WO2017080382A1 - Tdd系统信息传输的方法和装置 - Google Patents

Tdd系统信息传输的方法和装置 Download PDF

Info

Publication number
WO2017080382A1
WO2017080382A1 PCT/CN2016/104089 CN2016104089W WO2017080382A1 WO 2017080382 A1 WO2017080382 A1 WO 2017080382A1 CN 2016104089 W CN2016104089 W CN 2016104089W WO 2017080382 A1 WO2017080382 A1 WO 2017080382A1
Authority
WO
WIPO (PCT)
Prior art keywords
subframe
downlink
uplink
pure
subframes
Prior art date
Application number
PCT/CN2016/104089
Other languages
English (en)
French (fr)
Inventor
任海豹
李元杰
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP16863559.7A priority Critical patent/EP3364591B1/en
Publication of WO2017080382A1 publication Critical patent/WO2017080382A1/zh
Priority to US15/977,304 priority patent/US10554794B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signalling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/30Definitions, standards or architectural aspects of layered protocol stacks
    • H04L69/32Architecture of open systems interconnection [OSI] 7-layer type protocol stacks, e.g. the interfaces between the data link level and the physical level
    • H04L69/322Intralayer communication protocols among peer entities or protocol data unit [PDU] definitions
    • H04L69/324Intralayer communication protocols among peer entities or protocol data unit [PDU] definitions in the data link layer [OSI layer 2], e.g. HDLC
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1835Buffer management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signalling for the administration of the divided path, e.g. signalling of configuration information
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/22Arrangements affording multiple use of the transmission path using time-division multiplexing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/22Arrangements affording multiple use of the transmission path using time-division multiplexing
    • H04L5/26Arrangements affording multiple use of the transmission path using time-division multiplexing combined with the use of different frequencies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management

Definitions

  • the present application relates to the field of communications and, more particularly, to a method and apparatus for TDD system information transmission.
  • the user equipment needs to pass the Physical Uplink Control Channel (PUCCH) or the physical uplink shared channel in order to support the Hybrid Automatic Repeat Request (HARQ).
  • PUCCH Physical Uplink Control Channel
  • HARQ Hybrid Automatic Repeat Request
  • PUSCH Physical Uplink Shared Channel
  • HARQ-ACK hybrid automatic repeat request acknowledgement
  • PDSCH physical downlink shared channel
  • HARQ-ACK may be referred to as an acknowledgement response.
  • ACK Acknowledgment
  • NACK Negative Acknowledgement
  • the user equipment needs to receive the HARQ-ACK corresponding to the PUSCH through a physical hybrid automatic HARQ indicator channel (PHICH).
  • PHICH physical hybrid automatic HARQ indicator channel
  • the existing LTE system includes two frame structures, wherein the first frame structure is used for Frequency-Division Duplex (FDD), and the second frame structure is used for Time-Division Duplex (TDD). .
  • Each of the two frame structures has a length of 1 ms.
  • Uplink and downlink timing if the user equipment is in the nth uplink subframe and feeds back whether it correctly decodes the downlink data corresponding to the nk downlink subframe (general feedback ACK or NACK), then the uplink and downlink timings at this time are k sub-times.
  • a frame also known as a timing length.
  • TDD has different uplink and downlink timings in different uplink and downlink subframe ratios. This complex timing relationship not only increases the complexity of the protocol design, but also does not guarantee that the service has a uniform delay in the air interface.
  • the embodiment of the present invention provides a method and a device for transmitting information of a TDD system, which can provide a unified uplink and downlink timing relationship, reduce uplink and downlink handover overhead, and implement dynamic TDD.
  • an information transmission apparatus comprising:
  • a determining unit configured to determine a frame structure used for transmitting information in the time division duplex TDD system, wherein each frame based on the frame structure includes N subframes, the timing length is K subframes, and the consecutive M subframes constitute one super frame;
  • a processing unit configured to send and/or receive a message based on the frame structure
  • Each superframe includes at least one of the pure downlink subframes, and includes a pure uplink subframe, a type 1 subframe, and a type 2 subframe. At least one of the downlink sub-frames includes a downlink symbol and does not include an uplink symbol, where the type 1 subframe includes an uplink symbol and a downlink symbol, and the number of uplink symbols is less than a downlink symbol, where the type 2 subframe includes The uplink symbol and the downlink symbol have more uplink symbols than the downlink symbol, and the pure uplink subframe includes an uplink symbol and does not include a downlink symbol.
  • the ratio of the uplink and downlink subframes of the superframe is 0:M, and the superframe includes one of the pure downlink subframes. Number sub-frame, the remaining sub-frames are the type 1 sub-frames;
  • the SFNSET_offset is used to indicate the offset of the first subframe of the downlink subframe set in the superframe relative to the first subframe in the superframe, and is an integer between 0 and K-1;
  • the SFNDL_offset is used to indicate the offset of the pure downlink subframe relative to the first subframe of the downlink subframe set, and is an integer between 0 and M/2-1; the downlink subframe set is the super
  • the subframe number m in the frame satisfies A collection of even subframes.
  • the ratio of the uplink and downlink subframes of the superframe is 1:1, and the downlink subframe set in the superframe is the pure downlink subframe, the super The uplink subframe set of the frame is the pure uplink subframe;
  • the downlink subframe set is that the subframe sequence number m in the super frame satisfies the condition.
  • the uplink subframe set is that the subframe number m in the super frame satisfies the condition
  • SFNSET_offset is used to indicate the offset of the first subframe of the downlink subframe set in the superframe relative to the first subframe in the superframe, and the value is 0 to K-1. The integer between.
  • the last symbol of the last pure downlink subframe in consecutive consecutive downlink subframes in the superframe is a GP symbol
  • the first symbol of the first pure uplink subframe in the consecutive pure uplink subframes in the superframe is the GP symbol, or the first pure downlink subframe in the consecutive pure downlink subframes in the superframe
  • One symbol is a GP symbol
  • the last symbol of the last pure uplink subframe in consecutive pure uplink subframes in the superframe is a GP symbol.
  • the ratio of the uplink and downlink subframes of the super frame is a: (Ma), and the downlink subframe of the super frame includes a pure downlink subframe and M/2-a of the type 1 subframe, and the X subframe in the superframe is a fixed pure downlink subframe in the a pure downlink subframe, and the uplink subframe of the superframe includes a The pure uplink subframe and the M/2-a subframes of the type 1, and the subframe Y in the superframe is a fixed pure uplink subframe in the a pure uplink subframe;
  • the downlink subframe set is that the subframe sequence number m in the superframe satisfies the condition For an even number of subframe sets, the uplink subframe set is that the subframe number m in the super frame satisfies the condition For an odd number of subframe sets, SFNSET_offset is used to indicate the offset of the first subframe of the downlink subframe set in the superframe relative to the first subframe in the superframe, and the value is 0 to K-1.
  • SFNDL_offset is used to indicate the offset of the fixed pure downlink subframe relative to the first subframe in the downlink subframe set, and is an integer between 0 and M/2-1;
  • SFNUL_offset is used for Indicates the offset of the fixed pure uplink subframe relative to the first subframe belonging to the uplink subframe set after the first subframe in the downlink subframe set, and the value is between 0 and M/2-1. Integer.
  • the ratio of the uplink and downlink subframes of the superframe is a: (Ma), and the downlink subframe of the superframe includes the Ma downlink subframes and aM/2 subframes of the type 2, and the subframe X in the superframe is a fixed pure downlink subframe in the Ma pure downlink subframe, and the uplink subframe of the superframe includes the Ma pure An uplink subframe and aM/2 subframes of the type 2, and the subframe Y in the superframe is a fixed pure uplink subframe in the Ma pure uplink subframes;
  • the downlink subframe set is that the subframe number m of the superframe satisfies the condition For an even number of subframe sets, the uplink subframe set is that the subframe number m in the super frame satisfies the condition For an odd number of subframe sets, SFNSET_offset is used to indicate the offset of the first subframe of the downlink subframe set in the superframe relative to the first subframe in the superframe, and the value is 0 to K-1.
  • SFNDL_offset is used to indicate the offset of the fixed pure downlink subframe relative to the first subframe in the downlink subframe set, and is an integer between 0 and M/2-1;
  • SFNUL_offset is used for Indicates the offset of the fixed pure uplink subframe relative to the first subframe belonging to the uplink subframe set after the first subframe in the downlink subframe set, and the value is between 0 and M/2-1. Integer.
  • the pure downlink subframe is used to send a physical broadcast channel PBCH, a synchronization signal, a physical hybrid automatic retransmission indication channel PHICH, and a physical At least one of a downlink control channel PDCCH, an enhanced physical downlink control channel EPDCCH, and a physical control format indication channel PCFICH.
  • the pure uplink subframe is used to send a physical random access channel PRACH, a feedback acknowledgement ACK, a feedback non-acknowledgement NACK, and a channel state. At least one of the information CSI and the sounding reference signal SRS.
  • the device is a base station, or a user equipment.
  • a method for system information transmission comprising: determining a frame structure used for transmitting information in a time division duplex TDD system, wherein each frame based on the frame structure includes N sub-frames a frame having a timing length of K subframes, and consecutive M subframes constitute a superframe; transmitting and/or receiving messages based on the frame structure; wherein N, K, and M are positive integers, and M is a common multiple of N and 2K, each The super-frame includes at least one pure downlink subframe, and further includes at least one of a pure uplink subframe, a type 1 subframe, and a type 2 subframe, where the pure downlink subframe includes a downlink symbol and does not include an uplink symbol.
  • the type 1 subframe includes an uplink symbol and a downlink symbol, and the number of uplink symbols is less than a downlink symbol.
  • the type 2 subframe includes an uplink symbol and a downlink symbol, and the number of uplink symbols is more than a downlink symbol, where the pure uplink subframe is used. Includes the upstream symbol and does not include the downstream symbol.
  • the ratio of the uplink and downlink subframes of the superframe is 0:M, and the superframe includes one of the pure downlink subframes. Number sub-frame, the remaining sub-frames are the type 1 sub-frames;
  • the SFNSET_offset is used to indicate the offset of the first subframe of the downlink subframe set in the superframe relative to the first subframe in the superframe, and is an integer between 0 and K-1;
  • the SFNDL_offset is used to indicate the offset of the pure downlink subframe relative to the first subframe of the downlink subframe set, and is an integer between 0 and M/2-1; the downlink subframe set is the super
  • the subframe number m in the frame satisfies A collection of even subframes.
  • the ratio of the uplink and downlink subframes of the superframe is 1:1, and the downlink subframe set in the superframe is the pure downlink subframe, the super The uplink subframe set of the frame is the pure uplink subframe;
  • the downlink subframe set is that the subframe sequence number m in the super frame satisfies the condition.
  • the uplink subframe set is that the subframe number m in the super frame satisfies the condition
  • SFNSET_offset is used to indicate the offset of the first subframe of the downlink subframe set in the superframe relative to the first subframe in the superframe, and the value is 0 to K-1. The integer between.
  • the last symbol of the last pure downlink subframe in consecutive consecutive downlink subframes in the superframe is a GP symbol
  • the first symbol of the first pure uplink subframe in the consecutive pure uplink subframes in the superframe is the GP symbol, or the first pure downlink subframe in the consecutive pure downlink subframes in the superframe
  • One symbol is a GP symbol
  • the last symbol of the last pure uplink subframe in consecutive pure uplink subframes in the superframe is a GP symbol.
  • the ratio of the uplink and downlink subframes of the super frame is a: (Ma), and the downlink subframe set of the super frame includes a pure downlink subframe and M/2-a of the type 1 subframe, and the X subframe in the superframe is a fixed pure downlink subframe in the a pure downlink subframe, and the uplink subframe of the superframe includes a The pure uplink subframe and the M/2-a subframes of the type 1, and the subframe Y in the superframe is a fixed pure uplink subframe in the a pure uplink subframe;
  • the downlink subframe set is that the subframe sequence number m in the superframe satisfies the condition For an even number of subframe sets, the uplink subframe set is that the subframe number m in the super frame satisfies the condition For an odd number of subframe sets, SFNSET_offset is used to indicate the offset of the first subframe of the downlink subframe set in the superframe relative to the first subframe in the superframe, and the value is 0 to K-1.
  • SFNDL_offset is used to indicate the offset of the fixed pure downlink subframe relative to the first subframe in the downlink subframe set, and is an integer between 0 and M/2-1;
  • SFNUL_offset is used for Indicates the offset of the fixed pure uplink subframe relative to the first subframe belonging to the uplink subframe set after the first subframe in the downlink subframe set, and the value is between 0 and M/2-1. Integer.
  • the ratio of the uplink and downlink subframes of the super frame is a: (Ma), and the downlink subframe set of the super frame includes the Ma pure downlink subframes and aM/2 subframes of the type 2, and the subframe X in the superframe is a fixed pure downlink subframe in the Ma pure downlink subframe, and the uplink subframe of the superframe includes the Ma pure An uplink subframe and aM/2 subframes of the type 2, and the subframe Y in the superframe is a fixed pure uplink subframe in the Ma pure uplink subframes;
  • the downlink subframe set is that the subframe sequence number m in the superframe satisfies the condition For an even number of subframe sets, the uplink subframe set is that the subframe number m in the super frame satisfies the condition For an odd number of subframe sets, SFNSET_offset is used to indicate the offset of the first subframe of the downlink subframe set in the superframe relative to the first subframe in the superframe, and the value is 0 to K-1.
  • SFNDL_offset is used to indicate the offset of the fixed pure downlink subframe relative to the first subframe in the downlink subframe set, and is an integer between 0 and M/2-1;
  • SFNUL_offset is used for Indicates the offset of the fixed pure uplink subframe relative to the first subframe belonging to the uplink subframe set after the first subframe in the downlink subframe set, and the value is between 0 and M/2-1. Integer.
  • the pure downlink subframe is used to send a physical broadcast channel PBCH, a synchronization signal, a physical hybrid automatic retransmission indication channel PHICH, and a physical At least one of a downlink control channel PDCCH, an enhanced physical downlink control channel EPDCCH, and a physical control format indication channel PCFICH.
  • the pure uplink subframe is used to send a physical random access channel PRACH, a feedback acknowledgement ACK, a feedback non-acknowledgement NACK, and a channel state. At least one of the information CSI and the sounding reference signal SRS.
  • a method and an apparatus for transmitting TDD system information by introducing a pure downlink subframe, a pure uplink subframe, a type 1 subframe, and a type 2 subframe in a radio frame, and determining a TDD system for transmitting information. .
  • the information transmission and reception based on the frame structure can enable the system to provide a unified uplink and downlink timing relationship under different uplink and downlink subframe ratios, reduce uplink and downlink handover overhead, and implement dynamic TDD.
  • Figure 1 is a schematic block diagram of a sub-frame structure.
  • FIG. 2 is a flow chart of a method for system information transmission in an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a frame structure according to an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of another frame structure of an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of still another frame structure in the embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of still another frame structure in the embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of still another frame structure in the embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of still another frame structure in the embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of still another frame structure in the embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of still another frame structure in the embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of an information transmission apparatus according to an embodiment of the present application.
  • FIG. 12 is another schematic structural diagram of an information transmission apparatus according to an embodiment of the present application.
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access Wireless
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • Future Network such as 5G, D2D (device to device) network, M2M (machine to machine) network.
  • a user equipment which may also be called a mobile terminal, a mobile user equipment, or the like, may communicate with one or more core networks via a radio access network (eg, RAN, Radio Access Network).
  • the user equipment may be a mobile terminal, such as a mobile phone (or "cellular" phone) and a computer with a mobile terminal, for example, a portable, pocket, handheld, computer built-in or in-vehicle mobile device,
  • the wireless access network exchanges languages and/or data.
  • the base station may be a base station (BTS, Base Transceiver Station) in GSM or CDMA, or a base station (NodeB) in WCDMA, or an evolved base station (eNB or e-NodeB, evolutional Node B) in LTE.
  • BTS Base Transceiver Station
  • NodeB base station
  • eNB evolved base station
  • e-NodeB evolutional Node B
  • Time Division Duplexing (TDD) system In a TDD mode mobile communication system, different time slots on the same frequency channel (ie, carrier) are received and transmitted, and the reception and transmission channels are separated by the guaranteed time. Since the switching points of the uplink and downlink switching in the time domain can be flexibly changed, different uplink and downlink transmission times are set for symmetric services (voice and multimedia, etc.) and asymmetric services (packet switching and the Internet, etc.), and the wireless spectrum can be fully utilized. In addition, since the uplink channel and the downlink channel have reciprocity in the same frequency band, in the TDD system, the base station can estimate the complete downlink channel through the uplink channel of the UE, thereby reducing the feedback overhead of the UE side. Both TD-SCDMA in 3G and TD-LTE in LTE are TDD systems.
  • L.C.M. (x, y) A function representing the least common multiple of x and y, where x and y are both positive integers.
  • Up/down subframe ratio The ratio of the uplink subframe to the downlink subframe in one superframe.
  • Floor function round down the operation function, available mathematical symbols Said. For example, Floor
  • Ceiling function round up the operation function, available mathematical symbols Said. For example, Floor
  • the terminal in order to support hybrid automatic retransmission, the terminal needs to feed back a hybrid automatic repeat request acknowledgement HARQ-ACK to the base station through a physical uplink control channel (PUCCH) and a physical uplink shared channel (PUSCH), wherein the hybrid automatic repeat request confirmation is also performed.
  • PUCCH physical uplink control channel
  • PUSCH physical uplink shared channel
  • ACK Acknowledgment
  • NACK Negative Acknowledgement
  • the base station in order to support dynamic adaptive scheduling, transmits uplink resource allocation information (UL grant) through the physical downlink control channel (PDCCH) format 0 or format 4.
  • UL grant uplink resource allocation information
  • PDCCH physical downlink control channel
  • the PDQ transmitted in the downlink subframe nk, the corresponding HARQ-ACK will be fed back in the uplink subframe n, where k belongs to the set K, and the definition of K in each TDD uplink and downlink subframe configuration is as follows.
  • Table 1 and Table 2 the different uplink and downlink configurations correspond to different uplink and downlink ratios, that is, the ratios of the uplink subframe, the special subframe, and the downlink subframe included in one frame are different.
  • Table 1 shows the uplink and downlink cycle transition points and the respective sub-subordinates in the uplink and downlink subframe configuration of the existing TDD system.
  • D indicates a downlink subframe
  • S indicates a special subframe
  • U indicates an uplink subframe.
  • Table 2 shows the association set of downlink HARQ timing of the TDD system, and one uplink and downlink configuration corresponds to a ratio. If the UE is in the nth uplink subframe and feeds back whether it correctly decodes the downlink data corresponding to the n-kth downlink subframe, the HARQ timing is k subframes. It can be seen from Table 2 that in LTE, there is no uniform timing relationship in TDD, and different uplink and downlink timings are available under different uplink and downlink subframe ratios, even with the same ratio, with different timings, for example.
  • the HARQ timing of the subframe number 2 is 8, 7, 4, and 6, and the specific meaning is: in the subframe 2, the UE can feed back the 8th before the current subframe. (corresponding to the 4th subframe in the previous subframe), the 7th (corresponding to the 5th subframe in the previous subframe), the 4th (corresponding to the 8th subframe in the previous subframe), and the 6th subframe (corresponding to the subframe 6 in the previous subframe) whether the downlink data is correctly received. If it is received correctly, it corresponds to ACK feedback, otherwise it is NACK feedback. .
  • This complex timing relationship not only increases the complexity of the protocol design, but also does not guarantee that the service has a uniform delay in the air interface. Therefore, in the future evolved system, for the TDD system, it is also necessary to design a unified timing relationship under different uplink and downlink subframe ratios.
  • the length of each subframe can be Shortening, for example, shortening to a length of 0.05 ms or 0.1 ms or 0.125 ms or 0.2 ms per subframe, and the like, and introducing a subframe type 1, a subframe type 2, a subframe type 3, a subframe type 4, and the like.
  • a subframe that is shortened in time may be referred to as a short subframe or an ultra-short subframe, or referred to as a Short Transmission Time Interval (TTI) or an ultra-short TTI.
  • TTI Short Transmission Time Interval
  • one short subframe may include 12 (eg, type 1 subframe 110 and type 2 subframe 120) or 13 symbols (eg, pure downlink subframe 130 and pure uplink subframe 140) in the time domain.
  • the symbol may be a Single-Carrier Frequency Division Multiple Access (SC-FDMA) symbol.
  • SC-FDMA Single-Carrier Frequency Division Multiple Access
  • the number of symbols included in one subframe may be different (for example, may also be 11, 14, etc.), and the type of the symbol is not limited to the above-exemplified SC-FDMA symbol.
  • the subframe configuration in the present application is also not limited to the subframe structure composed of short subframes or ultra-short subframes.
  • Type 1 subframe 110 is mainly used for downlink transmission.
  • 10 symbols 111 are used for downlink transmission, and 1 symbol 112 is used for guard interval (Guard Period, GP).
  • 1 symbol 113 is used for uplink transmission;
  • type 2 subframe 120 is mainly used for uplink transmission.
  • one symbol 121 is used for downlink transmission, and one is used.
  • the symbol 122 is used for the GP, and the 10 symbols 123 are used for the uplink transmission; the pure downlink subframe is only used for the downlink transmission.
  • the 13 symbols 131 of the pure downlink subframe 130 of FIG. 1 are used for the downlink transmission.
  • the pure uplink subframe is only used for uplink transmission.
  • 13 symbols 141 of the pure uplink subframe 130 of FIG. 1 are used for uplink transmission.
  • the subframe structure shown in FIG. 1 is merely exemplary. In an actual application, among the same seed frame types of the same length, the uplink symbol, the downlink symbol, and the GP symbol may also have multiple different configurations. ratio.
  • a TDD system different base stations can perform dynamic uplink and downlink subframe configuration according to the ratio of uplink and downlink subframes in the current cell, which is called dynamic TDD.
  • dynamic TDD because different sites can independently perform uplink and downlink configurations, this causes the neighboring cell users to uplink strong interference to the base station downlink or the neighboring cell base station downlink to the small user uplink.
  • This interference is usually called Reverse interference.
  • This kind of reverse interference affects the reception and demodulation of important signals such as synchronization signals or important channels (such as Physical Broadcast Channel (PBCH) and Random Access Channel (RACH)). Coverage performance is degraded.
  • PBCH Physical Broadcast Channel
  • RACH Random Access Channel
  • the frame structure can be redesigned to achieve a uniform timing relationship between different uplink and downlink subframe ratios, reduce the overhead of air interfaces, and support dynamic TDD configuration.
  • FIG. 2 is a schematic diagram of a method for transmitting information according to an embodiment of the present application.
  • the method of FIG. 2 may be performed by a base station in a TDD system, or may be performed by a user equipment.
  • the method includes:
  • each frame based on the frame structure includes N subframes, a timing length is K subframes, and consecutive M subframes constitute one superframe.
  • N, K, and M are all positive integers, and M is a common multiple of N and 2K.
  • Each superframe includes at least one pure downlink subframe, and also includes a pure uplink subframe, a type 1 subframe, and a type 2 subframe.
  • the pure downlink subframe includes a downlink symbol and does not include an uplink symbol
  • the type 1 subframe includes an uplink symbol and a downlink symbol
  • the number of uplink symbols is less than a downlink symbol
  • the type 2 subframe includes an uplink.
  • the symbol and the downlink symbol have more uplink symbols than the downlink symbol
  • the pure uplink subframe includes an uplink symbol and does not include a downlink symbol.
  • M is the least common multiple of N and 2K.
  • the method in this application does not limit the method for determining the frame structure used for transmitting information in the TDD system, and only needs to determine the frame structure to meet the requirements.
  • the frame structure may be calculated according to a frame structure calculation rule agreed by the base station and the UE, or may be obtained according to a pre-configured frame structure table, or the UE is notified by the base station, or is notified by the base station. And obtained by the preset setting of the base station and the UE, or other possible implementation manners, in order to avoid repetition, it will not be described in detail here.
  • interval (GP) symbols may be included; in the pure uplink subframe, in addition to the uplink symbols, interval (GP) symbols may be included.
  • the first symbol of the first pure downlink subframe in the consecutive pure downlink subframes, and the last symbol of the last pure uplink subframe in the consecutive pure uplink subframes in the superframe may be GP symbols.
  • a symbol that belongs to a pure downlink subframe in a superframe and is adjacent to a pure uplink subframe is a GP symbol, or a symbol that belongs to a pure uplink subframe in a superframe and is adjacent to a pure downlink subframe.
  • GP symbol a symbol that belongs to a pure downlink subframe in a superframe and is adjacent to a pure downlink subframe.
  • the timing length includes an uplink HARQ timing length, a downlink HARQ timing length, an uplink resource allocation timing length, and aperiodic channel state information.
  • State Information at least one of the feedback timing lengths.
  • the timing length includes a timing length
  • the timing length is K subframes; when the timing length includes a plurality of timing lengths, the multiple timing lengths are K subframes.
  • the uplink HARQ timing length refers to the number of subframes required between the subframe when the user equipment receives the PDSCH transmission from the serving cell of the user equipment to the subframe when the user equipment sends the corresponding hybrid retransmission request acknowledgement response. For example, when the user equipment receives the PDSCH transmission from the serving cell of the user equipment, the subframe is the subframe n1, and the subframe when the user equipment sends the corresponding hybrid retransmission request acknowledgement response is the subframe n1+k1.
  • the uplink HARQ timing length is k1 subframes, the serving cell is a cell currently accessed by the user equipment, and the serving cell is one of at least one cell managed by the base station, the same below;
  • the downlink HARQ timing length is the number of subframes required between the subframe when the serving cell receives the PUSCH transmission from the user equipment in the serving cell to the subframe when the serving cell sends the corresponding hybrid retransmission request acknowledgement response, for example,
  • the subframe when the serving cell receives the PUSCH transmission from the user equipment in the serving cell is the subframe n2, and the subframe when the serving cell sends the corresponding hybrid retransmission request acknowledge response is the subframe n2+k2,
  • the downlink HARQ timing length is k2 subframes;
  • the uplink resource allocation timing length refers to a subframe between when the user equipment receives the uplink resource allocation signaling indicating the user equipment from the serving cell of the user equipment, and when the user equipment sends the uplink data on the indicated resource.
  • the number of subframes required for example, when the user equipment receives the uplink resource allocation signaling indicating the user equipment from the serving cell of the user equipment, the subframe is the n3 subframe, and the device sends the uplink on the indicated resource.
  • the subframe of the data is the subframe of n3+k3, and the uplink resource allocation timing length is k3 subframes;
  • the aperiodic CSI feedback timing length refers to when the user equipment receives a downlink control channel indicating that the user equipment performs the aperiodic CSI feedback on the serving cell of the user equipment, and performs a corresponding aperiodic CSI feedback to the user equipment.
  • the number of subframes required between the subframes for example, when the user equipment receives the downlink control channel indicating that the user equipment performs the aperiodic CSI feedback from the serving cell of the user equipment, the subframe is the n4 subframe, the user
  • the subframe in which the device performs corresponding aperiodic CSI feedback is a subframe of number n4+k4, and the length of the aperiodic CSI feedback timing is k4 subframes.
  • the ratio of the uplink and downlink subframes of the superframe is 0:M, and the superframe is in the superframe.
  • the number of subframes is a pure downlink subframe, and the remaining subframes are subframes of the type 1 subframe.
  • the SFNSET_offset is a downlink subframe set offset, and is used to indicate an offset of the first subframe of the downlink subframe set in the superframe relative to the first subframe in the superframe, and the value is 0.
  • SFNDL_offset is a downlink subframe offset, used to indicate that the pure downlink subframe in the downlink subframe set is relative to the first one of the downlink subframe set
  • the offset of the subframe which is an integer between 0 and M/2-1 (including 0 and M/2-1).
  • the downlink subframe set in the superframe is that the subframe number m in the superframe satisfies For an even number of subframe sets, the subframe number m is an integer greater than or equal to zero.
  • the uplink and downlink subframe ratio refers to the ratio of the uplink subframe to the downlink subframe in the prior art.
  • the position of the pure downlink subframe in the superframe is fixed.
  • the pure downlink subframe is a fixed pure downlink subframe.
  • the downlink subframe set offset and the downlink subframe offset have a value range, but in a superframe structure, the downlink subframe set offset corresponds to a specific value, and the downlink subframe offset The shift also corresponds to a specific value.
  • FIG. 3 is a schematic structural diagram of a superframe according to an embodiment of the present application.
  • the distance between the corresponding subframes at both ends of the arrow indicates the timing length
  • the timing length K is 5
  • the superframe has 0-9 total 10 subframes
  • the SFNSET_offset takes 2 values.
  • Subframes 2-6 are DL (downlink) subframes constituting a downlink subframe set
  • subframes 0-1, 7-9 are UL (uplink) subframes constituting an uplink subframe set.
  • subframe 2 is the first subframe of the downlink subframe set. If SFNDL_offset takes a value of 1, subframe 3 is the first pure downlink subframe in the downlink subframe set.
  • the superframe includes one pure downlink subframe and M-1 type 1 subframes.
  • the downlink subframe set may include a pure downlink subframe, a type 1 subframe, or a type 2 subframe, but does not include a pure uplink subframe;
  • the uplink subframe set may include a pure uplink subframe and a type 1 subframe. Frame or type 2 subframe, but must not include pure downlink subframes.
  • the ratio of the uplink and downlink subframes of the superframe is 1:1, and the downlink subframe set in the superframe is a pure downlink subframe, and the uplink subframe set of the superframe Both are pure uplink subframes.
  • the downlink subframe set is that the subframe sequence number m in the super frame satisfies the condition.
  • the uplink subframe set is that the subframe number m in the super frame satisfies the condition An odd number of sub-frame sets.
  • the SFNSET_offset is a downlink subframe set offset, and is used to indicate the offset of the first subframe of the downlink subframe set relative to the first subframe in the superframe, and the value is 0 to K-1. An integer between (including 0 and K-1).
  • the last symbol of the last pure downlink subframe in consecutive consecutive downlink subframes in the superframe is a GP symbol, or the first pure uplink subframe in consecutive consecutive uplink subframes in the superframe
  • the first symbol is a GP symbol, or the first symbol of the first pure downlink subframe in consecutive consecutive downlink subframes in the superframe is a GP symbol, or in a continuous pure uplink subframe in the superframe
  • the last symbol of the last pure uplink subframe is the GP symbol.
  • the super frame includes M/2 pure downlink subframes and M/2 pure uplink subframes.
  • the ratio of the uplink and downlink subframes of the superframe is a: (Ma), and the downlink subframe set of the superframe includes a pure downlink subframe and M/2-a.
  • the type 1 subframe, and the X subframe in the superframe is a fixed pure downlink subframe in the a pure downlink subframe
  • the uplink subframe of the superframe includes a pure uplink subframe and M/ 2-a of the type 1 subframe
  • the Y subframe in the superframe is a fixed pure uplink subframe in the a pure uplink subframe.
  • the downlink subframe set is that the subframe sequence number m in the superframe satisfies the condition
  • the uplink subframe set is that the subframe number m in the super frame satisfies the condition An odd number of sub-frame sets.
  • the SFNSET_offset is a downlink subframe set offset, and is used to indicate the offset of the first subframe of the downlink subframe set relative to the first subframe in the superframe, and the value is 0 to K-1.
  • Integer integer SFNDL_offset is the downlink subframe offset, which is used to indicate the offset of the fixed pure downlink subframe relative to the first subframe of the downlink subframe set, and the value is 0 to M/2-1.
  • An integer between SFNUL_offset is an uplink subframe offset, and is used to indicate a partial offset of the fixed pure uplink subframe relative to the first subframe belonging to the uplink subframe set after the first subframe in the downlink subframe set. The amount of shift is an integer between 0 and M/2-1.
  • the ratio of the uplink and downlink subframes of the superframe is a: (M-a), If a is greater than 0, and the downlink subframe set offset and the downlink subframe offset are unchanged, the positions of the pure downlink subframe or the pure uplink subframe may be different. However, no matter how the positions of the pure downlink subframe and the pure uplink subframe change, one subframe in the uplink subframe set must be fixed as a pure uplink subframe, and one subframe in the downlink subframe set must be fixed as a pure downlink subframe.
  • This fixed subframe in the uplink subframe set is called a fixed pure uplink subframe
  • this fixed subframe in the downlink subframe set is called a fixed pure downlink subframe.
  • the location of the pure downlink subframe except the fixed pure downlink subframe, and the location of the pure uplink subframe other than the fixed pure uplink subframe may change with the configuration of the cell, but the fixed pure downlink subframe and the fixed pure uplink The position of the sub-frame remains the same.
  • the timing length K takes a value of 5
  • the SFNSET_offset takes a value of 2.
  • the uplink subframe set (UL subframe) is divided into two parts, and subframes 0, 1, and 7, 8, and 9.
  • Subframe 7 is the first subframe belonging to the uplink subframe set after the first subframe in the downlink subframe set.
  • Subframes 0 and 1 may be regarded as the 4th and 5th subframes after the first subframe in the downlink subframe set, even before the first subframe in the downlink subframe set.
  • the fixed pure uplink subframe is a subframe (7+1) MOD 10, that is, subframe 8; if the SFNUL_offset value is 3, the fixed pure uplink subframe is a subframe (7+). 3) MOD 10, which is subframe 0.
  • the fixed pure uplink subframe belongs to the first subframe of the uplink subframe set after the first subframe in the downlink subframe set.
  • the fixed pure uplink subframe is a subframe number 0, and before the subframe 7 (the first subframe of the uplink subframe group after the first subframe in the downlink subframe set), It is -7.
  • the ratio of the uplink and downlink subframes of the superframe is a: (Ma), and the downlink subframe set of the superframe includes Ma pure downlink subframes and aM/2 types.
  • 2 subframes, and the X subframes in the superframe are fixed pure downlink subframes in the Ma pure downlink subframes, and the uplink subframes of the superframe include Ma pure uplink subframes and aM/2
  • the type 2 subframe, and the Y subframe in the super frame is a fixed pure uplink subframe in the Ma pure uplink subframes;
  • the downlink subframe set is that the subframe sequence number m in the superframe satisfies the condition
  • the uplink subframe set is that the subframe number m in the super frame satisfies the condition An odd number of sub-frame sets.
  • the SFNSET_offset is a downlink subframe set offset, and is used to indicate the offset of the first subframe of the downlink subframe set relative to the first subframe in the superframe, and the value is 0 to K-1.
  • Integer integer SFNDL_offset is the downlink subframe offset, which is used to indicate the offset of the fixed pure downlink subframe relative to the first subframe of the downlink subframe set, and the value is 0 to M/2-1.
  • An integer between SFNUL_offset is an uplink subframe offset, and is used to indicate a partial offset of the fixed pure uplink subframe relative to the first subframe belonging to the uplink subframe set after the first subframe in the downlink subframe set. The amount of shift is an integer between 0 and M/2-1.
  • the positions of other pure uplink subframes and pure downlink subframes may not be fixed, but other pure uplink subframes must belong to the uplink subframe concentration.
  • the other pure downlink subframes must belong to the downlink subframe set.
  • a message may be transmitted based on the frame structure, or a message may be received based on the frame structure, or a message may be transmitted and received based on the frame structure.
  • the base station may send a message and/or receive a message to the user equipment based on the frame structure.
  • the base station may notify the UE of the frame structure of the current frame by using a broadcast message, or a frame structure of several frames after the current frame, or a frame structure after a certain frame.
  • the broadcast message includes the configuration of the uplink and downlink subframes, and the configuration is consistent with the configuration relationship of the uplink and downlink subframes in the embodiment of the present application.
  • the configuration of the uplink and downlink subframes mentioned herein includes a configuration of a pure uplink subframe, a pure downlink subframe, a type 1 subframe, and a type 2 subframe.
  • the broadcast message may include an uplink and downlink subframe ratio, a downlink subframe set offset (if any), an uplink subframe set offset (if any), a pure uplink subframe position (if any), and a pure downlink. Subframe position (if any) and so on.
  • the location of the non-fixed pure uplink subframe or the pure downlink subframe mentioned in the foregoing embodiment may also be notified to the UE by the base station, for example, notifying the UE of the non-fixed pure uplink in the fixed pure downlink subframe.
  • the position of the frame may refer to the notification manner in the dynamic TDD, which is not limited herein.
  • the D2D user equipment can send a message and/or receive a message to the peer D2D user equipment based on the frame structure.
  • the manner in which the D2D user equipment sends the frame structure information to the peer D2D user equipment may be similar to the manner in which the base station sends the frame structure information to the user equipment, and details are not described herein again.
  • a pure downlink subframe may be used to send a physical broadcast channel (PBCH), a synchronization signal, and a physical hybrid automatic retransmission indication.
  • PBCH Physical Broad channel
  • PHICH Physical Downlink Control Channel
  • EPDCCH Enhanced Physical Downlink Control Channel
  • PCFICH Physical Control Physical Control Format Indicator Channel
  • PCFICH Physical Control
  • a pure uplink subframe is used for transmitting a physical random access channel (PRACH), a feedback acknowledgement (ACK), a feedback non-acknowledgement (NACK), and a channel.
  • PRACH physical random access channel
  • ACK feedback acknowledgement
  • NACK feedback non-acknowledgement
  • CSI Channel State Information
  • SRS Sounding Reference Signal
  • the information transmission and reception can enable the system to provide a unified uplink and downlink timing relationship under different uplink and downlink subframe ratios, reduce uplink and downlink handover overhead, and implement dynamic TDD.
  • FIG. 4 is a schematic diagram of a frame structure of a superframe according to an embodiment of the present application.
  • the downlink subframe set in the superframe satisfies the condition that the subframe number in the superframe satisfies the condition
  • the uplink subframe set is a subframe number in the superframe that satisfies It is an even number of subframe sets. Therefore, the downlink subframe set is a subframe ⁇ 0, 1, 2, 3, 4 ⁇ , and the uplink subframe set is a subframe ⁇ 5, 6, 7, 8, 9 ⁇ .
  • m is the sequence number of the subframe in the superframe. In Fig. 4, m is a value from 0 to 9 (including 0 and 9).
  • the ratio of the uplink and downlink subframes is 1:9 to 9:1, and a total of nine types. For each ratio, there is a fixed pure downlink subframe and a fixed pure uplink subframe.
  • the subframe number of the fixed pure downlink subframe is Therefore, it corresponds to subframe 0 (subframe 0).
  • the subframe number of the fixed pure uplink subframe is Therefore, it corresponds to subframe 5 (subframe 5).
  • the last symbol of the last pure downlink subframe in consecutive consecutive downlink subframes in the superframe is a GP symbol, that is, the last symbol of the subframe 4 is a GP symbol; or, the continuous pure in the superframe
  • the first symbol of the first pure uplink subframe in the uplink subframe is a GP symbol, that is, the first symbol of the subframe 5 is a GP symbol; or the first of the consecutive pure downlink subframes in the superframe
  • the first symbol of a pure downlink subframe is a GP symbol, that is, the first symbol of the subframe 0 is a GP symbol, or the last pure uplink subframe of consecutive consecutive uplink subframes in the superframe
  • the last symbol is the GP symbol, that is, the last symbol of the 9th subframe is the GP symbol.
  • the uplink-downlink subframe ratio is a: (Ma) and 0 ⁇ a ⁇ M/2
  • the value of a is 1, 2, 3, and 4
  • the frame structure of the uplink and downlink subframes is (1:9, 2:8, 3:7, 4:6), including a pure downlink subframe, a A pure uplink subframe and M-2a type 1 subframes.
  • the subframe 0 is a fixed pure downlink subframe
  • the subframe 5 is fixed as a pure uplink subframe
  • the remaining a-1 pure downlink subframes are selected from subframes other than the subframe 0 of the downlink subframe set
  • a - A pure uplink subframe is selected from subframes other than the subframe 5 of the uplink subframe set, and the position may not be fixed
  • the last remaining M-2a subframes are all type 1 subframes.
  • the uplink-downlink subframe ratio is a: (Ma) and M/2 ⁇ a ⁇ M
  • the value of a is 6, 7, 8, and 9.
  • the frame structure of the uplink and downlink subframes is (6:4, 7:3, 8:2, 9:1), including Ma pure downlink subframes, Ma.
  • a pure uplink subframe and 2a-M type 2 subframes The subframe 0 is a fixed pure downlink subframe, and the subframe 5 is fixed as a pure uplink subframe, and the remaining Ma-1 pure downlink subframes are selected from subframes other than the subframe 0 of the downlink subframe set, Ma.
  • a pure uplink subframe is selected from subframes other than subframe 5 of the uplink subframe set, and the position may not be fixed, and the last remaining M-2a subframes are all type 2 subframes.
  • a-1 takes a value of 0, and when the uplink-downlink subframe ratio is 9:1, Ma-1 takes a value of 0;
  • the uplink and downlink subframes there is no pure uplink subframe other than the fixed pure uplink subframe, and there is no pure downlink subframe other than the fixed pure downlink subframe.
  • FIG. 5 is a schematic diagram of a frame structure of another superframe according to an embodiment of the present application.
  • the subframe number in the superframe of the embodiment shown in FIG. 5 follows the subframe number in FIG. 4(a).
  • the subframe number in FIG. 4(a) is used as the subframe number of each of the uplink and downlink subframes in FIG.
  • the downlink subframe set is It is an even number of subframe sets, that is, subframes 3-7.
  • the uplink subframe set is It is an odd number of subframe sets, that is, subframes 0, 1, 2, 8, and 9.
  • (a) of FIG. 5 corresponds to a frame structure when the ratio of the uplink and downlink subframes is 0:10; and (b)-(j) of FIG. 5 correspond to the ratio of the uplink and downlink subframes respectively. : A possible implementation of 9 to 9:1.
  • subframe 4 is a pure downlink subframe.
  • the frame structure shown in (b)-(j) of FIG. 5 includes one fixed pure downlink subframe and one fixed pure uplink subframe.
  • the subframe number of the fixed pure downlink subframe is Therefore, it corresponds to the 4th subframe (subframe 4).
  • the subframe number of the fixed pure uplink subframe is Therefore, it corresponds to the eighth subframe (subframe 8).
  • uplink subframes 3--7 As shown in (f) of FIG. 5, in a frame structure in which the uplink-downlink subframe ratio is 1:1 (ie, 5:5), five pure downlink subframes (subframes 3-7) and five pures are included.
  • Uplink subframe (subframes 0, 1, 2, 8, 9).
  • the last symbol of the subframe 7 is the GP symbol
  • the first symbol of the subframe 3 is the GP symbol
  • the last symbol of the subframe 2 is the GP symbol
  • the first of the subframes 8 The symbol is the GP symbol.
  • the uplink-downlink subframe ratio is a: (Ma) and 0 ⁇ a ⁇ M/2, that is, a is taken.
  • the values are 1, 2, 3, and 4.
  • the ratio of the uplink and downlink subframes is (1:9, 2:8,
  • the 3:7, 4:6) scenario includes a pure downlink subframe, a pure uplink subframe, and M-2a type 1 subframes.
  • the subframe 4 is a fixed pure downlink subframe
  • the subframe 8 is fixed as a pure uplink subframe
  • the remaining a-1 pure downlink subframes are selected from subframes other than the subframe 4 of the downlink subframe set
  • a - A pure uplink subframe is selected from subframes other than subframe 8 of the uplink subframe set, and the position may not be fixed
  • all remaining M-2a subframes are all type 1 subframes.
  • the uplink and downlink subframes are (6:4, 7:3, 8:2, 9:1), including Ma pure downlink subframes and Ma pure uplinks.
  • Frame and 2a-M type 2 subframes The subframe 4 is a fixed pure downlink subframe, and the subframe 8 is fixed as a pure uplink subframe, and the remaining Ma-1 pure downlink subframes are selected from subframes other than the subframe 4 of the downlink subframe set, Ma.
  • a pure uplink subframe is selected from subframes other than subframe 8 of the uplink subframe set, and the position may not be fixed, and the last remaining M-2a subframes are all type 2 subframes.
  • a-1 takes a value of 0, and when the uplink-downlink subframe ratio is 9:1, Ma-1 takes a value of 0;
  • the uplink and downlink subframes there is no pure uplink subframe other than the fixed pure uplink subframe, and there is no pure downlink subframe other than the fixed pure downlink subframe.
  • FIG. 6 is a schematic diagram of a frame structure of another superframe according to an embodiment of the present application.
  • the downlink subframe set in the superframe is that the sequence number in the superframe satisfies Is an even number of subframe sets, so the downlink subframe set is ⁇ 0,1,2,3,8,9,10,11,16,17,18,19,24,25,26,27,32,33, 34, 35 ⁇ , the uplink subframe set is ⁇ 4,5,6,7,12,13,14,15,20,21,22,23,28,29,30,31,36,37,38,39 ⁇ .
  • (b) of FIG. 6 corresponds to a frame structure when the ratio of the uplink and downlink subframes is 0:40; and (c)-(h) of FIG. 6 correspond to the ratio of the uplink and downlink subframes respectively.
  • 39, 2:38, 15:25, 20:20, 28:12, 39:1 is a possible way of achieving.
  • subframe 0 (subframe 0) is a pure downlink subframe.
  • the frame structure shown in (c)-(h) of FIG. 6 includes one fixed pure downlink subframe and one fixed pure uplink subframe.
  • the subframe number of the fixed pure downlink subframe is Therefore, it corresponds to subframe 0 (subframe 0).
  • the subframe number of the fixed pure uplink subframe is Therefore, it corresponds to the 4th subframe (subframe 4).
  • the uplink-downlink subframe ratio is a: (Ma) and 0 ⁇ a ⁇ M/2, that is, a takes a value of 1. 2, 15, the scenario of the uplink and downlink subframes is (1:39, 2:38, 15:25), including a pure downlink subframe, a pure uplink subframe, and M-2a type 1 subframes. frame.
  • the subframe 0 is a fixed pure downlink subframe
  • the subframe 4 is fixed as a pure uplink subframe
  • the remaining a-1 pure downlink subframes are selected from subframes other than the subframe 0 of the downlink subframe set
  • a - A pure uplink subframe is selected from subframes other than subframe 4 of the uplink subframe set, and the position may not be fixed
  • the last remaining M-2a subframes are all type 1 subframes.
  • the ratio of the uplink and downlink subframes is a: (Ma) and M/2 ⁇ a ⁇ M, that is, the value of a is 28, 39, and the uplink and downlink are used.
  • the frame ratio is (28:12, 39:1), including Ma pure downlink subframes, Ma pure uplink subframes, and 2a-M type 2 subframes.
  • the subframe 0 is a fixed pure downlink subframe
  • the subframe 4 is fixed as a pure uplink subframe
  • the remaining Ma-1 pure downlink subframes are selected from subframes other than the subframe 0 of the downlink subframe set, Ma.
  • a pure uplink subframe is selected from subframes other than subframe 4 of the uplink subframe set, and the location may not be fixed, and the last remaining M-2a subframes are all type 2 subframes.
  • a-1 takes a value of 0, and when the uplink-downlink subframe ratio is 39:1, Ma-1 takes a value of 0;
  • the uplink and downlink subframe ratio there is no pure uplink subframe other than the fixed pure uplink subframe, and there is no pure downlink other than the fixed pure downlink subframe. Subframe.
  • FIG. 7 is a schematic diagram of a frame structure of another superframe according to an embodiment of the present application.
  • the downlink subframe set is ⁇ 0,1,2,6,7,8,12,13,14,18,19,20,24,25,26 ⁇ , and the uplink subframe set is ⁇ 3,4,5,9 , 10, 11, 15, 16, 17, 21, 22, 23, 27, 28, 29 ⁇ , as shown in (a) of Fig. 7.
  • (b) of FIG. 7 corresponds to a frame structure when the ratio of the uplink and downlink subframes is 0:30; and (c)-(i) of FIG. 7 correspond to the ratio of the uplink and downlink subframes respectively. : 29, 5:25, 9:21, 15:15, 20:10, 25:5, 29:1 is a possible way of achieving.
  • subframe 0 (subframe 0) is a pure downlink subframe.
  • the frame structure shown in (c)-(i) of FIG. 7 includes one fixed pure downlink subframe and one fixed pure uplink subframe.
  • the subframe number of the fixed pure downlink subframe is Therefore, it corresponds to subframe 0 (subframe 0).
  • the subframe number of the fixed pure uplink subframe is Therefore, it corresponds to subframe 3 (subframe 3).
  • the uplink-downlink subframe ratio is a: (Ma) and 0 ⁇ a ⁇ M/2, that is, a takes a value of 1. 5,
  • the scenario of the uplink and downlink subframes is (1:29, 5:25, 9:21), including a pure downlink subframe, a pure uplink subframe, and M-2a type 1 subframes. frame.
  • the subframe 0 is a fixed pure downlink subframe
  • the subframe 3 is fixed as a pure uplink subframe
  • the remaining a-1 pure downlink subframes are selected from subframes other than the subframe 0 of the downlink subframe set
  • a - A pure uplink subframe is selected from subframes other than the subframe 3 of the uplink subframe set, and the position may not be fixed
  • the last remaining M-2a subframes are all type 1 subframes.
  • a scenario in which the row subframe ratio is (20:10, 25:5, 29:1) includes Ma pure downlink subframes, Ma pure uplink subframes, and 2a-M type 2 subframes.
  • the subframe 0 is a fixed pure downlink subframe
  • the subframe 4 is fixed as a pure uplink subframe
  • the remaining Ma-1 pure downlink subframes are selected from subframes other than the subframe 0 of the downlink subframe set, Ma.
  • a pure uplink subframe is selected from subframes other than subframe 4 of the uplink subframe set, and the location may not be fixed, and the last remaining M-2a subframes are all type 2 subframes.
  • a-1 takes a value of 0, and when the uplink-downlink subframe ratio is 29:1, Ma-1 takes a value of 0;
  • the uplink and downlink subframes there is no pure uplink subframe other than the fixed pure uplink subframe, and there is no pure downlink subframe other than the fixed pure downlink subframe.
  • FIG. 8 is a schematic diagram of a frame structure of another superframe according to an embodiment of the present application.
  • the downlink subframe set is ⁇ 0, 1, 4, 5, 8, 9, 12, 13, 16, 17 ⁇ , and the uplink subframe set is ⁇ 2, 3, 6, 7, 10, 11, 14, 15, 18 , 19 ⁇ , as shown in (a) of Fig. 8.
  • (b) of FIG. 8 corresponds to a frame structure when the ratio of the uplink and downlink subframes is 0:20; and (c)-(h) of FIG. 8 correspond to the ratio of the uplink and downlink subframes respectively.
  • subframe 0 (subframe 0) is a pure downlink subframe.
  • the frame structure shown in (c)-(h) of FIG. 8 includes one fixed pure downlink subframe and one fixed pure Uplink subframe.
  • the subframe number of the fixed pure downlink subframe is Therefore, it corresponds to subframe 0 (subframe 0).
  • the subframe number of the fixed pure uplink subframe is Therefore, it corresponds to subframe 3 (subframe 3).
  • the uplink-downlink subframe ratio is a: (Ma) and 0 ⁇ a ⁇ M/2, that is, a takes a value of 1. 4, 7, the scenario of the uplink and downlink subframes is (1:19, 4:16, 7:13), including a pure downlink subframe, a pure uplink subframe, and M-2a type 1 subframes. frame.
  • the subframe 0 is a fixed pure downlink subframe
  • the subframe 3 is fixed as a pure uplink subframe
  • the remaining a-1 pure downlink subframes are selected from subframes other than the subframe 0 of the downlink subframe set
  • a - A pure uplink subframe is selected from subframes other than the subframe 3 of the uplink subframe set, and the position may not be fixed
  • the last remaining M-2a subframes are all type 1 subframes.
  • the frame ratio is (14:6, 19:1), including Ma pure downlink subframes, Ma pure uplink subframes, and 2a-M type 2 subframes.
  • the subframe 0 is a fixed pure downlink subframe
  • the subframe 4 is fixed as a pure uplink subframe
  • the remaining Ma-1 pure downlink subframes are selected from subframes other than the subframe 0 of the downlink subframe set, Ma.
  • a pure uplink subframe is selected from subframes other than subframe 4 of the uplink subframe set, and the location may not be fixed, and the last remaining M-2a subframes are all type 2 subframes.
  • a-1 takes a value of 0, and when the uplink and downlink subframe ratio is 19:1, Ma-1 takes a value of 0;
  • the uplink and downlink subframes there is no pure uplink subframe other than the fixed pure uplink subframe, and there is no pure downlink subframe other than the fixed pure downlink subframe.
  • FIG. 9 is a schematic diagram of a frame structure of another superframe according to an embodiment of the present application.
  • the downlink subframe set is ⁇ 0, 1, 2, 6, 7, 8, 12, 13, 14, 18, 19, 20 ⁇ , and the uplink subframe set is ⁇ 3, 4, 5, 9, 10, 11, 15 , 16, 17, 21, 22, 23 ⁇ , as shown in (a) of Fig. 9.
  • (b) of FIG. 9 corresponds to a frame structure when the ratio of the uplink and downlink subframes is 0:24; and (c)-(h) of FIG. 9 correspond to the ratio of the uplink and downlink subframes respectively. : 23, 5:19, 10:14, 12:12, 15:9, 23:1 a possible way of achieving.
  • subframe 0 (subframe 0) is a pure downlink subframe.
  • the frame structure shown in (c)-(h) of FIG. 9 includes one fixed pure downlink subframe and one fixed pure uplink subframe.
  • the subframe number of the fixed pure downlink subframe is Therefore, it corresponds to subframe 0 (subframe 0).
  • the subframe number of the fixed pure uplink subframe is Therefore, it corresponds to subframe 3 (subframe 3).
  • the uplink-downlink subframe ratio is a: (Ma) and 0 ⁇ a ⁇ M/2, that is, a takes a value of 1. 5,
  • the scenario of the uplink and downlink subframes is (1:23, 5:19, 10:14), including a pure downlink subframe, a pure uplink subframe, and M-2a type 1 subframes. frame.
  • the subframe 0 is a fixed pure downlink subframe
  • the subframe 3 is fixed as a pure uplink subframe
  • the remaining a-1 pure downlink subframes are selected from subframes other than the subframe 0 of the downlink subframe set
  • a - 1 pure uplink subframe is selected from subframes other than subframe 3 of the uplink subframe set, and the location may not be fixed
  • the last remaining M-2a subframes are all type 1 subframes.
  • the ratio of the uplink and downlink subframes is a: (Ma) and M/2 ⁇ a ⁇ M, that is, the value of a is 15, 23, and the uplink and downlink are used.
  • the frame ratio is (15:9, 23:1), including Ma pure downlink subframes, Ma pure uplink subframes, and 2a-M type 2 subframes.
  • the subframe 0 is a fixed pure downlink subframe
  • the subframe 4 is fixed as a pure uplink subframe
  • the remaining Ma-1 pure downlink subframes are selected from subframes other than the subframe 0 of the downlink subframe set, Ma.
  • a pure uplink subframe is selected from subframes other than subframe 4 of the uplink subframe set, and the location may not be fixed, and the last remaining M-2a subframes are all type 2 subframes.
  • a-1 takes a value of 0, and when the uplink-downlink subframe ratio is 23:1, Ma-1 takes a value of 0;
  • the uplink and downlink subframes there is no pure uplink subframe other than the fixed pure uplink subframe, and there is no pure downlink subframe other than the fixed pure downlink subframe.
  • FIG. 10 is a schematic diagram of a frame structure of another superframe according to an embodiment of the present application.
  • the downlink subframe set is ⁇ 0, 1, 2, 3 ⁇ , and the uplink subframe set is ⁇ 4, 5, 6, 7 ⁇ , as shown in (a) of FIG.
  • (b) of FIG. 10 corresponds to a frame structure when the ratio of the uplink and downlink subframes is 0:8; and (c)-(i) of FIG. 10 correspond to the ratio of the uplink and downlink subframes respectively.
  • subframe 0 is a pure downlink subframe.
  • the frame structure shown in (c)-(i) of FIG. 10 includes one fixed pure downlink subframe and one fixed pure uplink subframe.
  • the subframe number of the fixed pure downlink subframe is Therefore, it corresponds to subframe 0 (subframe 0).
  • the subframe number of the fixed pure uplink subframe is Therefore, it corresponds to the 4th subframe (subframe 4).
  • the uplink-downlink subframe ratio is a: (Ma) and 0 ⁇ a ⁇ M/2, that is, a takes a value of 1. 2, 3, the scenario where the ratio of the uplink and downlink subframes is (1:7, 2:6, 3:5), including a pure downlink subframe, a pure uplink subframe, and M-2a type 1 subframes. frame.
  • the subframe 0 is a fixed pure downlink subframe
  • the subframe 4 is fixed as a pure uplink subframe
  • the remaining a-1 pure downlink subframes are selected from subframes other than the subframe 0 of the downlink subframe set
  • a - A pure uplink subframe is selected from subframes other than subframe 4 of the uplink subframe set, and the position may not be fixed
  • the last remaining M-2a subframes are all type 1 subframes.
  • a scenario in which the row subframe ratio is (5:3, 6:2, 7:1) includes Ma pure downlink subframes, Ma pure uplink subframes, and 2a-M type 2 subframes.
  • the subframe 0 is a fixed pure downlink subframe
  • the subframe 4 is fixed as a pure uplink subframe
  • the remaining Ma-1 pure downlink subframes are selected from subframes other than the subframe 0 of the downlink subframe set, Ma.
  • a pure uplink subframe is selected from subframes other than subframe 4 of the uplink subframe set, and the location may not be fixed, and the last remaining M-2a subframes are all type 2 subframes.
  • a-1 takes a value of 0, and when the uplink and downlink subframe ratio is 7:1, Ma-1 takes a value of 0;
  • the uplink and downlink subframes there is no pure uplink subframe other than the fixed pure uplink subframe, and there is no pure downlink subframe other than the fixed pure downlink subframe.
  • the foregoing frame structure in the embodiment of the present application may be further extended to other scenarios of different frame lengths and timing lengths, where the downlink subframe set offset, the downlink subframe offset, and the uplink subframe offset are also It can be configured as other integers that are qualified, and the embodiments of the present application will not be repeated here.
  • FIG. 11 is a schematic block diagram of an information transmission apparatus 1100 according to an embodiment of the present application.
  • the device may be a network side device such as a base station, a relay, a wireless AP, or a mobile terminal, such as a user side of a mobile phone. device.
  • the information transmission device 1100 of FIG. 11 can implement the method shown in FIG. 2, and the information transmission device 1100 can include:
  • a determining unit 1101 configured to determine a frame structure used for transmitting information in the TDD system, where each frame based on the frame structure includes N subframes, a timing length is K subframes, and consecutive M subframes constitute one superframe;
  • the processing unit 1102 is configured to send and/or receive a message based on the frame structure.
  • N, K, and M are all positive integers, and M is a common multiple of N and 2K.
  • Each superframe includes at least one pure downlink subframe, and also includes a pure uplink subframe, a type 1 subframe, and a type 2 subframe.
  • At least one of the downlink sub-frames includes a downlink symbol and does not include an uplink symbol, where the type 1 subframe includes an uplink symbol and a downlink symbol, and the number of uplink symbols is less than a downlink symbol, and the type 2 subframe includes an uplink symbol.
  • the downlink symbol, and the number of uplink symbols is more than the downlink symbol, and the pure uplink subframe includes the uplink symbol and does not include the downlink symbol.
  • M is the least common multiple of N and 2K.
  • the timing length includes at least one of an uplink HARQ timing length, a downlink HARQ timing length, an uplink resource allocation timing length, and a Channel State Information (CSI) feedback timing length.
  • the timing length includes a timing length
  • the timing length is K subframes; when the timing length includes a plurality of timing lengths, the multiple timing lengths are K subframes.
  • the uplink HARQ timing length refers to the number of subframes required between the subframe when the user equipment receives the PDSCH transmission from the serving cell of the user equipment to the subframe when the user equipment sends the corresponding hybrid retransmission request acknowledgement response. For example, when the user equipment receives the PDSCH transmission from the serving cell of the user equipment, the subframe is the subframe n1, and the subframe when the user equipment sends the corresponding hybrid retransmission request acknowledgement response is the subframe n1+k1. , the uplink HARQ timing length is k1 subframes;
  • the downlink HARQ timing length is the number of subframes required between the subframe when the serving cell receives the PUSCH transmission from the user equipment in the serving cell to the subframe when the serving cell sends the corresponding hybrid retransmission request acknowledgement response, for example,
  • the subframe when the serving cell receives the PUSCH transmission from the user equipment in the serving cell is the subframe n2, and the subframe when the serving cell sends the corresponding hybrid retransmission request acknowledge response is the subframe n2+k2,
  • the downlink HARQ timing length is k2 subframes;
  • the uplink resource allocation timing length refers to a subframe between when the user equipment receives the uplink resource allocation signaling indicating the user equipment from the serving cell of the user equipment, and when the user equipment sends the uplink data on the indicated resource.
  • the number of subframes required, for example, the user equipment from the user equipment is the subframe n3, and the subframe in which the device transmits the uplink data on the indicated resource is the subframe n3+k3, and then the uplink is uplink.
  • the resource allocation timing length is k3 subframes;
  • the aperiodic CSI feedback timing length refers to when the user equipment receives a downlink control channel indicating that the user equipment performs the aperiodic CSI feedback on the serving cell of the user equipment, and performs a corresponding aperiodic CSI feedback to the user equipment.
  • the number of subframes required between the subframes for example, when the user equipment receives the downlink control channel indicating that the user equipment performs the aperiodic CSI feedback from the serving cell of the user equipment, the subframe is the n4 subframe, the user
  • the subframe in which the device performs corresponding aperiodic CSI feedback is a subframe of number n4+k4, and the length of the aperiodic CSI feedback timing is k4 subframes.
  • a pure downlink subframe is used to send at least one of a PBCH, a synchronization signal, a PHICH, a PDCCH, an EPDCCH, and a PCFICH; a pure uplink subframe is used to send PRACH, ACK, NACK, CSI, and SRS. At least one of them.
  • the TDD system by introducing a pure downlink subframe, a pure uplink subframe, a type 1 subframe, and a type 2 subframe in a radio frame, and determining a transmission information used by the TDD system, information transmission based on the frame structure is used.
  • the receiving enables the system to provide a unified uplink and downlink timing relationship under different uplink and downlink subframe ratios, reduce uplink and downlink switching overhead, and implement dynamic TDD.
  • the information transmission device 1100 can also adopt the frame structure of the embodiment corresponding to FIG. 1 and FIG. 3-10.
  • FIG. 12 is a schematic structural diagram of an apparatus 1200 according to an embodiment of the present application.
  • Apparatus 1200 can include a processor 1202, a memory 1203, a transmitter 1201, and a receiver 1204.
  • the device 1200 may be a network side device such as a base station, a relay, or a wireless AP, or a mobile terminal, such as a user side device such as a mobile phone.
  • Receiver 1204, transmitter 1201, processor 1202, and memory 1203 are interconnected by a bus 1206 system.
  • the bus 1206 can be an ISA bus, a PCI bus, or an EISA bus.
  • the bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one double-headed arrow is shown in Figure 12, but it does not mean that there is only one bus or one type of bus.
  • transmitter 1201 and receiver 1204 can be coupled to antenna 1205.
  • the memory 1203 is configured to store a program.
  • the program can include program code, the program code including computer operating instructions.
  • the memory 1203 can include read only memory and random access
  • the memory is provided with instructions and data to the processor 1202.
  • the memory 1203 may include a high speed RAM memory and may also include a non-volatile memory such as at least one disk memory.
  • the processor 1202 executes the program stored in the memory 1203, and is specifically configured to perform the following operations:
  • each frame based on the frame structure includes N subframes, a timing length is K subframes, and consecutive M subframes constitute one superframe;
  • N, K, and M are all positive integers, and M is a common multiple of N and 2K.
  • Each superframe includes at least one pure downlink subframe, and also includes a pure uplink subframe, a type 1 subframe, and a type 2 subframe.
  • the pure downlink subframe includes a downlink symbol and does not include an uplink symbol
  • the type 1 subframe includes an uplink symbol and a downlink symbol
  • the number of uplink symbols is less than a downlink symbol
  • the type 2 subframe includes an uplink.
  • the symbol and the downlink symbol have more uplink symbols than the downlink symbol
  • the pure uplink subframe includes an uplink symbol and does not include a downlink symbol.
  • M is the least common multiple of N and 2K.
  • the timing length includes at least one of an uplink hybrid automatic repeat request HARQ timing length, a downlink HARQ timing length, an uplink resource allocation timing length, and an aperiodic CSI feedback timing length, each of the super The frame includes a pure downlink subframe, and further includes one or more of a pure uplink subframe, a type 1 subframe, and a type 2 subframe.
  • the timing length includes a timing length
  • the timing length is K subframes; when the timing length includes a plurality of timing lengths, the multiple timing lengths are K subframes.
  • the uplink HARQ timing length refers to the number of subframes required between the subframe when the user equipment receives the PDSCH transmission from the serving cell of the user equipment to the subframe when the user equipment sends the corresponding hybrid retransmission request acknowledgement response. For example, when the user equipment receives the PDSCH transmission from the serving cell of the user equipment, the subframe is the subframe n1, and the subframe when the user equipment sends the corresponding hybrid retransmission request acknowledgement response is the subframe n1+k1. , the uplink HARQ timing length is k1 subframes;
  • the downlink HARQ timing length is the number of subframes required between the subframe when the serving cell receives the PUSCH transmission from the user equipment in the serving cell to the subframe when the serving cell sends the corresponding hybrid retransmission request acknowledgement response, for example,
  • the subframe in which the serving cell receives the PUSCH transmission from the user equipment in the serving cell is a subframe n2, and the serving cell sends a corresponding hybrid retransmission request.
  • the downlink HARQ timing length is k2 subframes;
  • the uplink resource allocation timing length refers to a subframe between when the user equipment receives the uplink resource allocation signaling indicating the user equipment from the serving cell of the user equipment, and when the user equipment sends the uplink data on the indicated resource.
  • the number of subframes required for example, when the user equipment receives the uplink resource allocation signaling indicating the user equipment from the serving cell of the user equipment, the subframe is the n3 subframe, and the device sends the uplink on the indicated resource.
  • the subframe of the data is the subframe of n3+k3, and the uplink resource allocation timing length is k3 subframes;
  • the aperiodic CSI feedback timing length refers to when the user equipment receives a downlink control channel indicating that the user equipment performs the aperiodic CSI feedback on the serving cell of the user equipment, and performs a corresponding aperiodic CSI feedback to the user equipment.
  • the number of subframes required between the subframes for example, when the user equipment receives the downlink control channel indicating that the user equipment performs the aperiodic CSI feedback from the serving cell of the user equipment, the subframe is the n4 subframe, the user
  • the subframe in which the device performs corresponding aperiodic CSI feedback is a subframe of number n4+k4, and the length of the aperiodic CSI feedback timing is k4 subframes.
  • the pure downlink subframe is used to send at least one of a PBCH, a synchronization signal, a PHICH, a PDCCH, an EPDCCH, and a PCFICH.
  • a pure uplink subframe is used to send at least one of PRACH, ACK, NACK, CSI, and SRS.
  • Processor 1202 may be an integrated circuit chip with signal processing capabilities. In the implementation process, each step of the above method may be completed by an integrated logic circuit of hardware in the processor 1202 or an instruction in a form of software.
  • the processor 1202 may be a general-purpose processor, including a central processing unit (CPU), a network processor (NP processor, etc.), or a digital signal processor (DSP), an application specific integrated circuit. (ASIC), Field Programmable Gate Array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware component.
  • CPU central processing unit
  • NP processor network processor
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA Field Programmable Gate Array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the processor may also be a dedicated processor, such as a baseband processing chip.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 1203, and the processor 1202 reads the information in the memory 1203, and combines Its hardware completes the steps of the above method.
  • the apparatus 1200 introduces a pure downlink subframe, a pure uplink subframe, a type 1 subframe, and a type 2 subframe in a radio frame, and determines information used by the TDD system to transmit information, based on the frame structure.
  • the sending and receiving can enable the system to provide a unified uplink and downlink timing relationship under different uplink and downlink subframe ratios, reduce uplink and downlink switching overhead, and implement dynamic TDD.
  • the apparatus 1200 can adopt the frame structure of the embodiment corresponding to FIG. 1 and FIG. 3-10.
  • frame structure reference may be made to the embodiment corresponding to FIG. 1 and FIG. 3-10, and details are not described herein again.
  • the size of the sequence numbers of the foregoing processes does not mean the order of execution sequence, and the order of execution of each process should be determined by its function and internal logic, and should not be applied to the embodiment of the present application.
  • the implementation process constitutes any limitation.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated in one unit. In the unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present application which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种TDD系统信息传输的方法和装置,该方法包括:确定TDD系统中传输信息所使用的帧结构,其中,基于该帧结构的每个帧包括N个子帧,定时长度为K个子帧,连续的M个子帧构成一个超帧,M为N和2K的公倍数,每个该超帧中包括至少一个纯下行子帧,还包括纯上行子帧、类型1子帧及类型2子帧中的至少1种,纯下行子帧中包括下行符号且不包括上行符号,该类型1子帧中包括上行符号和下行符号且上行符号个数少于下行符号,该类型2子帧中包括上行符号和下行符号且上行符号个数多于下行符号,纯上行子帧中包括上行符号且不包括下行符号;基于该帧结构发送和/或接收消息。

Description

TDD系统信息传输的方法和装置
本申请要求于2015年11月11日提交中国专利局、申请号为201510764970.3、发明名称为“TDD系统信息传输的方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更具体地,涉及TDD系统信息传输的方法和装置。
背景技术
在长期演进(Long Term Evolution,LTE)系统中,为了支持混合自动重传请求(Hybrid Automatic Repeat Request,HARQ),用户设备需要通过物理上行控制信道(Physical Uplink Control Channel,PUCCH)或物理上行共享信道(Physical Uplink Shared Channel,PUSCH)向基站反馈物理下行共享信道(Physical Downlink Shared Channel,PDSCH)对应的混合自动重传请求确认(HARQ Acknowledgment,HARQ-ACK),其中,HARQ-ACK可以称为确认应答(Acknowledgment,ACK)或否认应答(Negative Acknowledgement,NACK)。用户设备需要通过物理混合自动重传指示信道(Physical HARQ Indicator Channel,PHICH)接收PUSCH对应的HARQ-ACK。
现有LTE系统包括两种帧结构,其中,第一种帧结构用于频分双工(Frequency-Division Duplex,FDD),第二种帧结构用于时分双工(Time-Division Duplex,TDD)。这两种帧结构中的每个子帧的长度均为1ms。
上下行定时:如果用户设备在第n个上行子帧上,反馈其是否正确解码第n-k个下行子帧对应的下行数据(一般反馈ACK或NACK),则此时的上下行定时即为k个子帧,也称为定时长度。
在LTE中,TDD在不同上下行子帧配比下,每种配比都具有不同的上下行定时。这种复杂的定时关系不仅增加了协议设计的复杂度,而且不能保证业务在空口具有统一的时延。
发明内容
本申请实施例提供一种TDD系统信息传输的方法和装置,能够提供统一的上下行定时关系,降低上下行切换开销,实现动态的TDD。
第一方面,提供了一种信息传输装置,该装置包括:
确定单元,用于确定时分双工TDD系统中传输信息所使用的帧结构,其中,基于该帧结构的每个帧包括N个子帧,定时长度为K个子帧,连续的M个子帧构成一个超帧;
处理单元,用于基于该帧结构发送和/或接收消息;
其中,N、K、M都是正整数,M为N和2K的公倍数,每个该超帧中包括至少一个该纯下行子帧,还包括纯上行子帧、类型1子帧及类型2子帧中的至少1种,该纯下行子帧中包括下行符号且不包括上行符号,该类型1子帧中包括上行符号和下行符号且上行符号个数少于下行符号,该类型2子帧中包括上行符号和下行符号且上行符号个数多于下行符号,该纯上行子帧中包括上行符号且不包括下行符号。
结合第一方面,在第一种可能的实现方式中,该超帧的上下行子帧的配比为0:M,该超帧中包括1个该纯下行子帧,为
Figure PCTCN2016104089-appb-000001
Figure PCTCN2016104089-appb-000002
号子帧,其余子帧为该类型1子帧;
其中,SFNSET_offset用于表示该超帧中下行子帧集的第一个子帧相对于该超帧中的第一个子帧的偏移量,取值为0~K-1之间的整数;SFNDL_offset用于表示该纯下行子帧相对于该下行子帧集的第一个子帧的偏移量,取值为0~M/2-1之间的整数;该下行子帧集为该超帧中子帧序号m满足
Figure PCTCN2016104089-appb-000003
Figure PCTCN2016104089-appb-000004
为偶数的子帧集合。
结合第一方面,在第二种可能的实现方式中,该超帧的上下行子帧的配比为1:1,该超帧中的下行子帧集都为该纯下行子帧,该超帧的上行子帧集都为该纯上行子帧;
其中,该下行子帧集是该超帧中子帧序号m满足条件
Figure PCTCN2016104089-appb-000005
Figure PCTCN2016104089-appb-000006
为偶数的子帧集合,该上行子帧集是该超帧中子帧序号m满足条件
Figure PCTCN2016104089-appb-000007
为奇数的子帧集合,SFNSET_offset用于表示该超帧中下行子帧集的第一个子帧相对于该超帧中的第一个子帧的偏移量,取值为0~K-1之间的整数。
结合第一方面的第二种可能的实现方式,在第三种可能的实现方式中,该超帧中连续的纯下行子帧中的最后一个纯下行子帧的最后一个符号为GP符号,或者该超帧中连续的纯上行子帧中的第一个纯上行子帧的第一个符号为GP符号,或者该超帧中连续的纯下行子帧中的第一个纯下行子帧的第一个符号为GP符号,或者该超帧中连续的纯上行子帧中的最后一个纯上行子帧的最后一个符号为GP符号。。
结合第一方面,在第四种可能的实现方式中,该超帧的上下行子帧的配比为a:(M-a),该超帧的下行子帧集中包括a个该纯下行子帧和M/2-a个该类型1子帧,且该超帧中的X号子帧为该a个该纯下行子帧中的固定纯下行子帧,该超帧的上行子帧集中包括a个该纯上行子帧和M/2-a个该类型1子帧,且该超帧中的Y号子帧为该a个该纯上行子帧中的固定纯上行子帧;
其中,0<a<M/2,a为正整数,X取值为
Figure PCTCN2016104089-appb-000008
Figure PCTCN2016104089-appb-000009
Y取值为
Figure PCTCN2016104089-appb-000010
Figure PCTCN2016104089-appb-000011
该下行子帧集是该超帧中子帧序号m满足条件
Figure PCTCN2016104089-appb-000012
为偶数的子帧集合,该上行子帧集是该超帧中子帧序号m满足条件
Figure PCTCN2016104089-appb-000013
为奇数的子帧集合,SFNSET_offset用于表示该超帧中下行子帧集的第一个子帧相对于该超帧中的第一个子帧的偏移量,取值为0~K-1之间的整数;SFNDL_offset用于表示该固定纯下行子帧相对于该下行子帧集中第一个子帧的偏移量,取值为0~M/2-1之间的整数;SFNUL_offset用于表示该固定纯上行子帧相对于该下行子帧集中第一个子帧之后属于该上行子帧集的第一个子帧的偏移量,取值为0~M/2-1之间的整数。
结合第一方面,在第五种可能的实现方式中,该超帧的上下行子帧的配比为a:(M-a),该超帧的下行子帧集中包括M-a个该纯下行子帧和a-M/2个该类型2子帧,且该超帧中的X号子帧为该M-a个该纯下行子帧中的固定纯下行子帧,该超帧的上行子帧集中包括M-a个该纯上行子帧和a-M/2个该类型2子帧,且该超帧中的Y号子帧为该M-a个该纯上行子帧中的固定纯上行子帧;
其中,M/2<a<M,a为正整数,X取值为
Figure PCTCN2016104089-appb-000014
Figure PCTCN2016104089-appb-000015
Y取值为
Figure PCTCN2016104089-appb-000016
Figure PCTCN2016104089-appb-000017
该下行子帧集是该超帧 中子帧序号m满足条件
Figure PCTCN2016104089-appb-000018
为偶数的子帧集合,该上行子帧集是该超帧中子帧序号m满足条件
Figure PCTCN2016104089-appb-000019
为奇数的子帧集合,SFNSET_offset用于表示该超帧中下行子帧集的第一个子帧相对于该超帧中的第一个子帧的偏移量,取值为0~K-1之间的整数;SFNDL_offset用于表示该固定纯下行子帧相对于该下行子帧集中第一个子帧的偏移量,取值为0~M/2-1之间的整数;SFNUL_offset用于表示该固定纯上行子帧相对于该下行子帧集中第一个子帧之后属于该上行子帧集的第一个子帧的偏移量,取值为0~M/2-1之间的整数。
结合第一方面或上述任一种可能的实现方式,在第六种可能的实现方式中,该纯下行子帧用于发送物理广播信道PBCH、同步信号、物理混合自动重传指示信道PHICH、物理下行控制信道PDCCH、增强型物理下行控制信道EPDCCH和物理控制格式指示信道PCFICH中的至少一种。
结合第一方面或上述任一种可能的实现方式,在第七种可能的实现方式中,该纯上行子帧用于发送物理随机接入信道PRACH、反馈确认ACK、反馈非确认NACK、信道状态信息CSI和探通参考信号SRS中的至少一种。
结合第一方面或上述任一种可能的实现方式,在第八种可能的实现方式中,该装置为基站,或,用户设备。
第二方面,提供了一种系统信息传输的方法,其特征在于,该方法包括:确定时分双工TDD系统中传输信息所使用的帧结构,其中,基于该帧结构的每个帧包括N个子帧,定时长度为K个子帧,连续的M个子帧构成一个超帧;基于该帧结构发送和/或接收消息;其中,N、K、M都是正整数,M为N和2K的公倍数,每个该超帧中包括至少一个纯下行子帧,还包括纯上行子帧、类型1子帧及类型2子帧中的至少一种,该纯下行子帧中包括下行符号且不包括上行符号,该类型1子帧中包括上行符号和下行符号且上行符号个数少于下行符号,该类型2子帧中包括上行符号和下行符号且上行符号个数多于下行符号,该纯上行子帧中包括上行符号且不包括下行符号。
结合第二方面,在第一种可能的实现方式中,该超帧的上下行子帧的配比为0:M,该超帧中包括1个该纯下行子帧,为
Figure PCTCN2016104089-appb-000020
Figure PCTCN2016104089-appb-000021
号子帧,其余子帧为该类型1子帧;
其中,SFNSET_offset用于表示该超帧中下行子帧集的第一个子帧相对于该超帧中的第一个子帧的偏移量,取值为0~K-1之间的整数;SFNDL_offset 用于表示该纯下行子帧相对于该下行子帧集的第一个子帧的偏移量,取值为0~M/2-1之间的整数;该下行子帧集为该超帧中子帧序号m满足
Figure PCTCN2016104089-appb-000022
Figure PCTCN2016104089-appb-000023
为偶数的子帧集合。
结合第二方面,在第二种可能的实现方式中,该超帧的上下行子帧的配比为1:1,该超帧中的下行子帧集都为该纯下行子帧,该超帧的上行子帧集都为该纯上行子帧;
其中,该下行子帧集是该超帧中子帧序号m满足条件
Figure PCTCN2016104089-appb-000024
Figure PCTCN2016104089-appb-000025
为偶数的子帧集合,该上行子帧集是该超帧中子帧序号m满足条件
Figure PCTCN2016104089-appb-000026
为奇数的子帧集合,SFNSET_offset用于表示该超帧中下行子帧集的第一个子帧相对于该超帧中的第一个子帧的偏移量,取值为0~K-1之间的整数。
结合第二方面的第二种可能的实现方式,在第三种可能的实现方式中,该超帧中连续的纯下行子帧中的最后一个纯下行子帧的最后一个符号为GP符号,或者该超帧中连续的纯上行子帧中的第一个纯上行子帧的第一个符号为GP符号,或者该超帧中连续的纯下行子帧中的第一个纯下行子帧的第一个符号为GP符号,或者该超帧中连续的纯上行子帧中的最后一个纯上行子帧的最后一个符号为GP符号。
结合第二方面,在第四种可能的实现方式中,该超帧的上下行子帧的配比为a:(M-a),该超帧的下行子帧集中包括a个该纯下行子帧和M/2-a个该类型1子帧,且该超帧中的X号子帧为该a个该纯下行子帧中的固定纯下行子帧,该超帧的上行子帧集中包括a个该纯上行子帧和M/2-a个该类型1子帧,且该超帧中的Y号子帧为该a个该纯上行子帧中的固定纯上行子帧;
其中,0<a<M/2,a为正整数,X取值为
Figure PCTCN2016104089-appb-000027
Figure PCTCN2016104089-appb-000028
Y取值为
Figure PCTCN2016104089-appb-000029
Figure PCTCN2016104089-appb-000030
该下行子帧集是该超帧中子帧序号m满足条件
Figure PCTCN2016104089-appb-000031
为偶数的子帧集合,该上行子帧集是该超帧中子帧序号m满足条件
Figure PCTCN2016104089-appb-000032
为奇数的子帧集合,SFNSET_offset用于表示该超帧中下行子帧集的第一个子帧相对于该超帧中的第一个子帧的偏移量,取值为0~K-1之间的整数;SFNDL_offset用于表示该固定纯下行子帧相对于该下行子帧集中第一个子帧的偏移量,取值为0~M/2-1之间的整数;SFNUL_offset用于表示该固定纯上行子帧相对于 该下行子帧集中第一个子帧之后属于该上行子帧集的第一个子帧的偏移量,取值为0~M/2-1之间的整数。
结合第二方面,在第五种可能的实现方式中,该超帧的上下行子帧的配比为a:(M-a),该超帧的下行子帧集中包括M-a个该纯下行子帧和a-M/2个该类型2子帧,且该超帧中的X号子帧为该M-a个该纯下行子帧中的固定纯下行子帧,该超帧的上行子帧集中包括M-a个该纯上行子帧和a-M/2个该类型2子帧,且该超帧中的Y号子帧为该M-a个该纯上行子帧中的固定纯上行子帧;
其中,M/2<a<M,a为正整数,X取值为
Figure PCTCN2016104089-appb-000033
Figure PCTCN2016104089-appb-000034
Y取值为
Figure PCTCN2016104089-appb-000035
Figure PCTCN2016104089-appb-000036
该下行子帧集是该超帧中子帧序号m满足条件
Figure PCTCN2016104089-appb-000037
为偶数的子帧集合,该上行子帧集是该超帧中子帧序号m满足条件
Figure PCTCN2016104089-appb-000038
为奇数的子帧集合,SFNSET_offset用于表示该超帧中下行子帧集的第一个子帧相对于该超帧中的第一个子帧的偏移量,取值为0~K-1之间的整数;SFNDL_offset用于表示该固定纯下行子帧相对于该下行子帧集中第一个子帧的偏移量,取值为0~M/2-1之间的整数;SFNUL_offset用于表示该固定纯上行子帧相对于该下行子帧集中第一个子帧之后属于该上行子帧集的第一个子帧的偏移量,取值为0~M/2-1之间的整数。
结合第二方面或上述任一种可能的实现方式,在第六种可能的实现方式中,该纯下行子帧用于发送物理广播信道PBCH、同步信号、物理混合自动重传指示信道PHICH、物理下行控制信道PDCCH、增强型物理下行控制信道EPDCCH和物理控制格式指示信道PCFICH中的至少一种。
结合第二方面或上述任一种可能的实现方式,在第七种可能的实现方式中,该纯上行子帧用于发送物理随机接入信道PRACH、反馈确认ACK、反馈非确认NACK、信道状态信息CSI和探通参考信号SRS中的至少一种。
根据本申请实施例的TDD系统信息传输的方法和装置,通过在无线帧中引入纯下行子帧、纯上行子帧、类型1子帧及类型2子帧,并确定TDD系统传输信息所使用的。基于该帧结构的信息发送和接收能够使得系统在不同上下行子帧配比下,可以提供统一的上下行定时关系,降低上下行切换开销,实现动态的TDD。
附图说明
图1是一个子帧结构的示意框图。
图2是本申请实施例的系统信息传输的方法流程图。
图3是本申请实施例的一个帧结构的结构示意图。
图4是本申请实施例的另一个帧结构的结构示意图。
图5是本申请实施例的再一个帧结构的结构示意图。
图6是本申请实施例的再一个帧结构的结构示意图。
图7是本申请实施例的再一个帧结构的结构示意图。
图8是本申请实施例的再一个帧结构的结构示意图。
图9是本申请实施例的再一个帧结构的结构示意图。
图10是本申请实施例的再一个帧结构的结构示意图。
图11是本申请实施例的信息传输装置的结构示意图。
图12是本申请实施例的信息传输装置的另一结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。
本申请实施例的技术方案,可以应用于各种通信系统,例如:全球移动通讯系统(GSM,Global System of Mobile communication),码分多址(CDMA,Code Division Multiple Access)系统,宽带码分多址(WCDMA,Wideband Code Division Multiple Access Wireless),通用分组无线业务(GPRS,General Packet Radio Service),长期演进(LTE,Long Term Evolution),未来网络,如5G,D2D(device to device)网络,M2M(machine to machine)网络等。
用户端(UE,User Equipment),也可称之为移动终端(Mobile Terminal)、移动用户设备等,可以经无线接入网(例如,RAN,Radio Access Network)与一个或多个核心网进行通信,用户设备可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。
基站,可以是GSM或CDMA中的基站(BTS,Base Transceiver Station),也可以是WCDMA中的基站(NodeB),还可以是LTE中的演进型基站(eNB或e-NodeB,evolutional Node B),或未来网络中的基站,本申请实施例并不限定,但为描述方便,下述实施例以eNB为例进行说明。
为了方便理解本申请实施例,首先在此介绍本申请实施例描述中会引入的几个要素。
时分双工(Time Division Duplexing,TDD)系统:在TDD模式的移动通信系统中,接收和传送在同一频率信道(即载波)的不同时隙,用保证时间来分离接收和传送信道。由于时域上下行切换的切换点可灵活变动,所以对于对称业务(语音和多媒体等)和不对称业务(包交换和因特网等),设置不同的上下行传输时间,可充分利用无线频谱。另外,由于在相同频段上,上行信道和下行信道具有互易性,所以TDD系统中,基站可以通过UE的上行信道估计出完整的下行信道,从而降低UE侧的反馈开销。3G中的TD-SCDMA、LTE中的TD-LTE均为TDD系统。
L.C.M.(x,y):表示x和y的最小公倍数的函数,其中x和y都为正整数。
上下行子帧配比:在一个超帧中,上行子帧与下行子帧的比例。
Floor函数:向下取整的运算函数,可用数学符号
Figure PCTCN2016104089-appb-000039
表示。例如,Floor
Figure PCTCN2016104089-appb-000040
Ceiling函数:向上取整的运算函数,可用数学符号
Figure PCTCN2016104089-appb-000041
表示。例如,Floor
Figure PCTCN2016104089-appb-000042
LTE系统中,为了支持混合自动重传,终端需通过物理上行控制信道(PUCCH)及物理上行共享信道(PUSCH)向基站反馈混合自动重传请求确认HARQ-ACK,其中混合自动重传请求确认也可简单称为ACK(Acknowledgment,确认应答)/NACK(Negative Acknowledgement,否认应答)。LTE系统中,为了支持动态自适应调度,基站通过物理下行控制信道(PDCCH)格式0或者格式4发送上行资源分配信息(UL grant)。
现有系统中,对于TDD,在下行子帧n-k传输的PDSCH,其对应的HARQ-ACK将在上行子帧n进行反馈,其中k属于集合K,各TDD上下行子帧配置下K的定义如表1和表2所示,不同的上下行配置对应不同的上下行配比,即一帧中包含的上行子帧、特殊子帧和下行子帧的比例不同。其中,表1表示现有TDD系统的上下行子帧配置下的上下行周期转换点及各个子 帧的类型,D表示下行子帧,S表示特殊子帧,U表示上行子帧。表2为TDD系统下行HARQ定时的关联集合,一种上下行配置对应于一种配比。如果UE在第n个上行子帧,反馈其是否正确解码第n-k个下行子帧对应的下行数据,则其HARQ定时为k个子帧。从表2可以看出,在LTE中,TDD中没有统一的定时关系,在不同上下行子帧配比下,具有不同的上下行定时,即使是同一种配比,也具有不同的定时,例如上下行配置编号为2的配比下,子帧号2的HARQ定时为8、7、4、6,其具体含义为:在2号子帧,UE可以反馈其当前子帧之前的第8个(对应上一子帧中4号子帧)、第7个(对应上一子帧中5号子帧)、第4个(对应上一子帧中8号子帧)、以及第6个子帧(对应上一子帧中6号子帧)对应的下行数据是否正确接收,如果正确接收则对应ACK反馈,否则为NACK反馈。。这种复杂的定时关系不仅增加了协议设计的复杂度,而且不能保证业务在空口具有统一的时延。因此,在未来演进的系统中,针对TDD系统,也需要在不同上下行子帧配比下设计统一的定时关系。
表1.现有TDD上下行子帧配置
Figure PCTCN2016104089-appb-000043
表2.TDD系统下行HARQ定时关联集合K:{k0,k1,…kM-1}
Figure PCTCN2016104089-appb-000044
在未来演进的LTE系统中,为了降低服务延迟,可以将每个子帧的长度 缩短,例如缩短到每个子帧的长度为0.05ms或者0.1ms或者0.125ms或者0.2ms,等等,且引入子帧类型1、子帧类型2、子帧类型3和子帧类型4等。时间上缩短的子帧可称为短子帧或超短子帧,或称为短传输时间间隔(Transmission Time Interval,TTI)或超短TTI。
图1是本申请实施例子帧结构的示意框图。结合图1,对一个短子帧的子帧结构进行描述。如图1所示为基于0.05ms的短子帧。在图1中,一个短子帧在时域上可以包括12个(例如类型1子帧110和类型2子帧120)或13个符号(例如纯下行子帧130和纯上行子帧140)。该符号可以为单载波频分多址(Single-Carrier Frequency Division Multiple Access,SC-FDMA)符号。当然,应理解,不同的子帧结构中,一个子帧所包含的符号个数可能不同(例如,还可以为11个,14个,等等),该符号的类型也不限于上述例举的SC-FDMA符号。此外,本申请文件中的子帧配置也并不限于由短子帧或超短子帧构成的子帧结构。
图1中示出了四种子帧结构类型,类型1子帧110、类型2子帧120、纯下行子帧130和纯上行子帧。类型1子帧110主要用于下行传输,例如,图1的类型1子帧110的12个符号中,有10个符号111用于下行传输,1个符号112用于保护间隔(Guard Period,GP),1个符号113用于上行传输;类型2子帧120主要用于上行传输,例如,图1的类型2子帧120的12个符号中,有1个符号121用于下行传输,1个符号122用于GP,10个符号123用于上行传输;纯下行子帧只用于下行传输,例如,图1的纯下行子帧130的13个符号131都用于下行传输。纯上行子帧只用于上行传输,例如,图1的纯上行子帧130的13个符号141都用于上行传输。当然,应理解,图1所示的子帧结构仅仅是示例性的,在实际的应用中,长度相同的同一种子帧类型中,上行符号、下行符号及GP符号也可以存在多种不同的配比。
TDD系统中,不同基站可以根据当前小区内上下行子帧配比进行动态上下行子帧配置,称为动态TDD。在动态TDD系统中,由于不同站点可以独立进行上下行配置,这就导致邻小区用户上行对本小区基站下行的强干扰或者邻小区基站下行对本小用户上行的强干扰,这种干扰通常被称为逆向干扰。这种逆向干扰会影响到一些重要信号如同步信号或者重要信道(如物理广播信道(Physical Broadcast Channel,PBCH)和随机接入信道(Random Access Channel,RACH)等)的接收和解调,导致网络覆盖性能下降。
图1所示的子帧中,类型1子帧110和类型2子帧120中,由于每个子帧都有GP的存在,将会降低数据的有效发送时间,增大了系统开销。
为实现不同的上下行子帧配比下统一的定时关系,降低空口的开销,并支持动态TDD配置,可以对上述帧结构进行重新设计。
图2是本申请实施例信息传输的方法示意图,图2的方法可以由TDD系统中的基站执行,也可以由用户设备执行。该方法包括:
201,确定TDD系统中传输信息所使用的帧结构,其中,基于该帧结构的每个帧包括N个子帧,定时长度为K个子帧,连续的M个子帧构成一个超帧。
其中,N、K、M都是正整数,M为N和2K的公倍数,每个该超帧中包括至少一个纯下行子帧,还包括纯上行子帧、类型1子帧及类型2子帧中的至少1种,该纯下行子帧中包括下行符号且不包括上行符号,该类型1子帧中包括上行符号和下行符号且上行符号个数少于下行符号,该类型2子帧中包括上行符号和下行符号且上行符号个数多于下行符号,该纯上行子帧中包括上行符号且不包括下行符号。优选地,M为N和2K的最小公倍数。
应理解,本申请实施例不对确定TDD系统中传输信息所使用的帧结构的方法进行限定,只需要确定的帧结构满足要求即可。例如,该帧结构可以是根据基站和UE双方约定帧结构计算规则计算得到的,或者是根据预先配置的帧结构表查找得到的,或者是由基站知会UE的,或者是由基站的知会和由基站和UE的预先设置共同得到,或者是其它可能实现的方式,为避免重复,此处不再详细描述。
此外,应理解,纯下行子帧中,除了下行符号以外,还可能包括间隔(GP)符号;纯上行子帧中,除了上行符号以外,还可能包括间隔(GP)符号。例如,超帧中连续的纯下行子帧中的最后一个纯下行子帧的最后一个符号,超帧中连续的纯上行子帧中的第一个纯上行子帧的第一个符号,超帧中连续的纯下行子帧中的第一个纯下行子帧的第一个符号,超帧中连续的纯上行子帧中的最后一个纯上行子帧的最后一个符号,都可能为GP符号。换句话说,超帧中属于纯下行子帧,且与纯上行子帧相邻的一个符号为GP符号,或者,超帧中属于纯上行子帧,且与纯下行子帧相邻的一个符号为GP符号。
应理解,本申请实施例中,该定时长度包括上行HARQ定时长度、下行HARQ定时长度、上行资源分配定时长度和非周期信道状态信息(Channel  State Information,CSI)反馈定时长度中的至少一种。当该定时长度包括一种定时长度,该定时长度为K个子帧;当该定时长度包括多种定时长度,该多种定时长度都为K个子帧。
其中,上行HARQ定时长度是指用户设备从该用户设备的服务小区接收到PDSCH传输时的子帧到该用户设备发送对应的混合重传请求确认响应时的子帧之间所需的子帧数目,例如,在用户设备从该用户设备的服务小区接收到PDSCH传输时的子帧为n1号子帧,该用户设备发送对应的混合重传请求确认响应时的子帧为n1+k1号子帧,则上行HARQ定时长度为k1个子帧,该服务小区为用户设备当前接入的小区,服务小区为基站管理下的至少一个小区中的一个,下同;
下行HARQ定时长度是服务小区从该服务小区内的用户设备接收到PUSCH传输时的子帧到该服务小区发送对应的混合重传请求确认响应时的子帧之间所需的子帧数目,例如,服务小区从该服务小区内的用户设备接收到PUSCH传输时的子帧为n2号子帧,该服务小区发送对应的混合重传请求确认响应时的子帧为n2+k2号子帧,则下行HARQ定时长度为k2个子帧;
上行资源分配定时长度是指用户设备从该用户设备的服务小区接收到指示该用户设备的上行资源分配信令时的子帧到该用设备在指示的资源上发送上行数据时的子帧之间所需的子帧数目,例如,用户设备从该用户设备的服务小区接收到指示该用户设备的上行资源分配信令时的子帧为n3号子帧,该用设备在指示的资源上发送上行数据时的子帧为n3+k3号子帧,则上行资源分配定时长度为k3个子帧;
非周期CSI反馈定时长度是指用户设备从该用户设备的服务小区上接收到指示该用户设备进行非周期CSI反馈的下行控制信道时的子帧到该用户设备进行对应的非周期CSI反馈时的子帧之间所需的子帧数目,例如,用户设备从该用户设备的服务小区上接收到指示该用户设备进行非周期CSI反馈的下行控制信道时的子帧为n4号子帧,该用户设备进行对应的非周期CSI反馈时的子帧为n4+k4号子帧,则非周期CSI反馈定时长度为k4个子帧。
可选地,作为一个实施例,该超帧的上下行子帧的配比为0:M,该超帧中
Figure PCTCN2016104089-appb-000045
号子帧为纯下行子帧,其余子帧为该类型1子帧。
其中,SFNSET_offset是下行子帧集偏置量,用于表示该超帧中下行子帧集的第一个子帧相对于该超帧中的第一个子帧的偏移量,取值为0~K-1之间(包括0和K-1)的整数;SFNDL_offset是下行子帧偏移量,用于表示该下行子帧集中的纯下行子帧相对于该下行子帧集的第一个子帧的偏移量,取值为0~M/2-1之间(包括0和M/2-1)的整数。超帧中的下行子帧集为该超帧中子帧序号m满足
Figure PCTCN2016104089-appb-000046
为偶数的子帧集合,子帧序号m为大于或等于0的整数。应理解,上下行子帧配比,在现有技术中是指上行子帧与下行子帧的比例。对本申请实施例而言,假设一个超帧中包括a个纯上行子帧,b个纯下行子帧,c个类型1子帧,d个类型2子帧,则上下行子帧配比=(a+c):(b+d)。
在上下行子帧配比(0:M)、下行子帧集偏置量和下行子帧偏移量都不变的情况下,该纯下行子帧在超帧中的位置是固定的,换句话说,该纯下行子帧是固定纯下行子帧。
此外,下行子帧集偏置量和下行子帧偏移量都存在一个取值范围,但在一种超帧结构中,下行子帧集偏置量对应于一个具体的值,下行子帧偏移量也对应于一个具体的值。
图3是本申请实施例的一种超帧的结构示意图。图3中,箭头两端对应的子帧之间的距离表示定时长度,定时长度K取值为5,超帧中有0-9共10个子帧,SFNSET_offset取值为2。子帧2-6为构成下行子帧集的DL(下行,downlink)子帧,子帧0-1,7-9为构成上行子帧集的UL(上行,uplink)子帧。从图3可以看出,子帧2为下行子帧集的第一个子帧。如果SFNDL_offset取值为1,则子帧3为下行子帧集中的第一个纯下行子帧。
由上述内容可知,此时,该超帧包括1个纯下行子帧和M-1个类型1子帧。
此处引入了下行子帧集和上行子帧集的定义。本申请实施例中,下行子帧集中可包括纯下行子帧、类型1子帧或类型2子帧,但一定不包括纯上行子帧;上行子帧集中可包括纯上行子帧、类型1子帧或类型2子帧,但一定不包括纯下行子帧。
可选地,作为另一个实施例,该超帧的上下行子帧的配比为1:1,该超帧中的下行子帧集都为纯下行子帧,该超帧的上行子帧集都为纯上行子帧。
其中,该下行子帧集是该超帧中子帧序号m满足条件
Figure PCTCN2016104089-appb-000047
Figure PCTCN2016104089-appb-000048
为偶数的子帧集合,该上行子帧集是该超帧中子帧序号m满足条件
Figure PCTCN2016104089-appb-000049
为奇数的子帧集合。
SFNSET_offset是下行子帧集偏置量,用于表示该下行子帧集的第一个子帧相对于该超帧中的第一个子帧的偏移量,取值为0~K-1之间的整数(包含0和K-1)。
进一步地,该超帧中连续的纯下行子帧中的最后一个纯下行子帧的最后一个符号为GP符号,或者该超帧中连续的纯上行子帧中的第一个纯上行子帧的第一个符号为GP符号,或者该超帧中连续的纯下行子帧中的第一个纯下行子帧的第一个符号为GP符号,或者该超帧中连续的纯上行子帧中的最后一个纯上行子帧的最后一个符号为GP符号。
由上述内容可知,此时,该超帧包括M/2个纯下行子帧和M/2个纯上行子帧。
可选地,作为再一个实施例,该超帧的上下行子帧的配比为a:(M-a),该超帧的下行子帧集中包括a个纯下行子帧和M/2-a个该类型1子帧,且该超帧中的X号子帧为该a个纯下行子帧中的固定纯下行子帧,该超帧的上行子帧集中包括a个纯上行子帧和M/2-a个该类型1子帧,且该超帧中的Y号子帧为该a个纯上行子帧中的固定纯上行子帧。
其中,0<a<M/2,a为正整数,X取值为
Figure PCTCN2016104089-appb-000050
Figure PCTCN2016104089-appb-000051
Y取值为
Figure PCTCN2016104089-appb-000052
Figure PCTCN2016104089-appb-000053
该下行子帧集是该超帧中子帧序号m满足条件
Figure PCTCN2016104089-appb-000054
为偶数的子帧集合,该上行子帧集是该超帧中子帧序号m满足条件
Figure PCTCN2016104089-appb-000055
为奇数的子帧集合。
SFNSET_offset是下行子帧集偏置量,用于表示该下行子帧集的第一个子帧相对于该超帧中的第一个子帧的偏移量,取值为0~K-1之间的整数;SFNDL_offset是下行子帧偏移量,用于表示该固定纯下行子帧相对于该下行子帧集的第一个子帧的偏移量,取值为0~M/2-1之间的整数;SFNUL_offset是上行子帧偏移量,用于表示该固定纯上行子帧相对于该下行子帧集中第一个子帧之后属于该上行子帧集的第一个子帧的偏移量,取值为0~M/2-1之间的整数。
应理解,在动态TDD系统中,在超帧的上下行子帧的配比为a:(M-a), a大于0,且下行子帧集偏置量和下行子帧偏移量不变的情况下,其中的纯下行子帧或纯上行子帧的位置可能不同。但是,不管纯下行子帧和纯上行子帧的位置如何变化,上行子帧集中必然有一个子帧固定为纯上行子帧,下行子帧集中也必然有一个子帧固定为纯下行子帧,上行子帧集中的这个固定的子帧称为固定纯上行子帧,下行子帧集中的这个固定子帧称为固定纯下行子帧。固定纯下行子帧以外的纯下行子帧的位置,以及固定纯上行子帧以外的纯上行子帧的位置,可能随着小区配置的不同而发生变化,但固定纯下行子帧和固定纯上行子帧的位置始终保持不变。
还是以图3为例,定时长度K取值为5,SFNSET_offset取值为2。其中,其中,上行子帧集(UL子帧)分为2部分,子帧0、1和7、8、9。子帧7是下行子帧集中第一个子帧之后属于该上行子帧集的第一个子帧。子帧0、1虽然在下行子帧集中第一个子帧之前,但也可以视为下行子帧集中第一个子帧之后的第4个和第5个子帧。如果SFNUL_offset取值为1,则该固定纯上行子帧为子帧(7+1)MOD 10,即子帧8;如果SFNUL_offset取值为3,则该固定纯上行子帧为子帧(7+3)MOD 10,即子帧0。
应理解,如果固定纯上行子帧在该下行子帧集中第一个子帧之后属于该上行子帧集的第一个子帧之前。例如,图3中,假设固定纯上行子帧为0号子帧,在7号子帧(该下行子帧集中第一个子帧之后属于该上行子帧集的第一个子帧)之前,为-7。但由于SFNUL_offset取值为0~M/2-1之间的整数,因此,SFNUL_offset=-7+M/2*2=-7+5*2=3。
可选地,作为再一个实施例,该超帧的上下行子帧的配比为a:(M-a),该超帧的下行子帧集中包括M-a个纯下行子帧和a-M/2个该类型2子帧,且该超帧中的X号子帧为该M-a个纯下行子帧中的固定纯下行子帧,该超帧的上行子帧集中包括M-a个纯上行子帧和a-M/2个该类型2子帧,且该超帧中的Y号子帧为该M-a个纯上行子帧中的固定纯上行子帧;
其中,M/2<a<M,a为正整数,X取值为
Figure PCTCN2016104089-appb-000056
Figure PCTCN2016104089-appb-000057
Y取值为
Figure PCTCN2016104089-appb-000058
Figure PCTCN2016104089-appb-000059
该下行子帧集是该超帧中子帧序号m满足条件
Figure PCTCN2016104089-appb-000060
为偶数的子帧集合,该上行子帧集是该超帧中子帧序号m满足条件
Figure PCTCN2016104089-appb-000061
为奇数的子帧集合。
SFNSET_offset是下行子帧集偏置量,用于表示该下行子帧集的第一个子帧相对于该超帧中的第一个子帧的偏移量,取值为0~K-1之间的整数;SFNDL_offset是下行子帧偏移量,用于表示该固定纯下行子帧相对于该下行子帧集的第一个子帧的偏移量,取值为0~M/2-1之间的整数;SFNUL_offset是上行子帧偏移量,用于表示该固定纯上行子帧相对于该下行子帧集中第一个子帧之后属于该上行子帧集的第一个子帧的偏移量,取值为0~M/2-1之间的整数。
应理解,本实施例中,除了固定纯上行子帧和固定纯下行子帧外,其它纯上行子帧和纯下行子帧的位置可以不固定,但其它纯上行子帧一定属于上行子帧集中,其它纯下行子帧一定属于下行子帧集中。
202,基于该帧结构发送和/或接收消息。
应理解,在确定帧结构后,可基于该帧结构发送消息,或者基于该帧结构接收消息,或者基于该帧结构发送和接收消息。
以基站和用户设备通信为例,基站确定帧结构后,可基于该帧结构向用户设备发送消息和/或接收消息。
应理解,基站在确定该帧结构后,可以通过广播消息通知UE当前帧的帧结构,或者是当前帧之后若干个帧的帧结构,或者是某一个帧之后的帧结构。其中,该广播消息中包括上下行子帧的配置,该配置遵循本申请实施例的上下行子帧的配置关系。此处提到的上下行子帧的配置,包括纯上行子帧、纯下行子帧、类型1子帧和类型2子帧的配置。或者,该广播消息可包括上下行子帧配比、下行子帧集偏移量(如有)、上行子帧集偏移量(如有)、纯上行子帧位置(如有)、纯下行子帧位置(如有)等等。此外,上述实施例中所提到的非固定的纯上行子帧或纯下行子帧的位置也可以由基站通知给UE,例如,在固定的纯下行子帧中通知UE非固定的纯上行子帧的位置。具体实现可以参考动态TDD中的通知方式,在此不予限定。
以设备到设备(Device to Device,D2D)通信为例,D2D用户设备确定帧结构后,可基于该帧结构向对端的D2D用户设备发送消息和/或接收消息。
D2D用户设备向对端D2D用户设备发送帧结构信息的方式,可与基站向用户设备发送帧结构信息的方式类似,本申请实施例在此不再赘述。
应理解,本申请实施例中,纯下行子帧可用于发送物理广播信道(Physical Broadcast Channel,PBCH)、同步信号、物理混合自动重传指示 信道(Physical Hybrid-ARQ Indicator Channel,PHICH)、物理下行控制信道(Physical Downlink Control Channel,PDCCH)、增强型物理下行控制信道(Enhanced Physical Downlink Control Channel,EPDCCH)、物理控制格式指示信道(PCFICH Physical Control Format Indicator Channel,PCFICH)中的至少一种。
应理解,本申请实施例中,纯上行子帧用于发送物理随机接入信道(Physical Random Access Channel,PRACH)、反馈确认(Acknowlegdement,ACK)、反馈非确认(Non-Acknowlegdement,NACK)、信道状态信息(Channel State Information,CSI)、探通参考信号(Sounding Reference Signal,SRS)中的至少一种。
本申请实施例中,通过在无线帧中引入纯下行子帧、纯上行子帧、类型1子帧及类型2子帧,并确定TDD系统传输信息所使用的帧结构,并基于该帧结构的信息发送和接收能够使得系统在不同上下行子帧配比下,可以提供统一的上下行定时关系,降低上下行切换开销,实现动态的TDD。
下面,将结合图4至图9,对本申请实施例的方法做进一步的描述。
图4是本申请实施例一个超帧的帧结构示意图。图4中,每帧包括10个子帧,即N=10,箭头两端对应的子帧之间的距离表示定时长度,定时长度为5个子帧,即K=5。下行子帧集偏置量SFNSET_offset=0,包括至少1个纯下行子帧和至少一个纯上行子帧,下行子帧偏移量为0,即SFNDL_offset=0,上行子帧偏移量为0,即SFNUL_offset=0。
因为M=L.C.M.(10,2*5)=10,所以此时一个超帧等于一个物理帧,图4(a)中为所述超帧的帧结构,超帧中子帧从0开始编号,一直到9。
超帧中的下行子帧集为超帧中子帧序号满足条件
Figure PCTCN2016104089-appb-000062
Figure PCTCN2016104089-appb-000063
为偶数的子帧集合,上行子帧集为超帧中子帧序号满足
Figure PCTCN2016104089-appb-000064
为偶数的子帧集合,因此,下行子帧集为子帧{0,1,2,3,4},上行子帧集为子帧{5,6,7,8,9}。其中,m为子帧在超帧中的序号。在图4中,m为0至9(包括0和9)中的一个值。
在图4所示帧结构中,上下行子帧配比为1:9~9:1,共九种。每种配比下,都存在一个固定纯下行子帧和1个固定纯上行子帧。
固定纯下行子帧的子帧序号为
Figure PCTCN2016104089-appb-000065
Figure PCTCN2016104089-appb-000066
因此对应着0号子帧(子 帧0)。
固定纯上行子帧的子帧序号为
Figure PCTCN2016104089-appb-000067
Figure PCTCN2016104089-appb-000068
Figure PCTCN2016104089-appb-000069
因此对应着5号子帧(子帧5)。
如图4的(f)所示,在上下行子帧配比为1:1(即5:5)的帧结构中,包括5个纯下行子帧(子帧0-4)和5个纯上行子帧(子帧5-9)。其中,该超帧中连续的纯下行子帧中的最后一个纯下行子帧的最后一个符号为GP符号,即4号子帧的最后一个符号为GP符号;或者,该超帧中连续的纯上行子帧中的第一个纯上行子帧的第一个符号为GP符号,即5号子帧的第一个符号为GP符号;或者,该超帧中连续的纯下行子帧中的第一个纯下行子帧的第一个符号为GP符号,即0号子帧的第一个符号为GP符号,或者,该超帧中连续的纯上行子帧中的最后一个纯上行子帧的最后一个符号为GP符号,即9号子帧的最后一个符号为GP符号
如图4的(b)、(c)、(d)、(e)所示,在上下行子帧配比为a:(M-a),且0<a<M/2的帧结构中,即a取值为1、2、3、4,上下行子帧配比为(1:9、2:8、3:7、4:6)的帧结构中,包括a个纯下行子帧、a个纯上行子帧和M-2a个类型1子帧。其中,0号子帧为固定纯下行子帧,5号子帧固定为纯上行子帧,其余a-1个纯下行子帧从下行子帧集0号子帧以外的子帧中选取,a-1个纯上行子帧从上行子帧集5号子帧以外的子帧中选取,位置可以不固定,最后剩余的M-2a个子帧全部为类型1子帧。
如图4的(g)、(h)、(i)、(j)所示,在上下行子帧配比为a:(M-a),且M/2<a<M的帧结构中,即a取值为6、7、8、9,上下行子帧配比为(6:4、7:3、8:2、9:1)的帧结构中,包括M-a个纯下行子帧、M-a个纯上行子帧和2a-M个类型2子帧。其中,0号子帧为固定纯下行子帧,5号子帧固定为纯上行子帧,其余M-a-1个纯下行子帧从下行子帧集0号子帧以外的子帧中选取,M-a-1个纯上行子帧从上行子帧集5号子帧以外的子帧中选取,位置可以不固定,最后剩余的M-2a个子帧全部为类型2子帧。
应理解,在上下行子帧配比为1:9的帧结构中,a-1取值为0,在上下行子帧配比为9:1时,M-a-1取值为0;这两种上下行子帧配比下,不存在固定纯上行子帧以外的纯上行子帧,也不存在固定纯下行子帧以外的纯下行子帧。
图5是本申请实施例另一个超帧的帧结构示意图。图5中,每帧包括10个子帧,即N=10,箭头两端对应的子帧之间的距离表示定时长度,定时长度为5个子帧,即K=5。下行子帧集偏置量SFNSET_offset=4,下行子帧偏移量为1,即SFNDL_offset=1,上行子帧偏移量为0,即SFNUL_offset=0。图5所示实施例超帧中的子帧序号沿用图4(a)中的子帧序号。
因为图5的超帧长度与图4的超帧长度都是10,因此,以图4(a)中的子帧序号作为图5中各个上下行子帧配比的子帧序号。
下行子帧集为
Figure PCTCN2016104089-appb-000070
为偶数的子帧集合,即子帧3~7。
上行子帧集为
Figure PCTCN2016104089-appb-000071
为奇数的子帧集合,即子帧0、1、2、8、9。
图5所示帧结构中,图5的(a)对应上下行子帧配比为0:10时的帧结构;图5的(b)-(j)分别对应上下行子帧配比为1:9至9:1的一种可能实现方式。
如图5的(a)所示,在上下行子帧配比为0:10的帧结构中,包括1个纯下行子帧和9个类型1子帧。纯下行子帧的子帧序号为
Figure PCTCN2016104089-appb-000072
Figure PCTCN2016104089-appb-000073
即4号子帧(子帧4)为纯下行子帧。
图5的(b)-(j)所示帧结构中,都包括1个固定纯下行子帧和1个固定纯上行子帧。
固定纯下行子帧的子帧序号为
Figure PCTCN2016104089-appb-000074
Figure PCTCN2016104089-appb-000075
因此对应着4号子帧(子帧4)。
固定纯上行子帧的子帧序号为
Figure PCTCN2016104089-appb-000076
Figure PCTCN2016104089-appb-000077
Figure PCTCN2016104089-appb-000078
因此对应着8号子帧(子帧8)。
如图5的(f)所示,在上下行子帧配比为1:1(即5:5)的帧结构中,包括5个纯下行子帧(子帧3-7)和5个纯上行子帧(子帧0、1、2、8、9)。其中,7号子帧的最后一个符号为GP符号,或者3号子帧的第一个符号为GP符号,或者2号子帧的最后一个符号为GP符号,或者8号子帧的第一个符号为GP符号。
如图5的(b)、(c)、(d)、(e)所示,对于上下行子帧配比为a:(M-a),且0<a<M/2的场景,即a取值为1、2、3、4,上下行子帧配比为(1:9、2:8、 3:7、4:6)的场景,其中包括a个纯下行子帧、a个纯上行子帧和M-2a个类型1子帧。其中,4号子帧为固定纯下行子帧,8号子帧固定为纯上行子帧,其余a-1个纯下行子帧从下行子帧集4号子帧以外的子帧中选取,a-1个纯上行子帧从上行子帧集8号子帧以外的子帧中选取,位置可以不固定,最后剩余的M-2a个子帧全部为类型1子帧。
如图5的(g)、(h)、(i)、(j)所示对于上下行子帧配比为a:(M-a),且M/2<a<M的场景,即a取值为6、7、8、9,上下行子帧配比为(6:4、7:3、8:2、9:1)的场景,其中包括M-a个纯下行子帧、M-a个纯上行子帧和2a-M个类型2子帧。其中,4号子帧为固定纯下行子帧,8号子帧固定为纯上行子帧,其余M-a-1个纯下行子帧从下行子帧集4号子帧以外的子帧中选取,M-a-1个纯上行子帧从上行子帧集8号子帧以外的子帧中选取,位置可以不固定,最后剩余的M-2a个子帧全部为类型2子帧。
应理解,在上下行子帧配比为1:9的帧结构中,a-1取值为0,在上下行子帧配比为9:1时,M-a-1取值为0;这两种上下行子帧配比下,不存在固定纯上行子帧以外的纯上行子帧,也不存在固定纯下行子帧以外的纯下行子帧。
图6是本申请实施例另一个超帧的帧结构示意图。图6中,每帧包括10个子帧,即N=10;箭头两端对应的子帧之间的距离表示定时长度,定时长度为4个子帧,即K=4;下行子帧集偏置量为0个子帧,即SFNSET_offset=0,下行子帧偏移量为0,即SFNDL_offset=0,上行子帧偏移量为0,即SFNUL_offset=0。
超帧中子帧个数M=L.C.M.(4*2,10)=40个子帧。假设超帧中子帧从0开始编号,一直到39。超帧中的下行子帧集为所述超帧中序号满足
Figure PCTCN2016104089-appb-000079
Figure PCTCN2016104089-appb-000080
为偶数的子帧集合,因此下行子帧集为{0,1,2,3,8,9,10,11,16,17,18,19,24,25,26,27,32,33,34,35},上行子帧集为{4,5,6,7,12,13,14,15,20,21,22,23,28,29,30,31,36,37,38,39}。
图6所示帧结构中,图6的(b)对应上下行子帧配比为0:40时的帧结构;图6的(c)-(h)分别对应上下行子帧配比为1:39、2:38、15:25、20:20、28:12、39:1的一种可能实现方式。
如图6的(b)所示,在上下行子帧配比为0:40的帧结构中,包括1个纯下行子帧和39个类型1子帧。纯下行子帧的子帧序号为
Figure PCTCN2016104089-appb-000081
Figure PCTCN2016104089-appb-000082
即0号子帧(子帧0)为纯下行子帧。
图6的(c)-(h)所示帧结构中,都包括1个固定纯下行子帧和1个固定纯上行子帧。
固定纯下行子帧的子帧序号为
Figure PCTCN2016104089-appb-000083
Figure PCTCN2016104089-appb-000084
因此对应着0号子帧(子帧0)。
固定纯上行子帧的子帧序号为
Figure PCTCN2016104089-appb-000085
Figure PCTCN2016104089-appb-000086
Figure PCTCN2016104089-appb-000087
因此对应着4号子帧(子帧4)。
如图6的(f)所示,在上下行子帧配比为1:1(即20:20)的帧结构中,包括20个纯下行子帧和20个纯上行子帧,具体帧结构如图6的(f)所示。GP符号的位置可参考如图4的(f)所示帧结构的例子,本申请实施例在此不再赘述。
如图6的(c)、(d)、(e)所示,对于上下行子帧配比为a:(M-a),且0<a<M/2的场景,即a取值为1、2、15,上下行子帧配比为(1:39、2:38、15:25)的场景,其中包括a个纯下行子帧、a个纯上行子帧和M-2a个类型1子帧。其中,0号子帧为固定纯下行子帧,4号子帧固定为纯上行子帧,其余a-1个纯下行子帧从下行子帧集0号子帧以外的子帧中选取,a-1个纯上行子帧从上行子帧集4号子帧以外的子帧中选取,位置可以不固定,最后剩余的M-2a个子帧全部为类型1子帧。
如图6的(g)、(h)所示对于上下行子帧配比为a:(M-a),且M/2<a<M的场景,即a取值为28、39,上下行子帧配比为(28:12、39:1)的场景,其中包括M-a个纯下行子帧、M-a个纯上行子帧和2a-M个类型2子帧。其中,0号子帧为固定纯下行子帧,4号子帧固定为纯上行子帧,其余M-a-1个纯下行子帧从下行子帧集0号子帧以外的子帧中选取,M-a-1个纯上行子帧从上行子帧集4号子帧以外的子帧中选取,位置可以不固定,最后剩余的M-2a个子帧全部为类型2子帧。
应理解,在上下行子帧配比为1:39的帧结构中,a-1取值为0,在上下行子帧配比为39:1时,M-a-1取值为0;这两种上下行子帧配比下,不存在固定纯上行子帧以外的纯上行子帧,也不存在固定纯下行子帧以外的纯下行 子帧。
图7是本申请实施例再一个超帧的帧结构示意图。图7中,每帧包括10个子帧,即N=10;箭头两端对应的子帧之间的距离表示定时长度,定时长度为3个子帧,即K=3;下行子帧集偏置量为0个子帧,即SFNSET_offset=0,下行子帧偏移量为0,即SFNDL_offset=0,上行子帧偏移量为0,即SFNUL_offset=0。
超帧中子帧个数M=L.C.M.(3*2,10)=30个子帧。假设超帧中子帧从0开始编号,一直到29。下行子帧集为{0,1,2,6,7,8,12,13,14,18,19,20,24,25,26},上行子帧集为{3,4,5,9,10,11,15,16,17,21,22,23,27,28,29},如图7的(a)所示。
图7所示帧结构中,图7的(b)对应上下行子帧配比为0:30时的帧结构;图7的(c)-(i)分别对应上下行子帧配比为1:29、5:25、9:21、15:15、20:10、25:5、29:1的一种可能实现方式。
如图7的(b)所示,在上下行子帧配比为0:30的帧结构中,包括1个纯下行子帧和29个类型1子帧。纯下行子帧的子帧序号为
Figure PCTCN2016104089-appb-000088
Figure PCTCN2016104089-appb-000089
即0号子帧(子帧0)为纯下行子帧。
图7的(c)-(i)所示帧结构中,都包括1个固定纯下行子帧和1个固定纯上行子帧。
固定纯下行子帧的子帧序号为
Figure PCTCN2016104089-appb-000090
Figure PCTCN2016104089-appb-000091
因此对应着0号子帧(子帧0)。
固定纯上行子帧的子帧序号为
Figure PCTCN2016104089-appb-000092
Figure PCTCN2016104089-appb-000093
Figure PCTCN2016104089-appb-000094
因此对应着3号子帧(子帧3)。
如图7的(f)所示,在上下行子帧配比为1:1(即15:15)的帧结构中,包括15个纯下行子帧和15个纯上行子帧,具体帧结构如图7的(f)所示。GP符号的位置可参考如图4的(f)所示帧结构的例子,本申请实施例在此不再赘述。
如图7的(c)、(d)、(e)所示,对于上下行子帧配比为a:(M-a),且0<a<M/2的场景,即a取值为1、5、9,上下行子帧配比为(1:29、5:25、9:21)的场景,其中包括a个纯下行子帧、a个纯上行子帧和M-2a个类型1子帧。其 中,0号子帧为固定纯下行子帧,3号子帧固定为纯上行子帧,其余a-1个纯下行子帧从下行子帧集0号子帧以外的子帧中选取,a-1个纯上行子帧从上行子帧集3号子帧以外的子帧中选取,位置可以不固定,最后剩余的M-2a个子帧全部为类型1子帧。
如图7的(g)、(h)所示对于上下行子帧配比为a:(M-a),且M/2<a<M的场景,即a取值为20、25、39,上下行子帧配比为(20:10、25:5、29:1)的场景,其中包括M-a个纯下行子帧、M-a个纯上行子帧和2a-M个类型2子帧。其中,0号子帧为固定纯下行子帧,4号子帧固定为纯上行子帧,其余M-a-1个纯下行子帧从下行子帧集0号子帧以外的子帧中选取,M-a-1个纯上行子帧从上行子帧集4号子帧以外的子帧中选取,位置可以不固定,最后剩余的M-2a个子帧全部为类型2子帧。
应理解,在上下行子帧配比为1:29的帧结构中,a-1取值为0,在上下行子帧配比为29:1时,M-a-1取值为0;这两种上下行子帧配比下,不存在固定纯上行子帧以外的纯上行子帧,也不存在固定纯下行子帧以外的纯下行子帧。
图8是本申请实施例再一个超帧的帧结构示意图。图8中,每帧包括10个子帧,即N=10;箭头两端对应的子帧之间的距离表示定时长度,定时长度为2个子帧,即K=2;下行子帧集偏置量为0个子帧,即SFNSET_offset=0,下行子帧偏移量为0,即SFNDL_offset=0,上行子帧偏移量为0,即SFNUL_offset=0。
超帧中子帧个数M=L.C.M.(2*2,10)=20个子帧。假设超帧中子帧从0开始编号,一直到19。下行子帧集为{0,1,4,5,8,9,12,13,16,17},上行子帧集为{2,3,6,7,10,11,14,15,18,19},如图8的(a)所示。
图8所示帧结构中,图8的(b)对应上下行子帧配比为0:20时的帧结构;图8的(c)-(h)分别对应上下行子帧配比为1:19、4:16、7:13、10:10、14:6、19:1的一种可能实现方式。
如图8的(b)所示,在上下行子帧配比为0:20的帧结构中,包括1个纯下行子帧和19个类型1子帧。纯下行子帧的子帧序号为
Figure PCTCN2016104089-appb-000095
Figure PCTCN2016104089-appb-000096
即0号子帧(子帧0)为纯下行子帧。
图8的(c)-(h)所示帧结构中,都包括1个固定纯下行子帧和1个固定纯 上行子帧。
固定纯下行子帧的子帧序号为
Figure PCTCN2016104089-appb-000097
Figure PCTCN2016104089-appb-000098
因此对应着0号子帧(子帧0)。
固定纯上行子帧的子帧序号为
Figure PCTCN2016104089-appb-000099
Figure PCTCN2016104089-appb-000100
Figure PCTCN2016104089-appb-000101
因此对应着3号子帧(子帧3)。
如图8的(f)所示,在上下行子帧配比为1:1(即10:10)的帧结构中,包括10个纯下行子帧和10个纯上行子帧,具体帧结构如图8的(f)所示。GP符号的位置可参考如图4的(f)所示帧结构的例子,本申请实施例在此不再赘述。
如图8的(c)、(d)、(e)所示,对于上下行子帧配比为a:(M-a),且0<a<M/2的场景,即a取值为1、4、7,上下行子帧配比为(1:19、4:16、7:13)的场景,其中包括a个纯下行子帧、a个纯上行子帧和M-2a个类型1子帧。其中,0号子帧为固定纯下行子帧,3号子帧固定为纯上行子帧,其余a-1个纯下行子帧从下行子帧集0号子帧以外的子帧中选取,a-1个纯上行子帧从上行子帧集3号子帧以外的子帧中选取,位置可以不固定,最后剩余的M-2a个子帧全部为类型1子帧。
如图8的(g)、(h)所示对于上下行子帧配比为a:(M-a),且M/2<a<M的场景,即a取值为14、19,上下行子帧配比为(14:6、19:1)的场景,其中包括M-a个纯下行子帧、M-a个纯上行子帧和2a-M个类型2子帧。其中,0号子帧为固定纯下行子帧,4号子帧固定为纯上行子帧,其余M-a-1个纯下行子帧从下行子帧集0号子帧以外的子帧中选取,M-a-1个纯上行子帧从上行子帧集4号子帧以外的子帧中选取,位置可以不固定,最后剩余的M-2a个子帧全部为类型2子帧。
应理解,在上下行子帧配比为1:19的帧结构中,a-1取值为0,在上下行子帧配比为19:1时,M-a-1取值为0;这两种上下行子帧配比下,不存在固定纯上行子帧以外的纯上行子帧,也不存在固定纯下行子帧以外的纯下行子帧。
图9是本申请实施例再一个超帧的帧结构示意图。图9中,每帧包括8个子帧,即N=8;箭头两端对应的子帧之间的距离表示定时长度,定时长度 为3个子帧,即K=3;下行子帧集偏置量为0个子帧,即SFNSET_offset=0,下行子帧偏移量为0,即SFNDL_offset=0,上行子帧偏移量为0,即SFNUL_offset=0。
超帧中子帧个数M=L.C.M.(3*2,8)=24个子帧。假设超帧中子帧从0开始编号,一直到23。下行子帧集为{0,1,2,6,7,8,12,13,14,18,19,20},上行子帧集为{3,4,5,9,10,11,15,16,17,21,22,23},如图9的(a)所示。
图9所示帧结构中,图9的(b)对应上下行子帧配比为0:24时的帧结构;图9的(c)-(h)分别对应上下行子帧配比为1:23、5:19、10:14、12:12、15:9、23:1的一种可能实现方式。
如图9的(b)所示,在上下行子帧配比为0:24的帧结构中,包括1个纯下行子帧和23个类型1子帧。纯下行子帧的子帧序号为
Figure PCTCN2016104089-appb-000102
Figure PCTCN2016104089-appb-000103
即0号子帧(子帧0)为纯下行子帧。
图9的(c)-(h)所示帧结构中,都包括1个固定纯下行子帧和1个固定纯上行子帧。
固定纯下行子帧的子帧序号为
Figure PCTCN2016104089-appb-000104
Figure PCTCN2016104089-appb-000105
因此对应着0号子帧(子帧0)。
固定纯上行子帧的子帧序号为
Figure PCTCN2016104089-appb-000106
Figure PCTCN2016104089-appb-000107
Figure PCTCN2016104089-appb-000108
因此对应着3号子帧(子帧3)。
如图9的(f)所示,在上下行子帧配比为1:1(即12:12)的帧结构中,包括12个纯下行子帧和12个纯上行子帧,具体帧结构如图9的(f)所示。GP符号的位置可参考如图4的(f)所示帧结构的例子,本申请实施例在此不再赘述。
如图9的(c)、(d)、(e)所示,对于上下行子帧配比为a:(M-a),且0<a<M/2的场景,即a取值为1、5、10,上下行子帧配比为(1:23、5:19、10:14)的场景,其中包括a个纯下行子帧、a个纯上行子帧和M-2a个类型1子帧。其中,0号子帧为固定纯下行子帧,3号子帧固定为纯上行子帧,其余a-1个纯下行子帧从下行子帧集0号子帧以外的子帧中选取,a-1个纯上行子帧从上行子帧集3号子帧以外的子帧中选取,位置可以不固定,最后剩余的 M-2a个子帧全部为类型1子帧。
如图9的(g)、(h)所示对于上下行子帧配比为a:(M-a),且M/2<a<M的场景,即a取值为15、23,上下行子帧配比为(15:9、23:1)的场景,其中包括M-a个纯下行子帧、M-a个纯上行子帧和2a-M个类型2子帧。其中,0号子帧为固定纯下行子帧,4号子帧固定为纯上行子帧,其余M-a-1个纯下行子帧从下行子帧集0号子帧以外的子帧中选取,M-a-1个纯上行子帧从上行子帧集4号子帧以外的子帧中选取,位置可以不固定,最后剩余的M-2a个子帧全部为类型2子帧。
应理解,在上下行子帧配比为1:23的帧结构中,a-1取值为0,在上下行子帧配比为23:1时,M-a-1取值为0;这两种上下行子帧配比下,不存在固定纯上行子帧以外的纯上行子帧,也不存在固定纯下行子帧以外的纯下行子帧。
图10是本申请实施例再一个超帧的帧结构示意图。图10中,每帧包括8个子帧,即N=8;箭头两端对应的子帧之间的距离表示定时长度,定时长度为4个子帧,即K=4;下行子帧集偏置量为0个子帧,即SFNSET_offset=0,下行子帧偏移量为0,即SFNDL_offset=0,上行子帧偏移量为0,即SFNUL_offset=0。
超帧中子帧个数M=L.C.M.(4*2,8)=8个子帧,等于1个帧的长度。假设超帧中子帧从0开始编号,一直到7。下行子帧集为{0,1,2,3},上行子帧集为{4,5,6,7},如图10的(a)所示。
图10所示帧结构中,图10的(b)对应上下行子帧配比为0:8时的帧结构;图10的(c)-(i)分别对应上下行子帧配比为1:7、2:6、3:5、4:4、5:3、6:2、7:1的一种可能实现方式。
如图10的(b)所示,在上下行子帧配比为0:8的帧结构中,包括1个纯下行子帧和7个类型1子帧。纯下行子帧的子帧序号为
Figure PCTCN2016104089-appb-000109
Figure PCTCN2016104089-appb-000110
即0号子帧(子帧0)为纯下行子帧。
图10的(c)-(i)所示帧结构中,都包括1个固定纯下行子帧和1个固定纯上行子帧。
固定纯下行子帧的子帧序号为
Figure PCTCN2016104089-appb-000111
Figure PCTCN2016104089-appb-000112
因此对应着0号子帧(子 帧0)。
固定纯上行子帧的子帧序号为
Figure PCTCN2016104089-appb-000113
Figure PCTCN2016104089-appb-000114
Figure PCTCN2016104089-appb-000115
因此对应着4号子帧(子帧4)。
如图10的(f)所示,在上下行子帧配比为1:1(即4:4)的帧结构中,包括10个纯下行子帧和10个纯上行子帧,具体帧结构如图10的(f)所示。GP符号的位置可参考如图4的(f)所示帧结构的例子,本申请实施例在此不再赘述。
如图10的(c)、(d)、(e)所示,对于上下行子帧配比为a:(M-a),且0<a<M/2的场景,即a取值为1、2、3,上下行子帧配比为(1:7、2:6、3:5)的场景,其中包括a个纯下行子帧、a个纯上行子帧和M-2a个类型1子帧。其中,0号子帧为固定纯下行子帧,4号子帧固定为纯上行子帧,其余a-1个纯下行子帧从下行子帧集0号子帧以外的子帧中选取,a-1个纯上行子帧从上行子帧集4号子帧以外的子帧中选取,位置可以不固定,最后剩余的M-2a个子帧全部为类型1子帧。
如图10的(g)、(h)所示对于上下行子帧配比为a:(M-a),且M/2<a<M的场景,即a取值为5、6、7,上下行子帧配比为(5:3、6:2、7:1)的场景,其中包括M-a个纯下行子帧、M-a个纯上行子帧和2a-M个类型2子帧。其中,0号子帧为固定纯下行子帧,4号子帧固定为纯上行子帧,其余M-a-1个纯下行子帧从下行子帧集0号子帧以外的子帧中选取,M-a-1个纯上行子帧从上行子帧集4号子帧以外的子帧中选取,位置可以不固定,最后剩余的M-2a个子帧全部为类型2子帧。
应理解,在上下行子帧配比为1:7的帧结构中,a-1取值为0,在上下行子帧配比为7:1时,M-a-1取值为0;这两种上下行子帧配比下,不存在固定纯上行子帧以外的纯上行子帧,也不存在固定纯下行子帧以外的纯下行子帧。
此外,本申请实施例的上述帧结构,还可推广至其它不同的帧长度、定时长度的场景,其中的下行子帧集偏置量、下行子帧偏移量、上行子帧偏移量也可配置为其它符合条件的整数,本申请实施例在此不再一一赘述。
图11是本申请实施例的信息传输装置1100的示意框图。该装置可以是基站、中继、无线AP等网络侧设备,或者是移动终端,例如手机等用户侧 设备。图11的信息传输装置1100可以实现图2所示的方法,该信息传输装置1100可以包括:
确定单元1101,用于确定TDD系统中传输信息所使用的帧结构,其中,基于该帧结构的每个帧包括N个子帧,定时长度为K个子帧,连续的M个子帧构成一个超帧;
处理单元1102,用于基于该帧结构发送和/或接收消息;
其中,N、K、M都是正整数,M为N和2K的公倍数,每个该超帧中包括至少一个纯下行子帧,还包括纯上行子帧、类型1子帧及类型2子帧中的至少1种,纯下行子帧中包括下行符号且不包括上行符号,该类型1子帧中包括上行符号和下行符号且上行符号个数少于下行符号,该类型2子帧中包括上行符号和下行符号且上行符号个数多于下行符号,纯上行子帧中包括上行符号且不包括下行符号。优选地,M为N和2K的最小公倍数。
应理解,本申请实施例中,该定时长度包括上行HARQ定时长度、下行HARQ定时长度、上行资源分配定时长度和非周期信道状态信息(Channel State Information,CSI)反馈定时长度中的至少一种。当该定时长度包括一种定时长度,该定时长度为K个子帧;当该定时长度包括多种定时长度,该多种定时长度都为K个子帧。
其中,上行HARQ定时长度是指用户设备从该用户设备的服务小区接收到PDSCH传输时的子帧到该用户设备发送对应的混合重传请求确认响应时的子帧之间所需的子帧数目,例如,在用户设备从该用户设备的服务小区接收到PDSCH传输时的子帧为n1号子帧,该用户设备发送对应的混合重传请求确认响应时的子帧为n1+k1号子帧,则上行HARQ定时长度为k1个子帧;
下行HARQ定时长度是服务小区从该服务小区内的用户设备接收到PUSCH传输时的子帧到该服务小区发送对应的混合重传请求确认响应时的子帧之间所需的子帧数目,例如,服务小区从该服务小区内的用户设备接收到PUSCH传输时的子帧为n2号子帧,该服务小区发送对应的混合重传请求确认响应时的子帧为n2+k2号子帧,则下行HARQ定时长度为k2个子帧;
上行资源分配定时长度是指用户设备从该用户设备的服务小区接收到指示该用户设备的上行资源分配信令时的子帧到该用设备在指示的资源上发送上行数据时的子帧之间所需的子帧数目,例如,用户设备从该用户设备 的服务小区接收到指示该用户设备的上行资源分配信令时的子帧为n3号子帧,该用设备在指示的资源上发送上行数据时的子帧为n3+k3号子帧,则上行资源分配定时长度为k3个子帧;
非周期CSI反馈定时长度是指用户设备从该用户设备的服务小区上接收到指示该用户设备进行非周期CSI反馈的下行控制信道时的子帧到该用户设备进行对应的非周期CSI反馈时的子帧之间所需的子帧数目,例如,用户设备从该用户设备的服务小区上接收到指示该用户设备进行非周期CSI反馈的下行控制信道时的子帧为n4号子帧,该用户设备进行对应的非周期CSI反馈时的子帧为n4+k4号子帧,则非周期CSI反馈定时长度为k4个子帧。
应理解,本申请实施例中,纯下行子帧用于发送PBCH、同步信号、PHICH、PDCCH、EPDCCH、PCFICH中的至少一种;纯上行子帧用于发送PRACH、ACK、NACK、CSI、SRS中的至少一种。
本申请实施例中,通过在无线帧中引入纯下行子帧、纯上行子帧、类型1子帧及类型2子帧,并确定TDD系统传输信息所使用的,基于该帧结构的信息发送和接收能够使得系统在不同上下行子帧配比下,可以提供统一的上下行定时关系,降低上下行切换开销,实现动态的TDD。
信息传输装置1100还可采用如图1,图3-10所对应的实施例的帧结构。
具体帧结构可参考图1,图3-10所对应的实施例,本申请实施例在此不再赘述。
图12是本申请实施例装置1200的结构示意图。装置1200可包括处理器1202、存储器1203、发射机1201和接收机1204。在具体的应用中,该装置1200可以是基站、中继、无线AP等网络侧设备,或者是移动终端,例如手机等用户侧设备。
接收机1204、发射机1201、处理器1202和存储器1203通过总线1206系统相互连接。总线1206可以是ISA总线、PCI总线或EISA总线等。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图12中仅用一个双向箭头表示,但并不表示仅有一根总线或一种类型的总线。具体的应用中,发射机1201和接收机1204可以耦合到天线1205。
存储器1203,用于存放程序。具体地,程序可以包括程序代码,所述程序代码包括计算机操作指令。存储器1203可以包括只读存储器和随机存取 存储器,并向处理器1202提供指令和数据。存储器1203可能包含高速RAM存储器,也可能还包括非易失性存储器(non-volatile memory),例如至少一个磁盘存储器。
处理器1202,执行存储器1203所存放的程序,并具体用于执行以下操作:
确定时分双工TDD系统中传输信息所使用的帧结构,其中,基于该帧结构的每个帧包括N个子帧,定时长度为K个子帧,连续的M个子帧构成一个超帧;
基于该帧结构发送和/或接收消息;
其中,N、K、M都是正整数,M为N和2K的公倍数,每个该超帧中包括至少一个纯下行子帧,还包括纯上行子帧、类型1子帧及类型2子帧中的至少1种,该纯下行子帧中包括下行符号且不包括上行符号,该类型1子帧中包括上行符号和下行符号且上行符号个数少于下行符号,该类型2子帧中包括上行符号和下行符号且上行符号个数多于下行符号,该纯上行子帧中包括上行符号且不包括下行符号。优选地,M为N和2K的最小公倍数。
应理解,本申请实施例中,该定时长度包括上行混合自动重传请求HARQ定时长度、下行HARQ定时长度、上行资源分配定时长度和非周期CSI反馈定时长度中的至少一种,每个该超帧中包括纯下行子帧,还包括纯上行子帧、类型1子帧及类型2子帧等的一种或多种。当该定时长度包括一种定时长度,该定时长度为K个子帧;当该定时长度包括多种定时长度,该多种定时长度都为K个子帧。
其中,上行HARQ定时长度是指用户设备从该用户设备的服务小区接收到PDSCH传输时的子帧到该用户设备发送对应的混合重传请求确认响应时的子帧之间所需的子帧数目,例如,在用户设备从该用户设备的服务小区接收到PDSCH传输时的子帧为n1号子帧,该用户设备发送对应的混合重传请求确认响应时的子帧为n1+k1号子帧,则上行HARQ定时长度为k1个子帧;
下行HARQ定时长度是服务小区从该服务小区内的用户设备接收到PUSCH传输时的子帧到该服务小区发送对应的混合重传请求确认响应时的子帧之间所需的子帧数目,例如,服务小区从该服务小区内的用户设备接收到PUSCH传输时的子帧为n2号子帧,该服务小区发送对应的混合重传请求 确认响应时的子帧为n2+k2号子帧,则下行HARQ定时长度为k2个子帧;
上行资源分配定时长度是指用户设备从该用户设备的服务小区接收到指示该用户设备的上行资源分配信令时的子帧到该用设备在指示的资源上发送上行数据时的子帧之间所需的子帧数目,例如,用户设备从该用户设备的服务小区接收到指示该用户设备的上行资源分配信令时的子帧为n3号子帧,该用设备在指示的资源上发送上行数据时的子帧为n3+k3号子帧,则上行资源分配定时长度为k3个子帧;
非周期CSI反馈定时长度是指用户设备从该用户设备的服务小区上接收到指示该用户设备进行非周期CSI反馈的下行控制信道时的子帧到该用户设备进行对应的非周期CSI反馈时的子帧之间所需的子帧数目,例如,用户设备从该用户设备的服务小区上接收到指示该用户设备进行非周期CSI反馈的下行控制信道时的子帧为n4号子帧,该用户设备进行对应的非周期CSI反馈时的子帧为n4+k4号子帧,则非周期CSI反馈定时长度为k4个子帧。
应理解,本申请实施例中,纯下行子帧用于发送PBCH、同步信号、PHICH、PDCCH、EPDCCH、PCFICH中的至少一种。
应理解,本申请实施例中,纯上行子帧用于发送PRACH、ACK、NACK、CSI、SRS中的至少一种。
上述如图2中揭示的方法可以应用于处理器1202中,或者由处理器1202实现。处理器1202可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器1202中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器1202可以是通用处理器,包括中央处理器(Central Processing Unit,简称CPU)、网络处理器(Network Processor,简称NP)等;还可以是数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。可选的,处理器还可以是专用处理器,如基带处理芯片。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器1203,处理器1202读取存储器1203中的信息,结合 其硬件完成上述方法的步骤。
本申请实施例中,装置1200通过在无线帧中引入纯下行子帧、纯上行子帧、类型1子帧及类型2子帧,并确定TDD系统传输信息所使用的,基于该帧结构的信息发送和接收能够使得系统在不同上下行子帧配比下,可以提供统一的上下行定时关系,降低上下行切换开销,实现动态的TDD。
装置1200可采用如图1,图3-10所对应实施例的帧结构,具体帧结构可参考图1,图3-10所对应实施例,本申请实施例在此不再赘述。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一 个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (15)

  1. 一种信息传输装置,其特征在于,包括:
    确定单元,用于确定时分双工TDD系统中传输信息所使用的帧结构,其中,基于所述帧结构的每个帧包括N个子帧,定时长度为K个子帧,连续的M个子帧构成一个超帧;
    处理单元,用于基于所述帧结构发送和/或接收消息;
    其中,N、K、M都是正整数,M为N和2K的公倍数,每个所述超帧中包括至少一个所述纯下行子帧,还包括纯上行子帧、类型1子帧及类型2子帧中的至少1种,所述纯下行子帧中包括下行符号且不包括上行符号,所述类型1子帧中包括上行符号和下行符号且上行符号个数少于下行符号,所述类型2子帧中包括上行符号和下行符号且上行符号个数多于下行符号,所述纯上行子帧中包括上行符号且不包括下行符号。
  2. 如权利要求1所述的装置,其特征在于,
    所述超帧的上下行子帧的配比为0:M,所述超帧中包括1个所述纯下行子帧,为
    Figure PCTCN2016104089-appb-100001
    号子帧,其余子帧为所述类型1子帧;
    其中,SFNSET_offset用于表示所述超帧中下行子帧集的第一个子帧相对于所述超帧中的第一个子帧的偏移量,取值为0~K-1之间的整数;SFNDL_offset用于表示所述纯下行子帧相对于所述下行子帧集的第一个子帧的偏移量,取值为0~M/2-1之间的整数;所述下行子帧集为所述超帧中子帧序号m满足
    Figure PCTCN2016104089-appb-100002
    为偶数的子帧集合。
  3. 如权利要求1所述的装置,其特征在于,
    所述超帧的上下行子帧的配比为1:1,所述超帧中的下行子帧集都为所述纯下行子帧,所述超帧的上行子帧集都为所述纯上行子帧;
    其中,所述下行子帧集是所述超帧中子帧序号m满足条件
    Figure PCTCN2016104089-appb-100003
    Figure PCTCN2016104089-appb-100004
    为偶数的子帧集合,所述上行子帧集是所述超帧中子帧序号m满足条件
    Figure PCTCN2016104089-appb-100005
    为奇数的子帧集合,SFNSET_offset用于表示所述超帧中下行子帧集的第一个子帧相对于所述超帧中的第一个子帧的偏移量,取值为0~K-1之间的整数。
  4. 如权利要求3所述的装置,其特征在于,
    所述超帧中连续的所述纯下行子帧中的最后一个所述纯下行子帧的最后一个符号为保护间隔GP符号,或者所述超帧中连续的所述纯下行子帧中的第一个所述纯下行子帧的第一个符号为GP符号,或者所述超帧中连续的所述纯上行子帧中的第一个所述纯上行子帧的第一个符号为GP符号,或者所述超帧中连续的所述纯上行子帧中的最后一个所述纯上行子帧的最后一个符号为GP符号。
  5. 如权利要求1所述的装置,其特征在于,
    所述超帧的上下行子帧的配比为a:(M-a),所述超帧的下行子帧集中包括a个所述纯下行子帧和M/2-a个所述类型1子帧,且所述超帧中的X号子帧为所述a个所述纯下行子帧中的固定纯下行子帧,所述超帧的上行子帧集中包括a个所述纯上行子帧和M/2-a个所述类型1子帧,且所述超帧中的Y号子帧为所述a个所述纯上行子帧中的固定纯上行子帧;
    其中,0<a<M/2,a为正整数,X取值为
    Figure PCTCN2016104089-appb-100006
    Figure PCTCN2016104089-appb-100007
    Y取值为
    Figure PCTCN2016104089-appb-100008
    Figure PCTCN2016104089-appb-100009
    所述下行子帧集是所述超帧中子帧序号m满足条件
    Figure PCTCN2016104089-appb-100010
    为偶数的子帧集合,所述上行子帧集是所述超帧中子帧序号m满足条件
    Figure PCTCN2016104089-appb-100011
    为奇数的子帧集合,SFNSET_offset用于表示所述超帧中下行子帧集的第一个子帧相对于所述超帧中的第一个子帧的偏移量,取值为0~K-1之间的整数;SFNDL_offset用于表示所述固定纯下行子帧相对于所述下行子帧集中第一个子帧的偏移量,取值为0~M/2-1之间的整数;SFNUL_offset用于表示所述固定纯上行子帧相对于所述下行子帧集中第一个子帧之后属于所述上行子帧集的第一个子帧的偏移量,取值为0~M/2-1之间的整数。
  6. 如权利要求1所述的装置,其特征在于,
    所述超帧的上下行子帧的配比为a:(M-a),所述超帧的下行子帧集中包括M-a个所述纯下行子帧和a-M/2个所述类型2子帧,且所述超帧中的X号子帧为所述M-a个所述纯下行子帧中的固定纯下行子帧,所述超帧的上行子帧集中包括M-a个所述纯上行子帧和a-M/2个所述类型2子帧,且所述超帧中的Y号子帧为所述M-a个所述纯上行子帧中的固定纯上行子帧;
    其中,M/2<a<M,a为正整数,X取值为
    Figure PCTCN2016104089-appb-100012
    Figure PCTCN2016104089-appb-100013
    Y取值为
    Figure PCTCN2016104089-appb-100014
    Figure PCTCN2016104089-appb-100015
    所述下行子帧集是所述超帧中子帧序号m满足条件
    Figure PCTCN2016104089-appb-100016
    为偶数的子帧集合,所述上行子帧集是所述超帧中子帧序号m满足条件
    Figure PCTCN2016104089-appb-100017
    为奇数的子帧集合,SFNSET_offset用于表示所述超帧中下行子帧集的第一个子帧相对于所述超帧中的第一个子帧的偏移量,取值为0~K-1之间的整数;SFNDL_offset用于表示所述固定纯下行子帧相对于所述下行子帧集中第一个子帧的偏移量,取值为0~M/2-1之间的整数;SFNUL_offset用于表示所述固定纯上行子帧相对于所述下行子帧集中第一个子帧之后属于所述上行子帧集的第一个子帧的偏移量,取值为0~M/2-1之间的整数。
  7. 如权利要求1至6任一项所述的基站,其特征在于,
    所述纯下行子帧用于发送物理广播信道PBCH、同步信号、物理混合自动重传指示信道PHICH、物理下行控制信道PDCCH、增强型物理下行控制信道EPDCCH和物理控制格式指示信道PCFICH中的至少一种。
  8. 如权利要求1至7任一项所述的基站,其特征在于,
    所述纯上行子帧用于发送物理随机接入信道PRACH、反馈确认ACK、反馈非确认NACK、信道状态信息CSI和探通参考信号SRS中的至少一种。
  9. 如权利要求1至8任一项所述的装置,其特征在于,所述装置为基站,或,用户设备。
  10. 一种系统信息传输的方法,其特征在于,包括:
    确定时分双工TDD系统中传输信息所使用的帧结构,其中,基于所述帧结构的每个帧包括N个子帧,定时长度为K个子帧,连续的M个子帧构成一个超帧;
    基于所述帧结构发送和/或接收消息;
    其中,N、K、M都是正整数,M为N和2K的公倍数,每个所述超帧中包括至少一个纯下行子帧,还包括纯上行子帧、类型1子帧及类型2子帧中的至少一种,所述纯下行子帧中包括下行符号且不包括上行符号,所述类型1子帧中包括上行符号和下行符号且上行符号个数少于下行符号,所述类型2子帧中包括上行符号和下行符号且上行符号个数多于下行符号,所述纯上行子帧中包括上行符号且不包括下行符号。
  11. 如权利要求10所述的方法,其特征在于,
    所述超帧的上下行子帧的配比为0:M,所述超帧中包括1个所述纯下 行子帧,为
    Figure PCTCN2016104089-appb-100018
    号子帧,其余子帧为所述类型1子帧;
    其中,SFNSET_offset用于表示所述超帧中下行子帧集的第一个子帧相对于所述超帧中的第一个子帧的偏移量,取值为0~K-1之间的整数;SFNDL_offset用于表示所述纯下行子帧相对于所述下行子帧集的第一个子帧的偏移量,取值为0~M/2-1之间的整数;所述下行子帧集为所述超帧中子帧序号m满足
    Figure PCTCN2016104089-appb-100019
    为偶数的子帧集合。
  12. 如权利要求10所述的方法,其特征在于,
    所述超帧的上下行子帧的配比为1:1,所述超帧中的下行子帧集都为所述纯下行子帧,所述超帧的上行子帧集都为所述纯上行子帧;
    其中,所述下行子帧集是所述超帧中子帧序号m满足条件
    Figure PCTCN2016104089-appb-100020
    Figure PCTCN2016104089-appb-100021
    为偶数的子帧集合,所述上行子帧集是所述超帧中子帧序号m满足条件
    Figure PCTCN2016104089-appb-100022
    为奇数的子帧集合,SFNSET_offset用于表示所述超帧中下行子帧集的第一个子帧相对于所述超帧中的第一个子帧的偏移量,取值为0~K-1之间的整数。
  13. 如权利要求12所述的方法,其特征在于,
    所述超帧中连续的所述纯下行子帧中的最后一个所述纯下行子帧的最后一个符号为保护间隔GP符号,或者所述超帧中连续的所述纯下行子帧中的第一个所述纯下行子帧的第一个符号为GP符号,或者所述超帧中连续的所述纯上行子帧中的第一个所述纯上行子帧的第一个符号为GP符号,或者所述超帧中连续的所述纯上行子帧中的最后一个所述纯上行子帧的最后一个符号为GP符号。
  14. 如权利要求10所述的方法,其特征在于,
    所述超帧的上下行子帧的配比为a:(M-a),所述超帧的下行子帧集中包括a个所述纯下行子帧和M/2-a个所述类型1子帧,且所述超帧中的X号子帧为所述a个所述纯下行子帧中的固定纯下行子帧,所述超帧的上行子帧集中包括a个所述纯上行子帧和M/2-a个所述类型1子帧,且所述超帧中的Y号子帧为所述a个所述纯上行子帧中的固定纯上行子帧;
    其中,0<a<M/2,a为正整数,所述下行子帧集是所述超帧中子帧序号m满足条件
    Figure PCTCN2016104089-appb-100023
    为偶数的子帧集合,所述上行子帧集是所述超帧中子帧序号m满足条件
    Figure PCTCN2016104089-appb-100024
    为奇数的子帧集 合,X取值为
    Figure PCTCN2016104089-appb-100025
    Y取值为
    Figure PCTCN2016104089-appb-100026
    Figure PCTCN2016104089-appb-100027
    SFNSET_offset用于表示所述超帧中下行子帧集的第一个子帧相对于所述超帧中的第一个子帧的偏移量,取值为0~K-1之间的整数;SFNDL_offset用于表示所述固定纯下行子帧相对于所述下行子帧集中第一个子帧的偏移量,取值为0~M/2-1之间的整数;SFNUL_offset用于表示所述固定纯上行子帧相对于所述下行子帧集中第一个子帧之后属于所述上行子帧集的第一个子帧的偏移量,取值为0~M/2-1之间的整数。
  15. 如权利要求10所述的方法,其特征在于,
    所述超帧的上下行子帧的配比为a:(M-a),所述超帧的下行子帧集中包括M-a个所述纯下行子帧和a-M/2个所述类型2子帧,且所述超帧中的X号子帧为所述M-a个所述纯下行子帧中的固定纯下行子帧,所述超帧的上行子帧集中包括M/-a个所述纯上行子帧和a-M/2个所述类型2子帧,且所述超帧中的Y号子帧为所述M/-a个纯上行子帧中的固定纯上行子帧;
    其中,M/2<a<M,a为正整数,X取值为
    Figure PCTCN2016104089-appb-100028
    Figure PCTCN2016104089-appb-100029
    Y取值为
    Figure PCTCN2016104089-appb-100030
    Figure PCTCN2016104089-appb-100031
    所述下行子帧集是所述超帧中子帧序号m满足条件
    Figure PCTCN2016104089-appb-100032
    为偶数的子帧集合,所述上行子帧集是所述超帧中子帧序号m满足条件
    Figure PCTCN2016104089-appb-100033
    为奇数的子帧集合,SFNSET_offset用于表示所述超帧中下行子帧集的第一个子帧相对于所述超帧中的第一个子帧的偏移量,取值为0~K-1之间的整数;SFNDL_offset用于表示所述固定纯下行子帧相对于所述下行子帧集中第一个子帧的偏移量,取值为0~M/2-1之间的整数;SFNUL_offset用于表示所述固定纯上行子帧相对于所述下行子帧集中第一个子帧之后属于所述上行子帧集的第一个子帧的偏移量,取值为0~M/2-1之间的整数。
PCT/CN2016/104089 2015-11-11 2016-10-31 Tdd系统信息传输的方法和装置 WO2017080382A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP16863559.7A EP3364591B1 (en) 2015-11-11 2016-10-31 Tdd system information transmission method and device
US15/977,304 US10554794B2 (en) 2015-11-11 2018-05-11 Information transmission method and apparatus in TDD system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510764970.3A CN106685603B (zh) 2015-11-11 2015-11-11 Tdd系统信息传输的方法和装置
CN201510764970.3 2015-11-11

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/977,304 Continuation US10554794B2 (en) 2015-11-11 2018-05-11 Information transmission method and apparatus in TDD system

Publications (1)

Publication Number Publication Date
WO2017080382A1 true WO2017080382A1 (zh) 2017-05-18

Family

ID=58694566

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/104089 WO2017080382A1 (zh) 2015-11-11 2016-10-31 Tdd系统信息传输的方法和装置

Country Status (4)

Country Link
US (1) US10554794B2 (zh)
EP (1) EP3364591B1 (zh)
CN (1) CN106685603B (zh)
WO (1) WO2017080382A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11477771B2 (en) * 2016-04-05 2022-10-18 Qualcomm Incorporated Indicating start and stop symbols of PDSCH and PUSCH through PDCCH
CN109314983A (zh) * 2016-06-10 2019-02-05 株式会社Ntt都科摩 用户终端及无线通信方法
CN108282881B (zh) * 2017-01-06 2020-12-15 华为技术有限公司 一种资源配置方法及装置
EP3633912B1 (en) 2017-05-31 2023-12-27 Beijing Xiaomi Mobile Software Co., Ltd. Data transmission method and device
CN108809614B9 (zh) * 2017-11-17 2019-09-06 华为技术有限公司 信息传输方法及设备
CN110519031B (zh) * 2017-11-17 2020-12-25 华为技术有限公司 信息传输方法及设备
KR102702084B1 (ko) * 2018-04-12 2024-09-04 삼성전자주식회사 무선 통신 시스템에서 자원 할당 방법 및 장치
US11601228B2 (en) 2018-09-28 2023-03-07 Qualcomm Incorporated HARQ feedback for multicast/unicast

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090219875A1 (en) * 2008-01-03 2009-09-03 Lg Electronics Inc. Frame for flexibly supporting heterogeneous modes and tdd/fdd modes, and method for transmitting signals using the same
CN101902427A (zh) * 2009-06-01 2010-12-01 中兴通讯股份有限公司 帧结构及其配置方法、通信方法
CN102396168A (zh) * 2009-04-14 2012-03-28 Lg电子株式会社 在无线通信系统中发送和接收数据的方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101399645B (zh) * 2007-09-30 2012-05-30 电信科学技术研究院 Lte-tdd系统ack/nack调度方法及调度器
US20100124184A1 (en) * 2008-11-14 2010-05-20 Qualcomm Incorporated Methods and systems with frame structure for improved adjacent channel co-existence
CN102025411B (zh) * 2010-10-11 2016-09-28 中兴通讯股份有限公司 一种时分双工系统及其动态帧结构和配置方法
CN102158325B (zh) * 2011-04-22 2017-05-10 中兴通讯股份有限公司 数据传输方法及装置
CN102271032B (zh) * 2011-08-09 2014-11-19 电信科学技术研究院 一种实现上行反馈的方法、系统及装置
GB201208389D0 (en) * 2012-05-10 2012-06-27 Samsung Electronics Co Ltd Integrated circuit, communication unit, wireless communication system and methods therefor
WO2015020427A1 (ko) * 2013-08-06 2015-02-12 엘지전자 주식회사 D2d 신호 전송 방법 및 이를 위한 장치
CN105099632B (zh) * 2014-04-23 2019-12-13 北京三星通信技术研究有限公司 一种上行探测参考信号传输的方法和设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090219875A1 (en) * 2008-01-03 2009-09-03 Lg Electronics Inc. Frame for flexibly supporting heterogeneous modes and tdd/fdd modes, and method for transmitting signals using the same
CN102396168A (zh) * 2009-04-14 2012-03-28 Lg电子株式会社 在无线通信系统中发送和接收数据的方法
CN101902427A (zh) * 2009-06-01 2010-12-01 中兴通讯股份有限公司 帧结构及其配置方法、通信方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3364591A4 *

Also Published As

Publication number Publication date
EP3364591B1 (en) 2019-12-25
US10554794B2 (en) 2020-02-04
US20180295220A1 (en) 2018-10-11
EP3364591A1 (en) 2018-08-22
EP3364591A4 (en) 2018-10-17
CN106685603B (zh) 2019-11-05
CN106685603A (zh) 2017-05-17

Similar Documents

Publication Publication Date Title
WO2017080382A1 (zh) Tdd系统信息传输的方法和装置
EP2932638B1 (en) A network node, a wireless device and methods therein for enabling and performing harq transmissions in a d2d communication between wireless devices in a wireless telecommunications network
US11963160B2 (en) Terminal, base station and method performed by the same in wireless communication system
TW201412166A (zh) 方法及設備
EP2978270B1 (en) Method and device for transmitting uplink information
US20180352568A1 (en) Methods for multiplexing scheduling request information and harq ack/nack information while transmitting and receiving pucch and apparatuses thereof
US20180338306A1 (en) Uplink information transmission method and apparatus
EP2651069A1 (en) Method of handling HARQ feedback and related communication device
US10779284B2 (en) Data transmission method, user equipment, and base station
TWI717461B (zh) 用於在非授權載波上傳輸上行信息的方法和裝置
WO2016131235A1 (zh) 信息传输的方法、用户设备和基站
EP2651068B1 (en) Method of handling HARQ feedback and related communication device
WO2018195861A1 (zh) 无线通信的方法、终端设备和传输与接收节点
CN107294688B (zh) 数据传输的方法以及基站
CN109792725B (zh) 载波聚合的消息反馈方法及装置
WO2017024467A1 (zh) 无线通信的方法、网络设备和终端设备
EP3306848B1 (en) Data transmitting method, terminal and base station
WO2018076326A1 (zh) 用于上行载波聚合的通信方法和装置
CN107251501B (zh) 一种信息的发送和接收方法、用户设备及基站
WO2022077876A1 (zh) 一种通信方法及装置
WO2020125368A1 (zh) 一种用于载波聚合系统的通信方法、终端及网络设备
TWI646815B (zh) 載波聚合中服務小區的分組方法與使用者設備
WO2023206416A1 (en) Methods and apparatuses for scheduling multiple physical downlink shared channel (pdsch) transmissions
CN117322083A (zh) 用于半持久调度(sps)混合自动重传请求(harq)跳过的上行链路控制信息(uci)复用
JP2024514525A (ja) 動的マルチスロット物理ダウンリンク共有チャネル(pdsch)のための改良型ハイブリッド自動再送要求(harq)フィードバック

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16863559

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016863559

Country of ref document: EP