WO2018079111A1 - 油井管用マルテンサイト系ステンレス継目無鋼管およびその製造方法 - Google Patents

油井管用マルテンサイト系ステンレス継目無鋼管およびその製造方法 Download PDF

Info

Publication number
WO2018079111A1
WO2018079111A1 PCT/JP2017/033008 JP2017033008W WO2018079111A1 WO 2018079111 A1 WO2018079111 A1 WO 2018079111A1 JP 2017033008 W JP2017033008 W JP 2017033008W WO 2018079111 A1 WO2018079111 A1 WO 2018079111A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
pipe
stainless steel
martensitic stainless
formula
Prior art date
Application number
PCT/JP2017/033008
Other languages
English (en)
French (fr)
Japanese (ja)
Inventor
まみ 遠藤
江口 健一郎
正雄 柚賀
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to JP2017567270A priority Critical patent/JP6315159B1/ja
Priority to MX2019004721A priority patent/MX2019004721A/es
Priority to US16/343,829 priority patent/US20190241989A1/en
Priority to BR112019007842-8A priority patent/BR112019007842B1/pt
Priority to EP17865353.1A priority patent/EP3533892B1/de
Publication of WO2018079111A1 publication Critical patent/WO2018079111A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • C21D9/085Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • C21D8/105Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the present invention relates to an oil country tubular goods martensitic stainless steel pipe used for oil or gas wells (hereinafter simply referred to as oil wells) and a method for producing the same.
  • oil wells oil country tubular goods martensitic stainless steel pipe used for oil or gas wells
  • CO 2 chloride ion
  • Cl ⁇ chloride ion
  • SSC resistance sulfide stress corrosion cracking resistance
  • 13% Cr martensitic stainless steel pipes are often used as oil country tubular goods for mining in oil fields and gas fields that contain carbon dioxide and chlorine ions. Recently, development of oil fields, etc. in extremely severe corrosive environments containing hydrogen sulfide has been carried out on a global scale, so the demand for SSC resistance is increasing, and components that have reduced C and increased Ni and Mo The use of improved 13% Cr martensitic stainless steel pipes is also expanding.
  • 13% Cr-based steel is used as the basic composition, C is remarkably reduced as compared with the prior art, Ni, Mo and Cu are further included, Cr + 2Ni + 1.1Mo + 0.7Cu ⁇ 32.5 is satisfied, and Nb is further added.
  • V 0.20% or less
  • yield strength high strength of 965 MPa or more
  • It is said that it has high toughness with Charpy absorbed energy at 40 ° C of 50J or more, and can secure good corrosion resistance.
  • Patent Document 2 describes a 13% Cr martensitic stainless steel pipe containing 0.01% or less of an extremely low C content and 0.03% or more of Ti, and has a yield stress of 95 ksi class (655 to 758 MPa). It has both high strength and low hardness of Rockwell hardness HRC of less than 27, and is said to have excellent SSC resistance.
  • Patent Document 3 describes martensitic stainless steel in which Ti / C having a correlation with a value obtained by subtracting yield stress from tensile stress satisfies 6.0 ⁇ Ti / C ⁇ 10.1. According to the described technique, the value obtained by subtracting the yield stress from the tensile stress is 20.7 MPa or more, and it is possible to suppress variation in hardness that reduces the SSC resistance.
  • the amount of Mo in steel is defined by Mo ⁇ 2.3 ⁇ 0.89Si + 32.2C, and the metal structure is mainly tempered martensite, carbides precipitated during tempering, and Laves phase precipitated finely during tempering. And martensitic stainless steel composed of intermetallic compounds such as ⁇ phase and the like. According to the described technology, 0.2% proof stress can achieve high strength of 860MPa or more, and it has excellent carbon-dioxide-corrosion-resistance and sulfide stress corrosion cracking resistance. .
  • Patent Document 2 the resistance to sulfide stress corrosion cracking can be maintained under the condition that a stress of 655 MPa is applied in an atmosphere in which a 5% NaCl aqueous solution (H 2 S: 0.10 bar) is adjusted to pH 3.5.
  • Patent Document 3 it is said that it has resistance to sulfide stress corrosion cracking in an atmosphere in which a 20% NaCl aqueous solution (H 2 S: 0.03 atm, CO 2 bal.) Is adjusted to pH: 4.5.
  • Patent Document 4 it is said that it has sulfide stress corrosion cracking resistance in an atmosphere in which a 25% NaCl aqueous solution (H 2 S: 0.003 MPa, CO 2 bal.) Is adjusted to pH: 4.0.
  • a 25% NaCl aqueous solution H 2 S: 0.003 MPa, CO 2 bal.
  • the resistance to sulfide stress corrosion cracking in atmospheres other than those described above has not been studied, and it is difficult to say that it has the resistance to sulfide stress corrosion cracking that can withstand the more severe corrosion environments of recent years.
  • An object of the present invention is to provide a martensitic stainless steel seamless pipe for oil well pipes having high strength and excellent sulfide stress corrosion cracking resistance, and a method for producing the same.
  • “high strength” is assumed to be a yield stress of 758 MPa (110 ksi) or more.
  • the yield stress is 896 MPa or less.
  • “excellent sulfide stress corrosion cracking resistance” as used herein refers to test solution: 0.165% by mass NaCl aqueous solution (liquid temperature: 25 ° C., H 2 S: 1 bar, CO 2 bal), Na acetate and hydrochloric acid.
  • test piece is immersed in an aqueous solution adjusted to pH: 3.5, the immersion time is set to 720 hours, 90% of the yield stress is applied as the load stress, and the test piece is cracked after the test. The case where it does not do shall be said.
  • the inventors of the present invention have a 13% Cr stainless steel pipe as a basic composition, and are resistant to sulfide stress corrosion cracking in a corrosive environment containing CO 2 , Cl ⁇ and H 2 S ( The effect of various alloying elements on SSC resistance was studied. As a result, proper quenching and tempering with a composition containing C, Mn, Cr, Cu, Ni, Mo, W, Nb, N, and Ti adjusted to satisfy the appropriate relational expression and range. An oil well having excellent SSC resistance in a corrosive atmosphere containing CO 2 , Cl ⁇ , and H 2 S, and in an environment where stress near the yield stress is applied by applying the treatment. It has been found that a martensitic stainless steel seamless pipe for pipes can be obtained.
  • the present invention has been completed by further studies based on the above findings. That is, the gist of the present invention is as follows. [1] By mass%, C: 0.035% or less, Si: 0.5% or less, Mn: 0.05 to 0.5%, P: 0.03% or less, S: 0.005% or less, Cu: 2.6% or less, Ni: 5.3 to 7.3% , Cr: 11.8 to 14.5%, Al: 0.1% or less, Mo: 1.8 to 3.0%, V: 0.2% or less, N: 0.1% or less, and the following formulas (1), (2) and (3 ) Formula satisfies the following (4), has a composition consisting of the balance Fe and inevitable impurities, A martensitic stainless steel seamless pipe for oil well pipes characterized by having a yield stress of 758 MPa or more.
  • SSC resistance sulfide stress corrosion cracking resistance
  • the stainless steel seamless pipe of the present invention is in mass%, C: 0.035% or less, Si: 0.5% or less, Mn: 0.05 to 0.5%, P: 0.03% or less, S: 0.005% or less, Cu: 2.6% or less, Ni: 5.3-7.3%, Cr: 11.8-14.5%, Al: 0.1% or less, Mo: 1.8-3.0%, V: 0.2% or less, N: 0.1% or less, and the following formula (1), ( 2) and 3) satisfy the following (4), (5) or (6), have a composition consisting of the remaining Fe and inevitable impurities, and have a yield stress of 758 MPa or more.
  • Stainless steel seamless steel pipe satisfy the following (4), (5) or (6), have a composition consisting of the remaining Fe and inevitable impurities, and have a yield stress of 758 MPa or more.
  • C 0.035% or less C is an important element related to the strength of martensitic stainless steel and is effective in improving the strength. However, if the content exceeds 0.035%, the hardness becomes too high, so that the sensitivity to sulfide stress corrosion cracking increases. For this reason, in the present invention, the C content is limited to 0.035% or less. Preferably, the C content is 0.015% or less. More preferably, the C content is 0.0090% or less. More preferably, the content is 0.0075% or less. On the other hand, in order to ensure a desired strength, the C content is desirably 0.005% or more.
  • Si 0.5% or less Since Si acts as a deoxidizer, it is desirable to contain 0.05% or more of Si. On the other hand, the Si content exceeding 0.5% reduces the carbon dioxide gas corrosion resistance and hot workability. For this reason, Si content is limited to 0.5% or less.
  • the lower limit of the Si content is preferably 0.10% or more, and the upper limit is preferably 0.30% or less.
  • Mn 0.05-0.5%
  • Mn is an element that improves hot workability and contains 0.05% or more of Mn.
  • the Mn content is limited to 0.05 to 0.5%. Preferably, it is 0.40% or less.
  • P 0.03% or less
  • P is an element that lowers the carbon dioxide corrosion resistance, pitting corrosion resistance, and sulfide stress corrosion cracking resistance, and is desirably reduced as much as possible in the present invention.
  • extreme reduction increases manufacturing costs. Therefore, the P content is limited to 0.03% or less as a range that does not cause an extreme deterioration of the characteristics and can be industrially inexpensively implemented.
  • the P content is 0.02% or less.
  • S 0.005% or less Since S is an element that significantly reduces hot workability, it is desirable to reduce it as much as possible. By reducing the S content to 0.005% or less, pipe production in a normal process becomes possible, so the S content in the present invention is limited to 0.005% or less. Preferably, the S content is 0.003% or less.
  • Cu 2.6% or less Cu enhances the resistance to sulfide stress corrosion cracking by strengthening the protective coating. However, if Cu content exceeds 2.6%, CuS is precipitated and hot workability is lowered. Therefore, the Cu content is limited to 2.6% or less.
  • the lower limit of the Cu content is preferably 0.5% or more, and the upper limit is preferably 2.0% or less.
  • Ni 5.3-7.3%
  • Ni is contained in an amount of 5.3% or more to strengthen the protective film and improve the corrosion resistance, and further increase the strength of the steel by solid solution.
  • the Ni content exceeds 7.3%, the stability of the martensite phase decreases and the strength decreases. Therefore, the Ni content is limited to 5.3-7.3%. Preferably, it is 5.7% or more, more preferably 6.0% or more.
  • Cr 11.8 to 14.5% Cr is an element that improves the corrosion resistance by forming a protective film, and the content of 11.8% or more of Cr can ensure the necessary corrosion resistance for oil well pipes. On the other hand, if the Cr content exceeds 14.5%, the formation of ferrite becomes easy, and it becomes impossible to ensure the stability of the martensite phase. Therefore, the Cr content is limited to 11.8 to 14.5%.
  • the lower limit of the Cr content is preferably 12.0% or more, and the upper limit is preferably 13.5% or less.
  • Al 0.1% or less Since Al acts as a deoxidizer, it is effective to contain 0.01% or more of Al in order to obtain such an effect. However, since Al content exceeding 0.1% adversely affects toughness, the Al content in the present invention is limited to 0.1% or less. Preferably, the Al content is 0.01 to 0.03%.
  • Mo 1.8-3.0%
  • Mo is Cl - is an element which improves the resistance to pitting, in order to obtain the corrosion resistance necessary for severe corrosive environment, it is necessary to contain 1.8% or more of Mo.
  • Mo is an expensive element, which causes an increase in manufacturing cost. Therefore, the Mo content is limited to 1.8 to 3.0%.
  • the lower limit of the Mo content is preferably 2.4% or more, and the upper limit is preferably 2.9% or less.
  • V 0.2% or less
  • V is preferably contained in an amount of 0.01% or more because V improves the strength of the steel by precipitation strengthening and further improves the resistance to sulfide stress corrosion cracking.
  • the V content in the present invention is limited to 0.2% or less.
  • the lower limit of the V content is preferably 0.01% or more, and preferably the upper limit is 0.08% or less.
  • N 0.1% or less
  • N is an element that remarkably improves pitting corrosion resistance.
  • various nitrides are formed to reduce toughness, so the N content in the present invention is limited to 0.1% or less.
  • the N content is 0.003% or more.
  • the lower limit of the N content is more preferably 0.004% or more, and further preferably 0.005% or more.
  • the upper limit is more preferably 0.08% or less, still more preferably 0.05% or less.
  • the present invention further contains C, Mn, Cr, Cu, Ni, Mo, W, Nb, N, and Ti within the above range, and the following formulas (1), (2), and (3 ) Each element is contained so that the following formula (4) or (5) or (6) is satisfied.
  • Equation (1) correlates with the amount of residual ⁇ . By reducing the value calculated by equation (1), residual austenite is reduced, hardness is reduced, and resistance to sulfide stress corrosion cracking is reduced. improves.
  • Equation (2) is an equation that correlates with the repassivation potential, and the values calculated in Equation (1) are C, Mn so that the range of (4), (5), or (6) is satisfied.
  • equation (3) is an equation that correlates with the pitting potential, and the value calculated by equation (3) is C, Mn, so as to satisfy the range of (4) or (5) or (6).
  • the value calculated by the formula (1) satisfies the range of (4)
  • the value calculated by the formula (1) leads to an increase in hardness at 10 or more, but was calculated by the formula (2).
  • the value and the value calculated by the expression (3) satisfy the range of (4), regeneration of the passive film and suppression of pitting corrosion appear remarkably, and resistance to sulfide stress corrosion cracking is improved.
  • the value calculated by the expression (1) in the following (4) is 5 or more and 45 or less
  • the value calculated by the expression (1) in the following (5) is -5 or more and 5 or less.
  • the balance other than the above components is composed of Fe and inevitable impurities.
  • Ti and Nb can reduce the solid solution carbon and reduce the hardness by forming carbides. On the other hand, since excessive inclusion may reduce toughness, when Ti and / or Nb is contained, Ti is limited to 0.19% or less, and Nb is limited to 0.25% or less.
  • W and Co are both elements that improve pitting corrosion resistance. However, excessive inclusion may reduce toughness and further increase the material cost. Therefore, when W and / or Co is contained, W is limited to 1.1% or less, and Co is limited to 0.45% or less.
  • the preferable manufacturing method of the martensitic stainless steel seamless pipe for oil country tubular goods of this invention is demonstrated.
  • a steel pipe material having the above composition is used.
  • the manufacturing method of the stainless steel seamless steel pipe which is a steel pipe raw material does not need to be specifically limited, All the manufacturing methods of a well-known seamless steel pipe are applicable.
  • the molten steel having the above composition is preferably melted by a melting method such as a converter and used as a steel pipe material such as a billet by a continuous casting method, an ingot-bundling rolling method, or the like.
  • the processing after forming the steel pipe material into a steel pipe is not particularly limited.
  • the steel pipe is heated to the Ac 3 transformation point or higher, followed by quenching to air-cool at a cooling rate of 0.1 ° C./s to a cooling stop temperature of 100 ° C. or lower, and then tempered at a temperature below the Ac 1 transformation point. And tempering.
  • the steel pipe is further reheated to a temperature above the Ac 3 transformation point, preferably kept for 5 min or more, and then subjected to a quenching treatment for air cooling to a cooling stop temperature of 100 ° C. or less.
  • a quenching treatment for air cooling to a cooling stop temperature of 100 ° C. or less.
  • the quenching heating temperature is less than the Ac 3 transformation point, heating cannot be performed in the austenite single phase region, and thus sufficient martensite structure cannot be obtained by subsequent cooling, and a desired high strength cannot be achieved. Therefore, the quenching heating temperature is limited to the Ac 3 transformation point or higher.
  • said air cooling refers to the cooling rate of 0.1 degree-C / s or more.
  • the tempering process is a process of heating below the Ac 1 transformation point, preferably holding for 10 min or more, and air cooling.
  • the tempering temperature is higher than the Ac 1 transformation point, the martensite phase precipitates after tempering, and the desired high toughness and excellent corrosion resistance cannot be ensured. Therefore, the tempering temperature is limited to the Ac 1 transformation point or lower.
  • a four-master test that gives a temperature history of heating and cooling to the test piece and detects the transformation point from minute displacements of expansion and contraction. Can be measured.
  • molten steel having the components shown in Table 1 is melted in a converter, it is cast into a billet (steel pipe material) by a continuous casting method, further piped by hot working using a model seamless rolling mill, and air-cooled (cooling rate 0.5) C./s) After that, a seamless steel pipe having an outer diameter of 83.8 mm and a wall thickness of 12.7 mm was obtained.
  • a test material was cut out from the obtained seamless steel pipe and subjected to quenching and tempering treatment under the conditions shown in Table 2.
  • a specimen for microstructure observation was collected from the test material subjected to quenching and tempering treatment, polished, and then the amount of retained austenite ( ⁇ ) was measured by an X-ray diffraction method.
  • I ⁇ ⁇ integral strength
  • I ⁇ ⁇ integral strength
  • R ⁇ ⁇ crystallographic theoretical calculated value
  • API specimen specimens by API standard 5CT are collected from specimens that have been quenched and tempered, and subjected to a tensile test in accordance with the API regulations to obtain tensile properties (yield stress YS). , Tensile stress TS).
  • yield stress YS yield stress
  • Tensile stress TS Tensile stress TS
  • Table 2 for Ac 3 point (° C.) and Ac 1 point (° C.), a test piece of 4 mm ⁇ ⁇ 10 mm was taken from the test material subjected to quenching treatment and measured by a formaster test. Specifically, the test piece was heated to 500 ° C. at 5 ° C./s, further heated to 920 ° C. at 0.25 ° C./s and held for 10 minutes, and then cooled to room temperature at 2 ° C./s. The Ac 3 point (° C.) and Ac 1 point (° C.) were obtained by detecting the expansion and contraction of the test piece accompanying this temperature history.
  • the SSC test was performed according to NACE TM0177 Method A.
  • the test environment is 0.165% NaCl by adding 0.41 g / L CH 3 COONa + HCl to pH 3.5 and the hydrogen sulfide partial pressure is 0.1 MPa, and 90% of the yield stress is loaded. The test was carried out as stress.
  • All of the examples of the present invention have a high strength of yield stress of 758 MPa or more and martensite stainless steel seamless steel pipe having excellent SSC resistance without cracking even when stress is applied in an environment containing H 2 S. It has become.
  • the desired high strength is obtained, but excellent SSC resistance cannot be ensured.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Heat Treatment Of Articles (AREA)
  • Heat Treatment Of Steel (AREA)
PCT/JP2017/033008 2016-10-25 2017-09-13 油井管用マルテンサイト系ステンレス継目無鋼管およびその製造方法 WO2018079111A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2017567270A JP6315159B1 (ja) 2016-10-25 2017-09-13 油井管用マルテンサイト系ステンレス継目無鋼管およびその製造方法
MX2019004721A MX2019004721A (es) 2016-10-25 2017-09-13 Tubo sin costura de acero inoxidable martensitico para productos tubulares de region petrolifera, y metodo para la produccion del mismo.
US16/343,829 US20190241989A1 (en) 2016-10-25 2017-09-13 Martensitic stainless steel seamless pipe for oil country tubular goods, and method for producing same
BR112019007842-8A BR112019007842B1 (pt) 2016-10-25 2017-09-13 Tubo sem costura de aço inoxidável martensítico para produtos tubulares do setor petrolífero e seu método de produção
EP17865353.1A EP3533892B1 (de) 2016-10-25 2017-09-13 NAHTLOSES ROHR AUS ROSTFREIEM MARTENSITISCHEN STAHL FÜR EIN ÖLBOHRROHR UND VERFAHREN ZUR HERSTELLUNG DES NAHTLOSEN
ROHRS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-208420 2016-10-25
JP2016208420 2016-10-25

Publications (1)

Publication Number Publication Date
WO2018079111A1 true WO2018079111A1 (ja) 2018-05-03

Family

ID=62024768

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/033008 WO2018079111A1 (ja) 2016-10-25 2017-09-13 油井管用マルテンサイト系ステンレス継目無鋼管およびその製造方法

Country Status (7)

Country Link
US (1) US20190241989A1 (de)
EP (1) EP3533892B1 (de)
JP (1) JP6315159B1 (de)
AR (1) AR109869A1 (de)
BR (1) BR112019007842B1 (de)
MX (1) MX2019004721A (de)
WO (1) WO2018079111A1 (de)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019065116A1 (ja) * 2017-09-29 2019-04-04 Jfeスチール株式会社 油井管用マルテンサイト系ステンレス継目無鋼管およびその製造方法
WO2019065115A1 (ja) * 2017-09-29 2019-04-04 Jfeスチール株式会社 油井管用マルテンサイト系ステンレス継目無鋼管およびその製造方法
WO2019065114A1 (ja) * 2017-09-29 2019-04-04 Jfeスチール株式会社 油井管用マルテンサイト系ステンレス継目無鋼管およびその製造方法
WO2019225281A1 (ja) * 2018-05-25 2019-11-28 Jfeスチール株式会社 油井管用マルテンサイト系ステンレス継目無鋼管およびその製造方法
WO2019225280A1 (ja) * 2018-05-25 2019-11-28 Jfeスチール株式会社 油井管用マルテンサイト系ステンレス継目無鋼管およびその製造方法
WO2020071348A1 (ja) * 2018-10-02 2020-04-09 日本製鉄株式会社 マルテンサイト系ステンレス継目無鋼管
WO2020071344A1 (ja) * 2018-10-02 2020-04-09 日本製鉄株式会社 マルテンサイト系ステンレス継目無鋼管
WO2020095559A1 (ja) * 2018-11-05 2020-05-14 Jfeスチール株式会社 油井管用マルテンサイト系ステンレス継目無鋼管およびその製造方法
EP3859031A4 (de) * 2018-09-27 2022-06-15 Nippon Steel Corporation Martensitisches edelstahlmaterial
WO2023195361A1 (ja) * 2022-04-08 2023-10-12 日本製鉄株式会社 マルテンサイト系ステンレス鋼材

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11286548B2 (en) 2017-08-15 2022-03-29 Jfe Steel Corporation High-strength stainless steel seamless pipe for oil country tubular goods, and method for manufacturing same
CN108707840B (zh) * 2018-06-27 2019-10-25 北京金物科技发展有限公司 一种低碳高强马氏体不锈钢及其制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003003243A (ja) * 2001-06-22 2003-01-08 Sumitomo Metal Ind Ltd 耐炭酸ガス腐食性および耐硫化物応力腐食割れ性に優れた高強度マルテンサイトステンレス鋼
WO2004057050A1 (ja) 2002-12-20 2004-07-08 Sumitomo Metal Industries, Ltd. 耐炭酸ガス腐食性および耐硫化物応力腐食割れ性に優れた高強度マルテンサイトステンレス鋼
JP2006144069A (ja) * 2004-11-19 2006-06-08 Sumitomo Metal Ind Ltd マルテンサイト系ステンレス鋼
JP2007332442A (ja) 2006-06-16 2007-12-27 Jfe Steel Kk 耐食性に優れる油井用高靭性超高強度ステンレス鋼管およびその製造方法
WO2008023702A1 (fr) 2006-08-22 2008-02-28 Sumitomo Metal Industries, Ltd. Acier inoxydable martensitique
JP2010242163A (ja) 2009-04-06 2010-10-28 Jfe Steel Corp 油井管用マルテンサイト系ステンレス継目無鋼管の製造方法
JP2012136742A (ja) * 2010-12-27 2012-07-19 Jfe Steel Corp 油井用高強度マルテンサイト系ステンレス継目無鋼管
WO2014112353A1 (ja) * 2013-01-16 2014-07-24 Jfeスチール株式会社 油井用ステンレス継目無鋼管およびその製造方法
WO2015178022A1 (ja) * 2014-05-21 2015-11-26 Jfeスチール株式会社 油井用高強度ステンレス継目無鋼管およびその製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5245238B2 (ja) * 2005-11-28 2013-07-24 Jfeスチール株式会社 拡管性に優れた油井管用ステンレス鋼管およびその製造方法
CN101397637B (zh) * 2007-09-29 2010-11-24 宝山钢铁股份有限公司 13Cr高抗二氧化碳和微量硫化氢腐蚀油套管用钢及其制造方法
JP6787483B2 (ja) * 2017-03-28 2020-11-18 日本製鉄株式会社 マルテンサイトステンレス鋼材

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003003243A (ja) * 2001-06-22 2003-01-08 Sumitomo Metal Ind Ltd 耐炭酸ガス腐食性および耐硫化物応力腐食割れ性に優れた高強度マルテンサイトステンレス鋼
WO2004057050A1 (ja) 2002-12-20 2004-07-08 Sumitomo Metal Industries, Ltd. 耐炭酸ガス腐食性および耐硫化物応力腐食割れ性に優れた高強度マルテンサイトステンレス鋼
JP2006144069A (ja) * 2004-11-19 2006-06-08 Sumitomo Metal Ind Ltd マルテンサイト系ステンレス鋼
JP2007332442A (ja) 2006-06-16 2007-12-27 Jfe Steel Kk 耐食性に優れる油井用高靭性超高強度ステンレス鋼管およびその製造方法
WO2008023702A1 (fr) 2006-08-22 2008-02-28 Sumitomo Metal Industries, Ltd. Acier inoxydable martensitique
JP2010242163A (ja) 2009-04-06 2010-10-28 Jfe Steel Corp 油井管用マルテンサイト系ステンレス継目無鋼管の製造方法
JP2012136742A (ja) * 2010-12-27 2012-07-19 Jfe Steel Corp 油井用高強度マルテンサイト系ステンレス継目無鋼管
WO2014112353A1 (ja) * 2013-01-16 2014-07-24 Jfeスチール株式会社 油井用ステンレス継目無鋼管およびその製造方法
WO2015178022A1 (ja) * 2014-05-21 2015-11-26 Jfeスチール株式会社 油井用高強度ステンレス継目無鋼管およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3533892A4

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019065116A1 (ja) * 2017-09-29 2019-04-04 Jfeスチール株式会社 油井管用マルテンサイト系ステンレス継目無鋼管およびその製造方法
WO2019065115A1 (ja) * 2017-09-29 2019-04-04 Jfeスチール株式会社 油井管用マルテンサイト系ステンレス継目無鋼管およびその製造方法
WO2019065114A1 (ja) * 2017-09-29 2019-04-04 Jfeスチール株式会社 油井管用マルテンサイト系ステンレス継目無鋼管およびその製造方法
JP6540922B1 (ja) * 2017-09-29 2019-07-10 Jfeスチール株式会社 油井管用マルテンサイト系ステンレス継目無鋼管およびその製造方法
JP6540921B1 (ja) * 2017-09-29 2019-07-10 Jfeスチール株式会社 油井管用マルテンサイト系ステンレス継目無鋼管およびその製造方法
JP6540920B1 (ja) * 2017-09-29 2019-07-10 Jfeスチール株式会社 油井管用マルテンサイト系ステンレス継目無鋼管およびその製造方法
US11827949B2 (en) 2017-09-29 2023-11-28 Jfe Steel Corporation Martensitic stainless steel seamless pipe for oil country tubular goods, and method for manufacturing same
US11401570B2 (en) 2017-09-29 2022-08-02 Jfe Steel Corporation Martensitic stainless steel seamless pipe for oil country tubular goods, and method for manufacturing same
CN112166205A (zh) * 2018-05-25 2021-01-01 杰富意钢铁株式会社 油井管用马氏体系不锈钢无缝钢管及其制造方法
JP6680408B1 (ja) * 2018-05-25 2020-04-15 Jfeスチール株式会社 油井管用マルテンサイト系ステンレス継目無鋼管およびその製造方法
JP6680409B1 (ja) * 2018-05-25 2020-04-15 Jfeスチール株式会社 油井管用マルテンサイト系ステンレス継目無鋼管およびその製造方法
WO2019225281A1 (ja) * 2018-05-25 2019-11-28 Jfeスチール株式会社 油井管用マルテンサイト系ステンレス継目無鋼管およびその製造方法
US11773461B2 (en) 2018-05-25 2023-10-03 Jfe Steel Corporation Martensitic stainless steel seamless pipe for oil country tubular goods, and method for manufacturing same
WO2019225280A1 (ja) * 2018-05-25 2019-11-28 Jfeスチール株式会社 油井管用マルテンサイト系ステンレス継目無鋼管およびその製造方法
EP3805420A4 (de) * 2018-05-25 2021-04-14 JFE Steel Corporation Nahtloses stahlrohr aus martensitischem edelstahl für erdölbohrrohre und verfahren zu seiner herstellung
EP3859031A4 (de) * 2018-09-27 2022-06-15 Nippon Steel Corporation Martensitisches edelstahlmaterial
WO2020071348A1 (ja) * 2018-10-02 2020-04-09 日本製鉄株式会社 マルテンサイト系ステンレス継目無鋼管
EP3862451A4 (de) * 2018-10-02 2022-06-15 Nippon Steel Corporation Nahtloses rohr aus rostfreiem stahl auf basis von martensit
JPWO2020071348A1 (ja) * 2018-10-02 2021-09-02 日本製鉄株式会社 マルテンサイト系ステンレス継目無鋼管
US11970759B2 (en) 2018-10-02 2024-04-30 Nippon Steel Corporation Martensitic stainless seamless steel pipe
JP7060108B2 (ja) 2018-10-02 2022-04-26 日本製鉄株式会社 マルテンサイト系ステンレス継目無鋼管
JP7060109B2 (ja) 2018-10-02 2022-04-26 日本製鉄株式会社 マルテンサイト系ステンレス継目無鋼管
WO2020071344A1 (ja) * 2018-10-02 2020-04-09 日本製鉄株式会社 マルテンサイト系ステンレス継目無鋼管
JPWO2020071344A1 (ja) * 2018-10-02 2021-09-02 日本製鉄株式会社 マルテンサイト系ステンレス継目無鋼管
CN112955576A (zh) * 2018-11-05 2021-06-11 杰富意钢铁株式会社 油井管用马氏体系不锈钢无缝钢管及其制造方法
JP6743992B1 (ja) * 2018-11-05 2020-08-19 Jfeスチール株式会社 油井管用マルテンサイト系ステンレス継目無鋼管およびその製造方法
WO2020095559A1 (ja) * 2018-11-05 2020-05-14 Jfeスチール株式会社 油井管用マルテンサイト系ステンレス継目無鋼管およびその製造方法
EP3845680A4 (de) * 2018-11-05 2021-12-01 JFE Steel Corporation Nahtloses rohr aus martensitischem edelstahl für erdölbohrungen und verfahren zu seiner herstellung
WO2023195361A1 (ja) * 2022-04-08 2023-10-12 日本製鉄株式会社 マルテンサイト系ステンレス鋼材
JP7428952B1 (ja) 2022-04-08 2024-02-07 日本製鉄株式会社 マルテンサイト系ステンレス鋼材

Also Published As

Publication number Publication date
BR112019007842A2 (pt) 2019-07-16
EP3533892A4 (de) 2019-10-16
JPWO2018079111A1 (ja) 2018-10-25
MX2019004721A (es) 2019-06-17
EP3533892A1 (de) 2019-09-04
JP6315159B1 (ja) 2018-04-25
BR112019007842B1 (pt) 2023-03-14
US20190241989A1 (en) 2019-08-08
EP3533892B1 (de) 2022-11-02
AR109869A1 (es) 2019-01-30

Similar Documents

Publication Publication Date Title
JP6315159B1 (ja) 油井管用マルテンサイト系ステンレス継目無鋼管およびその製造方法
JP6540922B1 (ja) 油井管用マルテンサイト系ステンレス継目無鋼管およびその製造方法
JP5145793B2 (ja) 油井管用マルテンサイト系ステンレス継目無鋼管およびその製造方法
JP5861786B2 (ja) 油井用ステンレス継目無鋼管およびその製造方法
JP6369662B1 (ja) 二相ステンレス鋼およびその製造方法
JP6540920B1 (ja) 油井管用マルテンサイト系ステンレス継目無鋼管およびその製造方法
JP6680409B1 (ja) 油井管用マルテンサイト系ステンレス継目無鋼管およびその製造方法
JP6540921B1 (ja) 油井管用マルテンサイト系ステンレス継目無鋼管およびその製造方法
JP5499575B2 (ja) 油井管用マルテンサイト系ステンレス継目無鋼管およびその製造方法
JP6743992B1 (ja) 油井管用マルテンサイト系ステンレス継目無鋼管およびその製造方法
JP6237873B2 (ja) 油井用高強度ステンレス継目無鋼管
US11773461B2 (en) Martensitic stainless steel seamless pipe for oil country tubular goods, and method for manufacturing same
JP7207557B2 (ja) 油井管用ステンレス継目無鋼管およびその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017567270

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17865353

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019007842

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2017865353

Country of ref document: EP

Effective date: 20190527

ENP Entry into the national phase

Ref document number: 112019007842

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190417