WO2018076300A1 - 基于harq的消息反馈方法及装置 - Google Patents

基于harq的消息反馈方法及装置 Download PDF

Info

Publication number
WO2018076300A1
WO2018076300A1 PCT/CN2016/103852 CN2016103852W WO2018076300A1 WO 2018076300 A1 WO2018076300 A1 WO 2018076300A1 CN 2016103852 W CN2016103852 W CN 2016103852W WO 2018076300 A1 WO2018076300 A1 WO 2018076300A1
Authority
WO
WIPO (PCT)
Prior art keywords
carrier
uplink
subframe
downlink
ratio
Prior art date
Application number
PCT/CN2016/103852
Other languages
English (en)
French (fr)
Inventor
肖洁华
李华
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2016/103852 priority Critical patent/WO2018076300A1/zh
Priority to CN201680089836.0A priority patent/CN109804585A/zh
Publication of WO2018076300A1 publication Critical patent/WO2018076300A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems

Definitions

  • the present invention relates to communication technologies, and in particular, to a HARQ-based message feedback method and apparatus.
  • Hybrid Automatic Repeat Request is a technology that combines Forward Error Correction (FEC) and Automatic Repeat Request (ARQ).
  • FEC Forward Error Correction
  • ARQ Automatic Repeat Request
  • the FEC can reduce the number of retransmissions by adding redundant information, so that the receiving end can correct a part of the error.
  • the receiving end requests the transmitting end to resend the data through the ARQ mechanism.
  • the receiving end uses the error detecting code to detect whether the received data packet is in error. If there is no error, the receiving end sends an acknowledgement (Acknowledgement, ACK for short) to the transmitting end. If the error occurs, the receiving end sends the receiving end to the transmitting end.
  • a Negative Acknowledgement (NACK) is sent. After the sender receives the NACK, it will resend the packet.
  • LTE Long Term Evolution
  • CA Carrier Aggregation
  • the embodiment of the invention provides a message feedback method and device based on HARQ, which is used to solve the problem that the ACK or NACK is replied in the prior art, which may result in waste of resources or failure to reply ACK or NACK.
  • a first aspect of the embodiments of the present invention provides a message feedback method based on HARQ, including:
  • the terminal receives the data packet sent by the base station in the first downlink subframe of the carrier aggregation group, where the carrier aggregation group includes: a first carrier and a second carrier;
  • the terminal is configured according to an uplink-downlink ratio of the first carrier and an uplink-downlink ratio of the second carrier. Determining a first timing, wherein an uplink-downlink ratio of the first carrier and/or an uplink-downlink ratio of the second carrier is an uplink-downlink ratio other than the time-division duplex TDD uplink-downlink ratio 0-6 ;
  • the terminal sends a feedback message to the base station in the first uplink subframe.
  • the first uplink subframe is the nth subframe, where n is greater than or equal to 0.
  • n is greater than or equal to 0.
  • An integer, k is a positive integer greater than zero.
  • the uplink-downlink ratio of the first carrier adopts a time-division duplex TDD uplink-downlink ratio 1
  • the uplink-downlink ratio of the second carrier uses a TDD uplink-downlink ratio of 1 for shifting two subframes
  • the k value of the uplink subframe numbered 2 in the first carrier is 6, the k value of the uplink subframe numbered 3 in the first carrier is 5 and 6, and the uplink subframe number 7 in the first carrier.
  • the k value is 6, and the k values of the uplink subframe numbered 8 in the first carrier are 5 and 6.
  • the uplink-downlink ratio of the first carrier adopts a time-division duplex TDD uplink-downlink ratio 1
  • the uplink-downlink ratio of the second carrier uses a TDD uplink-downlink ratio of 1 for shifting two subframes
  • the k value of the uplink subframe numbered 2 in the first carrier is 5 and 6, the k value of the uplink subframe number 3 in the first carrier is 6, and the uplink subframe number 7 in the first carrier.
  • the k value is 5 and 6, and the k value of the uplink subframe numbered 8 in the first carrier is 6.
  • the uplink-downlink ratio of the first carrier adopts a time-division duplex TDD uplink-downlink ratio 1
  • the uplink-downlink ratio of the second carrier uses a TDD uplink-downlink ratio of 1 for shifting two subframes
  • the k value of the uplink subframe numbered 2 in the first carrier is 6 and 7, the k value of the uplink subframe number 3 in the first carrier is 4, 5, and 6, and the number 7 in the first carrier.
  • the k values of the uplink subframes are 6 and 7, and the k values of the uplink subframes numbered 8 in the first carrier are 4, 5, and 6.
  • a second aspect of the embodiments of the present invention provides a message feedback method based on HARQ, including:
  • the base station receives the data packet sent by the terminal in the third uplink subframe of the carrier aggregation group, where the carrier aggregation group includes: a first carrier and a second carrier;
  • the base station Determining, by the base station, a third sequence according to an uplink-downlink ratio of the first carrier and an uplink-downlink ratio of the second carrier, where an uplink-downlink ratio of the first carrier and/or the second carrier
  • the uplink-downlink ratio is other uplink and downlink ratios except for the time division duplex TDD uplink and downlink ratio 0-6;
  • the base station sends a feedback message to the terminal on the third downlink subframe.
  • the third timing is used to indicate that the third uplink subframe is the n2-th2 subframe, and the third downlink subframe is the n2th subframe, where n2 is greater than or equal to 0.
  • n2 is greater than or equal to 0.
  • a positive integer, k2 is a positive integer greater than zero.
  • the uplink-downlink ratio of the first carrier adopts a time-division duplex TDD uplink-downlink ratio 1
  • the uplink-downlink ratio of the second carrier uses a TDD uplink-downlink ratio of 1 for shifting two subframes
  • the k value of the downlink subframe numbered 0 in the first carrier is 6, the k value of the downlink subframe numbered 1 in the first carrier is 6, and the k of the downlink subframe number 5 in the first carrier The value is 6, and the k values of the downlink subframe numbered 6 in the first carrier are 5 and 6.
  • the uplink-downlink ratio of the first carrier adopts a time-division duplex TDD uplink-downlink ratio 2
  • the uplink-downlink ratio of the second carrier adopts a TDD uplink-downlink ratio of 1 subframe
  • the k value of the downlink subframe numbered 0 in the first carrier is 6, the k value of the downlink subframe numbered 1 in the first carrier is 6, and the k of the downlink subframe number 5 in the first carrier The value is 6, and the k values of the downlink subframe numbered 6 in the first carrier are 5 and 6.
  • a third aspect of the embodiments of the present invention provides a message feedback method based on HARQ, including:
  • the base station determines the second sequence according to the uplink-downlink ratio of the first carrier in the carrier aggregation group and the uplink-downlink ratio of the second carrier, where the carrier aggregation group includes: the first carrier and the second carrier,
  • the uplink-downlink ratio of the first carrier and/or the uplink-downlink ratio of the second carrier are other uplink-downlink ratios other than the time-division duplex TDD uplink-downlink ratio 0-6;
  • the base station receives a data packet sent by the terminal on the second uplink subframe.
  • the second timing is used to indicate that the to-be-scheduled uplink subframe is the n1+k1 subframe, and the second downlink subframe is the n1-th subframe, where n1 is greater than or equal to 0.
  • n1 is greater than or equal to 0.
  • a positive integer, k1 is a positive integer greater than zero.
  • the uplink-downlink ratio of the first carrier adopts a TDD uplink-downlink ratio of 1
  • the uplink-downlink ratio of the second carrier adopts a TDD uplink-downlink ratio of one subframe
  • the k value of the downlink subframe numbered 0 in the first carrier is 4, the k value of the downlink subframe number 1 in the first carrier is 4, and the k of the downlink subframe number 5 in the first carrier The value is 4, and the k value of the downlink subframe numbered 6 in the first carrier is 4.
  • the uplink and downlink ratio of the first carrier is 2
  • the uplink and downlink ratio of the second carrier is 2
  • the uplink and downlink ratio of the second carrier is 1 when the TDD uplink and downlink ratio of the two subframes is translated.
  • the k value of the downlink subframe numbered 0 in the first carrier is 4, the k value of the downlink subframe number 1 in the first carrier is 4, and the k of the downlink subframe number 5 in the first carrier The value is 4, and the k value of the downlink subframe numbered 6 in the first carrier is 4.
  • a fourth aspect of embodiments of the present invention provides a HARQ-based message feedback apparatus, the apparatus comprising means or means for performing the methods of the first aspect and the various implementations of the first aspect described above.
  • a fifth aspect of the embodiments of the present invention provides a HARQ-based message feedback apparatus, the apparatus comprising means or means for performing the methods provided by the second aspect and the various implementations of the second aspect.
  • a sixth aspect of the embodiments of the present invention provides a HARQ-based message feedback apparatus, the apparatus comprising means or means for performing the methods provided by the third aspect and the various implementations of the third aspect.
  • a seventh aspect of the embodiments of the present invention provides a message feedback device based on HARQ, the device includes a processor and a memory, the memory is used to store a program, and the processor calls a program stored in the memory to execute the method provided by the first aspect of the present application. .
  • An eighth aspect of the embodiments of the present invention provides a message feedback device based on HARQ, the device includes a processor and a memory, the memory is used to store a program, and the processor calls a program stored in the memory to execute the method provided by the second aspect of the present application. .
  • a ninth aspect of the embodiments of the present invention provides a message feedback device based on HARQ, the device includes a processor and a memory, the memory is used to store a program, and the processor calls a program stored in the memory to perform the method provided by the third aspect of the present application. .
  • a tenth aspect of the embodiments of the present invention provides a HARQ-based message feedback apparatus, comprising at least one processing element (or chip) for performing the method of the above first aspect.
  • An eleventh embodiment of the present invention provides a HARQ-based message feedback apparatus comprising at least one processing element (or chip) for performing the method of the above second aspect.
  • a twelfth aspect of the embodiments of the present invention provides a HARQ-based message feedback apparatus, comprising at least one processing element (or chip) for performing the method of the above third aspect.
  • a thirteenth aspect of the embodiments of the present invention provides a program for executing the method of the above first aspect when executed by a processor.
  • a fourteenth aspect of the embodiments of the present invention provides a program product, such as a computer readable storage medium, comprising the program of the thirteenth aspect.
  • a fifteenth aspect of the embodiments of the present invention provides a program for performing the method of the above second aspect when executed by a processor.
  • a sixteenth aspect of the present invention provides a program product, such as a computer readable storage medium, comprising the program of the fifteenth aspect.
  • a seventeenth aspect of the embodiments of the present invention provides a program for performing the method of the above third aspect when executed by a processor.
  • An eighteenth aspect of the present invention provides a program product, such as a computer readable storage medium, comprising the program of the seventeenth aspect.
  • the HARQ-based message feedback method and apparatus implements determining the timing according to the uplink and downlink ratio of the entire carrier aggregation, and determining a subframe for replying the feedback message, that is, providing a message suitable for carrier aggregation.
  • the feedback method is used to ensure that the received data packets in the downlink subframe have corresponding uplink subframes for feedback, thereby avoiding waste of resources.
  • FIG. 1 is a schematic diagram of an application scenario of a HARQ-based message feedback method provided by the present invention
  • FIG. 2 is a schematic diagram of a carrier scheduling manner
  • FIG. 3 is a schematic diagram of an uplink and downlink ratio of a TDD according to the present invention.
  • FIG. 4 is a schematic flowchart diagram of a message feedback method based on HARQ according to an embodiment of the present disclosure
  • FIG. 5 is a schematic timing diagram of a HARQ-based message feedback method according to an embodiment of the present invention.
  • FIG. 6 is another timing diagram of a HARQ-based message feedback method according to an embodiment of the present invention.
  • FIG. 7 is another timing diagram of a HARQ-based message feedback method according to an embodiment of the present invention.
  • FIG. 8 is a schematic flowchart diagram of a message feedback method based on HARQ according to an embodiment of the present disclosure
  • FIG. 9 is another timing diagram of a HARQ-based message feedback method according to an embodiment of the present invention.
  • FIG. 10 is another timing diagram of a HARQ-based message feedback method according to an embodiment of the present invention.
  • FIG. 11 is a schematic flowchart diagram of another HARQ-based subframe scheduling method according to an embodiment of the present disclosure.
  • FIG. 12 is another timing diagram of a HARQ-based message feedback method according to an embodiment of the present invention.
  • FIG. 13 is another timing diagram of a HARQ-based message feedback method according to an embodiment of the present invention.
  • FIG. 14 is a schematic structural diagram of a message feedback apparatus based on HARQ according to an embodiment of the present disclosure
  • FIG. 15 is a schematic structural diagram of another HARQ-based message feedback apparatus according to an embodiment of the present disclosure.
  • FIG. 16 is a schematic structural diagram of another HARQ-based message feedback apparatus according to an embodiment of the present disclosure.
  • FIG. 17 is a schematic structural diagram of a message feedback apparatus based on HARQ according to an embodiment of the present invention.
  • Base station Also known as a Radio Access Network (RAN) device, it is a device that connects a terminal to a wireless network, and can be a global mobile communication (Global System of Mobile communication (GSM) or Base Transceiver Station (BTS) in Code Division Multiple Access (CDMA). It can also be Wideband Code Division Multiple Access (WCDMA).
  • GSM Global System of Mobile communication
  • BTS Base Transceiver Station
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • the base station (NodeB, NB for short) may also be an evolved base station (Evolutional Node B, eNB or eNodeB) in Long Term Evolution (LTE), or a relay station or an access point, or a future 5G network.
  • LTE Long Term Evolution
  • LTE Long Term Evolution
  • LTE Long Term Evolution
  • LTE Long Term Evolution
  • LTE Long Term Evolution
  • LTE Long Term Evolution
  • LTE Long Term Evolution
  • LTE Long Term Evolution
  • the wireless terminal can be a wireless terminal or a wired terminal.
  • the wireless terminal can be a device that provides voice and/or other service data connectivity to the user, a handheld device with wireless connectivity, or other processing device connected to the wireless modem.
  • the wireless terminal can communicate with one or more core networks via a Radio Access Network (RAN), which can be a mobile terminal, such as a mobile phone (or "cellular" phone) and a mobile terminal.
  • RAN Radio Access Network
  • the computer for example, can be a portable, pocket, handheld, computer built-in or in-vehicle mobile device that exchanges language and/or data with the wireless access network.
  • the wireless terminal may also be referred to as a system, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, and a remote terminal.
  • the access terminal, the user terminal (User Terminal), the user agent (User Agent), and the user device (User Device or User Equipment) are not limited herein.
  • a plurality means two or more.
  • "and/or” describing the association relationship of the associated objects, indicating that there may be three relationships, for example, A and/or B, which may indicate that there are three cases where A exists separately, A and B exist at the same time, and B exists separately.
  • the character "/" generally indicates that the contextual object is an "or" relationship.
  • Carrier Aggregation is a combination of two or more carrier carriers (CCs) to form a carrier group to support a larger transmission bandwidth.
  • multiple carrier units can work in groups.
  • the 3GPP standard supports two packets, one of which can be called “primary physical uplink control channel (Physical Uplink Control). Channel (abbreviated as PUCCH group) and another may be referred to as a "secondary PUCCH group”.
  • PUCCH group Physical Uplink Control Channel
  • the ACK/NACK information of HARQ of multiple carriers in the group is fed back by one carrier in one group. That is, the feedback information (ACK or NACK) of all the carriers in a group is received by a specified carrier.
  • the primary cell (referred to as the primary component carrier (Primary cell) is called the primary component carrier (Primary).
  • the component carrier (referred to as the PCC) is also called the primary carrier;
  • the carrier corresponding to the secondary cell (Scell) is called the secondary component carrier (SCC), which is also called the secondary carrier.
  • the primary cell is responsible for the base station and Radio Resource Control (RRC) between terminals; the secondary cell is used to provide additional radio resources, and there is no RRC communication with the terminal.
  • RRC Radio Resource Control
  • the PCell is a carrier used to feed back HARQ ACK/NACK information in the primary PUCCH group.
  • the secondary PUCCH group there is also a carrier used to feed back HARQ ACK/NACK information.
  • This carrier is called PUCCH-SCell.
  • the number of carrier packets may not be limited to two. Since the transmission principle of the HARQ feedback information (ie, the HARQ ACK/NACK information) is the same in each carrier packet, the present invention is described only for one carrier group for the sake of simplicity, and the carrier for feeding back the HARQ information. Collectively referred to as feedback carriers.
  • the solution of the present invention can be automatically extended to the case of multiple carrier groups.
  • the downlink HARQ timing of the secondary carrier under carrier aggregation is relative to the feedback carrier, so the timing relationship only needs to consider two carriers of the feedback carrier and the feedback carrier.
  • the uplink and downlink ratios are used to indicate the number and location of uplink, downlink, and special subframes in a radio frame, and may also be simply referred to as a ratio.
  • FIG. 1 is a schematic diagram of an application scenario of a HARQ-based message feedback method according to the present invention. As shown in FIG. 1 , the scenario includes: a base station 01 and a terminal 02.
  • Terminal 02 in FIG. 1 can communicate with base station 01 over a plurality of carriers.
  • FIG. 2 is a schematic diagram of a carrier scheduling manner.
  • the resource scheduling manner of each carrier in carrier aggregation can be divided into cross-carrier scheduling and self-scheduling (ie, non-cross-carrier scheduling).
  • Cross-carrier scheduling refers to the resource of one carrier being scheduled by another carrier.
  • Self-scheduling means that the resources of the carrier are scheduled by the control channel of the carrier.
  • Cross-carrier scheduling based on a carrier indicator field allows a PDCCH of a serving cell to schedule radio resources on another serving cell, that is, control information is transmitted on one carrier unit, and corresponding data is transmitted.
  • the PDCCH is transmitted on another cell, that is, the PDCCH is transmitted on one cell, but the corresponding PDSCH or Physical Uplink Shared Channel (PUSCH) is transmitted on another cell.
  • the primary cell performs scheduling by its own PDCCH, and when the secondary cell does not configure the PDCCH, it can be scheduled by the PDCCH of another serving cell.
  • the serving cell and the carrier are equivalent concepts, and one serving cell is a carrier.
  • the multiple serving cells corresponding to the terminal may have the following configurations: (1) The resource of one of the serving cells is scheduled by the PDCCH of the local carrier, that is, self-scheduling (non-cross-carrier scheduling) . (2) The resources of a certain serving cell are scheduled by other serving cells across carriers, and the PDCCH is transmitted on the scheduling carrier, and the serving cell is called cross-carrier scheduling.
  • both CC1 and CC3 are non-cross-carrier scheduling, that is, resources of the carrier are scheduled by PDCCH signaling of the local carrier.
  • Both CC2 and CC4 are cross-carrier scheduling and are scheduled by CC1.
  • the PDCCH may be used to schedule a downlink resource of a physical downlink shared channel (PDSCH); or the PDCCH may be used to schedule an uplink resource of a physical uplink shared channel (PUSCH).
  • PDSCH physical downlink shared channel
  • PUSCH physical uplink shared channel
  • the downlink HARQ that is, the processing flow for the terminal to confirm the downlink data sent by the base station
  • the downlink data transmission and the reply of the acknowledgement message have a certain timing relationship
  • TDD Time Division Duplexing
  • multiple The data packet sent by the downlink subframe may need to reply ACK or NACK on the same uplink subframe.
  • the terminal detects the downlink data packet on the nk subframe (downlink subframe)
  • the terminal will be in the nth subframe (upstream).
  • Reply ACK or NACK on the subframe may be in the nth subframe (upstream).
  • the uplink timing relationship includes two: one is the scheduling timing of the uplink data (also referred to as UL grant timing), indicating that the terminal is in the nth sub-
  • the frame After detecting the uplink scheduling information in the PDCCH, the frame (the downlink subframe) transmits the Physical Uplink Shared Channel (PUSCH) data in the n+kth subframe (the uplink subframe); the other is the uplink data.
  • PUSCH Physical Uplink Shared Channel
  • HARQ feedback message reply timing also referred to as physical hybrid ARQ indicator channel (Physical Hybrid ARQ)
  • the base station when the base station detects an uplink packet on the nkth subframe (uplink subframe), the base station replies an ACK on the nth subframe (downlink subframe). Or NACK.
  • n and k are both positive integers greater than zero.
  • the terminal detects a downlink data packet on the n-kth subframe (downlink subframe), the terminal returns an ACK or a NACK on the nth subframe (uplink subframe).
  • the k and n values have corresponding values for each TDD's up-down ratio.
  • an existing single-carrier HARQ information feedback timing is selected according to different carrier resource scheduling manners as the HARQ timing of the secondary carrier after carrier aggregation or the uplink sub-carrier shared by the feedback carrier and the feedback carrier.
  • the frame position is fed back.
  • FIG. 3 is a schematic diagram of an uplink and downlink ratio of a TDD according to the present invention.
  • the following example shows the uplink and downlink ratios of the carriers in the carrier aggregation. If the HARQ feedback timing of the secondary carriers is determined based on the preset timing of the other carrier, the uplink and downlink corresponding to the uplink and downlink ratios are different. If the subframes are in different positions, the downlink subframes of some carriers do not have corresponding uplink subframes for HARQ information feedback. For example, the subframe n of the carrier 1 is an uplink subframe, and the HARQ information corresponding to the downlink subframe nk is fed back. On the carrier 1, the subframe n itself is an uplink subframe, so there is no need to consider the HARQ feedback subframe, and there is no sub-sub-frame.
  • carrier 2 and carrier 1 have different uplink-downlink ratios, and the carrier is a downlink subframe at the position of subframe n. If the HARQ feedback timing of carrier 1 is selected as the HARQ feedback timing of carrier 2, then the downlink of carrier 2 Frame n cannot be used normally because there is no corresponding uplink feedback subframe.
  • the uplink and downlink ratio of the first carrier is “TDD uplink-downlink ratio 1”
  • the uplink and downlink ratio of the second carrier is “TDD uplink-downlink ratio 2”
  • the first carrier is PCell
  • the second carrier is The carrier is SCell.
  • the HARQ timing needs to adopt the downlink HARQ timing of the primary carrier ratio, that is, the downlink HARQ timing of the “TDD uplink-downlink ratio 1”. Since subframe 3 and subframe 8 of the uplink and downlink ratio 1 are uplink subframes, the HARQ feedback positions of the two frames are not included in the downlink HARQ timing, and the uplink and downlink ratios 2 and subframe 3 and subframe 8 are In the downlink subframe, the downlink HARQ feedback timing needs to be fed back according to the timing of the uplink and downlink ratio 1 of the PCell.
  • the subframe 3 and the subframe 8 have no corresponding HARQ feedback subframe on the secondary carrier, the subframe 3 and the subframe of the SCell are caused. 8 can not be used as a normal downlink subframe for data transmission, resulting in waste of resources.
  • the carrier aggregation is performed using the TDD carrier of the new uplink-downlink ratio. It may occur that the uplink subframe of some carriers corresponds to the downlink subframe position of other carriers, and the use of the prior art also causes waste of resources.
  • An example of the new TDD uplink and downlink ratio is shown in Figure 5.
  • the TDD uplink-downlink ratio 1 is an existing TDD uplink-downlink ratio.
  • a new TDD uplink-down ratio obtained by cyclically shifting 2 subframes to the right based on the uplink-downlink ratio 1 can be expressed as TDD up and down. Line ratio 7.
  • the two representations are equivalent in the representation of the upper and lower ratios. For the sake of simplicity, only the cyclic shift representation method similar to the upper and lower ratios 7 is used to represent the new uplink and downlink ratio.
  • FIG. 4 is a schematic flowchart of a message feedback method based on HARQ according to an embodiment of the present invention. As shown in FIG. 4, the method includes:
  • the terminal receives a data packet sent by the base station in a first downlink subframe of the carrier aggregation group, where the carrier aggregation group includes: a first carrier and a second carrier.
  • the data packet may be a Physical Downlink Shared Channel (PDSCH) data packet, or a Physical Downlink Control Channel (Physical Downlink) for indicating a Semi-Persistent Scheduling (SPS) release.
  • PDSCH Physical Downlink Shared Channel
  • PDCCH Physical Downlink Control Channel
  • the Control Channel (referred to as PDCCH) data packet is not limited herein.
  • the carrier aggregation group may include multiple carriers, and the first carrier and the second carrier are general concepts.
  • the foregoing first downlink subframe may be any downlink subframe in the carrier aggregation group.
  • the terminal determines the first sequence according to the uplink-downlink ratio of the first carrier and the uplink-downlink ratio of the second carrier in the carrier aggregation group.
  • the uplink-downlink ratio of the first carrier and/or the uplink-downlink ratio of the second carrier are other uplink-downlink ratios other than the TDD uplink-downlink ratio 0-6.
  • the uplink-downlink ratio of at least one of the first carrier and the second carrier is a new uplink-downlink ratio.
  • the new uplink-downlink ratio may be an uplink-downlink ratio that is completely different from the existing TDD uplink-downlink ratio 0-6, or may be an uplink-downlink ratio after the existing TDD uplink-downlink ratio is translated, which is not limited herein. .
  • the terminal determines the first uplink subframe in the uplink subframe of the first carrier according to the foregoing first timing, or determines the first uplink subframe in the subframe of the second carrier.
  • the carrier aggregation group generally includes one primary carrier and at least one secondary carrier.
  • the first carrier represents a primary carrier
  • the second carrier represents a secondary carrier.
  • the downlink data packet received on each carrier in the carrier aggregation group is replied on the first carrier, or the replies are performed on the second carrier, which may be pre-configured, and is not limited herein.
  • the first uplink subframe is determined in a subframe of the carrier, and if the carrier is scheduled, the first uplink subframe is determined in a subframe of the scheduling carrier.
  • the carrier aggregation scenario here may be carrier aggregation of various uplink and downlink ratios of the existing TDD, or may be carrier aggregation of new uplink and downlink ratios.
  • the multiple carriers included in the carrier aggregation group mentioned in the embodiment of the present invention may have the same uplink-downlink ratio, and may also have different uplink-downlink ratios, which are not limited herein.
  • the terminal sends a HARQ feedback message to the base station in the foregoing first uplink subframe.
  • the HARQ feedback message indicates that the ACK is replied if the data packet is correctly received, otherwise the NACK is replied.
  • the terminal receives the data packet sent by the base station in the first downlink subframe, and determines the first sequence according to the uplink-downlink ratio of the first carrier and the uplink-downlink ratio of the second carrier in the carrier aggregation group. And determining, according to the first timing, the first uplink subframe on the subframe of the first carrier or the second carrier, and further sending a feedback message to the base station in the first uplink subframe.
  • the invention realizes determining the timing according to the uplink and downlink ratio of the entire carrier aggregation, and determining the subframe of the reply feedback message, that is, providing a message feedback method suitable for carrier aggregation to ensure the data packet received in the downlink subframe There are corresponding uplink subframes for feedback, so as to avoid waste of resources.
  • the terminal determines the first sequence according to the uplink-downlink ratio of the first carrier and the uplink-downlink ratio of the second carrier, where the terminal first acquires the uplink-downlink ratio of the first carrier and the upper and lower sides of the second carrier.
  • the first ratio is determined by the terminal according to the uplink-downlink ratio of the first carrier and the uplink-downlink ratio of the second carrier.
  • the terminal may have multiple preset timings, and the first timing is one of the preset timings, which may be pre-configured in the terminal, or may be notified by the upper layer signaling, and is not limited herein. .
  • the mapping relationship between the uplink and downlink ratios and the timings may be pre-configured, and after the uplink-downlink ratio of the first carrier and the uplink-downlink ratio of the second carrier are obtained, the mapping relationship between the uplink and downlink ratios and the timing may be determined. First timing.
  • the terminal may determine the primary carrier when the connection is established, and read a system message sent by the primary cell corresponding to the primary cell, for example, a system information block (SIB). Specifically, it may be the SIB1, and the uplink and downlink ratio of the primary carrier is obtained according to the system message.
  • SIB system information block
  • the terminal may receive a Radio Resource Control (RRC) connection reconfiguration message, add/modify/release the secondary cell according to the RRC connection reconfiguration message, and read the uplink and downlink allocation of the secondary carrier from the RRC connection reconfiguration message.
  • RRC Radio Resource Control
  • the first uplink subframe is the nth subframe, where n and k are positive integers greater than 0.
  • k corresponds to the foregoing first uplink subframe
  • each uplink subframe used for sending the feedback message may correspond to at least one k value. That is, some or all of the multiple uplink subframes in the first carrier are used to send feedback messages, and the nth uplink subframe of the first carrier is used to reply to the feedback message, and the ACK/NACK of the subframe feedback is used.
  • the nk of the forwardly spaced k subframes corresponds to the reception of data packets on the downlink subframe.
  • k is greater than or equal to 4.
  • the k values corresponding to each subframe in different timing schemes may be different, as illustrated by the following examples:
  • FIG. 5 is a timing diagram of a HARQ-based message feedback method according to an embodiment of the present invention.
  • the uplink and downlink ratio of the first carrier adopts “TDD uplink-downlink ratio 1”, and the second carrier
  • the uplink-downlink ratio is “shifting the TDD uplink and downlink ratio 1 of the two subframes (for example, it can be recorded as TDD ratio 8)”, wherein the twilled grid identifies the “downlink subframe” and the dotted grid identifier “the uplink subframe” "Frame”, blank grid identifies "special subframe”.
  • the k values corresponding to each subframe are as shown in Table 1.
  • the uplink value of the uplink subframe with the subframe number of the first carrier is 2, that is, the ACK fed back by the uplink subframe with the subframe number 2 is corresponding to the forward subframe interval of 6 subframes.
  • the data packet received by the downlink subframe; the uplink subframe corresponding to the subframe number of the first carrier has a k value of 5 and 6, that is, the ACK fed back by the uplink subframe with the subframe number 3 corresponds to the forward A data packet received by a downlink subframe of interval 5 and/or 6 subframes. Other similar, will not be repeated here.
  • the timing shown in Figure 5 and Table 1 mainly consider how to schedule in various carrier aggregation modes.
  • the HARQ information feedback problem is completed without any loss of one downlink subframe resource.
  • the new timing design considers the load of each uplink subframe in the first carrier to implement message feedback for each uplink subframe. The load is relatively balanced.
  • FIG. 6 is another timing diagram of a HARQ-based message feedback method according to an embodiment of the present invention.
  • the uplink and downlink ratio of the first carrier adopts “TDD ratio 1”, and the second carrier is up and down.
  • the row ratio is “shifting TDD ratio 1 of two subframes”, wherein the twilled grid identifies “downstream subframe”, the dotted grid identifies “uplink subframe”, and the blank lattice identifies “special subframe”.
  • the k value corresponding to each subframe is as shown in Table 2.
  • the k value of the uplink subframe with the subframe number 2 of the first carrier corresponds to 5 and 6, that is, the ACK fed back by the uplink subframe with the subframe number 2 corresponds to the forward interval 5 and / or the data packet received by the downlink subframe of 6 subframes. Other similar, will not be repeated here.
  • the timing shown in Figure 6 and Table 2 mainly consider how to complete the HARQ information feedback problem without losing any one downlink subframe resource in the scheduling mode of various carrier aggregation, and also consider as fast as possible. Feedback, so as far as possible, the uplink subframe that is closer to the first downlink subframe is used to reply the feedback message to the base station, and the load balancing of the uplink subframe can be considered in consideration of the fast feedback.
  • FIG. 7 is another timing diagram of a HARQ-based message feedback method according to an embodiment of the present invention.
  • the uplink and downlink ratio of the first carrier adopts “TDD ratio 1”, and the second carrier is up and down.
  • the row ratio is “shifting TDD ratio 1 of two subframes”, wherein the twilled grid identifies “downstream subframe”, the dotted grid identifies “uplink subframe”, and the blank lattice identifies “special subframe”.
  • the k value corresponding to each subframe is as shown in Table 3.
  • the uplink subframe corresponding to the subframe number of the first carrier has a k value of 7 and 6, That is, the ACK fed back by the uplink subframe of the subframe number 2 corresponds to the data packet received by the downlink subframe of the forward interval 7 and/or the 6 subframes. Other similar, will not be repeated here.
  • the timing shown in FIG. 7 and Table 3 is that when the primary cell and the secondary cell are both TDD cells, the primary cell is a TDD cell, and the secondary cell is a Frequency Division Duplexing (FDD) cell. Timing, that is, no new timing is used, but application to this scenario will not waste resources.
  • FDD Frequency Division Duplexing
  • a certain uplink subframe corresponds to multiple k values, that is, the ACK returned by the subframe may correspond to a data packet received by at least one downlink subframe, and Table 3 is taken as an example, and the subframe number of the first carrier is used.
  • the uplink subframe of 2 in the downlink subframe of the forward interval 7 and/or the 6 subframes, if the data packet is detected on the downlink subframe of the forward interval 7, then the uplink subframe numbered 2 is replied The ACK corresponds to the downlink subframe of the forward interval 7. If the downlink subframe of the forward interval 7 and 6 detects the data packet, the ACK of the uplink subframe numbered 2 is corresponding to the forward interval 7 and 6.
  • the data packets on the downlink subframe are not limited herein.
  • the uplink and downlink ratio of the first carrier adopts “TDD ratio 2”
  • the uplink and downlink ratio of the second carrier adopts “translate TDD ratio 2 of two subframes”
  • the k value corresponding to each subframe is as follows. 4 shows:
  • the uplink and downlink ratio of the first carrier adopts “TDD ratio 1”
  • the uplink and downlink ratio of the second carrier adopts “translate the TDD ratio of three subframes to 0”
  • the k value corresponding to each subframe is as follows. 5 shows:
  • the uplink and downlink ratio of the first carrier adopts “TDD ratio 2”
  • the uplink and downlink ratio of the second carrier adopts “translating TDD ratio 0 of three subframes”
  • the k value corresponding to each subframe is as follows. 6 shows:
  • the uplink and downlink ratio of the first carrier adopts “TDD ratio 1”
  • the uplink and downlink ratio of the second carrier adopts “translate TDD ratio 2 of two subframes”
  • the k value corresponding to each subframe is as follows. 7 shows:
  • the data packets received in each downlink subframe in the carrier aggregation group have corresponding uplink subframes for feedback, and no resources are wasted. Further, it can be seen that the feedback message (ACK or NACK) carried in each uplink subframe is averaged as much as possible, and no uplink subframe carries a particularly large number of feedback messages.
  • ACK or NACK feedback message
  • FIG. 8 is a schematic flowchart of a message feedback method based on HARQ according to an embodiment of the present invention. Similar to the embodiment shown in FIG. 8, a message feedback method is also provided for uplink HARQ, as shown in FIG. The method includes:
  • the base station receives, in a third uplink subframe of the carrier aggregation group, a data packet sent by the terminal, where the carrier aggregation group includes: a first carrier or a second carrier.
  • the foregoing data packet may be a Physical Uplink Shared Channel (PUSCH) data packet, which is not limited herein.
  • PUSCH Physical Uplink Shared Channel
  • the third uplink subframe may belong to the first carrier, and may also belong to the second carrier, which is not limited herein.
  • the base station determines the third sequence according to the uplink-downlink ratio of the first carrier and the uplink-downlink ratio of the second carrier.
  • the uplink-downlink ratio of the first carrier and/or the uplink-downlink ratio of the second carrier are other uplink-downlink ratios other than the time-division duplex TDD uplink-downlink ratio 0-6.
  • the base station determines a third downlink subframe in a subframe of the first carrier according to the foregoing third preset timing, or determines a third downlink subframe in the subframe of the second carrier.
  • the third downlink subframe is determined in the subframe of its scheduling carrier.
  • the carrier aggregation group generally includes a primary carrier and at least one secondary carrier.
  • the first carrier represents a primary carrier
  • the second carrier represents a secondary carrier, which may be reversed, but not limited thereto.
  • the data packets received on each carrier in the carrier aggregation group are all replied on the first carrier.
  • the carrier aggregation scenario here may be carrier aggregation of various uplink and downlink ratios of the existing TDD, or carrier aggregation of the new uplink and downlink ratio or carrier aggregation after the uplink and downlink ratio shifting.
  • the base station sends a feedback message to the terminal on the third downlink subframe.
  • the base station receives the data packet sent by the terminal in the third uplink subframe, and determines the third timing according to the uplink-downlink ratio of the first carrier and the uplink-downlink ratio of the second carrier, and according to the third
  • the timing determines a third downlink subframe in the subframe of the first carrier or the subframe of the second carrier, and returns a feedback message to the terminal in the third downlink subframe, and implements determining the uplink-downlink ratio according to the entire carrier aggregation.
  • the timing is determined, and the subframe in which the feedback message is sent is determined to ensure that the received data packet in the uplink subframe has a corresponding downlink subframe for feedback, thereby avoiding waste of resources.
  • the base station determines the third sequence according to the uplink-downlink ratio of the first carrier and the uplink-downlink ratio of the second carrier, where the base station acquires an uplink-downlink ratio of the first carrier and an uplink-downlink configuration of the second carrier.
  • the base station determines the third timing according to the uplink-downlink ratio of the first carrier, the uplink-downlink ratio of the second carrier, and the mapping relationship between the uplink-downlink ratio and the timing.
  • the base station may have multiple preset timings, and the third preset timing is one of the preset timings, which may be pre-configured in the base station or may be notified by the upper layer signaling. No restrictions.
  • the mapping relationship between the uplink and downlink ratios and the timing may also be pre-configured or signaled by the upper layer.
  • the first carrier may be a primary carrier or a secondary carrier.
  • the second carrier may be a primary carrier or a secondary carrier, which is not limited herein.
  • the foregoing third timing is used to indicate that when the third uplink subframe is the n2-th2 subframe, the third downlink subframe is the n2th subframe, where n2 and k2 are positive integers greater than 0.
  • k2 corresponds to the foregoing third downlink subframe
  • each downlink subframe used for sending the feedback message may correspond to at least one k2 value. That is, some or all of the plurality of downlink subframes in the first carrier are used.
  • the nth downlink subframe of the first carrier is used for replying the feedback message, and the ACK/NACK fed back by the subframe may correspond to the data packet received on the uplink subframe of the forward interval k2.
  • k2 is greater than or equal to four.
  • FIG. 9 is another timing diagram of a HARQ-based message feedback method according to an embodiment of the present invention.
  • the first carrier adopts “TDD ratio 1”
  • the second carrier adopts “translate two subframes.
  • the TDD ratio is 1" wherein the twilled lattice identifies "downstream subframe", the dotted lattice identifies "uplink subframe”, and the blank lattice identifies "special subframe”.
  • the k2 value corresponding to each sub-frame is as shown in Table 8, where the last one acts as a k2 value.
  • the downlink subframe corresponding to the subframe number of the first carrier has a k2 value of 6, that is, the ACK fed back by the downlink subframe with the subframe number 0 is corresponding to the forward interval of 6 subframes.
  • the data packet received by the uplink subframe As shown in Table 8, the downlink subframe corresponding to the subframe number of the first carrier has a k2 value of 6, that is, the ACK fed back by the downlink subframe with the subframe number 0 is corresponding to the forward interval of 6 subframes.
  • FIG. 10 is another timing diagram of a HARQ-based message feedback method according to an embodiment of the present invention.
  • the uplink and downlink ratios of the first carrier and the second carrier are different, and the first carrier adopts “TDD uplink and downlink. Ratio 2”, the second carrier adopts "translate TDD ratio 1 of two subframes", wherein the trellis lattice identifies "downlink subframe", the lattice identifier with dot "uplink subframe”, and the blank lattice identifier "special Subframe”.
  • the k2 value corresponding to each sub-frame is as shown in Table 9, where the last one acts as a k2 value.
  • the downlink subframe corresponding to the first carrier has a k2 value of 6, that is, the ACK fed back by the downlink subframe with the subframe number 0 is corresponding to the forward interval of 6 subframes.
  • the data packet received by the uplink subframe As shown in Table 9, the downlink subframe corresponding to the first carrier has a k2 value of 6, that is, the ACK fed back by the downlink subframe with the subframe number 0 is corresponding to the forward interval of 6 subframes.
  • the data packet received by the uplink subframe has a k2 value of 6, that is, the ACK fed back by the downlink subframe with the subframe number 0 is corresponding to the forward interval of 6 subframes.
  • the feedback is performed by the above method, and each receiving In the uplink subframe of the data packet, there is a corresponding downlink subframe for feedback, and there is no waste of resources, and the load of each downlink subframe is balanced as much as possible, so that a certain downlink subframe avoids excessive feedback messages.
  • the resource allocation information (including the uplink resource and the downlink resource) of the terminal may be obtained through the DCI information on the PDCCH.
  • FIG. 11 is a schematic flowchart of another method for scheduling a subframe based on a HARQ according to an embodiment of the present invention.
  • a certain timing is also required to perform cross-carrier scheduling.
  • This embodiment provides a scheduling method. As shown in FIG. 11, the method includes:
  • the base station determines the second sequence according to the uplink-downlink ratio of the first carrier in the carrier aggregation group and the uplink-downlink ratio of the second carrier.
  • the carrier aggregation group includes: a first carrier and a second carrier.
  • the uplink-downlink ratio of the first carrier and/or the uplink-downlink ratio of the second carrier are other uplink-downlink ratios other than the TDD uplink-downlink ratio 0-6.
  • the uplink-downlink ratio of at least one of the first carrier and the second carrier is a new uplink-downlink ratio
  • the new ratio may be an uplink-downlink ratio that is completely different from the existing TDD uplink-downlink ratio 0-6. It may also be an uplink-downlink ratio after the existing TDD uplink-downlink ratio is translated, which is not limited herein.
  • the base station determines, according to the second preset timing, the second downlink subframe corresponding to the to-be-scheduled uplink subframe in the subframe of the first carrier, or determines the second downlink subframe in the subframe of the second carrier.
  • the second downlink subframe is determined in the subframe of the carrier, and if the cross-carrier scheduling is performed, the second downlink subframe is determined in the subframe of the other carrier.
  • the base station sends scheduling information of the second uplink subframe in the second downlink subframe.
  • the base station receives the data packet sent by the terminal in the second uplink subframe.
  • the base station determines the second timing uplink-downlink ratio according to the uplink-downlink ratio of the first carrier in the carrier aggregation group and the uplink-downlink ratio of the second carrier, and determines the second downlink subframe according to the second timing. And transmitting the scheduling information of the second uplink subframe in the second downlink subframe, and receiving the data packet sent by the terminal in the second uplink subframe, and determining the downlink subframe according to the timing corresponding to the uplink and downlink ratio of the entire carrier aggregation.
  • the frame sends scheduling information to ensure that the downlink subframes to be scheduled have corresponding downlink subframes for scheduling, thereby avoiding waste of resources.
  • the base station is configured according to an uplink and downlink ratio of the first carrier and a second carrier on the carrier aggregation group.
  • the downlink ratio is determined, and the second timing is determined, where the base station acquires an uplink-downlink ratio of the first carrier and an uplink-downlink ratio of the uplink and downlink ratio of the second carrier; the base station according to the uplink and downlink ratio of the first carrier
  • the uplink and downlink ratio of the second carrier, and the mapping relationship between the subframe configuration and the timing, and the uplink and downlink ratios of the uplink and downlink ratios determine the second timing.
  • the base station may have multiple preset timings, and the second preset timing is one of the preset timings, which may be pre-configured in the base station, or may be notified by the upper layer signaling. No restrictions.
  • the mapping relationship between the subframe configuration and the timing may also be pre-configured or signaled by the upper layer.
  • the first carrier may be a primary carrier or a secondary carrier.
  • the second carrier may be a primary carrier or a secondary carrier, which is not limited herein.
  • the second timing is used to indicate that when the to-be-scheduled uplink subframe is the n1+k1 subframe, the second downlink subframe is the n1-th subframe, where both n1 and k1 are positive integers greater than 0.
  • k1 corresponds to the foregoing second downlink subframe
  • each uplink subframe used for scheduling the downlink subframe may correspond to at least one k1 value.
  • k1 is greater than or equal to four.
  • FIG. 12 is another timing diagram of a HARQ-based message feedback method according to an embodiment of the present invention.
  • the first carrier adopts “TDD uplink-downlink ratio 1”
  • the second carrier adopts “translation two children.
  • the TDD ratio of the frame is 1" wherein the twilled lattice identifies "downstream subframe", the dotted lattice identifies "uplink subframe”, and the blank lattice identifies "special subframe”.
  • the k1 value corresponding to each sub-frame is as shown in Table 10, where the last one acts as the k1 value.
  • the downlink subframe corresponding to the subframe number of the first carrier has a k1 value of 4, that is, the downlink subframe with the subframe number of 0 can be used to schedule the uplink subframe of the forward subframe by 4 subframes. .
  • FIG. 13 is another timing diagram of a HARQ-based message feedback method according to an embodiment of the present invention.
  • the uplink and downlink ratios of the first carrier and the second carrier are different, and the first carrier is assumed to be “up and down”.
  • Ratio 2 the second carrier uses "translates two subframes of TDD uplink and downlink ratio 1", wherein the twilled lattice identifies "downstream subframe", the dotted lattice identifies "uplink subframe”, and the blank lattice identifies "special subframe”.
  • the k1 value corresponding to each subframe is as shown in Table 11, wherein The last one acts as a k1 value,
  • the downlink subframe corresponding to the subframe number of the first carrier has a k1 value of 4, that is, the downlink subframe with the subframe number of 0 can be used to schedule the uplink subframe with 4 subframes forwarded. .
  • each uplink subframe that needs to be scheduled has a corresponding downlink subframe for scheduling, and there is no waste of resources.
  • FIG. 14 is a schematic structural diagram of a HARQ-based message feedback apparatus according to an embodiment of the present invention.
  • the apparatus may be integrated into a terminal.
  • the apparatus includes: a receiving module 141, a determining module 142, and a sending module 143. ,among them,
  • the receiving module 141 is configured to receive a data packet sent by the base station in a first downlink subframe of the carrier aggregation group, where the carrier aggregation group includes: a first carrier and a second carrier.
  • a determining module 142 configured to determine a first timing according to an uplink-downlink ratio of the first carrier and an uplink-downlink ratio of the second carrier, and determine, in the subframe of the first carrier according to the first timing
  • the first uplink subframe, or the first uplink subframe is determined in the subframe of the second carrier.
  • the uplink-downlink ratio of the first carrier and/or the uplink-downlink ratio of the second carrier are other uplink-downlink ratios other than the time-division duplex TDD uplink-downlink ratio 0-6;
  • the sending module 143 is configured to send a feedback message to the base station on the first uplink subframe.
  • the foregoing device may be used to perform the method provided in the foregoing method embodiment, and the specific implementation manner and the technical effect are similar, and details are not described herein again.
  • FIG. 15 is a schematic structural diagram of another HARQ-based message feedback apparatus according to an embodiment of the present invention.
  • the apparatus may be integrated into a base station.
  • the apparatus includes: a receiving module 151, a determining module 152, and a sending module. 153, of which
  • the receiving module 151 is configured to receive data sent by the terminal in the third uplink subframe of the carrier aggregation group.
  • a determining module 152 configured to determine a third timing according to an uplink-downlink ratio of the first carrier and an uplink-downlink ratio of the second carrier, and determine, in the subframe of the first carrier according to the third timing
  • the third downlink subframe, or the third downlink subframe is determined in the subframe of the second carrier.
  • the uplink-downlink ratio of the first carrier and/or the uplink-downlink ratio of the second carrier are other uplink-downlink ratios other than the time-division duplex TDD uplink-downlink ratio 0-6.
  • the sending module 153 is configured to send a feedback message to the terminal on the third downlink subframe.
  • the foregoing device may be used to perform the method provided in the foregoing method embodiment, and the specific implementation manner and the technical effect are similar, and details are not described herein again.
  • FIG. 16 is a schematic structural diagram of another HARQ-based message feedback apparatus according to an embodiment of the present invention.
  • the apparatus may be integrated into a base station.
  • the apparatus includes: a determining module 161, a sending module 162, and a receiving module. 163, of which
  • a determining module 161 configured to determine a second timing according to the uplink-downlink ratio of the first carrier in the carrier aggregation group and the uplink-downlink ratio of the second carrier, in the subframe of the first carrier according to the second timing Determining a second downlink subframe corresponding to the second uplink subframe, or determining a second downlink subframe in the subframe of the second carrier.
  • the carrier aggregation group includes: the first carrier and the second carrier, where an uplink-downlink ratio of the first carrier and/or an uplink-downlink ratio of the second carrier is a time division duplex TDD Up and down ratios are compared with other uplink and downlink ratios other than 0-6.
  • the sending module 162 is configured to send scheduling information of the second uplink subframe on the second downlink subframe.
  • the receiving module 163 is configured to receive, by using the second uplink subframe, a data packet sent by the terminal.
  • the foregoing device may be used to perform the method provided in the foregoing method embodiment, and the specific implementation manner and the technical effect are similar, and details are not described herein again.
  • each module of the above device is only a division of a logical function, and the actual implementation may be integrated into one physical entity in whole or in part, or may be physically separated.
  • these modules can all be implemented by software in the form of processing component calls; or all of them can be implemented in hardware form; some modules can be realized by processing component calling software, and some modules are realized by hardware.
  • the determination module can be set up separately
  • the processing component can also be implemented in one of the above-mentioned devices, or can be stored in the memory of the above device in the form of program code, and a certain processing component of the device can call and execute the function of the above determining module. .
  • the implementation of other modules is similar. In addition, all or part of these modules can be integrated or implemented independently.
  • the above modules may be one or more integrated circuits configured to implement the above methods, such as one or more Application Specific Integrated Circuits (ASICs), or one or more microprocessors (digital) Singnal processor (DSP), or one or more Field Programmable Gate Array (FPGA).
  • ASICs Application Specific Integrated Circuits
  • DSP digital Singnal processor
  • FPGA Field Programmable Gate Array
  • the processing component may be a general purpose processor, such as a central processing unit (CPU) or other processor that can call the program code.
  • CPU central processing unit
  • these modules can be integrated and implemented in the form of a system-on-a-chip (SOC).
  • SOC system-on-a-chip
  • FIG. 17 is a schematic structural diagram of a message feedback device based on HARQ according to an embodiment of the present invention.
  • the device may be integrated into a terminal. As shown in FIG. 17, the device includes: a processor 1701, a transmitter 1702, and a receiver 1703. The memory 1704 and the antenna 1705.
  • the memory 1704, the transmitter 1702, and the receiver 1703 and the processor 1701 can be connected by a bus.
  • the memory 1704, the transmitter 1702, and the receiver 1703 and the processor 1701 may not be a bus structure, but may be other structures, such as a star structure, which is not specifically limited herein.
  • the processor 1701 may be a general-purpose central processing unit or an ASIC, and may be one or more integrated circuits for controlling program execution, may be hardware circuits developed using an FPGA, and may be a baseband processor.
  • the processor 1701 may include at least one processing core.
  • memory 1704 can include one or more of ROM, RAM, and disk storage. Memory 1704 is used to store data and/or instructions needed by processor 1701 to operate. The number of memories 1704 can be one or more.
  • the apparatus can be used to perform the method performed by the terminal in the foregoing method embodiments. specifically:
  • the aggregation group includes: a first carrier and a second carrier;
  • the uplink and downlink ratio of the first carrier and the uplink-downlink ratio of the second carrier are matched
  • the ratio is other than the uplink and downlink ratio of the time division duplex TDD uplink and downlink ratio 0-6;
  • the apparatus may be used to perform the method performed by the base station in the foregoing method embodiment.
  • the structure of the base station is the same as that shown in FIG. 17, and the processor 1701 performs the following method:
  • the carrier aggregation group includes: a first carrier and a second carrier;
  • the apparatus may be used to perform the method performed by the base station in the foregoing method embodiment.
  • the structure of the base station is the same as that shown in FIG. 17, and the processor 1701 performs the following.
  • Method In another embodiment,
  • the uplink-downlink ratio of the first carrier and/or the uplink-downlink ratio of the second carrier is time division duplex TDD uplink and downlink ratios other than 0-6;
  • the foregoing program may be stored in a computer readable storage medium, and the program is executed when executed.
  • the foregoing steps include the steps of the foregoing method embodiments; and the foregoing storage medium includes: a medium that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.

Abstract

本发明实施例提供一种基于HARQ的消息反馈方法及装置,该方法包括:终端在载波聚合组的第一下行子帧接收基站发送的数据包,其中,载波聚合组中包括:第一载波和第二载波;根据第一载波的上下行配比和第二载波的上下行配比确定第一时序,根据第一时序在第一载波的子帧中确定第一上行子帧,或者,在第二载波的子帧中确定第一上行子帧;在所述第一上行子帧上向所述基站发送反馈消息。实现了根据整个载波聚合的上下行配比确定时序,并确定回复反馈消息的子帧,即提供一种适用于载波聚合后的消息反馈方法,以保证下行子帧上收到的数据包有对应的上行子帧进行反馈,尽量避免资源浪费。

Description

基于HARQ的消息反馈方法及装置 技术领域
本发明涉及通信技术,尤其涉及一种基于HARQ的消息反馈方法及装置。
背景技术
混合式自动重传请求(Hybrid Automatic Repeat request,简称HARQ)是一种结合前向纠错(Forward Error Correction,简称FEC)和自动重传请求(Automatic Repeat request,简称ARQ)方法的技术。其中,FEC通过添加冗余信息,使得接收端能够纠正一部分错误,从而减少重传的次数,对于FEC无法纠正的错误,接收端会通过ARQ机制请求发送端重发数据。具体实现过程中,接收端使用检错码来检测收到的数据包是否出错,如果无错,则接收端向发送端发送一个确认(Acknowledgement,简称ACK),如果出错,则接收端向发送端发送一个否定确认(Negative Acknowledgement,简称NACK),发送端收到NACK后,会重发数据包。
现有技术中,接收端接收数据包后,会按照预设的时序回复ACK或NACK。为了提供更大的带宽,长期演进(Long Term Evolution,简称LTE)引入了载波聚合(Carrier Aggregation,简称CA)技术,针对聚合后的载波,如果还采用现有的时序回复ACK或NACK,会造成资源浪费或无法回复ACK或NACK。
发明内容
本发明实施例提供一种基于HARQ的消息反馈方法及装置,用于解决现有技术中回复ACK或NACK,会造成资源浪费或无法回复ACK或NACK的问题。
本发明实施例第一方面提供一种基于HARQ的消息反馈方法,包括:
终端在载波聚合组的第一下行子帧接收基站发送的数据包,其中,所述载波聚合组中包括:第一载波和第二载波;
所述终端根据所述第一载波的上下行配比和所述第二载波的上下行配比 确定第一时序,其中所述第一载波的上下行配比和/或所述第二载波的上下行配比为除时分双工TDD上下行配比0-6之外的其他上下行配比;
所述终端根据所述第一时序在所述第一载波的子帧中确定第一上行子帧,或者,在所述第二载波的子帧中确定第一上行子帧;
所述终端在所述第一上行子帧上向所述基站发送反馈消息。
可选地,所述第一时序用于指示所述第一下行子帧为第n-k个子帧时,所述第一上行子帧为第n个子帧,其中,n为大于或等于0的正整数,k为大于0的正整数。
可选地,所述第一载波的上下行配比采用时分双工TDD上下行配比1、且所述第二载波的上下行配比采用平移两个子帧的TDD上下行配比1时,
所述第一载波中编号2的上行子帧的k值为6、所述第一载波中编号3的上行子帧的k值为5和6、所述第一载波中编号7的上行子帧的k值为6、以及所述第一载波中编号8的上行子帧的k值为5和6。
可选地,所述第一载波的上下行配比采用时分双工TDD上下行配比1、且所述第二载波的上下行配比采用平移两个子帧的TDD上下行配比1时,
所述第一载波中编号2的上行子帧的k值为5和6、所述第一载波中编号3的上行子帧的k值为6、所述第一载波中编号7的上行子帧的k值为5和6、以及所述第一载波中编号8的上行子帧的k值为6。
可选地,所述第一载波的上下行配比采用时分双工TDD上下行配比1、且所述第二载波的上下行配比采用平移两个子帧的TDD上下行配比1时,
所述第一载波中编号2的上行子帧的k值为6和7、所述第一载波中编号3的上行子帧的k值为4、5和6、所述第一载波中编号7的上行子帧的k值为6和7、以及所述第一载波中编号8的上行子帧的k值为4、5和6。
本发明实施例第二方面提供一种基于HARQ的消息反馈方法,包括:
基站在载波聚合组的第三上行子帧接收终端发送的数据包,其中,所述载波聚合组包括:第一载波和第二载波;
所述基站根据所述第一载波的上下行配比和所述第二载波的上下行配比确定第三时序,其中所述第一载波的上下行配比和/或所述第二载波的上下行配比为除时分双工TDD上下行配比0-6之外的其他上下行配比;
所述基站根据所述第三时序在所述第一载波的子帧中确定第三下行子 帧,或者,在所述第二载波的子帧中确定第三下行子帧;
所述基站在所述第三下行子帧上向所述终端发送反馈消息。
可选地,所述第三时序用于指示所述第三上行子帧为第n2-k2个子帧时,所述第三下行子帧为第n2个子帧,其中,n2为大于或等于0的正整数,k2为大于0的正整数。
可选地,所述第一载波的上下行配比采用时分双工TDD上下行配比1、且所述第二载波的上下行配比采用平移两个子帧的TDD上下行配比1时,
所述第一载波中编号0的下行子帧的k值为6、所述第一载波中编号1的下行子帧的k值为6、所述第一载波中编号5的下行子帧的k值为6、以及所述第一载波中编号6的下行子帧的k值为5和6。
可选地,所述第一载波的上下行配比采用时分双工TDD上下行配比2、且所述第二载波的上下行配比采用平移两个子帧的TDD上下行配比1时,
所述第一载波中编号0的下行子帧的k值为6、所述第一载波中编号1的下行子帧的k值为6、所述第一载波中编号5的下行子帧的k值为6、以及所述第一载波中编号6的下行子帧的k值为5和6。
本发明实施例第三方面提供一种基于HARQ的消息反馈方法,包括:
基站根据载波聚合组中第一载波的上下行配比和第二载波的上下行配比,确定第二时序,其中,所述载波聚合组包括:所述第一载波和所述第二载波,所述第一载波的上下行配比和/或所述第二载波的上下行配比为除时分双工TDD上下行配比0-6之外的其他上下行配比;
所述基站根据所述第二时序在所述第一载波的子帧中确定第二上行子帧对应的第二下行子帧,或者,在所述第二载波的子帧中确定第二下行子帧;
所述基站在所述第二下行子帧上发送第二上行子帧的调度信息;
所述基站在所述第二上行子帧上接收终端发送的数据包。
可选地,所述第二时序用于指示所述待调度上行子帧为第n1+k1个子帧时,所述第二下行子帧为第n1个子帧,其中,n1为大于或等于0的正整数,k1为大于0的正整数。
可选地,所述第一载波的上下行配比采用TDD上下行配比1、且所述第二载波的上下行配比采用平移两个子帧的TDD上下行配比1时,
所述第一载波中编号0的下行子帧的k值为4、所述第一载波中编号1的下行子帧的k值为4、所述第一载波中编号5的下行子帧的k值为4、以及所述第一载波中编号6的下行子帧的k值为4。
可选地,所述第一载波的上下行配比采用TDD上下行配比2、且所述第二载波的上下行配比采用平移两个子帧的TDD上下行配比1时,
所述第一载波中编号0的下行子帧的k值为4、所述第一载波中编号1的下行子帧的k值为4、所述第一载波中编号5的下行子帧的k值为4、以及所述第一载波中编号6的下行子帧的k值为4。
本发明实施例第四方面提供一种基于HARQ的消息反馈装置,所述装置包括用于执行上述第一方面以及第一方面的各种实现方式所提供的方法的模块或手段(means)。
本发明实施例第五方面提供一种基于HARQ的消息反馈装置,所述装置包括用于执行上述第二方面以及第二方面的各种实现方式所提供的方法的模块或手段(means)。
本发明实施例第六方面提供一种基于HARQ的消息反馈装置,所述装置包括用于执行上述第三方面以及第三方面的各种实现方式所提供的方法的模块或手段(means)。
本发明实施例第七方面提供一种基于HARQ的消息反馈装置,所述装置包括处理器和存储器,存储器用于存储程序,处理器调用存储器存储的程序,以执行本申请第一方面提供的方法。
本发明实施例第八方面提供一种基于HARQ的消息反馈装置,所述装置包括处理器和存储器,存储器用于存储程序,处理器调用存储器存储的程序,以执行本申请第二方面提供的方法。
本发明实施例第九方面提供一种基于HARQ的消息反馈装置,所述装置包括处理器和存储器,存储器用于存储程序,处理器调用存储器存储的程序,以执行本申请第三方面提供的方法。
本发明实施例第十方面提供一种基于HARQ的消息反馈装置,包括用于执行以上第一方面的方法的至少一个处理元件(或芯片)。
本发明实施例第十一方面提供一种基于HARQ的消息反馈装置,包括用于执行以上第二方面的方法的至少一个处理元件(或芯片)。
本发明实施例第十二方面提供一种基于HARQ的消息反馈装置,包括用于执行以上第三方面的方法的至少一个处理元件(或芯片)。
本发明实施例第十三方面提供一种程序,该程序在被处理器执行时用于执行以上第一方面的方法。
本发明实施例第十四方面提供一种程序产品,例如计算机可读存储介质,包括第十三方面的程序。
本发明实施例第十五方面提供一种程序,该程序在被处理器执行时用于执行以上第二方面的方法。
本发明实施例第十六方面提供一种程序产品,例如计算机可读存储介质,包括第十五方面的程序。
本发明实施例第十七方面提供一种程序,该程序在被处理器执行时用于执行以上第三方面的方法。
本发明实施例第十八方面提供一种程序产品,例如计算机可读存储介质,包括第十七方面的程序。
本发明实施例提供的基于HARQ的消息反馈方法及装置中,实现了根据整个载波聚合的上下行配比确定时序,并确定回复反馈消息的子帧,即提供一种适用于载波聚合后的消息反馈方法,以保证下行子帧上收到的数据包有对应的上行子帧进行反馈,尽量避免资源浪费。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明提供的基于HARQ的消息反馈方法的应用场景示意图;
图2为载波调度方式示意图;
图3为本发明提供的一种TDD的上下行配比示意图;
图4为本发明实施例提供的一种基于HARQ的消息反馈方法的流程示意图;
图5为本发明实施例提供的基于HARQ的消息反馈方法中的一种时序示意图;
图6为本发明实施例提供的基于HARQ的消息反馈方法中的另一种时序示意图;
图7为本发明实施例提供的基于HARQ的消息反馈方法中的另一种时序示意图;
图8为本发明实施例提供的一种基于HARQ的消息反馈方法的流程示意图;
图9为本发明实施例提供的基于HARQ的消息反馈方法中的另一种时序示意图;
图10为本发明实施例提供的基于HARQ的消息反馈方法中的另一种时序示意图;
图11为本发明实施例提供的另一种基于HARQ的子帧调度方法的流程示意图;
图12为本发明实施例提供的基于HARQ的消息反馈方法中的另一种时序示意图;
图13为本发明实施例提供的基于HARQ的消息反馈方法中的另一种时序示意图;
图14为本发明实施例提供的一种基于HARQ的消息反馈装置的结构示意图;
图15为本发明实施例提供的另一种基于HARQ的消息反馈装置的结构示意图;
图16为本发明实施例提供的另一种基于HARQ的消息反馈装置的结构示意图;
图17为本发明实施例提供的一种基于HARQ的消息反馈装置的结构示意图。
具体实施方式
基站:又称为无线接入网(Radio Access Network,RAN)设备,是一种将终端接入到无线网络的设备,可以是全球移动通讯(Global System of  Mobile communication,简称GSM)或码分多址(Code Division Multiple Access,简称CDMA)中的基站(Base Transceiver Station,简称BTS),也可以是宽带码分多址(Wideband Code Division Multiple Access,简称WCDMA)中的基站(NodeB,简称NB),还可以是长期演进(Long Term Evolution,简称LTE)中的演进型基站(Evolutional Node B,简称eNB或eNodeB),或者中继站或接入点,或者未来5G网络中的基站等,在此并不限定。
终端:可以是无线终端也可以是有线终端,无线终端可以是指向用户提供语音和/或其他业务数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。无线终端可以经无线接入网(Radio Access Network,简称RAN)与一个或多个核心网进行通信,无线终端可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(Personal Communication Service,简称PCS)电话、无绳电话、会话发起协议(Session Initiation Protocol,简称SIP)话机、无线本地环路(Wireless Local Loop,简称WLL)站、个人数字助理(Personal Digital Assistant,简称PDA)等设备。无线终端也可以称为系统、订户单元(Subscriber Unit)、订户站(Subscriber Station),移动站(Mobile Station)、移动台(Mobile)、远程站(Remote Station)、远程终端(Remote Terminal)、接入终端(Access Terminal)、用户终端(User Terminal)、用户代理(User Agent)、用户设备(User Device or User Equipment),在此不作限定。
本发明实施例中,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
载波聚合(Carrier Aggregation,简称CA)是将2个或更多的载波单元(Component Carrier,简称CC)聚合在一起形成载波组以支持更大的传输带宽。在CA场景下,多个载波单元可以分组工作。目前3GPP标准支持两个分组,一个可以称为“主物理上行控制信道(Physical Uplink Control  Channel,简称PUCCH)组(primary PUCCH group)”,另一个可以称为“辅PUCCH组(secondary PUCCH group)”,一个组内通过一个载波反馈该组内多个载波的HARQ的ACK/NACK信息,即一个组中所有载波收到数据包后的反馈信息(ACK或NACK)都由一个指定的载波来回复。载波聚合中,主小区(Primary cell,简称Pcell对应的载波称为主分量载波(Primary Component Carrier,简称PCC),也称作主载波;辅小区(Secondary Cell,简称Scell)对应的载波称为辅分量载波(Secondary Component Carrier,简称SCC),也称为辅载波。主小区负责基站与终端之间的无线资源控制(Radio Resource Control,简称RRC);辅小区用于提供额外的无线资源,与终端之间不存在RRC通信。
PCell是primary PUCCH group中用来反馈HARQ的ACK/NACK信息的载波,在secondary PUCCH group中也有一个载波用来反馈HARQ的ACK/NACK信息,这个载波被称为PUCCH-SCell。随着技术的发展,载波分组的个数可以不限制为2个。由于在每个载波分组中,HARQ反馈信息(即HARQ的ACK/NACK信息)的发送原则是相同的,因此为了简单起见本发明只针对一个载波组的情况进行说明,用于反馈HARQ信息的载波统称为反馈载波。本发明的方案可以自动扩展到多个载波组的情况。
另外,需要说明的是,载波聚合下辅载波的下行HARQ时序是相对于反馈载波的,因此时序的关系只用考虑被反馈载波和反馈载波两个载波即可。
在LTE的TDD模式下,上下行配比用于表示在一个无线帧内上、下行子帧、以及特殊子帧的个数以及位置,也可以简称为配比。
图1为本发明提供的基于HARQ的消息反馈方法的应用场景示意图,如图1所示,该场景包括:基站01、终端02。
图1中终端02可以通过多个载波与基站01进行通信。
图2为载波调度方式示意图。
载波聚合中各载波的资源调度方式可以分为跨载波调度和自调度(即非跨载波调度)。跨载波调度指的是一个载波的资源是通过另一个载波进行调度的。
自调度(非跨载波调度)指的就是本载波的资源由本载波的控制信道进行调度。
基于载波指示域(Carrier Indicator Field,简称CIF)的跨载波调度允许一个服务小区(serving cell)的PDCCH调度另一服务小区上的无线资源,即控制信息在一个载波单元上传输,而对应的数据在另一个载波单元上传输,即PDCCH在一个小区上传输,但对应的PDSCH或物理上行共享信道(Physical Uplink Shared Channel,简称PUSCH)在另一个小区上传输。一般地,主小区通过自身的PDCCH进行调度,而当辅小区没有配置PDCCH时,可以通过另一个服务小区的PDCCH进行调度。需要说明的是这里的服务小区和载波是等价的概念,一个服务小区即一个载波。
如果一个终端支持载波聚合,那么这个终端对应的多个服务小区可以有如下几种配置方式:(1)其中某个服务小区的资源由本载波的PDCCH进行调度,即自调度(非跨载波调度)。(2)某个服务小区的资源被其它服务小区跨载波调度,PDCCH在调度载波上发送,那么该服务小区称为跨载波调度。
如图2所示,CC1和CC3都是非跨载波调度,即本载波的资源由本载波的PDCCH信令来调度。CC2和CC4都是跨载波调度,且都由CC1进行调度。
图2中,PDCCH可以用来调度物理下行共享信道(Physical Downlink Shared Channel,简称PDSCH)的下行资源;或者,PDCCH也可以用来调度物理上行共享信道(Physical Uplink Shared Channel,简称PUSCH)的上行资源。
对于下行HARQ,即终端对基站发送的下行数据进行确认的处理流程,下行数据的发送和确认消息的回复有一定的时序关系,在时分双工(Time Division Duplexing,简称TDD)场景下,多个下行子帧发送的数据包可能需要在同一上行子帧上回复ACK或NACK,例如当终端在第n-k个子帧(下行子帧)上检测到下行数据包时,终端会在第n个子帧(上行子帧)上回复ACK或NACK。
对于上行HARQ,即基站对终端发送的上行数据进行确认的处理流程,上行的时序关系包括两个:一个是上行数据的调度时序(也可以称为UL grant时序),表示当终端在第n个子帧(下行子帧)检测到PDCCH中的上行调度信息后,会在第n+k个子帧(上行子帧)发送物理上行共享信道(Physical Uplink Shared Channel,简称PUSCH)数据;另一个是上行数据的HARQ反馈消息回复时序(也可以称为物理混合ARQ指示信道(Physical Hybrid ARQ  Indicator Channel简称PHICH)时序),TDD场景下,类似地,当基站在第n-k个子帧(上行子帧)上检测到上行数据包时,基站会在第n个子帧(下行子帧)上回复ACK或NACK。其中,n和k都是大于0的正整数。
如上所述,针对单个载波存在预设的下行和上行HARQ时序。以下行HARQ时序为例,当终端在第n-k个子帧(下行子帧)上检测到下行数据包时,终端会在第n个子帧(上行子帧)上回复ACK或NACK。这里的k和n值在每种TDD的上下行配比下都有确定的数值进行对应。
载波聚合后,现有技术中一般会根据不同的载波资源调度方式选择一个已有的单载波的HARQ信息反馈时序作为载波聚合后辅载波的HARQ时序或者选择反馈载波和被反馈载波共有的上行子帧位置进行反馈。
图3为本发明提供的一种TDD的上下行配比示意图。
以下行HARQ时序为例,载波聚合中各载波的上下行配比可能不同,如果只依据另一个载波的预设时序确定辅载波的HARQ反馈时序的话,由于不同上下行配比所对应的上下行子帧位置不同,会导致某些载波的下行子帧没有对应的上行子帧进行HARQ信息反馈。例如载波1的子帧n为上行子帧,对应下行子帧n-k的HARQ信息反馈,在该载波1上子帧n本身是上行子帧因此不需要考虑其HARQ反馈子帧,也就不存在子帧n的HARQ反馈时序。但载波2与载波1有不同的上下行配比,该载波在子帧n的位置是下行子帧,如果选择载波1的HARQ反馈时序作为载波2的HARQ反馈时序的话,那么载波2的下行子帧n由于没有对应的上行反馈子帧而无法正常使用。如图3所示,第一载波的上下行配比为“TDD上下行配比1”、第二载波的上下行配比为“TDD上下行配比2”,第一载波为PCell,第二载波为SCell。根据现有技术当SCell采用跨载波调度时(即被PCell调度),其HARQ时序需要采用主载波配比的下行HARQ时序,即“TDD上下行配比1”的下行HARQ时序。由于上下行配比1的子帧3和子帧8为上行子帧,因此其下行HARQ时序中不包括这两个帧的HARQ反馈位置,而上下行配比2下,子帧3和子帧8为下行子帧,由于下行HARQ反馈时序需要按照PCell的上下行配比1的时序来反馈,辅载波上由于子帧3和子帧8无对应的HARQ反馈子帧,因此导致SCell的子帧3和子帧8不能作为正常下行子帧进行数据发送,从而导致资源的浪费。
另外,在新的TDD上下行配比(包括定义新的上下行配比格式,或者对现有上下行配比的平移)引入后,使用新上下行配比的TDD载波进行载波聚合时,同样会出现某些载波的上行子帧对应另一些载波的下行子帧位置,如果采用现有技术同样会导致资源浪费。新TDD上下行配比的例子如图5所示。其中TDD上下行配比1是现有的一种TDD上下行配比,基于上下行配比1的向右循环移位2个子帧所得到的一个新的TDD上下行配比可以表示为TDD上下行配比7。在上下行配比的表示上两种表示方式等价,为了简单起见后面的描述中仅采用类似上下行配比7的循环移位表示方法来表示新的上下行配比。
本发明实施例针对载波聚合的场景,提出一种新的HARQ信息反馈方法,尽量考虑载波聚合中各载波的上下行配比来进行消息反馈。
图4为本发明实施例提供的一种基于HARQ的消息反馈方法的流程示意图,如图4所示,该方法包括:
S101、终端在载波聚合组的第一下行子帧上接收基站发送的数据包,其中,该载波聚合组包括:第一载波和第二载波。
其中,上述数据包可以为物理下行共享信道(Physical Downlink Shared Channel,简称PDSCH)数据包,或者,用于指示下行半持续调度(Semi-Persistent Scheduling,简称SPS)释放的物理下行控制信道(Physical Downlink Control Channel,简称PDCCH)数据包,在此不作限制。
载波聚合组可以包括多个载波,上述第一载波和第二载波是泛指概念。
上述第一下行子帧可以是载波聚合组中的任一下行子帧。
S102、终端根据载波聚合组中上述第一载波的上下行配比和第二载波的上下行配比,确定第一时序。
其中,第一载波的上下行配比和/或第二载波的上下行配比为除TDD上下行配比0-6之外的其他上下行配比。
即第一载波和第二载波中至少1个的上下行配比是新的上下行配比。新的上下行配比可以是与现有TDD上下行配比0-6完全不同的上下行配比,也可以是将现有TDD上下行配比平移后的上下行配比,在此不作限定。
S103、终端根据上述第一时序在上述第一载波的上行子帧中确定第一上行子帧,或者,在第二载波的子帧中确定第一上行子帧。
载波聚合组中一般包括一个主载波和至少1个辅载波,一般地,上述第一载波代表主载波,第二载波代表辅载波。
本实施例中,载波聚合组中各载波上收到的下行数据包在第一载波上进行回复,或者,在第二载波上进行回复,可以预先配置好,在此不作限制。
可选地,如果是非跨载波调度,就在本载波的子帧中确定第一上行子帧,如果是跨载波调度,就在其调度载波的子帧中确定第一上行子帧。
这里的载波聚合场景可以是现有的TDD各种上下行配比的载波聚合,也可以是新的上下行配比的载波聚合。
本发明实施例中提到的载波聚合组中所包含的多个载波可以是上下行配比均相同,也可以存在不同的上下行配比,在此不作限制。
S104、终端在上述第一上行子帧上向基站发送HARQ反馈消息。
HARQ反馈消息指如果正确接收到数据包则回复ACK,否则回复NACK。
本实施例中,终端在第一下行子帧上接收基站发送的数据包,根据载波聚合组中上述第一载波的上下行配比和第二载波的上下行配比,确定第一时序,并根据第一时序在第一载波或第二载波的子帧上确定第一上行子帧,进而在第一上行子帧上向基站发送反馈消息。本发明实现了根据整个载波聚合的上下行配比确定时序,并确定回复反馈消息的子帧,即提供一种适用于载波聚合后的消息反馈方法,以保证下行子帧上收到的数据包有对应的上行子帧进行反馈,尽量避免资源浪费。
可选地,终端根据上述第一载波的上下行配比和第二载波的上下行配比,确定第一时序,可以是:终端先获取第一载波的上下行配比和第二载波的上下行配比,进而终端根据第一载波的上下行配比和第二载波的上下行配比上下行配比确定上述第一时序。
需要说明的是,终端可以有多种预设时序,第一时序为其中一种,这多种预设时序可以是终端中预先配置的,也可以是由上层信令通知的,在此不作限制。还可以预先配置好上下行配比与时序的映射关系,获取第一载波的上下行配比和第二载波的上下行配比后,根据上下行配比与时序的映射关系就可以确定对应的第一时序。
可选地,终端可以在连接建立时确定主载波,并读取主小区对应基站发送的系统消息,例如系统消息块(system information block,简称SIB), 具体可以是SIB1,进而根据系统消息获取该主载波的上下行配比。
终端可以接收无线资源控制(Radio Resource Control,简称RRC)连接重配置消息,并根据RRC连接重配置消息添加/修改/释放辅小区,并从RRC连接重配置消息中读取辅载波的上下行配比。
上述第一时序用于指示第一下行子帧为第n-k个子帧时,上述第一上行子帧为第n个子帧,其中,n和k均为大于0的正整数。
此处k与上述第一上行子帧相对应,每个用于发送反馈消息的上行子帧可以对应至少1个k值。也就是说,第一载波中的多个上行子帧中有部分或全部用于发送反馈消息,假设第一载波的第n个上行子帧用于回复反馈消息,这个子帧反馈的ACK/NACK对应于向前间隔k个子帧的下行子帧n-k上数据包的接收情况。
可选地,k大于或等于4。
从不同的角度出发,不同时序方案中各子帧对应的k值可能不同,具体通过下述示例说明:
图5为本发明实施例提供的基于HARQ的消息反馈方法中的一种时序示意图,如图5所示,第一载波的上下行配比采用“TDD上下行配比1”,第二载波的上下行配比采用“平移两个子帧的TDD上下行配比1(例如可以记为TDD配比8)”,其中,带斜纹的格子标识“下行子帧”,带点的格子标识“上行子帧”,空白格子标识“特殊子帧”。各子帧对应的k值如表1所示,
表1 下行HARQ时序中的k值表
Figure PCTCN2016103852-appb-000001
如表1所示,第一载波的子帧编号为2的上行子帧对应的k值为6,即该子帧编号为2的上行子帧所反馈的ACK对应于向前间隔6个子帧的下行子帧所接收的数据包;第一载波的子帧编号为3的上行子帧对应的k值为5和6,即该子帧编号为3的上行子帧所反馈的ACK对应于向前间隔5和/或6个子帧的下行子帧所接收的数据包。其他类似,在此不再赘述。
图5和表1所示的时序,主要考虑了在各种载波聚合的调度方式下如何 在不损失任何一个下行子帧资源的情况下完成HARQ信息反馈问题,此外这种新的时序设计还考虑了第一载波中各上行子帧的负载,以实现每个上行子帧进行消息反馈带来的负载相对均衡。
图6为本发明实施例提供的基于HARQ的消息反馈方法中的另一种时序示意图,如图6所示,第一载波的上下行配比采用“TDD配比1”,第二载波的上下行配比采用“平移两个子帧的TDD配比1”,其中,带斜纹的格子标识“下行子帧”,带点的格子标识“上行子帧”,空白格子标识“特殊子帧”。各子帧对应的k值如表2所示,
表2
Figure PCTCN2016103852-appb-000002
如表2所示,第一载波的子帧编号为2的上行子帧对应的k值为5和6,即该子帧编号为2的上行子帧所反馈的ACK对应于向前间隔5和/或6个子帧的下行子帧所接收的数据包。其他类似,在此不再赘述。
图6和表2所示的时序,主要考虑的是在各种载波聚合的调度方式下如何在不损失任何一个下行子帧资源的情况下完成HARQ信息反馈问题,此外还考虑了尽可能快速进行反馈,因而尽可能采用距离第一下行子帧较近的上行子帧向基站回复反馈消息,在考虑快速反馈的基础上可以再兼顾上行子帧的负载均衡。
图7为本发明实施例提供的基于HARQ的消息反馈方法中的另一种时序示意图,如图7所示,第一载波的上下行配比采用“TDD配比1”,第二载波的上下行配比采用“平移两个子帧的TDD配比1”,其中,带斜纹的格子标识“下行子帧”,带点的格子标识“上行子帧”,空白格子标识“特殊子帧”。各子帧对应的k值如表3所示,
表3
Figure PCTCN2016103852-appb-000003
如表3所示,第一载波的子帧编号为3的上行子帧对应的k值为7和6, 即该子帧编号为2的上行子帧所反馈的ACK对应于向前间隔7和/或6个子帧的下行子帧所接收的数据包。其他类似,在此不再赘述。
图7和表3所示的时序,是在主小区和辅小区均为TDD小区时,沿用了主小区为TDD小区、且辅小区为频分双工(Frequency Division Duplexing,简称FDD)小区下的时序,即不采用新的时序,但是应用到该场景也不会造成资源浪费。
上述实施例中,某个上行子帧对应多个k值,即该子帧回复的ACK可以对应至少1个下行子帧收到的数据包,以表3为例,第一载波的子帧编号为2的上行子帧,向前间隔7和/或6个子帧的下行子帧中,如果在向前间隔7的下行子帧上检测到数据包,那么这个编号为2的上行子帧回复的ACK就对应向前间隔7的下行子帧,如果向前间隔7和6的下行子帧都检测到数据包,那么这个编号为2的上行子帧回复的ACK就同时对应向前间隔7和6的下行子帧上的数据包,在此不作限制。
当然,并不以上述举例为限:
可选地,第一载波的上下行配比采用“TDD配比2”,第二载波的上下行配比采用“平移两个子帧的TDD配比2”,各子帧对应的k值如表4所示:
表4
Figure PCTCN2016103852-appb-000004
可选地,第一载波的上下行配比采用“TDD配比1”,第二载波的上下行配比采用“平移三个子帧的TDD配比0”,各子帧对应的k值如表5所示:
表5
Figure PCTCN2016103852-appb-000005
可选地,第一载波的上下行配比采用“TDD配比2”,第二载波的上下行配比采用“平移三个子帧的TDD配比0”,各子帧对应的k值如表6所示:
表6
Figure PCTCN2016103852-appb-000006
Figure PCTCN2016103852-appb-000007
可选地,第一载波的上下行配比采用“TDD配比1”,第二载波的上下行配比采用“平移两个子帧的TDD配比2”,各子帧对应的k值如表7所示:
表7
Figure PCTCN2016103852-appb-000008
其具体反馈方法均可参照前述实施例,在此不再赘述。
由上述实施例可知,载波聚合组中每个下行子帧上收到的数据包都有对应的上行子帧进行反馈,没有资源浪费。进一步地,还可以看出,实现了每个上行子帧携带的反馈消息(ACK或NACK)尽量平均,而不会某个上行子帧携带特别多的反馈消息。当然不以上述时序为限,其他上下行配比的组合均可参照前述实施例实现。
图8为本发明实施例提供的一种基于HARQ的消息反馈方法的流程示意图,与图8所示实施例类似地,针对上行HARQ,也需要提供一种消息反馈方法,如图8所示,该方法包括:
S201、基站在载波聚合组的第三上行子帧上接收终端发送的数据包,其中,该载波聚合组包括:第一载波或第二载波。
上述数据包可以是物理上行共享信道(Physical Uplink Shared Channel,简称PUSCH)数据包,在此不作限制。
具体地,该第三上行子帧可以属于第一载波,也可以属于第二载波,在此不作限制。
S202、基站根据上述第一载波的上下行配比和第二载波的上下行配比,确定第三时序。
其中,所述第一载波的上下行配比和/或所述第二载波的上下行配比为除时分双工TDD上下行配比0-6之外的其他上下行配比。
S203、基站根据上述第三预设时序在第一载波的子帧中确定第三下行子帧,或者,在上述第二载波的子帧中确定第三下行子帧。
可选地,如果是非跨载波调度,就在本载波的子帧中确定第三下行子帧, 如果是跨载波调度,就在其调度载波的子帧中确定第三下行子帧。
载波聚合组中一般包括一个主载波和至少1个辅载波,一般地,上述第一载波代表主载波,第二载波代表辅载波,也可以反之,但并不以此为限。
本实施例中,载波聚合组中各载波上收到的数据包都在第一载波上进行回复。
这里的载波聚合场景可以是现有的TDD各种上下行配比的载波聚合,也可以是新上下行配比的载波聚合或现有上下行配比平移后的载波聚合。
S204、基站在上述第三下行子帧上向终端发送反馈消息。
如果正确接收到数据包则回复ACK,否则回复NACK。
本实施例中,基站在第三上行子帧上接收终端发送的数据包,根据上述第一载波的上下行配比和第二载波的上下行配比,确定第三时序,并根据上述第三时序在第一载波的子帧或第二载波的子帧中确定第三下行子帧,并在上述第三下行子帧上向终端回复反馈消息,实现了根据整个载波聚合的上下行配比确定时序,并确定回复反馈消息的子帧,以保证上行子帧上收到的数据包有对应的下行子帧进行反馈,尽量避免资源浪费。
可选地,基站根据上述第一载波的上下行配比和第二载波的上下行配比,确定第三时序,包括:基站获取第一载波的上下行配比和第二载波的上下行配比;基站根据第一载波的上下行配比和第二载波的上下行配比、以及上下行配比与时序的映射关系,确定上述第三时序。
需要说明的是,基站可以有多种预设时序,第三预设时序为其中一种,这多种预设时序可以是基站中预先配置的,也可以是由上层信令通知的,在此不作限制。上下行配比与时序的映射关系也可以是预先配置的,或者由上层信令通知的。
上述第一载波可以是主载波、也可以是辅载波,类似地,上述第二载波可以是主载波也可以是辅载波,在此不作限制。具体主载波和辅载波的上下行配比获取方式可以参见前述方法实施例,在此不作限制。
可选地,上述第三时序用于指示当第三上行子帧为第n2-k2个子帧时,上述第三下行子帧为第n2个子帧,其中,n2和k2均为大于0的正整数,此处k2与上述第三下行子帧相对应,每个用于发送反馈消息的下行子帧可以对应至少1个k2值。也就是说,第一载波中的多个下行子帧中有部分或全部用 于发送反馈消息,假设第一载波的第n2个下行子帧用于回复反馈消息,这个子帧反馈的ACK/NACK可以对应于向前间隔k2的上行子帧上所收到的数据包。
可选地,k2大于或等于4。
图9为本发明实施例提供的基于HARQ的消息反馈方法中的另一种时序示意图,如图9所示,第一载波采用“TDD配比1”,第二载波采用“平移两个子帧的TDD配比1”,其中,带斜纹的格子标识“下行子帧”,带点的格子标识“上行子帧”,空白格子标识“特殊子帧”。各子帧对应的k2值如表8所示,其中最后一行为k2值,
表8
Figure PCTCN2016103852-appb-000009
如表8所示,第一载波的子帧编号为0的下行子帧对应的k2值为6,即该子帧编号为0的下行子帧所反馈的ACK对应于向前间隔6个子帧的上行子帧所接收的数据包。
图10为本发明实施例提供的基于HARQ的消息反馈方法中的另一种时序示意图,如图10所示,第一载波和第二载波上下行配比不同,第一载波采用“TDD上下行配比2”、第二载波采用“平移两个子帧的TDD配比1”,其中,带斜纹的格子标识“下行子帧”,带点的格子标识“上行子帧”,空白格子标识“特殊子帧”。各子帧对应的k2值如表9所示,其中最后一行为k2值,
表9
Figure PCTCN2016103852-appb-000010
如表9所示,第一载波的子帧编号为0的下行子帧对应的k2值为6,即该子帧编号为0的下行子帧所反馈的ACK对应于向前间隔6个子帧的上行子帧所接收的数据包。
由图9、图10所示的实施例可以看出,采用上述方法进行反馈,每个收 到数据包的上行子帧都有对应的下行子帧进行反馈,不会存在资源浪费,且每个下行子帧的负载尽量均衡,避免某个下行子帧承担过多的反馈消息。
在上述实施例的基础上,可选地,终端的资源分配信息(包括上行资源和下行资源)可以通过PDCCH上的DCI信息来获取。
图11为本发明实施例提供的另一种基于HARQ的子帧调度方法的流程示意图,对于载波聚合组,需要进行跨载波调度时也要遵循一定的时序,本实施例提供一种调度方法,如图11所示,该方法包括:
S301、基站根据载波聚合组中第一载波的上下行配比和第二载波的上下行配比,确定第二时序。
与前述实施例相同,载波聚合组包括:第一载波和第二载波。
其中,第一载波的上下行配比和/或第二载波的上下行配比为除TDD上下行配比0-6之外的其他上下行配比。
即第一载波和第二载波中至少1个的上下行配比是新的上下行配比,新的配比可以是与现有TDD上下行配比0-6完全不同的上下行配比,也可以是将现有TDD上下行配比平移后的上下行配比,在此不作限定。
S302、基站根据第二预设时序在第一载波的子帧中确定待调度上行子帧对应的第二下行子帧,或者在第二载波的子帧中确定第二下行子帧。
可选地,如果是非跨载波调度,就在本载波的子帧中确定第二下行子帧,如果是跨载波调度,就在其他载波的子帧中确定第二下行子帧。上下行配比上下行配比
S303、基站在上述第二下行子帧上发送第二上行子帧的调度信息。
S304、基站在上述第二上行子帧上接收终端发送的数据包。
本实施例中,基站根据载波聚合组中第一载波的上下行配比和第二载波的上下行配比,确定第二时序上下行配比,并根据第二时序确定第二下行子帧,进而在上述第二下行子帧上发送第二上行子帧的调度信息,在第二上行子帧上接收终端发送的数据包,实现了根据整个载波聚合的上下行配比对应的时序确定下行子帧发送调度信息,以保证待调度上行子帧有对应的下行子帧进行调度,避免资源浪费。
可选地,基站根据载波聚合组中第一载波的上下行配比和第二载波的上 下行配比,确定第二时序,包括:基站获取第一载波的上下行配比和第二载波的上下行配比上下行配比上下行配比;基站根据第一载波的上下行配比和第二载波的上下行配比、以及子帧配置与时序的映射关系,上下行配比上下行配比确定上述第二时序。
需要说明的是,基站可以有多种预设时序,第二预设时序为其中一种,这多种预设时序可以是基站中预先配置的,也可以是由上层信令通知的,在此不作限制。子帧配置与时序的映射关系也可以是预先配置的,或者由上层信令通知的。
上述第一载波可以是主载波、也可以是辅载波,类似地,上述第二载波可以是主载波也可以是辅载波,在此不作限制。具体主载波和辅载波的上下行配比获取方式可以参见前述方法实施例,在此不作限制。
第二时序用于指示当待调度上行子帧为第n1+k1个子帧时,上述第二下行子帧为第n1个子帧,其中,n1和k1均为大于0的正整数。
此处k1与上述第二下行子帧对应,每个用于调度下行子帧的上行子帧可以对应至少1个k1值。
可选地,k1大于或等于4。
图12为本发明实施例提供的基于HARQ的消息反馈方法中的另一种时序示意图,如图12所示,第一载波采用“TDD上下行配比1”,第二载波采用“平移两个子帧的TDD配比1”,其中,带斜纹的格子标识“下行子帧”,带点的格子标识“上行子帧”,空白格子标识“特殊子帧”。各子帧对应的k1值如表10所示,其中最后一行为k1值,
表10
如表10所示,第一载波的子帧编号为0的下行子帧对应的k1值为4,即该子帧编号为0的下行子帧可用于调度向前间隔4个子帧的上行子帧。
图13为本发明实施例提供的基于HARQ的消息反馈方法中的另一种时序示意图,如图13所示,第一载波和第二载波上下行配比不同,假设第一载波采用“上下行配比2”、第二载波采用“平移两个子帧的TDD上下行配比 1”,其中,带斜纹的格子标识“下行子帧”,带点的格子标识“上行子帧”,空白格子标识“特殊子帧”。各子帧对应的k1值如表11所示,其中最后一行为k1值,
表11
Figure PCTCN2016103852-appb-000012
如表11所示,第一载波的子帧编号为0的下行子帧对应的k1值为4,即该子帧编号为0的下行子帧可用于调度向前间隔4个子帧的上行子帧。
由图12、图13实施例可以看出,采用这种上述方法进行调度,每个需要调度的上行子帧都有对应的下行子帧进行调度,而不会存在资源浪费。
图14为本发明实施例提供的一种基于HARQ的消息反馈装置的结构示意图,该装置可以集成于终端中,如图14所示,该装置包括:接收模块141、确定模块142和发送模块143,其中,
接收模块141,用于在载波聚合组的第一下行子帧接收基站发送的数据包,其中,所述载波聚合组中包括:第一载波和第二载波。
确定模块142,用于根据所述第一载波的上下行配比和所述第二载波的上下行配比确定第一时序,根据所述第一时序在所述第一载波的子帧中确定第一上行子帧,或者,在所述第二载波的子帧中确定第一上行子帧。
其中所述第一载波的上下行配比和/或所述第二载波的上下行配比为除时分双工TDD上下行配比0-6之外的其他上下行配比;
发送模块143,用于在所述第一上行子帧上向所述基站发送反馈消息。
上述装置可用于执行上述方法实施例提供的方法,具体实现方式和技术效果类似,这里不再赘述。
图15为本发明实施例提供的另一种基于HARQ的消息反馈装置的结构示意图,该装置可以集成于基站中,如图15所示,该装置包括:接收模块151、确定模块152和发送模块153,其中,
接收模块151,用于在载波聚合组的第三上行子帧接收终端发送的数据 包,其中,所述载波聚合组包括:第一载波和第二载波。
确定模块152,用于根据所述第一载波的上下行配比和所述第二载波的上下行配比确定第三时序,根据所述第三时序在所述第一载波的子帧中确定第三下行子帧,或者,在所述第二载波的子帧中确定第三下行子帧。
其中所述第一载波的上下行配比和/或所述第二载波的上下行配比为除时分双工TDD上下行配比0-6之外的其他上下行配比。
发送模块153,用于在所述第三下行子帧上向所述终端发送反馈消息。
上述装置可用于执行上述方法实施例提供的方法,具体实现方式和技术效果类似,这里不再赘述。
图16为本发明实施例提供的另一种基于HARQ的消息反馈装置的结构示意图,该装置可以集成于基站中,如图16所示,该装置包括:确定模块161、发送模块162和接收模块163,其中
确定模块161,用于根据载波聚合组中第一载波的上下行配比和第二载波的上下行配比,确定第二时序,根据所述第二时序在所述第一载波的子帧中确定第二上行子帧对应的第二下行子帧,或者,在所述第二载波的子帧中确定第二下行子帧。
其中,所述载波聚合组包括:所述第一载波和所述第二载波,所述第一载波的上下行配比和/或所述第二载波的上下行配比为除时分双工TDD上下行配比0-6之外的其他上下行配比。
发送模块162,用于在所述第二下行子帧上发送第二上行子帧的调度信息。
接收模块163,用于在所述第二上行子帧上接收终端发送的数据包。
上述装置可用于执行上述方法实施例提供的方法,具体实现方式和技术效果类似,这里不再赘述。
需要说明的是,应理解以上装置的各个模块的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且这些模块可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分模块通过处理元件调用软件的形式实现,部分模块通过硬件的形式实现。例如,确定模块可以为单独设立 的处理元件,也可以集成在上述装置的某一个芯片中实现,此外,也可以以程序代码的形式存储于上述装置的存储器中,由上述装置的某一个处理元件调用并执行以上确定模块的功能。其它模块的实现与之类似。此外这些模块全部或部分可以集成在一起,也可以独立实现。
例如,以上这些模块可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(Application Specific Integrated Circuit,ASIC),或,一个或多个微处理器(digital singnal processor,DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,FPGA)等。再如,当以上某个模块通过处理元件调度程序代码的形式实现时,该处理元件可以是通用处理器,例如中央处理器(Central Processing Unit,简称CPU)或其它可以调用程序代码的处理器。再如,这些模块可以集成在一起,以片上系统(system-on-a-chip,简称SOC)的形式实现。
图17为本发明实施例提供的一种基于HARQ的消息反馈装置的结构示意图,该装置可以集成于终端中,如图17所示,该装置包括:处理器1701、发送器1702、接收器1703、存储器1704、天线1705。
存储器1704、发送器1702和接收器1703和处理器1701可以通过总线进行连接。当然,在实际运用中,存储器1704、发送器1702和接收器1703和处理器1701之间可以不是总线结构,而可以是其它结构,例如星型结构,本申请不作具体限定。
可选地,处理器1701具体可以是通用的中央处理器或ASIC,可以是一个或多个用于控制程序执行的集成电路,可以是使用FPGA开发的硬件电路,可以是基带处理器。
可选地,处理器1701可以包括至少一个处理核心。
可选地,存储器1704可以包括ROM、RAM和磁盘存储器中的一种或多种。存储器1704用于存储处理器1701运行时所需的数据和/或指令。存储器1704的数量可以为一个或多个。
该装置可以用于执行前述方法实施例中的终端所执行的方法。具体地:
在载波聚合组的第一下行子帧接收基站发送的数据包,其中,所述载波 聚合组中包括:第一载波和第二载波;
根据所述第一载波的上下行配比和所述第二载波的上下行配比确定第一时序,其中所述第一载波的上下行配比和/或所述第二载波的上下行配比为除时分双工TDD上下行配比0-6之外的其他上下行配比;
根据所述第一时序在所述第一载波的子帧中确定第一上行子帧,或者,在所述第二载波的子帧中确定第一上行子帧;
在所述第一上行子帧上向所述基站发送反馈消息。
需要说明的是,上述装置执行上述方法实施例提供的方法,具体实现方式和技术效果类似,这里不再赘述。
另一种实施例中,该装置可以用于执行前述方法实施例中的基站所执行的方法,参照图17,基站的结构与图17所示的结构相同,处理器1701执行下述方法:
在载波聚合组的第三上行子帧接收终端发送的数据包,其中,所述载波聚合组包括:第一载波和第二载波;
根据所述第一载波的上下行配比和所述第二载波的上下行配比确定第三时序,其中所述第一载波的上下行配比和/或所述第二载波的上下行配比为除时分双工TDD上下行配比0-6之外的其他上下行配比;
根据所述第三时序在所述第一载波的子帧中确定第三下行子帧,或者,在所述第二载波的子帧中确定第三下行子帧;
在所述第三下行子帧上向所述终端发送反馈消息。
需要说明的是,上述装置执行上述方法实施例提供的方法,具体实现方式和技术效果类似,这里不再赘述。
可选地,另一种实施例中,该装置可以用于执行前述方法实施例中的基站所执行的方法,参照图17,基站的结构与图17所示的结构相同,处理器1701执行下述方法:另一种实施方式中,
根据载波聚合组中第一载波的上下行配比和第二载波的上下行配比,确定第二时序,其中,所述载波聚合组包括:所述第一载波和所述第二载波,所述第一载波的上下行配比和/或所述第二载波的上下行配比为除时分双工 TDD上下行配比0-6之外的其他上下行配比;
根据所述第二时序在所述第一载波的子帧中确定第二上行子帧对应的第二下行子帧,或者,在所述第二载波的子帧中确定第二下行子帧;
在所述第二下行子帧上发送第二上行子帧的调度信息;
在所述第二上行子帧上接收终端发送的数据包。
需要说明的是,上述装置执行上述方法实施例提供的方法,具体实现方式和技术效果类似,这里不再赘述。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (26)

  1. 一种基于HARQ的消息反馈方法,其特征在于,包括:
    终端在载波聚合组的第一下行子帧接收基站发送的数据包,其中,所述载波聚合组中包括:第一载波和第二载波;
    所述终端根据所述第一载波的上下行配比和所述第二载波的上下行配比确定第一时序,其中所述第一载波的上下行配比和/或所述第二载波的上下行配比为除时分双工TDD上下行配比0-6之外的其他上下行配比;
    所述终端根据所述第一时序在所述第一载波的子帧中确定第一上行子帧,或者,在所述第二载波的子帧中确定第一上行子帧;
    所述终端在所述第一上行子帧上向所述基站发送反馈消息。
  2. 根据权利要求1所述的方法,其特征在于,所述第一时序用于指示所述第一下行子帧为第n-k个子帧时,所述第一上行子帧为第n个子帧,其中,n为大于或等于0的正整数,k为大于0的正整数。
  3. 根据权利要求2所述的方法,其特征在于,所述第一载波的上下行配比采用时分双工TDD上下行配比1、且所述第二载波的上下行配比采用平移两个子帧的TDD上下行配比1时,
    所述第一载波中编号2的上行子帧的k值为6、所述第一载波中编号3的上行子帧的k值为5和6、所述第一载波中编号7的上行子帧的k值为6、以及所述第一载波中编号8的上行子帧的k值为5和6。
  4. 根据权利要求2所述的方法,其特征在于,所述第一载波的上下行配比采用时分双工TDD上下行配比1、且所述第二载波的上下行配比采用平移两个子帧的TDD上下行配比1时,
    所述第一载波中编号2的上行子帧的k值为5和6、所述第一载波中编号3的上行子帧的k值为6、所述第一载波中编号7的上行子帧的k值为5和6、以及所述第一载波中编号8的上行子帧的k值为6。
  5. 根据权利要求2所述的方法,其特征在于,所述第一载波的上下行配比采用时分双工TDD上下行配比1、且所述第二载波的上下行配比采用平移两个子帧的TDD上下行配比1时,
    所述第一载波中编号2的上行子帧的k值为6和7、所述第一载波中编号3的上行子帧的k值为4、5和6、所述第一载波中编号7的上行子帧的k 值为6和7、以及所述第一载波中编号8的上行子帧的k值为4、5和6。
  6. 一种基于HARQ的消息反馈方法,其特征在于,包括:
    基站在载波聚合组的第三上行子帧接收终端发送的数据包,其中,所述载波聚合组包括:第一载波和第二载波;
    所述基站根据所述第一载波的上下行配比和所述第二载波的上下行配比确定第三时序,其中所述第一载波的上下行配比和/或所述第二载波的上下行配比为除时分双工TDD上下行配比0-6之外的其他上下行配比;
    所述基站根据所述第三时序在所述第一载波的子帧中确定第三下行子帧,或者,在所述第二载波的子帧中确定第三下行子帧;
    所述基站在所述第三下行子帧上向所述终端发送反馈消息。
  7. 根据权利要求6所述的方法,其特征在于,所述第三时序用于指示所述第三上行子帧为第n2-k2个子帧时,所述第三下行子帧为第n2个子帧,其中,n2为大于或等于0的正整数,k2为大于0的正整数。
  8. 根据权利要求7所述的方法,其特征在于,所述第一载波的上下行配比采用时分双工TDD上下行配比1、且所述第二载波的上下行配比采用平移两个子帧的TDD上下行配比1时,
    所述第一载波中编号0的下行子帧的k值为6、所述第一载波中编号1的下行子帧的k值为6、所述第一载波中编号5的下行子帧的k值为6、以及所述第一载波中编号6的下行子帧的k值为5和6。
  9. 根据权利要求7所述的方法,其特征在于,所述第一载波的上下行配比采用时分双工TDD上下行配比2、且所述第二载波的上下行配比采用平移两个子帧的TDD上下行配比1时,
    所述第一载波中编号0的下行子帧的k值为6、所述第一载波中编号1的下行子帧的k值为6、所述第一载波中编号5的下行子帧的k值为6、以及所述第一载波中编号6的下行子帧的k值为5和6。
  10. 一种基于HARQ的子帧调度方法,其特征在于,包括:
    基站根据载波聚合组中第一载波的上下行配比和第二载波的上下行配比,确定第二时序,其中,所述载波聚合组包括:所述第一载波和所述第二 载波,所述第一载波的上下行配比和/或所述第二载波的上下行配比为除时分双工TDD上下行配比0-6之外的其他上下行配比;
    所述基站根据所述第二时序在所述第一载波的子帧中确定第二上行子帧对应的第二下行子帧,或者,在所述第二载波的子帧中确定第二下行子帧;
    所述基站在所述第二下行子帧上发送第二上行子帧的调度信息;
    所述基站在所述第二上行子帧上接收终端发送的数据包。
  11. 根据权利要求10所述的方法,其特征在于,所述第二时序用于指示所述待调度上行子帧为第n1+k1个子帧时,所述第二下行子帧为第n1个子帧,其中,n1为大于或等于0的正整数,k1为大于0的正整数。
  12. 根据权利要求11所述的方法,其特征在于,所述第一载波的上下行配比采用TDD上下行配比1、且所述第二载波的上下行配比采用平移两个子帧的TDD上下行配比1时,
    所述第一载波中编号0的下行子帧的k值为4、所述第一载波中编号1的下行子帧的k值为4、所述第一载波中编号5的下行子帧的k值为4、以及所述第一载波中编号6的下行子帧的k值为4。
  13. 根据权利要求11所述的方法,其特征在于,所述第一载波的上下行配比采用TDD上下行配比2、且所述第二载波的上下行配比采用平移两个子帧的TDD上下行配比1时,
    所述第一载波中编号0的下行子帧的k值为4、所述第一载波中编号1的下行子帧的k值为4、所述第一载波中编号5的下行子帧的k值为4、以及所述第一载波中编号6的下行子帧的k值为4。
  14. 一种基于HARQ的消息反馈装置,其特征在于,包括:存储器和处理器,存储器用于存储程序指令,所述处理器用于调用所述存储器中的程序指令执行下述方法:
    在载波聚合组的第一下行子帧接收基站发送的数据包,其中,所述载波聚合组中包括:第一载波和第二载波;
    根据所述第一载波的上下行配比和所述第二载波的上下行配比确定第一时序,其中所述第一载波的上下行配比和/或所述第二载波的上下行配比为除 时分双工TDD上下行配比0-6之外的其他上下行配比;
    根据所述第一时序在所述第一载波的子帧中确定第一上行子帧,或者,在所述第二载波的子帧中确定第一上行子帧;
    在所述第一上行子帧上向所述基站发送反馈消息。
  15. 根据权利要求14所述的装置,其特征在于,所述第一时序用于指示所述第一下行子帧为第n-k个子帧时,所述第一上行子帧为第n个子帧,其中,n为大于或等于0的正整数,k为大于0的正整数。
  16. 根据权利要求15所述的装置,其特征在于,所述第一载波的上下行配比采用时分双工TDD上下行配比1、且所述第二载波的上下行配比采用平移两个子帧的TDD上下行配比1时,
    所述第一载波中编号2的上行子帧的k值为6、所述第一载波中编号3的上行子帧的k值为5和6、所述第一载波中编号7的上行子帧的k值为6、以及所述第一载波中编号8的上行子帧的k值为5和6。
  17. 根据权利要求15所述的装置,其特征在于,所述第一载波的上下行配比采用时分双工TDD上下行配比1、且所述第二载波的上下行配比采用平移两个子帧的TDD上下行配比1时,
    所述第一载波中编号2的上行子帧的k值为5和6、所述第一载波中编号3的上行子帧的k值为6、所述第一载波中编号7的上行子帧的k值为5和6、以及所述第一载波中编号8的上行子帧的k值为6。
  18. 根据权利要求15所述的装置,其特征在于,所述第一载波的上下行配比采用时分双工TDD上下行配比1、且所述第二载波的上下行配比采用平移两个子帧的TDD上下行配比1时,
    所述第一载波中编号2的上行子帧的k值为6和7、所述第一载波中编号3的上行子帧的k值为4、5和6、所述第一载波中编号7的上行子帧的k值为6和7、以及所述第一载波中编号8的上行子帧的k值为4、5和6。
  19. 一种基于HARQ的消息反馈装置,其特征在于,包括:存储器和处理器,存储器用于存储程序指令,所述处理器用于调用所述存储器中的程序指令执行下述方法:
    在载波聚合组的第三上行子帧接收终端发送的数据包,其中,所述载波 聚合组包括:第一载波和第二载波;
    根据所述第一载波的上下行配比和所述第二载波的上下行配比确定第三时序,其中所述第一载波的上下行配比和/或所述第二载波的上下行配比为除时分双工TDD上下行配比0-6之外的其他上下行配比;
    根据所述第三时序在所述第一载波的子帧中确定第三下行子帧,或者,在所述第二载波的子帧中确定第三下行子帧;
    在所述第三下行子帧上向所述终端发送反馈消息。
  20. 根据权利要求19所述的装置,其特征在于,所述第三时序用于指示所述第三上行子帧为第n2-k2个子帧时,所述第三下行子帧为第n2个子帧,其中,n2为大于或等于0的正整数,k2为大于0的正整数。
  21. 根据权利要求20所述的装置,其特征在于,所述第一载波的上下行配比采用时分双工TDD上下行配比1、且所述第二载波的上下行配比采用平移两个子帧的TDD上下行配比1时,
    所述第一载波中编号0的下行子帧的k值为6、所述第一载波中编号1的下行子帧的k值为6、所述第一载波中编号5的下行子帧的k值为6、以及所述第一载波中编号6的下行子帧的k值为5和6。
  22. 根据权利要求20所述的装置,其特征在于,所述第一载波的上下行配比采用时分双工TDD上下行配比2、且所述第二载波的上下行配比采用平移两个子帧的TDD上下行配比1时,
    所述第一载波中编号0的下行子帧的k值为6、所述第一载波中编号1的下行子帧的k值为6、所述第一载波中编号5的下行子帧的k值为6、以及所述第一载波中编号6的下行子帧的k值为5和6。
  23. 一种基于HARQ的消息反馈装置,其特征在于,包括:存储器和处理器,存储器用于存储程序指令,所述处理器用于调用所述存储器中的程序指令执行下述方法:
    根据载波聚合组中第一载波的上下行配比和第二载波的上下行配比,确定第二时序,其中,所述载波聚合组包括:所述第一载波和所述第二载波,所述第一载波的上下行配比和/或所述第二载波的上下行配比为除时分双工TDD上下行配比0-6之外的其他上下行配比;
    根据所述第二时序在所述第一载波的子帧中确定第二上行子帧对应的第二下行子帧,或者,在所述第二载波的子帧中确定第二下行子帧;
    在所述第二下行子帧上发送第二上行子帧的调度信息;
    在所述第二上行子帧上接收终端发送的数据包。
  24. 根据权利要求23所述的装置,其特征在于,所述第二时序用于指示所述待调度上行子帧为第n1+k1个子帧时,所述第二下行子帧为第n1个子帧,其中,n1为大于或等于0的正整数,k1为大于0的正整数。
  25. 根据权利要求24所述的装置,其特征在于,所述第一载波的上下行配比采用TDD上下行配比1、且所述第二载波的上下行配比采用平移两个子帧的TDD上下行配比1时,
    所述第一载波中编号0的下行子帧的k值为4、所述第一载波中编号1的下行子帧的k值为4、所述第一载波中编号5的下行子帧的k值为4、以及所述第一载波中编号6的下行子帧的k值为4。
  26. 根据权利要求24所述的装置,其特征在于,所述第一载波的上下行配比采用TDD上下行配比2、且所述第二载波的上下行配比采用平移两个子帧的TDD上下行配比1时,
    所述第一载波中编号0的下行子帧的k值为4、所述第一载波中编号1的下行子帧的k值为4、所述第一载波中编号5的下行子帧的k值为4、以及所述第一载波中编号6的下行子帧的k值为4。
PCT/CN2016/103852 2016-10-28 2016-10-28 基于harq的消息反馈方法及装置 WO2018076300A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2016/103852 WO2018076300A1 (zh) 2016-10-28 2016-10-28 基于harq的消息反馈方法及装置
CN201680089836.0A CN109804585A (zh) 2016-10-28 2016-10-28 基于harq的消息反馈方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/103852 WO2018076300A1 (zh) 2016-10-28 2016-10-28 基于harq的消息反馈方法及装置

Publications (1)

Publication Number Publication Date
WO2018076300A1 true WO2018076300A1 (zh) 2018-05-03

Family

ID=62023050

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/103852 WO2018076300A1 (zh) 2016-10-28 2016-10-28 基于harq的消息反馈方法及装置

Country Status (2)

Country Link
CN (1) CN109804585A (zh)
WO (1) WO2018076300A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102651680A (zh) * 2011-02-24 2012-08-29 华为技术有限公司 用于载波聚合系统的通信方法和装置
CN102938693A (zh) * 2011-08-15 2013-02-20 普天信息技术研究院有限公司 Lte-a tdd不同上下行配比的反馈方法
US20140321338A1 (en) * 2011-12-27 2014-10-30 Pantech Co., Ltd. Method and apparatus for applying pusch/phich scheduling timing in inter-band tdd transmission schemes

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102045144A (zh) * 2011-01-17 2011-05-04 电信科学技术研究院 一种反馈ack/nack信息的方法及装置
CN102752089B (zh) * 2011-04-22 2017-02-08 北京三星通信技术研究有限公司 反馈ack/nack的方法
WO2012148443A1 (en) * 2011-04-29 2012-11-01 Intel Corporation System and method of rank adaptation in mimo communication system
CN105790895B (zh) * 2012-03-09 2019-04-19 电信科学技术研究院 一种harq反馈的实现方法及装置
CN103312470B (zh) * 2012-03-09 2016-05-11 电信科学技术研究院 一种harq反馈的实现方法及装置
US9407302B2 (en) * 2012-12-03 2016-08-02 Intel Corporation Communication device, mobile terminal, method for requesting information and method for providing information
CN104579596B (zh) * 2013-10-28 2018-02-16 中国电信股份有限公司 Fdd lte 与tdd lte 载波聚合的harq 时序实现方法和设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102651680A (zh) * 2011-02-24 2012-08-29 华为技术有限公司 用于载波聚合系统的通信方法和装置
CN102938693A (zh) * 2011-08-15 2013-02-20 普天信息技术研究院有限公司 Lte-a tdd不同上下行配比的反馈方法
US20140321338A1 (en) * 2011-12-27 2014-10-30 Pantech Co., Ltd. Method and apparatus for applying pusch/phich scheduling timing in inter-band tdd transmission schemes

Also Published As

Publication number Publication date
CN109804585A (zh) 2019-05-24

Similar Documents

Publication Publication Date Title
RU2634701C2 (ru) Обратная связь harq с использованием агрегации несущих
WO2019091233A1 (zh) 一种带宽切换方法及装置
US10277363B2 (en) Hybrid automatic repeat request acknowledgement transmission method, user equipment, and base station
CN107210895B (zh) 用于增强型载波聚集的软缓冲器管理的方法和装置
TWI530144B (zh) 處理通訊運作的方法及其通訊裝置
KR102035402B1 (ko) 자동 재송신 요청(arq) 피드백 정보를 처리하기 위한 네트워크 노드, 무선 장치 및 그 방법들
TWI822665B (zh) 傳輸方法和裝置
WO2014068891A1 (en) Systems and methods for carrier aggregation
KR20140124007A (ko) Tdd 시스템을 위한 스케줄링 타이밍 설계
CN107026689B (zh) 一种帧格式配置方法、装置和系统
EP2712258B1 (en) Cross-carrier scheduling based data transmission method, user equipment and base station
US11051298B2 (en) Message feedback method and apparatus for carrier aggregation
TWI535319B (zh) 處理分時雙工系統中資源配置的方法及其通訊裝置
US10749638B2 (en) Soft buffer handling with limited memory access bandwidth
WO2016172902A1 (zh) 一种信息的发送和接收方法、用户设备及基站
EP3487100B1 (en) Harq response information transmission method
WO2017128512A1 (zh) 信息发送方法、信息接收方法、装置及系统
JP2017208842A (ja) キャリアアグリゲーションを使用するharqフィードバック
WO2018076300A1 (zh) 基于harq的消息反馈方法及装置
WO2018120475A1 (zh) 一种消息应答方法及无线网络设备
WO2023010404A1 (zh) 反馈方法、终端设备及网络设备
WO2018157320A1 (zh) 基于载波聚合的信息发送方法及装置
WO2017107198A1 (zh) 一种发送信息和接收信息的方法、装置及系统
CN116489791A (zh) 上行传输方法、终端设备和网络设备
CN117580178A (zh) 用于在无线通信系统中发送数据的方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16920260

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16920260

Country of ref document: EP

Kind code of ref document: A1