepatocyte of the present invention and subjecting the cell to a chromosomal aberration test, a micronucleus test, etc., to analyze genotoxicity due to test substance metabolism It is.
  • the test substance changed by the cells is evaluated by an appropriate evaluation system, thereby performing a chromosome abnormality test, a micronucleus test, a reverse mutation test, etc. It is possible to analyze by attaching to.
  • the analysis of carcinogenic expression is carried out, for example, by bringing a test substance into contact with the differentiated mature hepatocytes of the present invention, and subjecting the cells to a chromosomal aberration test, DNA modification, etc., to analyze carcinogenicity by test substance metabolism. Is possible.
  • analysis can be performed by evaluating the test substance changed by the cell using a carcinogenesis evaluation system using an appropriate chemical substance.
  • Mutagenicity analysis is performed by, for example, contacting a test substance with the differentiated mature hepatocyte of the present invention and subjecting the cell to a chromosomal aberration test, a micronucleus test, etc. to analyze the mutagenicity due to the test substance metabolism. Is possible.
  • the test substance changed by the cells is evaluated by an appropriate evaluation system, thereby performing a chromosome abnormality test, a micronucleus test, a reverse mutation test, etc. It is possible to analyze by attaching to.
  • the present invention can also provide a screening method for a therapeutic agent for liver disease or bile duct disease.
  • a test substance is brought into contact with hepatic progenitor cells produced by the method of the present invention or mature hepatocytes differentiated from hepatic progenitor cells (differentiated mature hepatocytes).
  • the function of the cells contacted with the test substance is measured.
  • a substance that enhances the function of the cell in contact with the test substance is selected.
  • Analysis of the action on the liver can be performed, for example, by contacting the test substance with the differentiated mature hepatocytes of the present invention and then observing the expression of changes in the cells, or by bringing the test substance into contact with the cells. After that, the test substance changed by the cell is administered to other hepatic sputum cells, hepatic fistula slices, isolated hepatic fistulas, or experimental animals, and the changes in the cells, tissues, and living organisms are observed, thereby acting on the follicle It is possible to analyze the expression of. When differentiated mature hepatocytes contacted with a test substance exhibit enhanced cell function, a therapeutic effect on the liver of the test substance is expected.
  • hepatic progenitor cells or mature hepatocytes differentiated from hepatic progenitor cells in the present invention include, for example, glucose-producing ability, ammonia-metabolizing ability, albumin-producing ability, urea-synthesizing ability, and enzyme such as CYP. Activity can be measured as an index.
  • the glucose production ability can be confirmed, for example, by analyzing the glucose level in the culture supernatant by the glucose oxidase method.
  • the ability to metabolize ammonia can be confirmed, for example, by analyzing the ammonia level in the culture medium by the modified indophenol method (Horn DB & Squire CR, Chim. Acta. 14: 185-194.1966).
  • the ability to produce albumin can be confirmed, for example, by analyzing the albumin concentration in the culture solution by a method for measuring the serum albumin concentration.
  • the urea synthesis ability can be confirmed using, for example, Colorimetric assay (Sigma).
  • the CYP of the present invention is not particularly limited, and examples thereof include CYP1A1, CYP2C8, CYP2C9, and CYP3A4.
  • methods well known to those skilled in the art can be used.
  • hepatic progenitor cells produced by the method of the present invention and mature hepatocytes differentiated from hepatic progenitor cells can be infected with hepatitis virus because they are closer to human mature hepatocytes.
  • the present invention provides a screening method for hepatitis virus infection inhibitors.
  • hepatic progenitor cells produced by the method of the present invention or mature hepatocytes differentiated from hepatic progenitor cells (differentiated mature hepatocytes) are contacted with hepatitis virus in the presence of a test substance.
  • the presence or absence of hepatitis virus infection in the cells contacted with hepatitis virus is examined.
  • a substance that inhibits hepatitis virus infection is selected. Contact of the hepatitis virus with the cell can be performed by a conventional method.
  • the hepatitis virus is not particularly limited, but includes hepatitis C virus, hepatitis A virus, and hepatitis B virus. These hepatitis viruses may be established or may be isolated directly from a person infected with hepatitis virus. Moreover, it may be in a purified state or in a crude state (for example, a state of serum obtained from an infected person).
  • the presence or absence of hepatitis virus infection can be examined using, for example, the amount of hepatitis virus in the cell as an indicator.
  • the amount of hepatitis virus in a cell can be determined using, for example, the amount of hepatitis virus RNA in the cell as an index.
  • the amount of hepatitis virus RNA can be measured according to a conventional method. In addition, the measurement may be performed by a method established by the present inventors (T. Takeuchi et al. Real-Time Detection System for Quantification of Hepatitis C Virus Genome. Gastroenterology 1999, 1646: 3616).
  • the present invention can provide a screening method for a therapeutic agent for viral hepatitis.
  • hepatitis virus is brought into contact with hepatic progenitor cells produced by the method of the present invention or mature hepatocytes differentiated from hepatic progenitor cells (differentiated mature hepatocytes).
  • the test substance is brought into contact with the cells infected with the hepatitis virus.
  • the proliferation of hepatitis virus in the cells contacted with the test substance is measured.
  • a substance that inhibits the growth of hepatitis virus is selected.
  • Substances that inhibit the growth of hepatitis virus are 1) a substance that inhibits the growth of hepatitis virus compared to the case where no test substance is contacted, 2) a substance that completely inhibits the growth of hepatitis virus, 3 ) All substances that eliminate hepatitis virus are included.
  • the proliferation and disappearance of hepatitis virus can be examined by measuring the amount of hepatitis virus in the cells.
  • the test substance can usually be brought into contact with the cells by adding the test substance to the culture medium or culture medium of differentiated mature hepatocytes.
  • the cells can be contacted by expressing a gene encoding a test substance in differentiated mature hepatocytes.
  • the test substance can be brought into contact with the cells by co-culturing the cells producing the test substance and the differentiated mature hepatocytes.
  • the present invention can provide a method for culturing hepatitis virus.
  • the type of virus is not particularly limited, and examples thereof include hepatitis A virus, hepatitis B virus, hepatitis C virus, hepatitis D virus, and hepatitis E virus.
  • the method for culturing hepatitis virus of the present invention is useful for passaging and amplification of an already isolated virus.
  • the culture method of hepatitis virus of this invention can isolate
  • the human liver model animal of the present invention can be obtained by transplanting the differentiated mature hepatocytes of the present invention into a non-human mammal.
  • the administration routes of differentiated mature hepatocytes for transplantation to non-human mammals include direct administration to the liver surface, intrahepatic administration, intraportal administration, intrasplenic administration, oral administration, subcutaneous administration, intramuscular administration, Intravenous administration, intraarterial administration, sublingual administration, rectal administration, vaginal administration, transdermal administration, and the like can be mentioned. From the viewpoint of the engraftment rate of the differentiated mature hepatocytes of the present invention, it is preferably applied to the liver surface. Direct administration, intrahepatic administration, intrasplenic administration, intraarterial administration and intravenous administration are preferred, and intrahepatic administration, intrasplenic administration and intrahepatic arterial administration are more preferred.
  • the dose of differentiated mature hepatocytes in the human liver model animal of the present invention may vary depending on the non-human mammal and the administration route, but is usually 1 ⁇ 10 to 1 ⁇ 10 10 cells / individual, preferably 1 ⁇ 10 2 to 1 ⁇ 10 9 cells / individual. More preferably, it is 1 ⁇ 10 3 to 1 ⁇ 10 8 pieces / individual.
  • this dose may be administered once as a single dose, or the dose may be divided into multiple doses.
  • the non-human mammal in the present invention is not particularly limited as long as it is a mammal.
  • Mouse, rat, minipig and monkey are more preferable.
  • the present invention also provides human hepatic progenitor cells prepared by culturing human mature hepatocytes in a medium containing serum, A-83-01 and CHIR99021, or mature hepatocytes derived from the human hepatic progenitor cells
  • a kit comprising (differentiated mature hepatocytes) can be provided. Such a kit is used to evaluate the metabolism and / or hepatotoxicity of a test substance using human hepatic progenitor cells or differentiated mature hepatocytes.
  • such a kit is used for screening a test substance, specifically, screening for therapeutic agents for liver diseases or bile duct diseases, screening for hepatitis virus infection inhibitors, screening for therapeutic agents for viral hepatitis. It is also possible to use them.
  • Each specific evaluation method and screening method follows the above description.
  • the present invention will be described in detail with reference to Examples and Test Examples, but the present invention is not limited to these Examples and the like.
  • the age / month age information about the used cells is expressed by abbreviations “M” (Month) and “Y” (Year), respectively.
  • Example 1 Human frozen hepatocytes (Lot. ID: HC3-14, 45Y, Male, Caucasian, Xenotech) were added to a thawing medium (William's E medium (Life Technologies, 32551-020), 10% FBS (Life) (Manufactured by Technologies), 10 ⁇ 4 M insulin (manufactured by Sigma), 1 ⁇ antibiotic / anticolytic solution (manufactured by Life Technologies)) and suspended at 500 rpm (approximately 40 ⁇ g), 4 ° C., 2 min at low speed for 2 minutes. It was collected.
  • a thawing medium Wood's E medium (Life Technologies, 32551-020), 10% FBS (Life) (Manufactured by Technologies), 10 ⁇ 4 M insulin (manufactured by Sigma), 1 ⁇ antibiotic / anticolytic solution (manufactured by Life Technologies)
  • the collected cells were resuspended in a seeding medium (L-15 medium (manufactured by Life Technologies, 11415-064), 1 ⁇ antibiotic / anticolytic solution (manufactured by Life Technologies)), and the number of cells was counted.
  • a collagen-coated plate (manufactured by IWAKI) was seeded at 1 ⁇ 10 4 cells / cm 2 , placed in a CO 2 incubator (37 ° C., 5% CO 2 ), and seeded medium 3-5 hours after the cells adhered. From basal medium (hereinafter referred to as “SHM medium” (DMEM / F12 medium (manufactured by Life Technologies, 11320033), 5 mM HEPES (manufactured by Sigma, St.
  • SHM medium basal medium
  • DMEM / F12 medium manufactured by Life Technologies, 11320033
  • 5 mM HEPES manufactured by Sigma, St.
  • Example 2 In the same manner as in Example 1, human frozen hepatocytes (10M, Female, Hispanic, Celsis) were used and cultured in AC-F medium. After 6 days (D6), 9 days (D9) and 12 days later In (D12), hepatic progenitor cells were observed (FIG. 2). In FIG. 2, arrows indicate cells that have partially differentiated and matured from hepatic progenitor cells.
  • Example 3 When cultured in AC-F medium using human frozen hepatocytes (2Y, Male, Caucasian, Biopredic) as in Example 1, hepatic progenitor cells were observed after 7 and 14 days. It was. In contrast, no hepatic progenitor cells were observed when the test medium was cultured as an FBS medium containing only 10% FBS (manufactured by Life Technologies) (FIG. 3).
  • Example 4 Transplantation of the hepatic progenitor cells of the present invention into cDNA-uPA / SCID mice in which the uPA gene is expressed specifically in hepatocytes and the liver continues to be damaged innately causes chronic liver damage. It is confirmed that the hepatic cells derived from the hepatic progenitor cells of the present invention are engrafted in the liver of the / SCID mouse.
  • Example 2 Cells that had been cultured for 4 days in AC-F medium using human frozen hepatocytes (10M, Female, Hispanic, Celsis) as in Example 1 were washed twice with PBS ( ⁇ ). The cells were peeled and collected with TryLE Express (Thermo, SKU: 12604014), and the number of cells was measured. The cell suspension was centrifuged (200 ⁇ g, 5 minutes) and then suspended in DMEM10 (10% FBS-DMEM) so as to be 5 ⁇ 10 7 cells.
  • human frozen hepatocytes (10M, Female, Hispanic, Celsis) as in Example 1 were washed twice with PBS ( ⁇ ). The cells were peeled and collected with TryLE Express (Thermo, SKU: 12604014), and the number of cells was measured. The cell suspension was centrifuged (200 ⁇ g, 5 minutes) and then suspended in DMEM10 (10% FBS-DMEM) so as to be 5 ⁇ 10 7 cells.
  • mice After cDNA-uPA / SCID mice (Tateno et. al., 2015, 2-4 weeks old) were laparotomized under isoflurane anesthesia, the spleen was exposed and transplanted with 0.5 ⁇ 10 5 to 2 ⁇ 10 6 cells / mouse, The laparotomy was sutured. Once a week, 20 to 40 uL of blood is collected from the orbit, the serum is separated, and the human-specific albumin in the serum is ALB Human ALB ELISA kit (Bethyl, product code: E88-129). Measure with Necropsy is performed 8 weeks after cell transplantation to prepare whole blood and liver / spleen tissue samples (paraffin and frozen block).
  • Example 5 In order to express timidine kinase specifically in hepatocytes, transplantation of hepatic progenitor cells of the present invention to TK-NOG mouse, which can induce cell death specifically by administration of ganciclovir and cause liver damage, It is confirmed that hepatocytes derived from the hepatic progenitor cells of the present invention are engrafted in the liver of TK-NOG mouse.
  • a cell suspension was prepared using human frozen hepatocytes (10M, Female, Hispanic, Celsis) in the same manner as in Example 4.
  • TK-NOG mouse Hasegawa et. Al., 2011, 7-8 weeks old, manufactured by In Vivo Science
  • GCV ganciclovir
  • the sample was dissolved in 16.7 mL of PBS ( ⁇ ), sterilized by filtration through a 0.22 ⁇ m filter, and 10 uL / g body weight (6 mg / kg) was intraperitoneally administered.
  • TK-NOG mouse was laparotomized under isoflurane anesthesia, the spleen was exposed and administered at 0.5 ⁇ 10 5 to 2 ⁇ 10 6 cells / mouse, and then the abdomen was sutured. Once a week, 20 to 40 uL of blood is collected from the tail vein, the serum is separated, and human-specific albumin in the serum is ALB Human ALB ELISA kit (Bethyl, product code: E88-129). ) To measure. Necropsy is performed 8 weeks after cell administration, and whole blood and liver / spleen tissue samples (paraffin and frozen block) are prepared.
  • Example 6 Test of gene expression to confirm differentiation into hepatocytes After culturing in AC-F medium using human frozen hepatocytes in the same manner as in Example 1 to prepare hepatic progenitor cells, oncostatin M (OSM) And dexamethasone (Dex) for 6 days in culture, then in Matrigel for differentiation into hepatocytes.
  • OSM oncostatin M
  • Dex dexamethasone
  • the intensity value is log-transformed with 2 as the base, and the data is read into Partek Genomics Suite 6.6 (manufactured by Partek Inc, Chesterfield, MO, USA).
  • Partek Genomics Suite 6.6 For the gene expression analysis, one-way ANOVA is used to identify genes with different expression. In each analysis, the ratio between the P value and the amount of change is calculated.
  • Use Partek Genomics Suite 6.6 to perform unsupervised clustering and heatmap-specific creation of all datasets or sorted datasets by the method of Eudidian distances of average linkage clustering using the selected probe set, Confirm gene expression.
  • Example 7 Test for confirming differentiation into biliary epithelial cells Secretin assay
  • human frozen hepatocytes were cultured in AC-F medium to prepare hepatic progenitor cells, and then mTeSR1 Then, the medium is cultured on MEF for 6 days in a medium containing YAC and then 2% Matrigel is added and cultured for 2 days to differentiate into biliary epithelial cells.
  • the differentiated bile duct epithelial cells were added with rat secretin at 2 ⁇ 10 ⁇ 7 M (manufactured by Wako) and incubated for 30 minutes, and then the enlargement of the luminal region in the bile duct-like structure was observed using a phase contrast microscope. Confirmation of differentiation into bile duct epithelial cells.
  • Example 8 Fluorescein diacetate assay
  • hepatic progenitor cells are differentiated from bile duct epithelial cells, fluorescein diacetate is added to the resulting bile duct epithelial cells, cultured for 15 minutes, and then replaced with a new medium. The culture is further continued for 30 minutes to facilitate transport of degraded fluorescein to the luminal region. Thereafter, the medium is replaced with HBSS (+), and the distribution of fluorescein is observed with a fluorescence microscope to confirm differentiation into biliary epithelial cells.
  • Example 9 Confirmation test of expression of liver-specific gene when differentiated into hepatocytes
  • the liver progenitor cells were differentiated from hepatocytes, and miRNeasy Mini Kit (QIAGEN, Venlo, Total RNA is extracted using The Netherlands.
  • Reverse transcription is performed using a High-Capacity cDNA Reverse Transcription Kit (manufactured by Life Technologies) according to the instruction manual.
  • PCR is performed using Platinum SYBR Green qPCR SuperM UDG (manufactured by Invitrogen) to confirm the expression of liver-specific genes.
  • Example 10 Cells that had been cultured for 11 days in AC-F medium using human frozen hepatocytes (10M, Female, Hispanic, Celsis) in the same manner as in Example 1 were washed twice with PBS ( ⁇ ). The cells were peeled and collected with TryLE Express (Thermo, SKU: 12604014), and the number of cells was measured. The cell suspension was centrifuged (200 ⁇ g, 5 minutes) and then suspended in DMEM10 (10% FBS-DMEM) so as to be 5 ⁇ 10 7 cells.
  • DMEM10 % FBS-DMEM
  • Example 11 Cells that were cultured for 11 days in AC-F medium using human frozen hepatocytes (10M, Female, Hispanic, Celsis) as in Example 10 were washed twice with PBS ( ⁇ ). The cells were peeled and collected with TryLE Express (Thermo, SKU: 12604014), and the number of cells was measured. The cell suspension was centrifuged (200 ⁇ g, 5 minutes) and then suspended in DMEM10 (10% FBS-DMEM) so as to be 5 ⁇ 10 7 cells. Ganciclovir (GCV) was administered to TK-NOG mouse (Hasegawa et.
  • ALT was measured one week after administration, and 400-1600 U Individuals exhibiting a value of / dL were used as recipient animals.
  • 500 mg (Mitsubishi Tanabe Pharma, Denosin for intravenous infusion) was dissolved in 50 mL of distilled water for injection (Otsuka) (50 mg / mL).
  • a stock was diluted 5 times with PBS ( ⁇ ) at the time of transplantation, and 0.1 mL per 10 g of mouse body weight was intraperitoneally administered to induce cell death specifically in hepatocytes.
  • TK-NOG mouse was laparotomized under isoflurane anesthesia, the spleen was exposed and administered at 1 ⁇ 10 6 cells / mouse, and then the laparotomy was sutured. Once a week, 20 to 40 uL of blood is collected from the tail vein, the serum is separated, and human-specific albumin in the serum is ALB Human ALB ELISA kit (Bethyl, product code: E88-129). ). As shown in FIG. 8, it was confirmed that human ALB was present in mouse serum, and it was confirmed that hepatocytes derived from hepatic progenitor cells were engrafted. The serum human ALB on day 60 after cell administration was 8.1 mg / mL and 2.2 mg / mL for each individual.
  • Example 12 In the same manner as in Example 1, human frozen hepatocytes 1 (10M, manufactured by Male, Hispanic, Celsis) and human frozen hepatocytes 2 (8M, Male, Caucasian, manufactured by Bioreclamation IVT) were cultured in an AC-F medium. Then, after preparing hepatic progenitor cells (referred to as “FCL” and “DUX”, respectively), the cells are cultured in a medium containing oncostatin M (OSM, 5 ng / ml) and dexamethasone (Dex, 10 ⁇ 6 M) for 6 days, Thereafter, the cells were cultured in Matrigel for 2 days and differentiated into hepatocytes.
  • OSM oncostatin M
  • Dex dexamethasone
  • the activity of the metabolic enzyme CYP1A2 was measured using methanol (MeOH, 1% concentration) and omeprazole (OMP, 50 ⁇ M).
  • the activity of metabolic enzyme CYP3A4 was measured using distilled water and phenobarbital (1 mM). The activity of the metabolic enzyme was carried out using the Luciferin 1A2 kit and the Luciferin-IPA kit from Promega. It was revealed that CYP1A2 and CYP3A4 are induced by differentiating hepatic progenitor cells into hepatocytes (FIGS. 11 to 14).
  • Example 13 In the same manner as in Example 1, human frozen hepatocytes (10M, Female, Hispanic, Celsis) were used for culturing in AC-F medium to prepare hepatic progenitor cells, and then oncostatin M (OSM, 5 ng / ml). ) And dexamethasone (Dex, 10 ⁇ 6 M) for 6 days, then for 2 days in Matrigel and differentiated into hepatocytes. For hepatic progenitor cells and differentiated hepatocytes, the expression levels of each metabolic enzyme and the like were measured using PCR.
  • Liver progenitor cells were prepared using human frozen hepatocytes (10M, Female, Hispanic, Celsis) in the same manner as in Example 1, and then cDNA-uPA / SCID mice (2-4M, Male, manufactured by Phoenix Bio). ) was opened under isoflurane anesthesia, the spleen was exposed and transplanted with 0.5 ⁇ 10 5 to 2 ⁇ 10 6 cells / mouse, and then the laparotomy was sutured. On day 73 after transplantation, the liver was excised and the hepatocytes were separated by perfusion, and cultured for 4 days on a 24-well collagen plate (IWAKI) at 4 ⁇ 10 5 cells / well using 2% FBS-SHM medium. went.
  • human frozen hepatocytes (10M, Female, Hispanic, Celsis) in the same manner as in Example 1, and then cDNA-uPA / SCID mice (2-4M, Male, manufactured by Phoenix Bio).
  • the activity of the metabolic enzyme CYP1A2 was measured on hepatocytes removed from the mice using methanol (MeOH, 1% concentration) and omeprazole (OMP, 50 ⁇ M). Moreover, the activity of the metabolic enzyme CYP3A4 was measured using rifampicin (RF, 10 ⁇ M), methanol (MeOH, 1% concentration), phenobarbital (1 mM), and distilled water. The activity of the metabolic enzyme was carried out using the Luciferin 1A2 kit and the Luciferin-IPA kit from Promega.
  • CYP1A2 was induced by omeprazole and CYP3A4 was induced by rifampicin and phenobarbital in liver progenitor cells transplanted and cultured in animal livers (FIGS. 30 and 31).
  • Liver progenitor cells were prepared using human frozen hepatocytes (8M, Male, Caucasian, manufactured by Bioreclamation IVT) in the same manner as in Example 1, and transplanted and cultured in the same manner as in Example 14.
  • 32 and 33 are photographs of hepatic progenitor cells before transplantation and cells taken out after transplantation and cultured for 4 days, respectively.
  • Example 16 Liver progenitor cells were prepared using human frozen hepatocytes (1Y, Male) in the same manner as in Example 1, and transplanted and cultured in the same manner as in Example 14. 36 and 37 are photographs of hepatic progenitor cells before transplantation and cells taken after transplantation and cultured for 4 days, respectively.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Medicinal Chemistry (AREA)
  • Cell Biology (AREA)
  • Molecular Biology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Virology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Toxicology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Food Science & Technology (AREA)
  • General Physics & Mathematics (AREA)

Abstract

生体外でヒト成熟肝細胞を、自己複製能をもつ肝前駆細胞へとリプログラミングする方法を提供する。 ヒト成熟肝細胞を血清、A-83-01及びCHIR99021を含有する培地で培養することを含む、ヒト肝前駆細胞の調製方法。

Description

ヒト肝前駆細胞の調製方法
 本発明は、ヒト肝前駆細胞の調製方法に関する。
 重篤な肝疾患に対する有効な治療法は現在肝移植のみであるが、絶対的なドナー不足が問題である。これを代替するために、これまでiPS細胞から肝細胞を分化誘導し移植治療に用いる試みが続けられてきた。
 しかしながら、iPS細胞は分化全能性と高い増殖能をもつため、免疫不全マウスへの移植に伴い奇形種を形成するとの報告もあり、iPS細胞から肝細胞製作時に未分化iPS細胞がわずかでも混入すると移植後に腫瘍ができる危険性が生じる。また、iPS細胞を用いた肝臓などの内胚葉細胞への効率的な分化誘導法はいまだ確立されておらず、肝機能を代替えできるほどの肝細胞をiPS細胞から作成することは現状では不可能である。
 これに対して、成体肝臓内にごく少数存在する肝前駆細胞の利用も細胞ソースと考えられてきた。また、最近の研究から、慢性肝炎時に成熟肝細胞が、肝細胞および胆管上皮細胞への二分化能を有する前駆細胞へとリプログラミングされるという事実が明らかとなった(非特許文献1~4)。
Yanger K. et. al., Genes & Development, pp.719-724, 27, 2013 Tanimizu N. et. al., Journal of Biological Chemistry, pp.7589-7598, 289(11), 2014 Yimlamai D. et. al., Cell, pp.1324-1338, 157, 2014 Tarlow B. D. et. al., Cell Stem Cell, pp.605-618, 15, 2014
 本発明は、生体外でヒト成熟肝細胞を、自己複製能をもつヒト肝前駆細胞へとリプログラミングする方法を提供することを目的とする。
 本発明者らは、本課題を解決すべく鋭意検討を重ねた結果、生体外でヒト成熟肝細胞を血清、A-83-01(TGF-βシグナル阻害薬)及びCHIR99021(GSK3阻害薬)を含有する培地中で培養することにより、自己複製能をもつヒト肝前駆細胞へとリプログラミングすることができることを見出し、本発明を完成するに至った。
 すなわち、本発明は、下記に掲げるヒト肝前駆細胞の調製方法を提供する。
 項1.ヒト成熟肝細胞を血清、A-83-01及びCHIR99021を含有する培地で培養することを含む、ヒト肝前駆細胞の調製方法。
 項2.前記ヒト成熟肝細胞が乳幼児由来である、項1に記載のヒト肝前駆細胞の調製方法。
 項3.前記血清がウシ胎児血清である、項1又は2に記載のヒト肝前駆細胞の調製方法。
 項4.ヒト成熟肝細胞を血清、A-83-01及びCHIR99021を含有する培地で培養することにより調製された、ヒト肝前駆細胞。
 項5.項4に記載されたヒト肝前駆細胞から誘導された成熟肝細胞。
 項6.項5に記載された成熟肝細胞を用いることを含む、被検物質のスクリーニング方法。
 項7.項5に記載された成熟肝細胞を用いることを含む、肝炎ウイルスの培養方法。
 項8.項5に記載された成熟肝細胞が非ヒト哺乳動物に移植された、ヒト肝臓モデル動物。
 項9.ヒト肝前駆細胞又は成熟肝細胞を用いて、被検物質の代謝及び/又は肝毒性を評価するためのキットであって、
 ヒト成熟肝細胞を血清、A-83-01及びCHIR99021を含有する培地で培養することにより調製されたヒト肝前駆細胞、又は該ヒト肝前駆細胞から誘導された成熟肝細胞を含む、キット。
 本発明により、生体外でヒト成熟肝細胞を、自己複製能をもつ肝前駆細胞へとリプログラミングする方法を提供することができる。
図1は、ヒト成熟肝細胞をAC-F培地(A)、YAC-F培地(B)又はYAC培地(C)で培養した結果を示す位相差顕微鏡写真である。 図2は、ヒト成熟肝細胞をAC-F培地で培養した結果を示す位相差顕微鏡写真である。 図3は、ヒト成熟肝細胞をAC-F培地又はFBS培地で培養した結果を示す位相差顕微鏡写真である。 図4は、ヒト成熟肝細胞をAC-F培地又はFBS培地で培養した結果を示す位相差顕微鏡写真である。 図5は、cDNA-uPA/SCIDマウスへの肝前駆細胞の投与後における、血中human特異的アルブミンの経時変化を示すグラフである。 図6は、cDNA-uPA/SCIDマウスへの肝前駆細胞の投与70日後における、内側右葉でのHuman CYP2C9の発現を示す免疫染色写真である。 図7は、cDNA-uPA/SCIDマウスへの肝前駆細胞の投与70日後における、内側左葉でのHuman CYP2C9の発現を示す免疫染色写真である。 図8は、TK-NOGマウスへの肝前駆細胞の投与後における、血清中human特異的アルブミンの経時変化を示すグラフである。 図9は、TK-NOGマウスへの肝前駆細胞の投与60日後における、肝臓でのHuman CYP2C9の発現を示す免疫染色写真である。 図10は、TK-NOGマウスへの肝前駆細胞の投与60日後における、肝臓でのHuman CYP2C9の発現を示す免疫染色写真である。 図11は、本発明の肝前駆細胞または肝前駆細胞から分化させた成熟肝細胞(分化成熟肝細胞)における、代謝酵素CYP1A2の活性を示すグラフである。 図12は、本発明の肝前駆細胞または肝前駆細胞から分化させた成熟肝細胞(分化成熟肝細胞)における、Omeprazolによる誘導有り無しでの代謝酵素CYP1A2の活性比率を示すグラフである。 図13は、本発明の肝前駆細胞または肝前駆細胞から分化させた成熟肝細胞(分化成熟肝細胞)における、代謝酵素CYP3A4の活性を示すグラフである。 図14は、本発明の肝前駆細胞または肝前駆細胞から分化させた成熟肝細胞(分化成熟肝細胞)における、Phenobarbitalによる誘導有り無しでの代謝酵素CYP3A4の活性比率を示すグラフである。 図15は、本発明の肝前駆細胞または肝前駆細胞から分化させた成熟肝細胞(分化成熟肝細胞)における、ALBの遺伝子発現量を示すグラフである。 図16は、本発明の肝前駆細胞または肝前駆細胞から分化させた成熟肝細胞(分化成熟肝細胞)における、TATの遺伝子発現量を示すグラフである。 図17は、本発明の肝前駆細胞または肝前駆細胞から分化させた成熟肝細胞(分化成熟肝細胞)における、TDO2の遺伝子発現量を示すグラフである。 図18は、本発明の肝前駆細胞または肝前駆細胞から分化させた成熟肝細胞(分化成熟肝細胞)における、TTRの遺伝子発現量を示すグラフである。 図19は、本発明の肝前駆細胞または肝前駆細胞から分化させた成熟肝細胞(分化成熟肝細胞)における、G6PCの遺伝子発現量を示すグラフである。 図20は、本発明の肝前駆細胞または肝前駆細胞から分化させた成熟肝細胞(分化成熟肝細胞)における、NTCPの遺伝子発現量を示すグラフである。 図21は、本発明の肝前駆細胞または肝前駆細胞から分化させた成熟肝細胞(分化成熟肝細胞)における、CYP1A2の遺伝子発現量を示すグラフである。 図22は、本発明の肝前駆細胞または肝前駆細胞から分化させた成熟肝細胞(分化成熟肝細胞)における、CYP2B6の遺伝子発現量を示すグラフである。 図23は、本発明の肝前駆細胞または肝前駆細胞から分化させた成熟肝細胞(分化成熟肝細胞)における、CYP2C9の遺伝子発現量を示すグラフである。 図24は、本発明の肝前駆細胞または肝前駆細胞から分化させた成熟肝細胞(分化成熟肝細胞)における、CYP2C19の遺伝子発現量を示すグラフである。 図25は、本発明の肝前駆細胞または肝前駆細胞から分化させた成熟肝細胞(分化成熟肝細胞)における、CYP2D6の遺伝子発現量を示すグラフである。 図26は、本発明の肝前駆細胞または肝前駆細胞から分化させた成熟肝細胞(分化成熟肝細胞)における、CYP3A4の遺伝子発現量を示すグラフである。 図27は、本発明の肝前駆細胞または肝前駆細胞から分化させた成熟肝細胞(分化成熟肝細胞)における、CYP7A1の遺伝子発現量を示すグラフである。 図28は、cDNA-uPA/SCIDマウスへ移植する前の、本発明の肝前駆細胞の写真である。 図29は、cDNA-uPA/SCIDマウスへ本発明の肝前駆細胞を移植した後、取り出し、4日間培養を行った細胞の写真である。 図30は、cDNA-uPA/SCIDマウスから取り出した肝細胞におけるCYP1A2の活性を示すグラフである。 図31は、cDNA-uPA/SCIDマウスから取り出した肝細胞におけるCYP3A4の活性を示すグラフである。 図32は、cDNA-uPA/SCIDマウスへ移植する前の、本発明の肝前駆細胞の写真である。 図33は、cDNA-uPA/SCIDマウスへ本発明の肝前駆細胞を移植した後、取り出し、4日間培養を行った細胞の写真である。 図34は、cDNA-uPA/SCIDマウスから取り出した肝細胞におけるCYP1A2の活性を示すグラフである。 図35は、cDNA-uPA/SCIDマウスから取り出した肝細胞におけるCYP3A4の活性を示すグラフである。 図36は、cDNA-uPA/SCIDマウスへ移植する前の、本発明の肝前駆細胞の写真である。 図37は、cDNA-uPA/SCIDマウスへ本発明の肝前駆細胞を移植した後、取り出し、4日間培養を行った細胞の写真である。 図38は、cDNA-uPA/SCIDマウスから取り出した肝細胞におけるCYP1A2の活性を示すグラフである。 図39は、cDNA-uPA/SCIDマウスから取り出した肝細胞におけるCYP3A4の活性を示すグラフである。
 本発明は、ヒト成熟肝細胞を血清、A-83-01及びCHIR99021を含有する培地で培養することを含む、ヒト肝前駆細胞の調製方法に関するものである。
 [ヒト成熟肝細胞]
 本発明に使用するヒト成熟肝細胞は、生体肝臓組織から既知の任意の方法にしたがって、取得することができる。なお、本明細書において、生体肝臓組織とは、出生後のヒト肝臓から取得した肝臓組織を意味する。生体肝臓組織の供給個体は、生存していても死亡していてもよい。生体肝臓組織の供給個体の年齢は限定されないが、細胞増殖の観点から、20代以下が好ましく、さらに好ましくは10才以下であり、より好ましくは、乳幼児(0才~7才)であり、最も好ましくは乳児(0才~2才)である。
 また、本発明に使用するヒト成熟肝細胞は、成熟肝細胞として特徴を有していればよく、生体肝臓組織から取得した後に凍結保存された細胞でもよく、生体肝臓組織から取得した後に適宜、凍結保存及び融解を繰り返した細胞であってもよい。本発明に使用するヒト成熟肝細胞は、市販されているヒト由来成熟肝細胞をであってもよい。
 さらに、本発明の方法に使用するヒト成熟肝細胞は、インビトロで増殖能を有しない、完全に分化した肝細胞を包含する。
 本発明の方法に使用するヒト成熟肝細胞は、iPS細胞(induced pluripotent stem cells、誘導多能性幹細胞)、ES細胞(embryonic stem cells、胚性幹細胞)等から分化誘導された肝細胞であってもよい。
 [血清]
 本発明に用いられる血清は、例えば、ヒト血清、ウシ胎児血清(FBS)、ウシ血清、仔ウシ血清、ヤギ血清、ウマ血清、ブタ血清、ヒツジ血清、ウサギ血清、ラット血清などが挙げられ、好ましくはFBS、仔ウシ血清、ウシ血清であり、さらに好ましくはFBSである。また、本発明に用いられる血清とは、アルブミン(ウシ、ブタ、ヒト、イヌ、ウサギ、ラット、マウス、ニワトリ等)、ヒト血小板溶解物等の血清成分由来の物質であってもよい。本発明に用いられる血清は、市販品であってもよい。
 本発明に用いられる血清の含有量は、培地全体の量に対して、0.1v/v%~30v/v%、好ましくは1v/v%~20v/v%、さらに好ましくは5v/v%~15v/v%、さらにより好ましくは8v/v%~12v/v%、最も好ましくは10v/v%である。
 [A-83-01]
 A-83-01(CAS No.909910-43-6)はTGF-βシグナル阻害薬の一種であり、TGF-β type I/activin受容体様キナーゼ(ALK5)、type I activing/nodal受容体キナーゼ(ALK4)、type Inodal受容体キナーゼ(ALK7)を選択的に阻害することができる。A-83-01は、3-(6-メチル-2-ピリジニル)-N-フェニル-4-(4-キノリニル)-1H-ピラゾール-1-カルボチオアミド(3-(6-Methyl-2-pyridinyl)-N-phenyl-4-(4-quinolinyl)-1H-pyrazole-1-carbothioamide)としても公知である。限定はされないが、A-83-01は和光純薬工業株式会社等から入手することができる。
 本発明に用いられるA-83-01の含有量は、培地全体の量に対して、0.0001μM~5μM、好ましくは0.001μM~2μM、さらに好ましくは0.01μM~1μM、さらにより好ましくは0.05μM~0.7μM、最も好ましくは0.5μMである。
 [CHIR99021]
 CHIR99021(CAS No.252917-06-9)はGSK-3β(Glycogen Synthase Kinase 3β)阻害剤の一種で、現在最も選択性の高い阻害剤として知られている。CHIR99021は6-[[2-[[4-(2,4-ジクロロフェニル)-5-(5-メチル-1H-イミダゾール-2-イル)-2-ピリミジニル]アミノ]エチル]アミノ]-3-ピリジンカルボニトリル(6-[[2-[[4-(2,4-dichlorophenyl)-5-(5-methyl-1H-imidazol-2-yl)-2 pyrimidinyl]amino]ethyl]amino]-3-pyridinecarbonitrile)としても公知である。限定はされないが、CHIR99021は和光純薬工業株式会社等から入手することができる。
 本発明に用いられるCHIR99021の含有量は、培地全体の量に対して、0.001μM~20μM、好ましくは0.01μM~10μM、さらに好ましくは0.1μM~5μM、さらにより好ましくは0.3μM~4μM、最も好ましくは3μMである。
 [ROCKインヒビター]
 本発明において、ヒト成熟肝細胞を培養する培地は、さらにROCKインヒビターを含有していてもよい。ここで、ROCKインヒビターとしては、限定はされないが、Y-27632(CAS No. 146986-50-7)、GSK269962(CAS No. 850664-21-0)、Fasudil hydrochloride(CAS No. 105628-07-7)、H-1152(CAS No. 871543-07-6)が例示され、Y-27632が好ましい。Y-27632は選択的かつ強力なROCK(Rho-associated coiled forming kinase/Rho結合キナーゼ)阻害剤である。Y-27632は、トランス-4-[(1R)-1-アミノエチル]-N-4-ピリジニル-シクロヘキサンカルボキサミド(trans-4-[(1R)-1-aminoethyl]-N-4-pyridinyl-cyclohexanecarboxamide)としても公知である。また、Y-27632はフリー体であっても、塩酸塩、硫酸塩等の塩の形であっても、水和物であってもよい。GSK269962Aは、N-[3-[[2-(4-アミノ-1,2,5-オキサジアゾル-3-イル)-1-エチル-1H-イミダゾ[4,5-c]ピリジン-6-イル]オキシ]フェニル]-4-[2-(4-モルフォリニル)エチオキシ]ベンザミド(N-[3-[[2-(4-Amino-1,2,5-oxadiazol-3-yl)-1-ethyl-1H-imidazo[4,5-c]pyridin-6-yl]oxy]phenyl]-4-[2-(4-morpholinyl)ethoxy]benzamide)としても公知である。Fasudil hydrochlorideは、ファスジル塩酸塩(1-(5-Isoquinolinesulfonyl)homopiperazine Dihydrochloride)としても公知である。Fasudil hydrochlorideは、フリー体であっても、塩酸塩、硫酸塩等の塩の形であっても、水和物であってもよい。H-1152は、(S)-(+)-2-メチル-1-[(4-メチル-5-イソキノリニル)sulfonyl]-ヘキサハイドロ-1H-1,4-ヂアゼピンヂヒドロクロリド((S)-(+)-2-Methyl-1-[(4-methyl-5-isoquinolinyl)sulfonyl]-hexahydro-1H-1,4-diazepine dihydrochloride)としても公知である。限定はされないが、Y-27632は和光純薬工業株式会社等、SK269962AはAxon medchem社等、Fasudil hydrochlorideはTocris Bioscience社等、H-1152は和光純薬工業社等から入手することができる。
 本発明に用いられるROCKインヒビターの含有量は、培地全体の量に対して、0.001μM~50μM、好ましくは0.01μM~30μM、さらに好ましくは0.1μM~20μM、さらにより好ましくは1μM~15μM、最も好ましくは10μMである。
 本発明において、ヒト成熟肝細胞を培養する培地には、ES細胞、iPS細胞等の誘導技術として公知の様々な遺伝子の内、1種類から複数種類の遺伝子、又はそれらの遺伝子産物(タンパク質やmRNAなど)或いは薬剤などを添加することができる。また、哺乳動物の細胞中にES細胞、iPS細胞等の誘導技術として公知の様々な遺伝子の内、1種類から複数種類の遺伝子、又はそれらの遺伝子産物(タンパク質やmRNAなど)を発現又は導入することができる。
 本発明において、ヒト成熟肝細胞を培養する培地には、肝前駆細胞への誘導効率を上げるために、ES細胞、iPS細胞等を誘導することが知られている薬剤、化合物、抗体を添加することができる。例えば、FGFレセプターチロシンキナーゼ、MEK(マイトジェン活性化プロテインキナーゼ)/ERK(細胞外シグナル制御キナーゼ1および2)経路、GSK(グリコーゲンシンターゼキナーゼ)3の三つの低分子阻害剤〔SU5402及びPD184352〕、MEK/ERK経路及びGSK3の低分子阻害剤〔PD0325901〕、ヒストンメチル化酵素G9aの阻害剤である低分子化合物〔BIX-01294(BIX)〕、アザシチジン、トリコスタチンA(TSA)、7-hydroxyflavone、lysergic acid ethylamide、kenpaullone、TGF-β receptor I kinase/activin-like kinase 5 (ALK5)の阻害剤〔EMD 616452〕、TGF-β receptor 1(TGF-βR1)kinaseの阻害剤〔E-616452及びE-616451〕、Src-family kinaseの阻害剤〔EI-275〕、thiazovivin、PD0325901、SU5402、PD184352、SB431542、抗TGF-β中和抗体、TNr5a2、p53阻害化合物、p53に対するsiRNA、p53経路の阻害剤等を、添加することができる。
 また、ヒト成熟肝細胞を培養する培地には、肝前駆細胞への誘導効率を上げるため、更に、ES細胞、iPS細胞等を作製するのに使用するマイクロRNA(micro RNA)を用いることも可能である。
 本発明において、ヒト成熟肝細胞を培養する培地には、TGF-βなどの活性を阻害又は中和する各々の阻害剤又は抗体などを使用することもできる。TGF-βの阻害剤としては、例えば、TGF-βRI阻害剤、TGF-βRIキナーゼ阻害剤などが挙げられる。
 本発明の培養において、コーティングをした培養ディッシュ上にて培養を行うこともまた好ましい。コーティングとして、マトリゲルコート、コラーゲンコート、ゼラチンコート、ラミニンコート、フィブロネクチンコート等を使用することができる。好ましくは、コーティングとして、マトリゲルコートを使用する。
 本発明に用いることができる基本の培地としては、例えば、ES培地〔40%ダルベッコ改変イーグル培地(DMEM)、40%のF12培地(シグマ社製)、2 mM L-グルタミン又はGlutaMAX(シグマ社製)、1%のnon essential amino acid(シグマ社製)、0.1 mMのβ-メルカプトエタノール(シグマ社製)、15~20%のKnockout Serum Replacement(インビトロジェン社製)、10μg/mlのゲンタマイシン(インビトロジェン社製)、4~10ng/mlのbFGF(FGF2)〕(以下ES培地という)、0.1 mMのβ-メルカプトエタノールを除いたES培地で、マウス胚性繊維芽細胞MEFを24時間培養した上清である馴化培地に、0.1 mMのβ-メルカプトエタノール及び10 ng/mlのbFGF(FGF2)を加えた培地(以下MEF馴化ES培地)、iPS細胞用最適培地(iPSellon社製)、フィーダー細胞用最適培地(iPSellon社製)、StemPro〔登録商標〕hESC SFM(インビトロジェン社製)、mTeSR1(ステムセルテクノロジー・ベリタス社製)、アニマルプロテインフリーのヒトES/iPS細胞維持用無血清培地TeSR2〔ST-05860〕(ステムセルテクノロジー・ベリタス社製)、霊長類ES/iPS細胞用培地(リプロセル社)、ReproStem(リプロセル社)、ReproFF(リプロセル社)、ReproFF2(リプロセル社)などを例示することができるが、これらの培地に制限されることはない。これらの培地に、本発明の調製方法に必要な、血清、A-83-01、およびCHIR99021が含まれていない場合には、適宜追加するものとする。
 本発明において、ヒト成熟肝細胞を、ヒト肝前駆細胞へと調製する際の最適な培養条件は、常法に従い、適宜変更され得る。限定はされないが、ヒト成熟肝細胞をヒト肝前駆細胞へと調製する際の最適な培養条件は、例えば以下の通りである。
 培養温度:15℃~45℃が好ましく、25℃~40℃がさらに好ましく、37℃が最も好ましい。
 CO濃度:1%~10%が好ましく、3%~8%がさらに好ましく、5%が最も好ましい。
 培養期間:1日(24時間)~30日が好ましく、3日~20日がさらに好ましい。
 本発明において、肝前駆細胞の増殖培養又は継代培養する手法は、ES細胞、iPS細胞等の培養において当業者が通常用いるいずれかの方法を使用することができる。例えば、細胞から培地を除きPBS(-)で洗浄し、細胞剥離液を加えて静置した後、1×抗生物質-抗真菌剤及びFBSを10%含むD-MEM(高グルコース)培地を加えて遠心分離し、更に、上清を除去した後、1×抗生物質-抗真菌剤、mTeSR1及び10μM Y-27632を加え、MEFが播種してあるマトリゲルコート、ゼラチンコート又はコラーゲンコート培養皿に細胞懸濁液を播種することによって、継代培養する方法が例示できる。
 本発明における肝前駆細胞は、成熟肝細胞、または胆管上皮細胞等に分化する能力を備えていればよい。肝前駆細胞は、凍結保存細胞であっても、適宜凍結保存及び融解を繰り返した細胞であってもよい。本発明において、凍結保存は、当業者に周知の凍結保存液へ肝前駆細胞を懸濁し、冷却することによって行い得る。懸濁は、細胞をトリプシンなどの剥離剤によって剥離し、凍結保存容器に移し、適宜、処理した後、凍結保存液を加えることによって行い得る。
 凍結保存液は、凍害防御剤として、DMSO(Dimethyl sulfoxide)を含有していてもよいが、DMSOは、細胞毒性を有することから、DMSO含有量を減らすことが好ましい。DMSOの代替物として、グリセロール、プロピレングリコール又は多糖類が例示される。DMSOを用いる場合、5%~20%の濃度、好ましくは5%~10%の濃度、より好ましくは10%の濃度を含有する。この他にも、WO2007/058308に記載の添加剤を含んでもよい。このような凍結保存液として、例えば、バイオベルデ社、日本ジェネティクス株式会社、リプロセル社、ゼノアック社、コスモ・バイオ社、コージンバイオ株式会社、サーモフィッシャーサイエンティフィック社などから提供されている凍結保存液を用いてもよい。
 上述の懸濁した細胞を凍結保存する場合、-80℃~-100℃の間の温度(例えば、-80℃)で保管することで良く、当該温度に達成しえる任意のフリーザーを用いて行い得る。特に限定されないが、急激な温度変化を回避するため、プログラムフリーザーを用いて、冷却速度を適宜制御してもよい。冷却速度は、凍結保存液の成分によって適宜選択しても良く、凍結保存液の製造者指示に従って行われ得る。
 保存期間は、上記条件で凍結保存した細胞が融解した後、凍結前と同等の性質を保持している限り、特に上限は限定されないが、例えば、1週間以上、2週間以上、3週間以上、4週間以上、2か月以上、3か月以上、4か月以上、5か月以上、6か月以上、1年以上、又はそれ以上が挙げられる。より低い温度で保存することで細胞障害を抑制することができるため、液体窒素上の気相(約-150℃以下から-180℃以下)へ移して保存してもよい。液体窒素上の気相で保存する場合、当業者に周知の保存容器を用いて行うことができる。特に限定されないが、例えば、2週間以上保存する場合、液体窒素上の気相で保存することが好ましい。
 凍結保存した肝前駆細胞の融解は、当業者に周知の方法によって行い得る。例えば、37℃の恒温槽内又は湯浴中にて静置又は振とうすることによって行う方法が例示される。
 本発明により得られた肝前駆細胞をさらに培養することにより、成熟肝細胞、あるいは胆管上皮細胞等に分化させることが可能である。
 このようにして得られた成熟肝細胞(以下「分化成熟肝細胞」と言う)は、肝前駆細胞に比べ、ALB(Albumin)、AFP(Alpha Fetoprotein)、TAT(Tyrosine Aminotransferase)、TDO2(Tryptophan 2,3-dioxygenase)、TTR(Transthyretin)、G6PC(Glucose-6-phosphatase)、NTCP(sodium taurocholate cotransporting polypeptide)、Cnx32、CYP1A1(Cytochrome P1A1)、CYP1A2(Cytochrome P1A2)、CYP2B6(Cytochrome P2B6)、CYP2C9(Cytochrome P2C9)、CYP2C19(Cytochrome P2C19)、CYP2D6(Cytochrome P2D6)、CYP3A4(Cytochrome P3A4)及びCYP7A1(Cytochrome P7A1)からなる群より選択される少なくとも1種の遺伝子の発現量が著しく高くなる。限定はされないが、分化成熟肝細胞は、肝前駆細胞に比べ、前述の遺伝子の発現量が10~50,000倍に上昇することを特徴とする。
 ヒト肝前駆細胞から分化成熟肝細胞への分化誘導(以下「分化」又は「誘導」とも言う)は、例えば、オンコスタチンM及びデキサメタゾンを基礎培地(上述の基本の培地等)に添加することによって行うことができる。分化誘導培地における各増殖分化因子の濃度を与えるのに必要な量のオンコスタチンMは、例えば培地1Lあたり1μg~100μg、好ましくは5μg~50μgである。分化誘導培地における各増殖分化因子の濃度を与えるのに必要な量のデキサメタゾンは、例えば培地1Lあたり0.1mM~10mM、好ましくは0.5mM~5mMである。
 ヒト肝前駆細胞から分化成熟肝細胞への分化誘導は、ヒト肝前駆細胞を、動物の肝臓もしくは、脾臓へ移植することによっても行う事がでる。移植される動物は、ヒト肝前駆細胞から分化成熟肝細胞への分化誘導ができる動物であれば特に限定はされないが、哺乳動物が望ましく、例えば、ウサギ、イヌ、ネコ、モルモット、ハムスター、マウス、ラット、ヒツジ、ヤギ、ブタ、ミニブタ、ウマ、ウシ及びサル等が挙がられるが、マウス、ラット、ミニブタ、サルがさらに好ましい。
 また、肝前駆細胞から分化された成熟肝細胞(分化成熟肝細胞)は、機能として、例えば、グルコース産生能、アンモニア代謝能、アルブミン生産能、尿素合成能等を有することが挙げられる。グルコース生産能は、例えば、グルコースオキシダーゼ法によって培養上清中のグルコースレベルを分析することで確認できる。アンモニア代謝能は、例えば、改変インドフェノール法(Horn DB & Squire CR,Chim.Acta.14:185-194.1966)によって、培養培地中のアンモニアレベルを分析することで確認できる。アルブミン生産能は、例えば、血清アルブミン濃度を測定する方法により、培養液中のアルブミン濃度を分析することで確認できる。また、尿素合成能は、例えば、Colorimetric assay(シグマ社)を使用して確認できる。
 また、本発明は、本発明の方法により製造された肝前駆細胞及び肝前駆細胞から分化させた成熟肝細胞(分化成熟肝細胞)を提供することができる。本発明の方法により製造された肝前駆細胞及び肝前駆細胞から分化させた成熟肝細胞(分化成熟肝細胞)の機能や形態は、従来の方法により製造された肝細胞の機能や形態と比較して、ヒト成熟肝細胞に、より近いという特徴を有する。また、本発明の方法により製造された肝前駆細胞及び肝前駆細胞から分化させた成熟肝細胞(分化成熟肝細胞)は、インビボにおいても機能するという特徴を有する。よって、本発明の肝前駆細胞及び肝前駆細胞から分化させた成熟肝細胞(分化成熟肝細胞)は、例えば医療分野(例えば再生医療分野)において有用である。
 例えば、本発明の肝前駆細胞を用いることで、肝疾患の治療ができる。例えば、肝前駆細胞または肝前駆細胞から分化させた成熟肝細胞(分化成熟肝細胞)を直接的に肝門脈を通して移植する方法やコラーゲン、ポリウレタン、その他公知の生体親和性材料に包埋した形で移植する方法により、肝疾患を治療できる。このように、本発明は上記工程により製造された肝前駆細胞または肝前駆細胞から分化した成熟肝細胞(分化成熟肝細胞)の用途もまた提供する。より具体的には、肝前駆細胞または肝前駆細胞から分化した成熟肝細胞(分化成熟肝細胞)を含む肝疾患の治療剤を提供する。また、該細胞を用いた肝疾患の治療方法を提供する。具体的疾患としては、肝硬変、劇症肝炎、慢性肝炎、ウイルス性肝炎、アルコール性肝炎、肝線維症、自己免疫性肝炎、脂肪肝、薬剤アレルギー性肝障害、ヘモクロマトーシス、ヘモジデローシス、ウィルソン病、原発性胆汁性肝硬変、原発性硬化性胆管炎、肝膿瘍、慢性活動性肝炎、慢性持続性肝炎胆道閉鎖症、肝癌等が挙げられるが、これらに限定されるものでない。
 また、肝前駆細胞から分化された胆管上皮細胞は、その形態的特徴や上皮細胞のマーカーなどから、確認することができる。
 また、本発明は、本発明の方法により製造された肝前駆細胞から分化させた胆管上皮細胞(以下「分化胆管上皮細胞」と言う)を提供することができる。本発明の方法により製造された分化胆管上皮細胞の機能や形態は、従来の方法により製造された細胞の機能や形態と比較して、ヒト胆管上皮細胞により近いという特徴を有する。また、本発明の方法により製造された分化胆管上皮細胞は、インビボにおいても機能するという特徴を有する。よって、本発明の肝前駆細胞及び肝前駆細胞から分化させた胆管上皮細胞(分化胆管上皮細胞)は、例えば医療分野(例えば再生医療分野)において有用である。
 例えば、本発明の肝前駆細胞を用いることで、本発明の肝前駆細胞又は胆管上皮細胞を胆管疾患、例えば、胆石、胆嚢ポリープ、胆嚢がん、胆管癌、胆管炎、胆管肝炎、胆嚢炎、アラジール症候群(AGS)、胆嚢結石、胆嚢腺筋症、胆嚢隆起性病変、無石胆管痛、原発性硬化性胆管炎(PSC)等の治療に用いることができる。
 また本発明の肝前駆細胞は、例えば肝疾患の治療を目的とした研究分野においても有用である。例えば、人工臓器(人工肝臓など)の研究開発において用いることができる。さらに、本発明のヒト肝細胞は、医薬品や食品等の開発の分野においても有用である。具体的には、被検物質の代謝や肝毒性の評価、肝疾患治療剤、肝炎ウイルス感染阻害剤、またはウイルス性肝炎治療剤のスクリーニングに利用できる。
 本発明の方法により製造された肝前駆細胞または肝前駆細胞から分化させた成熟肝細胞(分化成熟肝細胞)あるいは胆管上皮細胞(分化胆管上皮細胞)を利用することで、被検物質の代謝や肝毒性を評価することが可能である。
 被検物質の代謝や肝毒性の評価には、従来、動物モデル等が用いられていたが、一度に評価できる被検物質の数に制限があり、また動物モデル等で得られた評価を、そのままヒトに適用できないという問題があった。そのため、ヒト肝がん細胞株や初代正常ヒト培養肝細胞を用いる評価方法が採用されつつある。しかしながら、ヒト肝がん細胞株はがん細胞であるため、ヒト肝がん細胞株で得られた評価が、ヒト正常肝細胞に適用できないという可能性が残る。また、初代正常ヒト培養肝細胞は安定供給やコストの面での問題がある。また、初代正常ヒト培養肝細胞を不死化した細胞株は、不死化していない場合と比較して、CYP3A4の活性が低下していることが示されている(International Journal of Molecular Medicine 14:663-668,2004,Akiyama I. et al.)。本発明の方法により製造された肝前駆細胞または肝前駆細胞から分化させた成熟肝細胞(分化成熟肝細胞)あるいは胆管上皮細胞(分化胆管上皮細胞)を利用することで、このような問題を解決しうる。
 本発明の分化成熟肝細胞は、被検物質のスクリーニングに利用できる。本発明における被検物質のスクリーニングは、代謝酵素の解析、代謝経路の解析、代謝産物の解析、代謝活性の解析、細胞毒性の解析、遺伝毒性の解析、発がん性発現の解析、変異原性の解析、肝毒性発現の解析、肝臓に対する作用の解析等を指標にすることができる。
 本発明は、被検物質の代謝を評価する方法を提供する。該方法では、本発明の方法により製造された肝前駆細胞または肝前駆細胞から分化させた成熟肝細胞(分化成熟肝細胞)に被検物質を接触させる。次いで、該細胞に接触させた被検物質の代謝を測定する。
 本発明で用いる被検物質としては、特に制限はない。例えば、生体異物、天然化合物、有機化合物、無機化合物、タンパク質、ペプチドなどの単一化合物、並びに、化合物ライブラリー、遺伝子ライブラリーの発現産物、細胞抽出物、細胞培養上清、発酵微生物産生物、海洋生物抽出物、植物抽出物、医薬品原料、化粧品原料、食品原料、医薬品添加物、化粧品添加物、食品添加物、サプリメント成分等が挙げられるが、これらに限定されない。
 生体異物としては、例えば薬剤や食品の候補化合物、候補物質、既存の薬剤や食品が挙げられるが、これらに限定されるものではなく、生体にとって異物である限り、本発明の生体異物に含まれる。より具体的には、Rifampin、Dexamethasone、Phenobarbital、Ciglirazone、Phenytoin、Efavirenz、Simvastatin、β-Naphthoflavone、Omeprazoie、Clotrimazole、3-Methylcholanthreneなどが例示できる。
 本発明における「接触」は、通常、培地や培養液に被検物質を添加することによって行うが、この方法に限定されない。被検物質がタンパク質等の場合には、該タンパク質を発現するDNAベクターを、該細胞へ導入することにより、「接触」を行うことができる。
 被検物質の代謝は、当業者に周知の方法で測定することが可能である。例えば被検物質の代謝産物が検出された場合に、被検物質が代謝されたと判定される。また、被検物質の接触により、CYP(チトクロムp450)、MDR(MultiDrug Resistance、ABCB1)、MPR(Multidrug Resistance-associated Protein、ABCC2)等の酵素遺伝子の発現が誘導された場合や、これら酵素の活性が上昇した場合に、被検物質が代謝されたと判定される。
 代謝酵素の解析は、例えば、被検物質を本発明の分化成熟肝細胞へ接触させた後に被検物質の構造の変化を解析することにより、被検物質の代謝に関与する酵素の解析が可能である。具体的には、被検物質を本発明の分化成熟肝細胞への接触させた後に被検物質の構造の変化を各種酵素の阻害・拮抗物質あるいは各種酵素の中和抗体により解析することによる被検物質代謝に関与する酵素の同定、被検物質の細胞への接触による被検物質の構造の変化を解析することによる酵素反応機構の解析、基質特異性の解析などをあげることができる。
 代謝経路の解析および代謝産物の解析は、例えば、被検物質を本発明の分化成熟肝細胞への接触させた後に被検物質の構造の変化を解析することにより被検物質の代謝経路の解析および代謝産物の解析が可能である。被検物質の代謝産物を検出するための方法は、公知方法を用いることができる。例えば、被検物質と接触させた分化成熟肝細胞の培地等を、液体クロマトグラフィーや質量分析などによって分析することによって、代謝産物を検出することができる。
 代謝活性の解析は、例えば、被検物質を本発明の分化成熟肝細胞へ接触させ、被検物質代謝酵素活性の上昇、酵素量の増加または酵素をコードする遺伝子の転写量の上昇などを検出することにより被検物質代謝酵素の活性の促進の解析が可能である。具体的には、チトクロームP450酵素活性の上昇、タンパク量の増加、mRNAの増加を検出することで解析が可能である。検出方法としては、各種P450に対応する酵素活性の測定、各種P450蛋白質に対応するウエスタンブロティング、各種P450 mRNAに対応するノザンハイブリダイゼーションあるいはRT-PCR法など公知の手法を使用することができる。
 また、本発明は、被検物質の肝毒性を評価する方法を提供する。該方法では、本発明の方法により製造された肝前駆細胞及び肝前駆細胞から分化させた成熟肝細胞(分化成熟肝細胞)に被検物質を接触させる。次いで、被検物質を接触させた該細胞の障害の程度を測定する。障害の程度は、例えば該細胞の生存率やGOT(glutamate oxaloacetate transaminase)やGPT(glutamic pyruvic transaminase)などの肝障害マーカーを指標に測定できる。
 肝毒性発現の解析は、例えば、被検物質を本発明の分化成熟肝細胞に接触させ、該細胞毒性の発現を観察することにより、あるいは、被検物質を該細胞に接触させた後に、該細胞により変化した被検物質を他の肝細胞、肝切片、摘出肝または、実験動物へ投与しそれによる細胞、組織、生体の変化を観察することにより被検物質代謝による肝毒性を解析することが可能である。
 例えば、肝前駆細胞または肝前駆細胞から分化させた成熟肝細胞(分化成熟肝細胞)の培養液に被検物質を添加することにより、該細胞の生存率が低下する場合、該被検物質は肝毒性を有すると判定され、生存率に有意な変化がない場合、該被検物質は肝毒性を有さないと判定される。また、例えば、該細胞の培養液に被検物質を添加後、培養液中のGOTやGPTが上昇する場合、該被検物質は肝毒性を有すると判定され、GOTやGPTに有意な変化がない場合、該被検物質は肝毒性を有さないと判定される。
 なお、すでに肝毒性の有無が判明している物質を対照として用いることで、より正確に、被検物質が肝毒性を有するか否かを評価することができる。
 細胞毒性の解析は、例えば、被検物質を本発明の分化成熟肝細胞へ接触させ、被検物質の代謝物による細胞毒性の解析が可能である。具体的には、被検物質の接触による該細胞の形態の変化、生細胞数の変動、細胞内酵素の漏出、細胞表層構造の変化あるいは細胞内酵素の変動などを観察することにより解析される。
 生遺伝毒性の解析は、例えば、被検物質を本発明の分化成熟肝細胞に接触させ、該細胞を染色体異常試験、小核試験などに付すことより被検物質代謝による遺伝毒性の解析が可能である。また、被検物質を本発明の分化成熟肝細胞に接触させた後に、該細胞により変化した被検物質を適切な評価系で評価することにより染色体異常試験、小核試験、復帰突然変異試験などに付すことにより解析が可能である。
 発がん性発現の解析は、例えば、被検物質を本発明の分化成熟肝細胞に接触させ、該細胞を染色体異常試験、DNAの修飾などに付すことにより被検物質代謝による発ガン性の解析が可能である。また、被検物質を本発明の分化成熟肝細胞に接触させた後に、該細胞により変化した被検物質を適切な化学物質による発ガン評価系で評価することにより解析が可能である。
 変異原性の解析は、例えば、被検物質を本発明の分化成熟肝細胞に接触させ、該細胞を染色体異常試験、小核試験などに付すことにより被検物質代謝による変異原性の解析が可能である。また、被検物質を本発明の分化成熟肝細胞に接触させた後に、該細胞により変化した被検物質を適切な評価系で評価することにより染色体異常試験、小核試験、復帰突然変異試験などに付すことにより解析が可能である。
 また、本発明は、肝疾患または胆管疾患の治療剤のスクリーニング方法を提供することが可能である。該方法では、本発明の方法により製造された肝前駆細胞または肝前駆細胞から分化させた成熟肝細胞(分化成熟肝細胞)に被検物質を接触させる。次いで、被検物質を接触させた該細胞の機能を測定する。次いで、被検物質を接触させた該細胞の機能を亢進させる物質を選択する。
 肝臓に対する作用の解析は、例えば、被検物質を本発明の分化成熟肝細胞への接触させた後に、該細胞の変化の発現を観察することにより、あるいは、被検物質を該細胞に接触させた後に、細胞により変化した被検物質を他の肝藏細胞、肝藏切片、摘出肝藏または、実験動物へ投与しそれによる細胞、組織、生体の変化を観察することにより肝藏への作用の発現を解析することが可能である。被検物質を接触させた分化成熟肝細胞において、細胞機能の亢進が見られた場合に、被検物質の肝臓に対する治療効果が期待される。
 本発明における肝前駆細胞または肝前駆細胞から分化させた成熟肝細胞(分化成熟肝細胞)の機能は、例えば、グルコース産生能、アンモニア代謝能、アルブミン生産能、尿素合成能、CYP等の酵素の活性を指標に測定できる。
 グルコース生産能は、例えば、グルコースオキシダーゼ法によって培養上清中のグルコースレベルを分析することで確認できる。アンモニア代謝能は、例えば、改変インドフェノール法(Horn DB&Squire CR,Chim.Acta.14:185-194.1966)によって、培養培地中のアンモニアレベルを分析することで確認できる。アルブミン生産能は、例えば、血清アルブミン濃度を測定する方法により、培養液中のアルブミン濃度を分析することで確認できる。また、尿素合成能は、例えば、Colorimetric assay(シグマ社)を使用して確認できる。本発明のCYPは特に制限はないが、例えばCYP1A1、CYP2C8、CYP2C9、CYP3A4などが挙げられる。CYPの活性測定方法は、当業者に周知の方法を使用することができる。
 本発明の方法により製造された肝前駆細胞及び肝前駆細胞から分化させた成熟肝細胞(分化成熟肝細胞)の機能や形態は、ヒト成熟肝細胞により近いため、肝炎ウイルスに感染しうる。
 本発明は、肝炎ウイルス感染阻害剤のスクリーニング方法を提供する。該方法では、本発明の方法により製造された肝前駆細胞または肝前駆細胞から分化させた成熟肝細胞(分化成熟肝細胞)に、被検物質の存在下において肝炎ウイルスを接触させる。次いで、肝炎ウイルスを接触させた該細胞における肝炎ウイルスの感染の有無を検査する。次いで、肝炎ウイルスの感染を阻害する物質を選択する。細胞への肝炎ウイルスの接触は、常法によって実施することができる。
 肝炎ウイルスとしては、特に制限はないが、C型肝炎ウイルス、A型肝炎ウイルス、B型肝炎ウイルスが含まれる。これら肝炎ウイルスは、株化されたものであってもよいし、肝炎ウイルス感染者から直接単離されたものでもよい。また、精製された状態であってもよいし、クルードな状態(例えば感染者から得られた血清の状態)であってもよい。
 肝炎ウイルスの感染の有無は、例えば細胞中の肝炎ウイルス量を指標に検査することができる。細胞中の肝炎ウイルス量は、例えば細胞中の肝炎ウイルスのRNA量を指標に判定できる。肝炎ウイルスのRNA量は、常法に従って測定することができる。また、本発明者らが確立した方法によって測定してもよい(T.Takeuchi et al. Real-Time Detection System for Quantification of Hepatitis C Virus Genome. Gastroenterology 1999, 116:636-642)。
 さらに、本発明は、ウイルス性肝炎治療剤のスクリーニング方法を提供することができる。該方法では、本発明の方法により製造された肝前駆細胞または肝前駆細胞から分化させた成熟肝細胞(分化成熟肝細胞)に、肝炎ウイルスを接触させる。次いで、肝炎ウイルスが感染した該細胞に、被検物質を接触させる。次いで、被検物質を接触させた細胞における肝炎ウイルスの増殖を測定する。次いで、肝炎ウイルスの増殖を阻害する物質を選択する。
 肝炎ウイルスの増殖を阻害する物質には、1)被検物質を接触させていない場合と比較して、肝炎ウイルスの増殖を阻害する物質、2)肝炎ウイルスの増殖を完全に阻害する物質、3)肝炎ウイルスを消失させる物質の全てが含まれる。肝炎ウイルスの増殖や消失は、細胞中の肝炎ウイルス量を測定することで検査することができる。
 本発明において、被検物質は、通常、分化成熟肝細胞の培地や培養液に被検物質を添加することによって、該細胞に接触させることができる。その他、分化成熟肝細胞内で被検物質をコードする遺伝子を発現させることによって、該細胞に接触させることができる。あるいは、被検物質を産生する細胞と分化成熟肝細胞を共培養することによっても、被検物質を該細胞に接触させることができる。
 本発明の分化成熟肝細胞の機能や形態は、成熟肝細胞により近いため、肝炎ウイルスに感染しうる。よって、本発明は肝炎ウイルスの培養方法を提供することができる。本発明の肝炎ウイルスの培養方法において、ウイルスの種類は特に限定されないが、例えば、A型肝炎ウイルス、B型肝炎ウイルス、C型肝炎ウイルス、D型肝炎ウイルス及びE型肝炎ウイルスが挙げられる。本発明の肝炎ウイルスの培養方法は、既に単離されたウイルスの継代や増幅に有用である。また、本発明の肝炎ウイルスの培養方法は、環境や患者に由来するサンプルから肝炎ウイルスを分離することができる。
 本発明のヒト肝臓モデル動物は、本発明の分化成熟肝細胞を非ヒト哺乳動物に移植することによって得られる。非ヒト哺乳動物に対する移植のための、分化成熟肝細胞の投与経路としては、肝臓表面への直接投与、肝臓内投与、門脈内投与、脾臓内投与、経口投与、皮下投与、筋肉内投与、静脈内投与、動脈内投与、舌下投与、経直腸投与、経腟投与、経皮投与等が挙げられるが、本発明の分化成熟肝細胞の生着率の観点から、好ましくは肝臓表面への直接投与、肝臓内投与、脾臓内投与、動脈内投与及び静脈内投与であり、より好ましくは肝臓内投与、脾臓内投与、肝動脈内投与である。
 本発明のヒト肝臓モデル動物における、分化成熟肝細胞の投与量は、非ヒト哺乳動物及び投与経路によって異なりうるが、通常、1x10~1x1010個/個体、好ましくは1x10~1x10個/個体、さらに好ましくは1x10~1x10個/個体である。なお、本用量を1回量として、複数回投与してもよく、本用量を複数回に分けて投与しても良い。
 本発明における非ヒト哺乳動物としては、哺乳動物であれば特に限定されないが、例えば、ウサギ、イヌ、ネコ、モルモット、ハムスター、マウス、ラット、ヒツジ、ヤギ、ブタ、ミニブタ、ウマ、ウシ及びサル等が挙げられるが、マウス、ラット、ミニブタ、サルがさらに好ましい。
 また、本発明は、ヒト成熟肝細胞を血清、A-83-01及びCHIR99021を含有する培地で培養することにより調製されたヒト肝前駆細胞、又は該ヒト肝前駆細胞から誘導された成熟肝細胞(分化成熟肝細胞)を含む、キットを提供することができる。このようなキットは、ヒト肝前駆細胞又は分化成熟肝細胞を用いて、被検物質の代謝及び/又は肝毒性を評価するために用いられる。別の実施形態においては、このようなキットは、被検物質のスクリーニング、具体的には、肝疾患または胆管疾患の治療剤のスクリーニング、肝炎ウイルス感染阻害剤のスクリーニング、ウイルス性肝炎治療剤のスクリーニング等に用いることも可能である。それぞれの具体的な評価方法、スクリーニング方法は、既述に順じる。
 以下に、実施例及び試験例を挙げて本発明を詳細に説明するが、本発明はこれらの実施例等によって限定されるものではない。以下において、用いた細胞に関する年齢・月齢情報は、それぞれ、「M」(Month)、「Y」(Year)の略称により表記する。
 (実施例1)
 ヒト凍結肝細胞(Lot.ID:HC3-14、45Y、Male、Caucasian、Xenotech社製)を、解凍用培地(William’s E培地(Life Technologies社製、32551-020)、10% FBS(Life Technologies社製)、10-4M insulin(Sigma社製)、1x antibiotic/antimycotic solution(Life Technologies社製))に懸濁し、500rpm(約40xg)、4℃、2minの低速遠心にてヒト肝細胞回収した。回収した細胞を播種培地(L-15培地(Life Technologies社製、11415-064)、1x antibiotic/antimycotic solution (Life Technologies社製))に再度懸濁し、細胞数をカウントした。コラーゲンコートプレート(IWAKI社製)に、1x10 cells/cmとなるように播種し、COインキュベーター(37℃、5%CO)内に入れ、細胞が接着した3-5時間後に播種培地から、基礎培地(以下、「SHM培地」(DMEM/F12培地(Life Technologies社製、11320033)、5mM HEPES(Sigma社製、St. Louis、 MO)、30mg/L L-proline(Sigma社製)、0.05% BSA(Sigma社製)、10ng/mL epidermal growth factor(Sigma社製)、insulin-transferrin-serine(ITS)-X(Life Technologies社製)、10-7M dexamethasone(Dex)(Sigma社製)、10mM nicotinamide(Sigma社製)、100mM ascorbic acid-2 phosphate(Wako社製)、1x antibiotic/antimycotic solution(Life Technologies社製))に、10% FBS(Life Technologies社製)、0.5μM A-83-01(WAKO社製)及び3μM CHIR99021(Axon Medchem社製)を加えたAC-F培地、基礎培地に10% FBS(Life Technologies社製)、0.5μM A-83-01(WAKO社製)、3μM CHIR99021(Axon Medchem社製)及び10μM Y-27632(WAKO社製)を加えたYAC-F培地、及び0.5 μM A-83-01(WAKO社製)、3μM CHIR99021(Axon Medchem社製)及び10μM Y-27632(WAKO社製)を加えたYAC培地に置き換えた。その後は2-3日に一回の頻度で各試験用培地を用いて培地交換を行い、COインキュベーター(37℃、5%CO)内で培養を行った。
 17日後に位相差顕微鏡にて、培養細胞の形態の観察を行ったところ、AC-F培地及びYAC-F培地で培養した細胞では、小型の細胞が数多くみられ、これらはNuclei/Cytoplasm(N/C)比が高く、白い核が認められたため、肝前駆細胞であることが確認できた(図1A及び図1B)。これに対して、YAC培地で培養した細胞は、12日後においてN/C比が低く、核が黒く、2核の細胞も観察された(図1C)ことから、これらの細胞は肝前駆細胞ではないことが確認できた。また、AC-F培地及びYAC-F培地で培養した細胞は、YAC培地で培養した細胞に比べ、増殖速度が速かった。
 以上より、成熟肝細胞から肝前駆細胞を得るには、培地中に血清、A-83-01及びCHIR99021を含有することが必要であることが明らかとなった。
 (実施例2)
 実施例1と同様にヒト凍結肝細胞(10M、Female、Hispanic、Celsis社製)を用いて、AC-F培地で培養を行ったところ、6日後(D6)、9日後(D9)及び12日後(D12)において、肝前駆細胞が観察された(図2)。図2において、矢印は肝前駆細胞から、一部自発的に分化し成熟化した細胞を示す。
 (実施例3)
 実施例1と同様にヒト凍結肝細胞(2Y、Male、Caucasian、Biopredic社製)を用いて、AC-F培地で培養を行ったところ、7日、及び14日後において、肝前駆細胞が観察された。これに対して、試験培地を10% FBS(Life Technologies社製)のみを含有するFBS培地として、培養を行った場合には、肝前駆細胞は観察されなかった(図3)。
 同様にヒト凍結肝細胞(8M、Male、Caucasian、BioreclamationIVT社製)を用いて、AC-F培地で培養を行ったところ、7日、及び14日後において、肝前駆細胞が観察され、試験培地をFBS培地として培養を行った場合には、肝前駆細胞は観察されなかった(図4)。
 (実施例4)
 uPA遺伝子が肝細胞特異的に発現し、先天的に肝臓が障害を受け続けることで慢性肝障害を発症するcDNA-uPA/SCIDマウスに、本発明の肝前駆細胞の移植を行い、cDNA-uPA/SCIDマウスの肝臓に、本発明の肝前駆細胞由来の肝細胞が生着することを確認する。
 実施例1と同様にヒト凍結肝細胞(10M、Female、Hispanic、Celsis社製)を用いて、AC-F培地で4日間培養を行った細胞について、PBS(-)で2回洗浄した後に、TrypLE Express(Thermo社製、 SKU:12604013)にて剥離回収して、細胞数の測定を行った。細胞懸濁液を遠心(200xg、5分)した後、5x10cellsになるように、DMEM10(10%FBS-DMEM)に懸濁した。
 cDNA-uPA/SCIDマウス(Tateno et. al.、 2015、2-4週齢)をイソフルラン麻酔下にて開腹し、脾臓を露出し、0.5x10~2x10 cells/mouseで移植した後、開腹部を縫合した。1週間に1回、20~40uLの血液を眼窩から採取して、血清を分離して、血清中のhuman特異的なアルブミンをALB Human ALB ELISA kit(Bethyl社製、商品コード:E88-129)で測定する。細胞移植後8週間に剖検を行い、全血および肝臓・脾臓の組織サンプル(パラフィンおよび凍結ブロック)を作製する。
 (実施例5)
 肝細胞特異的にtimidine kinaseを発現するため、ガンシクロビル投与によって肝細胞特異的に細胞死を誘導し、肝障害を引き起こすことができる、TK-NOG mouseに本発明の肝前駆細胞の移植を行い、TK-NOG mouseの肝臓に、本発明の肝前駆細胞由来の肝細胞が生着することを確認する。
 実施例4と同様にヒト凍結肝細胞(10M、Female、Hispanic、Celsis社製)を用いて、細胞懸濁液を調製した。TK-NOG mouse(Hasegawa et. al.、 2011、7-8週齢、インビボサイエンス社製)に、細胞移植7日前および5日前に、ガンシクロビル(GCV、Sigma社製、G2536-100MG)10mgを測り取り、16.7mLのPBS(-)に溶かし、0.22umフィルターにてろ過滅菌して、10uL/g体重(6mg/kg)を腹腔内投与した。TK-NOG mouseをイソフルラン麻酔下にて開腹し、脾臓を露出し、0.5x10~2x10 cells/mouseで投与した後、開腹部を縫合した。1週間に1回、20~40uLの血液を尾静脈から採取して、血清を分離して、血清中のhuman特異的なアルブミンをALB Human ALB ELISA kit(Bethyl社製、商品コード:E88-129)で測定する。細胞投与後8週間に剖検を行い、全血および肝臓・脾臓の組織サンプル(パラフィンおよび凍結ブロック)を作製する。
 (実施例6)
 肝細胞へ分化されたことを確認する遺伝子発現の試験
 実施例1と同様にヒト凍結肝細胞を用いて、AC-F培地で培養を行い、肝前駆細胞を調製した後に、oncostatin M(OSM)及びデキサメサゾン(Dex)を含む培地で6日間培養を行い、その後マトリゲルで培養を行い、肝細胞へ分化させる。分化させた肝細胞について、取扱説明書に従って、SurePrint G3 Rat GE 8x60K Kit(G4853A)及びSurePrint G3 Mouse GE 8x60K Ver 2.0 Kit(G4852B)を用い、one-color microarray-based gene expression analysis system(Agilent Technologies社製)によりデータを取得する。強度数値は2を底として対数変換して、Partek Genomics Suite 6.6(Partek Inc製、 Chesterfield、MO、USA)にデータを読み込む。遺伝子発現の解析にはone-way ANOVAを用い、発現に差のある遺伝子を同定する。それぞれの解析において、P値及び変化量の比を算出する。Partek Genomics Suite 6.6を用い、全データセット又はソート済みのデータセットについて、選択したプローブセットを用いたEuclidean distances of average linkage clusteringの手法によって、Unsupervised clustering及びヒートマップ作成を実施し、肝特異的遺伝子の発現の確認を行う。
 (実施例7)胆管上皮細胞へ分化したことを確認する試験
 セクレチンアッセイ
 実施例1と同様にヒト凍結肝細胞を用いて、AC-F培地で培養を行い、肝前駆細胞を調製した後に、mTeSR1及びYACを含む培地で、MEF上で、6日間培養を行い、その後2%マトリゲルを添加して2日間培養を行い、胆管上皮細胞へ分化させる。分化させた胆管上皮細胞について、ラットセクレチンを2x10-7 M(Wako社製)にて添加して30分培養したのち、位相差顕微鏡を用いて、胆管様構造における管腔領域の拡大を観察して、胆管上皮細胞への分化の確認を行う。
 (実施例8)
 フルオレセインジアセテートアッセイ
 実施例7と同様に、肝前駆細胞から胆管上皮細胞へ分化させ、得られた胆管上皮細胞にフルオレセインジアセテートを添加して、15分培養したのち、新しい培地に交換する。さらに30分間培養を継続することで分解されたフルオレセインの管腔領域への輸送を促す。そののち、培地をHBSS(+)に置換し、蛍光顕微鏡にてフルオレセインの分布を観察して、胆管上皮細胞への分化の確認を行う。
 (実施例9)
 肝細胞へ分化させた際の肝特異的遺伝子の発現の確認試験
 実施例6と同様に、肝前駆細胞から肝細胞へ分化させ、得られた肝細胞についてmiRNeasy Mini Kit (QIAGEN社製、 Venlo、 The Netherlands)を用い、トータルRNAを抽出する。取扱説明書に従って、High-Capacity cDNA Reverse Transcription Kit (Life Technologies社製)を用いて逆転写を行う。作製したcDNAを鋳型に、Platinum SYBR Green qPCR SuperMix UDG (Invitrogen社製)を用いてPCRを行い、肝特異的遺伝子の発現の確認を行う。
 (実施例10)
 実施例1と同様にヒト凍結肝細胞(10M、Female、Hispanic、Celsis社製)を用いて、AC-F培地で11日間培養を行った細胞について、PBS(-)で2回洗浄した後に、TrypLE Express(Thermo社製、 SKU:12604013)にて剥離回収して、細胞数の測定を行った。細胞懸濁液を遠心(200xg、5分)した後、5x10cellsになるように、DMEM10(10%FBS-DMEM)に懸濁した。
 cDNA-uPA/SCIDマウス(Tateno et. al.、 2015、2-4週齢、n=3)をイソフルラン麻酔下にて開腹し、脾臓を露出し、1x10 cells/mouseで移植した後、開腹部を縫合した。1週間に1回、20~40uLの血液を眼窩から採取して、血中のhuman特異的なアルブミンを Human ALB ELISA kit(Bethyl社製、商品コード:E88-129)で測定した。図5に示すようにマウス血中human ALBが存在することが確認でき、肝前駆細胞由来の肝細胞が生着することが確認された。なお、細胞投与後70日における血中human ALBは、それぞれ17.2mg/mL、12.1mg/mL及び12.0mg/mLであった。
 また、細胞投与後70日のマウスの肝臓におけるHuman CYP2C9の発現の確認を行ったところ、それぞれ94.6~96.1%(Right medial lobe)、91.3~97.2%(Left medial lobe)及び93.1~96.0%(Total)発現していることが確認された(それぞれ図6及び7)。
 (実施例11)
 実施例10と同様にヒト凍結肝細胞(10M、Female、Hispanic、Celsis社製)を用いて、AC-F培地で11日間培養を行った細胞について、PBS(-)で2回洗浄した後に、TrypLE Express(Thermo社製、 SKU:12604013)にて剥離回収して、細胞数の測定を行った。細胞懸濁液を遠心(200xg、5分)した後、5x10cellsになるように、DMEM10(10%FBS-DMEM)に懸濁した。TK-NOG mouse(Hasegawa et. al.、 2011、7-8週齢、インビボサイエンス社製、n=2)にガンシクロビル(GCV)を投与し、投与1週間後にALTを測定して400-1600 U/dLの値を示した個体を被移植動物として使用した。なおGCV の調製に当たっては500 mg(田辺三菱製薬、点滴静注用デノシン)を10 mLの注射用蒸留水(大塚)で溶解(50 mg/mL)し、0.2mLずつ分注したものをオリジナルストックとし、移植時にこれをPBS(-)で5倍希釈したものを用事調製し、マウス体重10gあたり0.1mLを腹腔内投与して、肝細胞特異的に細胞死を誘導した。TK-NOG mouseをイソフルラン麻酔下にて開腹し、脾臓を露出し、1x10 cells/mouseで投与した後、開腹部を縫合した。1週間に1回、20~40uLの血液を尾静脈から採取して、血清を分離して、血清中のhuman特異的なアルブミンをALB Human ALB ELISA kit(Bethyl社製、商品コード:E88-129)で測定した。図8に示すようにマウス血清中human ALBが存在することが確認でき、肝前駆細胞由来の肝細胞が生着することが確認された。なお、細胞投与後60日における血清中human ALBは、それぞれの個体で8.1mg/mL及び2.2mg/mLであった。
 また、細胞投与後60日におけるマウスの肝臓におけるHuman CYP2C9の発現の確認を行ったところ、それぞれの個体で57.5%及び30.6%発現していることが確認された(図9及び10)。
 (実施例12)
 実施例1同様にヒト凍結肝細胞1(10M、Female、Hispanic、Celsis社製)及びヒト凍結肝細胞2(8M、Male、Caucasian、BioreclamationIVT社製)を用いて、AC-F培地で培養を行い、肝前駆細胞(それぞれ「FCL」、「DUX」と言う)を調製した後に、oncostatin M(OSM、5ng/ml)及びデキサメサゾン(Dex、10-6M)を含む培地で6日間培養を行い、その後マトリゲルで2日間培養を行い、肝細胞へ分化させた。肝前駆細胞及び分化させた肝細胞について、メタノール(MeOH、1%濃度)及びオメプラゾール(OMP、50 μM)を用いて、代謝酵素CYP1A2の活性の測定を行った。また、蒸留水及びフェノバルビタール(1 mM)を用いて、代謝酵素CYP3A4の活性の測定を行った。代謝酵素の活性は、プロメガ社のLuciferin1A2キット及び、Luciferin-IPAキットによりそれぞれ行った。肝前駆細胞を肝細胞に分化させることにより、CYP1A2及びCYP3A4が誘導されることが明らかとなった(図11~14)。
 (実施例13)
 実施例1と同様にヒト凍結肝細胞(10M、Female、Hispanic、Celsis社製)を用いて、AC-F培地で培養を行い、肝前駆細胞を調製した後に、oncostatin M(OSM、5ng/ml)及びデキサメサゾン(Dex、10-6M)を含む培地で6日間培養を行い、その後マトリゲルで2日間培養を行い、肝細胞へ分化させた。肝前駆細胞及び分化させた肝細胞について、PCRを用いて、各代謝酵素等の発現量を測定した。肝前駆細胞を肝細胞に分化させることにより、ALB、TAT、TDO2、TTR、G6PC、NTCP、CYP1A2、CYP2B6、CYP2C9、CYP2C19、CYP2D6、CYP3A4及びCYP7A1が誘導されることが明らかとなった(図15~27)。
 (実施例14)
 実施例1と同様にヒト凍結肝細胞(10M、Female、Hispanic、Celsis社製)を用いて、肝前駆細胞を調製した後に、cDNA-uPA/SCIDマウス(2-4M、Male、フェニクスバイオ社製)をイソフルラン麻酔下にて開腹し、脾臓を露出し、0.5x10~2x10 cells/mouseで移植した後、開腹部を縫合した。移植後73日目に、肝臓を摘出して肝細胞をかん流分離し、4x10 cells/wellで24穴コラーゲンプレート(IWAKI社製)上で2%FBS-SHM培地を用いて4日間培養を行った。図28及び図29はそれぞれ、移植前の肝前駆細胞及び移植後取り出し、4日間培養を行った細胞の写真であり、形態学的な観察から、移植された細胞がマウス肝臓内で完全に肝細胞へと成熟している様子がうかがえた。
 マウスから取り出した肝細胞について、メタノール(MeOH、1%濃度)及びオメプラゾール(OMP、50μM)を用いて、代謝酵素CYP1A2の活性の測定を行った。また、リファンピシン(RF、10μM)、メタノール(MeOH、1%濃度)、フェノバルビタール(1 mM)及び蒸留水を用いて、代謝酵素CYP3A4の活性の測定を行った。代謝酵素の活性は、プロメガ社のLuciferin1A2キット及び、Luciferin-IPAキットによりそれぞれ行った。動物の肝に移植され、培養された肝前駆細胞についても、オメプラゾールによりCYP1A2が、リファンピシン及びフェノバルビタールによりCYP3A4が誘導されることが明らかとなった(図30及び図31)
 (実施例15)
 実施例1と同様にヒト凍結肝細胞(8M、Male、Caucasian、BioreclamationIVT社製)を用いて、肝前駆細胞を調製し、実施例14と同様に移植及び培養を行った。図32及び図33はそれぞれ、移植前の肝前駆細胞及び移植後取り出し、4日間培養を行った細胞の写真である。
 マウスから取り出した細胞について、実施例14と同様に、代謝酵素の活性測定を行ったところ、実施例14と同様、オメプラゾールによりCYP1A2が、リファンピシン及びフェノバルビタールによりCYP3A4が誘導されることが明らかとなった(図34及び図35)
 (実施例16)
 実施例1と同様にヒト凍結肝細胞(1Y、Male)を用いて、肝前駆細胞を調製し、実施例14と同様に移植及び培養を行った。図36及び37はそれぞれ、移植前の肝前駆細胞及び移植後取り出し、4日間培養を行った細胞の写真である。
 マウスから取り出した細胞について、実施例14と同様に、代謝酵素の活性測定を行ったところ、実施例14と同様、オメプラゾールによりCYP1A2が、リファンピシン及びフェノバルビタールによりCYP3A4が誘導されることが明らかとなった(図38及び図39)

Claims (9)

  1.  ヒト成熟肝細胞を血清、A-83-01及びCHIR99021を含有する培地で培養することを含む、ヒト肝前駆細胞の調製方法。
  2.  前記成熟肝細胞が乳幼児由来である、請求項1に記載のヒト肝前駆細胞の調製方法。
  3.  前記血清がウシ胎児血清である、請求項1又は2に記載のヒト肝前駆細胞の調製方法。
  4.  ヒト成熟肝細胞を血清、A-83-01及びCHIR99021を含有する培地で培養することにより調製された、ヒト肝前駆細胞。
  5.  請求項4に記載されたヒト肝前駆細胞から誘導された成熟肝細胞。
  6.  請求項5に記載された成熟肝細胞を用いることを含む、被検物質のスクリーニング方法。
  7.  請求項5に記載された成熟肝細胞を用いることを含む、肝炎ウイルスの培養方法。
  8.  請求項5に記載された成熟肝細胞が非ヒト哺乳動物に移植された、ヒト肝臓モデル動物。
  9.  ヒト肝前駆細胞又は成熟肝細胞を用いて、被検物質の代謝及び/又は肝毒性を評価するためのキットであって、
     ヒト成熟肝細胞を血清、A-83-01及びCHIR99021を含有する培地で培養することにより調製されたヒト肝前駆細胞、又は該ヒト肝前駆細胞から誘導された成熟肝細胞を含む、キット。
PCT/JP2017/038907 2016-10-28 2017-10-27 ヒト肝前駆細胞の調製方法 WO2018079714A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/301,166 US20190302100A1 (en) 2016-10-28 2017-10-27 Method for preparing liver progenitor cells
EP17866130.2A EP3533865A4 (en) 2016-10-28 2017-10-27 METHOD FOR PRODUCING HUMAN HEPATOCYTE PROCESSING CELLS
JP2018547784A JP7134416B2 (ja) 2016-10-28 2017-10-27 ヒト肝前駆細胞の調製方法
CN201780066190.9A CN109890956A (zh) 2016-10-28 2017-10-27 人肝前体细胞的制备方法
JP2022117083A JP7481721B2 (ja) 2016-10-28 2022-07-22 ヒト肝前駆細胞の調製方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016212285 2016-10-28
JP2016-212285 2016-10-28

Publications (1)

Publication Number Publication Date
WO2018079714A1 true WO2018079714A1 (ja) 2018-05-03

Family

ID=62025202

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/038907 WO2018079714A1 (ja) 2016-10-28 2017-10-27 ヒト肝前駆細胞の調製方法

Country Status (5)

Country Link
US (1) US20190302100A1 (ja)
EP (1) EP3533865A4 (ja)
JP (2) JP7134416B2 (ja)
CN (1) CN109890956A (ja)
WO (1) WO2018079714A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110982776A (zh) * 2018-09-30 2020-04-10 中国科学院上海生命科学研究院 肝细胞的体外扩增培养方法及应用
WO2020080550A1 (ja) * 2018-10-15 2020-04-23 Cynity株式会社 低分子化合物による内胚葉組織又は器官由来細胞からの幹/前駆細胞の作製方法
US20200147143A1 (en) * 2017-05-29 2020-05-14 Industry-University Cooperation Foundation Hanyang University Human adult hepatocyte reprogramming medium composition
JP2020162551A (ja) * 2019-03-29 2020-10-08 国立大学法人 長崎大学 肝前駆細胞を含む細胞集団を製造する方法
WO2020245747A1 (en) * 2019-06-04 2020-12-10 University Health Network Methods of making and using liver cells

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110358683B (zh) * 2019-07-25 2022-04-26 中国科学院电工研究所 一种生物反应器自动控制装置
KR102375161B1 (ko) * 2020-03-24 2022-03-16 한국원자력의학원 섬유화 질환 치료용 복합 약학 조성물
CN112522178B (zh) * 2020-11-27 2023-05-16 上海市东方医院(同济大学附属东方医院) 一种在体外长期培养和扩增成熟肝细胞的方法
CA3235384A1 (en) * 2021-10-18 2023-04-27 Takahiro Ochiya Compositions and methods of use thereof for treating liver fibrosis

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006254896A (ja) * 2005-01-07 2006-09-28 Effector Cell Institute Inc ヒト肝細胞様細胞およびその利用
WO2007058308A1 (ja) 2005-11-17 2007-05-24 Nippon Zenyaku Kogyo Co., Ltd. 細胞保存用水溶液
WO2013018851A1 (ja) * 2011-08-02 2013-02-07 独立行政法人国立がん研究センター 誘導肝幹細胞から肝分化誘導する方法及び誘導肝前駆細胞
JP2013507932A (ja) * 2009-10-16 2013-03-07 ザ スクリプス リサーチ インスティチュート 多能性細胞の誘導法
JP2014501108A (ja) * 2010-12-22 2014-01-20 フェイト セラピューティクス,インコーポレイテッド 単細胞選別のための細胞培養プラットホームおよびiPSCの再プログラミングの増強
WO2017119512A1 (ja) * 2016-01-08 2017-07-13 国立研究開発法人国立がん研究センター 低分子化合物による成熟肝細胞からの肝幹/前駆細胞の作製方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101275121B (zh) * 2007-03-26 2011-05-11 芦银雪 体外培养扩增的人肝脏祖先细胞及其制备方法
WO2009117439A2 (en) * 2008-03-17 2009-09-24 The Scripps Research Institute Combined chemical and genetic approaches for generation of induced pluripotent stem cells
WO2010077955A1 (en) * 2008-12-17 2010-07-08 The Scripps Research Institute Generation and maintenance of stem cells
US20120190059A1 (en) * 2009-07-23 2012-07-26 Beijing Huayuanbochuang Technology Co., Ltd. Methods for obtaining hepatocytes, hepatic endoderm cells and hepatic progenitor cells by induced differentiation
US9512406B2 (en) * 2013-12-20 2016-12-06 The J. David Gladstone Institute, a testamentary trust established under the Will of J. David Gladstone Generating hepatocytes
CN105154386B (zh) * 2014-05-30 2018-04-24 中国人民解放军第二军医大学东方肝胆外科医院 人肝细胞长期维持和增殖传代培养的专用培养基和培养方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006254896A (ja) * 2005-01-07 2006-09-28 Effector Cell Institute Inc ヒト肝細胞様細胞およびその利用
WO2007058308A1 (ja) 2005-11-17 2007-05-24 Nippon Zenyaku Kogyo Co., Ltd. 細胞保存用水溶液
JP2013507932A (ja) * 2009-10-16 2013-03-07 ザ スクリプス リサーチ インスティチュート 多能性細胞の誘導法
JP2014501108A (ja) * 2010-12-22 2014-01-20 フェイト セラピューティクス,インコーポレイテッド 単細胞選別のための細胞培養プラットホームおよびiPSCの再プログラミングの増強
WO2013018851A1 (ja) * 2011-08-02 2013-02-07 独立行政法人国立がん研究センター 誘導肝幹細胞から肝分化誘導する方法及び誘導肝前駆細胞
WO2017119512A1 (ja) * 2016-01-08 2017-07-13 国立研究開発法人国立がん研究センター 低分子化合物による成熟肝細胞からの肝幹/前駆細胞の作製方法

Non-Patent Citations (17)

* Cited by examiner, † Cited by third party
Title
AKIYAMA I., INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE, vol. 14, 2004, pages 663 - 668
ATSUSHI M. ET AL.: "Stem/Progenitor Cells in Liver Development, Homeostasis, Regeneration, and Reprogramming", CELL STEM CELL, vol. 14, 1 May 2014 (2014-05-01), pages 561 - 574, XP055397279 *
CHEMICAL ABSTRACTS, Columbus, Ohio, US; abstract no. 105628-07-7
CHEMICAL ABSTRACTS, Columbus, Ohio, US; abstract no. 146986-50-7
CHEMICAL ABSTRACTS, Columbus, Ohio, US; abstract no. 252917-06-9
CHEMICAL ABSTRACTS, Columbus, Ohio, US; abstract no. 850664-21-0
CHEMICAL ABSTRACTS, Columbus, Ohio, US; abstract no. 871543-07-6
CHEMICAL ABSTRACTS, Columbus, Ohio, US; abstract no. 909910-43-6
HORN DBSQUIRE CR, CHIM. ACTA., vol. 14, 1966, pages 185 - 194
KATSUTA, TAKESHI ET AL.: "In vitro chemical reprogramming of mature hepatocytes into bipotent liver progenitor cells", REGENERATIVE MEDICINE, vol. 15, 1 February 2016 (2016-02-01), pages 240 , XP009515234 *
NINOMIYA, SHINICHI ET AL.: "Effects of hepatotoxicants on hepatic gene expression in chimeric mice with highly humanized liver", THE 41ST ANNUAL MEETING OF THE JAPANESE SOCIETY OF TOXICOLOGY, 26 August 2014 (2014-08-26), pages 97, XP055599306 *
T. TAKEUCHI ET AL.: "Real-Time Detection System for Quantification of Hepatitis C Virus Genome", GASTROENTEROLOGY, vol. 116, 1999, pages 636 - 642
TAKASHI K. ET AL.: "Conversion of Terminally Committed Hepatocytes to Culturable Bipotent Progenitor Cells with Regenerative Capacity", CELL STEM CELL, vol. 20, 5 January 2017 (2017-01-05), pages 41 - 55, XP055397277 *
TANIMIZU N., JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 289, no. 11, 2014, pages 7589 - 7598
TARLOW B. D., CELL STEM CELL, vol. 15, 2014, pages 605 - 618
YANGER K., GENES & DEVELOPMENT, vol. 27, 2013, pages 719 - 724
YIMLAMAI D., CELL, vol. 157, 2014, pages 1324 - 1338

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200147143A1 (en) * 2017-05-29 2020-05-14 Industry-University Cooperation Foundation Hanyang University Human adult hepatocyte reprogramming medium composition
CN110982776A (zh) * 2018-09-30 2020-04-10 中国科学院上海生命科学研究院 肝细胞的体外扩增培养方法及应用
JP2022517300A (ja) * 2018-09-30 2022-03-08 中国科学院分子細胞科学卓越創新中心 インビトロで肝細胞を増殖・培養する方法及び応用
CN110982776B (zh) * 2018-09-30 2023-07-04 中国科学院分子细胞科学卓越创新中心 肝细胞的体外扩增培养方法及应用
JP7399955B2 (ja) 2018-09-30 2023-12-18 中国科学院分子細胞科学卓越創新中心 インビトロで肝細胞を増殖・培養する方法及び応用
WO2020080550A1 (ja) * 2018-10-15 2020-04-23 Cynity株式会社 低分子化合物による内胚葉組織又は器官由来細胞からの幹/前駆細胞の作製方法
JPWO2020080550A1 (ja) * 2018-10-15 2021-10-14 エヴィア ライフ サイエンシズ インコーポレイテッド 低分子化合物による内胚葉組織又は器官由来細胞からの幹/前駆細胞の作製方法
JP2020162551A (ja) * 2019-03-29 2020-10-08 国立大学法人 長崎大学 肝前駆細胞を含む細胞集団を製造する方法
WO2020203753A1 (ja) * 2019-03-29 2020-10-08 国立大学法人 長崎大学 肝前駆細胞を含む細胞集団を製造する方法
JP7284985B2 (ja) 2019-03-29 2023-06-01 国立大学法人 長崎大学 肝前駆細胞を含む細胞集団を製造する方法
WO2020245747A1 (en) * 2019-06-04 2020-12-10 University Health Network Methods of making and using liver cells

Also Published As

Publication number Publication date
EP3533865A1 (en) 2019-09-04
JP7481721B2 (ja) 2024-05-13
JP2022132606A (ja) 2022-09-08
JP7134416B2 (ja) 2022-09-12
EP3533865A4 (en) 2020-04-15
CN109890956A (zh) 2019-06-14
JPWO2018079714A1 (ja) 2019-09-19
US20190302100A1 (en) 2019-10-03

Similar Documents

Publication Publication Date Title
JP7481721B2 (ja) ヒト肝前駆細胞の調製方法
AU2014303330B2 (en) Method for producing dopaminergic neurons
WO2016148216A1 (ja) 肝細胞及び肝非実質細胞、並びにそれらの調製方法
EP3401392B1 (en) Method for producing hepatic stem/precursor cells from mature hepatic cells using low-molecular-weight compound
JP7556502B2 (ja) ヘパトサイトの作製方法
US20220233605A1 (en) Methods of making and using liver cells
WO2020080550A1 (ja) 低分子化合物による内胚葉組織又は器官由来細胞からの幹/前駆細胞の作製方法
US20210340494A1 (en) Method for Expanding Hepatocyte in Vitro and Application
US10093903B2 (en) Production of virus-receptive pluripotent stem cell (PSC)-derived hepatocytes
WO2020203753A1 (ja) 肝前駆細胞を含む細胞集団を製造する方法
US11566229B2 (en) Expansion and maintenance of adult primary human hepatocytes in culture
KR102610435B1 (ko) 간 오가노이드를 기반으로 하는 윌슨병 모델의 제조방법 및 이의 용도
WO2023160671A1 (zh) 诱导性成熟肝脏细胞及其制备的方法
JP2022035391A (ja) 肝臓前駆細胞の増幅方法
KR20060092861A (ko) 인간 간세포 유사 세포 및 그의 이용

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018547784

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17866130

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017866130

Country of ref document: EP

Effective date: 20190528