WO2018079274A1 - 水処理装置および水処理方法 - Google Patents

水処理装置および水処理方法 Download PDF

Info

Publication number
WO2018079274A1
WO2018079274A1 PCT/JP2017/036922 JP2017036922W WO2018079274A1 WO 2018079274 A1 WO2018079274 A1 WO 2018079274A1 JP 2017036922 W JP2017036922 W JP 2017036922W WO 2018079274 A1 WO2018079274 A1 WO 2018079274A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
water treatment
outer tube
tube
treated
Prior art date
Application number
PCT/JP2017/036922
Other languages
English (en)
French (fr)
Inventor
鉄美 越智
真也 渡邊
淳一 志賀
吏 草野
栄一 津賀
佑介 川上
Original Assignee
日機装株式会社
メタウォーター株式会社
株式会社扇港理研
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日機装株式会社, メタウォーター株式会社, 株式会社扇港理研 filed Critical 日機装株式会社
Priority to SG11201903813WA priority Critical patent/SG11201903813WA/en
Priority to CA3042157A priority patent/CA3042157C/en
Priority to EP17865086.7A priority patent/EP3533767B1/en
Priority to CN201780067837.XA priority patent/CN110049951A/zh
Publication of WO2018079274A1 publication Critical patent/WO2018079274A1/ja
Priority to US16/399,070 priority patent/US10669167B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • C02F1/325Irradiation devices or lamp constructions
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/002Construction details of the apparatus
    • C02F2201/003Coaxial constructions, e.g. a cartridge located coaxially within another
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/002Construction details of the apparatus
    • C02F2201/004Seals, connections
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/32Details relating to UV-irradiation devices
    • C02F2201/322Lamp arrangement
    • C02F2201/3222Units using UV-light emitting diodes [LED]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/32Details relating to UV-irradiation devices
    • C02F2201/322Lamp arrangement
    • C02F2201/3225Lamps immersed in an open channel, containing the liquid to be treated
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/04Disinfection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Definitions

  • the present invention relates to a water treatment apparatus, and more particularly to a technique for irradiating water to be treated with ultraviolet light.
  • ultraviolet light has a sterilizing ability
  • an apparatus for irradiating ultraviolet light is used for sterilization treatment at medical or food processing sites.
  • the apparatus which sterilizes the to-be-processed water continuously by irradiating an to-be-processed water with an ultraviolet light is also used.
  • an apparatus that irradiates ultraviolet light in a direction orthogonal to the direction of the flow of water to be treated see, for example, Patent Document 1).
  • the present invention has been made in view of these problems, and one of its exemplary purposes is to provide a water treatment apparatus with improved ultraviolet light irradiation efficiency to the water to be treated.
  • a water treatment apparatus includes an outer tube extending in the axial direction from the first end toward the second end, and an inner tube disposed in the outer tube and extending in the axial direction.
  • a double-pipe structure unit that is disposed between the outer tube and the inner tube and prevents a radial displacement of the inner tube relative to the outer tube, and the opening at the first end of the outer tube is liquid-tight
  • a light source unit that irradiates ultraviolet light in the axial direction toward water to be treated flowing inside the inner tube.
  • the inner tube has a facing end that faces the light source unit across a gap provided between the light source unit, and an inflow end that is located on the opposite side of the facing end and into which treated water flows.
  • the outer pipe has an outlet provided on the outer peripheral surface of the outer pipe, and the water to be treated that flows from the inside of the inner pipe through the gap flows out from the outlet.
  • the ultraviolet light since the ultraviolet light is irradiated along the flow direction of the water to be treated inside the inner tube, the ultraviolet light can be applied over the time during which the water to be treated flows in the irradiation direction of the ultraviolet light. Thereby, an ultraviolet light can be irradiated more efficiently than the case where an ultraviolet light is irradiated orthogonally to the flow direction of to-be-processed water.
  • the flow path has a double tube structure, and the water to be treated flows out from the inside of the inner pipe through the gap between the inner pipe and the light source unit. Can be rectified. Thereby, ultraviolet light can be made to act uniformly on the whole water to be treated, and the effect of water treatment can be enhanced.
  • the flow path width between the outer tube and the inner tube is adopted even when a double tube structure that is long in the axial direction is adopted. Can be maintained constant, and the flow of water to be treated can be adjusted.
  • the regulating member may include an inlay flange arranged so as to block between the second end portion of the outer tube and the inflow end portion of the inner tube.
  • the regulating member may include a lock pin extending in a radial direction from the inner peripheral surface of the outer tube toward the outer peripheral surface of the inner tube at a position closer to the first end than the second end.
  • the gap may have an axial dimension of 3 mm or more and 30 mm or less.
  • the difference between the inner diameter of the outer tube and the outer diameter of the inner tube may be 10 mm or more and 50 mm or less.
  • the outlet may be provided at a position closer to the second end than the first end.
  • the light source unit includes a light emitting element that emits ultraviolet light and a water cooling mechanism that cools the light emitting element, and the water cooling mechanism is configured such that cooling water is supplied from a water intake provided on the outer peripheral surface of the outer tube.
  • the mouth may be provided at a position on the opposite side to the outflow port across the inner tube.
  • Another aspect of the present invention is a water treatment method using a water treatment apparatus.
  • This method includes a step of irradiating the water to be treated flowing in from the inflow end portion and flowing in the axial direction inside the inner pipe with ultraviolet light, and causing the water to be treated irradiated with the ultraviolet light to flow out from the outlet.
  • the water to be treated is supplied so that the pressure loss when passing through the treatment apparatus is 5 kPa or more and 20 kPa or less.
  • the flow of water to be treated in the inner pipe can be rectified by setting the pressure loss to 5 kPa or more and 20 kPa or less.
  • an ultraviolet light can be made to act uniformly on the whole to-be-treated water, and the effect of water treatment can be improved.
  • the present invention it is possible to improve the water treatment capacity by increasing the ultraviolet light irradiation efficiency.
  • FIG. 1 is a diagram schematically showing a configuration of a water treatment apparatus 10 according to an embodiment.
  • the water treatment apparatus 10 includes a double tube structure unit 12, a light source unit 14, and an introduction tube 16.
  • the double pipe structure unit 12 includes an outer pipe 20 and an inner pipe 30.
  • the water treatment device 10 is a device for performing sterilization treatment by irradiating ultraviolet light toward the water to be treated flowing inside the inner pipe 30.
  • the longitudinal direction of the outer tube 20 and the inner tube 30 may be referred to as an “axial direction” in order to help understanding the content.
  • the direction parallel to the central axis A is the axial direction.
  • a direction orthogonal to the axial direction may be referred to as a radial direction, and a direction surrounding the axial direction may be referred to as a circumferential direction.
  • the outer tube 20 has a cylindrical shape, and extends in the axial direction from the first end 21 toward the second end 22.
  • the first end 21 and the second end 22 are provided with flanges extending radially outward from the outer peripheral surface 23 of the outer tube 20.
  • the outer tube 20 is made of a resin material or a metal material, for example, stainless steel.
  • the axial length of the outer tube 20 is about 400 mm, and the diameter of the inner peripheral surface 24 of the outer tube 20 is about 400 mm.
  • the outer peripheral surface 23 of the outer pipe 20 is provided with an outlet 26 and a water intake 28.
  • the outlet 26 is provided at a position between the first end 21 and the second end 22.
  • the water intake port 28 is provided at a position opposite to the outflow port 26 in the radial direction across the inner tube 30.
  • the outflow port 26 is arranged on the vertical upper side, and the water intake port 28 is arranged on the lower vertical side.
  • the outlet 26 and the water intake 28 are provided at the center between the first end 21 and the second end 22 or at a position closer to the second end 22 than the center.
  • the outlet 26 and the intake 28 are connected to the first end from the second end. You may provide in the position near 21.
  • the inner tube 30 has a cylindrical shape and extends in the axial direction from the opposed end portion 31 toward the inflow end portion 32.
  • the inner tube 30 is disposed inside the outer tube 20, and is preferably disposed so as to be coaxial with the outer tube 20.
  • the inner tube 30 is made of a material having high ultraviolet light reflectivity and durability, and is made of, for example, a fluorine resin such as PTFE (polytetrafluoroethylene).
  • PTFE polytetrafluoroethylene
  • the axial length of the inner tube 30 is about 400 mm, and the diameter of the inner peripheral surface 34 of the inner tube 30 is about 350 mm.
  • the inflow end portion 32 is provided with a flange extending radially outward from the outer peripheral surface 33 of the inner tube 30.
  • the opposing end 31 is not provided with a flange.
  • the facing end portion 31 faces the window member 42 with a gap 76 provided between the light source unit 14 and the window member 42 interposed therebetween. That is, the facing end 31 and the window member 42 are separated from each other in the axial direction by the dimension of the gap 76.
  • the gap 76 is provided over the entire circumference of the opposed end 31, and is provided so that the axial distance between the opposed end 31 and the window member 42 (that is, the dimension of the gap 76) is uniform over the entire circumference. Yes.
  • the axial dimension of the gap 76 is preferably not less than 3 mm and not more than 30 mm, and in one embodiment is approximately 10 mm.
  • the double pipe structure unit 12 further has an inlay flange 36.
  • the inlay flange 36 is a restricting member disposed between the outer tube 20 and the inner tube 30, and restricts the radial displacement of the inner tube 30 with respect to the outer tube 20.
  • the inlay flange 36 is disposed so as to block between the second end 22 of the outer tube 20 and the inflow end 32 of the inner tube 30, and is sandwiched between the flange of the second end 22 and the flange of the inflow end 32. Fixed.
  • An O-ring is provided between the flange of the second end 22 and the inlay flange 36.
  • the inner tube 30 and the spigot flange 36 are formed as separate bodies, but in a modified example, the inner tube 30 and the spigot flange 36 may be formed integrally.
  • a stepped portion that contacts the inner peripheral surface 24 of the outer tube 20 may be formed at the inflow end portion 32 of the inner tube 30.
  • the double pipe structure unit 12 further has a lock pin 38.
  • the lock pin 38 is a restricting member disposed between the outer tube 20 and the inner tube 30, and restricts the radial displacement of the inner tube 30 with respect to the outer tube 20.
  • the lock pin 38 is a member that extends in the radial direction from the inner peripheral surface 24 of the outer tube 20 toward the outer peripheral surface 33 of the inner tube 30.
  • the lock pins 38 are provided at a plurality of different locations in the circumferential direction, and are arranged at regular intervals in the circumferential direction, for example.
  • the lock pin 38 is preferably provided at a position closer to the first end 21 than to the second end 22. By providing at a position relatively close to the first end portion 21, the radial displacement of the opposed end portion 31 of the inner tube 30 can be suitably prevented.
  • only one of the inlay flange 36 and the lock pin 38 may be provided. Further, both the inlay flange 36 and the lock pin 38 may not be provided. In the latter case, a restricting member having a structure different from that of the inlay flange 36 and the lock pin 38 may be provided.
  • the light source unit 14 includes a plurality of light emitting elements 40, a window member 42, a window frame 44, and a water cooling mechanism 50.
  • the light source unit 14 is attached to the first end 21 of the outer tube 20 and is disposed so as to block the opening of the first end 21 in a liquid-tight manner.
  • the light source unit 14 irradiates ultraviolet light in the axial direction from the opposed end 31 toward the inflow end 32 toward the water to be treated flowing inside the inner tube 30.
  • the light emitting element 40 is a so-called UV-LED (Ultra Violet-Light Emitting Diode), and outputs deep ultraviolet light having a center wavelength or peak wavelength in the range of about 200 nm to 350 nm.
  • the light emitting element 40 preferably emits ultraviolet light in the vicinity of 260 nm to 290 nm, which is a wavelength with high sterilization efficiency.
  • an ultraviolet light LED for example, one using aluminum gallium nitride (AlGaN) is known.
  • the plurality of light emitting elements 40 are attached to the water cooling mechanism 50.
  • the plurality of light emitting elements 40 are arranged in a plane orthogonal to the axial direction, and are arranged in the radial direction and the circumferential direction in the mounted surface.
  • the window member 42 is disposed at a position between the opposed end portion 31 of the inner tube 30 and the plurality of light emitting elements 40 and is disposed so as to close the opening of the first end portion 21 of the outer tube 20.
  • the window member 42 is made of a material having a high transmittance of ultraviolet light from the light emitting element 40, and is made of, for example, quartz glass (SiO 2 ).
  • the window member 42 has a disk shape. In one embodiment, the window member 42 has a diameter of about 420 mm and a thickness of about 40 mm.
  • a window frame 44 is provided on the outer periphery of the window member 42, and the window member 42 is fixed to the window frame 44.
  • An O-ring is provided between the window member 42 and the window frame 44 for liquid-tightness.
  • the window frame 44 includes an inner window frame 45 and an outer window frame 46, and the window member 42 is sandwiched and fixed between the inner window frame 45 and the outer window frame 46.
  • the window frame 44 is made of a metal material such as stainless steel.
  • the inner window frame 45 is located between the first end portion 21 and the window member 42 and comes into contact with the water to be treated flowing inside the double-pipe structure unit 12.
  • An O-ring is provided between the first end 21 and the inner window frame 45.
  • the outer window frame 46 is located between the window member 42 and the water cooling mechanism 50.
  • the window frame 44 is fixed to the first end portion 21 by a fastening member 48 using bolts and nuts.
  • the fastening member 48 is inserted into a mounting hole that penetrates the flange of the first end portion 21, the inner window frame 45, and the outer window frame 46, and is fixed by sandwiching the first end portion 21, the inner window frame 45, and the outer window frame 46. To do.
  • the water cooling mechanism 50 cools the light emitting element 40 using the cooling water supplied from the water intake port 28.
  • the water cooling mechanism 50 includes a cooling water supply port 52 and a cooling water discharge port 54.
  • the cooling water supply port 52 is connected to the intake port 28 via a cooling water supply pipe 56, and a part of the water to be treated flowing through the double-pipe structure unit 12 is supplied to the cooling water supply port 52 as cooling water.
  • the water cooling mechanism 50 includes a heat sink (not shown) that is thermally connected to the light emitting element 40 and an internal pipe (not shown) for circulating cooling water that is thermally connected to the heat sink.
  • the cooling water that has passed through the internal pipe is discharged to the outside through a cooling water discharge pipe 58 connected to the cooling water discharge port 54.
  • the water cooling mechanism 50 is attached to the outer window frame 46.
  • the introduction pipe 16 is a funnel-shaped member and has a shape in which the diameter gradually increases from the introduction end 61 toward the connection end 62.
  • the introduction pipe 16 is made of a metal material such as stainless steel.
  • the introduction end portion 61 and the connection end portion 62 are provided with flanges extending radially outward.
  • the connection end 62 is connected to the inflow end 32 of the inner pipe 30.
  • the connection end 62 has the same inner diameter as the inner pipe 30 so that the water to be treated flows smoothly from the introduction pipe 16 to the inner pipe 30.
  • a pipe for supplying water to be treated is connected to the introduction end 61.
  • the introduction end 61 is configured to have the same inner diameter as the connection destination pipe.
  • the introduction pipe 16 connects between pipes having different diameters and the inner pipe 30 so that the flow of water to be treated flowing into the inner pipe 30 from the inflow end portion 32 is rectified.
  • the introduction pipe 16 is fixed to the double pipe structure unit 12 by a fastening member 64.
  • the fastening member 64 is inserted into a mounting hole that passes through the flange of the second end portion 22, the inlay flange 36, the flange of the inflow end portion 32, and the flange of the connection end portion 62, and sandwiches and fixes these members. Thereby, the radial position of the inner pipe 30 is regulated by the spigot flange 36, and the radial displacement of the inner pipe 30 is prevented.
  • the operation of the water treatment apparatus 10 having the above configuration will be described.
  • the water to be treated is introduced from the introduction end 61 and flows in the axial direction toward the light source unit 14 through the introduction flow path 72 inside the introduction pipe 16 and the inner flow path 74 inside the inner pipe 30.
  • the light source unit 14 irradiates ultraviolet light in the axial direction toward the water to be treated that passes through the inner flow path 74.
  • the treated water irradiated with the ultraviolet light flows from the inside of the inner tube 30 through the gap 76 between the light source unit 14 and the opposed end portion 31, and flows outside the inner tube 30 and between the outer tube 20 and the inner tube 30. It flows out of the outlet 26 through 78.
  • a part of the water to be treated is supplied to the water cooling mechanism 50 from the intake port 28 through the cooling water supply pipe 56 and used for cooling the plurality of light emitting elements 40.
  • the used cooling water is discharged from the cooling water discharge port 54 to the outside.
  • the water treatment method using the water treatment apparatus 10 irradiates the water to be treated which flows from the inflow end portion 32 and flows in the axial direction inside the inner pipe 30 with ultraviolet light, and flows the water to be treated irradiated with the ultraviolet light. A step of flowing out the outlet 26.
  • the water to be treated is supplied so that the pressure loss when passing through the water treatment apparatus 10 is 5 kPa or more and 20 kPa or less.
  • the flow of the water to be treated in the water treatment apparatus 10 is rectified, and the entire water to be treated is uniformly irradiated with ultraviolet light. can do.
  • the effects achieved by this embodiment will be described.
  • a long working length in the flow direction can be ensured only by providing the light source unit 14 at a position facing the flow direction. Therefore, according to this Embodiment, the ultraviolet light from the light source provided in the edge part of a flow path can be made to act on to-be-processed water efficiently.
  • a fluorine-based resin such as PTFE
  • PTFE is a material having a high reflectivity of ultraviolet light
  • the ultraviolet light quantity which acts on to-be-processed water can be increased compared with the case where the inner tube
  • water treatment capability can be improved.
  • the flow of the water to be treated since the water to be treated flows from the inside of the inner pipe 30 to the outside through the gap 76 provided over the entire circumference of the opposed end portion 31, the flow of the water to be treated as a whole is determined. It can be made uniform. If the flow path for flowing out from the inside of the inner pipe 30 is provided only in a part of the circumferential direction or is provided asymmetrically in the circumferential direction, the flow of water to be treated is caused by the asymmetry of the flow path structure. Disturbance may occur, and the flow velocity distribution may be biased.
  • the amount of action of the ultraviolet light is related to the time during which the water to be treated flows through the inner pipe 30, that is, the flow velocity.
  • the irradiation amount is partially insufficient.
  • the flow rate distribution of the water to be treated can be made uniform, the irradiation amount of ultraviolet light can also be made uniform. Thereby, sufficient sterilization can be performed with respect to the whole to-be-processed water.
  • the rectifying effect as described above can be suitably obtained by setting the dimension of the gap 76 between the light source unit 14 and the opposed end portion 31 to 3 mm or more and 30 mm or less.
  • the pressure loss inside the water treatment apparatus 10 can be made uniform by setting the position where the outlet 26 is provided to a position away from the first end 21 within the range of 10 mm to 100 mm in the axial direction. it can.
  • the water intake port 28 at a position opposite to the outflow port 26 in the radial direction, the symmetry of the flow path structure can be improved and the pressure loss can be made more uniform.
  • the displacement of the inner tube 30 can be suitably prevented by providing the restricting members such as the inlay flange 36 and the lock pin 38.
  • the inner tube 30 vibrates due to the fluid energy due to the inflow of the water to be treated, and the distance between the outer tube 20 and the inner tube 30, that is, the flow width of the outer flow path 78 varies. It is possible to do. If the flow path width of the outer flow path 78 fluctuates, the pressure loss becomes non-uniform and the processing capacity may be reduced.
  • vibration of the inner tube 30 can be prevented by the restricting member and the flow channel width of the outer flow channel 78 can be maintained constant, so that the pressure loss can be maintained uniformly.
  • DESCRIPTION OF SYMBOLS 10 ... Water treatment apparatus, 12 ... Double tube structure unit, 14 ... Light source unit, 20 ... Outer tube, 21 ... 1st end part, 22 ... 2nd end part, 23 ... Outer peripheral surface, 24 ... Inner peripheral surface, 26 DESCRIPTION OF SYMBOLS ... Outlet, 28 ... Water intake, 30 ... Inner pipe, 31 ... Opposite end part, 32 ... Inflow end part, 33 ... Outer peripheral surface, 34 ... Inner peripheral surface, 36 ... Inner flange, 38 ... Lock pin, 40 ... Light emission Element, 50 ... water cooling mechanism, 76 ... gap.
  • the present invention it is possible to improve the water treatment capacity by increasing the ultraviolet light irradiation efficiency.

Abstract

水処理装置10は、第1端部21から第2端部22に向けて軸方向に延在する外管20と、外管20の内部に配置され、軸方向に延在する内管30と、外管20と内管30の間に配置され、外管30に対する内管20の径方向の変位を防止する規制部材と、を有する二重管構造ユニット12と、外管20の第1端部21の開口を液密に塞ぐように配置され、内管30の内部を流れる被処理水に向けて軸方向に紫外光を照射する光源ユニット14と、を備える。内管30は、光源ユニット14との間に設けられる隙間76を挟んで光源ユニット14と対向する対向端部31と、対向端部31の反対側に位置し、被処理水が流入する流入端部32と、を有する。外管20は、外管20の外周面23に設けられる流出口26を有し、隙間76を通って内管30の内から外へ流れた被処理水が流出口26から流出する。

Description

水処理装置および水処理方法
 本発明は、水処理装置に関し、特に、被処理水に紫外光を照射する技術に関する。
 紫外光には殺菌能力があることが知られており、医療や食品加工の現場などでの殺菌処理に紫外光を照射する装置が用いられている。また、被処理水に紫外光を照射することで、被処理水を連続的に殺菌する装置も用いられている。このような装置として、例えば、被処理水の流れの方向に対して直交する方向に紫外光を照射する装置が挙げられる(例えば、特許文献1参照)。
特開2014-233646号公報
 被処理水の流れの方向に直交して紫外光を照射する構成の場合、被処理水に十分な作用量を与えるためには流れ方向に沿って光源を並べる必要があり、効率的に紫外光を照射することができなかった。
 本発明はこうした課題に鑑みてなされたものであり、その例示的な目的のひとつは、被処理水への紫外光照射効率を高めた水処理装置を提供することにある。
 本発明のある態様の水処理装置は、第1端部から第2端部に向けて軸方向に延在する外管と、外管の内部に配置され、軸方向に延在する内管と、外管と内管の間に配置され、外管に対する内管の径方向の変位を防止する規制部材と、を有する二重管構造ユニットと、外管の第1端部の開口を液密に塞ぐように配置され、内管の内部を流れる被処理水に向けて軸方向に紫外光を照射する光源ユニットと、を備える。内管は、光源ユニットとの間に設けられる隙間を挟んで光源ユニットと対向する対向端部と、対向端部の反対側に位置し、被処理水が流入する流入端部と、を有する。外管は、外管の外周面に設けられる流出口を有し、隙間を通って内管の内から外へ流れた被処理水が流出口から流出する。
 この態様によると、内管の内部において被処理水の流れ方向に沿って紫外光が照射されるため、紫外光の照射方向に被処理水が流れる時間にわたって紫外光を作用させることができる。これにより、被処理水の流れ方向と直交して紫外光を照射する場合よりも効率的に紫外光を照射できる。また、流路を二重管構造とし、内管と光源ユニットの間の隙間を通って内管の内から外へ被処理水が流れ出るようにすることで、内管の内部での被処理水の流れを整流化できる。これにより、被処理水の全体に紫外光を均一に作用させ、水処理の効果を高めることができる。さらに、外管に対する内管の径方向の変位を防止する規制部材を設けることで、軸方向に長い二重管構造を採用する場合であっても、外管と内管の間の流路幅が一定に維持されるようにし、被処理水の流れを整えることができる。
 規制部材は、外管の第2端部と内管の流入端部の間を塞ぐように配置されるインローフランジを含んでもよい。
 規制部材は、第2端部より第1端部に近い位置で外管の内周面から内管の外周面に向けて径方向に延在するロックピンを含んでもよい。
 隙間は、軸方向の寸法が3mm以上30mm以下であってもよい。
 外管の内直径と内管の外直径との差が10mm以上50mm以下であってもよい。
 流出口は、第1端部より第2端部に近い位置に設けられてもよい。
 光源ユニットは、紫外光を発する発光素子と、発光素子を冷却する水冷機構とを有し、水冷機構は、外管の外周面に設けられる取水口から冷却水が供給されるよう構成され、取水口は、内管を挟んで流出口とは径方向反対側の位置に設けられてもよい。
 本発明の別の態様は、水処理装置を用いる水処理方法である。この方法は、流入端部から流入して内管の内部を軸方向に流れる被処理水に紫外光を照射し、紫外光が照射された被処理水を流出口から流出させる工程を備え、水処理装置を通過する際の圧力損失が5kPa以上20kPa以下となるように被処理水が供給される。
 この態様によると、圧力損失が5kPa以上20kPa以下となるようにすることで、内管の内部における被処理水の流れを整流化することができる。これにより、被処理水の全体に紫外光を均一に作用させて水処理の効果を高めることができる。
 本発明によれば、紫外光照射効率を高めて水処理能力を向上させることができる。
実施の形態に係る水処理装置の構成を概略的に示す断面図である。
 以下、図面を参照しながら、本発明を実施するための形態について詳細に説明する。なお、説明において同一の要素には同一の符号を付し、重複する説明を適宜省略する。
 図1は、実施の形態に係る水処理装置10の構成を概略的に示す図である。水処理装置10は、二重管構造ユニット12と、光源ユニット14と、導入管16とを備える。二重管構造ユニット12は、外管20と、内管30とを有する。水処理装置10は、内管30の内部を流れる被処理水に向けて紫外光を照射して殺菌処理を施すための装置である。
 本明細書では、内容の理解を助けるために、外管20および内管30の長手方向を「軸方向」と呼ぶことがある。例えば、図1において、中心軸Aに平行な方向が軸方向である。また、軸方向に直交する方向を径方向と呼び、軸方向を包囲する方向を周方向と呼ぶことがある。
 外管20は、円筒形状を有し、第1端部21から第2端部22に向けて軸方向に延在する。第1端部21および第2端部22には、外管20の外周面23から径方向外側に延びるフランジが設けられる。外管20は、樹脂材料や金属材料で構成され、例えば、ステンレス鋼で構成される。ある実施例において、外管20の軸方向の長さは、約400mmであり、外管20の内周面24の直径は、約400mmである。
 外管20の外周面23には、流出口26および取水口28が設けられる。流出口26は、第1端部21と第2端部22の間の位置に設けられる。取水口28は、内管30を挟んで流出口26とは径方向反対側の位置に設けられる。例えば、水処理装置10を設置した状態において、流出口26が鉛直上側に配置され、取水口28が鉛直下側に配置される。なお、圧力損失の均一化の観点から、流出口26および取水口28は、第1端部21と第2端部22の間の中央部または中央部より第2端部22に近い位置に設けられることが好ましい。なお、流出口26および取水口28の位置を変えても圧力損失の均一性にそれほど影響がないような流路構造の場合、流出口26および取水口28を第2端部より第1端部21に近い位置に設けてもよい。
 内管30は、円筒形状を有し、対向端部31から流入端部32に向けて軸方向に延在する。内管30は、外管20の内部に配置され、好ましくは、外管20と同軸となるように配置される。内管30は、紫外光の反射率および耐久性が高い材料で構成され、例えば、PTFE(ポリテトラフルオロエチレン)などのフッ素系樹脂で構成される。ある実施例において、内管30の軸方向の長さは、約400mmであり、内管30内周面34の直径は、約350mmである。
 流入端部32には、内管30の外周面33から径方向外側に延びるフランジが設けられる。一方、対向端部31にはフランジが設けられていない。対向端部31は、光源ユニット14の窓部材42との間に設けられる隙間76を挟んで窓部材42と対向する。つまり、対向端部31と窓部材42の間は、隙間76の寸法だけ軸方向に離れている。隙間76は、対向端部31の全周にわたって設けられ、対向端部31と窓部材42の間の軸方向の距離(つまり、隙間76の寸法)が全周にわたって均一となるように設けられている。隙間76の軸方向の寸法は、3mm以上30mm以下であることが好ましく、ある実施例において約10mmである。
 二重管構造ユニット12は、さらにインローフランジ36を有する。インローフランジ36は、外管20と内管30の間に配置される規制部材であり、外管20に対する内管30の径方向の変位を規制する。インローフランジ36は、外管20の第2端部22と内管30の流入端部32の間を塞ぐように配置され、第2端部22のフランジと流入端部32のフランジの間に挟み込まれて固定される。第2端部22のフランジとインローフランジ36の間には、Oリングが設けられる。図示する例では、内管30とインローフランジ36が別体として形成されているが、変形例では内管30とインローフランジ36が一体的に形成されていてもよい。例えば、内管30の流入端部32に外管20の内周面24と当接する段差部が形成されてもよい。
 二重管構造ユニット12は、さらにロックピン38を有する。ロックピン38は、外管20と内管30の間に配置される規制部材であり、外管20に対する内管30の径方向の変位を規制する。ロックピン38は、外管20の内周面24から内管30の外周面33に向けて径方向に延在する部材である。ロックピン38は、周方向に異なる複数箇所に設けられ、例えば、周方向に等間隔に配置される。ロックピン38は、第2端部22よりも第1端部21に近い位置に設けられることが好ましい。第1端部21に相対的に近い位置に設けることにより、内管30の対向端部31の径方向の変位を好適に防止できる。
 なお、変形例においては、インローフランジ36とロックピン38の一方のみが設けられてもよい。また、インローフランジ36とロックピン38の双方が設けられなくてもよい。後者の場合、インローフランジ36およびロックピン38とは異なる構造の規制部材が設けられてもよい。
 光源ユニット14は、複数の発光素子40と、窓部材42と、窓枠44と、水冷機構50とを有する。光源ユニット14は、外管20の第1端部21に取り付けられ、第1端部21の開口を液密に塞ぐように配置される。光源ユニット14は、内管30の内部を流れる被処理水に向けて対向端部31から流入端部32に向けて軸方向に紫外光を照射する。
 発光素子40は、いわゆるUV-LED(Ultra Violet-Light Emitting Diode)であり、中心波長またはピーク波長が約200nm~350nmの範囲に含まれる深紫外光を出力する。発光素子40は、殺菌効率の高い波長である260nm~290nm付近の紫外光を発することが好ましい。このような紫外光LEDとして、例えば、窒化アルミニウムガリウム(AlGaN)を用いたものが知られている。複数の発光素子40は、水冷機構50に取り付けられている。複数の発光素子40は、軸方向と直交する面内に配置され、実装される面内において径方向および周方向に並べられている。
 窓部材42は、内管30の対向端部31と複数の発光素子40の間の位置に配置され、外管20の第1端部21の開口を塞ぐように配置される。窓部材42は、発光素子40からの紫外光の透過率が高い材料で構成され、例えば、石英ガラス(SiO)で構成される。窓部材42は、円板形状を有する。ある実施例において、窓部材42の直径は、約420mmであり、厚さは約40mmである。窓部材42の外周には窓枠44が設けられ、窓部材42は窓枠44に固定されている。窓部材42と窓枠44の間には、液密にするためのOリングが設けられる。
 窓枠44は、内側窓枠45と、外側窓枠46とを有し、内側窓枠45と外側窓枠46の間に窓部材42が挟み込まれて固定される。窓枠44は、ステンレス鋼などの金属材料で構成される。内側窓枠45は、第1端部21と窓部材42の間に位置し、二重管構造ユニット12の内部を流れる被処理水と接触する。第1端部21と内側窓枠45の間にOリングが設けられる。外側窓枠46は、窓部材42と水冷機構50の間に位置する。窓枠44は、ボルトとナット等を用いた締結部材48により第1端部21に固定される。締結部材48は、第1端部21のフランジ、内側窓枠45および外側窓枠46を貫通する取付孔に挿通され、第1端部21、内側窓枠45および外側窓枠46を挟み込んで固定する。
 水冷機構50は、取水口28から供給される冷却水を用いて発光素子40を冷却する。水冷機構50は、冷却水供給口52と、冷却水排出口54とを有する。冷却水供給口52は、冷却水供給管56を介して取水口28と接続されており、二重管構造ユニット12を流れる被処理水の一部が冷却水として冷却水供給口52に供給される。水冷機構50は、発光素子40と熱的に接続されるヒートシンク(不図示)と、ヒートシンクと熱的に接続される冷却水循環用の内部配管(不図示)とを有する。内部配管を通った冷却水は、冷却水排出口54に接続される冷却水排出管58を通じて外部に排出される。水冷機構50は、外側窓枠46に取り付けられる。
 導入管16は、漏斗状の部材であり、導入端部61から接続端部62に向けて徐々に口径が大きくなる形状を有する。導入管16は、ステンレス鋼などの金属材料で構成される。導入端部61および接続端部62には、径方向外側に延在するフランジが設けられる。接続端部62は、内管30の流入端部32に接続される。接続端部62は、導入管16から内管30へ被処理水がスムーズに流れるように内管30と同じ内径を有する。導入端部61には、被処理水を供給するための配管が接続される。導入端部61は、接続先の配管と内径が同じとなるように構成される。導入管16は、口径の異なる配管と内管30の間を接続し、流入端部32から内管30の内部に流入する被処理水の流れが整流化されるようにする。
 導入管16は、締結部材64により二重管構造ユニット12に固定される。締結部材64は、第2端部22のフランジ、インローフランジ36、流入端部32のフランジ、及び、接続端部62のフランジを貫通する取付孔に挿通され、これらの部材を挟み込んで固定する。これにより、内管30の径方向の位置がインローフランジ36により規制され、内管30の径方向の変位が防止される。
 以上の構成による水処理装置10の動作について説明する。被処理水は、導入端部61から導入され、導入管16の内部の導入流路72及び内管30の内部の内側流路74を通って光源ユニット14に向けて軸方向に流れる。光源ユニット14は、内側流路74を通る被処理水に向けて紫外光を軸方向に照射する。紫外光が照射された被処理水は、光源ユニット14と対向端部31の間の隙間76を通って内管30の内から外へ流れ、外管20と内管30の間の外側流路78を通って流出口26から流出する。被処理水の一部は、取水口28から冷却水供給管56を通って水冷機構50に供給され、複数の発光素子40の冷却に用いられる。用いられた冷却水は、冷却水排出口54から外部へ排出される。
 水処理装置10を用いる水処理方法は、流入端部32から流入して内管30の内部を軸方向に流れる被処理水に紫外光を照射し、紫外光が照射された被処理水を流出口26から流出させる工程を含む。このとき、水処理装置10を通過する際の圧力損失が5kPa以上20kPa以下となるように被処理水が供給される。圧力損失がこのような範囲内となるように被処理水を供給することで、水処理装置10の内部における被処理水の流れを整流化して、被処理水の全体に均一に紫外光を照射することができる。
 つづいて、本実施の形態が奏する効果について説明する。本実施の形態によれば、内管30の内部を流れる被処理水に向けて流れ方向に沿って紫外光を照射するため、被処理水が軸方向に流れる時間にわたって紫外光を作用させることができる。仮に、流れ方向と直交する方向に紫外光を照射した場合、紫外光の照射範囲を通過するわずかな時間しか紫外光を作用させることができない。この場合、作用量を高めるためには光源を流れ方向に並べるなどして紫外光の照射範囲を流れ方向に長くする必要が生じる。一方、本実施の形態では、流れ方向と対向する位置に光源ユニット14を設けるだけで流れ方向に長い作用長を確保できる。したがって、本実施の形態によれば、流路の端部に設けられる光源からの紫外光を効率的に被処理水に作用させることができる。
 本実施の形態によれば、内管30の材料としてPTFEなどのフッ素系樹脂を用いることで、内管30の外周面23および内周面24への汚れの付着を防ぐことができる。また、PTFEは、紫外光の反射率が高い材料であるため、光源ユニット14からの紫外光を内周面24で反射させながら軸方向に伝搬させることができる。これにより、紫外光反射率の低い材料で内管30を構成する場合と比べて、被処理水に作用する紫外光量を増やすことができる。これにより、水処理能力を向上させることができる。
 本実施の形態によれば、対向端部31の全周にわたって設けられる隙間76を通って内管30の内から外へ被処理水が流れる構成としているため、被処理水の全体としての流れを均一化させることができる。仮に、内管30の内から外へ流れ出るための流路が周方向の一部のみに設けられたり、周方向に非対称に設けられたりする場合、流路構造の非対称性によって被処理水の流れに乱れが生じ、流速分布に偏りが生じうる。紫外光の作用量は、被処理水が内管30を流れる時間、つまり、流速に関連するため、流速分布に偏りが生じてしまうと部分的に照射量が不足してしまう。本実施の形態によれば、被処理水の流速分布を均一化できるため、紫外光の照射量も均一化できる。これにより、被処理水の全体に対して十分な殺菌処理を施すことができる。
 本実施の形態によれば、光源ユニット14と対向端部31の隙間76の寸法を3mm以上30mm以下とすることにより、上述したような整流効果を好適に得ることができる。また、流出口26が設けられる位置を第1端部21から軸方向に10mm以上100mm以下の範囲内で離れた位置とすることにより、水処理装置10の内部の圧力損失を均一化させることができる。同様にして、取水口28を流出口26とは径方向反対側の位置に設けることで、流路構造の対称性を高め、圧力損失がより均一となるようにできる。
 本実施の形態によれば、インローフランジ36やロックピン38などの規制部材を設けることで、内管30の変位を好適に防止できる。被処理水の流量が大きい場合、被処理水の流入による流体エネルギーに起因して内管30が振動し、外管20と内管30の間隔、つまり、外側流路78の流路幅が変動することが考えられる。外側流路78の流路幅が変動すると、圧力損失が不均一となって処理能力が低下するおそれがある。本実施の形態によれば、規制部材により内管30の振動を防止し、外側流路78の流路幅を一定に維持することができるため、圧力損失を均一に維持することができる。
 以上、本発明を実施の形態にもとづいて説明した。本発明は上記実施の形態に限定されず、種々の設計変更が可能であり、様々な変形例が可能であること、またそうした変形例も本発明の範囲にあることは、当業者に理解されるところである。
 10…水処理装置、12…二重管構造ユニット、14…光源ユニット、20…外管、21…第1端部、22…第2端部、23…外周面、24…内周面、26…流出口、28…取水口、30…内管、31…対向端部、32…流入端部、33…外周面、34…内周面、36…インローフランジ、38…ロックピン、40…発光素子、50…水冷機構、76…隙間。
 本発明によれば、紫外光照射効率を高めて水処理能力を向上させることができる。

Claims (8)

  1.  第1端部から第2端部に向けて軸方向に延在する外管と、前記外管の内部に配置され、前記軸方向に延在する内管と、前記外管と前記内管の間に配置され、前記外管に対する前記内管の径方向の変位を防止する規制部材と、を有する二重管構造ユニットと、
     前記外管の前記第1端部の開口を液密に塞ぐように配置され、前記内管の内部を流れる被処理水に向けて前記軸方向に紫外光を照射する光源ユニットと、を備え、
     前記内管は、前記光源ユニットとの間に設けられる隙間を挟んで前記光源ユニットと対向する対向端部と、前記対向端部の反対側に位置し、被処理水が流入する流入端部と、を有し、
     前記外管は、前記外管の外周面に設けられる流出口を有し、前記隙間を通って前記内管の内から外へ流れた被処理水が前記流出口から流出することを特徴とする水処理装置。
  2.  前記規制部材は、前記外管の前記第2端部と前記内管の流入端部の間を塞ぐように配置されるインローフランジを含むことを特徴とする請求項1に記載の水処理装置。
  3.  前記規制部材は、前記第2端部より前記第1端部に近い位置で前記外管の内周面から前記内管の外周面に向けて径方向に延在するロックピンを含むことを特徴とする請求項1または2に記載の水処理装置。
  4.  前記隙間は、前記軸方向の寸法が3mm以上30mm以下であることを特徴とする請求項1から3のいずれか一項に記載の水処理装置。
  5.  前記外管の内直径と前記内管の外直径との差が10mm以上50mm以下であることを特徴とする請求項1から4のいずれか一項に記載の水処理装置。
  6.  前記流出口は、前記第1端部より前記第2端部に近い位置に設けられることを特徴とする請求項1から5のいずれか一項に記載の水処理装置。
  7.  前記光源ユニットは、紫外光を発する発光素子と、前記発光素子を冷却する水冷機構とを有し、前記水冷機構は、前記外管の外周面に設けられる取水口から冷却水が供給されるよう構成され、
     前記取水口は、前記内管を挟んで前記流出口とは径方向反対側の位置に設けられることを特徴とする請求項1から6のいずれか一項に記載の水処理装置。
  8.  請求項1から7のいずれか一項に記載の水処理装置を用いる水処理方法であって、
     前記流入端部から流入して前記内管の内部を前記軸方向に流れる被処理水に紫外光を照射し、紫外光が照射された被処理水を前記流出口から流出させる工程を備え、
     前記水処理装置を通過する際の圧力損失が5kPa以上20kPa以下となるように被処理水が供給されることを特徴とする水処理方法。
PCT/JP2017/036922 2016-10-31 2017-10-12 水処理装置および水処理方法 WO2018079274A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
SG11201903813WA SG11201903813WA (en) 2016-10-31 2017-10-12 Water treatment device and water treatment method
CA3042157A CA3042157C (en) 2016-10-31 2017-10-12 Device and method for ultraviolet water treatment
EP17865086.7A EP3533767B1 (en) 2016-10-31 2017-10-12 Water treatment device
CN201780067837.XA CN110049951A (zh) 2016-10-31 2017-10-12 水处理装置及水处理方法
US16/399,070 US10669167B2 (en) 2016-10-31 2019-04-30 Water treatment device and water treatment method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016212761A JP6681314B2 (ja) 2016-10-31 2016-10-31 水処理装置および水処理方法
JP2016-212761 2016-10-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/399,070 Continuation US10669167B2 (en) 2016-10-31 2019-04-30 Water treatment device and water treatment method

Publications (1)

Publication Number Publication Date
WO2018079274A1 true WO2018079274A1 (ja) 2018-05-03

Family

ID=62023532

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/036922 WO2018079274A1 (ja) 2016-10-31 2017-10-12 水処理装置および水処理方法

Country Status (8)

Country Link
US (1) US10669167B2 (ja)
EP (1) EP3533767B1 (ja)
JP (1) JP6681314B2 (ja)
CN (1) CN110049951A (ja)
CA (1) CA3042157C (ja)
SG (1) SG11201903813WA (ja)
TW (1) TWI717565B (ja)
WO (1) WO2018079274A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018140001A (ja) * 2017-02-28 2018-09-13 東芝ライテック株式会社 流体殺菌装置
JP2020039516A (ja) * 2018-09-07 2020-03-19 スタンレー電気株式会社 流体殺菌装置

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6909175B2 (ja) * 2018-04-20 2021-07-28 旭化成株式会社 流体殺菌モジュール
JP6994687B2 (ja) * 2018-08-08 2022-01-14 株式会社Uskテクノロジー 流体殺菌装置
JP7230624B2 (ja) 2019-03-25 2023-03-01 東芝ライテック株式会社 流体殺菌装置
US11365134B2 (en) 2019-07-31 2022-06-21 Access Business Group International Llc Water treatment system
WO2021020536A1 (ja) * 2019-07-31 2021-02-04 旭化成株式会社 紫外線照射装置及び紫外線照射方法
CN110921766B (zh) * 2019-09-11 2023-01-13 上海紫奕光电科技有限公司 一种流体消毒设备
JP7370261B2 (ja) * 2020-01-28 2023-10-27 スタンレー電気株式会社 流体殺菌装置及び流体殺菌ユニット
JP7445191B2 (ja) * 2020-03-16 2024-03-07 東芝ライテック株式会社 流体殺菌装置、および流体殺菌システム
JP2022055050A (ja) 2020-09-28 2022-04-07 東芝ライテック株式会社 流体殺菌装置
DE202022000913U1 (de) 2022-04-11 2023-07-14 PURION GmbH UV-Wasserbehandlungseinheit
JP2024014411A (ja) * 2022-07-22 2024-02-01 スタンレー電気株式会社 流体殺菌装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007502200A (ja) * 2003-08-04 2007-02-08 アトランティウム レイザーズ リミテッド 光放射による液体及びガスの直列処理
JP2008503347A (ja) * 2004-06-22 2008-02-07 ハネウェル・インターナショナル・インコーポレーテッド 紫外線放射を用いた水殺菌装置
JP2012115715A (ja) * 2010-11-29 2012-06-21 Maezawa Ind Inc 紫外線照射水処理装置
JP2014233646A (ja) 2013-05-30 2014-12-15 日機装株式会社 水浄化装置
JP2016511138A (ja) * 2013-01-24 2016-04-14 アトランティウム テクノロジーズ リミテッド 発光ダイオードから放射された光による液体消毒方法及び装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53539A (en) * 1976-06-23 1978-01-06 Nissan Motor Co Ltd Driving wheel of vehicle for rope transit system
JP2003109186A (ja) * 2001-09-27 2003-04-11 Shinohara Electric Co Ltd 信号機の支持装置
US7544291B2 (en) * 2004-12-21 2009-06-09 Ranco Incorporated Of Delaware Water purification system utilizing a plurality of ultraviolet light emitting diodes
ES2337286T3 (es) * 2006-11-06 2010-04-22 Severn Trent Water Purification, Inc. Aparato de desinfeccion del agua.
CN200980846Y (zh) * 2006-11-24 2007-11-28 冼国佳 一种杀菌装置
US20140263090A1 (en) * 2013-03-15 2014-09-18 Stephen A. Yencho High Flow Rate Fluid Disinfection System
CN105208859A (zh) * 2013-03-15 2015-12-30 美国陶氏益农公司 作为除草剂的新型的4-氨基吡啶和6-氨基嘧啶羧酸酯
WO2014187523A1 (en) * 2013-05-22 2014-11-27 Merck Patent Gmbh Biocidal purification reactor
CN104418403A (zh) * 2013-09-05 2015-03-18 首尔伟傲世有限公司 流水型杀菌装置及利用此的连接装置
KR101379737B1 (ko) * 2013-09-06 2014-04-01 피엠라이트 주식회사 수 처리용 자외선 살균 램프 및 시스템

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007502200A (ja) * 2003-08-04 2007-02-08 アトランティウム レイザーズ リミテッド 光放射による液体及びガスの直列処理
JP2008503347A (ja) * 2004-06-22 2008-02-07 ハネウェル・インターナショナル・インコーポレーテッド 紫外線放射を用いた水殺菌装置
JP2012115715A (ja) * 2010-11-29 2012-06-21 Maezawa Ind Inc 紫外線照射水処理装置
JP2016511138A (ja) * 2013-01-24 2016-04-14 アトランティウム テクノロジーズ リミテッド 発光ダイオードから放射された光による液体消毒方法及び装置
JP2014233646A (ja) 2013-05-30 2014-12-15 日機装株式会社 水浄化装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3533767A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018140001A (ja) * 2017-02-28 2018-09-13 東芝ライテック株式会社 流体殺菌装置
JP2020039516A (ja) * 2018-09-07 2020-03-19 スタンレー電気株式会社 流体殺菌装置
JP7267699B2 (ja) 2018-09-07 2023-05-02 スタンレー電気株式会社 流体殺菌装置

Also Published As

Publication number Publication date
CA3042157C (en) 2021-03-30
EP3533767B1 (en) 2022-04-06
CN110049951A (zh) 2019-07-23
US10669167B2 (en) 2020-06-02
EP3533767A1 (en) 2019-09-04
EP3533767A4 (en) 2020-04-08
TW201819315A (zh) 2018-06-01
JP6681314B2 (ja) 2020-04-15
TWI717565B (zh) 2021-02-01
CA3042157A1 (en) 2018-05-03
US20190256380A1 (en) 2019-08-22
JP2018069166A (ja) 2018-05-10
SG11201903813WA (en) 2019-05-30

Similar Documents

Publication Publication Date Title
WO2018079274A1 (ja) 水処理装置および水処理方法
CN108472396B (zh) 流体杀菌装置
JP6458779B2 (ja) 流体殺菌装置
CN107921157B (zh) 杀菌装置
CN111320229B (zh) 流体杀菌装置
US20180228928A1 (en) Fluid sterilization device and fluid sterilization method
US10882764B2 (en) Fluid sterilization apparatus
US20180244543A1 (en) Fluid sterilization device
JP6629936B2 (ja) 流体殺菌装置
JP6189914B2 (ja) 紫外線照射モジュール用セル、紫外線照射モジュール及び紫外線照射モジュールの設置方法
JP6891537B2 (ja) 流体殺菌装置
TW201827345A (zh) 流體殺菌裝置
WO2018037938A1 (ja) 流水殺菌装置および流水殺菌方法
JP7299101B2 (ja) 紫外線照射装置
JP6676749B2 (ja) Uv放射が照射される液状の媒質を基板に塗布するための装置
JP7043172B2 (ja) 照射装置
JP6669910B1 (ja) 水処理装置
JP2023135922A (ja) 紫外線反射層
JP2022145097A (ja) 流体殺菌装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17865086

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3042157

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017865086

Country of ref document: EP

Effective date: 20190531