WO2018078965A1 - 応力試験用治具および応力試験方法 - Google Patents

応力試験用治具および応力試験方法 Download PDF

Info

Publication number
WO2018078965A1
WO2018078965A1 PCT/JP2017/025994 JP2017025994W WO2018078965A1 WO 2018078965 A1 WO2018078965 A1 WO 2018078965A1 JP 2017025994 W JP2017025994 W JP 2017025994W WO 2018078965 A1 WO2018078965 A1 WO 2018078965A1
Authority
WO
WIPO (PCT)
Prior art keywords
test piece
stress
cylinder
jig
frame
Prior art date
Application number
PCT/JP2017/025994
Other languages
English (en)
French (fr)
Inventor
黒田 浩一
大作 彌永
悠平 鈴木
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to CN201780067730.5A priority Critical patent/CN109952500B/zh
Priority to EP17865347.3A priority patent/EP3534141A4/en
Priority to JP2018547120A priority patent/JP6801720B2/ja
Priority to US16/345,050 priority patent/US11002647B2/en
Priority to KR1020197014724A priority patent/KR20190070966A/ko
Publication of WO2018078965A1 publication Critical patent/WO2018078965A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/02Details
    • G01N3/04Chucks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0014Type of force applied
    • G01N2203/0016Tensile or compressive
    • G01N2203/0017Tensile
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0014Type of force applied
    • G01N2203/0016Tensile or compressive
    • G01N2203/0019Compressive
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/04Chucks, fixtures, jaws, holders or anvils
    • G01N2203/0423Chucks, fixtures, jaws, holders or anvils using screws

Definitions

  • the present invention relates to a stress test jig and a stress test method, and more particularly to a jig and a test method that can be preferably used for a stress test of a rod-shaped test piece.
  • Oil well pipes are used for oil wells and gas wells (herein, oil wells and gas wells are collectively referred to as “oil wells”).
  • the oil well has a corrosive environment. Therefore, oil well pipes are required to have corrosion resistance.
  • Types of oil well pipes include casing and tubing. The casing is inserted into the well. Cement is filled between the casing and the pit wall, and the casing is fixed in the pit. Tubing is inserted into the casing and passes production fluids such as oil and gas.
  • Oil well pipes are required to have high strength as well as corrosion resistance.
  • the strength grade of an oil well pipe is generally defined by the tensile yield strength in the pipe axis direction.
  • Oil well pipe users determine the well environment (geologic pressure, production fluid temperature, and production fluid pressure) to be drilled through trial drilling or geological surveys, etc. Select. In recent years, deep wells have progressed, and not only high tensile yield strength but also high compressive yield strength is required. Therefore, a test for grasping the deformation behavior when tensile stress and compressive stress are generated is performed in advance on the oil well pipe.
  • the buckling of the specimen becomes a problem.
  • ASTM E9-09 when the flatness of the pressing surface of the compression jig that presses the test piece decreases, the pressing direction of the compression jig is different from the axial direction of the test piece. May tilt. Thereby, buckling of the test piece may occur.
  • a stress test jig disclosed in Patent Document 1 is referred to as a flange that holds the upper end of a test piece (hereinafter referred to as an upper flange) and a flange that holds the lower end of a test piece (hereinafter referred to as a lower flange).
  • the upper flange moves up and down as the upper fixing member moves up and down.
  • compressive stress and tensile stress can be generated in the test piece held on the upper flange.
  • the upper fixing member can be moved up and down along the guide material, so that the upper fixing member is prevented from tilting when the upper fixing member moves up and down. be able to.
  • it can suppress that the upper flange fixed to the guide material inclines, it can suppress that the load direction of the compressive load and tensile load with respect to a test piece inclines with respect to the axial direction of a test piece. As a result, the occurrence of buckling can be suppressed.
  • Patent Document 2 discloses a compression test piece buckling prevention jig.
  • the parallel portion of the test piece is surrounded by a plurality of members to prevent the parallel portion from being bent.
  • JP 2008-241530 A Japanese Utility Model Publication No. 61-102851
  • the upper flange that holds the upper end portion of the test piece must be fixed to the upper fixing member with a screw or the like. For this reason, if the assembly accuracy of the upper flange and the upper fixing member is not sufficiently improved, even if the inclination of the upper fixing member can be suppressed by the guide material, the upper flange may be inclined. Thereby, the load direction of the compressive load and the tensile load on the test piece is inclined, and the occurrence of buckling may not be sufficiently suppressed.
  • the jig of Patent Document 2 is configured to surround the parallel portion of the test piece as described above. For this reason, when the jig
  • the present invention has been made to solve such a problem, and provides a stress test jig and a stress test method capable of suppressing buckling of a test piece without covering the periphery of a parallel portion.
  • the purpose is to do.
  • the gist of the present invention is the following stress test jig and stress test method.
  • a jig used in a stress testing machine that applies at least one of a compressive load and a tensile load to a rod-shaped test piece arranged to extend in the vertical direction,
  • An upper cylinder capable of fixing the upper end of the test piece to the lower end;
  • a lower cylinder capable of fixing the lower end of the test piece to the upper end;
  • the frame includes an accommodation space that penetrates the frame in the horizontal direction and can accommodate the test piece, and an upper through hole that extends upward from the accommodation space so as to penetrate the frame and into which the upper cylinder can be inserted.
  • a stress test jig comprising: a lower through hole that extends downward from the housing space so as to penetrate the frame coaxially with the upper through hole and into which the lower cylinder can be inserted.
  • the stress testing machine includes a crosshead provided so as to be movable in the vertical direction, and a support part provided below the crosshead,
  • the frame has a flat surface provided below the accommodation space and supported by the support portion of the stress testing machine,
  • An upper end portion of the upper cylinder is configured to be connectable to the crosshead,
  • the lower end portion of the upper cylinder is configured such that the upper end portion of the test piece can be fixed by screwing the upper end portion of the test piece
  • the upper end portion of the lower cylinder is configured to be able to fix the lower end portion of the test piece by screwing the lower end portion of the test piece, the stress test jig according to the above (1) or (2).
  • the buckling of the test piece can be suppressed without covering the periphery of the parallel part. Thereby, the relationship between the stress and strain of the metal material can be appropriately evaluated.
  • FIG. 1 is a front view showing a stress test jig according to an embodiment of the present invention.
  • 2A and 2B are diagrams showing a frame, in which FIG. 2A is a front view and FIG. 2B is a bottom view.
  • FIG. 3 is a diagram illustrating an example of a test piece.
  • FIG. 4 is a view showing a stress testing machine to which a jig is attached.
  • 5A and 5B are diagrams showing a frame to which a gripping member is attached, in which FIG. 5A is a front view and FIG. 5B is a bottom view.
  • FIG. 6 is a diagram showing the investigation results (relationship between stress and strain) in the example.
  • the stress test jig is capable of applying at least one of a compressive load and a tensile load to a bar-shaped test piece arranged to extend in the vertical direction. Used in testing machines.
  • FIG. 1 is a front view showing a stress test jig according to an embodiment of the present invention.
  • a stress test jig 10 (hereinafter referred to as a jig 10) according to the present embodiment includes an upper cylinder 12, a lower cylinder 14, and a frame 16.
  • Each of the upper cylinder 12, the lower cylinder 14, and the frame 16 is made of metal, for example.
  • the upper cylinder 12 has, for example, a columnar shape or a cylindrical shape.
  • a through hole 12 a penetrating in the radial direction of the upper cylinder 12 is formed at the upper end of the upper cylinder 12.
  • a connecting pin 52 (see FIG. 4) to be described later is inserted into the through hole 12a.
  • a screw hole 12 b is formed at the lower end of the upper cylinder 12. The screw hole 12b is formed to extend upward from the lower surface 12c of the upper cylinder 12 so as to open at the lower surface 12c of the upper cylinder 12.
  • the lower cylinder 14 has, for example, a columnar shape or a cylindrical shape.
  • a through hole 14 a penetrating in the radial direction of the lower cylinder 14 is formed at the lower end portion of the lower cylinder 14.
  • a connection pin 50 (see FIG. 4) described later is inserted into the through hole 14a.
  • a screw hole 14 b is formed in the upper end portion of the lower cylinder 14. The screw hole 14b is formed to extend downward from the upper surface 14c of the lower cylinder 14 so as to open on the upper surface 14c of the lower cylinder 14.
  • FIG. 2 is a diagram showing the frame 16, where (a) is a front view and (b) is a bottom view. 1 and 2, the frame 16 has a closed cross-sectional shape.
  • the frame 16 has an accommodation space 16a, an upper through hole 16b, a lower through hole 16c, and a flat surface 16d provided below the accommodation space 16a.
  • the accommodation space 16a is formed so as to penetrate the frame 16 in the horizontal direction.
  • the accommodation space 16a is a through-hole penetrating the frame 16 in the horizontal direction.
  • the accommodation space 16 a has a substantially rectangular shape when viewed from the front, and is formed at the center of the frame 16. A test piece 20 to be described later is accommodated in the accommodation space 16a.
  • the length W1 in the vertical direction of the accommodation space 16a is set to, for example, 100 mm or more and 200 mm or less.
  • the length W1 is set to 100 mm or more, workability when attaching a test piece 20 described later to the jig 10 and workability when attaching an extensometer 30 described later to the test piece 20 are improved.
  • buckling of the test piece 20 can be more effectively suppressed by setting the length W1 to 200 mm or less.
  • the width W2 of the accommodation space 16a in the horizontal direction is set to about 100 mm, for example.
  • the upper through hole 16b and the lower through hole 16c are formed so as to penetrate the frame 16.
  • the upper through hole 16b is formed to extend upward from the accommodation space 16a
  • the lower through hole 16c is formed to extend downward from the accommodation space 16a.
  • the upper through hole 16b and the lower through hole 16c are formed coaxially.
  • the upper through hole 16b and the lower through hole 16c each have a circular shape.
  • upper cylinder 12 is inserted into upper through hole 16b
  • lower cylinder 14 is inserted into lower through hole 16c.
  • the clearance between the upper through-hole 16b and the upper cylinder 12 and the clearance between the lower through-hole 16c and the lower cylinder 14 are each set to, for example, 0.3 mm or less, preferably 0.1 mm or less.
  • the length C1 of the upper through hole 16b in the vertical direction and the diameter D1 of the upper through hole 16b are preferably set so as to satisfy the following expression (1).
  • the length C2 in the vertical direction of the hole 16c and the diameter D2 of the lower through hole 16c are preferably set so as to satisfy the following expression (2). It is more preferable that the length C1 and the diameter D1 are set so as to satisfy the following expression (3), and the length C2 and the diameter D2 are set so as to satisfy the following expression (4). More preferably. C1 / D1 ⁇ 1.1 (1) C2 / D2 ⁇ 1.1 (2) C1 / D1 ⁇ 3.0 (3) C2 / D2 ⁇ 3.0 (4)
  • the frame 16 has a rectangular shape when viewed from the front.
  • the length L in the vertical direction of the frame 16 is set to, for example, about 550 mm
  • the width A in the horizontal direction is set to, for example, about 130 mm
  • the thickness T is set to, for example, about 50 mm.
  • FIG. 3 is a diagram illustrating an example of a test piece attached to the jig 10.
  • a rod-shaped (round bar) test piece 20 is used.
  • Each of the upper end 20a and the lower end 20b of the test piece 20 is formed with a thread groove.
  • the length B of the parallel portion 20c and the diameter d of the parallel portion 20c are preferably set so as to satisfy the following expression (5), for example. 2.5 ⁇ B / d ⁇ 3.5 (5)
  • the upper end portion 20 a of the test piece 20 is screwed into the screw hole 12 b of the upper cylinder 12, and the lower end portion 20 b of the test piece 20 is the screw of the lower cylinder 14. It is screwed into the hole 14b.
  • the upper cylinder 12, the lower cylinder 14, and the test piece 20 are fixed.
  • the upper cylinder 12 and the lower cylinder 14 fix the test piece 20 so that the test piece 20, the upper cylinder 12 and the lower cylinder 14 are positioned on the same axis.
  • An extensometer 30 for measuring the extension of the parallel part 20c is attached to the parallel part 20c of the test piece 20 in a stress test described later. Since various known extensometers can be used as the extensometer 30, a detailed description thereof will be omitted.
  • FIG. 4 is a diagram showing a stress tester used when performing the stress test method according to the present embodiment.
  • the stress testing machine since various well-known testing machines can be used as the stress testing machine, the stress testing machine will be briefly described.
  • a stress tester 40 used in the stress test method according to the present embodiment includes a main body 40 a and a crosshead 40 b that extends in the horizontal direction and is supported by the main body 40 a so as to be movable in the vertical direction. And a support rod 40c provided below the cross head 40b.
  • the cross head 40b is moved up and down by a driving device (not shown).
  • the support rod 40 c corresponds to a support portion that supports the flat surface 16 d of the frame 16.
  • the frame 16 of the jig 10 to which the test piece 20 is attached as described above is placed on the stress tester 40.
  • the jig 10 is installed so that the flat surface 16d of the frame 16 is supported on the upper surface of the support rod 40c.
  • the frame 16 is supported by the support rod 40c of the stress tester 40 by its own weight. In a state where the upper cylinder 12 and the lower cylinder 14 are not in contact with the frame 16, no load is applied downward from the stress tester 40 (crosshead 40 b) to the frame 16.
  • the support rod 40c is configured such that the lower end portion of the lower cylinder 14 can be inserted.
  • the support rod 40 c and the lower cylinder 14 are connected by the connecting pin 50.
  • the upper end of the upper cylinder 12 is inserted into the connecting rod 42 and connected to the connecting rod 42 by a connecting pin 52.
  • the connecting rod 42 is attached to the cross head 40 b via the load cell 44. With such a configuration, the upper cylinder 12 and the crosshead 40b are connected.
  • test piece 20 is attached to the jig 10, and the cross head 40b is moved up and down in a state where the cross head 40b is connected to the upper cylinder 12, so that the compression load and the test piece 20 are reduced.
  • a tensile load can be applied.
  • the upper cylinder 12 moved up and down by the cross head 40b, the test piece 20 fixed to the upper cylinder 12, and the lower cylinder supporting the test piece 20 14 can be arranged coaxially. Furthermore, even if the upper cylinder 12 and the lower cylinder 14 start to tilt in the direction in which the test piece 20 buckles during the stress test, the frame 16 prevents the upper cylinder 12 and the lower cylinder 14 from tilting greatly. The Specifically, the upper cylinder 12 and the lower cylinder 14 are prevented from being largely inclined by the upper cylinder 12 and the lower cylinder 14 coming into contact with the frame 16 in the upper through hole 16b and the lower through hole 16c. .
  • the upper cylinder 12 and the lower cylinder 14 can be prevented from being inclined with respect to the vertical direction without sufficiently improving the assembly accuracy of the upper cylinder 12 and the cross head 40b.
  • the load direction of the compressive load and the tensile load on the test piece 20 can be suppressed from tilting with respect to the vertical direction, and the occurrence of buckling of the test piece 20 can be sufficiently suppressed.
  • the assembly accuracy between the upper cylinder 12 and the cross head 40b need not be improved more than necessary, so that the connection structure between the upper cylinder 12 and the cross head 40b can be simplified.
  • the upper cylinder 12 and the crosshead 40b can be coupled with a simple configuration using the coupling pin 52. This facilitates the attachment of the jig 10 and the test piece 20 to the stress tester 40 as compared to the configuration of Patent Document 1 in which the upper flange and the crosshead need to be connected using a plurality of screws.
  • the extensometer 30 can be attached to the parallel part 20c. Furthermore, the parallel part 20c and the jig
  • gripping members 18 a and 18 b having a C-shape in plan view are respectively provided on both side surfaces of the frame 16. It may be provided.
  • the width E is set to about 200 mm, for example.
  • C-shaped steel can be used as the gripping members 18a and 18b.
  • the frame 16 provided with C-shaped steels 18a and 18b was used.
  • length C1 and length C2 are each 200 mm
  • length W1 is 150 mm
  • width W2 is 100 mm
  • width A is 130 mm
  • thickness T is 50 mm.
  • the diameter D1 and the diameter D2 were each 32 mm
  • the width E was 200 mm.
  • the length of the upper end portion 20a and the lower end portion 20b is 6.3 mm
  • the length B of the parallel portion 20c is 8.0 mm
  • the diameter d was 2.5 mm
  • the total length of the test piece 20 was 25.5 mm.
  • the clearance between upper through hole 16b and upper cylinder 12 and the clearance between lower through hole 16c and lower cylinder 14 were each 0.1 mm.
  • Figure 6 shows the relationship between the stress and strain obtained by the survey (hysteresis curve).
  • buckling did not occur in the test piece 20 during the test. That is, according to the present invention, it has been found that the relationship between stress and strain can be appropriately evaluated while preventing the occurrence of buckling.
  • the buckling of the test piece can be suppressed without covering the periphery of the parallel part. Thereby, the relationship between the stress and strain of the metal material can be appropriately evaluated.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

応力試験用治具10は、上側シリンダ12と、下側シリンダ14と、フレーム16とを備える。フレーム16は、収容空間16a、上側貫通孔16b、および下側貫通孔16cを有する。収容空間16aに試験片20が配置され、上側貫通孔16bに上側シリンダ12が挿入され、下側貫通孔16cに下側シリンダ14が挿入される。上側シリンダ12および下側シリンダ14は、試験片20、上側シリンダ12および下側シリンダ14が同軸上に位置するように、試験片20を固定する。

Description

応力試験用治具および応力試験方法
 本発明は、応力試験用治具および応力試験方法に関し、特に、棒状試験片の応力試験に好ましく用いることができる治具および試験方法に関する。
 油井およびガス井(本明細書において、油井およびガス井を総称して「油井」と呼ぶ)には、油井管が利用される。油井は腐食環境を有する。そのため、油井管は耐食性を求められる。油井管の種類には、ケーシングとチュービングとがある。ケーシングは、坑井に挿入される。ケーシングと坑壁との間にセメントが充填され、ケーシングは坑内に固定される。チュービングはケーシング内に挿入され、油およびガス等の生産流体を通す。油井管は耐食性とともに、高い強度も要求される。油井管の強度グレードは一般的に、管軸方向の引張降伏強度で定義される。油井管の需要者は、掘削の対象となる井戸の環境(地層圧力、生産流体の温度、および生産流体の圧力)を、試掘または地質調査等を行って割り出し、耐用可能な強度グレードの油井管を選択する。近年では深井戸化が進行し、高い引張降伏強度のみならず、高い圧縮降伏強度も要求される。そこで、油井管に対しては、引張応力および圧縮応力が生じたときの変形挙動を把握するための試験が予め行われている。
 圧縮応力が生じたときの鋼材の変形挙動を把握するための試験としては、例えば、ASTM E9-09において制定された圧縮試験を挙げることができる。この圧縮試験では、円柱状の試験片の上端面および下端面が、平坦な圧縮治具で押される。これにより、試験片に圧縮応力を発生させることができる。
 ところで、鋼材の圧縮試験では、試験片の座屈が問題になる。例えば、上述のASTM E9-09において制定された圧縮試験では、試験片を押圧する圧縮治具の押圧面の平面度が低下すると、試験片の軸方向に対して、圧縮治具の押圧方向が傾く場合がある。これにより、試験片の座屈が生じる場合がある。
 そこで、上記のような座屈を防止するための治具が提案されている。例えば、特許文献1に開示された応力試験治具は、試験片の上端部を保持するフランジ(以下、上フランジという。)と、試験片の下端部を保持するフランジ(以下、下フランジという。)と、上フランジが固定される上側固定部材と、下フランジが固定される下側固定部材と、上側固定部材を上下に貫通する2本のガイド材とを有している。
 特許文献1に開示された応力試験治具では、上側固定部材が上下に移動することによって、上フランジが上下に移動する。これにより、上フランジに保持された試験片に、圧縮応力および引張応力を生じさせることができる。また、特許文献1の応力試験治具では、ガイド材に沿って上側固定部材を上下に移動させることができるので、上側固定部材が上下に移動する際に、上側固定部材が傾くことを抑制することができる。これにより、ガイド材に固定された上フランジが傾くことを抑制できるので、試験片に対する圧縮荷重および引張荷重の負荷方向が、試験片の軸方向に対して傾くことを抑制することができる。この結果、座屈の発生を抑制することができる。
 また、特許文献2には、圧縮試験片座屈防止治具が開示されている。特許文献2に開示された治具では、試験片の平行部を複数の部材で包囲することによって、平行部に曲がりが発生することを阻止している。
特開2008-241530号公報 実開昭61-102851号公報
 ところで、特許文献1の治具では、試験片の上端部を保持する上フランジを、ネジ等によって上側固定部材に固定しなければならない。このため、上フランジと上側固定部材との組立精度を十分に向上させなければ、ガイド材によって上側固定部材の傾きを抑制できたとしても、上フランジが傾く場合がある。これにより、試験片に対する圧縮荷重および引張荷重の負荷方向が傾いて、座屈の発生を十分に抑制できないおそれがある。
 一方、特許文献2の治具は、上述したように、試験片の平行部を包囲するように構成されている。このため、特許文献2の治具を用いた場合、平行部の伸びを測定するための伸び計を、平行部に取り付けることができない。この場合、試験片に生じる応力とひずみとの関係を精度良く調査することができない。すなわち、金属材料の応力とひずみとの関係を適切に評価することができない。
 また、特許文献2の構成では、試験片の平行部と治具とが接触することが考えられる。この場合、試験片の平行部が治具に接触することによって、治具から平行部に力が加わるので、応力とひずみとの関係を精度良く調査することができない。
 本発明は、このような問題を解決するためになされたものであり、平行部の周囲を覆うことなく試験片の座屈を抑制することができる、応力試験用治具および応力試験方法を提供することを目的とする。
 本発明は、下記の応力試験用治具および応力試験方法を要旨とする。
(1)上下方向に延びるように配置された棒状の試験片に対して圧縮荷重および引張荷重のうちの少なくとも一方を付与する応力試験機において使用される治具であって、
 下端部に前記試験片の上端部を固定可能な上側シリンダと、
 上端部に前記試験片の下端部を固定可能な下側シリンダと、
 前記上側シリンダおよび前記下側シリンダが挿入されるフレームと、を備え、
 前記上側シリンダおよび前記下側シリンダは、前記試験片、前記上側シリンダおよび前記下側シリンダが同軸上に位置するように前記試験片を固定可能であり、
 前記フレームは、当該フレームを水平方向に貫通しかつ前記試験片を収容可能な収容空間と、当該フレームを貫通するように前記収容空間から上方に延びかつ前記上側シリンダを挿入可能な上側貫通孔と、前記上側貫通孔と同軸上において当該フレームを貫通するように前記収容空間から下方に延びかつ前記下側シリンダを挿入可能な下側貫通孔と、を有する、応力試験用治具。
(2)前記応力試験機は、上下方向に移動可能に設けられたクロスヘッドと、前記クロスヘッドの下方に設けられた支持部とを備え、
 前記フレームは、前記収容空間の下方に設けられかつ前記応力試験機の前記支持部に支持される平坦面を有し、
 前記上側シリンダの上端部は、前記クロスヘッドに連結可能に構成され、
 前記下側シリンダの下端部は、前記支持部に連結可能に構成される、上記(1)の応力試験用治具。
(3)前記上側シリンダの下端部は、前記試験片の上端部をねじ込むことによって前記試験片の上端部を固定できるように構成され、
 前記下側シリンダの上端部は、前記試験片の下端部をねじ込むことによって前記試験片の下端部を固定できるように構成されている、上記(1)または(2)の応力試験用治具。
(4)上下方向に移動可能に設けられたクロスヘッドおよび前記クロスヘッドの下方に設けられた支持部を備えた応力試験機を用いて、棒状の試験片に対して圧縮荷重および引張荷重のうちの少なくとも一方を付与する応力試験方法であって、
 前記支持部上に配置された上記(1)から(3)のいずれかの応力試験用治具に前記試験片を取り付けるとともに、前記応力試験用治具の前記上側シリンダに前記クロスヘッドを連結して、前記クロスヘッドを上下方向に移動させて前記試験片に対して圧縮荷重および引張荷重のうちの少なくとも一方を付与する、応力試験方法。
 本発明によれば、平行部の周囲を覆うことなく試験片の座屈を抑制することができる。これにより、金属材料の応力とひずみとの関係を適切に評価できる。
図1は、本発明の一実施形態に係る応力試験用治具を示す正面図である。 図2は、フレームを示す図であり、(a)は正面図、(b)は底面図である。 図3は、試験片の一例を示す図である。 図4は、治具が取り付けられた応力試験機を示す図である。 図5は、把持部材が取り付けられたフレームを示す図であり、(a)は正面図、(b)は底面図である。 図6は、実施例における調査結果(応力とひずみの関係)を示す図である。
 以下、本発明の一実施形態に係る応力試験用治具およびそれを用いた応力試験方法について詳細に説明する。後述するように、本実施形態に係る応力試験用治具は、上下方向に延びるように配置された棒状の試験片に対して圧縮荷重および引張荷重のうちの少なくとも一方を付与することができる応力試験機において使用される。
 図1は、本発明の一実施形態に係る応力試験用治具を示す正面図である。図1を参照して、本実施形態に係る応力試験用治具10(以下、治具10と記載する。)は、上側シリンダ12と、下側シリンダ14と、フレーム16とを備えている。上側シリンダ12、下側シリンダ14およびフレーム16はそれぞれ、例えば、金属からなる。
 上側シリンダ12は、例えば、円柱形状または円筒形状を有している。上側シリンダ12の上端部には、上側シリンダ12の径方向に貫通する貫通孔12aが形成されている。貫通孔12aには、後述する連結ピン52(図4参照)が挿入される。上側シリンダ12の下端部には、ネジ孔12bが形成されている。ネジ孔12bは、上側シリンダ12の下面12cにおいて開口するように、上側シリンダ12の下面12cから上方に延びるように形成されている。
 下側シリンダ14は、例えば、円柱形状または円筒形状を有している。下側シリンダ14の下端部には、下側シリンダ14の径方向に貫通する貫通孔14aが形成されている。貫通孔14aには、後述する連結ピン50(図4参照)が挿入される。下側シリンダ14の上端部には、ネジ孔14bが形成されている。ネジ孔14bは、下側シリンダ14の上面14cにおいて開口するように、下側シリンダ14の上面14cから下方に延びるように形成されている。
 図2は、フレーム16を示す図であり、(a)は正面図、(b)は底面図である。図1および図2を参照して、フレーム16は、閉断面形状を有している。本実施形態では、フレーム16は、収容空間16aと、上側貫通孔16bと、下側貫通孔16cと、収容空間16aの下方に設けられる平坦面16dを有している。
 収容空間16aは、フレーム16を水平方向に貫通するように形成されている。収容空間16aは、言い換えると、フレーム16を水平方向に貫通する貫通孔である。本実施形態では、収容空間16aは、正面視において略矩形状を有し、フレーム16の中央部に形成されている。収容空間16aには、後述する試験片20が収容される。
 収容空間16aの上下方向における長さW1は、例えば、100mm以上200mm以下に設定される。長さW1を100mm以上に設定することによって、後述する試験片20を治具10に取り付ける際の作業性、および後述する伸び計30を試験片20に取り付ける際の作業性が向上する。一方、長さW1を200mm以下に設定することによって、試験片20の座屈をより効果的に抑制することができる。正面視において、収容空間16aの水平方向における幅W2は、例えば、100mm程度に設定される。
 図1および図2を参照して、上側貫通孔16bおよび下側貫通孔16cは、フレーム16を貫通するように形成されている。具体的には、上側貫通孔16bは、収容空間16aから上方に延びるように形成され、下側貫通孔16cは、収容空間16aから下方に延びるように形成されている。上側貫通孔16bと下側貫通孔16cとは同軸上に形成されている。
 フレーム16の水平方向に延びる断面(すなわち、上下方向に垂直な断面)において、上側貫通孔16bおよび下側貫通孔16cはそれぞれ円形状を有している。図1を参照して、上側貫通孔16bに上側シリンダ12が挿入され、下側貫通孔16cに下側シリンダ14が挿入される。上側貫通孔16bと上側シリンダ12とのクリアランスおよび下側貫通孔16cと下側シリンダ14とのクリアランスはそれぞれ、例えば、0.3mm以下に設定され、好ましくは0.1mm以下に設定される。
 図2を参照して、上側貫通孔16bの上下方向における長さC1と、上側貫通孔16bの直径D1とは、下記の(1)式を満たすように設定されることが好ましく、下側貫通孔16cの上下方向における長さC2と、下側貫通孔16cの直径D2とは、下記の(2)式を満たすように設定されることが好ましい。なお、長さC1と直径D1とが、下記の(3)式を満たすように設定されることがより好ましく、長さC2と直径D2とが、下記の(4)式を満たすように設定されることがより好ましい。
  C1/D1≧1.1 ・・・(1)
  C2/D2≧1.1 ・・・(2)
  C1/D1≧3.0 ・・・(3)
  C2/D2≧3.0 ・・・(4)
 なお、本実施形態では、フレーム16は、正面視において矩形状を有している。フレーム16の上下方向における長さLは、例えば、550mm程度に設定され、水平方向における幅Aは、例えば、130mm程度に設定され、厚みTは、例えば、50mm程度に設定される。
 図3は、治具10に取り付けられる試験片の一例を示す図である。図3に示すように、本実施形態では、棒状(丸棒)の試験片20が用いられる。試験片20の上端部20aおよび下端部20bにはそれぞれ、ネジ溝が形成されている。試験片20の座屈を抑制する観点から、平行部20cの長さBと、平行部20cの直径dとは、例えば、下記の(5)式を満たすように設定されることが好ましい。
  2.5≦B/d≦3.5 ・・・(5)
 図1および図3を参照して、本実施の形態では、試験片20の上端部20aが、上側シリンダ12のネジ孔12bにねじ込まれ、試験片20の下端部20bが下側シリンダ14のネジ孔14bにねじ込まれる。これにより、上側シリンダ12および下側シリンダ14と試験片20とが固定される。本実施形態では、上側シリンダ12および下側シリンダ14は、試験片20、上側シリンダ12および下側シリンダ14が同軸上に位置するように、試験片20を固定する。試験片20の平行部20cには、後述する応力試験において、平行部20cの延びを計測するための伸び計30が取り付けられる。伸び計30としては、公知の種々の伸び計を用いることができるので、詳細な説明は省略する。
 次に、上記の治具10を用いた応力試験方法について説明する。図4は、本実施形態に係る応力試験方法を実施する際に用いられる応力試験機を示す図である。なお、応力試験機としては、公知の種々の試験機を用いることができるので、応力試験機については簡単に説明する。
 図4を参照して、本実施形態に係る応力試験方法に用いられる応力試験機40は、本体部40aと、水平方向に延びかつ上下方向に移動可能に本体部40aに支持されるクロスヘッド40bと、クロスヘッド40bの下方に設けられた支持ロッド40cとを備える。クロスヘッド40bは、図示しない駆動装置によって上下に移動される。本実施形態では、支持ロッド40cが、フレーム16の平坦面16dを支持する支持部に対応する。
 応力試験を実施する際には、例えば、上記のようにして試験片20が取り付けられた治具10のフレーム16を、応力試験機40上に置く。具体的には、フレーム16の平坦面16dが支持ロッド40cの上面に支持されるように、治具10を設置する。なお、本実施形態では、フレーム16は、自重によって応力試験機40の支持ロッド40cに支持されている。上側シリンダ12および下側シリンダ14がフレーム16に接していない状態では、応力試験機40(クロスヘッド40b)からフレーム16に対して、下方に荷重が付与されることはない。
 詳細な説明は省略するが、支持ロッド40cは、下側シリンダ14の下端部が挿入可能に構成されている。本実施形態では、支持ロッド40cと下側シリンダ14とが、連結ピン50によって連結される。
 上側シリンダ12の上端部は、連結ロッド42に挿入されかつ連結ピン52によって連結ロッド42に連結される。連結ロッド42は、ロードセル44を介してクロスヘッド40bに取り付けられている。このような構成により、上側シリンダ12とクロスヘッド40bとが連結される。
 上記のようにして、治具10に試験片20を取り付けるとともに、上側シリンダ12にクロスヘッド40bを連結した状態で、クロスヘッド40bを上下に移動させることによって、試験片20に対して圧縮荷重および引張荷重を付与することができる。
 以上のように、本実施形態に係る治具10を用いる場合、クロスヘッド40bによって上下動される上側シリンダ12、上側シリンダ12に固定された試験片20、および試験片20を支持する下側シリンダ14を、同軸上に配置することができる。さらに、応力試験中に、上側シリンダ12および下側シリンダ14が試験片20を座屈させる方向に傾き始めたとしても、上側シリンダ12および下側シリンダ14が大きく傾くことは、フレーム16によって防止される。具体的には、上側貫通孔16bおよび下側貫通孔16c内において上側シリンダ12および下側シリンダ14がフレーム16に接触することによって、上側シリンダ12および下側シリンダ14が大きく傾くことが防止される。したがって、本実施形態では、上側シリンダ12とクロスヘッド40bとの組立精度を十分に向上させなくても、上側シリンダ12および下側シリンダ14が上下方向に対して傾くことを抑制することができる。その結果、試験片20に対する圧縮荷重および引張荷重の負荷方向が上下方向に対して傾くことを抑制でき、試験片20の座屈の発生を十分に抑制することができる。
 また、上記のように、上側シリンダ12とクロスヘッド40bとの組立精度を必要以上に向上させなくてよいので、上側シリンダ12とクロスヘッド40bとの連結構造を簡単にすることができる。本実施形態では、上記のように、連結ピン52を用いた簡単な構成によって、上側シリンダ12とクロスヘッド40bとを連結することができる。これにより、複数のネジを用いて上フランジとクロスヘッドとを連結する必要がある特許文献1の構成に比べて、応力試験機40への治具10および試験片20の取り付けが容易になる。
 また、本実施形態では、試験片20の平行部20cの周囲を治具10によって覆う必要がないので、平行部20cに伸び計30を取り付けることができる。さらに、平行部20cと治具10とが接触することがない。これらの結果、試験片20に生じる応力とひずみとの関係を精度良く調査することができる。
 なお、詳細な説明は省略するが、例えば、図5に示すように、フレーム16の持ち運びを容易にするために、フレーム16の両側面にそれぞれ、平面視C字状の把持部材18a,18bを設けてもよい。この場合、幅Eは、例えば、200mm程度に設定される。なお、把持部材18a,18bとしては、例えば、C型鋼を用いることができる。
 本発明の効果を確認するため、上述の構成を有する治具10および応力試験機40を用いて、試験片20に対して圧縮荷重および引張荷重を繰り返し付与して、試験片20に生じる応力とひずみとの関係を調査した。
 なお、本実施例では、C型鋼18a,18b(図5参照)を設けたフレーム16を用いた。また、図2を参照して、長さC1および長さC2はそれぞれ200mmであり、長さW1は150mmであり、幅W2は100mmであり、幅Aは130mmであり、厚みTは50mmであり、直径D1および直径D2はそれぞれ32mmであり、幅E(図5参照)は200mmであった。また、図3を参照して、試験片20の軸方向において、上端部20aおよび下端部20bの長さは6.3mmであり、平行部20cの長さBは8.0mmであり、直径dは2.5mmであり、試験片20の全長は25.5mmであった。さらに、図1を参照して、上側貫通孔16bと上側シリンダ12とのクリアランスおよび下側貫通孔16cと下側シリンダ14とのクリアランスはそれぞれ、0.1mmであった。
 調査によって得られた応力とひずみとの関係(ヒステリシス曲線)を、図6に示す。本実施例では、試験中に試験片20に座屈は発生しなかった。すなわち、本発明によれば、座屈の発生を防止しつつ、応力とひずみとの関係を適切に評価できることが分かった。
 本発明によれば、平行部の周囲を覆うことなく試験片の座屈を抑制することができる。これにより、金属材料の応力とひずみとの関係を適切に評価できる。
 10 応力試験用治具
 12 上側シリンダ
 14 下側シリンダ
 16 フレーム
 16a 収容空間
 16b 上側貫通孔
 16c 下側貫通孔
 16d 平坦面
 20 試験片
 30 伸び計
 40 応力試験機

Claims (4)

  1.  上下方向に延びるように配置された棒状の試験片に対して圧縮荷重および引張荷重のうちの少なくとも一方を付与する応力試験機において使用される治具であって、
     下端部に前記試験片の上端部を固定可能な上側シリンダと、
     上端部に前記試験片の下端部を固定可能な下側シリンダと、
     前記上側シリンダおよび前記下側シリンダが挿入されるフレームと、を備え、
     前記上側シリンダおよび前記下側シリンダは、前記試験片、前記上側シリンダおよび前記下側シリンダが同軸上に位置するように前記試験片を固定可能であり、
     前記フレームは、当該フレームを水平方向に貫通しかつ前記試験片を収容可能な収容空間と、当該フレームを貫通するように前記収容空間から上方に延びかつ前記上側シリンダを挿入可能な上側貫通孔と、前記上側貫通孔と同軸上において当該フレームを貫通するように前記収容空間から下方に延びかつ前記下側シリンダを挿入可能な下側貫通孔と、を有する、応力試験用治具。
  2.  前記応力試験機は、上下方向に移動可能に設けられたクロスヘッドと、前記クロスヘッドの下方に設けられた支持部とを備え、
     前記フレームは、前記収容空間の下方に設けられかつ前記応力試験機の前記支持部に支持される平坦面を有し、
     前記上側シリンダの上端部は、前記クロスヘッドに連結可能に構成され、
     前記下側シリンダの下端部は、前記支持部に連結可能に構成される、請求項1に記載の応力試験用治具。
  3.  前記上側シリンダの下端部は、前記試験片の上端部をねじ込むことによって前記試験片の上端部を固定できるように構成され、
     前記下側シリンダの上端部は、前記試験片の下端部をねじ込むことによって前記試験片の下端部を固定できるように構成されている、請求項1または2に記載の応力試験用治具。
  4.  上下方向に移動可能に設けられたクロスヘッドおよび前記クロスヘッドの下方に設けられた支持部を備えた応力試験機を用いて、棒状の試験片に対して圧縮荷重および引張荷重のうちの少なくとも一方を付与する応力試験方法であって、
     前記支持部上に配置された請求項1から3のいずれかに記載の応力試験用治具に前記試験片を取り付けるとともに、前記応力試験用治具の前記上側シリンダに前記クロスヘッドを連結して、前記クロスヘッドを上下方向に移動させて前記試験片に対して圧縮荷重および引張荷重のうちの少なくとも一方を付与する、応力試験方法。
PCT/JP2017/025994 2016-10-31 2017-07-18 応力試験用治具および応力試験方法 WO2018078965A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201780067730.5A CN109952500B (zh) 2016-10-31 2017-07-18 应力试验用夹具和应力试验方法
EP17865347.3A EP3534141A4 (en) 2016-10-31 2017-07-18 CONSTRAINT TEST TEMPLATE AND RELATED METHOD
JP2018547120A JP6801720B2 (ja) 2016-10-31 2017-07-18 応力試験用治具および応力試験方法
US16/345,050 US11002647B2 (en) 2016-10-31 2017-07-18 Stress test jig and stress test method
KR1020197014724A KR20190070966A (ko) 2016-10-31 2017-07-18 응력 시험용 지그 및 응력 시험 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-213291 2016-10-31
JP2016213291 2016-10-31

Publications (1)

Publication Number Publication Date
WO2018078965A1 true WO2018078965A1 (ja) 2018-05-03

Family

ID=62023334

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/025994 WO2018078965A1 (ja) 2016-10-31 2017-07-18 応力試験用治具および応力試験方法

Country Status (6)

Country Link
US (1) US11002647B2 (ja)
EP (1) EP3534141A4 (ja)
JP (1) JP6801720B2 (ja)
KR (1) KR20190070966A (ja)
CN (1) CN109952500B (ja)
WO (1) WO2018078965A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109030196A (zh) * 2018-08-18 2018-12-18 深圳阿尔泰克轻合金技术有限公司 一种金属材料单轴抗蠕变试验试样、夹具及方法
CN110631902A (zh) * 2019-10-31 2019-12-31 浙江工业大学 一种便于安全快捷安装ct试样的夹具

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10746640B2 (en) * 2017-03-21 2020-08-18 Textron Innovations Inc. Methods of making a tubular specimen with a predetermined wrinkle defect
US10744727B2 (en) 2017-03-21 2020-08-18 Textron Innovations Inc. Methods of making a specimen with a predetermined wrinkle defect
KR102347759B1 (ko) * 2020-07-14 2022-01-06 주식회사 선일다이파스 알루미늄 관재 인장 시험 장치 및 방법
CN112414841B (zh) * 2020-10-13 2023-11-24 重庆工商大学 一种自适应导正的管材周向拉伸强度的测试装置及方法
CN113804538A (zh) * 2021-08-05 2021-12-17 北京航空航天大学 一种ct试件在压-压循环载荷下预制裂纹的防失稳夹具
KR102385479B1 (ko) * 2021-10-19 2022-04-12 건설공인시험연구원 주식회사 강도 시험장치
CN114112681A (zh) * 2021-12-16 2022-03-01 合肥工业大学 一种压缩实验综合装置和实验方法
CN114941996B (zh) * 2022-07-26 2022-11-01 西北工业大学 一种圆棒疲劳试样光纤光栅应变测量系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52119379A (en) * 1976-03-31 1977-10-06 Sumitomo Metal Ind Construction of sample grip section of low cycle fatigue tester by tension and compression
JPS61102851U (ja) 1984-12-10 1986-06-30
JPH0429858U (ja) * 1990-06-29 1992-03-10
JP2008241530A (ja) 2007-03-28 2008-10-09 Sumitomo Metal Ind Ltd 応力試験用治具及び応力試験方法
JP2011080918A (ja) * 2009-10-09 2011-04-21 Shimadzu Corp 材料試験機
JP2015052563A (ja) * 2013-09-09 2015-03-19 株式会社島津製作所 変位計
JP2016003980A (ja) * 2014-06-18 2016-01-12 エスペック株式会社 試験装置及び恒温装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3741005A (en) * 1971-09-28 1973-06-26 Int Paper Co Wet web tensile tester
JPS59194044A (ja) 1983-04-18 1984-11-02 Nippon Denso Co Ltd デイ−ゼル機関用燃料噴射量制御装置
JPS59194044U (ja) * 1983-06-09 1984-12-24 三菱重工業株式会社 圧縮試験治具
JPH0685536B2 (ja) 1984-10-25 1994-10-26 株式会社日立製作所 副信号伝送方法
DE3912075A1 (de) * 1989-04-10 1990-10-11 Bam Bundesanstalt Matforschung Vorrichtung und verfahren zur einachsigen mechanischen werkstoffpruefung
JPH0754288B2 (ja) * 1991-03-29 1995-06-07 株式会社島津製作所 伸縮式ねじ棹を有する材料試験機
US5313841A (en) * 1992-07-09 1994-05-24 Quantum Materials, Inc. Die adhesion testing method and apparatus
US5279166A (en) * 1992-09-29 1994-01-18 Eg&G Idaho, Inc. Self-aligning biaxial load frame
JP2001235409A (ja) * 2000-02-25 2001-08-31 Shimadzu Corp 細線試料試験治具
US6679124B2 (en) * 2000-06-06 2004-01-20 Mts Systems Corporation Statistically rigid and dynamically compliant material testing system
JP2003106964A (ja) * 2001-10-01 2003-04-09 Ishikawajima Harima Heavy Ind Co Ltd 引張型材料試験機用試験片固定アダプター
US7441468B2 (en) * 2005-11-17 2008-10-28 C.B. Fleet Company, Incorporated Squeeze force measuring system
CA2635551C (en) 2008-06-23 2013-04-09 Schlumberger Canada Limited Environmental mechanical test apparatus
WO2012011173A1 (ja) * 2010-07-22 2012-01-26 株式会社島津製作所 材料試験機
WO2015019446A1 (ja) * 2013-08-07 2015-02-12 株式会社島津製作所 材料試験機の治具装着装置
KR200477566Y1 (ko) * 2014-03-20 2015-06-24 삼성중공업 주식회사 인장시험용 지그
US9291537B2 (en) * 2014-05-14 2016-03-22 Ut-Battelle, Llc Liquid salt environment stress-rupture testing
CN204831910U (zh) * 2015-08-17 2015-12-02 西安热工研究院有限公司 一种再热裂纹敏感性试验的插销试样夹具

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52119379A (en) * 1976-03-31 1977-10-06 Sumitomo Metal Ind Construction of sample grip section of low cycle fatigue tester by tension and compression
JPS61102851U (ja) 1984-12-10 1986-06-30
JPH0429858U (ja) * 1990-06-29 1992-03-10
JP2008241530A (ja) 2007-03-28 2008-10-09 Sumitomo Metal Ind Ltd 応力試験用治具及び応力試験方法
JP2011080918A (ja) * 2009-10-09 2011-04-21 Shimadzu Corp 材料試験機
JP2015052563A (ja) * 2013-09-09 2015-03-19 株式会社島津製作所 変位計
JP2016003980A (ja) * 2014-06-18 2016-01-12 エスペック株式会社 試験装置及び恒温装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3534141A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109030196A (zh) * 2018-08-18 2018-12-18 深圳阿尔泰克轻合金技术有限公司 一种金属材料单轴抗蠕变试验试样、夹具及方法
CN109030196B (zh) * 2018-08-18 2021-10-29 深圳阿尔泰克轻合金技术有限公司 一种金属材料单轴抗蠕变试验试样、夹具及方法
CN110631902A (zh) * 2019-10-31 2019-12-31 浙江工业大学 一种便于安全快捷安装ct试样的夹具
CN110631902B (zh) * 2019-10-31 2024-05-28 浙江工业大学 一种便于安全快捷安装ct试样的夹具

Also Published As

Publication number Publication date
EP3534141A4 (en) 2020-06-24
US20190242799A1 (en) 2019-08-08
KR20190070966A (ko) 2019-06-21
EP3534141A1 (en) 2019-09-04
JP6801720B2 (ja) 2020-12-16
CN109952500A (zh) 2019-06-28
CN109952500B (zh) 2021-08-24
US11002647B2 (en) 2021-05-11
JPWO2018078965A1 (ja) 2019-06-24

Similar Documents

Publication Publication Date Title
WO2018078965A1 (ja) 応力試験用治具および応力試験方法
Roy et al. Experiments and finite element modelling of screw pattern of self-drilling screw connections for high strength cold-formed steel
JP2008241530A (ja) 応力試験用治具及び応力試験方法
EP2772335B1 (en) Method of arresting fatigue crack growth in metal member, and fatigue crack growth-arrested metal member
JP6772679B2 (ja) 疲労試験装置及び疲労試験方法
KR101313181B1 (ko) 시험편 다축 시험장치
CN101957293B (zh) 一种实体膨胀管复合加载膨胀试验装置
Seibi et al. Experimental and numerical study of expanded aluminum and steel tubes
JP6397752B2 (ja) 鋼管柱曲げ試験方法および装置
Van Wittenberghe et al. Fatigue investigation of threaded pipe connections
CN104655486B (zh) 管状试样恒变形应力腐蚀试验夹具
KR101385849B1 (ko) 고무재료의 피로 및 피로균열진전 시험장치
KR102171668B1 (ko) 시편 셋팅장치 및 방법
KR101856377B1 (ko) 파일의 복합 시험장비
Rezaee et al. Denting the oil pipelines by a rigid cylindrical indenter with conical nose by the numerical and experimental analyses
Kasai et al. Cyclic behavior and low-cycle fatigue of semi-rigid connections (Part I: bolted angle connections)
Mekha et al. Newer frontiers in the design of steel catenary risers for floating production systems
KR101670064B1 (ko) 시험체의 잔류 응력 도입장치
JP3114796U (ja) 試験片把持装置
RU172393U1 (ru) Стенд для испытания железобетонных элементов с обжатием и кратковременным динамическим кручением
CN220154138U (zh) 卧式拉力测试装置
CN210194591U (zh) 导力柱的连接结构
CN212254871U (zh) 一种隔震支座连接件实物拉伸试验的装置
CN217403661U (zh) 灌浆后钢绞线锚下有效预应力检测用连接器、反拉装置
KR200437268Y1 (ko) 암석 코어 시험편의 인장강도 시험기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17865347

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018547120

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197014724

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017865347

Country of ref document: EP

Effective date: 20190531