WO2018076327A1 - 电池加热方法、电池控制系统、电池和无人机 - Google Patents

电池加热方法、电池控制系统、电池和无人机 Download PDF

Info

Publication number
WO2018076327A1
WO2018076327A1 PCT/CN2016/103956 CN2016103956W WO2018076327A1 WO 2018076327 A1 WO2018076327 A1 WO 2018076327A1 CN 2016103956 W CN2016103956 W CN 2016103956W WO 2018076327 A1 WO2018076327 A1 WO 2018076327A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
power
current
heating
controller
Prior art date
Application number
PCT/CN2016/103956
Other languages
English (en)
French (fr)
Inventor
郑大阳
王文韬
王雷
田杰
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN201680002611.7A priority Critical patent/CN106688136A/zh
Priority to PCT/CN2016/103956 priority patent/WO2018076327A1/zh
Publication of WO2018076327A1 publication Critical patent/WO2018076327A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/654Means for temperature control structurally associated with the cells located inside the innermost case of the cells, e.g. mandrels, electrodes or electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/657Means for temperature control structurally associated with the cells by electric or electromagnetic means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • Embodiments of the present invention relate to the field of battery technologies, and in particular, to a battery heating method, a battery control system, a battery, and a drone.
  • the battery is the power source of the system and is the heart of the whole system, especially in places with high safety and stability, such as electric vehicles and drones. Therefore, the battery is constantly in charge and discharge state, such as electric vehicles and drones. Provide electricity. If the battery is charged at a low temperature (below 0 degrees), lithium ions in the battery will produce ion crystals, that is, lithium deposition; this will pierce the diaphragm, causing a micro-short circuit, and in a serious case, it will explode. If the battery is discharged at a low temperature, the internal resistance is large due to the decrease in the activity of the material in the battery core, the amount of electricity that can be discharged is small, and the performance is significantly reduced, resulting in insufficient power supply.
  • Embodiments of the present invention provide a battery heating method, a battery control system, a battery, and a drone for heating a battery.
  • an embodiment of the present invention provides a battery heating method, including: acquiring a current relevant parameter of a battery; and performing heat treatment on the battery according to a current relevant parameter of the battery.
  • the battery is subjected to a heat treatment when the current relevant parameter of the battery satisfies a preset condition.
  • the current relevant parameters of the battery include at least one of the following: a current remaining capacity of the battery, and a current temperature of the battery.
  • the method further includes: when the current temperature of the battery is greater than a preset temperature, insulating the battery.
  • the method further includes: stopping heating when the heating time of the battery is greater than a preset duration; or, when the current remaining capacity of the battery is less than a preset power, Stop heating.
  • the method further includes: when the battery is in When not in operation, obtain the battery heating command output from the manual operation unit.
  • the manual operation component comprises at least one of the following: a button, a knob, a toggle switch, and a touch screen.
  • the function of the manual operation component comprises at least one of: controlling battery on and off, controlling battery to start heating, controlling display device to display current battery remaining capacity, and controlling display device to display current use of the battery life.
  • the manual operation component is a power button, and the button is operated by selecting different pressing time and/or pressing times to trigger a battery heating command or a power on/off command.
  • the heat treatment of the battery comprises: heat-treating the battery at a rated power of the battery.
  • performing heat treatment on the battery comprising: heating the battery at a preset power when a discharging power of the battery is less than a rated power of the battery Wherein the preset power is less than or equal to a difference between the rated power and the discharge power.
  • the method further comprises: displaying, by the display device, indication information indicating that the battery is in a heating state.
  • the battery heating method provided by the embodiment increases the temperature of the battery, avoids various defects caused by charging or discharging the battery at a low temperature, ensures the safety of the battery during operation, and improves the performance of the battery.
  • an embodiment of the present invention provides a battery control system including: a controller and an electric heating component electrically connected to the controller; a controller configured to acquire current relevant parameters of the battery; and according to the current battery And related parameters, controlling the electric heating component to heat treatment of the battery.
  • the controller controls the electric heating component to heat the battery when the current relevant parameter of the battery meets a preset condition.
  • the current relevant parameters of the battery include at least one of the following: a current quantity of the battery, and a current temperature of the battery.
  • the system further includes a temperature detector communicatively coupled to the controller, the temperature detector for acquiring a current temperature of the battery; wherein the battery detected by the acquired temperature detector The controller controls the electric heating component when the current temperature is greater than a preset temperature
  • the battery is insulated.
  • the system further includes: a timer communicatively coupled to the controller; the timer for timing a heating duration of the battery; wherein the timer is timed by the timer
  • the controller controls the electric heating assembly to stop heating the battery when the heating time of the battery is greater than a preset length of time.
  • the system further includes a power detector communicatively coupled to the controller, the power detector for detecting a current remaining battery power; wherein the battery detected by the power detector The controller controls the electric heating component to stop heating the battery when the current amount of electricity is less than the first predetermined amount of electricity.
  • the system further includes a manually operated component electrically coupled to the controller, the battery heating command being triggered by operating the manually operated component.
  • the manual operation component comprises at least one of the following: a button, a knob, a toggle switch, and a touch screen.
  • the function of the manual operation component comprises at least one of: controlling battery on and off, controlling battery to start heating, controlling display device to display current battery remaining capacity, and controlling display device to display current use of the battery life.
  • the manual operation component is a power button, and the button is operated by selecting different pressing time and/or pressing times to trigger a battery heating command or a power on/off command.
  • the power that the electric heating component heats the battery is the rated power of the battery.
  • the power of the electric heating component to heat the battery is less than or equal to a difference between the rated power and the discharge power.
  • the system further includes a display device communicatively coupled to the controller, the display device for displaying indication information indicating that the battery is in a heated state.
  • the battery control system increases the temperature of the battery, avoids various defects caused by charging or discharging the battery at a low temperature, ensures the safety of the battery during operation, and improves the performance of the battery.
  • an embodiment of the present invention provides a battery, including: a housing; a control system according to the second aspect of the present invention, installed in the housing; and one or more batteries installed in the housing And electrically coupled to the control system; wherein the battery core powers the electrical heating assembly to cause the electrical heating assembly to generate heat.
  • the battery provided in this embodiment increases the temperature of the battery, avoids various defects caused by charging or discharging the battery at a low temperature, ensures the safety of the battery during operation, and improves the performance of the battery.
  • an embodiment of the present invention provides a drone, including: a fuselage and a plurality of arms, each of the arms for carrying a motor and a propeller; and the battery is provided with a battery for accommodating a battery a housing, the body is provided with a controller and an electric heating component; the controller is electrically connected to the battery and the electric heating component respectively; wherein the controller controls the location according to current relevant parameters of the battery The electric heating assembly heats the battery.
  • the controller controls the electric heating component to heat the battery when the current relevant parameter of the battery meets a preset condition.
  • the current relevant parameters of the battery include at least one of the following: a current quantity of the battery, and a current temperature of the battery.
  • the body is provided with a temperature detector communicatively coupled to the controller, the temperature detector is configured to acquire a current temperature of the battery; wherein, the acquired temperature detector detects The controller controls the electric heating component to insulate the battery when the current temperature of the battery is greater than a preset temperature.
  • the body is provided with a timer communicatively coupled to the controller; the timer is configured to time the heating duration of the battery;
  • the controller controls the electric heating component to stop heating the battery.
  • the body is provided with a power detector communicably connected to the controller, and the power detector is configured to detect a current remaining power of the battery; wherein, the detected by the power detector When the current power of the battery is less than the first preset power, the controller controls the electric heating component to stop heating the battery.
  • the body is provided with a manual operating component electrically connected to the controller, and the battery heating command can be triggered by operating the manual operating component.
  • the manual operation component comprises at least one of the following: a button, a knob, a toggle switch, and a touch screen.
  • the function of the manual operation component includes at least one of: controlling battery on and off, controlling battery to start heating, and controlling display device to display current battery remaining capacity, and controlling The display device displays the current life of the battery.
  • the manual operation component is a power button, and the button is operated by selecting different pressing time and/or pressing times to trigger a battery heating command or a power on/off command.
  • the power that the electric heating component heats the battery is the rated power of the battery.
  • the power of the electric heating component to heat the battery is less than or equal to a difference between the rated power and the discharge power.
  • the body is provided with a display device communicably connected to the controller, and the display device is configured to display indication information indicating that the battery is in a heating state.
  • the drone provided by the embodiment increases the temperature of the battery, avoids various defects caused by charging or discharging the battery at a low temperature, ensures the safety of the battery during operation, and improves the performance of the battery.
  • Embodiment 1 is a flow chart of a battery heating method according to Embodiment 1 of the present invention.
  • FIG. 2 is a flow chart of a battery heating method according to Embodiment 2 of the present invention.
  • FIG. 3 is a flowchart of a battery heating method according to Embodiment 3 of the present invention.
  • Embodiment 4 is a flow chart of a battery heating method according to Embodiment 4 of the present invention.
  • FIG. 5 is a flowchart of a battery heating method according to Embodiment 5 of the present invention.
  • FIG. 6 is a schematic structural diagram of a battery control system according to Embodiment 1 of the present invention.
  • FIG. 7 is a schematic structural diagram of a battery control system according to Embodiment 2 of the present invention.
  • FIG. 8 is a schematic structural diagram of a battery according to an embodiment of the present invention.
  • Figure 9 is a partial view of the battery shown in Figure 8 taken along line A-A;
  • FIG. 10 is a schematic structural diagram of a drone according to an embodiment of the present invention.
  • FIG. 11 is a schematic structural diagram of a fuselage according to an embodiment of the present invention.
  • FIG. 1 is a flowchart of a battery heating method according to Embodiment 1 of the present invention. As shown in FIG. 1 , the method in this embodiment may include:
  • S102 Perform heat treatment on the battery according to current relevant parameters of the battery.
  • the current relevant parameters of the battery are obtained, and then the battery is subjected to heat processing according to the current relevant parameters of the battery, wherein the battery may be when the current relevant parameter of the battery meets a preset condition.
  • Heat treatment Therefore, it is possible to prevent the battery from being charged at a low temperature (below 0 degrees), and lithium ions in the battery may generate ion crystals, that is, lithium deposition; this may pierce the diaphragm, cause micro short circuit, and may cause fire and explosion defects in serious cases, and may also be avoided.
  • the battery is discharged at a low temperature, because the activity of the material in the battery is reduced, the internal resistance is large, the amount of electricity that can be discharged is small, the performance is significantly reduced, and the power provided is insufficient.
  • the current relevant parameters of the battery are obtained; the battery is subjected to heat treatment according to the current relevant parameters of the battery; the temperature of the battery is increased, and various types brought about when the battery is charged or discharged at a low temperature are avoided. Defects ensure the safety of the battery during operation and improve the performance of the battery.
  • the current related parameters of the battery include the current remaining battery capacity of the battery and/or the current temperature of the battery.
  • the method of this embodiment may include:
  • the current remaining battery power is obtained, and it is determined whether the current remaining battery power meets the preset condition.
  • the battery may be performed. Heating, and then heating the battery.
  • the current remaining capacity of the battery does not meet the preset condition, it means that the battery cannot be heated and then ends, that is, Do not heat the battery.
  • the current temperature of the battery is obtained, and it is determined whether the current temperature of the battery meets a preset condition.
  • the battery can be heated, and then the battery is heated.
  • the current temperature of the battery satisfies the unpredetermined condition, it means that the battery cannot be heated and then ends, that is, the battery is not heated.
  • the current remaining battery power and temperature of the battery are obtained, and it is determined whether the current remaining power and temperature of the battery meet the preset condition, and the current remaining battery power and temperature of the battery satisfy the preset.
  • the battery can be heated, and then the battery is heated.
  • the current remaining capacity or temperature of the battery does not meet the preset condition, it indicates that the battery cannot be heated, and then the battery is not heated.
  • the determination of the current remaining power and temperature of the battery in this embodiment is in no particular order.
  • the current temperature of the battery satisfies the preset condition that the current temperature of the battery is less than a preset temperature, and the preset temperature is, for example, 15 degrees, which indicates that the battery is currently in a low temperature environment and needs to be heated.
  • the current remaining capacity of the battery meets the preset condition that the current remaining capacity of the battery is greater than the preset power.
  • the preset power is, for example, 30%. This is because the battery performance is degraded if the battery is in a low battery condition. Heating the battery in the case of a decrease will cause the performance of the battery to further decrease, thereby affecting the life of the battery. Therefore, heating the battery according to the current remaining capacity of the battery can ensure the performance of the battery without affecting the battery. life.
  • the current remaining power and temperature of the battery are obtained; when the current remaining power and temperature of the battery meet the preset condition, the battery is heated; the temperature of the battery is raised, and the battery is prevented from being operated at a low temperature.
  • Various defects caused by charging or discharging ensure the safety of the battery during operation and improve the performance of the battery; and also avoid the defects that the battery is heated under low power and affect the life of the battery.
  • FIG. 3 is a flowchart of a battery heating method according to Embodiment 3 of the present invention. As shown in FIG. 3, the method in this embodiment may include:
  • S302 Perform heat treatment on the battery according to current relevant parameters of the battery.
  • S303 may also be performed.
  • the battery is heated to increase the temperature of the battery.
  • the preset temperature is, for example, 20 degrees, indicating that the battery is currently in a suitable temperature environment, and the battery may not need to be continued.
  • the battery is heated, and in order to ensure that the battery is always in a suitable temperature environment, the battery is insulated in the embodiment, so that the temperature of the battery is near the preset temperature; during the heat preservation process, the heating process is slow, and the current battery is monitored at all times.
  • the temperature is such that the current temperature of the battery is between 15 and 20 degrees.
  • the time between the start of heating of the battery and the current time can be obtained.
  • the duration is the heating time of the battery, and it is determined whether the heating time of the battery is greater than the preset duration. When the heating time of the battery is longer than the preset length, the battery is stopped to save energy.
  • S304 is performed after executing S302, indicating that the battery heating time is long enough but the temperature of the battery is not raised. At a suitable temperature, even if the temperature of the battery continues to rise, the temperature rise will not be obvious. In order to avoid energy waste, the battery is stopped from being heated. When the heating time of the battery is not longer than the preset time, if the current temperature of the battery is not greater than the preset temperature, the battery is further heated. If the current temperature of the battery is greater than the preset temperature, the battery is insulated (ie, Go to S303).
  • the battery when the battery is heated such that the current temperature of the battery is greater than the preset temperature, and the heating duration at this time is not greater than the preset duration, the battery is insulated, that is, S303 is performed, and after S303 is performed, The heating time of the battery is counted.
  • the heating time of the timing is greater than the preset length, in order to avoid energy waste, the battery is insulated and heat treated.
  • the heating time of the battery is less than the preset length, the battery is kept warmed.
  • the current remaining battery power of the battery can be monitored in real time, and it is determined whether the current remaining power of the battery is greater than the preset power. When the current remaining power of the battery is greater than the preset power, the battery is stopped to save energy. Avoid battery performance and life in low battery conditions have influence on.
  • S305 is performed after executing S302, indicating that the battery is in a low battery state but has not been able to make the battery.
  • the temperature rises to a suitable temperature, and heating continues to cause damage to the battery, so this embodiment stops heating the battery.
  • the battery is further heated. If the current temperature of the battery is greater than the preset temperature, the battery is insulated. (ie, execute S303).
  • the battery when the battery is heated such that the current temperature of the battery is greater than the preset temperature, and the remaining power at this time is not less than the preset power, the battery is insulated, that is, S303 is executed, and the process continues after S303 is performed.
  • the current remaining battery power is monitored. When the current remaining battery power is less than the preset power, the insulation will cause damage to the battery. Therefore, the present embodiment stops the heat treatment and heat treatment of the battery. When the current remaining battery power is not less than the preset power, continue to heat the battery.
  • the battery is heated by the current relevant parameters of the battery; the temperature of the battery is increased, and various defects caused by charging or discharging the battery at a low temperature are avoided, thereby ensuring that the battery is in operation.
  • the safety improves the performance of the battery.
  • the heating time of the battery, the current remaining capacity of the battery, and the current temperature of the battery are monitored in real time, thereby determining whether to heat the battery or stop heating or continue heating, thereby saving energy and reducing damage to the battery.
  • FIG. 4 is a flowchart of a battery heating method according to Embodiment 4 of the present invention. As shown in FIG. 4, the method in this embodiment may include:
  • S403 Perform heat treatment on the battery according to a rated power of the battery according to current relevant parameters of the battery.
  • the user when the battery is not in the charging state and is not in the discharging state, the user can manually heat the battery by manually operating the component, and the manual operating component can output the battery heating command according to the operation of the user, which can be obtained in this embodiment.
  • Manually output the battery heating command output from the component The battery heating command is used to instruct to heat the battery, and then according to the battery heating command, obtain the current relevant parameters of the battery, and heat the battery according to the current relevant parameters of the battery.
  • one way to heat the battery is to heat the battery at the rated power of the battery, because the battery does not output the rate when the battery is not in operation, so
  • the rated power of the battery can be used to heat the battery, which can improve the efficiency of battery heating.
  • the manual operation component comprises at least one of the following: a button, a knob, a toggle switch, and a touch screen.
  • the function of the manual operation component comprises at least one of: controlling battery on and off, controlling battery to start heating, controlling display device to display current battery remaining capacity, and controlling display device to display current use of the battery life.
  • the manual operation component can perform different functions according to different operations of the user. Since multiple functions can be realized by the same manual operation component, the complexity of the battery is reduced and the operation of the user is facilitated.
  • the manual operation component is a power button
  • the button is operated by selecting different pressing time and/or pressing times to trigger a battery heating command or a power on/off command. For example, long press the power button for 3 seconds to trigger the battery heating command, and trigger the battery heating command through the power button, eliminating the need to set up new manual operating components, saving cost and reducing structural complexity.
  • S302-S305 can be performed after the S402 is performed.
  • S402 is performed.
  • details refer to the related description in the embodiment shown in FIG. 3, and details are not described herein again.
  • the battery heating command output by the manual operation component is acquired; according to the battery heating command, the current relevant parameter of the battery is obtained; and according to the current relevant parameter of the battery, the rated power of the battery is used.
  • the battery is heat treated.
  • the battery can be manually heated at any time, avoiding various defects caused by the battery charging or discharging at a low temperature, ensuring the safety of the battery during operation and improving the performance of the battery.
  • FIG. 5 is a flowchart of a battery heating method according to Embodiment 5 of the present invention. As shown in FIG. 5, the method in this embodiment may include:
  • the current embodiment when the battery is in an operating state, such as a charging state or a discharging state, the current embodiment can obtain the current relevant parameters of the battery, and heat-treat the battery according to the current relevant parameters of the battery.
  • an implementation manner of heating the battery is: when the discharge power of the battery is less than the rated power of the battery, the battery is heated by a preset power; for example, when the current relevant parameters of the battery meet the preset condition, Whether the discharge power of the battery is less than the rated power of the battery.
  • the discharge power of the battery When the discharge power of the battery is less than the rated power of the battery, it indicates that the battery is not running at full power, and then the battery is heated at a preset power, so as not to affect the discharge effect of the battery,
  • the preset power is less than or equal to the difference between the rated power and the discharge power; when the discharge power of the battery is not less than the rated power of the battery, it indicates that the battery is running at full power, and the battery is not heat-treated in order not to affect the discharge effect of the battery.
  • S302-S305 can be performed after the S502 is performed.
  • S502 is performed.
  • FIG. 3 refers to the related description in the embodiment shown in FIG. 3, and details are not described herein again.
  • the current relevant parameter of the battery is obtained; when the discharge power of the battery is less than the rated power of the battery, the battery is heat-treated according to a current power-related parameter, wherein the battery is heated according to a preset power.
  • the preset power is less than or equal to the difference between the rated power and the discharge power.
  • the indication information indicating that the battery is in a heating state is further displayed by the display device.
  • the display device may be a display screen or an LED lamp or the like; for example, the display device may include four LED lights, and the battery may be heated by the first and second LED lights and the third and fourth LED lights alternately flashing.
  • the battery control system of the present embodiment includes: a controller 11 and an electric heating component 12 electrically connected to the controller 11;
  • the controller 11 is configured to acquire current relevant parameters of the battery; and control the electric heating component 12 to heat the battery according to the current relevant parameters of the battery.
  • the device in this embodiment may be used to implement the technical solution of the method embodiment shown in FIG. 1 , and the implementation principle and technical effects are similar, and details are not described herein again.
  • FIG. 7 is a schematic structural diagram of a battery control system according to Embodiment 2 of the present invention, as shown in FIG.
  • the system of the embodiment is based on the system embodiment shown in FIG. 6.
  • the controller 11 controls the electric heating component 12 to heat the battery. deal with.
  • the current relevant parameters of the battery include at least one of the following: a current quantity of the battery, and a current temperature of the battery.
  • the system of this embodiment further includes a temperature detector 13 communicatively coupled to the controller 11, the temperature detector 13 configured to acquire a current temperature of the battery;
  • the controller 11 controls the electric heating component to perform heat preservation processing on the battery.
  • system of this embodiment further includes: a timer 14 communicatively coupled to the controller 11;
  • the timer 14 is configured to time the heating time of the battery
  • the controller 11 controls the electric heating component to stop heating the battery.
  • the system of this embodiment further includes a power detector 15 communicatively coupled to the controller 11, the power detector 15 for detecting a current remaining battery capacity of the battery;
  • the controller 11 controls the electric heating component to stop heating the battery.
  • system of the present embodiment further includes a manual operating component 16 electrically coupled to the controller 11 that can be triggered by operating the manual operating component 16.
  • the manual operation component 16 includes at least one of the following: a button, a knob, a toggle switch, and a touch screen.
  • the function of the manual operation component 16 includes at least one of controlling battery on and off, controlling the battery to start heating, controlling the display device to display the current remaining battery power, and controlling the display device to display the current battery. Service life.
  • the manual operation component 16 is a power button, and the button is operated by selecting different pressing times and/or pressing times to trigger a battery heating command or a power on/off command.
  • the power that the electric heating component 12 heats the battery is the rated power of the battery.
  • the electric heating component 12 heats the battery less than or equal to the difference between the rated power and the discharge power.
  • system of this embodiment further includes a display device 17 communicatively coupled to the controller 11, the display device 17 for displaying indication information indicating that the battery is in a heated state.
  • the device in this embodiment may be used to implement the technical solutions of the foregoing method embodiments of the present invention.
  • the implementation principles and technical effects are similar, and details are not described herein again.
  • the battery of this embodiment includes: a housing 21 a control system 22 and one or more cells 23; wherein a control system 22 is mounted within the housing 21; one or more cells 23 are mounted within the housing 21; wherein the electricity
  • the core 23 is electrically connected to the control system 22, wherein the control system 22 can adopt the structure of the control system embodiment of the battery shown in FIG. 6 or FIG. 7, and can implement the technical solution of any of the foregoing method embodiments, and the implementation principle thereof. Similar to the technical effect, it will not be described here.
  • the battery cell 23 supplies power to the electric heating component 12 to cause the electric heating component 12 to generate heat.
  • the control system 22 is further configured to control a charging state or a discharging state of the battery cell 23.
  • FIG. 10 is a schematic structural diagram of a drone according to an embodiment of the present invention.
  • FIG. 11 is a schematic structural diagram of a fuselage according to an embodiment of the present invention.
  • the machine includes: a fuselage 30 and a plurality of arms 40, each of the arms 40 for carrying a motor 41 and a propeller 42; the body 30 is provided with a battery compartment 31 for accommodating a battery 50, the body 30 is provided with a controller 32 and an electric heating assembly 33; the controller 32 is electrically connected to the battery 50 and the electric heating assembly 33, respectively;
  • the controller 32 controls the electric heating component to heat the battery according to the current relevant parameters of the battery.
  • the controller 32 controls the electric heating component to heat the battery when the current relevant parameter of the battery meets a preset condition.
  • the current relevant parameters of the battery include at least one of the following: a current quantity of the battery, and a current temperature of the battery.
  • the body 30 is provided with a temperature detector 34 communicatively coupled to the controller, and the temperature detector 34 is configured to acquire a current temperature of the battery;
  • the current temperature of the battery detected by the obtained temperature detector 34 is greater than a preset. At the temperature, the controller 32 controls the electric heating assembly to insulate the battery.
  • the body 30 is provided with a timer 35 communicatively coupled to the controller;
  • the timer 35 is configured to time the heating time of the battery
  • the controller 32 controls the electric heating component to stop heating the battery.
  • the body 30 is provided with a power detector 36 communicatively coupled to the controller 32, and the power detector 36 is configured to detect a current remaining battery capacity of the battery;
  • the controller 32 controls the electric heating component to stop heating the battery when the current amount of the battery detected by the power detector 36 is less than the first preset amount.
  • the body 30 is provided with a manual operating component 37 electrically connected to the controller 32, and the battery heating command can be triggered by operating the manual operating component 37.
  • the manual operation component 37 includes at least one of the following: a button, a knob, a toggle switch, and a touch screen.
  • the function of the manual operation component 37 includes at least one of: controlling battery on and off, controlling the battery to start heating, controlling the display device to display the current remaining battery capacity, and controlling the display device to display the current battery. Service life.
  • the manual operation component 37 is a power button, and the button is operated by selecting different pressing time and/or number of pressing times to trigger a battery heating command or a power on/off command.
  • the power that the electric heating component 33 heats the battery is the rated power of the battery.
  • the power of the electric heating component 33 to heat the battery is less than or equal to a difference between the rated power and the discharge power.
  • the body 30 is provided with a display device 38 communicably connected to the controller 32, and the display device 38 is configured to display indication information indicating that the battery is in a heating state.
  • the unmanned aerial vehicle of this embodiment can be used to implement the technical solutions of the foregoing method embodiments of the present invention, and the implementation principle and technical effects thereof are similar, and details are not described herein again.
  • the foregoing program may be stored in a computer readable storage medium, and the program is executed when executed.
  • the method includes the steps of the foregoing method embodiment; and the foregoing storage medium includes: read-only memory (English: Read-Only Memory, abbreviated as: ROM), Machine access memory (English: Random Access Memory, RAM for short), disk or optical disk, and other media that can store program code.

Abstract

一种电池加热方法、电池控制系统、电池和无人机,此方法包括:获取电池当前的相关参数(S101);根据所述电池当前的相关参数,对所述电池进行加热处理(S102);使得电池的温度上升,避免了电池在低温下进行充电或放电时带来的各种缺陷,保证了电池在运行过程中的安全性,提高了电池的性能。

Description

电池加热方法、电池控制系统、电池和无人机 技术领域
本发明实施例涉及电池技术领域,尤其涉及一种电池加热方法、电池控制系统、电池和无人机。
背景技术
电池是系统的动力来源,是整个系统的心脏,特别是在电动汽车和无人机等高安全性、稳定性运行的场所;因此,电池不断地处于充放电状态以为电动汽车和无人机等提供电力。电池若在低温下(0度以下)充电,电池中的锂离子会产生离子结晶,也就是析锂;这会刺穿隔膜,造成微短路,严重时会起火爆炸等。电池若在低温下放电,由于电芯内物质活性降低,内阻较大,能放出的电量较少,性能明显降低,导致提供的动力不足。
发明内容
本发明实施例提供一种电池加热方法、电池控制系统、电池和无人机,用于对电池进行加热处理。
第一方面,本发明实施例提供一种电池加热方法,包括:获取电池当前的相关参数;根据所述电池当前的相关参数,对所述电池进行加热处理。
可选地,在所述电池当前的相关参数满足预设条件时,对所述电池进行加热处理。
可选地,所述电池当前的相关参数包括以下至少一种:所述电池当前的剩余电量、所述电池当前的温度。
可选地,所述对所述电池进行加热处理之后,还包括:当所述电池当前的温度大于预设温度时,对所述电池进行保温处理。
可选地,所述方法还包括:当对所述电池的加热时长大于预设时长,对所述电池停止加热;或者,当所述电池当前的剩余电量小于预设电量时,对所述电池停止加热。
可选地,所述获取电池当前的相关参数之前,还包括:在所述电池处于 未工作状态时,获取手动操作部件输出的电池加热指令。
可选地,所述手动操作部件包括如下至少一种:按键,旋钮,拨动开关,触摸屏。
可选地,所述手动操作部件的功能包括如下至少一种:控制电池开启与关闭,控制电池开始加热,控制显示装置显示所述电池当前的剩余电量,控制显示装置显示所述电池的当前使用寿命。
可选地,所述手动操作部件为电源按键,选择不同的按压时间和/或按压次数操作所述按键,触发电池加热指令或电源开启、关闭指令。
可选地,所述对所述电池进行加热处理,包括:以所述电池的额定功率对所述电池进行加热处理。
可选地,当所述电池处于放电状态时,对所述电池进行加热处理,包括:当所述电池的放电功率小于所述电池的额定功率时,以预设功率对所述电池进行加热处理,其中,所述预设功率小于或等于所述额定功率与所述放电功率之差。
可选地,所述方法还包括:通过显示装置显示用于表示所述电池处于加热状态的指示信息。
本实施例提供的电池加热方法,使得电池的温度上升,避免了电池在低温下进行充电或放电时带来的各种缺陷,保证了电池在运行过程中的安全性,提高了电池的性能。
第二方面,本发明实施例提供一种电池控制系统,包括:控制器和与所述控制器电连接的电加热组件;控制器,用于获取电池当前的相关参数;以及根据所述电池当前的相关参数,控制所述电加热组件对所述电池进行加热处理。
可选地,在所述电池当前的相关参数满足预设条件时,所述控制器控制所述电加热组件对所述电池进行加热处理。
可选地,所述电池当前的相关参数包括以下至少一种:所述电池当前的电量、所述电池当前的温度。
可选地,所述系统还包括与所述控制器通信连接的温度检测器,所述温度检测器用于获取所述电池当前的温度;其中,在获取的所述温度检测器检测的所述电池当前的温度大于预设温度时,所述控制器控制所述电加热组件 对所述电池进行保温处理。
可选地,所述系统还包括:与所述控制器通信连接的计时器;所述计时器,用于对所述电池的加热时长进行计时;其中,在所述计时器计时的对所述电池的加热时长大于预设时长时,所述控制器控制所述电加热组件对所述电池停止加热。
可选地,所述系统还包括与所述控制器通信连接的电量检测器,所述电量检测器用于检测所述电池当前的剩余电量;其中,在所述电量检测器检测到的所述电池当前的电量小于第一预设电量时,所述控制器控制所述电加热组件对所述电池停止加热。
可选地,所述系统还包括与所述控制器电连接的手动操作部件,通过操作所述手动操作部件,能够触发所述电池加热指令。
可选地,所述手动操作部件包括如下至少一种:按键,旋钮,拨动开关,触摸屏。
可选地,所述手动操作部件的功能包括如下至少一种:控制电池开启与关闭,控制电池开始加热,控制显示装置显示所述电池当前的剩余电量,控制显示装置显示所述电池的当前使用寿命。
可选地,所述手动操作部件为电源按键,选择不同的按压时间和/或按压次数操作所述按键,触发电池加热指令或电源开启、关闭指令。
可选地,所述电加热组件对所述电池加热的功率为所述电池的额定功率。
可选地,当所述电池处于放电状态时,所述电加热组件对所述电池加热的功率小于或等于所述额定功率与所述放电功率之差。
可选地,所述系统还包括与所述控制器通讯连接的显示装置,所述显示装置用于显示表示所述电池处于加热状态的指示信息。
本实施例提供的电池控制系统,使得电池的温度上升,避免了电池在低温下进行充电或放电时带来的各种缺陷,保证了电池在运行过程中的安全性,提高了电池的性能。
第三方面,本发明实施例提供一种电池,包括:壳体;如本发明第二方面提供的控制系统,安装在所述壳体内;以及一个或多个电芯,安装在所述壳体内,并且与所述控制系统电连接;其中,所述电芯为所述电加热组件供电,使所述电加热组件产生热量。
本实施例提供的电池,使得电池的温度上升,避免了电池在低温下进行充电或放电时带来的各种缺陷,保证了电池在运行过程中的安全性,提高了电池的性能。
第四方面,本发明实施例提供一种无人机,包括:机身和多个机臂,每个所述机臂用于承载电机和螺旋桨;所述机身上设有用于收容电池的电池仓,所述机身设置有控制器和电加热组件;所述控制器分别与所述电池和所述电加热组件电连接;其中,所述控制器根据所述电池当前的相关参数,控制所述电加热组件对所述电池进行加热处理。
可选地,在所述电池当前的相关参数满足预设条件时,所述控制器控制所述电加热组件对所述电池进行加热处理。
可选地,所述电池当前的相关参数包括以下至少一种:所述电池当前的电量、所述电池当前的温度。
可选地,所述机身上设有与所述控制器通信连接的温度检测器,所述温度检测器用于获取所述电池当前的温度;其中,在获取的所述温度检测器检测的所述电池当前的温度大于预设温度时,所述控制器控制所述电加热组件对所述电池进行保温处理。
可选地,所述机身上设有与所述控制器通信连接的计时器;所述计时器,用于对所述电池的加热时长进行计时;
其中,在所述计时器计时的对所述电池的加热时长大于预设时长时,所述控制器控制所述电加热组件对所述电池停止加热。
可选地,所述机身上设有与所述控制器通信连接的电量检测器,所述电量检测器用于检测所述电池当前的剩余电量;其中,在所述电量检测器检测到的所述电池当前的电量小于第一预设电量时,所述控制器控制所述电加热组件对所述电池停止加热。
可选地,所述机身上设有与所述控制器电连接的手动操作部件,通过操作所述手动操作部件,能够触发所述电池加热指令。
可选地,所述手动操作部件包括如下至少一种:按键,旋钮,拨动开关,触摸屏。
可选地,所述手动操作部件的功能包括如下至少一种:控制电池开启与关闭,控制电池开始加热,控制显示装置显示所述电池当前的剩余电量,控 制显示装置显示所述电池的当前使用寿命。
可选地,所述手动操作部件为电源按键,选择不同的按压时间和/或按压次数操作所述按键,触发电池加热指令或电源开启、关闭指令。
可选地,所述电加热组件对所述电池加热的功率为所述电池的额定功率。
可选地,当所述电池处于放电状态时,所述电加热组件对所述电池加热的功率小于或等于所述额定功率与所述放电功率之差。
可选地,所述机身上设有与所述控制器通讯连接的显示装置,所述显示装置用于显示表示所述电池处于加热状态的指示信息。
本实施例提供的无人机,使得电池的温度上升,避免了电池在低温下进行充电或放电时带来的各种缺陷,保证了电池在运行过程中的安全性,提高了电池的性能。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例一提供的电池加热方法的流程图;
图2为本发明实施例二提供的电池加热方法的流程图;
图3为本发明实施例三提供的电池加热方法的流程图;
图4为本发明实施例四提供的电池加热方法的流程图;
图5为本发明实施例五提供的电池加热方法的流程图;
图6为本发明实施例一提供的电池控制系统的结构示意图;
图7为本发明实施例二提供的电池控制系统的结构示意图;
图8为本发明实施例提供的电池的一种结构示意图;
图9为图8所示的电池沿A-A的部视图;
图10为本发明实施例提供的无人机的一种结构示意图;
图11为本发明实施例提供的机身的一种结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
图1为本发明实施例一提供的电池加热方法的流程图,如图1所示,本实施例的方法可以包括:
S101、获取电池当前的相关参数。
S102、根据所述电池当前的相关参数,对所述电池进行加热处理。
本实施例中,获取电池当前的相关参数,然后根据该电池当前的相关参数,对该电池进行加热处理,其中,可以是在所述电池当前的相关参数满足预设条件时,对所述电池进行加热处理。从而可以避免电池在低温下(0度以下)充电,电池中的锂离子会产生离子结晶,也就是析锂;这会刺穿隔膜,造成微短路,严重时会起火爆炸等缺陷,也可以避免电池在低温下放电,由于电芯内物质活性降低,内阻较大,能放出的电量较少,性能明显降低,导致提供的动力不足等缺陷。
本实施例通过获取电池当前的相关参数;根据所述电池当前的相关参数,对所述电池进行加热处理;使得电池的温度上升,避免了电池在低温下进行充电或放电时带来的各种缺陷,保证了电池在运行过程中的安全性,提高了电池的性能。
图2为本发明实施例二提供的电池加热方法的流程图,如图2所示,本实施例以电池当前的相关参数包括所述电池当前的剩余电量和/或所述电池当前的温度为例,本实施例的方法可以包括:
S201、获取电池当前的剩余电量和/或所述电池当前的温度。
S202、当电池当前的剩余电量和/或所述电池当前的温度满足预设条件时,对所述电池进行加热处理。
本实施例中,在一种可能的实现方式中,获取电池当前的剩余电量,判断电池当前的剩余电量是否满足预设条件,当电池当前的剩余电量满足预设条件时,说明可以对电池进行加热,然后对电池进行加热处理,当电池当前的剩余电量不满足预设条件时,说明不可以对电池进行加热,然后结束,即 不对电池进行加热处理。
在一种可能的实现方式中,获取电池当前的温度,判断电池当前的温度是否满足预设条件,当电池当前的温度满足预设条件时,说明可以对电池进行加热,然后对电池进行加热处理,当电池当前的温度满足不预设条件时,说明不可以对电池进行加热,然后结束,即不对电池进行加热处理。
本实施例中,在一种可能的实现方式中,获取电池当前的剩余电量和温度,判断电池当前的剩余电量和温度是否均满足预设条件,当电池当前的剩余电量和温度均满足预设条件时,说明可以对电池进行加热,然后对电池进行加热处理,当电池当前的剩余电量或温度不满足预设条件时,说明不可以对电池进行加热,然后结束,即不对电池进行加热处理。其中,本实施例对电池当前的剩余电量和温度的判断不分先后。
其中,电池当前的温度满足预设条件为电池当前的温度小于预设温度,该预设温度例如为15度,这说明电池当前处于低温环境下,需要加热。电池当前的剩余电量满足预设条件为电池的当前剩余电量大于预设电量,该预设电量例如为30%,这是由于电池处于电量低的情况下,电池的性能会下降,若在电池性能已下降的情况下对电池进行加热会造成电池的性能进一步下降,从而影响电池的寿命,因此,根据电池的当前剩余电量来对电池进行加热处理,可以保证电池的性能,也不会影响电池的寿命。
本实施例通过获取电池当前的剩余电量和温度;当所述电池当前的剩余电量和温度满足预设条件时,对所述电池进行加热处理;使得电池的温度上升,避免了电池在低温下进行充电或放电时带来的各种缺陷,保证了电池在运行过程中的安全性,提高了电池的性能;也避免了电池在低电量下进行加热而影响电池的寿命的缺陷。
图3为本发明实施例三提供的电池加热方法的流程图,如图3所示,本实施例的方法可以包括:
S301、获取电池当前的相关参数。
S302、根据所述电池当前的相关参数,对所述电池进行加热处理。
本实施例中,S301和S302的具体实现过程可以参见图1或图2所示实施例中的相关描述,此处不再赘述。
S303、当所述电池当前的温度大于预设温度时,对所述电池进行保温处 理。
本实施例中,执行S302之后,还可以执行S303。对电池进行加热处理,使得电池的温度上升,当升温后的电池当前的温度大于一预设温度时,该预设温度例如为20度,说明电池当前处于适宜的温度环境下,可以无需继续对电池进行升温,同时为了保证电池一直处于适宜的温度环境下,本实施例对电池进行保温处理,使得电池的温度处于预设温度附近;在保温的过程中为缓慢加热过程,并时刻监控电池当前的温度,使得电池当前的温度处于15度到20度之间。
S304、当对所述电池的加热时长大于预设时长,对所述电池停止加热。
本实施例中,在执行S302时开始计时,可以获得对电池开始加热与当前时间之间的时长,该时长为对电池的加热时长,判断该对电池的加热时长是否大于预设时长,当对电池的加热时长大于预设时长时,对该电池停止加热,以节省能源。
在一种情况下,当对电池的加热时长大于预设时长,而且电池当前的温度不大于预设温度,即执行S302之后执行S304,说明对电池加热时间足够长但未能使得电池的温度上升至合适温度,即使继续加热电池的温度上升也将不明显,为了避免能源浪费,停止对电池进行加热处理。当对电池的加热时长不大于预设时长时,若电池当前的温度不大于预设温度,则继续对电池进行加热处理,若电池当前的温度大于预设温度,则对电池进行保温处理(即执行S303)。
在一种情况下,当对电池进行加热使得电池的当前的温度大于预设温度时,而且这时的加热时长不大于预设时长,对电池进行保温处理,即执行S303,在执行S303之后继续对电池的加热时长进行计时,当计时的加热时长大于预设时长时,为了避免能源浪费,停止对电池进行保温处理和加热处理。当对电池的加热时长小于预设时长时,继续对电池进行保温处理。
S305、当所述电池当前的剩余电量小于预设电量时,对所述电池停止加热。
本实施例中,可以实时监测电池当前的剩余电量,判断该电池当前的剩余电量是否大于预设电量,当该电池当前的剩余电量是否大于预设电量,对该电池停止加热,以节省能源,避免在低电量的情况下对电池的性能和寿命 带来影响。
在一种情况下,当电池当前的剩余电量小于预设电量,而且电池当前的温度不大于预设温度,即执行S302之后执行S305,说明对电池已处于低电量状态但还未能使得电池的温度上升至合适温度,继续加热会对电池造成损害,所以本实施例停止对电池进行加热处理。当电池当前的剩余电量加热时长不小于预设电量时,若电池当前的温度不大于预设温度,则继续对电池进行加热处理,若电池当前的温度大于预设温度,则对电池进行保温处理(即执行S303)。
在一种情况下,当对电池进行加热使得电池的当前的温度大于预设温度时,而且这时的剩余电量不小于预设电量,对电池进行保温处理,即执行S303,在执行S303之后继续监控电池当前的剩余电量,当电池当前的剩余电量小于预设电量时,继续保温会对电池造成损害,所以本实施例停止对电池进行保温处理和加热处理。当电池当前的剩余电量不小于预设电量时,继续对电池进行保温处理。
本实施例通过所述电池当前相关参数,对所述电池进行加热处理;使得电池的温度上升,避免了电池在低温下进行充电或放电时带来的各种缺陷,保证了电池在运行过程中的安全性,提高了电池的性能。并且在加热过程中实时监控对电池的加热时长、电池当前的剩余电量、电池当前的温度,据此决定是否对电池保温或者停止加热或者继续加热,从而可以节省能源,降低对电池的损害。
图4为本发明实施例四提供的电池加热方法的流程图,如图4所示,本实施例的方法可以包括:
S401、在电池处于未工作状态时,获取手动操作部件输出的电池加热指令。
S402、根据电池加热指令,获取电池当前的相关参数。
S403、根据所述电池当前的相关参数,以所述电池的额定功率对所述电池进行加热处理。
本实施例中,当电池未处于充电状态,也未处于放电状态时,用户可以通过手动操作部件来手动对电池进行加热,手动操作部件根据用户的操作可以输出电池加热指令,本实施例可以获取手动操作部件输出的电池加热指令, 该电池加热指令用于指示对电池进行加热,然后根据该电池加热指令,获取电池当前的相关参数,并根据电池当前的相关参数,对电池进行加热处理。其中,对电池处于未工作状态时,对电池进行加热的一种实现方式为:以该电池的额定功率对电池进行加热处理,因为电池在处理未工作状态时,不向外输出额率,因此可以将电池的额定功率用于对电池进行加热,可以提高电池加热的效率。
可选地,所述手动操作部件包括如下至少一种:按键,旋钮,拨动开关,触摸屏。
可选地,所述手动操作部件的功能包括如下至少一种:控制电池开启与关闭,控制电池开始加热,控制显示装置显示所述电池当前的剩余电量,控制显示装置显示所述电池的当前使用寿命。手动操作部件可以根据用户的不同操作来执行不同的功能,由于多种功能可以通过同一手动操作部件来实现,降低了电池的复杂度,便于用户的操作。
可选地,所述手动操作部件为电源按键,选择不同的按压时间和/或按压次数操作所述按键,触发电池加热指令或电源开启、关闭指令。例如:长按电源按键3秒可以触发电池加热指令,通过电源按键来实现触发电池加热指令,无需再设置新的手动操作部件,节省了成本,降低了结构复杂度。
在执行S402之后还可以执行如图3所示的S302-S305,具体过程可以参见图3所示实施例中的相关描述,此处不再赘述。
本实施例通过在电池处于未工作状态时,获取手动操作部件输出的电池加热指令;根据电池加热指令,获取电池当前的相关参数;根据所述电池当前的相关参数,以所述电池的额定功率对所述电池进行加热处理。实现了可以随时手动对电池进行加热,避免了电池在低温下进行充电或放电时带来的各种缺陷,保证了电池在运行过程中的安全性,提高了电池的性能。
图5为本发明实施例五提供的电池加热方法的流程图,如图5所示,本实施例的方法可以包括:
S501、获取电池当前的相关参数。
S502、当所述电池的放电功率小于所述电池的额定功率时,根据电池当前的相关参数,以预设功率对所述电池进行加热处理,所述预设功率小于或等于所述额定功率与所述放电功率之差。
本实施例中,当电池处于运行状态,例如充电状态或者放电状态时,本实施例可以获取电池当前的相关参数,并根据电池当前的相关参数,对电池进行加热处理。其中,对电池进行加热的一种实现方式为:当电池的放电功率小于电池的额定功率时,以预设功率对电池进行加热处理;例如:当电池当前的相关参数满足预设条件时,判断电池的放电功率是否小于电池的额定功率,当电池的放电功率小于电池的额定功率时,说明电池没有满功率运行,然后以预设功率对电池进行加热处理,为了不影响电池的放电效果,该预设功率小于或等于额定功率与放电功率之差;当电池的放电功率不小于电池的额定功率时,说明电池是满功率运行,为了不影响电池的放电效果,则不对电池进行加热处理。
在执行S502之后还可以执行如图3所示的S302-S305,具体过程可以参见图3所示实施例中的相关描述,此处不再赘述。
本实施例通过获取电池当前的相关参数;当所述电池的放电功率小于所述电池的额定功率时,根据电池当前的相关参数,以预设功率对所述电池进行加热处理,其中,所述预设功率小于或等于所述额定功率与所述放电功率之差。实现了可以自动对电池进行加热,避免了电池在低温下进行充电或放电时带来的各种缺陷,保证了电池在运行过程中的安全性,提高了电池的性能,并且此自动加热过程不会影响电池的放电性能。
可选地,在本发明上述各实施例的基础上,还通过显示装置显示用于表示所述电池处于加热状态的指示信息。该显示装置可以为显示屏或者LED灯等;例如显示装置可以包括4个LED灯,可以通过第1、2个LED灯与第3、4个LED灯交替闪烁来指示电池处于加热状态。
图6为本发明实施例一提供的电池控制系统的结构示意图,如图6所示,本实施例的电池控制系统包括:控制器11和与所述控制器11电连接的电加热组件12;
控制器11,用于获取电池当前的相关参数;以及根据所述电池当前的相关参数,控制所述电加热组件12对所述电池进行加热处理。
本实施例的装置,可以用于执行图1所示方法实施例的技术方案,其实现原理和技术效果类似,此处不再赘述。
图7为本发明实施例二提供的电池控制系统的结构示意图,如图7所示, 本实施例的系统在图6所示的系统实施例的基础上,在所述电池当前的相关参数满足预设条件时,所述控制器11控制所述电加热组件12对所述电池进行加热处理。
可选地,所述电池当前的相关参数包括以下至少一种:所述电池当前的电量、所述电池当前的温度。
可选地,本实施例的系统还包括与所述控制器11通信连接的温度检测器13,所述温度检测器13用于获取所述电池当前的温度;
其中,在获取的所述温度检测器13检测的所述电池当前的温度大于预设温度时,所述控制器11控制所述电加热组件对所述电池进行保温处理。
可选地,本实施例的系统还包括:与所述控制器11通信连接的计时器14;
所述计时器14,用于对所述电池的加热时长进行计时;
其中,在所述计时器14计时的对所述电池的加热时长大于预设时长时,所述控制器11控制所述电加热组件对所述电池停止加热。
可选地,本实施例的系统还包括与所述控制器11通信连接的电量检测器15,所述电量检测器15用于检测所述电池当前的剩余电量;
其中,在所述电量检测器15检测到的所述电池当前的电量小于第一预设电量时,所述控制器11控制所述电加热组件对所述电池停止加热。
在一种可行的实现方式,本实施例的系统还包括与所述控制器11电连接的手动操作部件16,通过操作所述手动操作部件16,能够触发所述电池加热指令。
可选地,所述手动操作部件16包括如下至少一种:按键,旋钮,拨动开关,触摸屏。
可选地,所述手动操作部件16的功能包括如下至少一种:控制电池开启与关闭,控制电池开始加热,控制显示装置显示所述电池当前的剩余电量,控制显示装置显示所述电池的当前使用寿命。
可选地,所述手动操作部件16为电源按键,选择不同的按压时间和/或按压次数操作所述按键,触发电池加热指令或电源开启、关闭指令。
可选地,所述电加热组件12对所述电池加热的功率为所述电池的额定功率。
在另一种可行的实现方式,当所述电池处于放电状态时,所述电加热组件12对所述电池加热的功率小于或等于所述额定功率与所述放电功率之差。
可选地,本实施例的系统还包括与所述控制器11通讯连接的显示装置17,所述显示装置17用于显示表示所述电池处于加热状态的指示信息。
本实施例的装置,可以用于执行本发明上述各所示方法实施例的技术方案,其实现原理和技术效果类似,此处不再赘述。
图8为本发明实施例提供的电池的一种结构示意图,图9为图8所示的电池沿A-A的部视图,如图8和图9所示,本实施例的电池包括:壳体21、控制系统22和一个或多个电芯23;其中,控制系统22,安装在所述壳体21内;一个或多个电芯23,安装在所述壳体21内;其中,所述电芯23与所述控制系统22电连接,其中,控制系统22可以采用图6或图7所示的电池的控制系统实施例的结构,可以执行上述任一方法实施例的技术方案,其实现原理和技术效果类似,此处不再赘述。所述电芯23为所述电加热组件12供电,使所述电加热组件12产生热量,可选地,所述控制系统22还用于控制所述电芯23的充电状态或放电状态。
图10为本发明实施例提供的无人机的一种结构示意图,图11为本发明实施例提供的机身的一种结构示意图,如图10和图11所示,本实施例的无人机包括:机身30和多个机臂40,每个所述机臂40用于承载电机41和螺旋桨42;所述机身30上设有用于收容电池50的电池仓31,所述机身30设置有控制器32和电加热组件33;所述控制器32分别与所述电池50和所述电加热组件33电连接;
其中,所述控制器32根据所述电池当前的相关参数,控制所述电加热组件对所述电池进行加热处理。
可选地,在所述电池当前的相关参数满足预设条件时,所述控制器32控制所述电加热组件对所述电池进行加热处理。
可选地,所述电池当前的相关参数包括以下至少一种:所述电池当前的电量、所述电池当前的温度。
可选地,所述机身30上设有与所述控制器通信连接的温度检测器34,所述温度检测器34用于获取所述电池当前的温度;
其中,在获取的所述温度检测器34检测的所述电池当前的温度大于预设 温度时,所述控制器32控制所述电加热组件对所述电池进行保温处理。
可选地,所述机身30上设有与所述控制器通信连接的计时器35;
所述计时器35,用于对所述电池的加热时长进行计时;
其中,在所述计时器35计时的对所述电池的加热时长大于预设时长时,所述控制器32控制所述电加热组件对所述电池停止加热。
可选地,所述机身30上设有与所述控制器32通信连接的电量检测器36,所述电量检测器36用于检测所述电池当前的剩余电量;
其中,在所述电量检测器36检测到的所述电池当前的电量小于第一预设电量时,所述控制器32控制所述电加热组件对所述电池停止加热。
可选地,所述机身30上设有与所述控制器32电连接的手动操作部件37,通过操作所述手动操作部件37,能够触发所述电池加热指令。
可选地,所述手动操作部件37包括如下至少一种:按键,旋钮,拨动开关,触摸屏。
可选地,所述手动操作部件37的功能包括如下至少一种:控制电池开启与关闭,控制电池开始加热,控制显示装置显示所述电池当前的剩余电量,控制显示装置显示所述电池的当前使用寿命。
可选地,所述手动操作部件37为电源按键,选择不同的按压时间和/或按压次数操作所述按键,触发电池加热指令或电源开启、关闭指令。
可选地,所述电加热组件33对所述电池加热的功率为所述电池的额定功率。
可选地,当所述电池处于放电状态时,所述电加热组件33对所述电池加热的功率小于或等于所述额定功率与所述放电功率之差。
可选地,所述机身30上设有与所述控制器32通讯连接的显示装置38,所述显示装置38用于显示表示所述电池处于加热状态的指示信息。
本实施例的无人机,可以用于执行本发明上述各方法实施例的技术方案,其实现原理和技术效果类似,此处不再赘述。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:只读内存(英文:Read-Only Memory,简称:ROM)、随 机存取存储器(英文:Random Access Memory,简称:RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (39)

  1. 一种电池加热方法,其特征在于,包括:
    获取电池当前的相关参数;
    根据所述电池当前的相关参数,对所述电池进行加热处理。
  2. 根据权利要求1所述的方法,其特征在于,在所述电池当前的相关参数满足预设条件时,对所述电池进行加热处理。
  3. 根据权利要求2所述的方法,其特征在于,所述电池当前的相关参数包括以下至少一种:所述电池当前的剩余电量、所述电池当前的温度。
  4. 根据权利要求1-3任意一项所述的方法,其特征在于,所述对所述电池进行加热处理之后,还包括:
    当所述电池当前的温度大于预设温度时,对所述电池进行保温处理。
  5. 根据权利要求1-4任意一项所述的方法,其特征在于,还包括:当对所述电池的加热时长大于预设时长,对所述电池停止加热;或者,
    当所述电池当前的剩余电量小于预设电量时,对所述电池停止加热。
  6. 根据权利要求1-5任意一项所述的方法,其特征在于,所述获取电池当前的相关参数之前,还包括:
    在所述电池处于未工作状态时,获取手动操作部件输出的电池加热指令。
  7. 根据权利要求6所述的方法,其特征在于,所述手动操作部件包括如下至少一种:按键,旋钮,拨动开关,触摸屏。
  8. 根据权利要求6或7所述的方法,其特征在于,所述手动操作部件的功能包括如下至少一种:控制电池开启与关闭,控制电池开始加热,控制显示装置显示所述电池当前的剩余电量,控制显示装置显示所述电池的当前使用寿命。
  9. 根据权利要求6-8任意一项所述的方法,其特征在于,所述手动操作部件为电源按键,选择不同的按压时间和/或按压次数操作所述按键,触发电池加热指令或电源开启、关闭指令。
  10. 根据权利要求6-9任意一项所述的方法,其特征在于,所述对所述电池进行加热处理,包括:
    以所述电池的额定功率对所述电池进行加热处理。
  11. 根据权利要求1-5任意一项所述的方法,其特征在于,当所述电池 处于放电状态时,对所述电池进行加热处理,包括:
    当所述电池的放电功率小于所述电池的额定功率时,以预设功率对所述电池进行加热处理,其中,所述预设功率小于或等于所述额定功率与所述放电功率之差。
  12. 根据权利要求1-11任意一项所述的方法,其特征在于,还包括:
    通过显示装置显示用于表示所述电池处于加热状态的指示信息。
  13. 一种电池控制系统,其特征在于,包括:控制器和与所述控制器电连接的电加热组件;
    控制器,用于获取电池当前的相关参数;以及根据所述电池当前的相关参数,控制所述电加热组件对所述电池进行加热处理。
  14. 根据权利要求13所述的系统,其特征在于,在所述电池当前的相关参数满足预设条件时,所述控制器控制所述电加热组件对所述电池进行加热处理。
  15. 根据权利要求13所述的系统,其特征在于,所述电池当前的相关参数包括以下至少一种:所述电池当前的电量、所述电池当前的温度。
  16. 根据权利要求15所述的系统,其特征在于,还包括与所述控制器通信连接的温度检测器,所述温度检测器用于获取所述电池当前的温度;
    其中,在获取的所述温度检测器检测的所述电池当前的温度大于预设温度时,所述控制器控制所述电加热组件对所述电池进行保温处理。
  17. 根据权利要求13-16任意一项所述的系统,其特征在于,还包括:与所述控制器通信连接的计时器;
    所述计时器,用于对所述电池的加热时长进行计时;
    其中,在所述计时器计时的对所述电池的加热时长大于预设时长时,所述控制器控制所述电加热组件对所述电池停止加热。
  18. 根据权利要求13-16任意一项所述的系统,其特征在于,还包括与所述控制器通信连接的电量检测器,所述电量检测器用于检测所述电池当前的剩余电量;
    其中,在所述电量检测器检测到的所述电池当前的电量小于第一预设电量时,所述控制器控制所述电加热组件对所述电池停止加热。
  19. 根据权利要求13-18任意一项所述的系统,其特征在于,还包括与 所述控制器电连接的手动操作部件,通过操作所述手动操作部件,能够触发所述电池加热指令。
  20. 根据权利要求19所述的系统,其特征在于,所述手动操作部件包括如下至少一种:按键,旋钮,拨动开关,触摸屏。
  21. 根据权利要求19或20所述的系统,其特征在于,所述手动操作部件的功能包括如下至少一种:控制电池开启与关闭,控制电池开始加热,控制显示装置显示所述电池当前的剩余电量,控制显示装置显示所述电池的当前使用寿命。
  22. 根据权利要求19-21任意一项所述的系统,其特征在于,所述手动操作部件为电源按键,选择不同的按压时间和/或按压次数操作所述按键,触发电池加热指令或电源开启、关闭指令。
  23. 根据权利要求19-22任意一项所述的系统,其特征在于,所述电加热组件对所述电池加热的功率为所述电池的额定功率。
  24. 根据权利要求13-18任意一项所述的系统,其特征在于,当所述电池处于放电状态时,所述电加热组件对所述电池加热的功率小于或等于所述额定功率与所述放电功率之差。
  25. 根据权利要求13-24任意一项所述的系统,其特征在于,还包括与所述控制器通讯连接的显示装置,所述显示装置用于显示表示所述电池处于加热状态的指示信息。
  26. 一种电池,其特征在于,包括:
    壳体;
    如权利要求13-25任意一项所述的控制系统,安装在所述壳体内;以及
    一个或多个电芯,安装在所述壳体内,并且与所述控制系统电连接;
    其中,所述电芯为所述电加热组件供电,使所述电加热组件产生热量。
  27. 一种无人机,其特征在于,包括:机身和多个机臂,每个所述机臂用于承载电机和螺旋桨;所述机身上设有用于收容电池的电池仓,所述机身设置有控制器和电加热组件;所述控制器分别与所述电池和所述电加热组件电连接;
    其中,所述控制器根据所述电池当前的相关参数,控制所述电加热组件对所述电池进行加热处理。
  28. 根据权利要求27所述的无人机,其特征在于,在所述电池当前的相关参数满足预设条件时,所述控制器控制所述电加热组件对所述电池进行加热处理。
  29. 根据权利要求27所述的无人机,其特征在于,所述电池当前的相关参数包括以下至少一种:所述电池当前的电量、所述电池当前的温度。
  30. 根据权利要求29所述的无人机,其特征在于,所述机身上设有与所述控制器通信连接的温度检测器,所述温度检测器用于获取所述电池当前的温度;
    其中,在获取的所述温度检测器检测的所述电池当前的温度大于预设温度时,所述控制器控制所述电加热组件对所述电池进行保温处理。
  31. 根据权利要求27-30任意一项所述的无人机,其特征在于,所述机身上设有与所述控制器通信连接的计时器;
    所述计时器,用于对所述电池的加热时长进行计时;
    其中,在所述计时器计时的对所述电池的加热时长大于预设时长时,所述控制器控制所述电加热组件对所述电池停止加热。
  32. 根据权利要求27-31任意一项所述的无人机,其特征在于,所述机身上设有与所述控制器通信连接的电量检测器,所述电量检测器用于检测所述电池当前的剩余电量;
    其中,在所述电量检测器检测到的所述电池当前的电量小于第一预设电量时,所述控制器控制所述电加热组件对所述电池停止加热。
  33. 根据权利要求27-32任意一项所述的无人机,其特征在于,所述机身上设有与所述控制器电连接的手动操作部件,通过操作所述手动操作部件,能够触发所述电池加热指令。
  34. 根据权利要求33所述的无人机,其特征在于,所述手动操作部件包括如下至少一种:按键,旋钮,拨动开关,触摸屏。
  35. 根据权利要求33或34所述的无人机,其特征在于,所述手动操作部件的功能包括如下至少一种:控制电池开启与关闭,控制电池开始加热,控制显示装置显示所述电池当前的剩余电量,控制显示装置显示所述电池的当前使用寿命。
  36. 根据权利要求33-35任意一项所述的无人机,其特征在于,所述手 动操作部件为电源按键,选择不同的按压时间和/或按压次数操作所述按键,触发电池加热指令或电源开启、关闭指令。
  37. 根据权利要求33-36任意一项所述的无人机,其特征在于,所述电加热组件对所述电池加热的功率为所述电池的额定功率。
  38. 根据权利要求27-32任意一项所述的无人机,其特征在于,当所述电池处于放电状态时,所述电加热组件对所述电池加热的功率小于或等于所述额定功率与所述放电功率之差。
  39. 根据权利要求27-38任意一项所述的无人机,其特征在于,所述机身上设有与所述控制器通讯连接的显示装置,所述显示装置用于显示表示所述电池处于加热状态的指示信息。
PCT/CN2016/103956 2016-10-31 2016-10-31 电池加热方法、电池控制系统、电池和无人机 WO2018076327A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680002611.7A CN106688136A (zh) 2016-10-31 2016-10-31 电池加热方法、电池控制系统、电池和无人机
PCT/CN2016/103956 WO2018076327A1 (zh) 2016-10-31 2016-10-31 电池加热方法、电池控制系统、电池和无人机

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/103956 WO2018076327A1 (zh) 2016-10-31 2016-10-31 电池加热方法、电池控制系统、电池和无人机

Publications (1)

Publication Number Publication Date
WO2018076327A1 true WO2018076327A1 (zh) 2018-05-03

Family

ID=58849490

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/103956 WO2018076327A1 (zh) 2016-10-31 2016-10-31 电池加热方法、电池控制系统、电池和无人机

Country Status (2)

Country Link
CN (1) CN106688136A (zh)
WO (1) WO2018076327A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109216830A (zh) * 2018-08-09 2019-01-15 浙江新创能源有限公司 一种动力电池及其加热方法
CN111789479A (zh) * 2019-04-09 2020-10-20 浙江苏泊尔家电制造有限公司 烹饪器具和用于烹饪器具的控制方法
CN112046766A (zh) * 2020-09-04 2020-12-08 北京中科利丰科技有限公司 一种无人机储能电池的恒温系统和无人机
CN112117503A (zh) * 2019-07-17 2020-12-22 上汽通用五菱汽车股份有限公司 电池加热功能检测方法、检测设备及可读存储介质
CN112201878A (zh) * 2020-09-11 2021-01-08 中国航空工业集团公司成都飞机设计研究所 一种飞机锂离子电池地面和空中相结合的加热方法
CN114670716A (zh) * 2021-11-23 2022-06-28 北京新能源汽车股份有限公司 一种行车加热控制方法、装置和设备
CN114711690A (zh) * 2022-03-08 2022-07-08 云鲸智能(深圳)有限公司 基站的控制方法、清洁装置和存储介质
CN115289505A (zh) * 2022-07-26 2022-11-04 中山市翰林电器有限公司 基于功率需求的电陶炉自适应控制方法、装置及电陶炉

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3070764B1 (fr) * 2017-09-04 2020-09-04 Renault Sas Procede de determination de l'etat d'une ligne electrique reliant une cellule de batterie d'accumulateurs a une unite de controle et unite de controle correspondante
CN108054471B (zh) * 2017-12-26 2019-09-17 衢州职业技术学院 锂电池的预热方法以及预热装置
CN207917168U (zh) * 2018-01-25 2018-09-28 深圳市道通智能航空技术有限公司 计时装置
WO2020014910A1 (zh) 2018-07-18 2020-01-23 深圳市大疆创新科技有限公司 电池状态指示方法、电池状态指示装置和移动设备
CN110970687B (zh) * 2018-09-30 2021-05-14 比亚迪股份有限公司 动力电池加热控制方法、装置及车辆
TWI688180B (zh) * 2018-11-20 2020-03-11 緯創資通股份有限公司 可攜式電子裝置及其電池溫度控制方法
CN110323519A (zh) * 2019-06-28 2019-10-11 蜂巢能源科技有限公司 电池包加热控制方法及系统
CN111516555B (zh) * 2020-04-26 2022-10-21 东风柳州汽车有限公司 一种车载电池的温度调节系统及方法
CN116667470A (zh) * 2022-11-10 2023-08-29 荣耀终端有限公司 一种充电方法及电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103326405A (zh) * 2012-03-20 2013-09-25 上海大众汽车有限公司 电动车低温加热充电方法和加热充电装置
CN103545573A (zh) * 2012-07-17 2014-01-29 比亚迪股份有限公司 一种用于控制电池加热的方法及装置
CN103545569A (zh) * 2012-07-17 2014-01-29 比亚迪股份有限公司 一种用于控制电池加热的方法及装置
CN105790371A (zh) * 2016-04-21 2016-07-20 深圳市大疆创新科技有限公司 电池的控制方法、电池、充电设备和无人飞行器
CN105922880A (zh) * 2016-05-03 2016-09-07 北京新能源汽车股份有限公司 电动汽车动力电池的充电控制方法和控制系统
CN105977559A (zh) * 2016-07-11 2016-09-28 安庆新景技电子科技有限公司 车辆电池管理方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103419659B (zh) * 2012-05-22 2016-04-13 比亚迪股份有限公司 电动汽车、电动汽车的动力系统及电池加热方法
CN204230375U (zh) * 2014-11-27 2015-03-25 苏州贝多环保技术有限公司 一种电动汽车电池管理系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103326405A (zh) * 2012-03-20 2013-09-25 上海大众汽车有限公司 电动车低温加热充电方法和加热充电装置
CN103545573A (zh) * 2012-07-17 2014-01-29 比亚迪股份有限公司 一种用于控制电池加热的方法及装置
CN103545569A (zh) * 2012-07-17 2014-01-29 比亚迪股份有限公司 一种用于控制电池加热的方法及装置
CN105790371A (zh) * 2016-04-21 2016-07-20 深圳市大疆创新科技有限公司 电池的控制方法、电池、充电设备和无人飞行器
CN105922880A (zh) * 2016-05-03 2016-09-07 北京新能源汽车股份有限公司 电动汽车动力电池的充电控制方法和控制系统
CN105977559A (zh) * 2016-07-11 2016-09-28 安庆新景技电子科技有限公司 车辆电池管理方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109216830A (zh) * 2018-08-09 2019-01-15 浙江新创能源有限公司 一种动力电池及其加热方法
CN111789479A (zh) * 2019-04-09 2020-10-20 浙江苏泊尔家电制造有限公司 烹饪器具和用于烹饪器具的控制方法
CN112117503A (zh) * 2019-07-17 2020-12-22 上汽通用五菱汽车股份有限公司 电池加热功能检测方法、检测设备及可读存储介质
CN112046766A (zh) * 2020-09-04 2020-12-08 北京中科利丰科技有限公司 一种无人机储能电池的恒温系统和无人机
CN112201878A (zh) * 2020-09-11 2021-01-08 中国航空工业集团公司成都飞机设计研究所 一种飞机锂离子电池地面和空中相结合的加热方法
CN114670716A (zh) * 2021-11-23 2022-06-28 北京新能源汽车股份有限公司 一种行车加热控制方法、装置和设备
CN114670716B (zh) * 2021-11-23 2024-03-22 北京新能源汽车股份有限公司 一种行车加热控制方法、装置和设备
CN114711690A (zh) * 2022-03-08 2022-07-08 云鲸智能(深圳)有限公司 基站的控制方法、清洁装置和存储介质
CN114711690B (zh) * 2022-03-08 2023-07-14 云鲸智能(深圳)有限公司 基站的控制方法、清洁装置和存储介质
CN115289505A (zh) * 2022-07-26 2022-11-04 中山市翰林电器有限公司 基于功率需求的电陶炉自适应控制方法、装置及电陶炉
CN115289505B (zh) * 2022-07-26 2023-11-10 中山市翰林电器有限公司 基于功率需求的电陶炉自适应控制方法、装置及电陶炉

Also Published As

Publication number Publication date
CN106688136A (zh) 2017-05-17

Similar Documents

Publication Publication Date Title
WO2018076327A1 (zh) 电池加热方法、电池控制系统、电池和无人机
CN108390131B (zh) 纯内阻电池加热系统
CN108711662B (zh) 一种电池组加热装置与控制方法
JP6491663B2 (ja) 電池予熱方法、装置および機器
CN108777339B (zh) 一种锂离子电池脉冲放电自加热方法及装置
CN206422189U (zh) 电池和无人机
CN204857867U (zh) 一种在低温环境下使用的锂离子电池
US20160294021A1 (en) Charging apparatus, electricity storage system, charging method, and program
CN104709091A (zh) 纯电动车的上电和下电方法
WO2019001483A1 (zh) 电动汽车动力电池温度控制方法及装置
JP2017158418A (ja) 電池の不足電圧保護の動的な調整方法及びシステム
JP2017228544A (ja) 電池予熱方法、装置および機器
US11139514B2 (en) Battery pack heating apparatus for double vehicle heating and control method
JP2012214060A (ja) プレヒート用電源供給システム
JP2015176821A (ja) リチウムイオン二次電池の充電方法
WO2020007328A1 (zh) 无人飞行器电池安全处理方法及其装置
JP6589773B2 (ja) 電動車両
WO2021083149A1 (zh) 充电方法和充电系统
JP6520633B2 (ja) 車両制御システム
CN110931918A (zh) 电池包装置及电池包装置预热方法
CN111129659B (zh) 一种车辆电池的充电加热控制方法及系统
KR20140045624A (ko) 차량용 배터리의 보온장치 및 보온방법
CN203326060U (zh) 一种电池系统的加热保温装置以及带有该装置的电池系统
US11342606B2 (en) Lithium ion battery with an internal heating device
JP6102730B2 (ja) ハイブリッド電池システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16920125

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16920125

Country of ref document: EP

Kind code of ref document: A1