WO2018157320A1 - 基于载波聚合的信息发送方法及装置 - Google Patents

基于载波聚合的信息发送方法及装置 Download PDF

Info

Publication number
WO2018157320A1
WO2018157320A1 PCT/CN2017/075276 CN2017075276W WO2018157320A1 WO 2018157320 A1 WO2018157320 A1 WO 2018157320A1 CN 2017075276 W CN2017075276 W CN 2017075276W WO 2018157320 A1 WO2018157320 A1 WO 2018157320A1
Authority
WO
WIPO (PCT)
Prior art keywords
subframe
carrier
uplink
downlink
subframes
Prior art date
Application number
PCT/CN2017/075276
Other languages
English (en)
French (fr)
Inventor
李华
栗忠峰
李新县
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2017/075276 priority Critical patent/WO2018157320A1/zh
Publication of WO2018157320A1 publication Critical patent/WO2018157320A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present application relates to a wireless communication technology, and in particular, to a method and an apparatus for transmitting information based on carrier aggregation.
  • CA Carrier Aggregation
  • the uplink of the edge terminal is often limited in coverage, and the uplink coverage of the edge terminal needs to be enhanced.
  • the method for enhancing uplink coverage in the existing LTE technology is not applicable to a carrier aggregation scenario, and a method for enhancing uplink coverage in a carrier aggregation scenario is required.
  • the present invention provides a method and an apparatus for transmitting information based on carrier aggregation, which are used to enhance uplink coverage in a carrier aggregation scenario.
  • the first aspect of the present application provides a carrier aggregation-based information sending method, including:
  • the terminal detects the downlink control information sent by the base station in the first downlink subframe of the carrier aggregation group, and/or detects the downlink indication information sent by the base station in the second downlink subframe of the carrier aggregation group, where the carrier
  • the aggregation group includes: a first carrier and a second carrier;
  • the terminal sends uplink data to the base station in the first uplink subframe and the preset binding uplink subframe of the first uplink subframe.
  • the first downlink subframe and the second downlink subframe are the same subframe; or
  • the first downlink subframe and the second downlink subframe are separated by p subframes, where p is an integer greater than 0.
  • the method further includes:
  • the terminal detects downlink acknowledgement information in the third downlink subframe, and the downlink acknowledgement information is used to feed back whether the uplink data is received.
  • the first timing is used to indicate that when the first downlink subframe is the subframe n1, the first uplink is The frame is a subframe in which the subframe n1 is shifted backward by k1 subframes, where n1 is a positive integer greater than or equal to 0, and k1 is a positive integer greater than zero.
  • the first uplink subframe is a subframe in which the subframe n1 is shifted backward by k1 subframes, and includes:
  • the first uplink subframe is a subframe in which the subframe n1 in the first carrier is shifted backward by k1 subframes;
  • the first uplink subframe is a subframe in which the subframe n1 in the second carrier is shifted backward by k1 subframes;
  • the first uplink subframe is a subframe in which the subframe n1 in the first carrier is shifted backward by k1 subframes;
  • the first uplink subframe is a subframe in which the subframe n1 in the second carrier is shifted backward by k1 subframes.
  • the subframe configuration of the first carrier adopts a time division duplex TDD configuration 1
  • the subframe configuration of the second carrier adopts a TDD configuration 0 of offsetting 3 subframes
  • the first uplink subframe is on the second carrier
  • the subframe transition k1 is 4;
  • the first uplink subframe is on the second carrier
  • the subframe transition k1 is 4;
  • the first uplink subframe is on the first carrier
  • the subframe transition k1 is 4;
  • the first uplink subframe is on the second carrier
  • the subframe transition k1 is 4;
  • the first uplink subframe is on the second carrier
  • the subframe transition k1 is 4;
  • the first uplink subframe is on the first carrier
  • the subframe transition k1 is 4;
  • the first uplink subframe is on the second carrier
  • the subframe transition k1 is 4;
  • the first uplink subframe is on the first carrier
  • the subframe transition k1 is 4;
  • the first uplink subframe is on the second carrier
  • the subframe transition k1 is 4;
  • the first uplink subframe is on the first carrier
  • the subframe transition k1 is 4.
  • the second timing is used to indicate that when the third downlink subframe is the subframe n2, the second uplink subframe is a subframe in which the subframe n2 is forwarded by k2 subframes, where , n2 is a positive integer greater than or equal to 0, and k2 is a positive integer greater than zero.
  • the second uplink subframe is a subframe in which the subframe n2 is forwarded by k2 subframes, and includes:
  • the second uplink subframe is a subframe in which the subframe n2 in the first carrier is forwarded by k2 subframes;
  • the second uplink subframe is a subframe in which the subframe n2 in the second carrier is forwarded by k2 subframes;
  • the second uplink subframe is a subframe in which the subframe n2 in the first carrier is forwarded by k2 subframes;
  • the second uplink subframe is a subframe in which the subframe n2 in the second carrier is forwarded by k2 subframes.
  • the subframe configuration of the first carrier adopts a time division duplex TDD configuration 2
  • the subframe configuration of the second carrier adopts a TDD configuration 0 offset by 3 subframes
  • the second uplink subframe is on the second carrier, and the subframe transition k2 is 7;
  • the second uplink subframe is on the first carrier, and the subframe transition k2 is 7;
  • the second uplink subframe is on the second carrier, and the subframe transition k2 is 7;
  • the second uplink subframe is on the first carrier, and the subframe transition k2 is 7;
  • the second uplink subframe is on the second carrier, and the subframe transition k2 is 7;
  • the second uplink subframe is on the second carrier, and the value of the subframe transition k2 is 4;
  • the second uplink subframe is on the second carrier, and the subframe transition k2 is 7;
  • the second uplink subframe is on the second carrier, and the subframe transition k2 is 4.
  • the second uplink subframe is the last subframe in the preset binding uplink subframe.
  • the subframe configuration of the first carrier and/or the subframe of the second carrier are configured as other subframe configurations than the existing TDD subframe configuration 0-6.
  • a second aspect of the present application provides a carrier aggregation based information transmitting apparatus, the apparatus comprising means or means for performing the method provided by the first aspect and the various implementations of the first aspect.
  • a third aspect of the present application provides a carrier aggregation based information transmitting apparatus, the apparatus comprising a processor and a memory, wherein the memory is used to store a program, and the processor calls a memory stored program to perform the method provided by the first aspect of the present application.
  • a fourth aspect of the present application provides a carrier aggregation based information transmitting apparatus, comprising at least one processing element (or chip) for performing the method of the above first aspect.
  • a fifth aspect of the present application provides a program for performing the method of the above first aspect when executed by a processor.
  • a sixth aspect of the present application provides a program product, such as a computer readable storage medium, comprising the program of the fifth aspect.
  • the terminal detects the downlink control information sent by the base station in the first downlink subframe of the carrier aggregation group, and/or detects the downlink indication information sent by the base station in the second downlink subframe of the carrier aggregation group, where the terminal Determining a first timing according to a subframe configuration of the first carrier and a subframe configuration of the second carrier, and determining, in the subframe of the first carrier or the second carrier, the first uplink subframe and the first uplink subframe according to the first timing
  • the preset of the frame is bound to the uplink subframe, and the uplink data is sent to the base station in the first uplink subframe and the preset binding uplink subframe of the first uplink subframe, and the preset binding is in the uplink subframe.
  • the frame can be on the first carrier or the second carrier, and the subframe binding is supported by the new timing relationship, so that the uplink data and the bound subframe can be used to send the uplink data to the base station together, and the preset is
  • the subframes in the binding uplink subframe may be on the first carrier or the second carrier, which increases the chance of uplink transmission and enhances uplink coverage.
  • FIG. 1 is a schematic diagram of a communication system scenario
  • FIG. 2 is a schematic flowchart of a method for sending information based on carrier aggregation according to an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of a subframe configuration in a method for transmitting information based on carrier aggregation according to an embodiment of the present disclosure
  • FIG. 4 is a schematic structural diagram of a device for transmitting information based on carrier aggregation according to an embodiment of the present disclosure
  • FIG. 5 is a schematic structural diagram of a device for transmitting information based on carrier aggregation according to another embodiment of the present disclosure
  • FIG. 6 is a schematic structural diagram of a device for transmitting information based on carrier aggregation according to another embodiment of the present disclosure.
  • a base station also known as a radio access network (RAN) device, is a device that connects a terminal to a wireless network, and can be a Global System of Mobile communication (GSM) or code division multiple access.
  • GSM Global System of Mobile communication
  • a Base Transceiver Station (BTS) in Code Division Multiple Access (CDMA) may also be a base station (NodeB, NB) in Wideband Code Division Multiple Access (WCDMA), or may be a long term evolution.
  • the evolved base station (Evolutional Node B, eNB or eNodeB) in the (Long Term Evolution, LTE), or the relay station or the access point, or the base station in the future 5G network, is not limited herein.
  • the wireless terminal can be a wireless terminal or a wired terminal.
  • the wireless terminal can be a device that provides voice and/or other service data connectivity to the user, a handheld device with wireless connectivity, or other processing device connected to the wireless modem.
  • the wireless terminal can communicate with one or more core networks via a Radio Access Network (RAN), which can be a mobile terminal, such as a mobile phone (or "cellular" phone) and a computer with a mobile terminal.
  • RAN Radio Access Network
  • it may be a portable, pocket, handheld, computer built-in or in-vehicle mobile device that exchanges language and/or data with a wireless access network.
  • the wireless terminal may also be referred to as a system, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, and a remote terminal.
  • the access terminal, the user terminal (User Terminal), the user agent (User Agent), and the user device (User Device or User Equipment) are not limited herein.
  • a plurality means two or more.
  • "and/or" describing the association of the associated object
  • the relationship indicates that there may be three kinds of relationships, for example, A and/or B, which may indicate that there are three cases where A exists separately, A and B exist at the same time, and B exists separately.
  • the character "/" generally indicates that the contextual object is an "or" relationship.
  • a CA aggregates two or more component carriers (CCs) together to form a carrier group to support a larger transmission bandwidth.
  • the primary cell Primary cell, the carrier corresponding to the Pcell is called the primary component carrier (PCC), which is also called the primary carrier; the carrier corresponding to the secondary cell (Scell) is called the secondary component carrier (Secondary Component).
  • PCC primary component carrier
  • Scell secondary component carrier
  • Carrier, SCC also known as secondary carrier.
  • the primary cell is responsible for radio resource control (RRC) between the base station and the terminal; the secondary cell is used to provide additional radio resources, and there is no RRC communication with the terminal.
  • RRC radio resource control
  • the subframe configuration is used to indicate the number and location of the uplink and downlink subframes, as well as the special subframes.
  • FIG. 1 is a schematic diagram of a communication system scenario. As shown in FIG. 1 , the scenario includes: a base station 01 and a terminal 02.
  • Terminal 02 in FIG. 1 can communicate with base station 01 through multiple carriers.
  • the uplink of the edge terminal Due to the power of the terminal, the uplink of the edge terminal is often limited in coverage. Therefore, the uplink coverage of the edge terminal needs to be enhanced.
  • the frame configuration of the two carriers can be offset to achieve more uplink subframe transmission opportunities.
  • the enhancement of the uplink coverage can be implemented by binding the cross-carrier subframes.
  • FIG. 2 is a schematic flowchart of a method for sending information based on carrier aggregation according to an embodiment of the present disclosure. As shown in Figure 2, the method includes:
  • the terminal detects downlink control information sent by the base station in the first downlink subframe of the carrier aggregation group, and/or downlink indication information sent by the base station in the second downlink subframe of the carrier aggregation group.
  • the carrier aggregation group includes: a first carrier and a second carrier. It should be noted that the carrier aggregation group may include multiple carriers, and the foregoing first carrier and second carrier are general concepts.
  • the first downlink subframe and the second downlink subframe may be any downlink subframe on the first carrier or the second carrier.
  • the base station generally transmits downlink control information on a Physical Downlink Control Channel (PDCCH), and transmits downlink indication information on a Physical Hybrid ARQ Indicator Channel (PHICH).
  • PDCCH Physical Downlink Control Channel
  • PHICH Physical Hybrid ARQ Indicator Channel
  • the downlink indication information may be used to provide a feedback indication, such as an Acknowledgement (ACK) or a Negative Acknowledgement (NACK), for whether the uplink data is correctly received.
  • ACK Acknowledgement
  • NACK Negative Acknowledgement
  • the downlink control information may be recorded as Downlink Control Information (DCI), where the downlink control information may be DCI0.
  • DCI Downlink Control Information
  • the terminal determines the first timing according to the subframe configuration of the first carrier and the subframe configuration of the second carrier.
  • the subframe configuration of the first carrier and/or the subframe of the second carrier are configured as other subframe configurations than the existing TDD subframe configuration 0-6. That is, the configuration of at least one of the first carrier and the second carrier adopts a new subframe configuration.
  • the new subframe configuration may be an offset subframe configuration based on the existing subframe configuration, or may be a new subframe configuration, which is not limited herein.
  • the intermediate interval is a certain time.
  • the terminal detects downlink information on a certain downlink subframe, processes the downlink information, determines whether it is correctly received, and then feeds back the response, for example, three or four intermediate intervals. Processing time of sub-frames.
  • the downlink subframe continues to be backward, and the uplink subframes feed back information, which wastes the subframe resources.
  • the subframe on the first carrier or the second carrier can be replied, and the new subframe configuration is adopted, Try to improve the chances of sending uplink information while taking care of the interval.
  • the subframe configuration of each carrier may indicate information such as the type, number, and order of the subframes, such as how many uplink subframes, how many downlink subframes, how many special subframes, and how the subframes are distributed, and the like.
  • the timing terminal and the base station corresponding to different subframe configurations are pre-stored, so that both sides use the same timing to perform communication according to different subframe configurations of carriers in the carrier aggregation group.
  • the terminal determines, in the subframe of the first carrier or the second carrier, the first uplink subframe and the preset binding uplink subframe of the first uplink subframe according to the first timing.
  • each uplink subframe may be bound to one or more uplink subframes according to a preset rule, and send uplink data together with the first uplink subframe to enhance uplink coverage.
  • the preset binding uplink subframe of the first uplink subframe may be on different carriers, for example, partially on the first carrier and another portion on the second carrier.
  • the terminal sends uplink data to the base station in the first uplink subframe and the preset binding uplink subframe of the first uplink subframe.
  • the terminal detects downlink control information sent by the base station in the first downlink subframe of the carrier aggregation group, and/or downlink indication information sent by the base station in the second downlink subframe of the carrier aggregation group, and the terminal
  • the subframe configuration of the first carrier and the subframe configuration of the second carrier determine a first timing, and determine a first uplink subframe and a first uplink subframe in a subframe of the first carrier or the second carrier according to the first timing
  • the preset is bound to the uplink subframe, and the uplink data is sent to the base station in the first uplink subframe and the preset binding uplink subframe of the first uplink subframe, and the subframe in the preset uplink subframe is preset.
  • the subframe binding can be supported by the new timing relationship on the first carrier or the second carrier, so that the uplink subframe and the bound subframe can be used to send uplink data to the base station together, and the preset binding is performed.
  • the subframe in the fixed uplink subframe may be on the first carrier or the second carrier, which increases the chance of uplink transmission and enhances uplink coverage.
  • the first downlink subframe and the second downlink subframe may be the same subframe, or may not be the same subframe.
  • the first downlink subframe and the second downlink subframe are not the same subframe, and are separated by p subframes, where p is an integer greater than 0.
  • the downlink control information is later than the downlink indication information p subframes.
  • the first uplink subframe is a subframe in which the subframe n1 is shifted backward by k1 subframes, that is, the first uplink subframe may be recorded as Subframe n1+k1.
  • the first downlink subframe and the first uplink subframe may be the subframes on the first carrier or the second carrier, and the uplink transmission opportunity is improved by a more flexible combination.
  • the first uplink subframe is a subframe in which the subframe n1 in the first carrier is shifted backward by k1 subframes.
  • the first uplink subframe is a subframe in which the subframe n1 in the second carrier is shifted backward by k1 subframes.
  • the first uplink subframe is a subframe in which the subframe n1 of the first carrier is shifted backward by k1 subframes.
  • the first uplink subframe is a subframe in which the subframe n1 in the second carrier is shifted backward by k1 subframes.
  • Table 1 is taken as an example to show the timing in different subframe configurations, and the specific representation manner may be that the first carrier and the second carrier are different.
  • the value of k1 in the frame configuration, the terminal may determine the first timing according to Table 1, and the subframe configuration of the first carrier and the subframe configuration of the second carrier.
  • the offset mode identifies the subframe configuration of the first carrier and the subframe configuration of the second carrier, x identifies the TDD subframe configuration number of the first carrier (Carrier 1), and y+offset identifies the second carrier (Carrier 2)
  • the subframe configuration for example, “1+1+offset 2” indicates that the subframe configuration of the first carrier is “TDD subframe configuration 1”, and the subframe configuration of the second carrier is “offset TDD subframe after 2 subframes” Configuration 1".
  • the k1 value of the first timing indication may be as shown in Table 2.
  • This embodiment is equivalent to extending the LTE table, for example, "TDD subframe configuration 2" is adopted for the first carrier, and "TDD subframe configuration 2" is also used for the second carrier, and the LTE table can be multiplexed.
  • the terminal shifts subframe 4 on the carrier 1 backward by 4 subframes, and the bound sub-frame
  • the uplink data is sent to the base station in the frame, that is, the uplink data is sent to the base station in the subframe 7 of the carrier 1 and the uplink subframe bound to the subframe 7.
  • the p-values may be different or the same in the configuration of the first carrier and the second carrier in different subframes.
  • Table 3 is taken as an example to show that the subframe configuration of the first carrier is “TDD subframe configuration 2” and the second carrier.
  • the value of p when the subframe is configured as "offset TDD subframe configuration 2 after 2 subframes" specifically indicates that downlink control information is detected in subframe n3, and downlink indication information is detected in subframe n3-p.
  • the terminal detects downlink control information in subframe 1 of carrier 1, and the terminal detects downlink indication information in subframe 1 of carrier 1 and forwards 2 subframes, or the terminal is in carrier 2.
  • the downlink indication information is detected in the subframe 1 of the carrier 1 corresponding to the position where the subframe is shifted forward by 2 subframes.
  • the terminal may further determine a second timing according to the subframe configuration of the first carrier and the subframe configuration of the second carrier, and determine the second uplink subframe in the subframe of the first carrier or the second carrier according to the second timing. And a third downlink subframe, and detecting downlink acknowledgement information in the third downlink subframe.
  • the second uplink subframe belongs to the preset binding uplink subframe, that is, one of the preset binding uplink subframes of the first uplink subframe.
  • the downlink acknowledgement information is used to feedback whether the uplink data is received.
  • the terminal sends uplink data to the base station in the first uplink subframe and the preset binding uplink subframe of the first uplink subframe, and the base station returns a confirmation message to the terminal after receiving the data.
  • the base station uses an error detection code to detect whether the received data packet is in error. If there is no error, the base station sends an acknowledgement (ACK) to the terminal. If an error occurs, the base station sends a negative acknowledgement (Negative Acknowledgement, NACK) to the terminal. After the terminal receives the NACK, it will resend the same data packet.
  • ACK acknowledgement
  • NACK negative acknowledgement
  • the base station may reply to the data in the first uplink subframe and the preset binding uplink subframe of the first uplink subframe, and the base station may reply in the third downlink subframe, that is, only one subframe is used for replying. ,save resources.
  • the second timing is used to indicate that when the third downlink subframe is the subframe n2, the second uplink subframe is the subframe that the subframe n2 is forwarded by k2 subframes.
  • n2 is a positive integer greater than or equal to 0
  • k2 is a positive integer greater than zero.
  • the second uplink subframe and the third downlink subframe may be subframes on the first carrier or the second carrier, and the uplink and downlink transmission opportunities are improved through more flexible matching.
  • Subframes which can include:
  • the second uplink subframe is a subframe in which the subframe n2 in the first carrier is forwarded by k2 subframes.
  • the second uplink subframe is a subframe in which the subframe n2 in the second carrier is forwarded by k2 subframes.
  • the second uplink subframe is a subframe in which the subframe n2 in the first carrier is forwarded by k2 subframes.
  • the second uplink subframe is a subframe in which the subframe n2 in the second carrier is forwarded by k2 subframes.
  • Table 4 is taken as an example to show the timing in different subframe configurations, and the specific expression manner may be that the first carrier and the second carrier are different.
  • the value of k2 in the frame configuration, the terminal may determine the second timing according to Table 4, and the subframe configuration of the first carrier and the subframe configuration of the second carrier.
  • the second uplink subframe is forwarded by 5 carriers in the carrier 1 The subframe of the frame.
  • the second uplink subframe is the last one of the preset binding subframes, thereby estimating a subframe in which the base station sends the feedback information.
  • the first uplink subframe may be preset to bind q uplink subframes, and simultaneously support w processes. Both q and w are integers greater than zero.
  • the subframe configuration of the different first carrier, the subframe configuration of the second carrier, and the uplink subframe binding The number of row subframes and the number of supported processes are also different.
  • Table 5 is taken as an example.
  • the first column and the second column respectively identify the subframe configuration identifiers used by the first carrier and the second carrier, for example, “2” indicates “TDD subframe configuration 2", “2+ offset 2” means “offset TDD subframe configuration 2 after 2 subframes", wherein "the number of bonded subframes" indicates the first uplink subframe plus Preset the total number of uplink subframes.
  • Subframe configuration of the first carrier Subcarrier configuration of the second carrier Number of bound subframes Number of supported processes 2 2+ offset 2 4 2 2 2+ offset 2 2 2 1 1+ offset 2 4 3 1 1+ offset 2 3 3 1 0+offset 3 4 3 2 0+offset 3 4 3 2 0+offset 3 3 3 3 1 2+ offset 2 4 2 1 2+ offset 2 3 3 1 2+ offset 2 2 3
  • FIG. 3 is a schematic diagram of a subframe configuration in a method for transmitting information based on carrier aggregation according to an embodiment of the present disclosure.
  • the first carrier is set to "TDD subframe configuration 1”
  • the subframe of the second carrier is configured to be "offset 3 subframes after TDD subframe configuration 0". example.
  • downlink control information and downlink indication information are detected in subframe 0 of the first carrier, and referring to Table 1, the first uplink subframe is the second carrier.
  • uplink data (denoted as "Tx") is transmitted in subframe 7, subframe 8, subframe 9, and subframe 7 of the first carrier.
  • feedback information (denoted as ack) is detected in the second subframe 5 of the second carrier for replying to the uplink information.
  • uplink data is transmitted in subframe 3, subframe 4, subframe 2, and subframe 3 of the second carrier, and feedback information is detected in the second subframe 1 of the second carrier.
  • multiple uplink subframes can be bound to send uplink data, and the base station can also use one downlink subframe to send feedback information, which increases the uplink transmission opportunity and implements uplink coverage enhancement.
  • FIG. 4 is a schematic structural diagram of an apparatus for transmitting information based on carrier aggregation according to an embodiment of the present disclosure.
  • the device can be integrated into the terminal or it can be a standalone device.
  • the apparatus includes: a receiving module 401, The first determining module 402, the second determining module 403, and the sending module 404, wherein:
  • the receiving module 401 is configured to detect downlink control information sent by the base station in the first downlink subframe of the carrier aggregation group, and/or downlink indication information sent by the base station in the second downlink subframe of the carrier aggregation group,
  • the carrier aggregation group includes: a first carrier and a second carrier.
  • the first determining module 402 is configured to determine the first timing according to the subframe configuration of the first carrier and the subframe configuration of the second carrier.
  • a second determining module 403 configured to determine, according to the first timing, a first uplink subframe and a preset binding of the first uplink subframe in a subframe of the first carrier or the second carrier An uplink subframe, where the subframe in the preset binding uplink subframe is on the first carrier or the second carrier.
  • the sending module 404 is configured to send uplink data to the base station in the first uplink subframe and the preset binding uplink subframe of the first uplink subframe.
  • the device detects downlink control information sent by the base station in the first downlink subframe of the carrier aggregation group, and/or downlink indication information sent by the base station in the second downlink subframe of the carrier aggregation group. And determining, according to the subframe configuration of the first carrier and the subframe configuration of the second carrier, the first timing, and determining, according to the first timing, the first uplink subframe and the first uplink in the subframe of the first carrier or the second carrier.
  • the preset of the subframe is bound to the uplink subframe.
  • the subframe binding is supported by the new timing relationship, so that the uplink subframe and the bound subframe can be used to send uplink data to the base station together, and the subframe in the preset binding uplink subframe can be in the first On one carrier or second carrier, the opportunity of uplink transmission is increased, and uplink coverage is enhanced.
  • first downlink subframe and the second downlink subframe are the same subframe.
  • first downlink subframe and the second downlink subframe are separated by p subframes, where p is an integer greater than 0.
  • FIG. 5 is a schematic structural diagram of a device for transmitting information based on carrier aggregation according to another embodiment of the present disclosure.
  • the apparatus may further include: a third determining module 501 and a fourth determining module 502, where:
  • the third determining module 501 is configured to determine a second timing according to the subframe configuration of the first carrier and the subframe configuration of the second carrier.
  • a fourth determining module 502 configured to determine, according to the second timing, a second uplink subframe and a third downlink subframe in the subframe of the first carrier or the second carrier, where the second uplink subframe The preset binding uplink subframe belongs to the preset.
  • the sending module 404 is further configured to detect downlink acknowledgement information in the third downlink subframe, where the downlink acknowledgement information is used to feedback whether the uplink data is received.
  • the second uplink subframe is the last subframe in the preset binding uplink subframe.
  • the first timing is used to indicate that when the first downlink subframe is the subframe n1, the first uplink subframe is a subframe in which the subframe n1 is shifted backward by k1 subframes.
  • n1 is a positive integer greater than or equal to 0
  • k1 is a positive integer greater than zero.
  • the second timing is used to indicate that when the third downlink subframe is the subframe n2, the second uplink subframe is a subframe in which the subframe n2 is forwarded by k2 subframes, where , n2 is a positive integer greater than or equal to 0, and k2 is a positive integer greater than zero.
  • the foregoing apparatus may be used to perform the method provided by the foregoing method embodiments, and the specific implementation manners and the technical effects are similar.
  • the specific subframe arrangement may also refer to the foregoing embodiment, and details are not described herein again.
  • each module of the above device is only a division of logic functions.
  • the actual implementation can be integrated into one physical entity in whole or in part, or physically separated.
  • these modules can all be implemented by software in the form of processing component calls; or all of them can be implemented in hardware form; some modules can be realized by processing component calling software, and some modules are realized by hardware.
  • the determining module may be a separately set processing element, or may be integrated in one of the above-mentioned devices, or may be stored in the memory of the above device in the form of program code, by a processing element of the above device. Call and execute the functions of the above determination module.
  • the implementation of other modules is similar.
  • all or part of these modules can be integrated or implemented independently.
  • the processing elements described herein can be an integrated circuit with signal processing capabilities. In the implementation process, each step of the above method or each of the above modules may be completed by an integrated logic circuit of hardware in the processor element or an instruction in a form of software.
  • the above modules may be one or more integrated circuits configured to implement the above methods, such as one or more Application Specific Integrated Circuits (ASICs), or one or more microprocessors (digital) Singnal processor (DSP), or one or more Field Programmable Gate Array (FPGA).
  • ASICs Application Specific Integrated Circuits
  • DSP digital Singnal processor
  • FPGA Field Programmable Gate Array
  • the processing component can be a general purpose processor, such as a central processing unit (CPU) or other processor that can invoke program code.
  • these modules can be integrated and implemented in the form of a system-on-a-chip (SOC).
  • SOC system-on-a-chip
  • FIG. 6 is a schematic structural diagram of a device for transmitting information based on carrier aggregation according to another embodiment of the present disclosure.
  • the device can be integrated into the terminal or it can be a standalone device.
  • the device includes a processor 601, a storage component 602, and a transceiver 603.
  • the transceiver 603 can be connected to an antenna. In the downlink direction, the transceiver 603 receives the information sent by the base station through the antenna, and sends the information to the processor 601 for processing. In the uplink direction, the processor 601 processes the data of the device, and sends the data to the base station through the transceiver 603. .
  • the storage element 602 is configured to store the program code of the foregoing method embodiment, or the modules of the embodiment shown in FIG. 4 and FIG. 5, and the processor 601 calls the program code to perform the operations of the foregoing method embodiment to implement FIG. 4 and FIG. 5 shows the various modules of the embodiment.
  • some or all of the above units may be implemented by being embedded in a chip of the device in the form of a Field Programmable Gate Array (FPGA). And they can be implemented separately or integrated.
  • FPGA Field Programmable Gate Array
  • the processing elements herein are the same as described above, and may be a general-purpose processor, such as a CPU, or may be one or more integrated circuits configured to implement the above method, for example, one or more specific integrated circuits (ASICs). Or, one or more microprocessors (DSPs), or one or more Field Programmable Gate Arrays (FPGAs).
  • the storage element can be a storage device or a collective name for a plurality of storage elements.
  • a plurality of interfaces may be disposed on the processor for respectively connecting peripheral devices or interface circuits connected to the peripheral devices.
  • peripheral devices for example, an interface for connecting a display screen, an interface for connecting to a camera, an interface for connecting an audio processing element, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种基于载波聚合的信息发送方法及装置,该方法包括:终端在载波聚合组的第一下行子帧检测到基站发送的下行控制信息、和/或在第二下行子帧检测到基站发送的下行指示信息,载波聚合组中包括:第一载波和第二载波。根据所述第一载波的子帧配置和所述第二载波的子帧配置确定第一时序,根据所述第一时序在第一载波或所述第二载波的子帧中确定第一上行子帧、以及第一上行子帧的预设绑定上行子帧,在所述第一上行子帧、以及所述第一上行子帧的预设绑定上行子帧上向所述基站发送上行数据。增加了上行发送的机会,增强上行覆盖。

Description

基于载波聚合的信息发送方法及装置 技术领域
本申请涉及无线通信技术,尤其涉及一种基于载波聚合的信息发送方法及装置。
背景技术
随着智能设备和通信技术的发展,智能终端用户的不断增长,用户业务量和数据吞吐量不断增加,对通信速率提出了更高要求。另一方面,无线频谱资源短缺,很难找到连续的大带宽供移动通信采用,因此,在长期演进(Long Term Evolution,LTE)中引入了载波聚合(Carrier Aggregation,CA)技术,即把多个连续或不连续的频谱聚合使用,从技术上解决了移动通信对于大带宽的需求,同时也提高了无线频带中零散频谱的利用率。
受限于终端的功率,边缘终端的上行链路往往是覆盖受限的,需要对边缘终端的上行覆盖进行增强。但是,现有LTE技术中增强上行覆盖的方法并不适用于载波聚合场景,需要一种载波聚合场景下增强上行覆盖的方法。
发明内容
本申请提供一种基于载波聚合的信息发送方法及装置,用于增强载波聚合场景下的上行覆盖。
本申请第一方面提供一种基于载波聚合的信息发送方法,包括:
终端在载波聚合组的第一下行子帧检测到基站发送的下行控制信息、和/或在所述载波聚合组的第二下行子帧检测到基站发送的下行指示信息,其中,所述载波聚合组中包括:第一载波和第二载波;
所述终端根据所述第一载波的子帧配置和所述第二载波的子帧配置确定第一时序;
所述终端根据所述第一时序在所述第一载波或所述第二载波的子帧中确定第一上行子帧、以及所述第一上行子帧的预设绑定上行子帧,其中,所述预设绑定上行子帧中的子帧在第一载波或第二载波上;
所述终端在所述第一上行子帧、以及所述第一上行子帧的预设绑定上行子帧上向所述基站发送上行数据。
可选地,所述第一下行子帧和所述第二下行子帧为同一子帧;或者,
所述第一下行子帧和所述第二下行子帧之间间隔p个子帧,其中,p为大于0的整数。
可选地,所述方法还包括:
所述终端根据所述第一载波的子帧配置和所述第二载波的子帧配置确定第二时序;
所述终端根据所述第二时序在所述第一载波或所述第二载波的子帧中确定第二上行子帧和第三下行子帧,所述第二上行子帧属于所述预设绑定上行子帧;
所述终端在所述第三下行子帧检测下行确认信息,所述下行确认信息用于反馈是否接收到所述上行数据。
可选地,所述第一时序用于指示:所述第一下行子帧为子帧n1时,所述第一上行子 帧为所述子帧n1向后推移k1个子帧的子帧,其中,n1为大于或等于0的正整数,k1为大于0的正整数。
可选地,所述第一下行子帧为子帧n1时,所述第一上行子帧为所述子帧n1向后推移k1个子帧的子帧,包括:
所述第一下行子帧为所述第一载波中的子帧n1时,所述第一上行子帧为所述第一载波中子帧n1向后推移k1个子帧的子帧;或者,
所述第一下行子帧为所述第一载波中的子帧n1时,所述第一上行子帧为所述第二载波中子帧n1向后推移k1个子帧的子帧;或者,
所述第一下行子帧为所述第二载波中的子帧n1时,所述第一上行子帧为所述第一载波中子帧n1向后推移k1个子帧的子帧;或者,
所述第一下行子帧为所述第二载波中的子帧n1时,所述第一上行子帧为所述第二载波中子帧n1向后推移k1个子帧的子帧。
可选地,所述第一载波的子帧配置采用时分双工TDD配置1、且所述第二载波的子帧配置采用偏移3个子帧的TDD配置0时,
所述第一下行子帧为所述第一载波中子帧n1=0时,所述第一上行子帧在所述第二载波上、且子帧推移k1值为4;
所述第一下行子帧为所述第一载波中子帧n1=1时,所述第一上行子帧在所述第二载波上、且子帧推移k1值为4;
所述第一下行子帧为所述第一载波中子帧n1=4时,所述第一上行子帧在所述第一载波上、且子帧推移k1值为4;
所述第一下行子帧为所述第一载波中子帧n1=5时,所述第一上行子帧在所述第二载波上、且子帧推移k1值为4;
所述第一下行子帧为所述第一载波中子帧n1=6时,所述第一上行子帧在所述第二载波上、且子帧推移k1值为4;
所述第一下行子帧为所述第一载波中子帧n1=9时,所述第一上行子帧在所述第一载波上、且子帧推移k1值为4;
所述第一下行子帧为所述第二载波中子帧n1=0时,所述第一上行子帧在所述第二载波上、且子帧推移k1值为4;
所述第一下行子帧为所述第二载波中子帧n1=1时,所述第一上行子帧在所述第一载波上、且子帧推移k1值为4;
所述第一下行子帧为所述第二载波中子帧n1=5时,所述第一上行子帧在所述第二载波上、且子帧推移k1值为4;
所述第一下行子帧为所述第二载波中子帧n1=6时,所述第一上行子帧在所述第一载波上、且子帧推移k1值为4。
可选地,所述第二时序用于指示:所述第三下行子帧为子帧n2时,所述第二上行子帧为所述子帧n2向前推移k2个子帧的子帧,其中,n2为大于或等于0的正整数,k2为大于0的正整数。
可选地,所述第三下行子帧为子帧n2时,所述第二上行子帧为所述子帧n2向前推移k2个子帧的子帧,包括:
所述第三下行子帧所述第一载波中的子帧n2时,所述第二上行子帧为所述第一载波中子帧n2向前推移k2个子帧的子帧;或者,
所述第三下行子帧所述第一载波中的子帧n2时,所述第二上行子帧为所述第二载波中子帧n2向前推移k2个子帧的子帧;或者,
所述第三下行子帧所述第二载波中的子帧n2时,所述第二上行子帧为所述第一载波中子帧n2向前推移k2个子帧的子帧;或者,
所述第三下行子帧所述第二载波中的子帧n2时,所述第二上行子帧为所述第二载波中子帧n2向前推移k2个子帧的子帧。
可选地,所述第一载波的子帧配置采用时分双工TDD配置2、且所述第二载波的子帧配置采用偏移3个子帧的TDD配置0时,
所述第三下行子帧所述第一载波中的子帧n2=3时,所述第二上行子帧在所述第二载波上、且子帧推移k2值为7;
所述第三下行子帧所述第一载波中的子帧n2=4时,所述第二上行子帧在所述第一载波上、且子帧推移k2值为7;
所述第三下行子帧所述第一载波中的子帧n2=8时,所述第二上行子帧在所述第二载波上、且子帧推移k2值为7;
所述第三下行子帧所述第一载波中的子帧n2=9时,所述第二上行子帧在所述第一载波上、且子帧推移k2值为7;
所述第三下行子帧所述第二载波中的子帧n2=0时,所述第二上行子帧在所述第二载波上、且子帧推移k2值为7;
所述第三下行子帧所述第二载波中的子帧n2=1时,所述第二上行子帧在所述第二载波上、且子帧推移k2值为4;
所述第三下行子帧所述第二载波中的子帧n2=5时,所述第二上行子帧在所述第二载波上、且子帧推移k2值为7;
所述第三下行子帧所述第二载波中的子帧n2=6时,所述第二上行子帧在所述第二载波上、且子帧推移k2值为4。
可选地,所述第二上行子帧为所述预设绑定上行子帧中的最后一个子帧。
可选地,第一载波的子帧配置和/或第二载波的子帧配置为除现有TDD子帧配置0-6之外的其他子帧配置。
本申请第二方面提供一种基于载波聚合的信息发送装置,所述装置包括用于执行上述第一方面以及第一方面的各种实现方式所提供的方法的模块或手段(means)。
本申请第三方面提供一种基于载波聚合的信息发送装置,所述装置包括处理器和存储器,存储器用于存储程序,处理器调用存储器存储的程序,以执行本申请第一方面提供的方法。
本申请第四方面提供一种基于载波聚合的信息发送装置,包括用于执行以上第一方面的方法的至少一个处理元件(或芯片)。
本申请第五方面提供一种程序,该程序在被处理器执行时用于执行以上第一方面的方法。
本申请第六方面提供一种程序产品,例如计算机可读存储介质,包括第五方面的程序。
在以上各个方面中,终端在载波聚合组的第一下行子帧检测到基站发送的下行控制信息、和/或在载波聚合组的第二下行子帧检测到基站发送的下行指示信息,终端根据第一载波的子帧配置和第二载波的子帧配置确定第一时序,并根据第一时序在第一载波或第二载波的子帧中确定第一上行子帧、以及第一上行子帧的预设绑定上行子帧,在第一上行子帧、以及第一上行子帧的预设绑定上行子帧上向基站发送上行数据,且的预设绑定上行子帧中的子帧可以在第一载波或第二载波上,实现了通过新的时序关系来支持子帧绑定,以便于可以采用上行子帧以及绑定的子帧一起向基站发送上行数据,且的预设绑定上行子帧中的子帧可以在第一载波或第二载波上,增加了上行发送的机会,增强上行覆盖。
附图说明
图1为通信系统场景示意图;
图2为本申请一实施例提供的基于载波聚合的信息发送方法流程示意图;
图3为本申请一实施例提供的基于载波聚合的信息发送方法中子帧配置示意图;
图4为本申请一实施例提供的基于载波聚合的信息发送装置结构示意图;
图5为本申请另一实施例提供的基于载波聚合的信息发送装置结构示意图;
图6为本申请另一实施例提供的基于载波聚合的信息发送装置结构示意图。
具体实施方式
基站:又称为无线接入网(Radio Access Network,RAN)设备,是一种将终端接入到无线网络的设备,可以是全球移动通讯(Global System of Mobile communication,GSM)或码分多址(Code Division Multiple Access,CDMA)中的基站(Base Transceiver Station,BTS),也可以是宽带码分多址(Wideband Code Division Multiple Access,WCDMA)中的基站(NodeB,NB),还可以是长期演进(Long Term Evolution,LTE)中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者未来5G网络中的基站等,在此并不限定。
终端:可以是无线终端也可以是有线终端,无线终端可以是指向用户提供语音和/或其他业务数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。无线终端可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,无线终端可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(Personal Communication Service,PCS)电话、无绳电话、会话发起协议(Session Initiation Protocol,SIP)话机、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)等设备。无线终端也可以称为系统、订户单元(Subscriber Unit)、订户站(Subscriber Station),移动站(Mobile Station)、移动台(Mobile)、远程站(Remote Station)、远程终端(Remote Terminal)、接入终端(Access Terminal)、用户终端(User Terminal)、用户代理(User Agent)、用户设备(User Device or User Equipment),在此不作限定。
本申请实施例中,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联 关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
CA是将2个或更多的载波单元(Component Carrier,CC)聚合在一起形成载波组以支持更大的传输带宽。其中,主小区(Primary cell,Pcell对应的载波称为主分量载波(Primary Component Carrier,PCC),也称作主载波;辅小区(Secondary Cell,Scell)对应的载波称为辅分量载波(Secondary Component Carrier,SCC),也称为辅载波。
主小区负责基站与终端之间的无线资源控制(Radio Resource Control,RRC);辅小区用于提供额外的无线资源,与终端之间不存在RRC通信。
子帧配置用于表示上、下行子帧、以及特殊子帧的个数以及位置。
图1为通信系统场景示意图,如图1所示,该场景包括:基站01、终端02。
图1中终端02可以通过多个载波与基站01进行通信
受限于终端的功率,边缘终端的上行链路往往是覆盖受限的,因此,需要对边缘终端的上行覆盖进行增强。本申请中,在载波聚合情况下,可以通过对两个载波的帧配置进行一定的偏移,来实现终端有更多的上行子帧发送机会。进一步,可以通过跨载波子帧的绑定,来实现上行覆盖的增强。
图2为本申请一实施例提供的基于载波聚合的信息发送方法流程示意图。如图2所示,该方法包括:
S201、终端在载波聚合组的第一下行子帧检测到基站发送的下行控制信息、和/或在载波聚合组的第二下行子帧检测到基站发送的下行指示信息。
其中,载波聚合组包括:第一载波和第二载波。需要说明的是,载波聚合组可以包括多个载波,上述第一载波和第二载波是泛指概念。
上述第一下行子帧、第二下行子帧均可以是第一载波或第二载波上的任一下行子帧。
基站一般在物理下行控制信道(Physical Downlink Control Channel,PDCCH)发送下行控制信息,在物理混合ARQ指示信道(Physical Hybrid ARQ Indicator Channel,PHICH)发送下行指示信息。
上述下行指示信息可以用于对上行数据是否正确接收进行反馈指示,例如发送确认(Acknowledgement,ACK)或否定确认(Negative Acknowledgement,NACK)。
可选地,下行控制信息可以记为(Downlink Control Information,DCI),这里的下行控制信息可以是DCI0。
S202、终端根据第一载波的子帧配置和第二载波的子帧配置确定第一时序。
可选地,第一载波的子帧配置和/或第二载波的子帧配置为除现有TDD子帧配置0-6之外的其他子帧配置。即第一载波和第二载波至少有一个的配置采用新的子帧配置。新的子帧配置可以是在现有子帧配置基础上进行偏移后的子帧配置,也可以是全新的子帧配置,在此不作限制。
由于数据处理需要一定时间,中间会间隔一定时间,例如终端在某个下行子帧上检测到下行信息,对下行信息进行处理,判断是否正确接收,然后再反馈响应,例如中间间隔3个或4个子帧的处理时间。但是按照现有的TDD子帧配置,有时候间隔3个或4个子帧后不是上行子帧,那么就会继续向后推移,由上行子帧来反馈信息,这样就会浪费子帧资源。本申请中第一载波或第二载波上的子帧均可以回复,并且采用新的子帧配置,可以 尽量满足在兼顾间隔的同时,提高发送上行信息的机会。
各载波的子帧配置可以指示子帧类型、数量以及排序等信息,例如载波的子帧有多少上行子帧、多少下行子帧、多少特殊子帧,以及这些子帧如何分布排列等。
可选地,不同子帧配置对应的时序终端和基站都会预先存储,以便两边根据载波聚合组中载波的不同子帧配置采用同样的时序进行通信。
S203、终端根据第一时序在第一载波或第二载波的子帧中确定第一上行子帧、以及第一上行子帧的预设绑定上行子帧。
具体地,每个上行子帧可以根据预设规则绑定一个或多个上行子帧,和第一上行子帧一起发送上行数据,增强上行覆盖。第一上行子帧的预设绑定上行子帧可以在不同的载波上,例如部分在第一载波上,另一部分在第二载波上。
S204、终端在第一上行子帧、以及第一上行子帧的预设绑定上行子帧上向基站发送上行数据。
本实施例中,终端在载波聚合组的第一下行子帧检测到基站发送的下行控制信息、和/或在载波聚合组的第二下行子帧检测到基站发送的下行指示信息,终端根据第一载波的子帧配置和第二载波的子帧配置确定第一时序,并根据第一时序在第一载波或第二载波的子帧中确定第一上行子帧、以及第一上行子帧的预设绑定上行子帧,在第一上行子帧、以及第一上行子帧的预设绑定上行子帧上向基站发送上行数据,且的预设绑定上行子帧中的子帧可以在第一载波或第二载波上,实现了通过新的时序关系来支持子帧绑定,以便于可以采用上行子帧以及绑定的子帧一起向基站发送上行数据,且的预设绑定上行子帧中的子帧可以在第一载波或第二载波上,增加了上行发送的机会,增强上行覆盖。
可选地,上述第一下行子帧和第二下行子帧可以为同一子帧,也可以不是同一子帧。
是同一子帧时,表明基站在同一子帧发送下行控制信息和下行指示信息。
某些场景下,第一下行子帧和第二下行子帧不是同一子帧,之间间隔p个子帧,其中,p为大于0的整数。例如下行控制信息晚于下行指示信息p个子帧。
进一步地,上述第一时序用于指示第一下行子帧为子帧n1时,第一上行子帧为子帧n1向后推移k1个子帧的子帧,即第一上行子帧可以记为子帧n1+k1。
其中,不同的应用中,第一下行子帧、第一上行子帧均可以为第一载波或第二载波上的子帧,通过更为灵活的搭配提高上行发送机会。
可选地,第一下行子帧为第一载波中的子帧n1时,第一上行子帧为第一载波中子帧n1向后推移k1个子帧的子帧。或者,
第一下行子帧为第一载波中的子帧n1时,第一上行子帧为第二载波中子帧n1向后推移k1个子帧的子帧。或者,
第一下行子帧为第二载波中的子帧n1时,第一上行子帧为第一载波中子帧n1向后推移k1个子帧的子帧。或者,
第一下行子帧为第二载波中的子帧n1时,第一上行子帧为第二载波中子帧n1向后推移k1个子帧的子帧。
对于第一下行子帧和第二下行子帧为同一子帧的情况,以表1为例,示出不同子帧配置下的时序,具体表现方式可以是第一载波、第二载波不同子帧配置下k1的取值,终端可以根据表1、以及第一载波的子帧配置和第二载波的子帧配置确定第一时序。以“x+y+ 偏移”的方式标识第一载波的子帧配置和第二载波的子帧配置,x标识第一载波(载波1)的TDD子帧配置编号,y+偏移标识第二载波(载波2)的子帧配置,例如“1+1+偏移2”表示第一载波的子帧配置为“TDD子帧配置1”、第二载波的子帧配置为“偏移2个子帧后的TDD子帧配置1”。
表1
Figure PCTCN2017075276-appb-000001
以“1+0+偏移3”为例,如果在载波1的子帧0上检测到DCI0,终端在载波2上载波1的子帧0对应位置向后推移4个子帧的子帧上、以及绑定的子帧上向基站发送上行数据。
对于第一下行子帧和第二下行子帧之间间隔p个子帧的情况,第一时序指示的k1值可以如表2所示。本实施例相当于对LTE的表格进行扩展,例如对第一载波采用“TDD子帧配置2”,第二载波也采用“TDD子帧配置2”而言,可以复用LTE的表格。
表2
Figure PCTCN2017075276-appb-000002
以“2+2+偏移2”为例,如果在载波1的子帧3上检测到DCI0,终端在载波1上子帧3向后推移4个子帧的子帧上、以及绑定的子帧上向基站发送上行数据,即在载波1的子帧7、以及子帧7绑定的上行子帧上向基站发送上行数据。
第一载波、第二载波不同子帧配置下,p值也可以不同或相同,以表3为例,示出了第一载波的子帧配置为“TDD子帧配置2”、第二载波的子帧配置为“偏移2个子帧后的TDD子帧配置2”时p的取值,具体表示在子帧n3检测到下行控制信息,在子帧n3-p检测到下行指示信息,
表3
Figure PCTCN2017075276-appb-000003
以载波1第二列为例,表示终端在载波1的子帧1检测到下行控制信息,终端在载波1的子帧1向前推移2个子帧检测到下行指示信息,或者,终端在载波2上载波1的子帧1对应位置向前推移2个子帧的子帧检测到下行指示信息。
可选地,终端还可以根据第一载波的子帧配置和第二载波的子帧配置确定第二时序,根据第二时序在第一载波或第二载波的子帧中确定第二上行子帧和第三下行子帧,并在第三下行子帧检测下行确认信息。其中,该第二上行子帧属于预设绑定上行子帧,即为第一上行子帧的预设绑定上行子帧中的一个。下行确认信息用于反馈是否接收到上述上行数据。
即终端在第一上行子帧、以及第一上行子帧的预设绑定上行子帧中向基站发送上行数据,基站收到后会向终端反馈确认消息。例如,基站使用检错码来检测收到的数据包是否出错,如果无错,则基站向终端发送一个确认(Acknowledgement,ACK),如果出错,则基站向终端发送一个否定确认(Negative Acknowledgement,NACK),终端收到NACK后,会重发相同的数据包。其中,对于终端在第一上行子帧、以及第一上行子帧的预设绑定上行子帧中发送的数据,基站可以在第三下行子帧上一次回复,即只采用一个子帧进行回复,节约资源。
可选地,第二时序用于指示:第三下行子帧为子帧n2时,第二上行子帧为子帧n2向前推移k2个子帧的子帧。其中,n2为大于或等于0的正整数,k2为大于0的正整数。
可选地,不同的应用中,第二上行子帧、第三下行子帧均可以为第一载波或第二载波上的子帧,通过更为灵活的搭配提高上、下行发送机会。
可选地,第三下行子帧为子帧n2时,第二上行子帧为子帧n2向前推移k2个子帧的 子帧,可以包括:
第三下行子帧第一载波中的子帧n2时,第二上行子帧为第一载波中子帧n2向前推移k2个子帧的子帧。或者,
第三下行子帧第一载波中的子帧n2时,第二上行子帧为第二载波中子帧n2向前推移k2个子帧的子帧。或者,
第三下行子帧第二载波中的子帧n2时,第二上行子帧为第一载波中子帧n2向前推移k2个子帧的子帧。或者,
第三下行子帧第二载波中的子帧n2时,第二上行子帧为第二载波中子帧n2向前推移k2个子帧的子帧。
对于第一下行子帧和第二下行子帧为同一子帧的情况,以表4为例,示出不同子帧配置下的时序,具体表现方式可以是第一载波、第二载波不同子帧配置下k2的取值,终端可以根据表4、以及第一载波的子帧配置和第二载波的子帧配置确定第二时序。
表4
Figure PCTCN2017075276-appb-000004
以“1+0+偏移3”中载波2对应的子帧6为例,表示第三下行子帧载波2中的子帧6时,第二上行子帧为载波1中向前推移5个子帧的子帧。
可选地,第二上行子帧为预设绑定子帧中的最后一个,以此推算基站发送反馈信息的子帧。
进一步地,第一上行子帧可以预设绑定q个上行子帧,同时支持w个进程。q和w均为大于0的整数。
可选地,面对不同的第一载波的子帧配置、第二载波的子帧配置,上行子帧绑定的上 行子帧个数,以及支持的进程数也不同,可以以表5为例,第一列和第二列分别标识第一载波、第二载波采用的子帧配置标识,例如“2”就表示“TDD子帧配置2”,“2+偏移2”就表示“偏移2个子帧后的TDD子帧配置2”,其中,“绑定子帧个数”表示第一上行子帧加上预设绑定上行子帧的总个数,
表5
第一载波的子帧配置 第二载波的子帧配置 绑定子帧个数 支持的进程数
2 2+偏移2 4 2
2 2+偏移2 2 2
1 1+偏移2 4 3
1 1+偏移2 3 3
1 0+偏移3 4 3
2 0+偏移3 4 3
2 0+偏移3 3 3
1 2+偏移2 4 2
1 2+偏移2 3 3
1 2+偏移2 2 3
图3为本申请一实施例提供的基于载波聚合的信息发送方法中子帧配置示意图。在上述实施例的基础上,如图3所示,以第一载波为“TDD子帧配置1”、第二载波的子帧配置为“偏移3个子帧后的TDD子帧配置0”为例。
参见表5,可以有3个进程,分别记为“进程0”、“进程1”、“进程2”,第一上行子帧加预设绑定上行子帧为4个。
如图3所示,假设进程0中,在第一载波的子帧0检测到下行控制信息和下行指示信息(记为“下”),参照表1,第一上行子帧为第二载波的子帧7,绑定子帧个数为4,那么在第二载波的子帧7、子帧8、子帧9以及第一载波的子帧7发送上行数据(记为“Tx”)。
相应地,在第二载波的第二个子帧5检测到反馈信息(记为ack),用于回复上述上行信息。具体地,绑定子帧的最后一个子帧为第一载波的子帧7。即参照表4,k2=5。
类似地,进程1中,在第二载波的子帧3、子帧4、第一载波的子帧2、子帧3发送上行数据,在第二载波的第二个子帧1检测到反馈信息。
由上述实施例可知,本申请提供的方法中,可以绑定多个上行子帧发送上行数据,进而基站也可以采用一个下行子帧发送反馈信息,增加了上行发送机会,实现了上行覆盖增强。
图4为本申请一实施例提供的基于载波聚合的信息发送装置结构示意图。该装置可集成于终端内,也可以是独立的装置。具体地,如图4所示,该装置包括:接收模块401、 第一确定模块402、第二确定模块403以及发送模块404,其中:
接收模块401,用于在载波聚合组的第一下行子帧检测到基站发送的下行控制信息、和/或在所述载波聚合组的第二下行子帧检测到基站发送的下行指示信息,其中,所述载波聚合组中包括:第一载波和第二载波。
第一确定模块402,用于根据所述第一载波的子帧配置和所述第二载波的子帧配置确定第一时序。
第二确定模块403,用于根据所述第一时序在所述第一载波或所述第二载波的子帧中确定第一上行子帧、以及所述第一上行子帧的预设绑定上行子帧,其中,所述预设绑定上行子帧中的子帧在第一载波或第二载波上。
发送模块404,用于在所述第一上行子帧、以及所述第一上行子帧的预设绑定上行子帧上向所述基站发送上行数据。
本实施例中,上述装置在载波聚合组的第一下行子帧检测到基站发送的下行控制信息、和/或在载波聚合组的第二下行子帧检测到基站发送的下行指示信息。进而根据第一载波的子帧配置和第二载波的子帧配置确定第一时序,并根据第一时序在第一载波或第二载波的子帧中确定第一上行子帧、以及第一上行子帧的预设绑定上行子帧。在第一上行子帧、以及第一上行子帧的预设绑定上行子帧上向基站发送上行数据,且的预设绑定上行子帧中的子帧可以在第一载波或第二载波上。实现了通过新的时序关系来支持子帧绑定,以便于可以采用上行子帧以及绑定的子帧一起向基站发送上行数据,且的预设绑定上行子帧中的子帧可以在第一载波或第二载波上,增加了上行发送的机会,增强上行覆盖。
可选地,所述第一下行子帧和所述第二下行子帧为同一子帧。或者,所述第一下行子帧和所述第二下行子帧之间间隔p个子帧,其中,p为大于0的整数。
图5为本申请另一实施例提供的基于载波聚合的信息发送装置结构示意图。在图4的基础上,该装置还可以包括:第三确定模块501、第四确定模块502,其中:
第三确定模块501,用于根据所述第一载波的子帧配置和所述第二载波的子帧配置确定第二时序。
第四确定模块502,用于根据所述第二时序在所述第一载波或所述第二载波的子帧中确定第二上行子帧和第三下行子帧,所述第二上行子帧属于所述预设绑定上行子帧。
相应地,上述发送模块404,还用于在所述第三下行子帧检测下行确认信息,所述下行确认信息用于反馈是否接收到所述上行数据。
可选地,所述第二上行子帧为所述预设绑定上行子帧中的最后一个子帧。
可选地,所述第一时序用于指示:所述第一下行子帧为子帧n1时,所述第一上行子帧为所述子帧n1向后推移k1个子帧的子帧,其中,n1为大于或等于0的正整数,k1为大于0的正整数。
可选地,所述第二时序用于指示:所述第三下行子帧为子帧n2时,所述第二上行子帧为所述子帧n2向前推移k2个子帧的子帧,其中,n2为大于或等于0的正整数,k2为大于0的正整数。
上述装置可用于执行上述方法实施例提供的方法,具体实现方式和技术效果类似,其中,具体地子帧排布也可以参照前述实施例,这里不再赘述。
需要说明的是,应理解以上装置的各个模块的划分仅仅是一种逻辑功能的划分, 实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且这些模块可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分模块通过处理元件调用软件的形式实现,部分模块通过硬件的形式实现。例如,确定模块可以为单独设立的处理元件,也可以集成在上述装置的某一个芯片中实现,此外,也可以以程序代码的形式存储于上述装置的存储器中,由上述装置的某一个处理元件调用并执行以上确定模块的功能。其它模块的实现与之类似。此外这些模块全部或部分可以集成在一起,也可以独立实现。这里所述的处理元件可以是一种集成电路,具有信号的处理能力。在实现过程中,上述方法的各步骤或以上各个模块可以通过处理器元件中的硬件的集成逻辑电路或者软件形式的指令完成。
例如,以上这些模块可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(Application Specific Integrated Circuit,ASIC),或,一个或多个微处理器(digital singnal processor,DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,FPGA)等。再如,当以上某个模块通过处理元件调度程序代码的形式实现时,该处理元件可以是通用处理器,例如中央处理器(Central Processing Unit,CPU)或其它可以调用程序代码的处理器。再如,这些模块可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现。
图6为本申请另一实施例提供的基于载波聚合的信息发送装置结构示意图。该装置可集成于终端内,也可以是独立的装置。如图6所示,该装置包括:处理器601、存储元件602、收发装置603。
其中,收发装置603可以与天线连接。在下行方向上,收发装置603通过天线接收基站发送的信息,并将信息发送给处理器601进行处理;在上行方向上,处理器601对该装置的数据进行处理,并通过收发装置603发送给基站。
存储元件602用于存储实现以上方法实施例,或者图4、图5所示实施例各个模块的程序代码,处理器601调用该程序代码,执行以上方法实施例的操作,以实现图4、图5所示实施例各个模块。
或者,以上各个单元的部分或全部也可以通过现场可编程门阵列(Field Programmable Gate Array,FPGA)的形式内嵌于该装置的某一个芯片上来实现。且它们可以单独实现,也可以集成在一起。
这里的处理元件同以上描述,可以是通用处理器,例如CPU,还可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(Application Specific Integrated Circuit,ASIC),或,一个或多个微处理器(digital singnal processor,DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,FPGA)等。存储元件可以是一个存储装置,也可以是多个存储元件的统称。
另外,该处理器上可以设置多个接口,分别用于连接外围设备或与外围设备连接的接口电路。例如,用于连接显示屏的接口,用于连接摄像头的接口,用于连接音频处理元件的接口等。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然 可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (20)

  1. 一种基于载波聚合的信息发送方法,其特征在于,包括:
    终端在载波聚合组的第一下行子帧检测到基站发送的下行控制信息、和/或在所述载波聚合组的第二下行子帧检测到基站发送的下行指示信息,其中,所述载波聚合组中包括:第一载波和第二载波;
    所述终端根据所述第一载波的子帧配置和所述第二载波的子帧配置确定第一时序;
    所述终端根据所述第一时序在所述第一载波或所述第二载波的子帧中确定第一上行子帧、以及所述第一上行子帧的预设绑定上行子帧,其中,所述预设绑定上行子帧中的子帧在第一载波或第二载波上;
    所述终端在所述第一上行子帧、以及所述第一上行子帧的预设绑定上行子帧上向所述基站发送上行数据。
  2. 根据权利要求1所述的方法,其特征在于,所述第一下行子帧和所述第二下行子帧为同一子帧;或者,
    所述第一下行子帧和所述第二下行子帧之间间隔p个子帧,其中,p为大于0的整数。
  3. 根据权利要求2所述的方法,其特征在于,所述方法还包括:
    所述终端根据所述第一载波的子帧配置和所述第二载波的子帧配置确定第二时序;
    所述终端根据所述第二时序在所述第一载波或所述第二载波的子帧中确定第二上行子帧和第三下行子帧,所述第二上行子帧属于所述预设绑定上行子帧;
    所述终端在所述第三下行子帧检测下行确认信息,所述下行确认信息用于反馈是否接收到所述上行数据。
  4. 根据权利要求1或2所述的方法,其特征在于,所述第一时序用于指示:所述第一下行子帧为子帧n1时,所述第一上行子帧为所述子帧n1向后推移k1个子帧的子帧,其中,n1为大于或等于0的正整数,k1为大于0的正整数。
  5. 根据权利要求4所述的方法,其特征在于,所述第一下行子帧为子帧n1时,所述第一上行子帧为所述子帧n1向后推移k1个子帧的子帧,包括:
    所述第一下行子帧为所述第一载波中的子帧n1时,所述第一上行子帧为所述第一载波中子帧n1向后推移k1个子帧的子帧;或者,
    所述第一下行子帧为所述第一载波中的子帧n1时,所述第一上行子帧为所述第二载波中子帧n1向后推移k1个子帧的子帧;或者,
    所述第一下行子帧为所述第二载波中的子帧n1时,所述第一上行子帧为所述第一载波中子帧n1向后推移k1个子帧的子帧;或者,
    所述第一下行子帧为所述第二载波中的子帧n1时,所述第一上行子帧为所述第二载波中子帧n1向后推移k1个子帧的子帧。
  6. 根据权利要求4或5所述的方法,其特征在于,所述第一载波的子帧配置采用时分双工TDD配置1、且所述第二载波的子帧配置采用偏移3个子帧的TDD配置0时,
    所述第一下行子帧为所述第一载波中子帧n1=0时,所述第一上行子帧在所述第二载波上、且子帧推移k1值为4;
    所述第一下行子帧为所述第一载波中子帧n1=1时,所述第一上行子帧在所述第二载 波上、且子帧推移k1值为4;
    所述第一下行子帧为所述第一载波中子帧n1=4时,所述第一上行子帧在所述第一载波上、且子帧推移k1值为4;
    所述第一下行子帧为所述第一载波中子帧n1=5时,所述第一上行子帧在所述第二载波上、且子帧推移k1值为4;
    所述第一下行子帧为所述第一载波中子帧n1=6时,所述第一上行子帧在所述第二载波上、且子帧推移k1值为4;
    所述第一下行子帧为所述第一载波中子帧n1=9时,所述第一上行子帧在所述第一载波上、且子帧推移k1值为4;
    所述第一下行子帧为所述第二载波中子帧n1=0时,所述第一上行子帧在所述第二载波上、且子帧推移k1值为4;
    所述第一下行子帧为所述第二载波中子帧n1=1时,所述第一上行子帧在所述第一载波上、且子帧推移k1值为4;
    所述第一下行子帧为所述第二载波中子帧n1=5时,所述第一上行子帧在所述第二载波上、且子帧推移k1值为4;
    所述第一下行子帧为所述第二载波中子帧n1=6时,所述第一上行子帧在所述第一载波上、且子帧推移k1值为4。
  7. 根据权利要求3所述的方法,其特征在于,所述第二时序用于指示:所述第三下行子帧为子帧n2时,所述第二上行子帧为所述子帧n2向前推移k2个子帧的子帧,其中,n2为大于或等于0的正整数,k2为大于0的正整数。
  8. 根据权利要求7所述的方法,其特征在于,所述第三下行子帧为子帧n2时,所述第二上行子帧为所述子帧n2向前推移k2个子帧的子帧,包括:
    所述第三下行子帧所述第一载波中的子帧n2时,所述第二上行子帧为所述第一载波中子帧n2向前推移k2个子帧的子帧;或者,
    所述第三下行子帧所述第一载波中的子帧n2时,所述第二上行子帧为所述第二载波中子帧n2向前推移k2个子帧的子帧;或者,
    所述第三下行子帧所述第二载波中的子帧n2时,所述第二上行子帧为所述第一载波中子帧n2向前推移k2个子帧的子帧;或者,
    所述第三下行子帧所述第二载波中的子帧n2时,所述第二上行子帧为所述第二载波中子帧n2向前推移k2个子帧的子帧。
  9. 根据权利要求8所述的方法,其特征在于,所述第一载波的子帧配置采用时分双工TDD配置2、且所述第二载波的子帧配置采用偏移3个子帧的TDD配置0时,
    所述第三下行子帧所述第一载波中的子帧n2=3时,所述第二上行子帧在所述第二载波上、且子帧推移k2值为7;
    所述第三下行子帧所述第一载波中的子帧n2=4时,所述第二上行子帧在所述第一载波上、且子帧推移k2值为7;
    所述第三下行子帧所述第一载波中的子帧n2=8时,所述第二上行子帧在所述第二载波上、且子帧推移k2值为7;
    所述第三下行子帧所述第一载波中的子帧n2=9时,所述第二上行子帧在所述第一载 波上、且子帧推移k2值为7;
    所述第三下行子帧所述第二载波中的子帧n2=0时,所述第二上行子帧在所述第二载波上、且子帧推移k2值为7;
    所述第三下行子帧所述第二载波中的子帧n2=1时,所述第二上行子帧在所述第二载波上、且子帧推移k2值为4;
    所述第三下行子帧所述第二载波中的子帧n2=5时,所述第二上行子帧在所述第二载波上、且子帧推移k2值为7;
    所述第三下行子帧所述第二载波中的子帧n2=6时,所述第二上行子帧在所述第二载波上、且子帧推移k2值为4。
  10. 根据权利要求3或7或8所述的方法,其特征在于,所述第二上行子帧为所述预设绑定上行子帧中的最后一个子帧。
  11. 一种基于载波聚合的信息发送装置,其特征在于,包括:
    接收模块,用于在载波聚合组的第一下行子帧检测到基站发送的下行控制信息、和/或在所述载波聚合组的第二下行子帧检测到基站发送的下行指示信息,其中,所述载波聚合组中包括:第一载波和第二载波;
    第一确定模块,用于根据所述第一载波的子帧配置和所述第二载波的子帧配置确定第一时序;
    第二确定模块,用于根据所述第一时序在所述第一载波或所述第二载波的子帧中确定第一上行子帧、以及所述第一上行子帧的预设绑定上行子帧,其中,所述预设绑定上行子帧中的子帧在第一载波或第二载波上;
    发送模块,用于在所述第一上行子帧、以及所述第一上行子帧的预设绑定上行子帧上向所述基站发送上行数据。
  12. 根据权利要求11所述的装置,其特征在于,所述第一下行子帧和所述第二下行子帧为同一子帧;或者,
    所述第一下行子帧和所述第二下行子帧之间间隔p个子帧,其中,p为大于0的整数。
  13. 根据权利要求12所述的装置,其特征在于,所述装置还包括:
    第三确定模块,用于根据所述第一载波的子帧配置和所述第二载波的子帧配置确定第二时序;
    第四确定模块,用于根据所述第二时序在所述第一载波或所述第二载波的子帧中确定第二上行子帧和第三下行子帧,所述第二上行子帧属于所述预设绑定上行子帧;
    所述接收模块,还用于在所述第三下行子帧检测下行确认信息,所述下行确认信息用于反馈是否接收到所述上行数据。
  14. 根据权利要求11或12所述的装置,其特征在于,所述第一时序用于指示:所述第一下行子帧为子帧n1时,所述第一上行子帧为所述子帧n1向后推移k1个子帧的子帧,其中,n1为大于或等于0的正整数,k1为大于0的正整数。
  15. 根据权利要求14所述的装置,其特征在于,所述第一下行子帧为子帧n1时,所述第一上行子帧为所述子帧n1向后推移k1个子帧的子帧,包括:
    所述第一下行子帧为所述第一载波中的子帧n1时,所述第一上行子帧为所述第一载 波中子帧n1向后推移k1个子帧的子帧;或者,
    所述第一下行子帧为所述第一载波中的子帧n1时,所述第一上行子帧为所述第二载波中子帧n1向后推移k1个子帧的子帧;或者,
    所述第一下行子帧为所述第二载波中的子帧n1时,所述第一上行子帧为所述第一载波中子帧n1向后推移k1个子帧的子帧;或者,
    所述第一下行子帧为所述第二载波中的子帧n1时,所述第一上行子帧为所述第二载波中子帧n1向后推移k1个子帧的子帧。
  16. 根据权利要求14或15所述的装置,其特征在于,所述第一载波的子帧配置采用时分双工TDD配置1、且所述第二载波的子帧配置采用偏移3个子帧的TDD配置0时,
    所述第一下行子帧为所述第一载波中子帧n1=0时,所述第一上行子帧在所述第二载波上、且子帧推移k1值为4;
    所述第一下行子帧为所述第一载波中子帧n1=1时,所述第一上行子帧在所述第二载波上、且子帧推移k1值为4;
    所述第一下行子帧为所述第一载波中子帧n1=4时,所述第一上行子帧在所述第一载波上、且子帧推移k1值为4;
    所述第一下行子帧为所述第一载波中子帧n1=5时,所述第一上行子帧在所述第二载波上、且子帧推移k1值为4;
    所述第一下行子帧为所述第一载波中子帧n1=6时,所述第一上行子帧在所述第二载波上、且子帧推移k1值为4;
    所述第一下行子帧为所述第一载波中子帧n1=9时,所述第一上行子帧在所述第一载波上、且子帧推移k1值为4;
    所述第一下行子帧为所述第二载波中子帧n1=0时,所述第一上行子帧在所述第二载波上、且子帧推移k1值为4;
    所述第一下行子帧为所述第二载波中子帧n1=1时,所述第一上行子帧在所述第一载波上、且子帧推移k1值为4;
    所述第一下行子帧为所述第二载波中子帧n1=5时,所述第一上行子帧在所述第二载波上、且子帧推移k1值为4;
    所述第一下行子帧为所述第二载波中子帧n1=6时,所述第一上行子帧在所述第一载波上、且子帧推移k1值为4。
  17. 根据权利要求13所述的装置,其特征在于,所述第二时序用于指示:所述第三下行子帧为子帧n2时,所述第二上行子帧为所述子帧n2向前推移k2个子帧的子帧,其中,n2为大于或等于0的正整数,k2为大于0的正整数。
  18. 根据权利要求17所述的装置,其特征在于,所述第三下行子帧为子帧n2时,所述第二上行子帧为所述子帧n2向前推移k2个子帧的子帧,包括:
    所述第三下行子帧所述第一载波中的子帧n2时,所述第二上行子帧为所述第一载波中子帧n2向前推移k2个子帧的子帧;或者,
    所述第三下行子帧所述第一载波中的子帧n2时,所述第二上行子帧为所述第二载波中子帧n2向前推移k2个子帧的子帧;或者,
    所述第三下行子帧所述第二载波中的子帧n2时,所述第二上行子帧为所述第一载波 中子帧n2向前推移k2个子帧的子帧;或者,
    所述第三下行子帧所述第二载波中的子帧n2时,所述第二上行子帧为所述第二载波中子帧n2向前推移k2个子帧的子帧。
  19. 根据权利要求18所述的装置,其特征在于,所述第一载波的子帧配置采用时分双工TDD配置2、且所述第二载波的子帧配置采用偏移3个子帧的TDD配置0时,
    所述第三下行子帧所述第一载波中的子帧n2=3时,所述第二上行子帧在所述第二载波上、且子帧推移k2值为7;
    所述第三下行子帧所述第一载波中的子帧n2=4时,所述第二上行子帧在所述第一载波上、且子帧推移k2值为7;
    所述第三下行子帧所述第一载波中的子帧n2=8时,所述第二上行子帧在所述第二载波上、且子帧推移k2值为7;
    所述第三下行子帧所述第一载波中的子帧n2=9时,所述第二上行子帧在所述第一载波上、且子帧推移k2值为7;
    所述第三下行子帧所述第二载波中的子帧n2=0时,所述第二上行子帧在所述第二载波上、且子帧推移k2值为7;
    所述第三下行子帧所述第二载波中的子帧n2=1时,所述第二上行子帧在所述第二载波上、且子帧推移k2值为4;
    所述第三下行子帧所述第二载波中的子帧n2=5时,所述第二上行子帧在所述第二载波上、且子帧推移k2值为7;
    所述第三下行子帧所述第二载波中的子帧n2=6时,所述第二上行子帧在所述第二载波上、且子帧推移k2值为4。
  20. 根据权利要求13或17或18所述的装置,其特征在于,所述第二上行子帧为所述预设绑定上行子帧中的最后一个子帧。
PCT/CN2017/075276 2017-02-28 2017-02-28 基于载波聚合的信息发送方法及装置 WO2018157320A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/075276 WO2018157320A1 (zh) 2017-02-28 2017-02-28 基于载波聚合的信息发送方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/075276 WO2018157320A1 (zh) 2017-02-28 2017-02-28 基于载波聚合的信息发送方法及装置

Publications (1)

Publication Number Publication Date
WO2018157320A1 true WO2018157320A1 (zh) 2018-09-07

Family

ID=63369636

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/075276 WO2018157320A1 (zh) 2017-02-28 2017-02-28 基于载波聚合的信息发送方法及装置

Country Status (1)

Country Link
WO (1) WO2018157320A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103812620A (zh) * 2012-11-05 2014-05-21 上海贝尔股份有限公司 确定用于harq的应答信息在pucch中位置的方法
US20140241298A1 (en) * 2011-09-26 2014-08-28 Lg Electronics Inc. Method and apparatus for transmitting and receiving uplink control information in radio access system
CN105794137A (zh) * 2013-09-27 2016-07-20 诺基亚通信公司 Pucch资源分配和使用
CN106301730A (zh) * 2015-06-11 2017-01-04 华为技术有限公司 基于子帧偏移的载波聚合方法和基站

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140241298A1 (en) * 2011-09-26 2014-08-28 Lg Electronics Inc. Method and apparatus for transmitting and receiving uplink control information in radio access system
CN103812620A (zh) * 2012-11-05 2014-05-21 上海贝尔股份有限公司 确定用于harq的应答信息在pucch中位置的方法
CN105794137A (zh) * 2013-09-27 2016-07-20 诺基亚通信公司 Pucch资源分配和使用
CN106301730A (zh) * 2015-06-11 2017-01-04 华为技术有限公司 基于子帧偏移的载波聚合方法和基站

Similar Documents

Publication Publication Date Title
US9391743B2 (en) Method and apparatus for defining HARQ functionality for cells having different time division duplex subframe configurations
US9917680B2 (en) Method and apparatus for rebalancing the sizes of the downlink (DL) association sets for component carriers having different time division duplex subframe configurations
JP6061942B2 (ja) 無線通信における肯定応答タイミングの選択
US20220006602A1 (en) Discontinuous Reception for Carrier Aggregation
US10051633B2 (en) Method and apparatus for carrier aggregation
TWI566628B (zh) 處理傳輸區塊的軟緩衝器尺寸的方法及其通訊裝置
TWI672970B (zh) 處理用於服務細胞的傳送/接收的裝置及方法
TW201538024A (zh) 處理裝置對裝置運作的方法
WO2017080382A1 (zh) Tdd系统信息传输的方法和装置
WO2018157756A1 (zh) 数据处理方法及装置
US20220322368A1 (en) Method and terminal for data transmission using unlicensed carrier
US11051298B2 (en) Message feedback method and apparatus for carrier aggregation
JP7419553B2 (ja) フィードバックリソース決定方法およびフィードバックリソース決定装置
WO2018076326A1 (zh) 用于上行载波聚合的通信方法和装置
WO2017121384A1 (zh) 一种无线帧的传输方法以及无线网络设备
TW201632013A (zh) 方法、裝置及系統
WO2018201338A1 (zh) 通信方法和设备
WO2018157320A1 (zh) 基于载波聚合的信息发送方法及装置
WO2018120475A1 (zh) 一种消息应答方法及无线网络设备
WO2014179980A1 (zh) 混合自动重传请求harq反馈方法、用户设备及基站
WO2022151266A1 (zh) 一种媒体接入访问mac信令适用时间的确定方法和装置
WO2018076300A1 (zh) 基于harq的消息反馈方法及装置
WO2017147833A1 (zh) 传输数据的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17899122

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17899122

Country of ref document: EP

Kind code of ref document: A1