WO2018076893A1 - 混合动力汽车动力系统及其动力传动方法 - Google Patents
混合动力汽车动力系统及其动力传动方法 Download PDFInfo
- Publication number
- WO2018076893A1 WO2018076893A1 PCT/CN2017/096838 CN2017096838W WO2018076893A1 WO 2018076893 A1 WO2018076893 A1 WO 2018076893A1 CN 2017096838 W CN2017096838 W CN 2017096838W WO 2018076893 A1 WO2018076893 A1 WO 2018076893A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- power
- hybrid vehicle
- transmission
- motor
- vehicle
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/22—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
- B60K6/36—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/42—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
- B60K6/44—Series-parallel type
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/62—Hybrid vehicles
Definitions
- the present invention relates to the field of hybrid electric vehicles, and in particular to a hybrid electric vehicle power system and a power transmission method thereof.
- the first type is a hybrid system in which a motor is coupled to an engine through a belt transmission mechanism (the other end of the engine output is with the transmission mechanism) (hereinafter referred to as P0 type).
- the power system the second type is a hybrid system in which the motor is installed between the engine and the transmission, and the motor and the engine are not decoupled (hereinafter referred to as the P1 type power system), and the third type is the motor installed between the engine and the transmission.
- the hybrid system of the motor decoupled from the engine by the clutch (the clutch is disconnected, the motor is separated from the engine)
- the fourth type is the hybrid of the motor mounted between the transmission and the differential.
- System (hereinafter referred to as P3 type power system).
- P0 type power system the motor 20 and the engine 10 are coupled by a transmission mechanism 80, and the torque of the engine 10 and the motor 20 is output to the power output shaft 50 through the clutch 40 and the transmission 30, and the power output shaft 50 is connected.
- the differential 60 transmits torque to the A wheel 70 and the B wheel 71. As shown in FIG.
- the motor 20 in the P1 type power system, the motor 20 is installed between the engine 10 and the transmission 30, and the motor 20 and the engine 10 output shaft. Coupling, as shown in FIG. 3, in the P2 type power system, the motor 20 is mounted between the engine 10 and the transmission 30, and is decoupled from the engine 10 by the clutch 40, and the torque of the motor 20 is output to the transmission 30 through the clutch 41 and the transmission 30.
- the power output shaft 50 and the power output shaft 50 are connected to the differential 60, and the torque is transmitted to the A wheel 70 and the B wheel 71.
- the requirements for the peak power and torque of the motor are low, and the working efficiency of the motor is improved, P0, P1.
- the P2 power system can achieve rapid engine start, parking power generation and creep in the vehicle at rest.
- the object of the present invention is to provide a hybrid vehicle power system and a power transmission method thereof, so as to solve the problem that the existing power system and method cannot simultaneously achieve fast start, park and creep power generation, and no torque interruption shift.
- the present invention provides a hybrid vehicle power system including an engine, a clutch, a transmission, a power switching device, a transmission mechanism, a power output shaft, and a motor, wherein:
- the engine is for providing torque to the hybrid vehicle power system
- the clutch is coupled between the engine and the transmission for separating the engine from the transmission;
- the transmission includes an input end connected to the clutch, and an output end connected to the power output shaft for controlling a power output of the hybrid vehicle power system;
- the power switching device is connected between the transmission mechanism and the power output shaft, and the power switching device is further connected to the motor for switching between a motor torque and a power output shaft;
- the transmission mechanism is coupled to the engine.
- the power switching device is a synchronizer.
- a combination of a synchronizer and a clutch is optionally, in the hybrid vehicle power system.
- the transmission mechanism is a belt, a gear, a combination of a belt and a gear, or a gear set.
- the power switching device includes a power original mechanism, a first switching mechanism, and a second switching mechanism, where:
- the power original mechanism is connected to the motor, between the first switching mechanism and the second switching mechanism, the axis of the power original mechanism and the first switching mechanism and the second switching mechanism
- the axes are on the same line;
- the first switching mechanism is connected to the transmission mechanism
- the second switching mechanism is coupled to the power take-off shaft.
- the power original mechanism is switched to the first switching mechanism during the engine static vehicle starting, the vehicle parking power generation process, and the vehicle creeping power generation process. End, switching to the second switching mechanism end during the transmission shifting process.
- the invention also provides a power transmission method for a hybrid vehicle, comprising the following steps:
- the power system of the hybrid vehicle receives an engine static start or a vehicle stop power generation command
- the power switching device in the hybrid vehicle power system switches the motor torque to the transmission end
- the motor in the power system of the hybrid vehicle outputs torque or generates electricity
- the power system of the hybrid vehicle completes engine static start or vehicle stop power generation.
- the power transmission method of the hybrid vehicle further includes: converting a clutch in a power system of the hybrid vehicle into a slip state.
- the clutch is a dry clutch or a wet clutch.
- the power transmission method of the hybrid vehicle is used to convert the vehicle from a parking power generation state to a creep state.
- the motor in the power system of the hybrid vehicle generates electricity.
- the invention also provides a power transmission method for a hybrid vehicle, comprising the following steps:
- a transmission in the powertrain of the hybrid vehicle receives a shift command
- the power switching device in the hybrid vehicle power system switches the motor torque to the power output shaft end
- a transmission in a powertrain of the hybrid vehicle performs a shifting operation, wherein the shifting operation of the transmission includes a clutch disconnection, an offshift (the synchronizer is separated from the current gear), and a gearshift (synchronizer and target) Gear gear engagement), clutch engagement;
- the electric motor in the power system of the hybrid vehicle outputs torque to the power output shaft during the above shifting process.
- the power switching device is respectively connected between the transmission device and the power output shaft and the motor, and the power transmission of the motor and the transmission device and the power output shaft is engaged and disconnected.
- the switching between the P0 or P1 type power system and the P3 type power system is realized.
- the power switching device In the state of engine static start, vehicle stop or creepage power generation, the power switching device is switched to the transmission end, and the power of the engine and the motor are coupled to each other to realize quick start, vehicle stop and creepage power generation; when the transmission is in the shift state, The power switching device is switched to the power output shaft end, the clutch is disconnected, the motor provides the compensation torque, and the torque-free interrupt shift can be realized.
- the power transmission method can simultaneously realize the quick start, the vehicle stop, the creeping power generation and the torque-free interrupt shift.
- the invention has the advantages of the P0-P3 hybrid vehicle transmission device: compared with the P0-P2 type scheme, the non-power interruption shift function is added; compared with the P3 type scheme, the engine quick start when the vehicle is stationary is added
- the parking power generation function has a small peak torque/power of the motor and a high working efficiency of the motor.
- the invention improves the performance of the existing single-motor parallel hybrid vehicle transmission.
- the hybrid power system of the invention can realize the functions of no power interruption shifting, engine quick start when the vehicle is stationary, stop power generation and creep power generation, only by adding a power switching device and a transmission mechanism on the basis of the conventional automatic transmission, and can effectively get rid of the functions.
- Automatic transmission hereinafter referred to as AT
- DCT double separation Technical bottlenecks such as automatic transmission
- FIG. 1 is a structural diagram of a P0 type power system of a conventional hybrid vehicle
- FIG. 2 is a structural diagram of a P1 power system of a conventional hybrid vehicle
- FIG. 3 is a structural diagram of a P2 type power system of a conventional hybrid vehicle
- FIG. 4 is a structural diagram of a P3 type power system of a conventional hybrid vehicle
- FIG. 5 is a structural diagram of a hybrid vehicle power system according to an embodiment of the present invention.
- FIG. 6 is a schematic diagram of a hybrid vehicle power system according to an embodiment of the present invention.
- FIG. 7 is a schematic diagram of a hybrid vehicle power system according to an embodiment of the present invention.
- FIG. 8 is a schematic diagram of a hybrid vehicle power system according to an embodiment of the present invention.
- FIG. 9 is a schematic diagram of a hybrid vehicle power system according to an embodiment of the present invention.
- FIG. 10 is a schematic diagram of a hybrid vehicle power system according to an embodiment of the present invention.
- FIG. 11 is an equivalent schematic diagram of a power transmission method of a hybrid vehicle according to a second embodiment of the present invention.
- FIG. 12 is an equivalent schematic diagram of a power transmission method for a hybrid vehicle according to a third embodiment of the present invention.
- the figure shows: 10-engine; 20-motor; 30-transmission; 31-input; 32-output; 33-A input shaft gear; 34-B input shaft gear; 35-A and B Switching synchronizer; 36-A gear output shaft gear; 37-B gear output shaft gear; 40-clutch; 50-power output shaft; 51-power output shaft gear; 60- differential; 70-A wheel; B wheel; 80-transmission mechanism; 81-transmission mechanism first gear; 82-transmission mechanism second gear; 90-power switching device; 91-power original mechanism; 92-first switching mechanism; 93-second switching mechanism .
- the core idea of the present invention is to provide a hybrid vehicle power system and a power transmission method thereof, so as to realize simultaneous quick start, vehicle parking and creeping power generation, and torque-free interrupt shifting.
- the present invention provides a hybrid vehicle power system including an engine, a transmission, a clutch, a power switching device, a transmission mechanism, a power output shaft, and a motor.
- the hybrid vehicle power transmission method provided by the present invention includes power switching. Switching of the device and disconnection and engagement of the clutch.
- Engine starting is divided into two situations, one is static vehicle starting, that is, the vehicle is stationary when the engine starts; the other is driving start, that is, the engine starting during the vehicle traveling (motor driving).
- the engine starting state referred to in the following embodiments refers to engine starting when the vehicle is stationary.
- the parking power generation described in the following embodiments means that the engine and the motor constitute a power generation unit for charging the battery when the vehicle is in a parking state.
- the vehicle When the engine is stopped, the vehicle may be in a purely electric driving state, and the vehicle is only driven by the motor, which is not suitable for the present invention.
- the engine static starting process refers to a process in which the engine speed is from zero to a non-zero value.
- the starting process refers to a process in which the vehicle speed is from zero to a non-zero value, for the vehicle.
- the static vehicle starting in the following embodiment refers to the engine starting process before the vehicle starts, that is, the starting process of the engine when the vehicle speed is zero.
- FIG. 5 is a structural diagram of a hybrid vehicle power system according to an embodiment of the present invention.
- the present embodiment provides a hybrid vehicle power system 1 including an engine 10, a transmission 30, and a clutch. 40.
- Power switching device 90, transmission mechanism 80, power output shaft 50 and motor 20, engine 10 is used to supply torque to hybrid vehicle power system 1; clutch 40 is coupled between engine 10 and transmission 30 for shifting The engine 10 and the transmission 30 are separated; the transmission 30 includes an input end 31 and an output end 32, the input end 31 is connected to the clutch 40, and the output end 32 is connected to the power output shaft 50 for controlling the power output of the hybrid vehicle power system 1;
- the switch 90 is connected between the transmission mechanism 80 and the power output shaft 50.
- the power switching device 90 is also connected to the motor 20 for switching the torque of the motor 20 between the transmission mechanism 80 and the power output shaft 50.
- the transmission mechanism 80 is connected to the engine 10. .
- the power output shaft 50 outputs the torque of the power system 1 to the differential 60, and is transmitted to the A wheel 70 and the B wheel 71 through the differential 60 to realize the operation of the car.
- FIG. 6 is a schematic diagram of a hybrid vehicle power system according to an embodiment of the present invention.
- the transmission 30 further includes an A-range input shaft gear 33, a B-range input shaft gear 34, an A-range and B-speed switching synchronizer 35, an A-range output shaft gear 36, and a B-stop output shaft gear 37.
- the power switching device 90 includes a power primary mechanism 91, a first switching mechanism 92, and a second switching mechanism 93.
- the power primary mechanism 91 is coupled to the motor 20.
- the power primary mechanism 91 is coupled to the motor 20, that is, Synchronously rotating, the power primary end mechanism 91 is located between the first switching mechanism 92 and the second switching mechanism 93, and the axis of the power primary end mechanism 91 is on the same line as the axes of the first switching mechanism 92 and the second switching mechanism 93;
- a switching mechanism 92 is coupled to the transmission mechanism 80 and coupled to the transmission mechanism 80.
- the second switching mechanism 93 is coupled to the power output shaft 50 and coupled to the power output shaft 50.
- the motor 20 and the torque of the transmission mechanism 80 is transmitted between the power primary end mechanism 91 and the first switching mechanism 92. If the power primary end mechanism 91 is switched to the second switching mechanism 93 end, the rotation of the motor 20 and the power output shaft 50 is performed. The moment is transmitted between the power primary end mechanism 91 and the second switching mechanism 93.
- the power original end mechanism 91 is switched to the end of the first switching mechanism 92 during the engine static start, the vehicle parking power generation process, and the vehicle creeping power generation, and the torque of the motor 20 and the transmission mechanism 80 passes through the power original end mechanism 91 and the A switching mechanism 92 transmits between the engine 10 and the power of the motor 20 through the transmission mechanism 80 and the power switching device 90.
- the motor 20 provides torque to achieve a quick start in the vehicle.
- the output torque of the engine 10 is supplied to the motor 20, and the motor 20 is operated in a power generating state.
- the power primary end mechanism 91 is switched to the second switching mechanism 93 end during the transmission shifting process, and the torque of the motor 20 and the power output shaft 50 is transmitted between the power primary end mechanism 91 and the second switching mechanism 93, and the motor 20 To provide the compensating torque for the power output shaft 50, a torque-free interrupt shift can be achieved.
- the A-shift B-shift is taken as an example: before shifting, the transmission 30 is in the A-range, the clutch 40 is engaged, and the A- and B-speed switching synchronizers 35 are engaged with the A-shift input shaft gear 33; the transmission 30 in the powertrain of the hybrid vehicle After receiving the shift command, the power primary mechanism 91 switches to the second switching mechanism 93 end during the transmission shifting process, and the transmission 30 performs a shifting operation, wherein the shifting operation of the transmission includes the clutch 40 being disconnected, The gears (the A-speed and B-speed switching synchronizers 35 are separated from the A-speed input shaft gears 33), the gears (the A-speed and B-speed switching synchronizers 35 are engaged with the B-speed input shaft gears 34), and finally the clutch 40 is engaged to complete the shifting.
- the power of the engine 10 is interrupted, and the torque of the motor 20 and the power output shaft 50 is transmitted between the power primary mechanism 91 and the second switching mechanism 93.
- the differential 60 is transmitted to the wheel, that is, the motor 20 outputs torque to the power output shaft 50 during the entire shifting process described above, and by outputting the compensation torque, the powerless interrupt shift can be realized, and the shift can be improved. Ride.
- the power system in this embodiment can simultaneously realize fast start, stop power generation, creep power generation, and torque-free interrupt shifting.
- the transmission mechanism 80 in the figure is a conveyor belt, and the power output shaft 50 is coupled to the power output shaft gear 51, and is connected to the second switching mechanism 93 through the power output shaft gear 51.
- the transmission mechanism 80 is a combination mechanism of a conveyor belt and a gear.
- the conveyor belt coupling transmission mechanism first gear 81 is connected to the first switching mechanism 92 via the transmission mechanism first gear 81.
- the difference from FIG. 6 to FIG. 7 is that the transmission mechanism 80 in the figure is a gear, and directly meshes with the first switching mechanism 92, that is, the switching gear, thereby realizing the power transmission.
- the transmission mechanism 80 in the figure is a gear set, and the first switching mechanism 92, that is, the switching gear and the first gear 81 of the transmission mechanism are meshed with each other, and the transmission mechanism is first.
- the gear 81 meshes with the transmission second gear 82, and the transmission second gear 82 is coupled to the engine 10 to effect power transmission.
- the power switching device 90 in the figure is a synchronizer, preferably a switch synchronizer, and further, a synchronizer that can switch between both ends.
- the power primary end mechanism 91 is a joint sleeve for switching the synchronizer, and the first switching mechanism 92 and the second switching mechanism 93 are switching gears. When connected When the sleeve is moved to both ends, it can be meshed with the switching gears at both ends, so that the gear is driven to achieve the purpose of power switching.
- the power switching device 90 in the drawing is a combination mechanism of a synchronizer and a clutch.
- the power primary mechanism 91 is two meshing gears, the first gear is coupled to the motor 20, the second gear is connected to one clutch at one end, that is, the first switching mechanism 92; and the other end is connected to the switching gear of the switching synchronizer, that is, the second A part of the switching mechanism 93, another part of the second switching mechanism 93 is a joint sleeve for switching the synchronizer, and the joint sleeve is connected to the power output shaft 50.
- the embodiment has the advantages of the P0-P3 hybrid vehicle transmission device: compared with the P0-P2 type scheme, the non-power interruption shift function is added; compared with the P3 type scheme, the engine quick start when the vehicle is stationary is increased. And vehicle parking, creeping power generation function, and the motor peak torque / power is small, the motor work efficiency is high.
- the invention improves the performance of the existing single-motor parallel hybrid vehicle transmission.
- FIG. 11 is a schematic diagram of a power transmission method of a hybrid vehicle according to a second embodiment of the present invention.
- the hybrid vehicle power transmission method of the embodiment includes the following steps: the power system of the hybrid vehicle receives an engine static vehicle start or a vehicle parking power generation command; and the power switching device in the hybrid vehicle power system converts the motor torque Switching to the transmission end; the clutch in the power system of the hybrid vehicle is disconnected; the motor in the power system of the hybrid vehicle outputs torque or power generation; the power system of the hybrid vehicle completes the engine static start Or the vehicle stops to generate electricity.
- the start of the engine 10 and the vehicle starting scheme are: switching the power system to the P0 mode, that is, the motor 20 is coupled with the engine 10 to start the engine 10 and start the vehicle.
- the function Specifically, the power switching device in the hybrid vehicle power system is switched to switch the motor torque to the transmission mechanism, that is, the power primary mechanism 91 is switched to the first switching mechanism 92 to adjust the hybrid vehicle power system.
- Medium transmission The gear position maintains the transmission in a suitable gear position. In the case of an engine static start, the position of the transmission 30 gear is neutral, and the clutch in the hybrid vehicle power system is adjusted to keep the clutch in proper condition.
- the clutch 40 In the state of the engine static start, that is, the clutch 40 is kept in the off state, the motor 20 outputs the torque, and the engine 10 is quickly started by driving the transmission mechanism 80. Then, the transmission gear is adjusted to the appropriate gear, the clutch 40 is engaged, and the vehicle is started.
- the power system of the hybrid vehicle switches the power switching device in the hybrid vehicle power system to switch the motor torque to the transmission mechanism, that is, the power original mechanism 91 switches to the first
- the gear of the transmission in the hybrid vehicle power system is adjusted to maintain the transmission in a suitable gear position, and the position of the transmission gear is neutral during the vehicle parking power generation, and the mixing is adjusted.
- the clutch in the powertrain of the power vehicle maintains the clutch in a proper state, and the clutch remains in the off state during the vehicle power generation, and the torque of the engine 10 passes through the transmission mechanism 80, the first switching mechanism 92, and the power primary mechanism 91. It is transmitted to the motor 20, and the motor operates in the generator mode, and the engine is composed of a power generating unit to charge the battery.
- the hybrid vehicle power transmission method further includes: the clutch 40 in the power system of the hybrid vehicle is switched into a slip state.
- the clutch 40 is a dry clutch or a wet clutch, and at this time, the vehicle is switched from the parking power generation state to the creep state.
- the electric motor 20 in the powertrain of the hybrid vehicle generates electricity.
- the hybrid vehicle When the vehicle is in creeping condition and the battery is low, the hybrid vehicle is in creep mode. Creeping power generation, that is, when the road is congested, sometimes stops to generate electricity, sometimes at a low speed, the vehicle switches between the parking power generation mode and the creep mode, and the parking power generation mode can be quickly switched to the creep mode. Specifically, when the vehicle stops generating power, the power switching device in the hybrid vehicle power system is switched to switch the motor torque to the transmission mechanism, that is, the power primary mechanism 91 is switched to the first switching mechanism 92 end, and the clutch 40 Disconnected, the output torque of the engine 10 is transmitted to the motor 20 through the transmission mechanism, so that the motor 20 operates in the generator mode, and the engine 10 constitutes a power generating unit to charge the battery.
- the power switching device When switching from the parking power generation mode to the creep mode, the power switching device remains unchanged at the transmission end, the clutch 40 is switched to the sliding state, and part of the engine torque is transmitted through the transmission mechanism and the power switching device.
- the motor is delivered to generate electricity (the same path as in the above-described parking power generation), and a part of the transmission is transmitted to the wheel 70 via the clutch 40, the transmission input shaft 31, the transmission 30, the transmission output shaft 32, the power output shaft 50, and the differential 60.
- the engine torque can be partially transmitted to the motor for power generation, and part of the output to the wheel, or all of the output to the wheel.
- the clutch 40 may remain in a slip state (the clutch 40 front and rear speed difference is not zero), or may change from the slip state to the engaged state (when the clutch 40 front and rear speed difference is zero).
- the transmission in the hybrid vehicle powertrain is maintained in a suitable gear position, and the position of the transmission gear is in the low gear during vehicle creep.
- FIG. 12 is a schematic diagram of a power transmission method of a hybrid vehicle according to a third embodiment of the present invention.
- the difference from the second embodiment is that the hybrid vehicle power transmission method of the present embodiment is used in the shift state of the transmission 30.
- the equivalent power and torque transmission path of the hybrid vehicle power transmission method of the present embodiment is as shown in FIG. 12, including the steps of: the transmission in the power system of the hybrid vehicle receives a shift command; the hybrid power A power switching device in the vehicle power system switches the motor torque to a power output shaft end; the transmission in the power system of the hybrid vehicle performs a shifting operation, wherein the transmission performs a shifting operation including a clutch disconnection, a gear (the synchronizer is separated from the current gear gear), a gear (the synchronizer engages with the target gear gear), and a clutch engaged; the motor in the power system of the hybrid vehicle outputs to the power output shaft during the shifting process described above Torque.
- the transmission 30 before shifting, the transmission 30 is in the A-range, the clutch 40 is engaged, and the A- and B-shifting synchronizers 35 are engaged with the A-shift input shaft gear 33; the transmission in the hybrid system of the hybrid vehicle After receiving the shift command, the power primary mechanism 91 switches to the second switching mechanism 93 end during the transmission shifting process, and the transmission 30 performs a shifting operation, wherein the shifting operation of the transmission includes the clutch 40 being disconnected.
- the pick-up the A-stop and B-speed switching synchronizer 35 are separated from the A-speed input shaft gear 33
- the gearshift the A-speed and B-speed switching synchronizer 35 are engaged with the B-speed input shaft gear 34
- the clutch 40 is engaged and replaced. block.
- the torque of the motor 20 and the power output shaft 50 is transmitted between the power primary mechanism 91 and the second switching mechanism 93, and then transmitted through the power output shaft 50 and the differential 60.
- the wheel, that is, the motor 20 outputs torque to the power output shaft 50 during the entire shifting process described above, and by outputting the compensation torque, the powerless interrupt shift can be realized, and the shift smoothness can be improved.
- the power system in this embodiment can simultaneously achieve fast start, stop, creep power generation and torque-free interrupt shifting.
- the power switching device respectively engages and disconnects the power transmission of the motor and the transmission device and the power output shaft, and realizes the P0 or P1 power system and the P3 power.
- the system switches to each other.
- the power switching device In the state of engine static start and stop power generation or creep power generation, the power switching device is switched to the transmission end, and the power of the engine and the motor are coupled to each other to realize quick start, parking and creeping power generation; when the transmission is in the shift state, the power is The switching device is switched to the power output shaft end, the clutch is disconnected, the motor provides the compensation torque, and the torque-free interrupt shift can be realized.
- the power transmission method can simultaneously realize the quick start, the stop power generation, the creep generation and the torque-free interrupt shift.
- the hybrid power system of the invention can realize the functions of no power interruption shifting, engine quick start when the vehicle is stationary, stop power generation and creeping power generation only by adding two power switching devices on the basis of the conventional automatic transmission, and can effectively get rid of the automatic Technical bottlenecks such as the transmission (hereinafter referred to as AT) and the dual clutch automatic transmission (hereinafter referred to as DCT).
- AT transmission
- DCT dual clutch automatic transmission
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Hybrid Electric Vehicles (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
Abstract
一种混合动力汽车动力系统及其动力传动方法,该系统包括:发动机(10)、变速器(30)、离合器(40)、动力切换装置(90)、传动机构(80)、动力输出轴(50)及电机(20)。动力切换装置(90)为同步器或离合器,用于电机转矩在传动机构(80)与动力输出轴(50)之间切换。在发动机静车起动、车辆停车发电或车辆蠕行发电状态下,电机(20)与传动机构(80)连接,发动机(10)与电机(20)的动力相互耦合,实现快速起动、停车及蠕行发电;当变速器(30)换挡状态下,电机(20)与动力输出轴(50)连接,电机(20)向动力输出轴(50)提供补偿扭矩,可以实现无扭矩中断换挡。该系统可同时实现快速起动、车辆停车及蠕行发电及无扭矩中断换挡。
Description
本发明涉及混合动力汽车技术领域,特别涉及一种混合动力汽车动力系统及其动力传动方法。
随着油耗和排放法规的日益严格,汽车的经济性和排放性能需要不断提升。混合动力汽车作为一种有效、可靠的新能源汽车解决方法,具有较强的节能、减排能力和广阔的市场前景。
目前,采用自动变速器的单电机并联混合动力系统分为四类,第一类为电机通过带传动机构与发动机耦合(带传动机构处于发动机输出端的另一端)的混合动力系统(以下简称为P0型动力系统),第二类为电机安装在发动机和变速器之间,且电机与发动机没有解耦的混合动力系统(以下简称为P1型动力系统),第三类为电机安装在发动机和变速器之间,且电机通过离合器与发动机解耦(离合器断开,电机与发动机分开)的混合动力系统(以下简称为P2型动力系统),第四类为电机安装在变速器和差速器之间的混合动力系统(以下简称为P3型动力系统)。如图1所示,在P0型动力系统中,电机20与发动机10通过传动机构80耦合,发动机10与电机20的转矩通过离合器40与变速器30输出给动力输出轴50,动力输出轴50连接差速器60,将转矩传递给A车轮70与B车轮71,如图2所示,在P1型动力系统中,电机20安装在发动机10和变速器30之间,电机20与发动机10输出轴耦合,如图3所示,在P2型动力系统中,电机20安装在发动机10和变速器30之间,且通过离合器40与发动机10解耦,电机20的转矩通过离合器41与变速器30输出给动力输出轴50,动力输出轴50连接差速器60,将转矩传递给A车轮70与B车轮71,对电机峰值功率和转矩的要求较低,同时电机工作效率得到提升,P0、P1及P2动力系统都可以实现车辆静止状态下的发动机快速起动、驻车发电以及蠕行
发电,但是由于电机20的转矩必须经过变速器30传递给车轮,换挡时都存在扭矩中断问题,而且,P2型动力系统轴向布置空间有限,电机功率较小。如图4所示,在P3型动力系统中,电机20安装在变速器30的输出端,变速器30换挡时,离合器40中断,电机20提供补偿扭矩,可以实现无扭矩中断换挡,但是,P3型动力系统无法实现车辆静止状态下快速起动发动机、停车发电和蠕行发电。
因此,需要设计一种既可以发动机静车快速起动、停车发电及蠕行发电,又实现无扭矩中断换挡的动力系统及方法。
发明内容
本发明的目的在于提供一种混合动力汽车动力系统及其动力传动方法,以解决现有的动力系统及方法无法同时实现快速起动、驻车及蠕行发电及无扭矩中断换挡的问题。
为解决上述技术问题,本发明提供一种混合动力汽车动力系统,所述混合动力汽车动力系统包括发动机、离合器、变速器、动力切换装置、传动机构、动力输出轴及电机,其中:
所述发动机用于为所述混合动力汽车动力系统提供转矩;
所述离合器连接于所述发动机与所述变速器之间,用于分离所述发动机与所述变速器;
所述变速器包括输入端与输出端,所述输入端连接所述离合器,所述输出端连接所述动力输出轴,用于控制所述混合动力汽车动力系统的动力输出;
所述动力切换装置连接于所述传动机构与所述动力输出轴之间,所述动力切换装置还连接所述电机,用于电机转矩在传动机构与动力输出轴之间的切换;
所述传动机构连接所述发动机。
可选的,在所述的混合动力汽车动力系统中,所述动力切换装置为同步器
或同步器与离合器的组合机构。
可选的,在所述的混合动力汽车动力系统中,所述传动机构为传送带、齿轮、传送带与齿轮的组合机构或齿轮组。
可选的,在所述的混合动力汽车动力系统中,所述动力切换装置包括动力原端机构、第一切换机构及第二切换机构,其中:
所述动力原端机构连接所述电机,位于所述第一切换机构与所述第二切换机构之间,所述动力原端机构的轴与所述第一切换机构及所述第二切换机构的轴在同一直线上;
所述第一切换机构连接所述传动机构;
所述第二切换机构连接所述动力输出轴。
可选的,在所述的混合动力汽车动力系统中,所述在动力原端机构在所述发动机静车起动、车辆停车发电过程中及车辆蠕行发电过程中切换到所述第一切换机构端,在所述变速器换挡过程中切换到所述第二切换机构端。
本发明还提供一种混合动力汽车的动力传动方法,其包括如下步骤:
所述混合动力汽车的动力系统收到发动机静车起动或车辆停车发电指令;
所述混合动力汽车动力系统中的动力切换装置将电机转矩切换到传动机构端;
所述混合动力汽车的动力系统中的离合器断开;
所述混合动力汽车的动力系统中的电机输出转矩或发电;
所述混合动力汽车的动力系统完成发动机静车起动或车辆停车发电。
可选的,所述混合动力汽车的动力传动方法还包括:所述混合动力汽车的动力系统中的离合器转换为滑转状态。
可选的,在所述的混合动力汽车的动力传动方法中,所述离合器为干式离合器或湿式离合器。
可选的,所述混合动力汽车的动力传动方法用于车辆由停车发电状态转换为蠕行状态。
可选的,在所述的混合动力汽车动力传动方法中,所述混合动力汽车的动力系统中的电机发电。
本发明还提供一种混合动力汽车的动力传动方法,其包括如下步骤:
所述混合动力汽车的动力系统中的变速器收到换挡指令;
所述混合动力汽车动力系统中的动力切换装置将电机转矩切换到动力输出轴端;
所述混合动力汽车的动力系统中的变速器进行换挡操作,其中,所述变速器进行换挡操作包括离合器断开,摘挡(同步器与当前挡位齿轮分离),挂挡(同步器与目标挡位齿轮接合),离合器接合;
所述混合动力汽车的动力系统中的电机在上述换挡过程中向动力输出轴输出转矩。
在本发明提供的混合动力汽车动力系统及其动力传动方法中,动力切换装置分别连接在传动装置及动力输出轴与电机之间,接合和断开电机与传动装置及动力输出轴的动力传输,实现了P0或P1型动力系统与P3型动力系统的相互切换。在发动机静车起动、车辆停车或蠕行发电状态下,动力切换装置切换到传动机构端,发动机与电机的动力相互耦合,实现快速起动、车辆停车及蠕行发电;当变速器换挡状态下,动力切换装置切换到动力输出轴端,离合器断开,电机提供补偿扭矩,可以实现无扭矩中断换挡,该动力传动方法可同时实现快速起动、车辆停车、蠕行发电及无扭矩中断换挡。
本发明兼具P0~P3型混合动力汽车传动装置的优点:与P0~P2型方案相比,增加了无动力中断换挡功能;与P3型方案相比,增加了车辆静止时发动机快速起动和驻车发电功能,且电机峰值转矩/功率较小,电机工作效率较高。本发明提升了现有单电机并联混合动力汽车传动装置的性能。
本发明的混合动力系统仅通过在传统自动变速器基础上增加动力切换装置和传动机构,即可实现无动力中断换挡、车辆静止时发动机快速起动、停车发电和蠕行发电等功能,可以有效摆脱自动变速器(以下简称为AT)和双离
合自动变速器(以下简称为DCT)等技术瓶颈。与采用AT/DCT作为传动装置的混合动力系统相比,集成难度低,增加成本小。
图1是现有的混合动力汽车P0型动力系统结构图;
图2是现有的混合动力汽车P1型动力系统结构图;
图3是现有的混合动力汽车P2型动力系统结构图;
图4是现有的混合动力汽车P3型动力系统结构图;
图5是本发明实施例一混合动力汽车动力系统结构图;
图6是本发明实施例一混合动力汽车动力系统示意图;
图7是本发明实施例一混合动力汽车动力系统示意图;
图8是本发明实施例一混合动力汽车动力系统示意图;
图9是本发明实施例一混合动力汽车动力系统示意图;
图10是本发明实施例一混合动力汽车动力系统示意图;
图11是本发明实施例二混合动力汽车动力传动方法等效示意图;
图12是本发明实施例三混合动力汽车动力传动方法等效示意图;
图中所示:10-发动机;20-电机;30-变速器;31-输入端;32-输出端;33-A挡输入轴齿轮;34-B挡输入轴齿轮;35-A挡和B挡切换同步器;36-A挡输出轴齿轮;37-B挡输出轴齿轮;40-离合器;50-动力输出轴;51-动力输出轴齿轮;60-差速器;70-A车轮;71-B车轮;80-传动机构;81-传动机构第一齿轮;82-传动机构第二齿轮;90-动力切换装置;91-动力原端机构;92-第一切换机构;93-第二切换机构。
以下结合附图5~12和具体实施例对本发明提出的混合动力汽车动力系统及其动力传动方法作进一步详细说明。根据下面说明和权利要求书,本发明的
优点和特征将更清楚。需说明的是,附图均采用非常简化的形式且均使用非精准的比例,仅用以方便、明晰地辅助说明本发明实施例的目的。
本发明的核心思想在于提供一种混合动力汽车动力系统及其动力传动方法,以实现同时实现快速起动、车辆停车及蠕行发电以及无扭矩中断换挡。
为实现上述思想,本发明提供了一种混合动力汽车动力系统,包括发动机、变速器、离合器、动力切换装置、传动机构、动力输出轴及电机;本发明提供的混合动力汽车动力传动方法包括动力切换装置的切换和离合器的断开和接合。
发动机起动分两种情况,一种是静车起动,即发动机起动时车辆静止;一种是行车起动,即车辆行进过程中(电机驱动)的发动机起动。以下实施例中涉及的发动机起动状态指车辆静止时的发动机起动。
以下实施例中所述的停车发电,是指车辆在停车状态下,发动机与电机组成发电单元为电池充电。发动机停机时,车辆有可能处于纯电动驱动状态,仅由电机驱动车辆,不适用于本发明。
进一步的,发动机静车起动过程是指发动机转速从零到某非零值的过程,针对发动机而言,起步过程是指车速从零到某非零值的过程,针对车辆而言。以下实施例中的静车起动就指车辆起步前的发动机起动过程,即车速为零时,发动机的起动过程。
<实施例一>
如图5所示,图5是本发明实施例一混合动力汽车动力系统结构图,本实施例提供了一种混合动力汽车动力系统1,混合动力汽车动力系统1包括发动机10、变速器30、离合器40、动力切换装置90、传动机构80、动力输出轴50及电机20,发动机10用于为混合动力汽车动力系统1提供转矩;离合器40连接于发动机10与变速器30之间,用于换挡时分离发动机10与变速器30;变速器30包括输入端31与输出端32,输入端31连接离合器40,输出端32连接动力输出轴50,用于控制混合动力汽车动力系统1动力输出;动力切换装
置90连接于传动机构80与动力输出轴50之间,动力切换装置90还连接电机20,用于电机20转矩在传动机构80与动力输出轴50之间的切换;传动机构80连接发动机10。动力输出轴50输出动力系统1的转矩给差速器60,并通过差速器60传递给A车轮70与B车轮71,以实现汽车的运行。
如图6所示,图6是本发明实施例一混合动力汽车动力系统示意图。其中,变速器30还包括A挡输入轴齿轮33、B挡输入轴齿轮34、A挡与B挡切换同步器35、A挡输出轴齿轮36及B挡输出轴齿轮37。
动力切换装置90包括动力原端机构91、第一切换机构92及第二切换机构93,其中:动力原端机构91连接电机20,本实施例中,动力原端机构91与电机20耦合,即同步转动,动力原端机构91位于第一切换机构92与第二切换机构93之间,动力原端机构91的轴与第一切换机构92及第二切换机构93的轴位于同一直线上;第一切换机构92连接传动机构80,与传动机构80耦合;第二切换机构93连接动力输出轴50,与动力输出轴50耦合,如果动力原端机构91切换到第一切换机构92端,则电机20与传动机构80的转矩通过动力原端机构91与第一切换机构92之间进行传递,如果动力原端机构91切换到第二切换机构93端,则电机20与动力输出轴50的转矩通过动力原端机构91与第二切换机构93之间进行传递。
动力原端机构91在发动机静车起动、车辆停车发电过程中及车辆蠕行发电过程中切换到第一切换机构92端,则电机20与传动机构80的转矩通过动力原端机构91与第一切换机构92之间进行传递,发动机10与电机20的动力通过传动机构80、动力切换装置90之间相互耦合,在发动机静车起动过程中,电机20提供转矩,实现快速起动,在车辆停车发电及蠕行发电时,发动机10的输出转矩提供给电机20,电机20运行在发电状态。
动力原端机构91在变速器换挡过程中切换到第二切换机构93端,则电机20与动力输出轴50的转矩通过动力原端机构91与第二切换机构93之间进行传递,电机20为动力输出轴50提供补偿扭矩,可以实现无扭矩中断换挡。以
A挡换B挡为例:换挡前,变速器30在A挡,离合器40接合,A挡和B挡切换同步器35与A挡输入轴齿轮33接合;混合动力汽车的动力系统中的变速器30收到换挡指令后,动力原端机构91在变速器换挡过程中切换到第二切换机构93端,变速器30进行换挡操作,其中,所述变速器进行换挡操作包括离合器40断开,摘挡(A挡和B挡切换同步器35与A挡输入轴齿轮33分离),挂挡(A挡和B挡切换同步器35与B挡输入轴齿轮34接合),最后离合器40接合完成换挡。从离合器40分离开始到离合器40完全接合这段过程中,发动机10动力存在中断,则电机20与动力输出轴50的转矩通过动力原端机构91与第二切换机构93之间进行传递,再通过动力输出轴50,差速器60,传递给车轮,即电机20在上述整个换挡过程中向动力输出轴50输出转矩,通过输出补偿扭矩,可以实现无动力中断换挡,提高换挡平顺性。本实施例中的动力系统可同时实现快速起动、停车发电、蠕行发电及无扭矩中断换挡。
具体的,如图6所示,图中的传动机构80为传送带,动力输出轴50耦合动力输出轴齿轮51,通过动力输出轴齿轮51与第二切换机构93连接。
如图7所示,与图7不同之处在于,传动机构80为传送带与齿轮的组合机构,传送带耦合传动机构第一齿轮81,通过传动机构第一齿轮81与第一切换机构92连接。
如图8所示,与图6~7中不同之处在于,图中的传动机构80为齿轮,直接与第一切换机构92,即切换齿轮相互啮合,从而实现动力传动。
如图9所示,与图6~8中不同之处在于,图中的传动机构80为齿轮组,第一切换机构92,即切换齿轮与传动机构第一齿轮81相互啮合,传动机构第一齿轮81与传动机构第二齿轮82相互啮合,传动机构第二齿轮82与发动机10耦合,从而实现动力传动。
进一步的,如图6所示,图中的动力切换装置90为同步器,优选地,为切换同步器,更进一步的,可以进行两端切换的同步器。动力原端机构91为切换同步器的接合套,第一切换机构92及第二切换机构93为切换齿轮。当接
合套向两端移动时,可分别与两端的切换齿轮啮合,从而使齿轮被带动实现转动,达到动力切换的目的。
如图10所示,与图6不同之处在于,图中的动力切换装置90为同步器与离合器的组合机构。动力原端机构91为两个啮合的齿轮,第一个齿轮与电机20耦合,第二个齿轮一端连接一个离合器,即第一切换机构92;另一端连接切换同步器的切换齿轮,即第二切换机构93的一部分,第二切换机构93的另一部分为切换同步器的接合套,接合套连接动力输出轴50。在动力切换装置90切换到第一切换机构92端时,离合器接合,切换同步器的接合套与切换齿轮断开;在动力切换装置90切换到第二切换机构93端时,离合器断开,切换同步器的接合套与切换齿轮接合。
本实施例兼具P0~P3型混合动力汽车传动装置的优点:与P0~P2型方案相比,增加了无动力中断换挡功能;与P3型方案相比,增加了车辆静止时发动机快速起动和车辆停车、蠕行发电功能,且电机峰值转矩/功率较小,电机工作效率较高。本发明提升了现有单电机并联混合动力汽车传动装置的性能。
<实施例二>
如图11所示,图11是本发明实施例二混合动力汽车动力传动方法示意图。本实施例的混合动力汽车动力传动方法包括如下步骤:所述混合动力汽车的动力系统收到发动机静车起动或车辆停车发电指令;所述混合动力汽车动力系统中的动力切换装置将电机转矩切换到传动机构端;所述混合动力汽车的动力系统中的离合器断开;所述混合动力汽车的动力系统中的电机输出转矩或发电;所述混合动力汽车的动力系统完成发动机静车起动或车辆停车发电。
所述混合动力汽车的动力系统收到发动机静车起动指令时,发动机10的起动及车辆起步方案为:将动力系统切换至P0模式下,即电机20与发动机10耦合实现起动发动机10及车辆起步的功能。具体地,切换所述混合动力汽车动力系统中的动力切换装置,使电机转矩切换到传动机构上,即动力原端机构91切换到第一切换机构92端,调节所述混合动力汽车动力系统中的变速器的
挡位,使所述变速器保持在合适的挡位上,在发动机静车起动情况下,变速器30挡位的位置为空挡,调节所述混合动力汽车动力系统中的离合器,使所述离合器保持合适的状态,在发动机静车起动情况下即离合器40保持断开状态,电机20输出转矩,通过带动传动机构80快速起动发动机10。接着,变速器挡位调节到适当的挡位,离合器40接合,车辆起步。
所述混合动力汽车的动力系统收到车辆停车发电指令后,切换所述混合动力汽车动力系统中的动力切换装置,使电机转矩切换到传动机构上,即动力原端机构91切换到第一切换机构92端,调节所述混合动力汽车动力系统中的变速器的挡位,使所述变速器保持在合适的挡位上,在车辆停车发电过程中变速器挡位的位置为空挡,调节所述混合动力汽车动力系统中的离合器,使所述离合器保持合适的状态,车辆停车发电过程中即离合器保持断开状态,发动机10转矩通过传动机构80,第一切换机构92,动力原端机构91,传递给电机20,电机工作在发电机模式,与发动机组成发电单元为电池充电。
进一步的,在所述的混合动力汽车动力传动方法中,所述混合动力汽车动力传动方法还包括:所述混合动力汽车的动力系统中的离合器40转换为滑转状态。此时离合器40为干式离合器或湿式离合器,此时车辆由停车发电状态转换为蠕行状态。而混合动力汽车的动力系统中的电机20发电。
当车辆处于蠕行工况,且电池电量较低时,该混合动力汽车处于蠕行发电模式。蠕行发电,即道路拥堵时,时而停车发电,时而低速前行,车辆在停车发电和蠕行两种模式之间切换,同时要求停车发电模式可以向蠕行模式快速切换。具体地,当车辆停车发电时,切换所述混合动力汽车动力系统中的动力切换装置,使电机转矩切换到传动机构上,即动力原端机构91切换到第一切换机构92端,离合器40断开,发动机10的输出转矩通过传动机构传递给电机20,使电机20工作在发电机模式,与发动机10组成发电单元为电池充电。当从停车发电模式向蠕行模式切换时,动力切换装置保持在传动机构端不变,离合器40转换为滑摩状态,发动机转矩一部分通过传动机构和动力切换装置传
递给电机进行发电(路径与上述停车发电时相同),一部分通过离合器40,变速器输入轴31,变速器30,变速器输出轴32,动力输出轴50,差速器60,输出给车轮70。根据整车需求,发动机转矩可以一部分传递给电机进行发电,一部分输出给车轮,也可以全部输出给车轮。离合器40在蠕行过程中,可能保持滑摩状态(离合器40前后转速差不为零),也可能从滑摩状态变为接合状态(离合器40前后转速差为零时)。另外,在蠕行状态下,混合动力汽车动力系统中的变速器保持在合适的挡位上,在车辆蠕行过程中变速器挡位的位置为低挡位。
<实施例三>
如图12所示,图12是本发明实施例三混合动力汽车动力传动方法示意图。与实施例二的区别在于,本实施例的混合动力汽车动力传动方法用于变速器30换挡状态下。
本实施例的混合动力汽车动力传动方法等效的动力及转矩传递路线如图12所示,包括如下步骤:所述混合动力汽车的动力系统中的变速器收到换挡指令;所述混合动力汽车动力系统中的动力切换装置将电机转矩切换到动力输出轴端;所述混合动力汽车的动力系统中的变速器进行换挡操作,其中,所述变速器进行换挡操作包括离合器断开,摘挡(同步器与当前挡位齿轮分离),挂挡(同步器与目标挡位齿轮接合),离合器接合;所述混合动力汽车的动力系统中的电机在上述换挡过程中向动力输出轴输出转矩。
以A挡换B挡为例:换挡前,变速器30在A挡,离合器40接合,A挡和B挡切换同步器35与A挡输入轴齿轮33接合;混合动力汽车的动力系统中的变速器30收到换挡指令后,动力原端机构91在变速器换挡过程中切换到第二切换机构93端,变速器30进行换挡操作,其中,所述变速器进行换挡操作包括离合器40断开,摘挡(A挡和B挡切换同步器35与A挡输入轴齿轮33分离),挂挡(A挡和B挡切换同步器35与B挡输入轴齿轮34接合),最后离合器40接合完成换挡。从离合器40分离开始到离合器40完全接合这段
过程中,发动机10动力存在中断,则电机20与动力输出轴50的转矩通过动力原端机构91与第二切换机构93之间进行传递,再通过动力输出轴50,差速器60,传递给车轮,即电机20在上述整个换挡过程中向动力输出轴50输出转矩,通过输出补偿扭矩,可以实现无动力中断换挡,提高换挡平顺性。本实施例中的动力系统可同时实现快速起动、停车、蠕行发电及无扭矩中断换挡。
在实施例二及实施例三提供的混合动力汽车动力传动方法中,动力切换装置分别接合和断开电机与传动装置及动力输出轴的动力传输,实现了P0或P1型动力系统与P3型动力系统的相互切换。在发动机静车起动停车发电或蠕行发电状态下,动力切换装置切换到传动机构端,发动机与电机的动力相互耦合,实现快速起动、驻车及蠕行发电;当变速器换挡状态下,动力切换装置切换到动力输出轴端,离合器断开,电机提供补偿扭矩,可以实现无扭矩中断换挡,该动力传动方法可同时实现快速起动、停车发电、蠕行发电及无扭矩中断换挡。
本发明的混合动力系统仅通过在传统自动变速器基础上增加两个动力切换装置,即可实现无动力中断换挡、车辆静止时发动机快速起动、停车发电和蠕行发电等功能,可以有效摆脱自动变速器(以下简称为AT)和双离合自动变速器(以下简称为DCT)等技术瓶颈。与采用AT/DCT作为传动装置的混合动力系统相比,集成难度低,增加成本小。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的系统而言,由于与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
上述描述仅是对本发明较佳实施例的描述,并非对本发明范围的任何限定,本发明领域的普通技术人员根据上述揭示内容做的任何变更、修饰,均属于权利要求书的保护范围。
Claims (11)
- 一种混合动力汽车动力系统,其特征在于,包括发动机、离合器、变速器、动力切换装置、传动机构、动力输出轴及电机,其中:所述发动机用于为所述混合动力汽车动力系统提供转矩;所述离合器连接于所述发动机与所述变速器之间,用于分离所述发动机与所述变速器;所述变速器包括输入端与输出端,所述输入端连接所述离合器,所述输出端连接所述动力输出轴,用于控制所述混合动力汽车动力系统的动力输出;所述动力切换装置连接于所述传动机构与所述动力输出轴之间,所述动力切换装置还连接所述电机,用于电机转矩在传动机构与动力输出轴之间的切换;所述传动机构连接所述发动机。
- 如权利要求1所述的混合动力汽车动力系统,其特征在于,所述动力切换装置为同步器或同步器与离合器的组合机构。
- 如权利要求1所述的混合动力汽车动力系统,其特征在于,所述传动机构为传送带、齿轮、传送带与齿轮的组合机构或齿轮组。
- 如权利要求1所述的混合动力汽车动力系统,其特征在于,所述动力切换装置包括动力原端机构、第一切换机构及第二切换机构,其中:所述动力原端机构连接所述电机,位于所述第一切换机构与所述第二切换机构之间,所述动力原端机构的轴与所述第一切换机构及所述第二切换机构的轴在同一直线上;所述第一切换机构连接所述传动机构;所述第二切换机构连接所述动力输出轴。
- 如权利要求4所述的混合动力汽车动力系统,其特征在于,所述动力原端机构在所述发动机静车起动、车辆停车发电过程中及车辆蠕行发电过程中 切换到所述第一切换机构端,在所述变速器换挡过程中切换到所述第二切换机构端。
- 一种混合动力汽车的动力传动方法,其特征在于,包括如下步骤:所述混合动力汽车的动力系统收到发动机静车起动或车辆停车发电指令;所述混合动力汽车动力系统中的动力切换装置将电机转矩切换到传动机构端;所述混合动力汽车的动力系统中的离合器断开;所述混合动力汽车的动力系统中的电机输出转矩或发电;所述混合动力汽车的动力系统完成发动机静车起动或车辆停车发电。
- 如权利要求6所述的混合动力汽车的动力传动方法,其特征在于,所述混合动力汽车的动力传动方法还包括:所述混合动力汽车的动力系统中的离合器转换为滑摩状态。
- 如权利要求7所述的混合动力汽车的动力传动方法,其特征在于,所述离合器为干式离合器或湿式离合器。
- 如权利要求7所述的混合动力汽车的动力传动方法,其特征在于,所述混合动力汽车的动力传动方法用于车辆由停车发电状态转换为蠕行状态。
- 如权利要求8所述的混合动力汽车的动力传动方法,其特征在于,所述混合动力汽车的动力系统中的电机发电。
- 一种混合动力汽车的动力传动方法,其特征在于,包括如下步骤:所述混合动力汽车的动力系统中的变速器收到换挡指令;所述混合动力汽车动力系统中的动力切换装置将电机转矩切换到动力输出轴端;所述混合动力汽车的动力系统中的变速器进行换挡操作,其中,所述变速器进行换挡操作包括离合器断开,摘挡,挂挡,离合器接合;所述混合动力汽车的动力系统中的电机在上述换挡过程中向动力输出轴输出转矩。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610947320.7 | 2016-10-26 | ||
CN201610947320.7A CN106608175A (zh) | 2016-10-26 | 2016-10-26 | 混合动力汽车动力系统及其动力传动方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018076893A1 true WO2018076893A1 (zh) | 2018-05-03 |
Family
ID=58615139
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/096838 WO2018076893A1 (zh) | 2016-10-26 | 2017-08-10 | 混合动力汽车动力系统及其动力传动方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN106608175A (zh) |
WO (1) | WO2018076893A1 (zh) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110733332A (zh) * | 2019-09-29 | 2020-01-31 | 湖南奕普汽车科技有限公司 | 一种基于amt的混合动力系统及控制方法 |
CN112406508A (zh) * | 2020-10-29 | 2021-02-26 | 东风汽车集团有限公司 | 混合动力驱动方法、装置、动力系统、车辆及相关设备 |
CN113415141A (zh) * | 2021-07-22 | 2021-09-21 | 中国第一汽车股份有限公司 | 一种电动汽车的动力系统、控制方法及电动汽车 |
CN113635901A (zh) * | 2021-08-23 | 2021-11-12 | 同济大学 | 一种混合动力汽车纯电起步工况下电机转矩控制方法 |
CN113696709A (zh) * | 2020-05-22 | 2021-11-26 | 上海汽车集团股份有限公司 | 一种混合动力驱动机构及车辆模式控制策略 |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106608175A (zh) * | 2016-10-26 | 2017-05-03 | 联合汽车电子有限公司 | 混合动力汽车动力系统及其动力传动方法 |
CN107226085B (zh) * | 2017-06-20 | 2019-05-28 | 上海汽车变速器有限公司 | 湿式双离合变速器混合动力汽车的换挡控制方法 |
CN107878178A (zh) * | 2017-11-10 | 2018-04-06 | 上海中科深江电动车辆有限公司 | 混合动力装置及相应控制的方法 |
CN108725443A (zh) * | 2018-05-30 | 2018-11-02 | 重庆长安汽车股份有限公司 | 新能源汽车及其发动机起动控制方法 |
CN109082756B (zh) * | 2018-09-07 | 2024-05-31 | 苏州汇川技术有限公司 | 电机驱动控制方法、设备及织机 |
CN109080429A (zh) * | 2018-09-26 | 2018-12-25 | 特百佳动力科技有限公司 | 商用车用混合动力系统、控制方法及商用车 |
CN112061129B (zh) * | 2020-08-31 | 2022-03-15 | 长城汽车股份有限公司 | 一种控制方法、装置及车辆 |
CN114103927B (zh) * | 2021-12-09 | 2024-06-28 | 安徽江淮汽车集团股份有限公司 | 一种双电机串并联混动汽车的控制方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101445041A (zh) * | 2008-10-11 | 2009-06-03 | 比亚迪股份有限公司 | 一种混合动力驱动系统及采用该系统的汽车 |
CN101934720A (zh) * | 2009-06-30 | 2011-01-05 | 比亚迪股份有限公司 | 一种混合动力驱动系统及其驱动方法 |
CN104276163A (zh) * | 2014-01-30 | 2015-01-14 | 比亚迪股份有限公司 | 车辆中发动机单元的控制方法和车辆 |
JP2016043909A (ja) * | 2014-08-27 | 2016-04-04 | アイシン・エーアイ株式会社 | 駆動力伝達装置 |
CN106608175A (zh) * | 2016-10-26 | 2017-05-03 | 联合汽车电子有限公司 | 混合动力汽车动力系统及其动力传动方法 |
CN206306822U (zh) * | 2016-10-26 | 2017-07-07 | 联合汽车电子有限公司 | 混合动力汽车动力系统 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6573201B2 (ja) * | 2014-02-20 | 2019-09-11 | パナソニックIpマネジメント株式会社 | 車両用ハイブリッドシステム |
CN104608760B (zh) * | 2014-10-20 | 2016-05-25 | 比亚迪股份有限公司 | 混合动力汽车及其换挡控制方法、动力传动系统 |
CN205326781U (zh) * | 2016-01-08 | 2016-06-22 | 中国第一汽车股份有限公司 | 一种电动汽车动力系统 |
CN205588983U (zh) * | 2016-04-06 | 2016-09-21 | 中国第一汽车股份有限公司 | 一种电动汽车动力系统 |
-
2016
- 2016-10-26 CN CN201610947320.7A patent/CN106608175A/zh active Pending
-
2017
- 2017-08-10 WO PCT/CN2017/096838 patent/WO2018076893A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101445041A (zh) * | 2008-10-11 | 2009-06-03 | 比亚迪股份有限公司 | 一种混合动力驱动系统及采用该系统的汽车 |
CN101934720A (zh) * | 2009-06-30 | 2011-01-05 | 比亚迪股份有限公司 | 一种混合动力驱动系统及其驱动方法 |
CN104276163A (zh) * | 2014-01-30 | 2015-01-14 | 比亚迪股份有限公司 | 车辆中发动机单元的控制方法和车辆 |
JP2016043909A (ja) * | 2014-08-27 | 2016-04-04 | アイシン・エーアイ株式会社 | 駆動力伝達装置 |
CN106608175A (zh) * | 2016-10-26 | 2017-05-03 | 联合汽车电子有限公司 | 混合动力汽车动力系统及其动力传动方法 |
CN206306822U (zh) * | 2016-10-26 | 2017-07-07 | 联合汽车电子有限公司 | 混合动力汽车动力系统 |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110733332A (zh) * | 2019-09-29 | 2020-01-31 | 湖南奕普汽车科技有限公司 | 一种基于amt的混合动力系统及控制方法 |
CN110733332B (zh) * | 2019-09-29 | 2023-09-08 | 湖南奕普汽车科技有限公司 | 一种基于amt的混合动力系统及控制方法 |
CN113696709A (zh) * | 2020-05-22 | 2021-11-26 | 上海汽车集团股份有限公司 | 一种混合动力驱动机构及车辆模式控制策略 |
CN112406508A (zh) * | 2020-10-29 | 2021-02-26 | 东风汽车集团有限公司 | 混合动力驱动方法、装置、动力系统、车辆及相关设备 |
CN112406508B (zh) * | 2020-10-29 | 2023-08-08 | 东风汽车集团有限公司 | 混合动力驱动方法、装置、动力系统、车辆及相关设备 |
CN113415141A (zh) * | 2021-07-22 | 2021-09-21 | 中国第一汽车股份有限公司 | 一种电动汽车的动力系统、控制方法及电动汽车 |
CN113635901A (zh) * | 2021-08-23 | 2021-11-12 | 同济大学 | 一种混合动力汽车纯电起步工况下电机转矩控制方法 |
CN113635901B (zh) * | 2021-08-23 | 2023-07-04 | 同济大学 | 一种混合动力汽车纯电起步工况下电机转矩控制方法 |
Also Published As
Publication number | Publication date |
---|---|
CN106608175A (zh) | 2017-05-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018076893A1 (zh) | 混合动力汽车动力系统及其动力传动方法 | |
KR102057593B1 (ko) | 오프셋 전기 기계를 구비한 하이브리드 트랜스미션 및 기어 변화의 제어 방법 | |
CN209159400U (zh) | 混合动力驱动系统及车辆 | |
CN101244687B (zh) | 混联式混合动力驱动系统及其驱动方法 | |
EP3388274A1 (en) | Vehicle biaxial parallel electric drive system and gear shifting control method thereof | |
KR101550605B1 (ko) | 하이브리드 자동차의 동력전달장치 | |
CN107128160B (zh) | 用于混合动力电动车辆的车桥总成 | |
EP3476637A1 (en) | Power drive system and vehicle | |
WO2009148019A1 (ja) | ハイブリッド車用動力伝達装置及びその変速操作方法 | |
US10844934B2 (en) | Vehicle driving assembly with transversely placed double power sources | |
CN111251866B (zh) | 混合动力驱动系统及车辆 | |
CN111148644B (zh) | 传动机构、混合动力驱动系统及其运行方法 | |
KR101714221B1 (ko) | 하이브리드 자동차용 동력 전달 시스템 | |
CN105658464B (zh) | 用于机动车辆的动力系统以及运行方法 | |
JP5477240B2 (ja) | 車両用駆動制御装置 | |
CN214564580U (zh) | 双电机混合动力驱动系统 | |
JP5997452B2 (ja) | ハイブリッド車両の駆動装置 | |
EP3476636A1 (en) | Power drive system and vehicle | |
CN206306821U (zh) | 混合动力汽车动力系统 | |
EP3476635A1 (en) | Power drive system and vehicle | |
US20120004073A1 (en) | Hybrid power drive system and a drive method of the same | |
CN107531241B (zh) | 辅助混合动力运输工具的原动机联结/断联的方法和装置 | |
CN106608176A (zh) | 混合动力汽车动力系统及其动力传动方法 | |
JP2019059324A (ja) | ハイブリッド車両のパワーユニット | |
CN110901368A (zh) | 混合动力驱动系统及方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17863837 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17863837 Country of ref document: EP Kind code of ref document: A1 |