WO2018076302A1 - 载波聚合的消息反馈方法及装置 - Google Patents

载波聚合的消息反馈方法及装置 Download PDF

Info

Publication number
WO2018076302A1
WO2018076302A1 PCT/CN2016/103854 CN2016103854W WO2018076302A1 WO 2018076302 A1 WO2018076302 A1 WO 2018076302A1 CN 2016103854 W CN2016103854 W CN 2016103854W WO 2018076302 A1 WO2018076302 A1 WO 2018076302A1
Authority
WO
WIPO (PCT)
Prior art keywords
subframe
carrier
downlink
configuration
uplink
Prior art date
Application number
PCT/CN2016/103854
Other languages
English (en)
French (fr)
Inventor
李华
栗忠峰
肖洁华
周国华
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201680089810.6A priority Critical patent/CN109792725B/zh
Priority to PCT/CN2016/103854 priority patent/WO2018076302A1/zh
Priority to EP16919822.3A priority patent/EP3531762B1/en
Publication of WO2018076302A1 publication Critical patent/WO2018076302A1/zh
Priority to US16/396,539 priority patent/US11051298B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1893Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2666Acquisition of further OFDM parameters, e.g. bandwidth, subcarrier spacing, or guard interval length
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • H04L5/0082Timing of allocation at predetermined intervals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/1469Two-way operation using the same type of signal, i.e. duplex using time-sharing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present invention relates to communication technologies, and in particular, to a message aggregation method and apparatus for carrier aggregation.
  • Hybrid Automatic Repeat Request is a technology that combines Forward Error Correction (FEC) and Automatic Repeat Request (ARQ).
  • FEC Forward Error Correction
  • ARQ Automatic Repeat Request
  • the FEC can reduce the number of retransmissions by adding redundant information, so that the receiving end can correct a part of the error.
  • the receiving end requests the transmitting end to resend the data through the ARQ mechanism.
  • the receiving end uses the error detecting code to detect whether the received data packet is in error. If there is no error, the receiving end sends an acknowledgement (Acknowledgement, ACK for short) to the transmitting end. If the error occurs, the receiving end sends the receiving end to the transmitting end.
  • a Negative Acknowledgement (NACK) is sent. After receiving the NACK, the sender resends the same packet.
  • LTE Long Term Evolution
  • CA carrier aggregation
  • the embodiment of the invention provides a message aggregation method and device for carrier aggregation, which is used to solve the problem that the ACK or NACK is returned in the prior art, which causes waste of resources.
  • a first aspect of the embodiments of the present invention provides a message aggregation method for carrier aggregation, including:
  • the terminal receives the data packet sent by the base station in the first downlink subframe of the carrier aggregation combination, where the carrier aggregation combination includes: a first carrier and a second carrier;
  • the terminal sends a feedback message to the base station in the first uplink subframe.
  • the terminal determines, according to the subframe configuration of the carrier aggregation combination, and the mapping relationship between the subframe configuration and the timing of the carrier aggregation combination, determining the first sequence, including:
  • the subframe configuration information of the carrier aggregation combination includes: a subframe configuration of the first carrier, and/or a subframe configuration of the second carrier;
  • the terminal determines the first sequence according to the subframe configuration information of the carrier aggregation combination and the mapping relationship between the subframe configuration and the timing of the carrier aggregation combination.
  • the subframe configuration of the first carrier and/or the subframe of the second carrier are configured as other subframe configurations than the existing TDD subframe configuration 0-6.
  • the first timing is used to indicate that when the first uplink subframe is a subframe n, the first downlink subframe is a subframe in which the subframe n is forwardly separated by k subframes, Where n is a positive integer greater than or equal to 0, and k is a positive integer greater than zero.
  • the first uplink subframe subframe n is a subframe in which the subframe n is forwardly separated by k subframes, and includes:
  • the first downlink subframe is a subframe in which the subframe n in the first carrier is forwardly separated by k subframes;
  • the first downlink subframe is a subframe in which the subframe n in the second carrier is forwardly separated by k subframes;
  • the first downlink subframe is a subframe in which the subframe n in the first carrier is forwardly separated by k subframes;
  • the first downlink subframe is a subframe in which the subframe n in the second carrier is forwardly separated by k subframes.
  • the subframe configuration of the first carrier adopts a time division duplex TDD configuration 2
  • the subframe configuration of the second carrier adopts a TDD configuration 2 of 2 subframes.
  • the subframe spacing k of the first downlink subframe on the first carrier is 4 and 6, and
  • the subframe interval k values on the second carrier are 4, 5, and 6;
  • the subframe interval k of the first downlink subframe on the first carrier is 4, and in the foregoing Subframe interval k on two carriers Values are 4 and 5;
  • the subframe interval k of the first downlink subframe on the first carrier is 5 and 6, and The subframe interval k on the second carrier is 6;
  • the subframe interval k values of the first downlink subframe on the first carrier are 4, 5, and 6, and
  • the subframe interval k values on the second carrier are 4 and 6.
  • the subframe configuration of the first carrier adopts a time division duplex TDD configuration 1
  • the subframe configuration of the second carrier adopts a TDD configuration 2 in which two subframes are shifted.
  • the subframe spacing k of the first downlink subframe on the second carrier is 4 and 5;
  • the subframe interval k of the first downlink subframe on the first carrier is 4, and in the foregoing
  • the subframe interval k on the two carriers is 4;
  • the subframe interval k of the first downlink subframe on the second carrier is 4 and 5;
  • the subframe interval k of the first downlink subframe on the first carrier is 4, and in the foregoing
  • the subframe interval k on the two carriers is 4;
  • the subframe interval k of the first downlink subframe on the first carrier is 4 and 5, and The subframe interval k on the second carrier is 4;
  • the subframe interval k of the first downlink subframe on the first carrier is 4 and 5, and The subframe interval k on the second carrier is 4.
  • a second aspect of the embodiments of the present invention provides a message aggregation method for carrier aggregation, including:
  • the base station receives the data packet sent by the terminal in the second uplink subframe of the carrier aggregation combination, where the carrier aggregation combination includes: a first carrier and a second carrier;
  • the base station sends a feedback message to the terminal on the second downlink subframe.
  • the determining, by the base station, the second sequence according to the subframe configuration of the carrier aggregation combination and the mapping relationship between the subframe configuration and the timing of the carrier aggregation combination including:
  • the base station acquires a subframe configuration of the carrier aggregation combination, where the subframe configuration of the carrier aggregation combination includes: a subframe configuration of the first carrier, and/or a subframe configuration of the second carrier;
  • the base station determines the second sequence according to the subframe configuration information of the carrier aggregation combination and the mapping relationship between the subframe configuration and the timing of the carrier aggregation combination.
  • the second timing is used to indicate that when the second downlink subframe is the subframe n, the second uplink subframe is a subframe that is forwardly spaced by the subframe n for the subframe n.
  • n is a positive integer greater than or equal to 0
  • k is a positive integer greater than zero.
  • the second timing is used to indicate that the second downlink subframe is a subframe n
  • the second uplink subframe is a subframe that is forwardly separated by k subframes for the subframe n, including :
  • the second uplink subframe is a subframe in which the subframe n in the first carrier is forwardly separated by k subframes;
  • the second uplink subframe is a subframe in which the subframe n in the second carrier is forwardly separated by k subframes;
  • the second uplink subframe is a subframe in which the subframe n in the first carrier is forwardly separated by k subframes;
  • the second uplink subframe is a subframe in which the subframe n in the second carrier is forwardly separated by k subframes.
  • the subframe configuration of the first carrier adopts a time division duplex TDD configuration 2
  • the subframe configuration of the second carrier adopts a TDD configuration 2 of 2 subframes.
  • the subframe interval k of the second uplink subframe on the second carrier is 6;
  • the subframe interval k of the second uplink subframe on the first carrier is 6;
  • the subframe interval k of the second uplink subframe on the second carrier is 6;
  • the subframe interval k of the second uplink subframe on the second carrier is 6;
  • the subframe interval k of the second uplink subframe on the second carrier is 6;
  • the subframe interval k of the second uplink subframe on the first carrier is 6;
  • the subframe interval k of the second uplink subframe on the second carrier is 6.
  • the subframe interval k of the second uplink subframe on the second carrier is 4;
  • the subframe interval k of the second uplink subframe on the second carrier is 4;
  • the subframe interval k of the second uplink subframe on the second carrier is 4;
  • the subframe interval k of the second uplink subframe on the first carrier is 5;
  • the subframe interval k of the second uplink subframe on the first carrier is 4;
  • the subframe interval k of the second uplink subframe on the second carrier is 4;
  • the subframe interval k of the second uplink subframe on the second carrier is 4.
  • the base station determines a third sequence according to a subframe configuration of the carrier aggregation combination, and a mapping relationship between the subframe configuration and the timing of the carrier aggregation combination, where the carrier aggregation combination includes: a first carrier and a second carrier;
  • the base station sends uplink scheduling information on the third downlink subframe, where the uplink scheduling information is used to schedule the to-be-scheduled uplink subframe.
  • the determining, by the base station, the third sequence according to the subframe configuration of the carrier aggregation combination and the mapping relationship between the subframe configuration and the timing of the carrier aggregation combination including:
  • the base station acquires a subframe configuration of the carrier aggregation combination, where the subframe configuration of the carrier aggregation combination includes: a subframe configuration of the first carrier, and/or a subframe configuration of the second carrier;
  • the base station determines the third sequence according to the subframe configuration information of the carrier aggregation combination and the mapping relationship between the subframe configuration and the timing.
  • the third timing is used to indicate that when the third downlink subframe is the subframe n, the to-be-scheduled uplink subframe is a subframe in which the subframe n is backwardly separated by k subframes, where n is A positive integer greater than or equal to 0, and k is a positive integer greater than zero.
  • the third timing is used to indicate that the third downlink subframe is a subframe n, and the to-be-scheduled uplink subframe is a subframe that is subframe-backed by k subframes, and includes:
  • the to-be-scheduled uplink subframe is a subframe in which the subframe n in the first carrier is spaced backward by k subframes;
  • the to-be-scheduled uplink subframe is a subframe in which the subframe n in the second carrier is spaced backward by k subframes;
  • the to-be-scheduled uplink subframe is a subframe in which the subframe n in the first carrier is spaced backward by k subframes;
  • the to-be-scheduled uplink subframe is a subframe in which the subframe n in the second carrier is spaced backward by k subframes.
  • the subframe configuration of the first carrier adopts a time division duplex TDD configuration 2, and the foregoing
  • the subframe configuration of the two carriers adopts the TDD configuration 2 of shifting 2 subframes
  • the subframe interval k of the to-be-scheduled uplink subframe on the second carrier is 4;
  • the subframe interval k of the to-be-scheduled uplink subframe on the second carrier is 4;
  • the subframe interval k of the to-be-scheduled uplink subframe on the first carrier is 4;
  • the subframe interval k of the to-be-scheduled uplink subframe on the first carrier is 4;
  • the subframe interval k of the to-be-scheduled uplink subframe on the first carrier is 4;
  • the subframe interval k of the to-be-scheduled uplink subframe on the second carrier is 4.
  • the subframe configuration of the first carrier adopts a time division duplex TDD configuration 1
  • the subframe configuration of the second carrier adopts a TDD configuration 2 in which two subframes are shifted.
  • the subframe interval k of the to-be-scheduled uplink subframe on the second carrier is 4;
  • the subframe interval k of the to-be-scheduled uplink subframe on the first carrier is 4;
  • the subframe interval k of the to-be-scheduled uplink subframe on the second carrier is 4;
  • the subframe interval k of the to-be-scheduled uplink subframe on the first carrier is 4;
  • the subframe interval k on the first carrier is 4;
  • the subframe interval k of the to-be-scheduled uplink subframe on the second carrier is 4;
  • the subframe interval k of the to-be-scheduled uplink subframe on the first carrier is 4;
  • the subframe interval k of the to-be-scheduled uplink subframe on the first carrier is 4;
  • the subframe interval k of the to-be-scheduled uplink subframe on the second carrier is 4.
  • a fourth aspect of the embodiments of the present invention provides a carrier aggregation subframe scheduling apparatus, where the apparatus includes modules or means for performing the foregoing first aspect and the methods provided by various implementations of the first aspect.
  • a fifth aspect of the embodiments of the present invention provides a carrier aggregation subframe scheduling apparatus, where the apparatus includes modules or means for performing the methods provided by the foregoing second aspect and various implementations of the second aspect.
  • a sixth aspect of the embodiments of the present invention provides a HARQ-based message feedback apparatus, the apparatus comprising means or means for performing the methods provided by the third aspect and the various implementations of the third aspect.
  • a seventh aspect of the embodiments of the present invention provides a carrier aggregation subframe scheduling apparatus, where the apparatus includes a processor and a memory, the memory is used to store a program, and the processor calls a memory storage program to perform the first aspect of the present application. method.
  • An eighth aspect of the embodiments of the present invention provides a carrier aggregation scheduling apparatus, where the apparatus includes a processor and a memory, the memory is used to store a program, and the processor calls a program stored in the memory to perform the second aspect of the present application. method.
  • a ninth aspect of the embodiments of the present invention provides a carrier aggregation scheduling apparatus, where the apparatus includes a processor and a memory, the memory is used to store a program, and the processor calls a program stored in the memory to perform the third aspect of the present application. method.
  • a tenth aspect of the embodiments of the present invention provides a carrier aggregation subframe scheduling apparatus, including at least one processing element (or chip) for performing the method of the above first aspect.
  • An eleventh embodiment of the present invention provides a carrier aggregation scheduling apparatus, including At least one processing element (or chip) for performing the method of the above second aspect.
  • a twelfth aspect of the embodiments of the present invention provides a carrier aggregation subframe scheduling apparatus, including at least one processing element (or chip) for performing the method of the above third aspect.
  • a thirteenth aspect of the embodiments of the present invention provides a program for executing the method of the above first aspect when executed by a processor.
  • a fourteenth aspect of the embodiments of the present invention provides a program product, such as a computer readable storage medium, comprising the program of the thirteenth aspect.
  • a fifteenth aspect of the embodiments of the present invention provides a program for performing the method of the above second aspect when executed by a processor.
  • a sixteenth aspect of the present invention provides a program product, such as a computer readable storage medium, comprising the program of the fifteenth aspect.
  • a seventeenth aspect of the embodiments of the present invention provides a program for performing the method of the above third aspect when executed by a processor.
  • An eighteenth aspect of the present invention provides a program product, such as a computer readable storage medium, comprising the program of the seventeenth aspect.
  • the terminal receives the data packet sent by the base station in the first downlink subframe of the carrier aggregation combination, and performs mapping relationship between the subframe configuration and the time sequence according to the carrier aggregation combination. Determining a first timing of the carrier aggregation combination, and determining a first uplink subframe in the carrier combination according to the first timing, and sending a feedback message on the first uplink subframe, so that determining the first uplink in the entire carrier combination
  • the frame is used to send the feedback message, and the selectable range is larger, so that the feedback message is sent by using the closer subframe, which effectively improves the feedback efficiency.
  • FIG. 1 is a schematic diagram of an application scenario of a message aggregation method for carrier aggregation provided by the present invention
  • FIG. 2 is a schematic diagram of a subframe configuration in a message aggregation method for carrier aggregation provided by the present invention
  • FIG. 3 is a schematic flowchart of a message aggregation method for carrier aggregation according to an embodiment of the present disclosure
  • FIG. 4 is a schematic flowchart diagram of another carrier aggregation message feedback method according to an embodiment of the present disclosure
  • FIG. 5 is a schematic flowchart of another carrier aggregation subframe scheduling method according to an embodiment of the present disclosure
  • FIG. 6 is a schematic structural diagram of a message aggregation device for carrier aggregation according to an embodiment of the present disclosure
  • FIG. 7 is a schematic structural diagram of another carrier aggregation message feedback apparatus according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of another carrier aggregation message feedback apparatus according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of another carrier aggregation message feedback apparatus according to an embodiment of the present invention.
  • a base station also known as a radio access network (RAN) device, is a device that connects a terminal to a wireless network, and can be a Global System of Mobile communication (GSM) or a code division.
  • GSM Global System of Mobile communication
  • a Base Transceiver Station (BTS) in the Code Division Multiple Access (CDMA) may be a base station (NodeB, NB for short) in Wideband Code Division Multiple Access (WCDMA). It may also be an evolved base station (Evolutional Node B, eNB or eNodeB) in the Long Term Evolution (LTE), or a relay station or an access point, or a base station in a future 5G network, etc., which is not limited herein. .
  • the wireless terminal can be a wireless terminal or a wired terminal.
  • the wireless terminal can be a device that provides voice and/or other service data connectivity to the user, a handheld device with wireless connectivity, or other processing device connected to the wireless modem.
  • the wireless terminal can communicate with one or more core networks via a Radio Access Network (RAN), which can be a mobile terminal, such as a mobile phone (or "cellular" phone) and has a mobile
  • RAN Radio Access Network
  • the computer of the mobile terminal for example, can be a portable, pocket, handheld, computer built-in or in-vehicle mobile device that exchanges language and/or data with the wireless access network.
  • the wireless terminal may also be referred to as a system, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, and a remote terminal.
  • the access terminal, the user terminal (User Terminal), the user agent (User Agent), and the user device (User Device or User Equipment) are not limited herein.
  • a plurality means two or more.
  • "and/or” describing the association relationship of the associated objects, indicating that there may be three relationships, for example, A and/or B, which may indicate that there are three cases where A exists separately, A and B exist at the same time, and B exists separately.
  • the character "/" generally indicates that the contextual object is an "or" relationship.
  • Carrier Aggregation is a combination of two or more carrier carriers (CCs) to form a carrier group to support a larger transmission bandwidth.
  • the primary cell (the primary cell, referred to as the Pcell, is called the primary component carrier (PCC), also referred to as the primary carrier; the secondary cell (Scell) is called the secondary component carrier.
  • PCC primary component carrier
  • SCC secondary Component Carrier
  • SCC secondary carrier
  • the primary cell is responsible for radio resource control (RRC) between the base station and the terminal; the secondary cell is used to provide additional radio resources, and there is no RRC communication with the terminal.
  • RRC radio resource control
  • the subframe configuration is used to indicate the number and location of the uplink and downlink subframes, as well as the special subframes.
  • FIG. 1 is a schematic diagram of an application scenario of a message aggregation method for carrier aggregation according to the present invention. As shown in FIG. 1 , the scenario includes: a base station 01 and a terminal 02.
  • Terminal 02 in FIG. 1 can communicate with base station 01 over a plurality of carriers.
  • the downlink HARQ that is, the processing flow for the terminal to confirm the downlink data sent by the base station
  • the downlink data transmission and the reply of the acknowledgement message have a certain timing relationship
  • multiple The data packet sent by the downlink subframe may need to reply ACK or NACK on the same uplink subframe, for example, when the terminal is in the subframe nk (downlink subframe)
  • the terminal replies with an ACK or a NACK on the subframe n (the uplink subframe), that is, the subframe that returns the ACK or the NACK and the subframe that detects the downlink packet are separated by k subframes.
  • the uplink timing relationship includes two: one is the scheduling timing of the uplink data (also referred to as UL grant timing), indicating that when the terminal is in the subframe n
  • the physical uplink shared channel (Physical Uplink Shared Channel, PUSCH) data is transmitted in the subframe n+k (uplink subframe); the other is the acknowledgement message reply of the uplink data HARQ.
  • PUSCH Physical Uplink Shared Channel
  • PHICH Physical Hybrid ARQ Indicator Channel
  • the terminal detects a downlink data packet in the subframe n-k (downlink subframe), the terminal replies an ACK or a NACK on the subframe n (uplink subframe).
  • the HARQ timing of an existing carrier is generally selected as the HARQ timing of the secondary carrier after carrier aggregation according to different conditions.
  • FIG. 2 is a schematic diagram of a subframe configuration in a message aggregation method for carrier aggregation provided by the present invention.
  • the subframe configuration of each carrier in carrier aggregation may be different. If the subframe reply feedback message is determined based on only the preset timing of one of the carriers, the other subframes are configured on different carriers, and the uplink is also configured. Subframe n feedback message, the downlink subframe nk receives the data packet, but the selected timing is in the subframe configuration of the other carriers, and the subframe of the subframe nk is not necessarily the downlink subframe, then the downlink sub-frame cannot be used. Frames send data, resulting in wasted resources. As shown in FIG. 2, the subframe configuration of the first carrier is “TDD configuration 1”, and the subframe configuration of the second carrier is “TDD configuration 2”.
  • the HARQ timing needs to adopt “TDD configuration”. 1" downlink HARQ timing. Since subframe 3 and subframe 8 of configuration 1 are uplink subframes, the HARQ feedback positions of the two frames are not included in the downlink HARQ timing, and in configuration 2, subframe 3 and subframe 8 are downlink subframes, due to the downlink. The HARQ feedback timing needs to be fed back according to the timing of the configuration of the PCell. Since there is no feedback position, the subframe 3 and the subframe 8 of the SCell cannot be transmitted as normal downlink subframes, thereby causing waste of resources.
  • the uplink subframe of some carriers may also correspond to the downlink subframe position of other carriers, which may result in waste of resources if the prior art is adopted.
  • FIG. 3 is a schematic flowchart of a message aggregation method for carrier aggregation according to an embodiment of the present invention. As shown in FIG. 3, the method includes:
  • the terminal receives the data packet sent by the base station in the first downlink subframe of the carrier aggregation combination.
  • the carrier aggregation combination includes: a first carrier and a second carrier.
  • the data packet may be a physical downlink shared channel (PDSCH) data packet, or a physical downlink control channel (Physical Downlink Control Channel) for indicating downlink SPS (Semi-Persistent Scheduling semi-persistent scheduling) release. , referred to as PDCCH) data packet, is not limited here.
  • PDSCH physical downlink shared channel
  • PDCCH Physical Downlink Control Channel
  • the carrier aggregation combination may include multiple carriers, and the first carrier and the second carrier are general concepts.
  • the first carrier and the second carrier belong to the same group.
  • the first downlink subframe may refer to any downlink subframe on the first carrier or the second carrier.
  • the terminal determines a first sequence of the carrier aggregation combination according to a subframe configuration of the carrier aggregation combination and a mapping relationship between the subframe configuration and the timing of the carrier aggregation combination.
  • the terminal determines, in the foregoing carrier aggregation combination, the first uplink subframe according to the foregoing first timing.
  • the subframe configuration of the carrier aggregation combination is used to indicate the subframe configuration of multiple carriers in the carrier aggregation combination, and the subframe configuration of each carrier may indicate information such as the subframe type, the number, and the order, such as how many uplink subframes are in the subframe of the carrier. How many downlink subframes, how many special subframes, and how these subframes are arranged and so on.
  • the timing is used to identify the relationship between the downlink subframe of the received data packet and the uplink subframe used for the feedback message.
  • the subframe configuration of different carrier aggregation combinations adopts an unused timing, first determines the timing corresponding to the carrier aggregation combination, and then determines the first uplink subframe by the timing to feed back the message.
  • the first uplink subframe is determined in the carrier aggregation combination, that is, the first uplink subframe may be a subframe of the first carrier, or may be a subframe of the second carrier.
  • the terminal sends a feedback message to the base station in the first uplink subframe.
  • the terminal receives the number sent by the base station in the first downlink subframe of the carrier aggregation combination.
  • the packet and according to the mapping relationship between the subframe configuration and the timing of the carrier aggregation combination, determining the first timing of the carrier aggregation combination, and determining the first uplink subframe in the carrier combination according to the first timing, and in the first uplink subframe Sending a feedback message, the first uplink subframe is determined in the entire carrier combination to send a feedback message, and the selectable range is larger, so that the feedback message is sent by using a more recent subframe, thereby effectively improving the feedback efficiency.
  • the terminal determines the first sequence of the carrier aggregation combination according to the subframe configuration of the carrier aggregation combination and the mapping relationship between the subframe configuration and the sequence of the carrier aggregation combination, and may be: the terminal acquires the subframe configuration information of the carrier aggregation combination. And determining, by the terminal, the first preset timing according to the subframe configuration information of the carrier aggregation combination and the mapping relationship between the subframe configuration and the timing.
  • the subframe configuration may include: a subframe configuration of the first carrier, and/or a subframe configuration of the second carrier.
  • the subframe configuration of the first carrier and/or the subframe of the second carrier are configured as other subframe configurations than the existing TDD subframe configuration 0-6. That is, the configuration of at least one of the first carrier and the second carrier adopts a new subframe configuration.
  • the terminal may pre-configure the multiple timings, and determine the first timing of the carrier aggregation combination according to the subframe configuration of the carrier aggregation combination and the mapping relationship between the subframe configuration and the timing of the carrier aggregation combination. It should be noted that these timing terminals and base stations are stored so that the same timing can be used for communication on both sides.
  • the terminal may notify the base station after determining the first sequence.
  • the terminal may determine the primary carrier when the connection is established, and read the system message sent by the primary cell to the base station, for example, a system information block (SIB), which may be SIB1, and then obtain the system message according to the system message. Subframe configuration of the primary carrier.
  • SIB system information block
  • the terminal may receive a Radio Resource Control (RRC) connection reconfiguration message, add/modify/release the secondary cell according to the RRC connection reconfiguration message, and read the subframe configuration of the secondary carrier from the RRC connection reconfiguration message.
  • RRC Radio Resource Control
  • first carrier may be a primary carrier or a secondary carrier.
  • second carrier may be a primary carrier or a secondary carrier, which is not limited herein.
  • the first timing may indicate an interval between the first downlink subframe and the first uplink subframe. It should be noted that the interval may be an interval between subframes of the same carrier, or may be an interval between different carriers.
  • the first timing is used to indicate that the number of subframe intervals of the first downlink subframe and the first uplink subframe is k.
  • k is a positive integer greater than zero.
  • the first downlink subframe is a subframe in which the subframe n is forwardly separated by k subframes, and specifically includes the following situations:
  • the first downlink subframe is a subframe in which the subframe n in the first carrier is forwardly separated by k subframes;
  • the first downlink subframe is a subframe in which the subframe n in the second carrier is forwardly separated by k subframes;
  • the first downlink subframe is a subframe in which the subframe n in the first carrier is forwardly separated by k subframes;
  • the second downlink subframe is a subframe in which the subframe n in the first carrier is forwardly separated by k subframes.
  • k is greater than or equal to 4.
  • the number of subframe intervals corresponding to different subframe configurations of the carrier aggregation combination may be as shown in Table 1.
  • the corresponding k value is 6 and/or 4, that is, the feedback message sent by the subframe 2 of the carrier 1 may be Corresponding to the forward interval 6 of carrier 1 and / Or the data packet received on the downlink subframe of 4; when the uplink subframe where n is 2 is used to feed back the data packet received by the subframe of carrier 2, the corresponding k value is one or more of 6, 5, and 4. That is, the feedback message sent by the subframe 2 of the carrier 1 may correspond to one or more received data packets in the downlink subframe of the forward interval 6, 5, 4 of the carrier 2.
  • Table 2 shows a sequence of process 0 for receiving and transmitting a feedback message, where the first carrier is configured as "TDD configuration 2" and the second carrier is configured as “TDD configuration 0", and in the table 2 "" indicates a downlink subframe, "S” indicates a special subframe, and "U” indicates an uplink subframe.
  • the uplink subframe in the subframe of the second carrier is more than the uplink subframe in the subframe of the first carrier, and the data packet is received in the downlink subframe where the first n of the first carrier is 0
  • Tx indicates that if the feedback message is to be sent in the uplink subframe with the interval greater than or equal to 4 on the first carrier according to the prior art, it can only be sent in the uplink subframe with the first n being 7 of the first carrier. Therefore, the retransmitted data packet can only be received on the downlink subframe after the interval.
  • the feedback message can be sent on the first carrier and the second carrier, and then the second carrier can be used.
  • the first n is 4
  • the feedback message is sent on the line subframe, and the retransmission data packet can be received on the second downlink subframe of the first carrier where the n is 0, which greatly shortens the Round Trip Time (RTT).
  • RTT Round Trip Time
  • Table 3 shows a sequence of the process of receiving and transmitting a feedback message, where the subframe of the first carrier is configured as "TDD configuration 2" and the subframe of the second carrier is configured to "translate 3 subframes".
  • the TDD configuration 0 (denoted as configuration 0 (displacement 3))"
  • D indicates a downlink subframe
  • S indicates a special subframe
  • U indicates an uplink subframe.
  • the first carrier of the first carrier receives the data packet in the downlink subframe where n is 0.
  • the feedback message can be sent in the first subframe of the second carrier, which is 7 uplink subframes.
  • the uplink subframe with n of the second carrier is 7 for replying to the data packet received on the subframes of the forward interval 4 and 5 on the first carrier, that is, the first n of the first carrier.
  • the data packet received on the downlink subframe of 9 and the downlink subframe of the first n is 0 may send a feedback message in the first subframe of the second carrier, which is 7 uplink subframes.
  • the data packet received on the subframe of the second carrier may also send a feedback message on the subframe of the first carrier or the second carrier.
  • the first carrier of the second carrier receives the data packet in the downlink subframe where n is 0, and the ACK is acknowledged on the uplink subframe where the first n of the second carrier is 4. If the data packet received on the subframe of the second carrier is also sent a feedback message on the subframe of the first carrier, the first carrier of the second carrier receives the data in the downlink subframe with 0 being 0. The packet can only send a feedback message on the first subframe where the first n is 2 of the first carrier. It can be seen that the method in this embodiment reduces the RTT.
  • FIG. 4 is a schematic flowchart of another method for message aggregation of a carrier aggregation according to an embodiment of the present invention. Similar to the foregoing embodiment, in a HARQ process, after receiving a data packet sent by a terminal, the base station also sends a feedback message. As shown in FIG. 4, the method includes:
  • the base station receives the data packet sent by the terminal on the second uplink subframe of the carrier aggregation combination.
  • the carrier aggregation combination includes: a first carrier and a second carrier.
  • the foregoing data packet may be a Physical Uplink Shared Channel (PUSCH) data packet, which is not limited herein.
  • PUSCH Physical Uplink Shared Channel
  • the second uplink subframe may refer to any uplink subframe on the first carrier or the second carrier.
  • the base station determines the second sequence according to the subframe configuration of the carrier aggregation combination and the mapping relationship between the subframe configuration and the sequence of the carrier aggregation combination.
  • the base station determines, according to the second timing, the second downlink subframe in the subframe of the carrier aggregation combination.
  • the subframe configuration of the carrier aggregation combination is used to indicate the subframe configuration of the carrier in the carrier aggregation combination.
  • the subframe configuration of the carrier aggregation combination may specifically indicate the configuration of each carrier subframe in the carrier aggregation combination, and the subframe configuration may indicate the subframe type. Number, number, sort, etc., such as how many uplink subframes, how many downlink subframes, how many special subframes, and how these subframes are arranged in a subframe of a carrier.
  • the timing is used to identify the relationship between the downlink subframe of the received data packet and the uplink subframe used for the feedback message.
  • the second downlink subframe may be a subframe of the first carrier or a subframe of the second carrier.
  • the base station sends a feedback message to the terminal on the second downlink subframe.
  • the base station receives the data packet sent by the terminal in the second uplink subframe of the carrier aggregation combination, and configures the subframe according to the carrier aggregation combination and the subframe configuration of the carrier aggregation combination. Determining a second timing, and determining a second downlink subframe in the carrier aggregation combined subframe according to the second timing, and sending a feedback message to the terminal in the second downlink subframe, The second downlink subframe transmission feedback message is determined in the carrier combination, and the selectable range is larger, so that the feedback message is sent by using the more recent subframe, which effectively improves the feedback efficiency.
  • the base station determines the second sequence according to the subframe configuration of the carrier aggregation combination and the mapping relationship between the subframe configuration and the timing of the carrier aggregation combination, where the base station obtains the subframe configuration information of the carrier aggregation combination, and then the base station The second timing is determined according to the subframe configuration information of the carrier aggregation combination and the mapping relationship between the subframe configuration and the timing of the carrier aggregation combination.
  • the subframe configuration may include: a subframe configuration of the first carrier, and/or a subframe configuration of the second carrier.
  • the subframe configuration of the first carrier and/or the subframe of the second carrier are configured as other subframe configurations than the existing TDD subframe configuration 0-6. That is, the configuration of at least one of the first carrier and the second carrier adopts a new subframe configuration.
  • the base station may pre-configure a plurality of timings, and determine a second timing of the carrier aggregation combination according to the subframe configuration of the carrier aggregation combination and the mapping relationship between the subframe configuration and the timing of the carrier aggregation combination. It should be noted that these timing terminals and base stations are stored so that the same timing can be used for communication on both sides.
  • the terminal may be notified, and the terminal may be notified by using the high layer signaling, which is not limited herein.
  • the second sequence may indicate an interval between the second downlink subframe and the second uplink subframe. It should be noted that the interval may be an interval between subframes of the same carrier, or may be an interval between different carriers.
  • the second timing may indicate that the second downlink subframe is the subframe n, and the second uplink subframe is the subframe of the k subframes before the subframe n, where n is a positive integer greater than or equal to 0. k is a positive integer greater than zero.
  • the second uplink subframe is a subframe in which the subframe n in the first carrier is forwardly separated by k subframes;
  • the second uplink subframe is a subframe in which the subframe n in the second carrier is forwardly separated by k subframes;
  • the second downlink subframe is the subframe n in the second carrier
  • the second downlink subframe is a subframe in which the subframe n in the first carrier is forwardly separated by k subframes
  • the second downlink subframe is the subframe n in the second carrier
  • the second downlink subframe is a subframe in which the subframe n in the second carrier is forwardly separated by k subframes.
  • k is greater than or equal to 4.
  • the number of subframe intervals corresponding to different subframe configurations of the carrier aggregation combination may be as shown in Table 4.
  • the corresponding k value is 6, that is, the feedback message sent by the subframe 1 of the carrier 2 may correspond to the carrier 1 Packets received on the upstream subframe of the forward interval of 6.
  • Table 5 takes a process 0 as an example, showing the timing of receiving and transmitting a feedback message of a data packet, where the first carrier is configured as "TDD configuration 2" and the second carrier is configured to "translate 3 subframes of TDD configuration 0 (remember To configure 0 (displacement 3))", "D” in Table 5 indicates a downlink subframe, “S” indicates a special subframe, and "U” indicates an uplink subframe.
  • the first carrier of the first carrier receives the data packet in the uplink subframe of n, and the data of Table 4 is used to send the feedback on the downlink subframe where the first n of the second carrier is 5.
  • the message ACK if the feedback message is sent on the subframe of the first carrier, k is greater than or equal to 4, and the feedback message can be sent only on the downlink subframe where the first n of the first carrier is 3.
  • the feedback message ACK is sent on the second subframe in which the second n of the first carrier is 0. It can be seen that in the manner of this embodiment, the subframes of the first carrier and the second carrier can send feedback messages, which reduces the RTT.
  • cross-carrier scheduling in carrier aggregation is a special resource scheduling mode under the CA, which means that resources of one carrier are scheduled by another carrier.
  • Non-cross-carrier scheduling means that the resources of the carrier are scheduled by the control channel of the carrier.
  • Cross-carrier scheduling based on a carrier indicator field allows a PDCCH of a serving cell to schedule radio resources on another serving cell, that is, control information is in one carrier unit (one subframe on the carrier)
  • the uplink is transmitted, and the corresponding data is transmitted on another carrier unit, that is, the PDCCH is transmitted on one cell, but the corresponding PDSCH or Physical Uplink Shared Channel (PUSCH).
  • the primary cell performs scheduling by its own PDCCH, and when the secondary cell does not configure the PDCCH, it can be scheduled by the PDCCH of another serving cell.
  • the multiple serving cells corresponding to the terminal may have the following configurations: (1) one of the serving cells does not cross-carrier scheduling resources on other serving cells, nor is it served by other serving cells.
  • the scheduling resource that is, the serving cell value, transmits the PDCCH of the local cell.
  • One of the serving cells may schedule resources on other serving cells across carriers, but may not be scheduled by other serving cells across carriers. That is, the serving cell may transmit the PDCCH of the local cell and also transmit the PDCCH of other serving cells.
  • a serving cell may be resourced by other serving cells across carriers, but the serving cell cannot schedule resources of other serving cells, that is, the serving cell cannot transmit the PDCCH of the current cell or send other serving cells. PDCCH.
  • FIG. 5 is a schematic flowchart of another method for scheduling a carrier aggregation subframe according to an embodiment of the present invention.
  • carrier scheduling needs to be performed first.
  • the base station is used.
  • the subframe is scheduled according to a certain timing. As shown in FIG. 5, the method includes:
  • the base station determines the third sequence according to the subframe configuration of the carrier aggregation combination and the mapping relationship between the subframe configuration and the timing of the carrier aggregation combination.
  • the carrier aggregation combination includes: a first carrier and a second carrier.
  • the base station informs the terminal of the determined third timing, so that the same timing is used for communication on both sides.
  • the base station determines, according to the third sequence, the third downlink subframe corresponding to the to-be-scheduled uplink subframe in the subframe of the foregoing carrier aggregation combination.
  • the base station sends uplink scheduling information on the third downlink subframe, where the uplink scheduling information is used to schedule an uplink subframe to be scheduled.
  • the base station determines the third timing according to the subframe configuration of the carrier aggregation combination, and the mapping relationship between the subframe configuration and the timing of the carrier aggregation combination, and determines, in the subframe of the carrier aggregation combination, according to the third timing.
  • the third downlink subframe corresponding to the uplink subframe is scheduled, and the uplink scheduling information is sent in the third downlink subframe to schedule the uplink subframe to be scheduled, so that the third downlink subframe is sent to the uplink scheduling information in the entire carrier combination.
  • the range of choice is larger, so that the scheduling is performed by using closer subframes, which effectively improves the feedback efficiency.
  • the method may include: acquiring, by the base station, a subframe configuration of the carrier aggregation combination, and performing aggregation according to the carrier The combined subframe configuration information, and the mapping relationship between the subframe configuration and the timing determine the third timing.
  • the subframe configuration of the carrier aggregation combination includes: a subframe configuration of the first carrier, and/or a subframe configuration of the second carrier.
  • the subframe configuration of the first carrier and/or the subframe of the second carrier are configured as other subframe configurations than the existing TDD subframe configuration 0-6. That is, the configuration of at least one of the first carrier and the second carrier adopts a new subframe configuration.
  • the base station may pre-configure a plurality of timings, and determine the carrier aggregation group according to the subframe configuration of the carrier aggregation combination, and the mapping relationship between the subframe configuration and the timing of the carrier aggregation combination.
  • the third timing of the combination It should be noted that these timing terminals and base stations are stored so that the same timing can be used for communication on both sides.
  • the third sequence may be used to indicate an interval k between the to-be-scheduled uplink subframe and the third downlink subframe. It should be noted that the interval may be an interval between subframes of the same carrier, or may be between different carriers. interval.
  • the third timing is used to indicate that when the third downlink subframe is the subframe n, the uplink subframe to be scheduled is a subframe of the subframe n backwards by k subframes, where n is a positive integer greater than or equal to 0. , k is a positive integer greater than zero.
  • the uplink subframe to be scheduled is a subframe in which the subframe n in the first carrier is spaced backward by k subframes.
  • the uplink subframe to be scheduled is a subframe in which the subframe n in the second carrier is spaced backward by k subframes.
  • the uplink subframe to be scheduled is a subframe in which the subframe n in the first carrier is spaced backward by k subframes.
  • the uplink subframe to be scheduled is a subframe in which the subframe n in the second carrier is spaced backward by k subframes.
  • k is greater than or equal to 4.
  • the number of subframe intervals corresponding to different subframe configurations of the carrier aggregation combination may be as shown in Table 6.
  • the corresponding k value is 6, that is, the uplink scheduling information sent on the subframe 1 of the carrier 1 is used for scheduling the carrier 2
  • the uplink subframe of the backward interval is 6.
  • the carrier 2 when the uplink subframe of the first carrier is scheduled by the downlink subframe where n is 0, the corresponding k value is 4, that is, the uplink scheduling information sent on the subframe 0 of the carrier 2 is used for scheduling the carrier 1
  • the uplink subframe of the backward interval 4 is.
  • the scheduling timing of the uplink subframe is shown, where the first carrier is configured as “TDD Configuration 2”, and the second carrier is configured to “Translate 3 subframes of TDD configuration 0 (recorded as configuration 0 (displacement 3) "D” in Table 7 indicates a downlink subframe, "S” indicates a special subframe, and "U” indicates an uplink subframe.
  • FIG. 6 is a schematic structural diagram of a message aggregation device for carrier aggregation according to an embodiment of the present invention.
  • the device may be integrated into a terminal.
  • the device includes: a receiving module 601, a determining module 602, and a sending module 603. ,among them,
  • the receiving module 601 is configured to receive a data packet sent by the base station in a first downlink subframe of the carrier aggregation combination, where the carrier aggregation combination includes: a first carrier and a second carrier.
  • a determining module 602 configured to perform subframe aggregation according to the carrier aggregation, and carrier aggregation Determining a first timing according to the mapping relationship between the combined subframe configuration and the timing; and determining, according to the first timing, the first uplink subframe in the subframe of the carrier aggregation combination.
  • the sending module 603 sends a feedback message to the base station in the first uplink subframe.
  • the determining module 602 is configured to obtain the subframe configuration information of the carrier aggregation combination, where the subframe configuration of the carrier aggregation combination includes: a subframe configuration of the first carrier, and/or the The subframe configuration of the second carrier is determined according to the subframe configuration information of the carrier aggregation combination and the mapping relationship between the subframe configuration and the timing of the carrier aggregation combination.
  • the foregoing device may be used to perform the method provided in the foregoing method embodiment, and the specific implementation manner and the technical effect are similar, and details are not described herein again.
  • FIG. 7 is a schematic structural diagram of another carrier aggregation message feedback apparatus according to an embodiment of the present disclosure.
  • the apparatus may be integrated into a base station.
  • the apparatus includes: a receiving module 701, a determining module 702, and a sending module. 703, wherein
  • the receiving module 701 is configured to receive a data packet sent by the terminal in a second uplink subframe of the carrier aggregation combination, where the carrier aggregation combination includes: a first carrier and a second carrier.
  • the determining module 702 determines, according to the subframe configuration of the carrier aggregation combination, and the mapping relationship between the subframe configuration and the timing of the carrier aggregation combination, determining a second timing; according to the second timing, in the subframe of the carrier aggregation combination Determining a second downlink subframe.
  • the sending module 703 sends a feedback message to the terminal on the second downlink subframe.
  • the foregoing device may be used to perform the method provided in the foregoing method embodiment, and the specific implementation manner and the technical effect are similar, and details are not described herein again.
  • a determining module 801 configured to perform subframe aggregation according to carrier aggregation, and carrier aggregation combination Determining a third timing, where the carrier aggregation combination includes: a first carrier and a second carrier; determining, in the subframe of the carrier aggregation combination, according to the third timing Scheduling a third downlink subframe corresponding to the uplink subframe.
  • the sending module 802 is configured to send uplink scheduling information on the third downlink subframe, where the uplink scheduling information is used to schedule the to-be-scheduled uplink subframe.
  • the determining module 801 is specifically configured to acquire a subframe configuration of the carrier aggregation combination, where the subframe configuration of the carrier aggregation combination includes: a subframe configuration of the first carrier, and/or the The subframe configuration of the two carriers is determined according to the subframe configuration information of the carrier aggregation combination and the mapping relationship between the subframe configuration and the timing.
  • the foregoing device may be used to perform the method provided in the foregoing method embodiment, and the specific implementation manner and the technical effect are similar, and details are not described herein again.
  • each module of the above device is only a division of a logical function, and the actual implementation may be integrated into one physical entity in whole or in part, or may be physically separated.
  • these modules can all be implemented by software in the form of processing component calls; or all of them can be implemented in hardware form; some modules can be realized by processing component calling software, and some modules are realized by hardware.
  • the determining module may be a separately set processing element, or may be integrated in one of the above-mentioned devices, or may be stored in the memory of the above device in the form of program code, by a processing element of the above device. Call and execute the functions of the above determination module.
  • the implementation of other modules is similar.
  • all or part of these modules can be integrated or implemented independently.
  • the above modules may be one or more integrated circuits configured to implement the above methods, such as one or more Application Specific Integrated Circuits (ASICs), or one or more microprocessors (digital) Singnal processor (DSP), or one or more Field Programmable Gate Array (FPGA).
  • ASICs Application Specific Integrated Circuits
  • DSP digital Singnal processor
  • FPGA Field Programmable Gate Array
  • the processing component may be a general purpose processor, such as a central processing unit (CPU) or other processor that can call the program code.
  • CPU central processing unit
  • these modules can be integrated and implemented in the form of a system-on-a-chip (SOC).
  • SOC system-on-a-chip
  • FIG. 9 is a schematic structural diagram of another carrier aggregation message feedback apparatus according to an embodiment of the present disclosure.
  • the device can be integrated into the terminal.
  • the device includes a processor 901, a transmitter 902, a receiver 903, a memory 904, and an antenna 905.
  • the processor 901 may be a general-purpose central processing unit or an ASIC, and may be one or more integrated circuits for controlling program execution, may be hardware circuits developed using an FPGA, and may be a baseband processor.
  • the processor 901 can include at least one processing core.
  • the memory 904 may include one or more of a ROM, a RAM, and a disk storage. Memory 904 is used to store data and/or instructions needed by processor 901 to operate. The number of memories 904 can be one or more.
  • the apparatus can be used to perform the method performed by the terminal in the foregoing method embodiments. specifically:
  • the carrier aggregation combination includes: a first carrier and a second carrier;
  • the processor 901 is specifically configured to acquire the subframe configuration information of the carrier aggregation combination, where the subframe configuration of the carrier aggregation combination includes: a subframe configuration of the first carrier, and/or the The subframe configuration of the two carriers is determined according to the subframe configuration information of the carrier aggregation combination and the mapping relationship between the subframe configuration and the timing of the carrier aggregation combination.
  • the apparatus may be used to perform the method performed by the base station in the foregoing method embodiment.
  • the structure of the base station is the same as that shown in FIG. The following methods:
  • the carrier aggregation combination includes: a first carrier and a second carrier;
  • the processor 901 is specifically configured to acquire a subframe configuration of the carrier aggregation combination, where the subframe configuration of the carrier aggregation combination includes: a subframe configuration of the first carrier, and/or the second
  • the subframe configuration of the carrier is determined according to the subframe configuration information of the carrier aggregation combination and the mapping relationship between the subframe configuration and the timing of the carrier aggregation combination.
  • the processor 901 is specifically configured to acquire a subframe configuration of the carrier aggregation combination, where the subframe configuration of the carrier aggregation combination includes: a subframe configuration of the first carrier, and/or the second a subframe configuration of the carrier; determining the third timing according to the subframe configuration information of the carrier aggregation combination and the mapping relationship between the subframe configuration and the timing.
  • the foregoing program may be stored in a computer readable storage medium, and the program is executed when executed.
  • the foregoing steps include the steps of the foregoing method embodiments; and the foregoing storage medium includes: a medium that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供一种载波聚合的消息反馈方法及装置,该方法包括:终端在载波聚合组合的第一下行子帧接收基站发送的数据包,其中,所述载波聚合组合包括:第一载波和第二载波;根据所述载波聚合组合的子帧配置、以及载波聚合组合的子帧配置与时序的映射关系,确定第一时序;根据所述第一时序在所述载波聚合组合的子帧中确定第一上行子帧;在所述第一上行子帧上向所述基站发送反馈消息。实现了在整个载波组合中确定第一上行子帧来发送反馈消息,可选择的范围更大,以便于采用更近的子帧发送反馈消息,有效提高了反馈效率。

Description

载波聚合的消息反馈方法及装置 技术领域
本发明涉及通信技术,尤其涉及一种载波聚合的消息反馈方法及装置。
背景技术
混合式自动重传请求(Hybrid Automatic Repeat request,简称HARQ)是一种结合前向纠错(Forward Error Correction,简称FEC)和自动重传请求(Automatic Repeat request,简称ARQ)方法的技术。其中,FEC通过添加冗余信息,使得接收端能够纠正一部分错误,从而减少重传的次数,对于FEC无法纠正的错误,接收端会通过ARQ机制请求发送端重发数据。具体实现过程中,接收端使用检错码来检测收到的数据包是否出错,如果无错,则接收端向发送端发送一个确认(Acknowledgement,简称ACK),如果出错,则接收端向发送端发送一个否定确认(Negative Acknowledgement,简称NACK),发送端收到NACK后,会重发相同的数据包。
现有技术中,接收端接收数据包后,会按照预设的时序回复ACK或NACK,但是,为了提供更大的带宽,长期演进(Long Term Evolution,简称LTE)引入了载波聚合(Carrier Aggregation,简称CA)技术,针对聚合后的载波,如果还采用现有的时序回复ACK或NACK,会造成资源浪费。
发明内容
本发明实施例提供一种载波聚合的消息反馈方法及装置,用于解决现有技术中回复ACK或NACK,会造成资源浪费的问题。
本发明实施例第一方面提供一种载波聚合的消息反馈方法,包括:
终端在载波聚合组合的第一下行子帧接收基站发送的数据包,其中,所述载波聚合组合包括:第一载波和第二载波;
所述终端根据所述载波聚合组合的子帧配置、以及载波聚合组合的子帧配置与时序的映射关系,确定第一时序;
所述终端根据所述第一时序在所述载波聚合组合的子帧中确定第一上行 子帧;
所述终端在所述第一上行子帧上向所述基站发送反馈消息。
可选地,所述终端根据所述载波聚合组合的子帧配置、以及载波聚合组合的子帧配置与时序的映射关系,确定第一时序,包括:
所述终端获取所述载波聚合组合的子帧配置信息,所述载波聚合组合的子帧配置包括:所述第一载波的子帧配置,和/或,所述第二载波的子帧配置;
所述终端根据所述载波聚合组合的子帧配置信息、以及所述载波聚合组合的子帧配置与时序的映射关系,确定所述第一时序。
可选地,第一载波的子帧配置和/或第二载波的子帧配置为除现有TDD子帧配置0-6之外的其他子帧配置。
可选地,所述第一时序用于指示:所述第一上行子帧为子帧n时,所述第一下行子帧为所述子帧n向前间隔k个子帧的子帧,其中,n为大于或等于0的正整数,k为大于0的正整数。
可选地,所述第一上行子帧子帧n,所述第一下行子帧为所述子帧n向前间隔k个子帧的子帧,包括:
所述第一上行子帧为所述第一载波中的子帧n时,所述第一下行子帧为所述第一载波中子帧n向前间隔k个子帧的子帧;或者,
所述第一上行子帧为所述第一载波中的子帧n时,所述第一下行子帧为所述第二载波中子帧n向前间隔k个子帧的子帧;或者,
所述第一上行子帧为所述第二载波中的子帧n时,所述第一下行子帧为所述第一载波中子帧n向前间隔k个子帧的子帧;或者,
所述第一上行子帧为所述第二载波中的子帧n时,所述第一下行子帧为所述第二载波中子帧n向前间隔k个子帧的子帧。
可选地,所述第一载波的子帧配置采用时分双工TDD配置2、且所述第二载波的子帧配置采用位移2个子帧的TDD配置2时,
所述第一上行子帧为所述第一载波中子帧n=2时,所述第一下行子帧在所述第一载波上的子帧间隔k值为4和6、以及在所述第二载波上的子帧间隔k值为4、5和6;
所述第一上行子帧为所述第一载波中子帧n=7时,所述第一下行子帧在所述第一载波上的子帧间隔k值为4、以及在所述第二载波上的子帧间隔k 值为4和5;
所述第一上行子帧为所述第二载波中子帧n=2时,所述第一下行子帧在所述第一载波上的子帧间隔k值为5和6、以及在所述第二载波上的子帧间隔k值为6;
所述第一上行子帧为所述第二载波中子帧n=7时,所述第一下行子帧在所述第一载波上的子帧间隔k值为4、5和6、以及在所述第二载波上的子帧间隔k值为4和6。
可选地,所述第一载波的子帧配置采用时分双工TDD配置1、且所述第二载波的子帧配置采用位移2个子帧的TDD配置2时,
所述第一上行子帧为所述第一载波中子帧n=2时,所述第一下行子帧在所述第二载波上的子帧间隔k值为4和5;
所述第一上行子帧为所述第一载波中子帧n=3时,所述第一下行子帧在所述第一载波上的子帧间隔k值为4、以及在所述第二载波上的子帧间隔k值为4;
所述第一上行子帧为所述第一载波中子帧n=7时,所述第一下行子帧在所述第二载波上的子帧间隔k值为4和5;
所述第一上行子帧为所述第一载波中子帧n=8时,所述第一下行子帧在所述第一载波上的子帧间隔k值为4、以及在所述第二载波上的子帧间隔k值为4;
所述第一上行子帧为所述第二载波中子帧n=2时,所述第一下行子帧在所述第一载波上的子帧间隔k值为4和5、以及在所述第二载波上的子帧间隔k值为4;
所述第一上行子帧为所述第二载波中子帧n=7时,所述第一下行子帧在所述第一载波上的子帧间隔k值为4和5、以及在所述第二载波上的子帧间隔k值为4。
本发明实施例第二方面提供一种载波聚合的消息反馈方法,包括:
基站在载波聚合组合的第二上行子帧接收终端发送的数据包,其中,所述载波聚合组合包括:第一载波和第二载波;
所述基站根据所述载波聚合组合的子帧配置、以及载波聚合组合的子帧配置与时序的映射关系,确定第二时序;
所述基站根据所述第二时序在所述载波聚合组合的子帧中确定第二下行子帧;
所述基站在所述第二下行子帧上向所述终端发送反馈消息。
可选地,所述基站根据所述载波聚合组合的子帧配置、以及载波聚合组合的子帧配置与时序的映射关系,确定第二时序,包括:
所述基站获取所述载波聚合组合的子帧配置,所述载波聚合组合的子帧配置包括:所述第一载波的子帧配置,和/或,所述第二载波的子帧配置;
所述基站根据所述载波聚合组合的子帧配置信息、以及所述载波聚合组合的子帧配置与时序的映射关系,确定所述第二时序。
可选地,所述第二时序用于指示:所述第二下行子帧为子帧n时,所述第二上行子帧为为所述子帧n向前间隔k个子帧的子帧,其中,n为大于或等于0的正整数,k为大于0的正整数。
可选地,所述第二时序用于指示所述第二下行子帧为子帧n时,所述第二上行子帧为为所述子帧n向前间隔k个子帧的子帧,包括:
所述第二下行子帧为所述第一载波中的子帧n时,所述第二上行子帧为所述第一载波中子帧n向前间隔k个子帧的子帧;或者,
所述第二下行子帧为所述第一载波中的子帧n时,所述第二上行子帧为所述第二载波中子帧n向前间隔k个子帧的子帧;或者,
所述第二下行子帧为所述第二载波中的子帧n时,所述第二上行子帧为所述第一载波中子帧n向前间隔k个子帧的子帧;或者,
所述第二下行子帧为所述第二载波中的子帧n时,所述第二上行子帧为所述第二载波中子帧n向前间隔k个子帧的子帧。
可选地,所述第一载波的子帧配置采用时分双工TDD配置2、且所述第二载波的子帧配置采用位移2个子帧的TDD配置2时,
所述第二下行子帧为所述第一载波中子帧n=1时,所述第二上行子帧在所述第二载波上的子帧间隔k值为6;
所述第二下行子帧为所述第一载波中子帧n=3时,所述第二上行子帧在所述第一载波上的子帧间隔k值为6;
所述第二下行子帧为所述第一载波中子帧n=6时,所述第二上行子帧在所述第二载波上的子帧间隔k值为6;
所述第二下行子帧为所述第一载波中子帧n=8时,所述第二上行子帧在所述第二载波上的子帧间隔k值为6;
所述第二下行子帧为所述第二载波中子帧n=0时,所述第二上行子帧在所述第一载波上的子帧间隔k值为6;
所述第二下行子帧为所述第二载波中子帧n=3时,所述第二上行子帧在所述第二载波上的子帧间隔k值为6;
所述第二下行子帧为所述第二载波中子帧n=5时,所述第二上行子帧在所述第一载波上的子帧间隔k值为6;
所述第二下行子帧为所述第二载波中子帧n=8时,所述第二上行子帧在所述第二载波上的子帧间隔k值为6。
可选地,所述第一载波的子帧配置采用时分双工TDD配置1、且所述第二载波的子帧配置采用位移2个子帧的TDD配置2时,
所述第二下行子帧为所述第一载波中子帧n=1时,所述第二上行子帧在所述第一载波上的子帧间隔k值为4;
所述第二下行子帧为所述第一载波中子帧n=4时,所述第二上行子帧在所述第二载波上的子帧间隔k值为4;
所述第二下行子帧为所述第一载波中子帧n=6时,所述第二上行子帧在所述第二载波上的子帧间隔k值为4;
所述第二下行子帧为所述第一载波中子帧n=8时,所述第二上行子帧在所述第二载波上的子帧间隔k值为4;
所述第二下行子帧为所述第二载波中子帧n=0时,所述第二上行子帧在所述第一载波上的子帧间隔k值为5;
所述第二下行子帧为所述第二载波中子帧n=1时,所述第二上行子帧在所述第二载波上的子帧间隔k值为4;
所述第二下行子帧为所述第二载波中子帧n=3时,所述第二上行子帧在所述第一载波上的子帧间隔k值为4;
所述第二下行子帧为所述第二载波中子帧n=5时,所述第二上行子帧在所述第一载波上的子帧间隔k值为5;
所述第二下行子帧为所述第二载波中子帧n=6时,所述第二上行子帧在所述第二载波上的子帧间隔k值为4;
所述第二下行子帧为所述第二载波中子帧n=8时,所述第二上行子帧在所述第二载波上的子帧间隔k值为4。
本发明实施例第三方面提供一种载波聚合的子帧调度方法,包括:
基站根据载波聚合组合的子帧配置、以及载波聚合组合的子帧配置与时序的映射关系,确定第三时序,其中,所述载波聚合组合包括:第一载波和第二载波;
所述基站根据所述第三时序在所述载波聚合组合的子帧中确定待调度上行子帧对应的第三下行子帧;
所述基站在所述第三下行子帧上发送上行调度信息,所述上行调度信息用于调度所述待调度上行子帧。
可选地,所述基站根据载波聚合组合的子帧配置、以及载波聚合组合的子帧配置与时序的映射关系,确定第三时序,包括:
所述基站获取所述载波聚合组合的子帧配置,所述载波聚合组合的子帧配置包括:所述第一载波的子帧配置,和/或,所述第二载波的子帧配置;
所述基站根据所述载波聚合组合的子帧配置信息、以及所述子帧配置与时序的映射关系,确定所述第三时序。
可选地,所述第三时序用于指示所述第三下行子帧为子帧n时,所述待调度上行子帧为子帧n向后间隔k个子帧的子帧,其中,n为大于或等于0的正整数,k为大于0的正整数。
可选地,所述第三时序用于指示所述第三下行子帧为子帧n时,所述待调度上行子帧为子帧n向后间隔k个子帧的子帧,包括:
所述第三下行子帧为所述第一载波中的子帧n时,所述待调度上行子帧为所述第一载波中子帧n向后间隔k个子帧的子帧;或者,
所述第三下行子帧为所述第一载波中的子帧n时,所述待调度上行子帧为所述第二载波中子帧n向后间隔k个子帧的子帧;或者,
所述第三下行子帧为所述第二载波中的子帧n时,所述待调度上行子帧为所述第一载波中子帧n向后间隔k个子帧的子帧;或者,
所述第三下行子帧为所述第二载波中的子帧n时,所述待调度上行子帧为所述第二载波中子帧n向后间隔k个子帧的子帧。
可选地,所述第一载波的子帧配置采用时分双工TDD配置2、且所述第 二载波的子帧配置采用位移2个子帧的TDD配置2时,
所述第三下行子帧为所述第一载波中子帧n=1时,所述待调度上行子帧在所述第二载波上的子帧间隔k值为4;
所述第三下行子帧为所述第一载波中子帧n=3时,所述待调度上行子帧在所述第一载波上的子帧间隔k值为4;
所述第三下行子帧为所述第一载波中子帧n=6时,所述待调度上行子帧在所述第二载波上的子帧间隔k值为4;
所述第三下行子帧为所述第一载波中子帧n=8时,所述待调度上行子帧在所述第一载波上的子帧间隔k值为4;
所述第三下行子帧为所述第二载波中子帧n=0时,所述待调度上行子帧在所述第一载波上的子帧间隔k值为4;
所述第三下行子帧为所述第二载波中子帧n=3时,所述待调度上行子帧在所述第二载波上的子帧间隔k值为4;
所述第三下行子帧为所述第二载波中子帧n=5时,所述待调度上行子帧在所述第一载波上的子帧间隔k值为4;
所述第三下行子帧为所述第二载波中子帧n=8时,所述待调度上行子帧在所述第二载波上的子帧间隔k值为4。
可选地,所述第一载波的子帧配置采用时分双工TDD配置1、且所述第二载波的子帧配置采用位移2个子帧的TDD配置2时,
所述第三下行子帧为所述第一载波中子帧n=1时,所述待调度上行子帧在所述第二载波上的子帧间隔k值为4;
所述第三下行子帧为所述第一载波中子帧n=4时,所述待调度上行子帧在所述第一载波上的子帧间隔k值为4;
所述第三下行子帧为所述第一载波中子帧n=6时,所述待调度上行子帧在所述第二载波上的子帧间隔k值为4;
所述第三下行子帧为所述第一载波中子帧n=9时,所述待调度上行子帧在所述第一载波上的子帧间隔k值为4;
所述第三下行子帧为所述第二载波中子帧n=0时,所述待调度上行子帧在所述第一载波上的子帧间隔k值为4;
所述第三下行子帧为所述第二载波中子帧n=1时,所述待调度上行子帧 在所述第一载波上的子帧间隔k值为4;
所述第三下行子帧为所述第二载波中子帧n=3时,所述待调度上行子帧在所述第二载波上的子帧间隔k值为4;
所述第三下行子帧为所述第二载波中子帧n=5时,所述待调度上行子帧在所述第一载波上的子帧间隔k值为4;
所述第三下行子帧为所述第二载波中子帧n=6时,所述待调度上行子帧在所述第一载波上的子帧间隔k值为4;
所述第三下行子帧为所述第二载波中子帧n=8时,所述待调度上行子帧在所述第二载波上的子帧间隔k值为4。
本发明实施例第四方面提供一种载波聚合的子帧调度装置,所述装置包括用于执行上述第一方面以及第一方面的各种实现方式所提供的方法的模块或手段(means)。
本发明实施例第五方面提供一种载波聚合的子帧调度装置,所述装置包括用于执行上述第二方面以及第二方面的各种实现方式所提供的方法的模块或手段(means)。
本发明实施例第六方面提供一种基于HARQ的消息反馈装置,所述装置包括用于执行上述第三方面以及第三方面的各种实现方式所提供的方法的模块或手段(means)。
本发明实施例第七方面提供一种载波聚合的子帧调度装置,所述装置包括处理器和存储器,存储器用于存储程序,处理器调用存储器存储的程序,以执行本申请第一方面提供的方法。
本发明实施例第八方面提供一种载波聚合的子帧调度装置,所述装置包括处理器和存储器,存储器用于存储程序,处理器调用存储器存储的程序,以执行本申请第二方面提供的方法。
本发明实施例第九方面提供一种载波聚合的子帧调度装置,所述装置包括处理器和存储器,存储器用于存储程序,处理器调用存储器存储的程序,以执行本申请第三方面提供的方法。
本发明实施例第十方面提供一种载波聚合的子帧调度装置,包括用于执行以上第一方面的方法的至少一个处理元件(或芯片)。
本发明实施例第十一方面提供一种载波聚合的子帧调度装置,包括用 于执行以上第二方面的方法的至少一个处理元件(或芯片)。
本发明实施例第十二方面提供一种载波聚合的子帧调度装置,包括用于执行以上第三方面的方法的至少一个处理元件(或芯片)。
本发明实施例第十三方面提供一种程序,该程序在被处理器执行时用于执行以上第一方面的方法。
本发明实施例第十四方面提供一种程序产品,例如计算机可读存储介质,包括第十三方面的程序。
本发明实施例第十五方面提供一种程序,该程序在被处理器执行时用于执行以上第二方面的方法。
本发明实施例第十六方面提供一种程序产品,例如计算机可读存储介质,包括第十五方面的程序。
本发明实施例第十七方面提供一种程序,该程序在被处理器执行时用于执行以上第三方面的方法。
本发明实施例第十八方面提供一种程序产品,例如计算机可读存储介质,包括第十七方面的程序。
本发明实施例提供的载波聚合的消息反馈方法及装置中,终端在载波聚合组合的第一下行子帧上接收基站发送的数据包,并根据载波聚合组合的子帧配置与时序的映射关系,确定载波聚合组合的第一时序,进而根据第一时序在载波组合中确定第一上行子帧,并在第一上行子帧上发送反馈消息,实现了在整个载波组合中确定第一上行子帧来发送反馈消息,可选择的范围更大,以便于采用更近的子帧发送反馈消息,有效提高了反馈效率。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明提供的载波聚合的消息反馈方法的应用场景示意图;
图2为本发明提供的载波聚合的消息反馈方法中一种子帧配置示意图;
图3为本发明实施例提供的一种载波聚合的消息反馈方法的流程示意图;
图4为本发明实施例提供的另一种载波聚合的消息反馈方法的流程示意图;
图5为本发明实施例提供的另一种载波聚合的子帧调度方法的流程示意图;
图6为本发明实施例提供的一种载波聚合的消息反馈装置的结构示意图;
图7为本发明实施例提供的另一种载波聚合的消息反馈装置的结构示意图;
图8为本发明实施例提供的另一种载波聚合的消息反馈装置的结构示意图;
图9为本发明实施例提供的另一种载波聚合的消息反馈装置的结构示意图。
具体实施方式
基站:又称为无线接入网(Radio Access Network,RAN)设备,是一种将终端接入到无线网络的设备,可以是全球移动通讯(Global System of Mobile communication,简称GSM)或码分多址(Code Division Multiple Access,简称CDMA)中的基站(Base Transceiver Station,简称BTS),也可以是宽带码分多址(Wideband Code Division Multiple Access,简称WCDMA)中的基站(NodeB,简称NB),还可以是长期演进(Long Term Evolution,简称LTE)中的演进型基站(Evolutional Node B,简称eNB或eNodeB),或者中继站或接入点,或者未来5G网络中的基站等,在此并不限定。
终端:可以是无线终端也可以是有线终端,无线终端可以是指向用户提供语音和/或其他业务数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。无线终端可以经无线接入网(Radio Access Network,简称RAN)与一个或多个核心网进行通信,无线终端可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移 动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(Personal Communication Service,简称PCS)电话、无绳电话、会话发起协议(Session Initiation Protocol,简称SIP)话机、无线本地环路(Wireless Local Loop,简称WLL)站、个人数字助理(Personal Digital Assistant,简称PDA)等设备。无线终端也可以称为系统、订户单元(Subscriber Unit)、订户站(Subscriber Station),移动站(Mobile Station)、移动台(Mobile)、远程站(Remote Station)、远程终端(Remote Terminal)、接入终端(Access Terminal)、用户终端(User Terminal)、用户代理(User Agent)、用户设备(User Device or User Equipment),在此不作限定。
本发明实施例中,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
载波聚合(Carrier Aggregation,简称CA)是将2个或更多的载波单元(Component Carrier,简称CC)聚合在一起形成载波组以支持更大的传输带宽。其中,主小区(Primary cell,简称Pcell对应的载波称为主分量载波(Primary Component Carrier,简称PCC),也称作主载波;辅小区(Secondary Cell,简称Scell)对应的载波称为辅分量载波(Secondary Component Carrier,简称SCC),也称为辅载波。
主小区负责基站与终端之间的无线资源控制(Radio Resource Control,简称RRC);辅小区用于提供额外的无线资源,与终端之间不存在RRC通信。
子帧配置用于表示上、下行子帧、以及特殊子帧的个数以及位置。
图1为本发明提供的载波聚合的消息反馈方法的应用场景示意图,如图1所示,该场景包括:基站01、终端02。
图1中终端02可以通过多个载波与基站01进行通信。
对于下行HARQ,即终端对基站发送的下行数据进行确认的处理流程,下行数据的发送和确认消息的回复有一定的时序关系,在时分双工(Time Division Duplexing,简称TDD)场景下,多个下行子帧发送的数据包可能需要在同一上行子帧上回复ACK或NACK,例如当终端在子帧n-k(下行子帧) 上检测到下行数据包时,该终端会在子帧n(上行子帧)上回复ACK或NACK,即回复ACK或NACK的子帧与检测到下行数据包的子帧间隔k个子帧。
对于上行HARQ,即基站对终端发送的上行数据进行确认的处理流程,上行的时序关系包括两个:一个是上行数据的调度时序(也可以称为UL grant时序),表示当终端在子帧n(下行子帧)检测到上行调度信息后,会在子帧n+k(上行子帧)发送物理上行共享信道(Physical Uplink Shared Channel,简称PUSCH)数据;另一个是上行数据HARQ的确认消息回复时序(也可以称为物理混合ARQ指示信道(Physical Hybrid ARQ Indicator Channel简称PHICH)时序),TDD场景下,类似地,当基站在子帧n-k(上行子帧)上检测到上行数据包时,基站会在子帧n(下行子帧)上回复ACK或NACK。其中,n为大于或等于0的正整数,k为大于0的正整数。
如上所述,针对单个载波存在预设的下行和上行HARQ时序。以下行HARQ时序为例,当终端在子帧n-k(下行子帧)上检测到下行数据包时,终端会在子帧n(上行子帧)上回复ACK或NACK。
载波聚合后,现有技术中一般会根据不同情况选择一个已有载波的HARQ时序作为载波聚合后辅载波的HARQ时序。
图2为本发明提供的载波聚合的消息反馈方法中一种子帧配置示意图。
以下行HARQ时序为例,载波聚合中各载波的子帧配置可能不同,如果只依据其中一个载波的预设时序确定子帧回复反馈消息的话,其他子帧配置不同的载波上,也一样由上行子帧n反馈消息,下行子帧n-k接收数据包,但是所选定的时序在其他载波的子帧配置下,子帧n-k的子帧并不一定是下行子帧,那么就不能使用这个下行子帧进行数据发送,导致资源浪费。如图2所示,第一载波的子帧配置为“TDD配置1”、第二载波的子帧配置为“TDD配置2”,当SCell采用跨载波调度时,其HARQ时序需要采用“TDD配置1”的下行HARQ时序。由于配置1的子帧3和子帧8为上行子帧,因此其下行HARQ时序中不包括这两个帧的HARQ反馈位置,而配置2下,子帧3和子帧8为下行子帧,由于下行HARQ反馈时序需要按照PCell的配置1的时序来反馈,由于无反馈位置因此导致SCell的子帧3和子帧8不能作为正常下行子帧进行数据发送,从而导致资源的浪费。
另外,在新的TDD载波聚合场景(包括定义新的子帧配置格式,或者对 现有子帧配置的平移)中,同样会出现某些载波的上行子帧对应另一些载波的下行子帧位置,如果采用现有技术就会导致资源浪费。
图3为本发明实施例提供的一种载波聚合的消息反馈方法的流程示意图,如图3所示,该方法包括:
S301、终端在载波聚合组合的第一下行子帧接收基站发送的数据包。
其中,该载波聚合组合包括:第一载波和第二载波。
其中,上述数据包可以为物理下行共享信道(Physical Downlink Shared Channel,简称PDSCH)数据包,或者,用于指示下行SPS(Semi-Persistent Scheduling半持续调度)释放的物理下行控制信道(Physical Downlink Control Channel,简称PDCCH)数据包,在此不作限制。
载波聚合组合可以包括多个载波,上述第一载波和第二载波是泛指概念。
如果载波聚合组合中还可以将多个载波划分为2组或多组,上述第一载波和第二载波属于同一组。
第一下行子帧可以指第一载波或第二载波上的任一下行子帧。
S302、终端根据载波聚合组合的子帧配置、以及载波聚合组合的子帧配置与时序的映射关系,确定该载波聚合组合的第一时序。
S303、终端根据上述第一时序在上述载波聚合组合中确定第一上行子帧。
载波聚合组合的子帧配置用于指示载波聚合组合中多个载波的子帧配置,各载波的子帧配置可以指示子帧类型、数量以及排序等信息,例如载波的子帧有多少上行子帧、多少下行子帧、多少特殊子帧,以及这些子帧如果分布排列等。
时序用于标识接收数据包的下行子帧、与用于反馈消息的上行子帧之间的关系。
本实施例中,不同载波聚合组合的子帧配置会采用不用的时序,先确定上述载波聚合组合对应的时序,进而再由时序确定出第一上行子帧来反馈消息。
其中,在载波聚合组合中确定第一上行子帧,即第一上行子帧可以是第一载波的子帧、也可以是第二载波的子帧。
S304、终端在上述第一上行子帧向上述基站发送反馈消息。
本实施例中,终端在载波聚合组合的第一下行子帧上接收基站发送的数 据包,并根据载波聚合组合的子帧配置与时序的映射关系,确定载波聚合组合的第一时序,进而根据第一时序在载波组合中确定第一上行子帧,并在第一上行子帧上发送反馈消息,实现了在整个载波组合中确定第一上行子帧来发送反馈消息,可选择的范围更大,以便于采用更近的子帧发送反馈消息,有效提高了反馈效率。
其中,终端根据该载波聚合组合的子帧配置、以及载波聚合组合的子帧配置与时序的映射关系,确定该载波聚合组合的第一时序,可以为:终端获取载波聚合组合的子帧配置信息,进而终端根据载波聚合组合的子帧配置信息、以及所述子帧配置与时序的映射关系,确定第一预设时序。
其中,子帧配置可以包括:第一载波的子帧配置,和/或,所述第二载波的子帧配置。
可选地,第一载波的子帧配置和/或第二载波的子帧配置为除现有TDD子帧配置0-6之外的其他子帧配置。即第一载波和第二载波至少有一个的配置采用新的子帧配置。
可选地,终端可以预先配置多种时序,进而根据载波聚合组合的子帧配置、以及载波聚合组合的子帧配置与时序的映射关系,确定上述载波聚合组合的第一时序。需要说明的是,这些时序终端和基站都会存储,以便两边采用同样的时序进行通信。
可选地,终端决定了第一时序后可以通知基站。
可选地,终端可以在连接建立时确定主载波,并读取主小区对应基站发送的系统消息,例如系统消息块(system information block,简称SIB),具体可以是SIB1,进而根据系统消息获取该主载波的子帧配置。
终端可以接收无线资源控制(Radio Resource Control,简称RRC)连接重配置消息,并根据RRC连接重配置消息添加/修改/释放辅小区,并从RRC连接重配置消息中读取辅载波的子帧配置。
需要说明的是,上述第一载波可以是主载波、也可以是辅载波,类似地,上述第二载波可以是主载波也可以是辅载波,在此不作限制。
第一时序可以指示上述第一下行子帧和第一上行子帧之间的间隔。需要说明的是,这个间隔可以是同一载波的子帧间的间隔,也可以是不同载波之间的间隔。
可选地,上述第一时序用于指示上述第一下行子帧和上述第一上行子帧的子帧间隔数为k。其中k为大于0的正整数。
第一时序用于指示第一上行子帧子帧n时,第一下行子帧为所述子帧n向前间隔k个子帧的子帧,其具体包括如下几种情况:
(1)第一上行子帧为第一载波中的子帧n时,第一下行子帧为第一载波中子帧n向前间隔k个子帧的子帧;
(2)第一上行子帧为第一载波中的子帧n时,上述第一下行子帧为第二载波中子帧n向前间隔k个子帧的子帧;
(3)第一上行子帧为第二载波中的子帧n时,上述第一下行子帧为第一载波中子帧n向前间隔k个子帧的子帧;
(4)第一上行子帧为第二载波中的子帧n时,上述第二下行子帧为第一载波中子帧n向前间隔k个子帧的子帧。
可选地,k大于或等于4。
针对下行HARQ,载波聚合组合的不同子帧配置对应的子帧间隔数k值可以如表1所示,
表1
Figure PCTCN2016103854-appb-000001
Figure PCTCN2016103854-appb-000002
以其中第一行对表1进行说明,“配置2+配置2(位移2)”表示第一载波(记为载波1)的子帧配置采用“TDD配置2”、第二载波(记为载波2)的子帧配置采用“位移2个子帧后的TDD配置2”。对于载波1:n为2的上行子帧用于反馈载波1的下行子帧所接收的数据包时,对应的k值为6和/或4,即载波1的子帧2发送的反馈消息可以对应于载波1的向前间隔6和/ 或4的下行子帧上收到的数据包;n为2的上行子帧用于反馈载波2的子帧所接收的数据包时,对应的k值为6、5、4中一个或多个,即载波1的子帧2发送的反馈消息可以对应于载波2的向前间隔6、5、4的下行子帧中一个或多个收到的数据包。对于载波2:n为2的上行子帧用于反馈载波1的下行子帧所接收的数据包时,对应的k值为6和/或5,即载波2的子帧2发送的反馈消息可以对应于载波1的向前间隔6和/或5的下行子帧上收到的数据包;n为2的上行子帧用于反馈载波2的子帧所接收的数据包时,对应的k值为6,即载波2的子帧2发送的反馈消息可以对应于载波2的向前间隔6的下行子帧上收到的数据包。
其他所有行均可参照上述说明,在此不再赘述。
表2以一个进程0为例,示出数据包的接收和发送反馈消息的时序,其中第一载波配置为“TDD配置2”,第二载波配置为“TDD配置0”,表2中“D”表示下行子帧、“S”表示特殊子帧、“U”表示上行子帧。
表2
Figure PCTCN2016103854-appb-000003
如表2所示,第二载波的子帧中上行子帧比第一载波的子帧中上行子帧多,第一载波的第一个n为0的下行子帧上收到数据包(以Tx表示),如果按照现有技术,要在第一载波上间隔大于或等于4的上行子帧发送反馈消息,最快只能在第一载波的第一个n为7的上行子帧发送,从而导致重传的数据包只能在间隔更后方的下行子帧上接收,而本实施例中,第一载波和第二载波的子帧上都可以发送反馈消息,那么可以在第二载波的第一个n为4的上 行子帧上发送反馈消息,进而重传数据包可以在第一载波的第二个n为0的下行子帧上接收,大大缩短了环回时间(Round Trip Time,简称RTT)。
表3以一个进程0为例,示出数据包的接收和发送反馈消息的时序,其中第一载波的子帧配置为“TDD配置2”,第二载波的子帧配置为“平移3个子帧的TDD配置0(记为配置0(位移3))”,表3中“D”表示下行子帧、“S”表示特殊子帧、“U”表示上行子帧。
表3
Figure PCTCN2016103854-appb-000004
参见表3,第一载波的第一个n为0的下行子帧上收到数据包,根据表1推出可在第二载波的第一个n为7上行子帧发送反馈消息。具体地,由表1可知第二载波的n为7的上行子帧用于回复第一载波上向前间隔4和5的子帧上所接收的数据包,即第一载波的第一个n为9的下行子帧以及第一个n为0的下行子帧上接收到的数据包都可在第二载波的第一个n为7上行子帧发送反馈消息,进程0中,只有第一载波的第一个n为0的下行子帧上收到数据包,那么在第二载波的n为7的上行子帧上发送ACK用于反馈第一载波的第一个n为0的下行子帧上收到数据包。同理,第二载波的第二个n为7的上行子帧上发送ACK用于反馈第一载波的第二个n为9的下行子帧上收到数据包。如果在第一载波自己的上行子帧上发送反馈消息,并满足k大于或等于4,第一载波的第一个n为0的下行子帧上收到数据包,只能在第一载波的第二个n为7的上行子帧上回复ACK,可见本实施例的方法大大减小了RTT。
同样,第二载波的子帧上收到的数据包,也可以在第一载波或第二载波的子帧上发送反馈消息。参见表1,第二载波的第一个n为0的下行子帧上收到数据包,在第二载波的第一个n为4的上行子帧上回复ACK。如果采用现有技术,第二载波的子帧上收到的数据包也在第一载波的子帧上发送反馈消息,那么第二载波的第一个n为0的下行子帧上收到数据包,最快只能在第一载波的第一个n为2的上行子帧上发送反馈消息,可见本实施例的方法减小了RTT。
图4为本发明实施例提供的另一种载波聚合的消息反馈方法的流程示意图,与前述实施例类似地,在HARQ过程中,基站收到终端发送的数据包后,也要发送反馈消息,如图4所示,该方法包括:
S401、基站在载波聚合组合的第二上行子帧上接收终端发送的数据包。
其中,载波聚合组合包括:第一载波和第二载波。
上述数据包可以是物理上行共享信道(Physical Uplink Shared Channel,简称PUSCH)数据包,在此不作限制。
第二上行子帧可以指第一载波或第二载波上的任一上行子帧。
S402、基站根据上述载波聚合组合的子帧配置、以及载波聚合组合的子帧配置与时序的映射关系,确定第二时序。
S403、基站根据上述第二时序在上述载波聚合组合的子帧中确定第二下行子帧。
载波聚合组合的子帧配置用于表示载波聚合组合中载波的子帧配置,载波聚合组合的子帧配置具体可以指示载波聚合组合中每个载波子帧配置,子帧配置可以指示的子帧类型、数量以及排序等,例如载波的子帧有多少上行子帧、多少下行子帧、多少特殊子帧,以及这些子帧如何分布排列等。
时序用于标识接收数据包的下行子帧、与用于反馈消息的上行子帧之间的关系。
上述第二下行子帧可以是第一载波的子帧、也可以是第二载波的子帧。
S404、基站在第二下行子帧上向终端发送反馈消息。
本实施例中,基站在载波聚合组合的第二上行子帧上接收终端发送的数据包,并根据上述载波聚合组合的子帧配置、以及载波聚合组合的子帧配置 与时序的映射关系,确定第二时序,进而根据上述第二时序在上述载波聚合组合的子帧中确定第二下行子帧,在第二下行子帧上向终端发送反馈消息,实现了在整个载波组合中确定第二下行子帧发送反馈消息,可选择的范围更大,以便于采用更近的子帧发送反馈消息,有效提高了反馈效率。
可选地,基站根据上述载波聚合组合的子帧配置、以及载波聚合组合的子帧配置与时序的映射关系,确定第二时序,可以为:基站获取载波聚合组合的子帧配置信息,进而基站根据载波聚合组合的子帧配置信息、以及载波聚合组合的子帧配置与时序的映射关系,确定上述第二时序。
其中,子帧配置可以包括:第一载波的子帧配置,和/或,所述第二载波的子帧配置。
可选地,第一载波的子帧配置和/或第二载波的子帧配置为除现有TDD子帧配置0-6之外的其他子帧配置。即第一载波和第二载波至少有一个的配置采用新的子帧配置。
可选地,基站可以预先配置多种时序,进而根据载波聚合组合的子帧配置、以及载波聚合组合的子帧配置与时序的映射关系,确定上述载波聚合组合的第二时序。需要说明的是,这些时序终端和基站都会存储,以便两边采用同样的时序进行通信。
基站确定了第二时序后,可以通知终端,具体可以采用高层信令通知终端,在此不作限制。
第二时序可以指示上述第二下行子帧和第二上行子帧之间的间隔,需要说明的是,这个间隔可以是同一载波的子帧间的间隔,也可以是不同载波之间的间隔。
进一步地,第二时序可以指示第二下行子帧为子帧n时,第二上行子帧为该子帧n前间隔k个子帧的子帧,其中,n为大于或等于0的正整数,k为大于0的正整数。
具体地,可以包括以下几种情况:
(1)上述第二下行子帧为第一载波中的子帧n时,第二上行子帧为第一载波中子帧n向前间隔k个子帧的子帧;
(2)上述第二下行子帧为第一载波中的子帧n时,第二上行子帧为第二载波中子帧n向前间隔k个子帧的子帧;
(3)上述第二下行子帧为第二载波中的子帧n时,第二下行子帧为第一载波中子帧n向前间隔k个子帧的子帧;
(4)上述第二下行子帧为第二载波中的子帧n时,第二下行子帧为第二载波中子帧n向前间隔k个子帧的子帧。
可选地,k大于或等于4。
针对上行HARQ,载波聚合组合的不同子帧配置对应的子帧间隔数k值可以如表4所示,
表4
Figure PCTCN2016103854-appb-000005
Figure PCTCN2016103854-appb-000006
以其中第一行对表1进行说明,“配置2+配置2(位移2)”表示第一载波(记为载波1)的子帧配置采用“TDD配置2”、第二载波(记为载波2)的子帧配置采用“位移2个子帧后的TDD配置2”。对于载波1:n为1的下行子帧用于反馈载波2的上行子帧所接收的数据包时,对应的k值为6,即载波1的子帧1发送的反馈消息可以对应于载波2的向前间隔6的上行子帧上收到的数据包。对于载波2:n为0的下行子帧用于反馈载波1的上行子帧所接收的数据包时,对应的k值为6,即载波2的子帧1发送的反馈消息可以对应于载波1的向前间隔6的上行子帧上收到的数据包。
其他所有行均可参照上述说明,在此不再赘述。
表5以一个进程0为例,示出数据包的接收和发送反馈消息的时序,其中第一载波配置为“TDD配置2”,第二载波配置为“平移3个子帧的TDD配置0(记为配置0(位移3))”,表5中“D”表示下行子帧、“S”表示特殊子帧、“U”表示上行子帧。
表5
Figure PCTCN2016103854-appb-000007
Figure PCTCN2016103854-appb-000008
参见表4和表5,第一载波的第一个n为7的上行子帧上收到数据包,由表4推出可以在第二载波的第一个n为5的下行子帧上发送反馈消息ACK,如果在第一载波的子帧上发送反馈消息,k大于或等于4,最快只能在第一载波的第一个n为3的下行子帧上发送反馈消息。进而,对于第一载波的第一个n为6的特殊子帧上收到的重传数据包数据包,则在第一载波的第二个n为0的下行子帧上发送反馈消息ACK。可见采用本实施例的方式,第一载波和第二载波的子帧都可以发送反馈消息,减小了RTT。
进一步地,载波聚合中的跨载波调度是CA下的一种特殊的资源调度方式,指的是一个载波的资源是通过另一个载波进行调度的。
非跨载波调度指的就是本载波的资源由本载波的控制信道进行调度。
基于载波指示域(Carrier Indicator Field,简称CIF)的跨载波调度允许一个服务小区(serving cell)的PDCCH调度另一服务小区上的无线资源,即控制信息在一个载波单元(载波上的一个子帧)上传输,而对应的数据在另一个载波单元上传输,即PDCCH在一个小区上传输,但对应的PDSCH或物理上行共享信道(Physical Uplink Shared Channel,简称PUSCH)。一般地,主小区通过自身的PDCCH进行调度,而当辅小区没有配置PDCCH时,可以通过另一个服务小区的PDCCH进行调度。
如果一个终端支持载波聚合,那么这个终端对应的多个服务小区可以有如下几种配置方式:(1)其中某个服务小区既不跨载波调度其他服务小区上的资源,也不被其他服务小区调度资源,即该服务小区值发送本小区的PDCCH。(2)其中某个服务小区可以跨载波调度其它服务小区上的资源,但是不能被其他服务小区跨载波调度,即该服务小区即可以发送本小区的PDCCH,也发送其它服务小区的PDCCH。(3)某个服务小区可以被其它服务小区跨载波调度资源,但是该服务小区不能调度其它服务小区的资源,即该服务小区既不能发送本小区的PDCCH,也不能发送其它服务小区的 PDCCH。
图5为本发明实施例提供的另一种载波聚合的子帧调度方法的流程示意图,在上述实施例的基础上,跨载波调度的情况下,需要先进行载波调度,本实施例中,基站根据一定的时序来调度子帧,如图5所示,该方法包括:
S501、基站根据载波聚合组合的子帧配置、以及载波聚合组合的子帧配置和时序的映射关系,确定第三时序。
其中,载波聚合组合包括:第一载波和第二载波。
载波聚合组合的相关内容可以参见前述实施例,在此不再赘述。
可选地,基站将确定好的第三时序告知终端,以便于两边采用同样的时序进行通信。
S502、基站根据第三时序在上述载波聚合组合的子帧中确定待调度上行子帧对应的第三下行子帧。
S503、基站在第三下行子帧上发送上行调度信息,该上行调度信息用于调度待调度上行子帧。
本实施例中,基站根据载波聚合组合的子帧配置、以及载波聚合组合的子帧配置和时序的映射关系,确定第三时序,并根据第三时序在上述载波聚合组合的子帧中确定待调度上行子帧对应的第三下行子帧,进而在第三下行子帧上发送上行调度信息,以调度待调度上行子帧,实现了在整个载波组合中确定第三下行子帧发送上行调度信息,可选择的范围更大,以便于采用更近的子帧进行调度,有效提高了反馈效率。
可选地,基站根据载波聚合组合的子帧配置、以及载波聚合组合的子帧配置和时序的映射关系,确定第三时序,可以包括:基站获取载波聚合组合的子帧配置,并根据载波聚合组合的子帧配置信息、以及子帧配置与时序的映射关系,确定第三时序。其中,载波聚合组合的子帧配置包括:第一载波的子帧配置,和/或,第二载波的子帧配置。
可选地,第一载波的子帧配置和/或第二载波的子帧配置为除现有TDD子帧配置0-6之外的其他子帧配置。即第一载波和第二载波至少有一个的配置采用新的子帧配置。
可选地,基站可以预先配置多种时序,进而根据载波聚合组合的子帧配置、以及载波聚合组合的子帧配置与时序的映射关系,确定上述载波聚合组 合的第三时序。需要说明的是,这些时序终端和基站都会存储,以便两边采用同样的时序进行通信。
第三时序可以用于指示待调度上行子帧和第三下行子帧之间的间隔k,需要说明的是,这个间隔可以是同一载波的子帧间的间隔,也可以是不同载波之间的间隔。
进一步地,第三时序用于指示第三下行子帧为子帧n时,待调度上行子帧为子帧n向后间隔k个子帧的子帧,其中,n为大于或等于0的正整数,k为大于0的正整数。
具体地,可以包括以下几种情况:
(1)第三下行子帧为第一载波中的子帧n时,待调度上行子帧为第一载波中子帧n向后间隔k个子帧的子帧。
(2)第三下行子帧为第一载波中的子帧n时,待调度上行子帧为第二载波中子帧n向后间隔k个子帧的子帧。
(3)第三下行子帧为第二载波中的子帧n时,待调度上行子帧为第一载波中子帧n向后间隔k个子帧的子帧。
(4)第三下行子帧为第二载波中的子帧n时,待调度上行子帧为第二载波中子帧n向后间隔k个子帧的子帧。
可选地,k大于或等于4。
可选地,载波聚合组合的不同子帧配置对应的子帧间隔数k值可以如表6所示,
表6
Figure PCTCN2016103854-appb-000009
Figure PCTCN2016103854-appb-000010
以其中第一行对表1进行说明,“配置2+配置2(位移2)”表示第一载波(记为载波1)的子帧配置采用“TDD配置2”、第二载波(记为载波2)的子帧配置采用“位移2个子帧后的TDD配置2”。
对于载波1:由n为1的下行子帧进行调度第二载波的上行子帧时,对应的k值为6,即在载波1的子帧1上发送的上行调度信息用于调度载波2 的向后间隔6的上行子帧。对于载波2:由n为0的下行子帧进行调度第一载波的上行子帧时,对应的k值为4,即在载波2的子帧0上发送的上行调度信息用于调度载波1的向后间隔4的上行子帧。
其他所有行均可参照上述说明,在此不再赘述。
以表7为例,示出上行子帧的调度时序,其中第一载波配置为“TDD配置2”,第二载波配置为“平移3个子帧的TDD配置0(记为配置0(位移3))”,表7中“D”表示下行子帧、“S”表示特殊子帧、“U”表示上行子帧。
表7
Figure PCTCN2016103854-appb-000011
由表6和表7可知,调度第二载波的第一个n为7的上行子帧时,在第一载波的第一个n为0的下行子帧上发送上行调度信息;调度第二载波的第二个n为4的上行子帧时,在第二载波的第二个n为0的下行子帧上发送上行调度信息。可见,灵活地在第一载波和第二载波的子帧上选择下行子帧发送上行调度信息,可以减小RTT。
图6为本发明实施例提供的一种载波聚合的消息反馈装置的结构示意图,该装置可以集成于终端中,如图6所示,该装置包括:接收模块601、确定模块602和发送模块603,其中,
接收模块601,用于在载波聚合组合的第一下行子帧接收基站发送的数据包,其中,所述载波聚合组合包括:第一载波和第二载波。
确定模块602,用于根据所述载波聚合组合的子帧配置、以及载波聚合 组合的子帧配置与时序的映射关系,确定第一时序;根据所述第一时序在所述载波聚合组合的子帧中确定第一上行子帧。
发送模块603,在所述第一上行子帧上向所述基站发送反馈消息。
可选地,确定模块602,具体用于获取所述载波聚合组合的子帧配置信息,所述载波聚合组合的子帧配置包括:所述第一载波的子帧配置,和/或,所述第二载波的子帧配置;根据所述载波聚合组合的子帧配置信息、以及所述载波聚合组合的子帧配置与时序的映射关系,确定所述第一时序。
上述装置可用于执行上述方法实施例提供的方法,具体实现方式和技术效果类似,这里不再赘述。
图7为本发明实施例提供的另一种载波聚合的消息反馈装置的结构示意图,该装置可以集成于基站中,如图7所示,该装置包括:接收模块701、确定模块702和发送模块703,其中,
接收模块701,用于在载波聚合组合的第二上行子帧接收终端发送的数据包,其中,所述载波聚合组合包括:第一载波和第二载波。
确定模块702,根据所述载波聚合组合的子帧配置、以及载波聚合组合的子帧配置与时序的映射关系,确定第二时序;根据所述第二时序在所述载波聚合组合的子帧中确定第二下行子帧。
发送模块703,在所述第二下行子帧上向所述终端发送反馈消息。
可选地,确定模块702,具体用于获取所述载波聚合组合的子帧配置,所述载波聚合组合的子帧配置包括:所述第一载波的子帧配置,和/或,所述第二载波的子帧配置;根据所述载波聚合组合的子帧配置信息、以及所述载波聚合组合的子帧配置与时序的映射关系,确定所述第二时序。
上述装置可用于执行上述方法实施例提供的方法,具体实现方式和技术效果类似,这里不再赘述。
图8为本发明实施例提供的另一种载波聚合的消息反馈装置的结构示意图,该装置可以集成于基站中,如图8所示,该装置包括:确定模块801和发送模块802,其中,
确定模块801,用于根据载波聚合组合的子帧配置、以及载波聚合组合 的子帧配置与时序的映射关系,确定第三时序,其中,所述载波聚合组合包括:第一载波和第二载波;根据所述第三时序在所述载波聚合组合的子帧中确定待调度上行子帧对应的第三下行子帧。
发送模块802,用于在所述第三下行子帧上发送上行调度信息,所述上行调度信息用于调度所述待调度上行子帧。
可选地,确定模块801,具体用于获取所述载波聚合组合的子帧配置,所述载波聚合组合的子帧配置包括:所述第一载波的子帧配置,和/或,所述第二载波的子帧配置;根据所述载波聚合组合的子帧配置信息、以及所述子帧配置与时序的映射关系,确定所述第三时序。
上述装置可用于执行上述方法实施例提供的方法,具体实现方式和技术效果类似,这里不再赘述。
需要说明的是,应理解以上装置的各个模块的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且这些模块可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分模块通过处理元件调用软件的形式实现,部分模块通过硬件的形式实现。例如,确定模块可以为单独设立的处理元件,也可以集成在上述装置的某一个芯片中实现,此外,也可以以程序代码的形式存储于上述装置的存储器中,由上述装置的某一个处理元件调用并执行以上确定模块的功能。其它模块的实现与之类似。此外这些模块全部或部分可以集成在一起,也可以独立实现。
例如,以上这些模块可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(Application Specific Integrated Circuit,ASIC),或,一个或多个微处理器(digital singnal processor,DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,FPGA)等。再如,当以上某个模块通过处理元件调度程序代码的形式实现时,该处理元件可以是通用处理器,例如中央处理器(Central Processing Unit,简称CPU)或其它可以调用程序代码的处理器。再如,这些模块可以集成在一起,以片上系统(system-on-a-chip,简称SOC)的形式实现。
图9为本发明实施例提供的另一种载波聚合的消息反馈装置的结构示意 图,该装置可以集成于终端中,如图9所示,该装置包括:处理器901、发送器902、接收器903、存储器904、天线905。
存储器904、发送器902和接收器903和处理器901可以通过总线进行连接。当然,在实际运用中,存储器904、发送器902和接收器903和处理器901之间可以不是总线结构,而可以是其它结构,例如星型结构,本申请不作具体限定。
可选地,处理器901具体可以是通用的中央处理器或ASIC,可以是一个或多个用于控制程序执行的集成电路,可以是使用FPGA开发的硬件电路,可以是基带处理器。
可选地,处理器901可以包括至少一个处理核心。
可选地,存储器904可以包括ROM、RAM和磁盘存储器中的一种或多种。存储器904用于存储处理器901运行时所需的数据和/或指令。存储器904的数量可以为一个或多个。
该装置可以用于执行前述方法实施例中的终端所执行的方法。具体地:
在载波聚合组合的第一下行子帧接收基站发送的数据包,其中,所述载波聚合组合包括:第一载波和第二载波;
根据所述载波聚合组合的子帧配置、以及载波聚合组合的子帧配置与时序的映射关系,确定第一时序;
根据所述第一时序在所述载波聚合组合的子帧中确定第一上行子帧;
在所述第一上行子帧上向所述基站发送反馈消息。
可选地,处理器901具体用于获取所述载波聚合组合的子帧配置信息,所述载波聚合组合的子帧配置包括:所述第一载波的子帧配置,和/或,所述第二载波的子帧配置;根据所述载波聚合组合的子帧配置信息、以及所述载波聚合组合的子帧配置与时序的映射关系,确定所述第一时序。
需要说明的是,上述装置执行上述方法实施例提供的方法,具体实现方式和技术效果类似,这里不再赘述。
另一种实施例中,该装置可以用于执行前述方法实施例中的基站所执行的方法,参照图9,基站的结构与图9所示的结构相同,处理器901执行 下述方法:
在载波聚合组合的第二上行子帧接收终端发送的数据包,其中,所述载波聚合组合包括:第一载波和第二载波;
根据所述载波聚合组合的子帧配置、以及载波聚合组合的子帧配置与时序的映射关系,确定第二时序;
根据所述第二时序在所述载波聚合组合的子帧中确定第二下行子帧;
在所述第二下行子帧上向所述终端发送反馈消息。
可选地,处理器901具体用于获取所述载波聚合组合的子帧配置,所述载波聚合组合的子帧配置包括:所述第一载波的子帧配置,和/或,所述第二载波的子帧配置;根据所述载波聚合组合的子帧配置信息、以及所述载波聚合组合的子帧配置与时序的映射关系,确定所述第二时序。
需要说明的是,上述装置执行上述方法实施例提供的方法,具体实现方式和技术效果类似,这里不再赘述。
另一种实施例中,该装置可以用于执行前述方法实施例中的基站所执行的方法,参照图9,基站的结构与图9所示的结构相同,处理器901执行下述方法:
根据载波聚合组合的子帧配置、以及载波聚合组合的子帧配置与时序的映射关系,确定第三时序,其中,所述载波聚合组合包括:第一载波和第二载波;
根据所述第三时序在所述载波聚合组合的子帧中确定待调度上行子帧对应的第三下行子帧;
在所述第三下行子帧上发送上行调度信息,所述上行调度信息用于调度所述待调度上行子帧。
可选地,处理器901具体用于获取所述载波聚合组合的子帧配置,所述载波聚合组合的子帧配置包括:所述第一载波的子帧配置,和/或,所述第二载波的子帧配置;根据所述载波聚合组合的子帧配置信息、以及所述子帧配置与时序的映射关系,确定所述第三时序。
需要说明的是,上述装置执行上述方法实施例提供的方法,具体实现方式和技术效果类似,这里不再赘述。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (30)

  1. 一种载波聚合的消息反馈方法,其特征在于,包括:
    终端在载波聚合组合的第一下行子帧接收基站发送的数据包,其中,所述载波聚合组合包括:第一载波和第二载波;
    所述终端根据所述载波聚合组合的子帧配置、以及载波聚合组合的子帧配置与时序的映射关系,确定第一时序;
    所述终端根据所述第一时序在所述载波聚合组合的子帧中确定第一上行子帧;
    所述终端在所述第一上行子帧上向所述基站发送反馈消息。
  2. 根据权利要求1所述的方法,其特征在于,所述终端根据所述载波聚合组合的子帧配置、以及载波聚合组合的子帧配置与时序的映射关系,确定第一时序,包括:
    所述终端获取所述载波聚合组合的子帧配置信息,所述载波聚合组合的子帧配置包括:所述第一载波的子帧配置,和/或,所述第二载波的子帧配置;
    所述终端根据所述载波聚合组合的子帧配置信息、以及所述载波聚合组合的子帧配置与时序的映射关系,确定所述第一时序。
  3. 根据权利要求2所述的方法,其特征在于,所述第一时序用于指示:所述第一上行子帧为子帧n时,所述第一下行子帧为所述子帧n向前间隔k个子帧的子帧,其中,n为大于或等于0的正整数,k为大于0的正整数。
  4. 根据权利要求3所述的方法,其特征在于,所述第一上行子帧子帧n,所述第一下行子帧为所述子帧n向前间隔k个子帧的子帧,包括:
    所述第一上行子帧为所述第一载波中的子帧n时,所述第一下行子帧为所述第一载波中子帧n向前间隔k个子帧的子帧;或者,
    所述第一上行子帧为所述第一载波中的子帧n时,所述第一下行子帧为所述第二载波中子帧n向前间隔k个子帧的子帧;或者,
    所述第一上行子帧为所述第二载波中的子帧n时,所述第一下行子帧为所述第一载波中子帧n向前间隔k个子帧的子帧;或者,
    所述第一上行子帧为所述第二载波中的子帧n时,所述第一下行子帧为所述第二载波中子帧n向前间隔k个子帧的子帧。
  5. 根据权利要求4所述的方法,其特征在于,所述第一载波的子帧配置 采用时分双工TDD配置2、且所述第二载波的子帧配置采用位移2个子帧的TDD配置2时,
    所述第一上行子帧为所述第一载波中子帧n=2时,所述第一下行子帧在所述第一载波上的子帧间隔k值为4和6、以及在所述第二载波上的子帧间隔k值为4、5和6;
    所述第一上行子帧为所述第一载波中子帧n=7时,所述第一下行子帧在所述第一载波上的子帧间隔k值为4、以及在所述第二载波上的子帧间隔k值为4和5;
    所述第一上行子帧为所述第二载波中子帧n=2时,所述第一下行子帧在所述第一载波上的子帧间隔k值为5和6、以及在所述第二载波上的子帧间隔k值为6;
    所述第一上行子帧为所述第二载波中子帧n=7时,所述第一下行子帧在所述第一载波上的子帧间隔k值为4、5和6、以及在所述第二载波上的子帧间隔k值为4和6。
  6. 根据权利要求4所述的方法,其特征在于,所述第一载波的子帧配置采用时分双工TDD配置1、且所述第二载波的子帧配置采用位移2个子帧的TDD配置2时,
    所述第一上行子帧为所述第一载波中子帧n=2时,所述第一下行子帧在所述第二载波上的子帧间隔k值为4和5;
    所述第一上行子帧为所述第一载波中子帧n=3时,所述第一下行子帧在所述第一载波上的子帧间隔k值为4、以及在所述第二载波上的子帧间隔k值为4;
    所述第一上行子帧为所述第一载波中子帧n=7时,所述第一下行子帧在所述第二载波上的子帧间隔k值为4和5;
    所述第一上行子帧为所述第一载波中子帧n=8时,所述第一下行子帧在所述第一载波上的子帧间隔k值为4、以及在所述第二载波上的子帧间隔k值为4;
    所述第一上行子帧为所述第二载波中子帧n=2时,所述第一下行子帧在所述第一载波上的子帧间隔k值为4和5、以及在所述第二载波上的子帧间隔k值为4;
    所述第一上行子帧为所述第二载波中子帧n=7时,所述第一下行子帧在所述第一载波上的子帧间隔k值为4和5、以及在所述第二载波上的子帧间隔k值为4。
  7. 一种载波聚合的消息反馈方法,其特征在于,包括:
    基站在载波聚合组合的第二上行子帧接收终端发送的数据包,其中,所述载波聚合组合包括:第一载波和第二载波;
    所述基站根据所述载波聚合组合的子帧配置、以及载波聚合组合的子帧配置与时序的映射关系,确定第二时序;
    所述基站根据所述第二时序在所述载波聚合组合的子帧中确定第二下行子帧;
    所述基站在所述第二下行子帧上向所述终端发送反馈消息。
  8. 根据权利要求7所述的方法,其特征在于,所述基站根据所述载波聚合组合的子帧配置、以及载波聚合组合的子帧配置与时序的映射关系,确定第二时序,包括:
    所述基站获取所述载波聚合组合的子帧配置,所述载波聚合组合的子帧配置包括:所述第一载波的子帧配置,和/或,所述第二载波的子帧配置;
    所述基站根据所述载波聚合组合的子帧配置信息、以及所述载波聚合组合的子帧配置与时序的映射关系,确定所述第二时序。
  9. 根据权利要求8所述的方法,其特征在于,所述第二时序用于指示:所述第二下行子帧为子帧n时,所述第二上行子帧为为所述子帧n向前间隔k个子帧的子帧,其中,n为大于或等于0的正整数,k为大于0的正整数。
  10. 根据权利要求9所述的方法,其特征在于,所述第二时序用于指示所述第二下行子帧为子帧n时,所述第二上行子帧为为所述子帧n向前间隔k个子帧的子帧,包括:
    所述第二下行子帧为所述第一载波中的子帧n时,所述第二上行子帧为所述第一载波中子帧n向前间隔k个子帧的子帧;或者,
    所述第二下行子帧为所述第一载波中的子帧n时,所述第二上行子帧为所述第二载波中子帧n向前间隔k个子帧的子帧;或者,
    所述第二下行子帧为所述第二载波中的子帧n时,所述第二上行子帧为 所述第一载波中子帧n向前间隔k个子帧的子帧;或者,
    所述第二下行子帧为所述第二载波中的子帧n时,所述第二上行子帧为所述第二载波中子帧n向前间隔k个子帧的子帧。
  11. 根据权利要求10所述的方法,其特征在于,所述第一载波的子帧配置采用时分双工TDD配置2、且所述第二载波的子帧配置采用位移2个子帧的TDD配置2时,
    所述第二下行子帧为所述第一载波中子帧n=1时,所述第二上行子帧在所述第二载波上的子帧间隔k值为6;
    所述第二下行子帧为所述第一载波中子帧n=3时,所述第二上行子帧在所述第一载波上的子帧间隔k值为6;
    所述第二下行子帧为所述第一载波中子帧n=6时,所述第二上行子帧在所述第二载波上的子帧间隔k值为6;
    所述第二下行子帧为所述第一载波中子帧n=8时,所述第二上行子帧在所述第二载波上的子帧间隔k值为6;
    所述第二下行子帧为所述第二载波中子帧n=0时,所述第二上行子帧在所述第一载波上的子帧间隔k值为6;
    所述第二下行子帧为所述第二载波中子帧n=3时,所述第二上行子帧在所述第二载波上的子帧间隔k值为6;
    所述第二下行子帧为所述第二载波中子帧n=5时,所述第二上行子帧在所述第一载波上的子帧间隔k值为6;
    所述第二下行子帧为所述第二载波中子帧n=8时,所述第二上行子帧在所述第二载波上的子帧间隔k值为6。
  12. 根据权利要求10所述的方法,其特征在于,所述第一载波的子帧配置采用时分双工TDD配置1、且所述第二载波的子帧配置采用位移2个子帧的TDD配置2时,
    所述第二下行子帧为所述第一载波中子帧n=1时,所述第二上行子帧在所述第一载波上的子帧间隔k值为4;
    所述第二下行子帧为所述第一载波中子帧n=4时,所述第二上行子帧在所述第二载波上的子帧间隔k值为4;
    所述第二下行子帧为所述第一载波中子帧n=6时,所述第二上行子帧在 所述第二载波上的子帧间隔k值为4;
    所述第二下行子帧为所述第一载波中子帧n=8时,所述第二上行子帧在所述第二载波上的子帧间隔k值为4;
    所述第二下行子帧为所述第二载波中子帧n=0时,所述第二上行子帧在所述第一载波上的子帧间隔k值为5;
    所述第二下行子帧为所述第二载波中子帧n=1时,所述第二上行子帧在所述第二载波上的子帧间隔k值为4;
    所述第二下行子帧为所述第二载波中子帧n=3时,所述第二上行子帧在所述第一载波上的子帧间隔k值为4;
    所述第二下行子帧为所述第二载波中子帧n=5时,所述第二上行子帧在所述第一载波上的子帧间隔k值为5;
    所述第二下行子帧为所述第二载波中子帧n=6时,所述第二上行子帧在所述第二载波上的子帧间隔k值为4;
    所述第二下行子帧为所述第二载波中子帧n=8时,所述第二上行子帧在所述第二载波上的子帧间隔k值为4。
  13. 一种载波聚合的子帧调度方法,其特征在于,包括:
    基站根据载波聚合组合的子帧配置、以及载波聚合组合的子帧配置与时序的映射关系,确定第三时序,其中,所述载波聚合组合包括:第一载波和第二载波;
    所述基站根据所述第三时序在所述载波聚合组合的子帧中确定待调度上行子帧对应的第三下行子帧;
    所述基站在所述第三下行子帧上发送上行调度信息,所述上行调度信息用于调度所述待调度上行子帧。
  14. 根据权利要求13所述的方法,其特征在于,所述基站根据载波聚合组合的子帧配置、以及载波聚合组合的子帧配置与时序的映射关系,确定第三时序,包括:
    所述基站获取所述载波聚合组合的子帧配置,所述载波聚合组合的子帧配置包括:所述第一载波的子帧配置,和/或,所述第二载波的子帧配置;
    所述基站根据所述载波聚合组合的子帧配置信息、以及所述子帧配置与时序的映射关系,确定所述第三时序。
  15. 根据权利要求14所述的方法,其特征在于,所述第三时序用于指示所述第三下行子帧为子帧n时,所述待调度上行子帧为子帧n向后间隔k个子帧的子帧,其中,n为大于或等于0的正整数,k为大于0的正整数。
  16. 根据权利要求15所述的方法,其特征在于,所述第三时序用于指示所述第三下行子帧为子帧n时,所述待调度上行子帧为子帧n向后间隔k个子帧的子帧,包括:
    所述第三下行子帧为所述第一载波中的子帧n时,所述待调度上行子帧为所述第一载波中子帧n向后间隔k个子帧的子帧;或者,
    所述第三下行子帧为所述第一载波中的子帧n时,所述待调度上行子帧为所述第二载波中子帧n向后间隔k个子帧的子帧;或者,
    所述第三下行子帧为所述第二载波中的子帧n时,所述待调度上行子帧为所述第一载波中子帧n向后间隔k个子帧的子帧;或者,
    所述第三下行子帧为所述第二载波中的子帧n时,所述待调度上行子帧为所述第二载波中子帧n向后间隔k个子帧的子帧。
  17. 根据权利要求16所述的方法,其特征在于,所述第一载波的子帧配置采用时分双工TDD配置2、且所述第二载波的子帧配置采用位移2个子帧的TDD配置2时,
    所述第三下行子帧为所述第一载波中子帧n=1时,所述待调度上行子帧在所述第二载波上的子帧间隔k值为4;
    所述第三下行子帧为所述第一载波中子帧n=3时,所述待调度上行子帧在所述第一载波上的子帧间隔k值为4;
    所述第三下行子帧为所述第一载波中子帧n=6时,所述待调度上行子帧在所述第二载波上的子帧间隔k值为4;
    所述第三下行子帧为所述第一载波中子帧n=8时,所述待调度上行子帧在所述第一载波上的子帧间隔k值为4;
    所述第三下行子帧为所述第二载波中子帧n=0时,所述待调度上行子帧在所述第一载波上的子帧间隔k值为4;
    所述第三下行子帧为所述第二载波中子帧n=3时,所述待调度上行子帧在所述第二载波上的子帧间隔k值为4;
    所述第三下行子帧为所述第二载波中子帧n=5时,所述待调度上行子帧 在所述第一载波上的子帧间隔k值为4;
    所述第三下行子帧为所述第二载波中子帧n=8时,所述待调度上行子帧在所述第二载波上的子帧间隔k值为4。
  18. 根据权利要求16所述的方法,其特征在于,所述第一载波的子帧配置采用时分双工TDD配置1、且所述第二载波的子帧配置采用位移2个子帧的TDD配置2时,
    所述第三下行子帧为所述第一载波中子帧n=1时,所述待调度上行子帧在所述第二载波上的子帧间隔k值为4;
    所述第三下行子帧为所述第一载波中子帧n=4时,所述待调度上行子帧在所述第一载波上的子帧间隔k值为4;
    所述第三下行子帧为所述第一载波中子帧n=6时,所述待调度上行子帧在所述第二载波上的子帧间隔k值为4;
    所述第三下行子帧为所述第一载波中子帧n=9时,所述待调度上行子帧在所述第一载波上的子帧间隔k值为4;
    所述第三下行子帧为所述第二载波中子帧n=0时,所述待调度上行子帧在所述第一载波上的子帧间隔k值为4;
    所述第三下行子帧为所述第二载波中子帧n=1时,所述待调度上行子帧在所述第一载波上的子帧间隔k值为4;
    所述第三下行子帧为所述第二载波中子帧n=3时,所述待调度上行子帧在所述第二载波上的子帧间隔k值为4;
    所述第三下行子帧为所述第二载波中子帧n=5时,所述待调度上行子帧在所述第一载波上的子帧间隔k值为4;
    所述第三下行子帧为所述第二载波中子帧n=6时,所述待调度上行子帧在所述第一载波上的子帧间隔k值为4;
    所述第三下行子帧为所述第二载波中子帧n=8时,所述待调度上行子帧在所述第二载波上的子帧间隔k值为4。
  19. 一种载波聚合的消息反馈装置,其特征在于,包括:存储器和处理器,存储器用于存储程序指令,所述处理器用于调用所述存储器中的程序指令执行下述方法:
    在载波聚合组合的第一下行子帧接收基站发送的数据包,其中,所述载波聚合组合包括:第一载波和第二载波;
    根据所述载波聚合组合的子帧配置、以及载波聚合组合的子帧配置与时序的映射关系,确定第一时序;
    根据所述第一时序在所述载波聚合组合的子帧中确定第一上行子帧;
    在所述第一上行子帧上向所述基站发送反馈消息。
  20. 根据权利要求19所述的装置,其特征在于,所述处理器,具体用于获取所述载波聚合组合的子帧配置信息,所述载波聚合组合的子帧配置包括:所述第一载波的子帧配置,和/或,所述第二载波的子帧配置;根据所述载波聚合组合的子帧配置信息、以及所述载波聚合组合的子帧配置与时序的映射关系,确定所述第一时序。
  21. 根据权利要求20所述的装置,其特征在于,所述第一时序用于指示:所述第一上行子帧为子帧n时,所述第一下行子帧为所述子帧n向前间隔k个子帧的子帧,其中,n为大于或等于0的正整数,k为大于0的正整数。
  22. 根据权利要求21所述的装置,其特征在于,所述第一上行子帧子帧n,所述第一下行子帧为所述子帧n向前间隔k个子帧的子帧,包括:
    所述第一上行子帧为所述第一载波中的子帧n时,所述第一下行子帧为所述第一载波中子帧n向前间隔k个子帧的子帧;或者,
    所述第一上行子帧为所述第一载波中的子帧n时,所述第一下行子帧为所述第二载波中子帧n向前间隔k个子帧的子帧;或者,
    所述第一上行子帧为所述第二载波中的子帧n时,所述第一下行子帧为所述第一载波中子帧n向前间隔k个子帧的子帧;或者,
    所述第一上行子帧为所述第二载波中的子帧n时,所述第一下行子帧为所述第二载波中子帧n向前间隔k个子帧的子帧。
  23. 一种载波聚合的消息反馈装置,其特征在于,包括:存储器和处理器,存储器用于存储程序指令,所述处理器用于调用所述存储器中的程序指令执行下述方法:
    在载波聚合组合的第二上行子帧接收终端发送的数据包,其中,所述载波聚合组合包括:第一载波和第二载波;
    根据所述载波聚合组合的子帧配置、以及载波聚合组合的子帧配置与时 序的映射关系,确定第二时序;
    根据所述第二时序在所述载波聚合组合的子帧中确定第二下行子帧;
    在所述第二下行子帧上向所述终端发送反馈消息。
  24. 根据权利要求23所述的装置,其特征在于,所述处理器,具体用于获取所述载波聚合组合的子帧配置,所述载波聚合组合的子帧配置包括:所述第一载波的子帧配置,和/或,所述第二载波的子帧配置;根据所述载波聚合组合的子帧配置信息、以及所述载波聚合组合的子帧配置与时序的映射关系,确定所述第二时序。
  25. 根据权利要求24所述的装置,其特征在于,所述第二时序用于指示:所述第二下行子帧为子帧n时,所述第二上行子帧为为所述子帧n向前间隔k个子帧的子帧,其中,n为大于或等于0的正整数,k为大于0的正整数。
  26. 根据权利要求25所述的装置,其特征在于,所述第二时序用于指示所述第二下行子帧为子帧n时,所述第二上行子帧为为所述子帧n向前间隔k个子帧的子帧,包括:
    所述第二下行子帧为所述第一载波中的子帧n时,所述第二上行子帧为所述第一载波中子帧n向前间隔k个子帧的子帧;或者,
    所述第二下行子帧为所述第一载波中的子帧n时,所述第二上行子帧为所述第二载波中子帧n向前间隔k个子帧的子帧;或者,
    所述第二下行子帧为所述第二载波中的子帧n时,所述第二上行子帧为所述第一载波中子帧n向前间隔k个子帧的子帧;或者,
    所述第二下行子帧为所述第二载波中的子帧n时,所述第二上行子帧为所述第二载波中子帧n向前间隔k个子帧的子帧。
  27. 一种载波聚合的消息反馈装置,其特征在于,包括:存储器和处理器,存储器用于存储程序指令,所述处理器用于调用所述存储器中的程序指令执行下述方法:
    根据载波聚合组合的子帧配置、以及载波聚合组合的子帧配置与时序的映射关系,确定第三时序,其中,所述载波聚合组合包括:第一载波和第二载波;
    根据所述第三时序在所述载波聚合组合的子帧中确定待调度上行子帧对应的第三下行子帧;
    在所述第三下行子帧上发送上行调度信息,所述上行调度信息用于调度所述待调度上行子帧。
  28. 根据权利要求27所述的装置,其特征在于,所述处理器,具体用于获取所述载波聚合组合的子帧配置,所述载波聚合组合的子帧配置包括:所述第一载波的子帧配置,和/或,所述第二载波的子帧配置;根据所述载波聚合组合的子帧配置信息、以及所述子帧配置与时序的映射关系,确定所述第三时序。
  29. 根据权利要求28所述的装置,其特征在于,所述第三时序用于指示所述第三下行子帧为子帧n时,所述待调度上行子帧为子帧n向后间隔k个子帧的子帧,其中,n为大于或等于0的正整数,k为大于0的正整数。
  30. 根据权利要求29所述的装置,其特征在于,所述第三时序用于指示所述第三下行子帧为子帧n时,所述待调度上行子帧为子帧n向后间隔k个子帧的子帧,包括:
    所述第三下行子帧为所述第一载波中的子帧n时,所述待调度上行子帧为所述第一载波中子帧n向后间隔k个子帧的子帧;或者,
    所述第三下行子帧为所述第一载波中的子帧n时,所述待调度上行子帧为所述第二载波中子帧n向后间隔k个子帧的子帧;或者,
    所述第三下行子帧为所述第二载波中的子帧n时,所述待调度上行子帧为所述第一载波中子帧n向后间隔k个子帧的子帧;或者,
    所述第三下行子帧为所述第二载波中的子帧n时,所述待调度上行子帧为所述第二载波中子帧n向后间隔k个子帧的子帧。
PCT/CN2016/103854 2016-10-28 2016-10-28 载波聚合的消息反馈方法及装置 WO2018076302A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201680089810.6A CN109792725B (zh) 2016-10-28 2016-10-28 载波聚合的消息反馈方法及装置
PCT/CN2016/103854 WO2018076302A1 (zh) 2016-10-28 2016-10-28 载波聚合的消息反馈方法及装置
EP16919822.3A EP3531762B1 (en) 2016-10-28 2016-10-28 Message feedback method and device for carrier aggregation
US16/396,539 US11051298B2 (en) 2016-10-28 2019-04-26 Message feedback method and apparatus for carrier aggregation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/103854 WO2018076302A1 (zh) 2016-10-28 2016-10-28 载波聚合的消息反馈方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/396,539 Continuation US11051298B2 (en) 2016-10-28 2019-04-26 Message feedback method and apparatus for carrier aggregation

Publications (1)

Publication Number Publication Date
WO2018076302A1 true WO2018076302A1 (zh) 2018-05-03

Family

ID=62024158

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/103854 WO2018076302A1 (zh) 2016-10-28 2016-10-28 载波聚合的消息反馈方法及装置

Country Status (4)

Country Link
US (1) US11051298B2 (zh)
EP (1) EP3531762B1 (zh)
CN (1) CN109792725B (zh)
WO (1) WO2018076302A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108566311A (zh) * 2018-07-24 2018-09-21 Oppo广东移动通信有限公司 载波聚合配置方法及相关设备

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110168994A (zh) * 2017-01-09 2019-08-23 瑞典爱立信有限公司 用于处理无线通信网络中的传输的无线设备、网络节点及其中的方法
US11510235B2 (en) * 2018-06-28 2022-11-22 Sony Corporation Base station and user equipment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102624507A (zh) * 2011-02-01 2012-08-01 华为技术有限公司 上/下行调度信息发送方法和接收方法及装置
CN102651680A (zh) * 2011-02-24 2012-08-29 华为技术有限公司 用于载波聚合系统的通信方法和装置
US8565066B2 (en) * 2009-01-08 2013-10-22 Samsung Electronics Co., Ltd. System and method for an uplink acknowledgement transmission in carrier-aggregated wireless communication systems
CN104936189A (zh) * 2014-05-01 2015-09-23 上海朗帛通信技术有限公司 一种ue、基站中在非授权频带上的通信方法和设备

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106059656B (zh) * 2011-03-24 2019-06-25 Lg电子株式会社 用于发送/接收信号的方法及其装置
CN104737471B (zh) * 2012-09-20 2018-06-05 Lg电子株式会社 在无线通信系统中执行上行链路传输的方法和设备
US10153867B2 (en) * 2014-01-30 2018-12-11 Qualcomm Incorporated Carrier aggregation with dynamic TDD DL/UL subframe configuration
WO2015120600A1 (zh) * 2014-02-13 2015-08-20 华为技术有限公司 数据传输方法、装置及系统
WO2016082147A1 (zh) * 2014-11-27 2016-06-02 华为技术有限公司 寻呼方法、基站及寻呼系统
JPWO2016133123A1 (ja) * 2015-02-20 2017-11-30 株式会社Nttドコモ ユーザ装置、及び上り送信切り替え方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8565066B2 (en) * 2009-01-08 2013-10-22 Samsung Electronics Co., Ltd. System and method for an uplink acknowledgement transmission in carrier-aggregated wireless communication systems
CN102624507A (zh) * 2011-02-01 2012-08-01 华为技术有限公司 上/下行调度信息发送方法和接收方法及装置
CN102651680A (zh) * 2011-02-24 2012-08-29 华为技术有限公司 用于载波聚合系统的通信方法和装置
CN104936189A (zh) * 2014-05-01 2015-09-23 上海朗帛通信技术有限公司 一种ue、基站中在非授权频带上的通信方法和设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108566311A (zh) * 2018-07-24 2018-09-21 Oppo广东移动通信有限公司 载波聚合配置方法及相关设备
US11350327B2 (en) 2018-07-24 2022-05-31 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Carrier aggregation-based configuration method and related devices

Also Published As

Publication number Publication date
US20190254029A1 (en) 2019-08-15
CN109792725A (zh) 2019-05-21
EP3531762A4 (en) 2019-10-16
EP3531762A1 (en) 2019-08-28
US11051298B2 (en) 2021-06-29
EP3531762B1 (en) 2022-02-23
CN109792725B (zh) 2021-01-29

Similar Documents

Publication Publication Date Title
WO2019091233A1 (zh) 一种带宽切换方法及装置
KR101700018B1 (ko) Tdd 시스템을 위한 스케줄링 타이밍 설계
JP6061942B2 (ja) 無線通信における肯定応答タイミングの選択
TWI530144B (zh) 處理通訊運作的方法及其通訊裝置
TWI577230B (zh) 處理裝置對裝置運作的方法
WO2016183705A1 (zh) 授权辅助接入系统中用于传输上行数据的方法和装置
JP6326122B2 (ja) 無線通信における肯定応答タイミングの選択
WO2014101233A1 (zh) 信息传输方法和装置
CN101931514B (zh) 一种混合自动重传请求中的通信方法、系统和设备
EP2824861B1 (en) Method of handling HARQ feedbacks
JP6772296B2 (ja) フィードバックメッセージ送信方法、フィードバックメッセージ処理方法、および装置
WO2015070811A1 (zh) 传输数据的方法、基站和用户设备
WO2016165131A1 (zh) 一种信息反馈的方法、设备和系统
WO2014173333A1 (zh) 一种上行控制信息的发送方法及装置
US11051298B2 (en) Message feedback method and apparatus for carrier aggregation
TW201347587A (zh) 處理分時雙工系統中資源配置的方法及其通訊裝置
US10749638B2 (en) Soft buffer handling with limited memory access bandwidth
WO2018058679A1 (zh) 多载波下的数据传输方法和装置
EP3306848A1 (en) Data transmitting method, terminal and base station
WO2017024467A1 (zh) 无线通信的方法、网络设备和终端设备
EP3487100B1 (en) Harq response information transmission method
WO2018120475A1 (zh) 一种消息应答方法及无线网络设备
WO2018076300A1 (zh) 基于harq的消息反馈方法及装置
WO2023010404A1 (zh) 反馈方法、终端设备及网络设备
WO2018157320A1 (zh) 基于载波聚合的信息发送方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16919822

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016919822

Country of ref document: EP

Effective date: 20190521