WO2020095559A1 - 油井管用マルテンサイト系ステンレス継目無鋼管およびその製造方法 - Google Patents
油井管用マルテンサイト系ステンレス継目無鋼管およびその製造方法 Download PDFInfo
- Publication number
- WO2020095559A1 WO2020095559A1 PCT/JP2019/037691 JP2019037691W WO2020095559A1 WO 2020095559 A1 WO2020095559 A1 WO 2020095559A1 JP 2019037691 W JP2019037691 W JP 2019037691W WO 2020095559 A1 WO2020095559 A1 WO 2020095559A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- less
- content
- steel pipe
- value
- seamless steel
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/08—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
- C21D9/085—Cooling or quenching
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/18—Hardening; Quenching with or without subsequent tempering
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/18—Hardening; Quenching with or without subsequent tempering
- C21D1/25—Hardening, combined with annealing between 300 degrees Celsius and 600 degrees Celsius, i.e. heat refining ("Vergüten")
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/26—Methods of annealing
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/56—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
- C21D1/60—Aqueous agents
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/56—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
- C21D1/613—Gases; Liquefied or solidified normally gaseous material
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/004—Heat treatment of ferrous alloys containing Cr and Ni
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/005—Heat treatment of ferrous alloys containing Mn
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/007—Heat treatment of ferrous alloys containing Co
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/008—Heat treatment of ferrous alloys containing Si
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/10—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
- C21D8/105—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/005—Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/42—Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/44—Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/46—Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/48—Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/50—Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/52—Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/54—Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/001—Austenite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/008—Martensite
Definitions
- the present invention relates to a martensite stainless seamless steel pipe for oil well pipes used for crude oil or natural gas oil wells, gas wells (hereinafter, simply referred to as oil wells) and a method for producing the same, and particularly, the yield stress YS is
- the present invention relates to a seamless steel pipe for oil country tubular goods having excellent resistance to sulfide stress corrosion cracking (SSC resistance) in an environment containing hydrogen sulfide (H 2 S) at 758 MPa or more, and a method for producing the same.
- SSC resistance sulfide stress corrosion cracking
- 13% Cr martensitic stainless steel pipes are often used as oil well pipes for mining in oil fields and gas fields that contain carbon dioxide gas, chloride ions, etc.
- oil fields in extremely harsh corrosive environments containing hydrogen sulfide is being carried out on a global scale, so the demand for SSC resistance is increasing, and a component system that reduces C and increases Ni and Mo
- the use of the improved 13% Cr martensitic stainless steel pipe is also expanding.
- Patent Document 1 describes an extremely low C amount of 0.015% or less, and a 13% Cr-based martensitic stainless steel pipe of a component system containing 0.03% or more Ti, and a high yield stress of 95 ksi class, It has a low hardness of less than 27 in HRC and is said to have excellent SSC resistance.
- Patent Document 2 describes martensitic stainless steel satisfying 6.0 ⁇ Ti / C ⁇ 10.1 because Ti / C has a correlation with the value obtained by subtracting the yield stress from the tensile stress. According to the technology described, the value obtained by subtracting the yield stress from the tensile stress is set to 20.7 MPa or more, and it is possible to suppress the variation in hardness that deteriorates the SSC resistance.
- the amount of Mo in the steel is specified as Mo ⁇ 2.3 ⁇ 0.89Si + 32.2C, and the metallographic structure is mainly tempered martensite, carbides precipitated during tempering, and Laves phase finely precipitated during tempering.
- a martensitic stainless steel composed of an intermetallic compound such as ⁇ phase is described. According to the described technique, the 0.2% proof stress of the steel becomes high strength of 860 MPa or more, and it is possible to have excellent carbon dioxide gas corrosion resistance and sulfide stress corrosion cracking resistance.
- Patent Document 1 it is said that the sulfide stress corrosion cracking resistance can be maintained under the condition that a stress of 655 MPa is applied in an atmosphere in which a 5% NaCl aqueous solution (H 2 S: 0.10 bar) is adjusted to pH 3.5.
- a stress of 655 MPa is applied in an atmosphere in which a 5% NaCl aqueous solution (H 2 S: 0.10 bar) is adjusted to pH 3.5.
- a 5% NaCl aqueous solution H 2 S: 0.10 bar
- Patent Document 2 bal 20% NaCl aqueous solution (H 2 S: 0.03 bar, CO 2 bal) is adjusted to pH: 4.5 in an atmosphere
- Patent Document 3 25% NaCl aqueous solution (H 2 S: 0.03 bar).
- CO 2 bal) in an atmosphere adjusted to pH: 4.0 is said to have sulfide stress corrosion cracking resistance.
- sulfide stress corrosion cracking resistance under an atmosphere other than the above has not been studied, and it is hard to
- An object of the present invention is to provide a martensitic stainless seamless steel pipe for oil country tubular goods having a yield stress of 758 MPa (110 ksi) or more, and having excellent sulfide stress corrosion corrosion cracking resistance, and a method for producing the same. .
- excellent sulfide stress corrosion cracking resistance here means that test solution: 0.165 mass% NaCl aqueous solution (liquid temperature: 25 ° C, H 2 S: 1 bar, CO 2 bal), sodium acetate + hydrochloric acid
- test solution 0.165 mass% NaCl aqueous solution (liquid temperature: 25 ° C, H 2 S: 1 bar, CO 2 bal), sodium acetate + hydrochloric acid
- the test piece is dipped in an aqueous solution adjusted to pH: 3.5, the immersion time is 720 hours, 90% of the yield stress is applied as a load stress, and the test is performed. When not done.
- the inventors of the present invention have a sulfide stress corrosion cracking resistance in a corrosive environment containing 13% Cr-based stainless steel pipe as a basic composition and containing CO 2 , Cl ⁇ and H 2 S ( The effects of various alloying elements on the (SSC resistance) have been thoroughly investigated. As a result, each component is contained in a predetermined range, and, C, Mn, Cr, Cu, Ni, Mo, N, Ti in a composition containing adjusted to satisfy the appropriate relational expression and range, Further, if necessary, the composition is adjusted so as to satisfy an appropriate relational expression and range including W and Nb, and by appropriately quenching and tempering, the desired strength is obtained.
- the gist of the present invention is as follows. [1]% by mass, C: 0.0100% or more, Si: 0.5% or less, Mn: 0.25 to 0.50%, P: 0.030% or less, S: 0.005% or less, Ni: 4.6 to 8.0%, Cr: 10.0 to 14.0 %, Mo: 1.0-2.7%, Al: 0.1% or less, V: 0.005-0.2%, N: 0.1% or less, Ti: 0.06-0.25%, Cu: 0.01-1.0%, Co: 0.01-1.0% And the values of the following (1), (2) and (3) satisfy all of the following expressions (4) and further satisfy the expression (5) or (6), and the balance is Fe and inevitable impurities.
- a martensitic stainless seamless steel pipe for oil country tubular goods having a composition and a yield stress of 758 MPa or more.
- [3] In addition to the above composition, further, in mass%, one or more selected from Ca: 0.010% or less, REM: 0.010% or less, Mg: 0.010% or less, B: 0.010% or less.
- a steel pipe material having the composition according to any of [1] to [3] above is formed into a steel pipe, which is then heated to an Ac 3 transformation point or higher, and subsequently cooled to 100 ° C. or lower.
- a method for producing a martensitic stainless seamless steel pipe for oil well pipes which comprises a quenching treatment for cooling to a stop temperature and a tempering treatment for tempering at a temperature below the Ac 1 transformation point.
- the martensitic stainless seamless steel pipe for oil country tubular goods of the present invention is, in mass%, C: 0.0100% or more, Si: 0.5% or less, Mn: 0.25 to 0.50%, P: 0.030% or less, S: 0.005% or less, Ni : 4.6-8.0%, Cr: 10.0-14.0%, Mo: 1.0-2.7%, Al: 0.1% or less, V: 0.005-0.2%, N: 0.1% or less, Ti: 0.06-0.25%, Cu: 0.01- 1.0%, Co: 0.01-1.0%, and the values of (1), (2) and (3) below satisfy all the expressions of (4) below, and also (5) or (6) It has a composition satisfying the formula, the balance being Fe and unavoidable impurities, and has a yield stress of 758 MPa or more.
- C 0.0100% or more
- C is an important element related to the strength of martensitic stainless steel and is effective in improving the strength. Further, C is an element that contributes to the improvement of corrosion resistance, and improves sulfide stress corrosion cracking resistance. Therefore, in the present invention, the C content is limited to 0.0100% or more. On the other hand, the excessive content increases the hardness and increases the susceptibility to sulfide stress corrosion cracking. Therefore, it is preferable to contain 0.0400% or less. Therefore, the C content is preferably 0.0100 to 0.0400%. More preferably, the C content is 0.0100 to 0.0300%, and even more preferably, the C content is 0.0100 to 0.0200%.
- Si acts as a deoxidizing agent, so it is desirable to contain Si in an amount of 0.05% or more. On the other hand, if the content exceeds 0.5%, carbon dioxide corrosion resistance and hot workability are deteriorated. Therefore, the Si content is limited to 0.5% or less. From the viewpoint of ensuring stable strength, the Si content is preferably 0.10% or more. Further, the Si content is preferably 0.30% or less. More preferably, the Si content is 0.25% or less.
- Mn 0.25 ⁇ 0.50%
- Mn is an element that improves strength, and Mn contributes to repassivation to improve sulfide stress corrosion cracking resistance. Further, since Mn is an austenite forming element, it suppresses the formation of delta ferrite, which causes cracks and scratches during pipe making. In order to obtain these effects, the content of Mn needs to be 0.25% or more. On the other hand, excessive addition causes MnS to precipitate and reduces sulfide stress corrosion cracking resistance. Therefore, the Mn content is limited to 0.25 to 0.50%. Preferably, the Mn content is 0.40% or less.
- P 0.030% or less
- P is an element that reduces both carbon dioxide gas corrosion resistance, pitting corrosion resistance, and sulfide stress corrosion cracking resistance, and it is desirable to reduce P as much as possible in the present invention.
- extreme reductions increase manufacturing costs. Therefore, the P content is limited to 0.030% or less within a range that does not cause an extreme deterioration of the characteristics and is a range that can be industrially inexpensively implemented.
- the P content is 0.015% or less.
- S 0.005% or less
- S is an element that significantly reduces hot workability, so it is desirable to reduce it as much as possible.
- the S content in the present invention is limited to 0.005% or less.
- the S content is 0.002% or less.
- Ni strengthens the protective coating to improve corrosion resistance, and contributes to improvement in sulfide stress corrosion cracking resistance. It is an element that increases the strength of steel by further forming a solid solution. In order to obtain such an effect, it is necessary to contain 4.6% or more of Ni. On the other hand, when the Ni content exceeds 8.0%, the stability of the martensite phase decreases and the strength decreases. Therefore, the Ni content is limited to 4.6 to 8.0%. More preferably, the Ni content is 4.6-7.6%, and even more preferably, the Ni content is 4.6-6.8%.
- Cr 10.0-14.0% Cr is an element that forms a protective film to improve the corrosion resistance, and the content of 10.0% or more can secure the corrosion resistance required for oil country tubular goods.
- the Cr content is limited to 10.0 to 14.0%.
- the Cr content is 11.0% or more, more preferably 11.2% or more. Further, preferably, the Cr content is 13.5% or less.
- Mo 1.0-2.7%
- Mo is Cl - is an element which improves the resistance to pitting, in order to obtain the corrosion resistance necessary for severe corrosive environment, it is necessary to contain 1.0% or more of Mo.
- Mo is an expensive element, the inclusion of Mo in excess of 2.7% causes a rise in manufacturing cost.
- Mo content exceeds 2.7%, Mo is concentrated in the passivation film, which promotes destruction of the passivation film, thus lowering sulfide stress corrosion cracking resistance. Therefore, the Mo content is limited to 1.0 to 2.7%.
- the Mo content is 1.2% or more, more preferably 1.5% or more.
- the Mo content is preferably 2.6% or less, more preferably 2.5% or less.
- Al 0.1% or less Since Al acts as a deoxidizing agent, it is preferable to contain 0.01% or more in order to obtain such an effect. However, the Al content exceeding 0.1% adversely affects the toughness, so the Al content in the present invention is limited to 0.1% or less. Preferably, the Al content is 0.01% or more. Further, the Al content is preferably 0.03% or less.
- V 0.005-0.2%
- V improves the strength of the steel by precipitation strengthening and further improves the resistance to sulfide stress corrosion cracking, so V is required to be contained in an amount of 0.005% or more.
- the content of V exceeding 0.2% reduces the toughness. Therefore, the V content in the present invention is limited to 0.005 to 0.2%.
- the V content is 0.008% or more. Further, the V content is preferably 0.18% or less.
- N 0.1% or less N has the effect of improving the pitting corrosion resistance and forming a solid solution in the steel to increase the strength.
- the N content in the present invention is limited to 0.1% or less.
- the N content is 0.010% or less.
- Ti 0.06 to 0.25%
- carbides are formed to reduce solid solution carbon, and hardness is reduced, so that sulfide stress corrosion cracking resistance is improved.
- the Ti content is limited to 0.06 to 0.25%.
- the Ti content is 0.08% or more.
- the Ti content is preferably 0.15% or less.
- Cu 0.01 to 1.0%
- Cu is contained in 0.01% or more in order to strengthen the protective film and improve the sulfide stress corrosion cracking resistance.
- Cu content exceeds 1.0%, CuS precipitates and the hot workability deteriorates.
- the Cu content is limited to 0.01 to 1.0%. More preferably, the Cu content is 0.01 to 0.8%, and even more preferably, the Cu content is 0.01 to 0.5%.
- Co 0.01-1.0%
- Co is an element that raises the Ms point and promotes ⁇ -transformation to reduce hardness and improve pitting corrosion resistance. In order to obtain such effects, the content of 0.01% or more is required. On the other hand, an excessive content may lower the toughness and further raise the material cost. Further, if the content of Co exceeds 1.0%, the amount of retained austenite increases and the hardness increases, so that the sulfide stress corrosion cracking resistance decreases. Therefore, the Co content in the present invention is limited to 0.01 to 1.0%. Preferably, the Co content is 0.03% or more. Further, the Co content is preferably 0.6% or less.
- the formula (2) is a formula that correlates with the repassivation potential, and C, Mn, Cr, Cu, Ni, Mo, N, Ti are used so that the value (1) satisfies the range of the formula (4). (Including W and Nb as necessary) while containing Mn, Cr, Ni, Mo, N, and Ti so that the value (2) also satisfies the range of formula (4).
- the passivation film can be easily regenerated and the repassivation can be improved by further containing W if necessary.
- the formula (3) is a formula that correlates with the pitting potential, and C, Mn, Cr, Cu, Ni, Mo, N, and Ti are set so that the value (1) satisfies the range of the formula (4). C, Mn, Cr, Cu, Ni, Mo, N, Ti so that the value (3) and the value (3) also satisfy the range of the expression (4) while containing (adding W and Nb as necessary).
- W and Nb containing (and optionally W as well), the occurrence of pitting corrosion that is the starting point of sulfide stress corrosion cracking is suppressed, and the sulfide stress corrosion cracking resistance is significantly improved.
- the value (1) satisfies the range of the formula (4), the value (1) is 10 or more and hardness is increased, but the values (2) and (3) fall within the range of the formula (4).
- the content is satisfied, the regeneration of the passive film and the suppression of the occurrence of pitting corrosion remarkably appear, and the sulfide stress corrosion cracking resistance is improved.
- the value of (1) above is ⁇ 30.0 or more.
- the value of (1) above is preferably 45.0 or less, and more preferably 40.0 or less.
- the value of (2) above is preferably ⁇ 0.550 or more, and more preferably ⁇ 0.530 or more.
- the value of (2) above is ⁇ 0.255 or less.
- the value of (3) above is preferably -0.350 or more, and more preferably -0.320 or more. Further, preferably, the value of (3) above is 0.008 or less.
- C and Ti are contained so as to satisfy the following formula (5) or formula (6).
- Ti ⁇ 6.0C ⁇ ⁇ ⁇ (5) 10.1C ⁇ Ti ... (6)
- C, Ti the content (mass%) of each element (however, the element not containing is 0 (zero)%.)
- Both C and Ti are elements related to hardness. When Ti is contained, the hardness can be reduced, but on the other hand, Ti-based inclusions are generated and the sulfide stress corrosion cracking resistance is reduced. When C is reduced, hardness decreases, but it becomes difficult to obtain desired strength.
- Ti is preferably more than 4.4C.
- Ti is preferably less than 20.0C.
- the balance other than the above component composition consists of Fe and unavoidable impurities.
- Nb 0.1% or less and W: 1.0% or less
- Nb can reduce the solid solution carbon and form hardness by forming a carbide.
- W is an element that improves pitting corrosion resistance, but excessive inclusion may reduce toughness and further raise the material cost. Therefore, when it is contained, it is limited to Nb: 0.1% or less and W: 1.0% or less.
- the structure may have delta ferrite or retained austenite in addition to martensite as a main phase. Since delta ferrite causes cracks and scratches during pipe making, it is preferable to reduce it as much as possible. Since the retained austenite causes an increase in hardness, the volume ratio is preferably 0.0 to 10.5%.
- the steel pipe material having the above composition is used, but the method for producing the stainless seamless steel pipe which is the steel pipe material is not particularly limited, and any known method for producing a seamless pipe can be applied. It is preferable that the molten steel having the above composition is melted by a melting method such as a converter, and is made into a steel pipe material such as a billet by a method such as a continuous casting method and an ingot-slump rolling method.
- these steel pipe materials are heated and hot-worked and pipe-formed in a publicly-known pipe-forming process of a Mannesmann-plug mill system or a Mannesmann-mandrel mill system, and a seam having the above composition No steel pipe.
- the treatment after the steel pipe material is formed into a steel pipe is not particularly limited, but it is preferable that the steel pipe is heated to the Ac 3 transformation point or higher, and then quenched to cool it to a cooling stop temperature of 100 ° C. or lower. Then, a tempering treatment is performed in which tempering is performed at a temperature not higher than the Ac 1 transformation point.
- the steel pipe is reheated to a temperature of Ac 3 transformation point or higher, preferably held for 5 minutes or longer, and then subjected to a quenching treatment of cooling to a cooling stop temperature of 100 ° C. or lower.
- a quenching treatment of cooling to a cooling stop temperature of 100 ° C. or lower.
- the quenching heating temperature is lower than the Ac 3 transformation point, the structure does not become an austenite single phase region, so that a sufficient martensite structure cannot be obtained by subsequent cooling, and desired high strength cannot be achieved. Therefore, the quenching heating temperature is limited to the Ac 3 transformation point or higher.
- cooling is performed by air cooling (cooling rate 0.05 ° C / s or more and 20 ° C / s or less) or water cooling (cooling rate 5 ° C / s or more and 100 ° C / s or less). Not limited.
- the tempering treatment is a treatment in which the steel pipe is heated to an Ac 1 transformation point or lower, preferably held for 10 min or longer, and air-cooled.
- the tempering temperature is higher than the Ac 1 transformation point, the martensite phase precipitates after tempering, and the desired high toughness and excellent corrosion resistance cannot be secured. Therefore, the tempering temperature is limited to the Ac 1 transformation point or lower.
- the temperature history of heating and cooling is applied to the test piece and the transformation point is detected from the minute displacement of expansion and contraction by the Formaster test. Can be measured.
- this billet After melting molten steel having the composition shown in Table 1 in a converter, it is cast into a billet (steel pipe material) by the continuous casting method. Further, this billet was pipe-formed by hot working using a model seamless rolling machine, and then cooled by air cooling or water cooling to obtain a seamless steel pipe having an outer diameter of 83.8 mm and a wall thickness of 12.7 mm.
- a test material was cut out from the obtained seamless steel pipe, and the test material was subjected to quenching treatment and tempering treatment under the conditions shown in Table 2.
- the cooling during quenching was performed by air cooling (cooling rate 0.5 ° C / s) or water cooling (cooling rate 25 ° C / s).
- API arc-shaped tensile test pieces were taken from the test material that had been subjected to quenching and tempering treatments, and a tensile test was carried out in accordance with the provisions of API to determine tensile properties (yield stress YS, tensile stress TS). ..
- yield stress YS yield stress
- TS tensile stress TS.
- Table 2 for Ac 3 point (° C.) and Ac 1 point (° C.), a test piece of 4 mm ⁇ ⁇ 10 mm was sampled from the test material subjected to the quenching treatment, and measured by the Formaster test. Specifically, the test piece was heated to 500 ° C. at 5 ° C./s, further heated to 920 ° C.
- the SSC test was performed according to NACE TM0177 Method A. As the test environment, 0.165 mass% NaCl aqueous solution (liquid temperature: 25 ° C., H 2 S: 1 bar, CO 2 bal) was added to sodium acetate + hydrochloric acid to adjust the pH to 3.5, and the immersion time was 720 hours. The test was conducted with 90% of the yield stress as the load stress. After the test, the case where the crack did not occur in the test piece was regarded as pass, and the case where the crack occurred was judged as fail.
- All of the examples of the present invention have a high yield stress of 758 MPa or more, no cracking occurs even when stress is applied under an environment containing H 2 S, and a martensitic stainless seamless seam having excellent SSC resistance. It is a steel pipe. On the other hand, in Comparative Examples outside the scope of the present invention, desired high strength or excellent SSC resistance cannot be secured.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Heat Treatment Of Articles (AREA)
Abstract
Description
[1]質量%で、C:0.0100%以上、Si:0.5%以下、Mn:0.25~0.50%、P:0.030%以下、S:0.005%以下、Ni:4.6~8.0%、Cr:10.0~14.0%、Mo:1.0~2.7%、Al:0.1%以下、V:0.005~0.2%、N:0.1%以下、Ti:0.06~0.25%、Cu:0.01~1.0%、Co:0.01~1.0%を含有し、かつ下記(1)、(2)および(3)の値が下記(4)の全ての式を満足し、さらに(5)または(6)式を満たし、残部Feおよび不可避的不純物からなる組成を有し、758MPa以上の降伏応力を有する油井管用マルテンサイト系ステンレス継目無鋼管。
記
-109.37C+7.307Mn+6.399Cr+6.329Cu+11.343Ni-13.529Mo+1.276W+2.925Nb+196.775N-2.621Ti-120.307・・・(1)
-0.0278Mn+0.0892Cr+0.00567Ni+0.153Mo-0.0219W-1.984N+0.208Ti-1.83・・・(2)
-1.324C+0.0533Mn+0.0268Cr+0.0893Cu+0.00526Ni+0.0222Mo-0.0132W-0.473N-0.5Ti-0.514・・・(3)
-35.0≦値(1)≦45.0 且つ -0.600≦値(2)≦-0.250 且つ -0.400≦値(3)≦0.010 ・・・(4)
Ti<6.0C ・・・(5)
10.1C<Ti ・・・(6)
ここで、C、Mn、Cr、Cu、Ni、Mo、W、Nb、N、Ti:各元素の含有量(質量%)(但し、含有しない元素は0(零)%とする。)
[2]前記組成に加えてさらに、質量%でNb:0.1%以下、W:1.0%以下のうちから選ばれた1種または2種を含有する組成とする前記[1]に記載の油井管用マルテンサイト系ステンレス継目無鋼管。
[3]前記組成に加えてさらに、質量%で、Ca:0.010%以下、REM:0.010%以下、Mg:0.010%以下、B:0.010%以下のうちから選ばれた1種または2種以上を含有する組成とする前記[1]または[2]に記載の油井管用マルテンサイト系ステンレス継目無鋼管。
[4]前記[1]~[3]のいずれかに記載の組成を有する鋼管素材を造管し鋼管としたのち、該鋼管をAc3変態点以上に加熱し、続いて100℃以下の冷却停止温度まで冷却する焼入れ処理と、ついでAc1変態点以下の温度で焼き戻しをする焼戻処理とを施す油井管用マルテンサイト系ステンレス継目無鋼管の製造方法。
記
-109.37C+7.307Mn+6.399Cr+6.329Cu+11.343Ni-13.529Mo+1.276W+2.925Nb+196.775N-2.621Ti-120.307・・・(1)
-0.0278Mn+0.0892Cr+0.00567Ni+0.153Mo-0.0219W-1.984N+0.208Ti-1.83・・・(2)
-1.324C+0.0533Mn+0.0268Cr+0.0893Cu+0.00526Ni+0.0222Mo-0.0132W-0.473N-0.5Ti-0.514・・・(3)
-35.0≦値(1)≦45.0 且つ -0.600≦値(2)≦-0.250 且つ -0.400≦値(3)≦0.010 ・・・(4)
Ti<6.0C・・・(5)
10.1C<Ti・・・(6)
ここで、C、Mn、Cr、Cu、Ni、Mo、W、Nb、N、Ti:各元素の含有量(質量%)(但し、含有しない元素は0(零)%とする。)
Cはマルテンサイト系ステンレス鋼の強度に関係する重要な元素であり、強度向上に有効である。また、Cは耐食性の向上に寄与する元素であり、耐硫化物応力腐食割れ性を向上させる。よって、本発明では、C含有量は0.0100%以上に限定する。一方、過剰に含有することで硬度が高くなり、硫化物応力腐食割れ感受性が増大する。このため、0.0400%以下含有することが好ましい。よって、好ましくは、C含有量は0.0100~0.0400%である。より好ましくは、C含有量は0.0100~0.0300%であり、さらに好ましくは、C含有量は0.0100~0.0200%である。
Siは、脱酸剤として作用するため、0.05%以上含有することが望ましい。一方で、0.5%を超える含有は、耐炭酸ガス腐食性および熱間加工性を低下させる。このため、Si含有量は0.5%以下に限定する。好ましくは、安定した強度確保の観点から、Si含有量は0.10%以上である。また、好ましくは、Si含有量は0.30%以下である。より好ましくは、Si含有量は0.25%以下である。
Mnは、強度を向上させる元素であり、また、Mnは再不動態化に寄与することで、耐硫化物応力腐食割れ性を向上させる。さらに、Mnはオーステナイト生成元素であるため、造管時の割れや傷の原因となるデルタフェライトの生成を抑制する。これらの効果を得るためには、Mnは0.25%以上の含有を必要とする。一方、過剰に添加することでMnSが析出し、耐硫化物応力腐食割れ性を低下させる。よって、Mn含有量は0.25~0.50%に限定する。好ましくは、Mn含有量は0.40%以下である。
Pは、耐炭酸ガス腐食性、耐孔食性、耐硫化物応力腐食割れ性をともに低下させる元素であり、本発明ではできるだけ低減させることが望ましい。しかしながら、極端な低減は製造コストを高騰させる。よって、特性の極端な低下を招かない範囲で、かつ工業的に安価に実施可能な範囲として、P含有量は0.030%以下に限定する。好ましくは、P含有量は0.015%以下である。
Sは、熱間加工性を著しく低下させる元素であるため、できるだけ低減させることが望ましい。S含有量を0.005%以下に低減することで、通常工程でのパイプ製造が可能となるため、本発明におけるS含有量は0.005%以下に限定する。好ましくは、S含有量は0.002%以下である。
Niは、保護被膜を強固にして耐食性を向上させ、耐硫化物応力腐食割れ性の向上に寄与する。更に固溶することで鋼の強度を増加させる元素である。このような効果を得るために、4.6%以上のNiの含有を必要とする。一方、Ni含有量が8.0%を超えると、マルテンサイト相の安定性が低下して、強度が低下する。よって、Ni含有量は4.6~8.0%に限定する。より好ましくは、Ni含有量は4.6~7.6%であり、さらに好ましくは、Ni含有量は4.6~6.8%である。
Crは、保護被膜を形成して耐食性を向上させる元素であり、10.0%以上の含有で油井管用として必要な耐食性を確保できる。一方、Cr含有量が14.0%を超えるとフェライトの生成が容易となるため、マルテンサイト相の安定確保ができなくなる。よって、Cr含有量は10.0~14.0%に限定する。好ましくは、Cr含有量は11.0%以上であり、より好ましくは、11.2%以上である。また、好ましくは、Cr含有量は13.5%以下である。
Moは、Cl-による孔食に対する抵抗性を向上させる元素であり、厳しい腐食環境に必要な耐食性を得るためには、1.0%以上のMoの含有が必要である。一方、Moは高価な元素であるため、2.7%を超えるMoの含有は製造コストの高騰を招く。また、2.7%を超えるMoの含有により、不動態皮膜中にMoが濃縮する箇所ができ、不動態皮膜の破壊を助長するため、耐硫化物応力腐食割れ性を低下させる。よって、Mo含有量は1.0~2.7%に限定する。好ましくは、Mo含有量は1.2%以上であり、より好ましくは、1.5%以上である。一方、好ましくは、Mo含有量は2.6%以下であり、より好ましくは、2.5%以下である。
Alは、脱酸剤として作用するため、このような効果を得るためには、0.01%以上含有することが好ましい。しかしながら、0.1%を超えるAlの含有は、靱性に悪影響を及ぼすため、本発明におけるAl含有量は0.1%以下に限定する。好ましくは、Al含有量は0.01%以上である。また、好ましくは、Al含有量は0.03%以下である。
Vは、析出強化によって鋼の強度を向上させ、更に耐硫化物応力腐食割れ性も向上させるため、0.005%以上の含有が必要である。一方、0.2%を超えるVの含有は、靱性を低下させる。よって、本発明におけるV含有量は0.005~0.2%に限定する。好ましくは、V含有量は0.008%以上である。また、好ましくは、V含有量は0.18%以下である。
Nは、耐孔食性を向上させると共に、鋼中に固溶し強度を増加させる作用を有する。しかしながら、N含有量が0.1%を超えると、種々の窒化物系介在物が多く生成し、耐孔食性が低下する。よって、本発明におけるN含有量は0.1%以下に限定する。好ましくは、N含有量は0.010%以下である。
Tiは、0.06%以上含有することで、炭化物を形成して固溶炭素を減少させ、硬度が低減することで耐硫化物応力腐食割れ性が向上する。一方、0.25%を超える含有では、介在物としてTiNが生成することで孔食の起点となり、かえって耐硫化物応力腐食割れ性が悪化する。よって、Ti含有量は0.06~0.25%に限定する。好ましくは、Ti含有量は0.08%以上である。また、好ましくは、Ti含有量は0.15%以下である。
Cuは、保護被膜を強固にして耐硫化物応力腐食割れ性を向上させるため、0.01%以上含有する。しかしながら、1.0%を超えるCuの含有は、CuSが析出して熱間加工性を低下させる。また、Cuはオーステナイト生成元素であるため、1.0%を超える含有は、残留オーステナイト量が増加し、硬度が高くなることで耐硫化物応力腐食割れ性を低下させる。よって、Cu含有量は0.01~1.0%に限定する。より好ましくは、Cu含有量は0.01~0.8%であり、さらに好ましくは、Cu含有量は0.01~0.5%である。
Coは、Ms点を上昇させα変態を促進することで、硬さを低減すると共に、耐孔食性を向上させる元素である。このような効果を得るためには、0.01%以上の含有を必要とする。一方、過剰な含有は靱性を低下させる場合があり、更に材料コストを高騰させる。また、1.0%を超えるCoの含有は、残留オーステナイト量が増加し、硬度が高くなるため、耐硫化物応力腐食割れ性を低下させる。よって、本発明におけるCo含有量は0.01~1.0%に限定する。好ましくは、Co含有量は0.03%以上である。また、好ましくは、Co含有量は0.6%以下である。
-109.37C+7.307Mn+6.399Cr+6.329Cu+11.343Ni-13.529Mo+1.276W+2.925Nb+196.775N-2.621Ti-120.307・・・(1)
-0.0278Mn+0.0892Cr+0.00567Ni+0.153Mo-0.0219W-1.984N+0.208Ti-1.83・・・(2)
-1.324C+0.0533Mn+0.0268Cr+0.0893Cu+0.00526Ni+0.0222Mo-0.0132W-0.473N-0.5Ti-0.514・・・(3)
-35.0≦値(1)≦45.0 且つ -0.600≦値(2)≦-0.250 且つ -0.400≦値(3)≦0.010・・・(4)
ここで、C、Mn、Cr、Cu、Ni、Mo、W、Nb、N、Ti:各元素の含有量(質量%)(但し、含有しない元素は0(零)%とする。)
式(1)は残留オーステナイト(残留γ)の量に相関する式であり、式(1)の値を小さくすることで、残留オーステナイトが低減し、硬度が低下して、耐硫化物応力腐食割れ性が向上する。
また、式(2)は再不動態化電位に相関する式であり、値(1)を(4)式の範囲を満足するように、C、Mn、Cr、Cu、Ni、Mo、N、Tiを含有させつつ(必要に応じてさらにW、Nbも含有させつつ)、値(2)も(4)式の範囲を満足するように、Mn、Cr、Ni、Mo、N、Tiを含有することで(必要に応じてさらにWも含有することで)、不動態皮膜の再生が容易になり、再不動態化が向上する。
更に、式(3)は孔食電位に相関する式であり、値(1)を(4)式の範囲を満足するように、C、Mn、Cr、Cu、Ni、Mo、N、Tiを含有させつつ(必要に応じてさらにW、Nbも含有させつつ)、値(3)も(4)式の範囲を満足するように、C、Mn、Cr、Cu、Ni、Mo、N、Tiを含有することで(必要に応じてさらにWも含有することで)、硫化物応力腐食割れの起点となる孔食の発生を抑制し、耐硫化物応力腐食割れ性が顕著に向上する。
なお、値(1)が(4)式の範囲を満足する場合、値(1)は10以上で硬度の上昇を招くが、値(2)および値(3)が(4)式の範囲を満足することで、不動態皮膜の再生および孔食発生の抑制が顕著に現れ、耐硫化物応力腐食割れ性が向上する。
また、好ましくは、上記(2)の値は-0.550以上であり、より好ましくは、-0.530以上である。また、好ましくは、上記(2)の値は、-0.255以下である。
また、好ましくは、上記(3)の値は-0.350以上であり、より好ましくは-0.320以上である。また、好ましくは、上記(3)の値は0.008以下である。
Ti<6.0C・・・(5)
10.1C<Ti・・・(6)
ここで、C、Ti:各元素の含有量(質量%)(但し、含有しない元素は0(零)%とする。)
CおよびTiはともに硬度に関する元素である。Tiは含有することで硬度を低減できるが、一方でTi系介在物を生成し、耐硫化物応力腐食割れ性を低下させる。Cは低減することで硬度が低下するが、所望の強度を得ることが難しくなる。(5)式または(6)式を満足するように、CおよびTiを含有することで、介在物による耐硫化物応力腐食割れ性の低下および強度への影響を最小限にし、低硬度化によって耐硫化物応力腐食割れ性が向上する。また、(5)式において、好ましくはTiは4.4C超である。また、(6)式において、好ましくはTiは20.0C未満である。
本発明では、上記の組成を有する鋼管素材を用いるが、鋼管素材であるステンレス継目無鋼管の製造方法は特に限定する必要はなく、公知の継目無管の製造方法がいずれも適用できる。
上記組成の溶鋼を、転炉等の溶製方法で溶製し、連続鋳造法、造塊-分塊圧延法等の方法でビレット等の鋼管素材とすることが好ましい。続いて、これらの鋼管素材を加熱し、公知の造管方法である、マンネスマン-プラグミル方式、またはマンネスマン-マンドレルミル方式の造管工程にて、熱間加工および造管し、上記組成を有する継目無鋼管とする。
本発明では、鋼管をAc3変態点以上の温度に再加熱し、好ましくは5min以上保持し、続いて100℃以下の冷却停止温度まで冷却する焼入れ処理を施す。これによって、マルテンサイト相の微細化と高靱化が得られる。焼入れ加熱温度がAc3変態点未満では、組織がオーステナイト単相域とならないため、その後の冷却で十分なマルテンサイト組織が得られず、所望の高強度を達成できない。よって、焼入れ加熱温度はAc3変態点以上に限定する。なお、冷却方法は限定しないが、一般に空冷(冷却速度0.05℃/s以上20℃/s以下)または水冷(冷却速度5℃/s以上100℃/s以下)により冷却し、冷却速度の条件も限定されない。
続いて、焼入れ処理を施した鋼管に、焼戻処理を施す。焼戻処理は、鋼管をAc1変態点以下に加熱し、好ましくは10min以上保持し、空冷する処理である。焼戻温度がAc1変態点より高温になると、焼戻後にマルテンサイト相が析出し、所望の高靱性および優れた耐食性を確保できない。よって、焼戻温度はAc1変態点以下に限定する。なお、上記のAc3変態点(℃)、Ac1変態点(℃)については、試験片に加熱および冷却の温度履歴を与え、膨張および収縮の微小変位から変態点を検出するフォーマスター試験により測定することができる。
また、表1中、(5)式、(6)式は下記のように表し、各鋼がいずれを満足するかを示し、いずれも満足しない場合、範囲外と示している。
-109.37C+7.307Mn+6.399Cr+6.329Cu+11.343Ni-13.529Mo+1.276W+2.925Nb+196.775N-2.621Ti-120.307・・・(1)
-0.0278Mn+0.0892Cr+0.00567Ni+0.153Mo-0.0219W-1.984N+0.208Ti-1.83・・・(2)
-1.324C+0.0533Mn+0.0268Cr+0.0893Cu+0.00526Ni+0.0222Mo-0.0132W-0.473N-0.5Ti-0.514・・・(3)
-35.0≦値(1)≦45.0 且つ -0.600≦値(2)≦-0.250 且つ -0.400≦値(3)≦0.010 ・・・(4)
Ti<6.0C・・・(5)
10.1C<Ti・・・(6)
ここで、C、Mn、Cr、Cu、Ni、Mo、W、Nb、N、Ti:各元素の含有量(質量%)(但し、含有しない元素は0(零)%とする。)
Claims (4)
- 質量%で、
C:0.0100%以上、
Si:0.5%以下、
Mn:0.25~0.50%、
P:0.030%以下、
S:0.005%以下、
Ni:4.6~8.0%、
Cr:10.0~14.0%、
Mo:1.0~2.7%、
Al:0.1%以下、
V:0.005~0.2%、
N:0.1%以下、
Ti:0.06~0.25%、
Cu:0.01~1.0%、
Co:0.01~1.0%を含有し、かつ下記(1)、(2)および(3)の値が下記(4)の全ての式を満足し、さらに(5)式または(6)式を満たし、残部Feおよび不可避的不純物からなる組成を有し、758MPa以上の降伏応力を有する油井管用マルテンサイト系ステンレス継目無鋼管。
記
-109.37C+7.307Mn+6.399Cr+6.329Cu+11.343Ni-13.529Mo+1.276W+2.925Nb+196.775N-2.621Ti-120.307・・・(1)
-0.0278Mn+0.0892Cr+0.00567Ni+0.153Mo-0.0219W-1.984N+0.208Ti-1.83・・・(2)
-1.324C+0.0533Mn+0.0268Cr+0.0893Cu+0.00526Ni+0.0222Mo-0.0132W-0.473N-0.5Ti-0.514・・・(3)
-35.0≦値(1)≦45.0 且つ -0.600≦値(2)≦-0.250 且つ -0.400≦値(3)≦0.010 ・・・(4)
Ti<6.0C・・・(5)
10.1C<Ti・・・(6)
ここで、C、Mn、Cr、Cu、Ni、Mo、W、Nb、N、Ti:各元素の含有量(質量%)(但し、含有しない元素は0(零)%とする。) - 前記組成に加えてさらに、質量%で、Nb:0.1%以下、W:1.0%以下のうちから選ばれた1種または2種を含有する組成とする請求項1に記載の油井管用マルテンサイト系ステンレス継目無鋼管。
- 前記組成に加えてさらに、質量%で、Ca:0.010%以下、REM:0.010%以下、Mg:0.010%以下、B:0.010%以下のうちから選ばれた1種または2種以上を含有する組成とする請求項1または2に記載の油井管用マルテンサイト系ステンレス継目無鋼管。
- 請求項1~3のいずれかに記載の組成を有する鋼管素材を造管し鋼管としたのち、該鋼管をAc3変態点以上に加熱し、続いて100℃以下の冷却停止温度まで冷却する焼入れ処理と、ついでAc1変態点以下の温度で焼き戻しをする焼戻処理とを施す油井管用マルテンサイト系ステンレス継目無鋼管の製造方法。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP19881910.4A EP3845680B1 (en) | 2018-11-05 | 2019-09-25 | Martensitic stainless steel seamless pipe for oil country tubular goods, and method for manufacturing same |
MX2021005256A MX2021005256A (es) | 2018-11-05 | 2019-09-25 | Tubos de acero inoxidable martensitico sin costuras para productos tubulares para petroliferos y metodo para fabricar los mismos. |
BR112021008164-0A BR112021008164B1 (pt) | 2018-11-05 | 2019-09-25 | Tubo sem costura de aço inoxidável martensítico para produtos tubulares da indústria de petróleo e método para fabricar o mesmo |
CN201980072666.9A CN112955576A (zh) | 2018-11-05 | 2019-09-25 | 油井管用马氏体系不锈钢无缝钢管及其制造方法 |
JP2020502245A JP6743992B1 (ja) | 2018-11-05 | 2019-09-25 | 油井管用マルテンサイト系ステンレス継目無鋼管およびその製造方法 |
US17/291,150 US20220074009A1 (en) | 2018-11-05 | 2019-09-25 | Martensitic stainless steel seamless pipe for oil country tubular goods, and method for manufacturing same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-207831 | 2018-11-05 | ||
JP2018207831 | 2018-11-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020095559A1 true WO2020095559A1 (ja) | 2020-05-14 |
Family
ID=70612341
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/037691 WO2020095559A1 (ja) | 2018-11-05 | 2019-09-25 | 油井管用マルテンサイト系ステンレス継目無鋼管およびその製造方法 |
Country Status (8)
Country | Link |
---|---|
US (1) | US20220074009A1 (ja) |
EP (1) | EP3845680B1 (ja) |
JP (1) | JP6743992B1 (ja) |
CN (1) | CN112955576A (ja) |
AR (1) | AR116970A1 (ja) |
BR (1) | BR112021008164B1 (ja) |
MX (1) | MX2021005256A (ja) |
WO (1) | WO2020095559A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022075405A1 (ja) * | 2020-10-08 | 2022-04-14 | 日本製鉄株式会社 | マルテンサイト系ステンレス鋼材 |
WO2022162824A1 (ja) * | 2021-01-28 | 2022-08-04 | 日本製鉄株式会社 | 鋼材 |
CN115135786A (zh) * | 2020-05-18 | 2022-09-30 | 杰富意钢铁株式会社 | 油井管用不锈钢无缝钢管及其制造方法 |
WO2023195361A1 (ja) * | 2022-04-08 | 2023-10-12 | 日本製鉄株式会社 | マルテンサイト系ステンレス鋼材 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019225281A1 (ja) * | 2018-05-25 | 2019-11-28 | Jfeスチール株式会社 | 油井管用マルテンサイト系ステンレス継目無鋼管およびその製造方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004057050A1 (ja) | 2002-12-20 | 2004-07-08 | Sumitomo Metal Industries, Ltd. | 耐炭酸ガス腐食性および耐硫化物応力腐食割れ性に優れた高強度マルテンサイトステンレス鋼 |
WO2008023702A1 (fr) | 2006-08-22 | 2008-02-28 | Sumitomo Metal Industries, Ltd. | Acier inoxydable martensitique |
JP2010242163A (ja) | 2009-04-06 | 2010-10-28 | Jfe Steel Corp | 油井管用マルテンサイト系ステンレス継目無鋼管の製造方法 |
CN105039863A (zh) * | 2015-09-02 | 2015-11-11 | 山西太钢不锈钢股份有限公司 | 一种油井用马氏体不锈钢无缝管制造方法 |
WO2017168874A1 (ja) * | 2016-03-29 | 2017-10-05 | Jfeスチール株式会社 | 油井用高強度ステンレス継目無鋼管 |
WO2018079111A1 (ja) * | 2016-10-25 | 2018-05-03 | Jfeスチール株式会社 | 油井管用マルテンサイト系ステンレス継目無鋼管およびその製造方法 |
WO2018181404A1 (ja) * | 2017-03-28 | 2018-10-04 | 新日鐵住金株式会社 | マルテンサイトステンレス鋼材 |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2826819B2 (ja) * | 1987-02-27 | 1998-11-18 | 日新製鋼株式会社 | 加工性に優れ溶接軟化のない高強度ステンレス鋼材の製造方法 |
JP3485034B2 (ja) * | 1999-07-19 | 2004-01-13 | Jfeスチール株式会社 | 高耐食性を有する862N/mm2級低C高Cr合金油井管およびその製造方法 |
JP2003129190A (ja) * | 2001-10-19 | 2003-05-08 | Sumitomo Metal Ind Ltd | マルテンサイト系ステンレス鋼およびその製造方法 |
AR045073A1 (es) * | 2003-07-22 | 2005-10-12 | Sumitomo Chemical Co | Acero inoxidable martensitico |
JP4997695B2 (ja) * | 2004-10-13 | 2012-08-08 | Jfeスチール株式会社 | 耐粒界応力腐食割れ性に優れたラインパイプ用マルテンサイト系ステンレス継目無鋼管円周溶接継手の製造方法およびラインパイプ用マルテンサイト系ステンレス継目無鋼管 |
JP5092204B2 (ja) * | 2005-04-28 | 2012-12-05 | Jfeスチール株式会社 | 拡管性に優れる油井用ステンレス鋼管 |
CN102534419A (zh) * | 2012-03-13 | 2012-07-04 | 东北大学 | 一种超级马氏体不锈钢及其制备方法 |
JP5924256B2 (ja) * | 2012-06-21 | 2016-05-25 | Jfeスチール株式会社 | 耐食性に優れた油井用高強度ステンレス鋼継目無管およびその製造方法 |
JP5971415B2 (ja) * | 2013-06-19 | 2016-08-17 | Jfeスチール株式会社 | ラインパイプ向溶接鋼管用マルテンサイト系ステンレス熱延鋼帯の製造方法 |
BR102014005015A8 (pt) * | 2014-02-28 | 2017-12-26 | Villares Metals S/A | aço inoxidável martensítico-ferrítico, produto manufaturado, processo para a produção de peças ou barras forjadas ou laminadas de aço inoxidável martensítico-ferrítico e processo para a produção de tudo sem costura de aço inoxidável martensítico-ferrítico |
JP6102798B2 (ja) * | 2014-02-28 | 2017-03-29 | Jfeスチール株式会社 | リールバージ敷設に優れるラインパイプ用マルテンサイト系ステンレス鋼管の製造方法 |
MX2016015099A (es) * | 2014-05-21 | 2017-02-22 | Jfe Steel Corp | Tuberia de acero inoxidable sin costura de alta resistencia para productos tubulares de region petrolifera y metodo para la fabricacion de la misma. |
US11193179B2 (en) * | 2015-01-15 | 2021-12-07 | Jfe Steel Corporation | Seamless stainless steel pipe for oil country tubular goods and method of manufacturing the same |
CA3024694A1 (en) * | 2016-05-20 | 2017-11-23 | Nippon Steel & Sumitomo Metal Corporation | Steel bar for downhole member, and downhole member |
CN108277438A (zh) * | 2018-03-29 | 2018-07-13 | 太原钢铁(集团)有限公司 | 超低碳马氏体不锈钢无缝管及其制造方法 |
-
2019
- 2019-09-25 MX MX2021005256A patent/MX2021005256A/es unknown
- 2019-09-25 CN CN201980072666.9A patent/CN112955576A/zh active Pending
- 2019-09-25 EP EP19881910.4A patent/EP3845680B1/en active Active
- 2019-09-25 US US17/291,150 patent/US20220074009A1/en active Pending
- 2019-09-25 WO PCT/JP2019/037691 patent/WO2020095559A1/ja unknown
- 2019-09-25 BR BR112021008164-0A patent/BR112021008164B1/pt active IP Right Grant
- 2019-09-25 JP JP2020502245A patent/JP6743992B1/ja active Active
- 2019-11-04 AR ARP190103209A patent/AR116970A1/es active IP Right Grant
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004057050A1 (ja) | 2002-12-20 | 2004-07-08 | Sumitomo Metal Industries, Ltd. | 耐炭酸ガス腐食性および耐硫化物応力腐食割れ性に優れた高強度マルテンサイトステンレス鋼 |
WO2008023702A1 (fr) | 2006-08-22 | 2008-02-28 | Sumitomo Metal Industries, Ltd. | Acier inoxydable martensitique |
JP2010242163A (ja) | 2009-04-06 | 2010-10-28 | Jfe Steel Corp | 油井管用マルテンサイト系ステンレス継目無鋼管の製造方法 |
CN105039863A (zh) * | 2015-09-02 | 2015-11-11 | 山西太钢不锈钢股份有限公司 | 一种油井用马氏体不锈钢无缝管制造方法 |
WO2017168874A1 (ja) * | 2016-03-29 | 2017-10-05 | Jfeスチール株式会社 | 油井用高強度ステンレス継目無鋼管 |
WO2018079111A1 (ja) * | 2016-10-25 | 2018-05-03 | Jfeスチール株式会社 | 油井管用マルテンサイト系ステンレス継目無鋼管およびその製造方法 |
WO2018181404A1 (ja) * | 2017-03-28 | 2018-10-04 | 新日鐵住金株式会社 | マルテンサイトステンレス鋼材 |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115135786A (zh) * | 2020-05-18 | 2022-09-30 | 杰富意钢铁株式会社 | 油井管用不锈钢无缝钢管及其制造方法 |
EP4079875A4 (en) * | 2020-05-18 | 2023-06-14 | JFE Steel Corporation | SEAMLESS STAINLESS STEEL OIL WELL TUBING AND METHOD OF MANUFACTURING THEREOF |
WO2022075405A1 (ja) * | 2020-10-08 | 2022-04-14 | 日本製鉄株式会社 | マルテンサイト系ステンレス鋼材 |
JPWO2022075405A1 (ja) * | 2020-10-08 | 2022-04-14 | ||
JP7173404B2 (ja) | 2020-10-08 | 2022-11-16 | 日本製鉄株式会社 | マルテンサイト系ステンレス鋼材 |
WO2022162824A1 (ja) * | 2021-01-28 | 2022-08-04 | 日本製鉄株式会社 | 鋼材 |
EP4286543A4 (en) * | 2021-01-28 | 2024-03-06 | Nippon Steel Corporation | STEEL MATERIAL |
JP7534676B2 (ja) | 2021-01-28 | 2024-08-15 | 日本製鉄株式会社 | 鋼材 |
WO2023195361A1 (ja) * | 2022-04-08 | 2023-10-12 | 日本製鉄株式会社 | マルテンサイト系ステンレス鋼材 |
JP7428952B1 (ja) | 2022-04-08 | 2024-02-07 | 日本製鉄株式会社 | マルテンサイト系ステンレス鋼材 |
Also Published As
Publication number | Publication date |
---|---|
AR116970A1 (es) | 2021-06-30 |
EP3845680A4 (en) | 2021-12-01 |
EP3845680B1 (en) | 2023-10-25 |
MX2021005256A (es) | 2021-06-18 |
BR112021008164B1 (pt) | 2024-02-20 |
EP3845680A1 (en) | 2021-07-07 |
JPWO2020095559A1 (ja) | 2021-02-15 |
JP6743992B1 (ja) | 2020-08-19 |
BR112021008164A2 (pt) | 2021-08-03 |
US20220074009A1 (en) | 2022-03-10 |
CN112955576A (zh) | 2021-06-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6315159B1 (ja) | 油井管用マルテンサイト系ステンレス継目無鋼管およびその製造方法 | |
JP6680409B1 (ja) | 油井管用マルテンサイト系ステンレス継目無鋼管およびその製造方法 | |
JP6743992B1 (ja) | 油井管用マルテンサイト系ステンレス継目無鋼管およびその製造方法 | |
JP6540922B1 (ja) | 油井管用マルテンサイト系ステンレス継目無鋼管およびその製造方法 | |
JP5145793B2 (ja) | 油井管用マルテンサイト系ステンレス継目無鋼管およびその製造方法 | |
JP5640762B2 (ja) | 油井用高強度マルテンサイト系ステンレス継目無鋼管 | |
JP6540920B1 (ja) | 油井管用マルテンサイト系ステンレス継目無鋼管およびその製造方法 | |
JP4978073B2 (ja) | 耐食性に優れる油井用高靭性超高強度ステンレス鋼管およびその製造方法 | |
JP6540921B1 (ja) | 油井管用マルテンサイト系ステンレス継目無鋼管およびその製造方法 | |
JP5582307B2 (ja) | 油井用高強度マルテンサイト系ステンレス継目無鋼管 | |
JP5499575B2 (ja) | 油井管用マルテンサイト系ステンレス継目無鋼管およびその製造方法 | |
KR101539520B1 (ko) | 2상 스테인리스강 | |
JP6680408B1 (ja) | 油井管用マルテンサイト系ステンレス継目無鋼管およびその製造方法 | |
JP4289109B2 (ja) | 耐食性に優れた油井用高強度ステンレス鋼管 | |
JP7207557B2 (ja) | 油井管用ステンレス継目無鋼管およびその製造方法 | |
JP7498416B1 (ja) | Cr-Ni合金管 | |
JP6747628B1 (ja) | 二相ステンレス鋼、継目無鋼管、および二相ステンレス鋼の製造方法 | |
JP6303878B2 (ja) | マルテンサイト系Cr含有鋼材 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2020502245 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19881910 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019881910 Country of ref document: EP Effective date: 20210331 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112021008164 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112021008164 Country of ref document: BR Kind code of ref document: A2 Effective date: 20210428 |