WO2018058679A1 - 多载波下的数据传输方法和装置 - Google Patents

多载波下的数据传输方法和装置 Download PDF

Info

Publication number
WO2018058679A1
WO2018058679A1 PCT/CN2016/101391 CN2016101391W WO2018058679A1 WO 2018058679 A1 WO2018058679 A1 WO 2018058679A1 CN 2016101391 W CN2016101391 W CN 2016101391W WO 2018058679 A1 WO2018058679 A1 WO 2018058679A1
Authority
WO
WIPO (PCT)
Prior art keywords
carrier
subframe
timing relationship
harq timing
message
Prior art date
Application number
PCT/CN2016/101391
Other languages
English (en)
French (fr)
Inventor
李华
肖洁华
栗忠峰
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201680089419.6A priority Critical patent/CN110050428A/zh
Priority to PCT/CN2016/101391 priority patent/WO2018058679A1/zh
Publication of WO2018058679A1 publication Critical patent/WO2018058679A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems

Definitions

  • the embodiments of the present invention relate to communication technologies, and in particular, to a data transmission method and apparatus under multiple carriers.
  • LTE Long Term Evolution
  • HARQ Hybrid Automatic Repeat ReQuest
  • the HARQ entity includes multiple parallel HARQ processes. Each HARQ entity can only use the carrier on the carrier. The HARQ process performs data transmission. If there is no available resource on the carrier, the HARQ entity performs data transmission when the carrier has available resources, resulting in an increase in data transmission delay.
  • Embodiments of the present invention provide a data transmission method and apparatus under multiple carriers, so that resources of multiple carriers can be shared, thereby reducing the delay of data transmission.
  • a first aspect of the present invention provides a data transmission method under multiple carriers, including:
  • the first device sends the transport block TB to the second device by using the subframe n of the first carrier;
  • the HARQ timing relationship of the multi-carrier frame configuration includes a HARQ timing relationship of at least two carriers
  • the first device receives the second device by using the subframe m of the second carrier.
  • the feedback message of the TB sent.
  • the method further includes:
  • the first device determines that the TB transmission is successful, and the first device sends a next TB;
  • the first device determines that the TB transmission fails, and the first device retransmits the TB by using a subframe j of the third carrier.
  • the first device determines, according to the HARQ timing relationship configured by sending the first carrier, the subframe n, and the multi-carrier frame configured by the TB, a second carrier used by the feedback message that receives the TB.
  • the subframe m it also includes:
  • the method before the first device sends the TB to the second device by using the subframe n of the first carrier, the method further includes:
  • the first device sends an indication message to the second device, where the indication message is used to indicate that the second device switches to the multi-carrier HARQ mode.
  • the method before the first device sends the TB to the second device by using the subframe n of the first carrier, the method further includes:
  • a second aspect of the present invention provides a data transmission method under multiple carriers, including:
  • the second device receives the transport block TB sent by the first device on the subframe n of the first carrier;
  • the second device Determining, by the second device, a subframe of the second carrier used by the feedback message that sends the TB according to the HARQ timing relationship of the first carrier, the subframe n, and the multi-carrier frame configured by the TB.
  • the HARQ timing relationship of the multi-carrier frame configuration includes a HARQ timing relationship of at least two carriers;
  • the second device sends the feedback message of the TB to the first device by using the subframe m of the second carrier.
  • the second device determines, according to the HARQ timing relationship of the first carrier, the subframe n, and the multi-carrier frame configuration used by the TB, the second carrier used to send the feedback message of the TB. Before the subframe m, it also includes:
  • the method before the receiving, by the second device, the TB sent by the first device on the subframe n of the first carrier, the method further includes:
  • the second device receives an indication message sent by the first device, where the indication message is used to indicate that the second device switches to a multi-carrier HARQ mode, where the first device and the device are in the multi-carrier HARQ mode.
  • the second device uses the HARQ timing relationship of the multi-carrier frame configuration.
  • the method before the receiving, by the second device, the TB sent by the first device on the subframe n of the first carrier, the method further includes:
  • the second device sends a request message to the first device, where the request message is used to request to switch to the multi-carrier HARQ mode.
  • a third aspect of the present invention provides a data transmission method under multiple carriers, including:
  • the first device sends the indication information to the second device, where the indication information is used to indicate that the second device sends the feedback message of the TB on the second time unit of the second carrier;
  • the first device sends the TB to the second device by using the first time unit of the first carrier;
  • the first time unit is a downlink subframe or a bidirectional subframe
  • the symbols of the downlink subframe are downlink symbols
  • the symbols of the bidirectional subframe include a downlink symbol and an uplink symbol.
  • the second time unit is an uplink subframe or the bidirectional subframe, and the symbols of the uplink subframe are all uplink symbols.
  • a fourth aspect of the present invention provides a data transmission method under multiple carriers, including:
  • the second device receives the indication information sent by the first device, where the indication information is used to indicate that the second device sends a feedback message of the transport block TB on the second time unit of the second carrier; the second device is at the first Receiving, by the first time unit of the carrier, the TB sent by the first device;
  • a fifth aspect of the present invention provides a first device, including:
  • a transmitter configured to send a transport block TB to the second device by using a subframe n of the first carrier
  • a processor configured to determine, according to a HARQ timing relationship of the first carrier, the subframe n, and the multi-carrier frame configured to send the TB, a subframe m of a second carrier used by the feedback message that receives the TB
  • the HARQ timing relationship of the multi-carrier frame configuration includes a HARQ timing relationship of at least two carriers
  • a receiver configured to receive, by using the subframe m of the second carrier, a feedback message of the TB sent by the second device.
  • the processor is further configured to: when the feedback message of the TB is an acknowledgement ACK message, determine that the TB transmission is successful, the first device sends a next TB; when the feedback message of the TB is When the NACK message is denied, it is determined that the TB transmission fails, and the first device retransmits the TB using the subframe j of the third carrier.
  • the processor is further configured to: determine, according to a delay requirement of the TB, a HARQ timing relationship of the multi-carrier frame configuration from a HARQ timing relationship configured by at least two multi-carrier frames.
  • the processor is further configured to: determine to use a multi-carrier HARQ mode, where the first device and the second device use a HARQ timing relationship configured by the multi-carrier frame,
  • the transmitter is further configured to send an indication message to the second device, where the indication message is used to indicate that the second device switches to the multi-carrier HARQ mode.
  • the receiver is further configured to: receive a request message sent by the second device, where the request message is used to request to switch to a multi-carrier HARQ mode, where the first device is in the multi-carrier HARQ mode. And the second device uses the HARQ timing of the multi-carrier frame configuration system.
  • a sixth aspect of the present invention provides a second device, including:
  • a receiver configured to receive, on a subframe n of the first carrier, a transport block TB sent by the first device;
  • a processor configured to determine, according to a HARQ timing relationship of the first carrier, the subframe n, and the multi-carrier frame configured to receive the TB, a subframe m of a second carrier used by the feedback message that sends the TB
  • the HARQ timing relationship of the multi-carrier frame configuration includes a HARQ timing relationship of at least two carriers
  • a transmitter configured to send, by using the subframe m of the second carrier, the feedback message of the TB to the first device.
  • the processor is further configured to: determine, according to a delay requirement of the TB, a HARQ timing relationship of the multi-carrier frame configuration from a HARQ timing relationship configured by at least two multi-carrier frames.
  • the receiver is further configured to: receive an indication message sent by the first device, where the indication message is used to indicate that the second device switches to a multi-carrier HARQ mode, in the multi-carrier HARQ mode, The first device and the second device use a HARQ timing relationship of the multi-carrier frame configuration.
  • the processor is further configured to: determine to use a multi-carrier HARQ mode, where the first device and the second device use a HARQ timing relationship configured by the multi-carrier frame,
  • the sender is further configured to send a request message to the first device, where the request message is used to request to switch to the multi-carrier HARQ mode.
  • a seventh aspect of the present invention provides a first device, including:
  • a processor configured to determine, from the plurality of carriers, a carrier identifier and a second time unit of the second carrier used by the feedback message of the transport block TB transmitted on the first time unit of the first carrier;
  • a transmitter configured to send, to the second device, the indication information, where the indication information is used to indicate that the second device sends the feedback message of the TB on the second time unit of the second carrier;
  • the transmitter is further configured to send the TB to the second device by using the first time unit of the first carrier;
  • a receiver configured to receive, in the second time unit of the second carrier, a feedback message of the TB sent by the UE.
  • the first time unit is a downlink subframe or a bidirectional subframe, where the downlink subframe is The symbols are all downlink symbols, and the symbols of the bidirectional subframe include a downlink symbol and an uplink symbol;
  • the second time unit is an uplink subframe or the bidirectional subframe, and the symbols of the uplink subframe are all uplink symbols.
  • An eighth aspect of the present invention provides a second device, including:
  • a receiver configured to receive the indication information sent by the first device, where the indication information is used to indicate that the second device sends a feedback message of the transport block TB on the second time unit of the second carrier; Receiving, by the first time unit of the first carrier, the TB sent by the first device;
  • a transmitter configured to send, according to the indication information, the feedback message of the TB to the first device on the second time unit of the second carrier.
  • a ninth aspect of the present invention provides a first device, including:
  • a sending module configured to send a transport block TB to the second device by using a subframe n of the first carrier
  • a determining module configured to determine, according to a HARQ timing relationship configured by sending the first carrier, the subframe n, and the multi-carrier frame configured by the TB, a subframe m of a second carrier used by receiving a feedback message of the TB
  • the HARQ timing relationship of the multi-carrier frame configuration includes a HARQ timing relationship of at least two carriers
  • a receiving module configured to receive, by using the subframe m of the second carrier, a feedback message of the TB sent by the second device.
  • the determining module is further configured to: when the feedback message of the TB is an acknowledgement ACK message, determine that the TB transmission is successful, the first device sends a next TB; when the feedback message of the TB is When the NACK message is denied, it is determined that the TB transmission fails, and the first device retransmits the TB using the subframe j of the third carrier.
  • the determining module is further configured to: determine, according to a delay requirement of the TB, a HARQ timing relationship of the multi-carrier frame configuration from a HARQ timing relationship configured by at least two multi-carrier frames.
  • the determining module is further configured to: determine to use a multi-carrier HARQ mode, where the first device and the second device use a HARQ timing relationship configured by the multi-carrier frame,
  • the sending module is further configured to send an indication message to the second device, where the indication message is used to indicate that the second device switches to the multi-carrier HARQ mode.
  • the receiving module is further configured to: receive a request message sent by the second device, where the request message is used to request to switch to a multi-carrier HARQ mode, where the first device is in the multi-carrier HARQ mode. And the second device uses the HARQ timing relationship of the multi-carrier frame configuration.
  • a tenth aspect of the present invention provides a second device, including:
  • a receiving module configured to receive, on a subframe n of the first carrier, a transport block TB sent by the first device;
  • a determining module configured to determine, according to the HARQ timing relationship of the first carrier, the subframe n, and the multi-carrier frame configuration used by the TB, a subframe of the second carrier used by the feedback message that sends the TB
  • the HARQ timing relationship of the multi-carrier frame configuration includes a HARQ timing relationship of at least two carriers
  • a sending module configured to send, by using the subframe m of the second carrier, the feedback message of the TB to the first device.
  • the determining module is further configured to: determine, according to a delay requirement of the TB, a HARQ timing relationship of the multi-carrier frame configuration from a HARQ timing relationship configured by at least two multi-carrier frames.
  • the receiving module is further configured to: receive an indication message sent by the first device, where the indication message is used to indicate that the second device switches to a multi-carrier HARQ mode, in the multi-carrier HARQ mode, The first device and the second device use a HARQ timing relationship of the multi-carrier frame configuration.
  • the determining module is further configured to: determine to use a multi-carrier HARQ mode, where the first device and the second device use a HARQ timing relationship configured by the multi-carrier frame,
  • the sending module is further configured to send a request message to the first device, where the request message is used to request to switch to the multi-carrier HARQ mode.
  • An eleventh aspect of the present invention provides a first device, including:
  • a determining module configured to determine, from the plurality of carriers, a carrier identifier and a second time unit of the second carrier used by the feedback message of the transport block TB sent on the first time unit of the first carrier;
  • a sending module configured to send the indication information to the second device, where the indication information is used to indicate that the second device sends the feedback message of the TB on the second time unit of the second carrier;
  • the sending module is further configured to send the TB to the second device by using the first time unit of the first carrier;
  • a receiving module configured to receive, in the second time unit of the second carrier, a feedback message of the TB sent by the UE.
  • the first time unit is a downlink subframe or a bidirectional subframe
  • the symbols of the downlink subframe are downlink symbols
  • the symbols of the bidirectional subframe include a downlink symbol and an uplink symbol.
  • the second time unit is an uplink subframe or the bidirectional subframe, and the symbols of the uplink subframe are all uplink symbols.
  • a twelfth aspect of the present invention provides a second device, comprising:
  • a receiving module configured to receive the indication information sent by the first device, where the indication information is used to indicate that the second device sends a feedback message of the transport block TB on the second time unit of the second carrier; Receiving, by the first time unit of the first carrier, the TB sent by the first device;
  • a sending module configured to send, according to the indication information, the feedback message of the TB to the first device on the second time unit of the second carrier.
  • each carrier in the HARQ timing relationship of the multi-carrier configuration is capable of transmitting a feedback message of the TB.
  • the secondary carrier in the HARQ timing relationship of the multi-carrier frame configuration can be used to send feedback information of the TB sent on the primary carrier.
  • the first carrier and the second carrier are different.
  • the first carrier is a primary carrier
  • the second carrier is a secondary carrier
  • the first carrier and the third carrier are different.
  • the method and device for transmitting data under the multi-carrier by introducing the HARQ timing of the multi-carrier frame configuration, in the carrier aggregation scenario, when the first device uses the subframe n of the first carrier to send to the second device In the TB, the second device determines, according to the HARQ timing of the multi-carrier frame configuration, that the feedback message of the TB is sent by using the subframe m of the second carrier, because the second device can send the feedback message by using any one of the carriers, thereby increasing the feedback sent by the second device.
  • Message machine Will, in turn, reduce the data transmission delay.
  • the first device retransmits the TB, it can use a different carrier than the initial transmission of the TB, thereby increasing the transmission opportunity of the retransmission TB, and further reducing the data transmission delay.
  • FIG. 1 is a schematic diagram of a carrier aggregation scenario
  • FIG. 3 is a schematic diagram of a relationship between data transmission and reception timing of frame configuration 1;
  • 4 is a schematic diagram of data transmission and reception timing of frame configuration 0;
  • FIG. 5 is a schematic diagram of a relationship between data transmission and reception timing of a multi-carrier frame configuration
  • FIG. 6 is another schematic diagram of a data transmission and reception timing relationship of a multi-carrier frame configuration
  • FIG. 7 is a schematic diagram of a data transmission method under multi-carrier according to Embodiment 2 of the present invention.
  • FIG. 8 is a schematic structural diagram of a first device according to Embodiment 3 of the present invention.
  • FIG. 9 is a schematic structural diagram of a second device according to Embodiment 4 of the present invention.
  • FIG. 10 is a schematic structural diagram of a first device according to Embodiment 7 of the present invention.
  • FIG. 11 is a schematic structural diagram of a second device according to Embodiment 8 of the present invention.
  • FIG. 12 is a schematic structural diagram of a second device according to Embodiment 10 of the present invention.
  • Carrier Aggregation is a combination of two or more component carriers (CCs) to form a carrier group to support a larger transmission bandwidth.
  • CCs component carriers
  • ACK or NACK feedback message
  • a primary device Primary CC, PCC for short
  • a secondary CC Secondary CC, SCC for short
  • PCC Primary Component Carrier
  • SCC secondary component carrier
  • the carrier aggregation scenario can be applied between the base station and the UE, or between the two base stations, for example, between the macro station and the base station.
  • FIG. 1 is a schematic diagram of a carrier aggregation scenario. As shown in FIG. 1, a communication between a base station and a UE may be performed through two carriers CC1 and CC2, and a macro station and a small station may also perform communication through two carriers CC1 and CC2. Communication.
  • the method in this embodiment may be applied to downlink data transmission, and may also be applied to uplink data transmission, when the method is applied to downlink data.
  • the first device When transmitting, the first device may be a base station, and the second device may be a base station or a UE.
  • the first device when the first device is a macro station, the second device may be a small station.
  • the method when the method is applied to uplink data transmission, the first device is a UE or a base station, and the second device is a base station.
  • the method in this embodiment may include:
  • Step 101 The first device determines to use a multi-carrier HARQ mode.
  • the multi-carrier HARQ mode is a newly defined transmission mode of the present invention, which is different from the existing single-carrier HARQ mode.
  • the first device determines, from the plurality of carriers, the feedback message used to receive the TB.
  • the carrier and the subframe in this embodiment, the first device determines the carrier and the subframe used for receiving the feedback message of the TB according to the HARQ timing relationship of the multi-carrier frame configuration, and in the single-carrier HARQ mode, the first device can only The HARQ timing of the carrier frame configuration determines the carrier and subframe used by the feedback message receiving the TB.
  • the HARQ timing relationship of the multi-carrier frame configuration is not simply to put together the HARQ timings of the frame configurations of multiple single carriers, but to adjust the HARQ timing of multiple carriers by adjusting the HARQ timing.
  • the Round-Trip Time (RTT) of the data packet is reduced, so that the delay can be reduced.
  • FIG. 3 is a schematic diagram of data transmission and reception timing relationship of frame configuration 1
  • FIG. 4 is a schematic diagram of data transmission and reception timing of frame configuration 0.
  • frame configuration 1 has 7 processes, wherein the first row indicates a subframe number, and the second row indicates whether the corresponding subframe is a downlink subframe (D), a special subframe (S), or an uplink.
  • Sub-frame (U) each line after the third line represents a different process, and the data transmission and reception timings of different processes are different.
  • the eNB transmits data (Tx) in subframe 0 of one radio frame, and the UE sends an Ack reply in subframe 7 of the radio frame, and the eNB is The subframe 1 of the next radio frame transmits data (Tx), and the RTT time of the process of the frame configuration 1 is 11 ms or 13 ms. As shown in Figure 4, frame configuration 0 has 4 processes, and the RTT time of all processes is 10 ms.
  • FIG. 5 is a schematic diagram of a data transmission and reception timing relationship of a multi-carrier frame configuration, in which carrier 1 adopts frame configuration 1 and carrier 2 adopts frame configuration 0, in which the data transmission and reception timing relationship of the multi-carrier configuration is only An ACK message or a NACK message can be fed back on carrier 1.
  • the RTT time of all processes is 11 ms.
  • the RTT time is decreased.
  • the Ack replying opportunity is limited to carrier 1, causing the uplink subframe of the carrier to be wasted, the RTT time will be improved compared to the non-carrier aggregation.
  • FIG. 6 is another schematic diagram of a data transmission and reception timing relationship of a multi-carrier frame configuration.
  • the main difference between FIG. 6 and FIG. 5 is that, in the data transmission and reception timing relationship of the multi-carrier frame configuration shown in FIG. 6, an ACK message Feedback can be performed on carrier 1 and carrier 2, so the RTT time of all processes is 8 ms, which reduces the delay.
  • the HARQ timing relationship of the multi-carrier frame configuration can be obtained, and the HARQ timing of the multi-carrier frame configuration refers to the timing relationship of the ACK/NACK message fed back by the receiving end on multiple carriers
  • the PDSCH of the frame nk is taken as an example, and is described from the transmitting end.
  • k indicates the subframe interval at which the transmitting end sends the TB to the feedback message that receives the TB, and is described from the receiving end, where k indicates that the receiving end receives the TB to send the feedback message of the TB. Subframe interval.
  • the frame configuration of CC1 and CC2 is 2+2 as an example. 2+2 indicates that both CC1 and CC2 use frame configuration 2. Assuming that the second device receives the TB transmitted by the first device on subframe 2 of CC1, the second device may send an ACK/NACK message to the first device using CC2 and CC1.
  • the second device When the second device sends an ACK/NACK message to the first device by using the CC1, the second device needs to send an ACK/NACK message to the first device after the subframe 2 of the CC1 is separated by 6 subframes or 4 subframes; The second device needs to send an ACK/NACK message to the first device after the subframe 2 of the CC2 is separated by 6 subframes, 5 subframes, or 4 subframes. Assuming that the second device receives the TB transmitted by the first device on subframe 2 of CC2, the second device may send an ACK/NACK message to the first device using CC2 or CC1.
  • the second device When the second device sends an ACK/NACK message to the first device by using the CC1, the second device needs to send an ACK/NACK message to the first device after the subframe 2 of the CC1 is separated by 6 subframes or 5 subframes; If the ACK/NACK message is sent to the first device by using the CC2, the second device needs to send an ACK/NACK message to the first device after the subframe 2 of the CC2 is separated by 6 subframes.
  • the first device may receive the second on CC1 or CC2.
  • the first device When the first device receives the ACK/NACK message of the TB on the CC1, the first device needs to receive the ACK/NACK message sent by the first device after the subframe 2 of the CC1 is separated by 6 subframes or 4 subframes; When the device is on the ACK/NACK message of the TB of the CC2, the first device needs to receive the ACK/NACK message sent by the first device after the subframe 2 of the CC2 is separated by 6 subframes, 5 subframes, or 4 subframes. Assuming that the first device sends a TB to the second device on the subframe 2 of the CC2, the first device may also receive the ACK/NACK message of the TB sent by the second device on the CC1 or the CC2.
  • the first device When the first device receives the ACK/NACK message of the TB on the CC1, the first device needs to receive the ACK/NACK message of the TB after the subframe 2 of the CC1 is separated by 6 subframes or 5 subframes, when the first device needs When receiving the ACK/NACK message of the TB on the CC2, the first device needs to receive the ACK/NACK message of the TB after the subframe 2 of the CC2 is separated by 6 subframes.
  • the first device may determine whether to use the multi-carrier HARQ mode by the following methods:
  • the first device determines whether there is a service in the currently transmitted service that has a transmission delay requirement that is less than a delay threshold. The first device determines to use the multi-carrier HARQ mode when there is a service in which the transmission delay requires less than the delay threshold.
  • the transmission delay requirement of a service is smaller than the delay threshold, indicating that the service has a higher delay requirement. If the single-carrier HARQ mode is adopted, the initial transmission and retransmission of data can only be on the same carrier, and ACK The /NACK feedback can only be on the primary carrier, resulting in an increase in data transmission delay. Therefore, the first device determines to use the multi-carrier HARQ mode, and in the multi-carrier HARQ mode, the data transmission delay can be reduced.
  • the first device determines whether the current signal to noise ratio is lower than a signal to noise ratio threshold. When the current signal to noise ratio is lower than the signal to noise ratio threshold, the first device determines to use the multi-carrier HARQ mode.
  • the first device will calculate the signal-to-noise ratio according to the data reception result.
  • the larger the signal-to-noise ratio the smaller the noise mixed in the signal
  • the smaller the signal-to-noise ratio the larger the noise mixed in the signal.
  • the signal-to-noise ratio is lower than the signal-to-noise ratio threshold, indicating that the noise is large and the channel quality is not good.
  • the first device determines whether the current block error rate is greater than the block error rate threshold. When the current block error rate is greater than the block error rate threshold, the first device determines to use the multi-carrier HARQ mode.
  • the block error rate refers to the percentage of blocks that are erroneous in the data block sent by the sender in all transmitted blocks. The larger the block error rate is, the worse the channel quality is.
  • the HARQ mode supporting multi-carriers makes the UE more
  • the uplink channel sounding reference signal (SRS) transmission opportunity enables the base station to obtain channel information more accurately, thereby improving transmission reliability and reducing the block error rate.
  • SRS uplink channel sounding reference signal
  • Step 102 The first device sends an indication message to the second device, where the indication message is used to indicate that the second device switches to the multi-carrier HARQ mode.
  • the HARQ timing relationship of at least one multi-carrier frame configuration is stored on the first device and the second device, and the multi-carrier frame configuration stored on the first device and the second device is configured.
  • the HARQ timing relationship is the same.
  • the second device may determine that the multi-carrier HARQ mode is used, and send a request message to the first device, where the first device receives the request message sent by the second device, where the request message is sent. For requesting handover to the multi-carrier HARQ mode, if the first device allows to switch to the multi-carrier HARQ mode, the first device may send an acknowledgement message to the second device, and the first device may not send the acknowledgement message, and the second device is certain After the time, the first device is allowed to switch to the multi-carrier HARQ mode by default.
  • Step 103 The first device sends a TB to the second device by using the subframe n of the first carrier.
  • the first device when the first device needs to send the TB, the first device selects to send the TB to the second device by using the subframe n of the first carrier according to the scheduling rule. Specifically, after determining the first carrier and the subframe n, the first device allocates a process ID to the TB, and sends the TB and the process ID to the physical layer, and the physical layer puts the process ID into the downlink control information of the TB. In the Downlink Control Information (DCI), the TB is placed on a Physical Downlink Shared Channel (PDSCH), and then the TB and DCI are transmitted on the subframe n of the first carrier.
  • DCI Downlink Control Information
  • Step 104 The second device determines, according to the HARQ timing relationship of the first carrier, the subframe n, and the multi-carrier frame configured by the receiving TB, the subframe m of the second carrier used by the feedback message that sends the TB.
  • the second device receives the data on the subframe n of the first carrier, the second receiving device reads the DCI from the received data, reads the TB according to the DCI, and places the TB into the process according to the process number in the DCI. In the buffer (buffer). Then, the second device determines, according to the HARQ timing relationship of the first carrier, the subframe n, and the multi-carrier frame configuration used by the receiving TB, the subframe m of the second carrier used for transmitting the feedback message of the TB.
  • each carrier in the HARQ timing relationship of the multi-carrier configuration can send a feedback message of the TB, which is different from the solution of the prior art, and the feedback information of the TB sent on the primary carrier and the secondary carrier in the prior art.
  • the secondary carrier can also be used to send feedback information of the TB, that is, the feedback information of the TB transmitted on the primary carrier can also be sent on the secondary carrier.
  • only a certain carrier in the HARQ timing relationship of the multi-carrier configuration can send a feedback message of the TB.
  • the second carrier and the first carrier may be the same or different.
  • the first carrier and the second carrier are both the primary carrier or the secondary carrier; when the first carrier and the second carrier are different, the first carrier may be the primary carrier and the second carrier
  • the first carrier may be the secondary carrier
  • the second carrier is the primary carrier
  • the table stores the HARQ timing relationship of five multi-carrier frame configurations, and the second device determines the HARQ timing relationship of one multi-carrier frame configuration from the HARQ timing relationship of the five multi-carrier frame configurations.
  • the second device may determine the HARQ timing relationship of the used multi-carrier frame configuration according to the delay requirement of the TB. It is assumed that the second device determines the HARQ timing relationship using the 2+2 multi-carrier configuration, and the second device receives the TB on the subframe 7 of the CC1, that is, the first carrier is CC1, and the subframe n is the subframe 7.
  • the second device may send a feedback message by using CC1 and CC2, and further determine whether CC1 or CC2 sends a feedback message according to the resource usage of CC1 and CC2, and assume that the second device determines the sub-CC2.
  • the feedback message is sent to the first device, then the second carrier is CC2, and the subframe m is the subframe 1 of the next radio frame of CC2.
  • Step 105 The second device sends a feedback message of the TB to the first device by using the subframe m of the second carrier.
  • the second device detects the received data. If the receiving is correct, the feedback message is an ACK message, and if the error is received, the feedback message is a NACK message.
  • Step 106 When the feedback message of the TB is an ACK message, the first device determines the TB transmission. If the TB feedback message is a NACK message, the first device determines that the TB transmission fails.
  • Step 107 The first device retransmits the TB by using the subframe j of the third carrier.
  • Step 107 is an optional step.
  • step 107 is not required, and when the feedback message is a NACK message, step 108 needs to be performed.
  • the first device After transmitting the TB on the subframe n of the first carrier, the first device receives the feedback message of the TB on the subframe m of the second carrier, and before receiving the feedback message of the TB, the first device uses the first carrier used according to the sending TB. And determining, by using the HARQ timing relationship of the subframe n and the multi-carrier frame configuration, the subframe m of the second carrier used by the feedback message of the receiving TB, where the first device and the second device determine the second carrier and the subframe m by the same method, I won't go into details here.
  • the first device may retransmit the TB by using any one of the multiple carriers. Therefore, the third carrier may be the same as the first carrier, and may be the first one. The carrier is different. Different from the prior art, the retransmission TB and the initial transmission TB can only be on the same carrier, and cannot retransmit the TB across carriers. Compared with the prior art, in the method of the embodiment of the present invention, since the TB can be retransmitted across carriers, if a carrier has more transmission opportunities than the carrier used by the initial TB, the first device can use the carrier. Retransmission can further reduce the transmission delay of data.
  • the first device When the TB is retransmitted, the first device does not reassign the process number to the TB, and the TB also uses the process ID assigned by the first device at the time of initial transmission, and the first device places the process number into the DCI, and the third carrier In the subframe j, the redundancy version 1 of the DCI and the TB is transmitted, and one TB may perform multiple retransmissions.
  • the maximum number of retransmissions specified by the current protocol is 4. In order to distinguish the TBs transmitted multiple times, a redundancy version is introduced.
  • the DCI of the first carrier and the redundancy version 0 of the TB are transmitted on the subframe n, and the redundancy version 3, redundancy version 2, and redundancy of the TB are transmitted during subsequent retransmission.
  • I have version 1.
  • the processing operation of the subsequent TB retransmission is the same as the processing operation at the initial transmission, and will not be described here.
  • the first retransmission may also fail. If it fails, the second retransmission is performed according to the above procedure, each time heavy.
  • the processing operations of the transmission are the same and will not be described here.
  • the second device can use any one carrier to send a feedback message in the carrier aggregation scenario, thereby increasing the chance that the second device sends the feedback message, thereby reducing the data. Transmission delay.
  • the first device is When the TB is retransmitted, a different carrier can be used with the initial transmission of the TB, thereby increasing the transmission opportunity of the retransmission TB, and further reducing the data transmission delay.
  • FIG. 7 is a data transmission method for multiple carriers according to Embodiment 2 of the present invention. As shown in FIG. 7, the method provided in this embodiment includes the following steps:
  • Step 201 The first device determines, from the plurality of carriers, a carrier identifier and a second time unit of the second carrier used by the feedback message of the TB sent on the first time unit of the first carrier.
  • each carrier does not have a fixed HARQ timing relationship.
  • the symbols in the subframe include an uplink symbol and a downlink symbol, and the ratio of the uplink symbol to the downlink symbol can be configured.
  • These three subframe types may exist on each carrier. On a certain carrier, which subframe type is used at a certain time is determined by the scheduling message of the base station.
  • the first device since there is no fixed HARQ timing relationship, the first device performs scheduling in a unified manner, and the first device can determine the processing time of the TB according to the second device when determining the carrier and time unit used by the feedback message of the TB. And determining, by the time unit on each carrier, the identifier of the second carrier used by the feedback message of the TB and the second time unit, wherein when the first device is the base station, the second device is the UE, and when the first device is the UE, The second device is a base station. Since there is no fixed HARQ timing relationship, the carrier and time units used for each determined feedback message may be different for the TB transmitted on the same carrier and time unit, thereby making the transmission of data more flexible.
  • the first carrier and the second carrier may be the same or different.
  • the first time unit of the first carrier is used to send the TB. Therefore, the first time unit of the first carrier may be a downlink subframe or a bidirectional subframe, and the downlink symbol in the bidirectional subframe is used to send the TB.
  • the second time unit of the second carrier is used to send the feedback message of the TB, so the second time unit of the second carrier may be an uplink subframe or a bidirectional subframe, and the uplink symbol in the bidirectional subframe is used to send a feedback message of the TB.
  • the method in this embodiment can also be applied to a CA scenario.
  • the feedback information of the TB sent on the primary carrier and the secondary carrier can only be sent on the primary carrier.
  • each of the multiple carriers can send a feedback message of the TB, that is, the feedback information of the TB transmitted on the primary carrier can also be sent on the secondary carrier.
  • the first carrier may be the primary carrier, the second carrier is the secondary carrier, or the first carrier is the secondary carrier, and the second carrier is the primary carrier.
  • Step 202 The first device sends the indication information to the second device, where the indication information is used to instruct the second device to send a feedback message of the TB on the second time unit of the second carrier.
  • the indication information includes an identifier of the second carrier and information of the second time unit, and the information of the second time unit may be a subframe number, or a subframe offset.
  • the indication information can be carried in the control information of the TB.
  • the indication information can also be sent by a separate message, which is not limited by the present invention.
  • Step 203 The first device sends a TB to the second device by using the first time unit of the first carrier.
  • Step 204 The second device sends a feedback message of the TB to the first device on the second time unit of the second carrier according to the indication information.
  • the first device detects the received data, and if the receiving is correct, the feedback message is an ACK message, and if the error is received, the feedback message is a NACK message. If the information of the second time unit is the offset of the subframe, the second device obtains the sequence number m of the subframe in which the feedback information is sent according to the sequence number n of the current subframe and the offset of the subframe. If the information of the second time unit is a subframe number, the second device directly sends a feedback message of the TB on the subframe corresponding to the subframe number.
  • Step 205 The feedback message of the TB sent by the second device by the second device on the second time unit of the second carrier.
  • the feedback message of the TB is an ACK message
  • the second device determines that the TB transmission succeeds, and the TB sends the next TB.
  • the feedback message of the TB is a NACK message
  • the second setting determines that the TB transmission fails.
  • Step 206 The first device retransmits the TB by using a third time unit of the third carrier of the multiple carriers.
  • the base station may retransmit the TB using any one of the multiple carriers. Therefore, the third carrier may be the same as the first carrier or may be different from the first carrier. Different from the prior art, the retransmission TB and the initial transmission TB can only be on the same carrier, and cannot retransmit the TB across carriers. Compared with the prior art, in the method of this embodiment, since the TB can be retransmitted across carriers, if a certain carrier has more transmission opportunities than the carrier used by the initial TB, the first device can use The carrier is retransmitted, which further reduces the transmission delay of the data.
  • a multi-carrier scenario there may be a high-frequency carrier and a low-frequency carrier at the same time, and the high-frequency carrier transmission rate is high, but the high-frequency carrier penetration is weak, which is easily blocked, the communication reliability is poor, and the transmission rate of the low-frequency carrier is slow. But the reliability is high.
  • low frequency carrier transmission can be used to assist high frequency transmission.
  • the base station can signal the UE to different working modes, such as low frequency transmission in the first working mode, low frequency auxiliary high frequency transmission in the second working mode, and high frequency transmission in the third mode.
  • the data transmitted on the high-frequency carrier can be transmitted through the low-frequency carrier, and the high-frequency base station is the base station using the high-frequency carrier.
  • the low frequency base station can transmit the frequency domain position of the high frequency synchronization signal, the subcarrier spacing of the high frequency synchronization signal, the frame time difference of the high frequency carrier and the low frequency carrier, and the like, wherein the frequency domain position of the high frequency synchronization signal is used for the UE.
  • the high-frequency synchronization signal is directly obtained, and the high-frequency synchronization signal is not required to be blindly detected, so that the UE can quickly achieve synchronization.
  • the subcarrier spacing of the high frequency synchronization signal is used to directly acquire the subcarrier spacing of the high frequency synchronization signal when the UE accesses the high frequency base station, and does not need blind detection.
  • the time difference between the high frequency carrier and the low frequency carrier is used for the start time of the frame of the high frequency carrier obtained by the UE through the start time of the frame of the low frequency carrier.
  • the UE obtains the frequency domain position of the high-frequency synchronization signal, the sub-carrier spacing of the high-frequency synchronization signal, and the time difference between the high-frequency carrier and the low-frequency carrier through the low-frequency carrier, thereby preventing the UE from obtaining the above information through blind detection when accessing the high-frequency base station. This leads to a problem of long access time and also increases reliability.
  • the base station sends a synchronization signal to the UE through the beam, and the UE needs to obtain the number of symbols corresponding to the beam where the synchronization signal is located, and the number of symbols is used by the UE to determine the location of the current symbol.
  • the UE can obtain the number of symbols of high frequency by: (1) indicating different symbols by frequency domain offset, wherein different symbols correspond to primary synchronization signals (Priss Synchronization Signal, PSS for short) And the secondary synchronization signal (Secondary Synchronization Signal, SSS for short) different frequency domain offset, so the symbol can be determined according to the frequency domain offset; (2) different symbols correspond to different synchronization sequences, and the symbols are determined by the synchronization sequence.
  • the UE can derive high frequency frame boundaries by the frame time difference between the high frequency carrier and the low frequency carrier.
  • the number of frequency domain offsets required in the scheme (1) Compared with the case without low frequency assistance, the number of synchronization sequences required by scheme (2) is reduced compared to the case without low frequency assistance.
  • 10 signals are required to indicate 10 symbols.
  • the base station sends the limited frequency domain offset or the limited synchronization sequence to the UE by the low frequency, and the UE can further determine the number of symbols.
  • the base station can instruct the UE to measure the frame boundary time difference between the high frequency and the low frequency by using the signaling, and the UE can infer the time difference by determining the number of symbols, and report the measurement result to the base station.
  • the base station determines the time advance amount of the uplink transmission of the UE according to the time difference and the backhaul communication time between the high and low frequencies.
  • the UE After the UE accesses the high-frequency base station, in the normal communication phase, beam management and measurement can be performed by the low-frequency carrier-assisted high-frequency base station.
  • the UE may measure channel state information (CSI) based on a Channel State Information Reference Signal (CSI-RS) and feed back CSI to the base station to implement scheduling of the UE by the base station.
  • CSI-RS Channel State Information Reference Signal
  • the high-frequency base station needs to send the measurement configuration information to the UE.
  • the high-frequency base station can send the measurement configuration information to the low-frequency base station, and the low-frequency base station sends the measurement configuration information to the UE by using the low-frequency carrier.
  • the measurement configuration information includes measurement time and measurement frequency band, and the like.
  • the measurement result is sent to the low-frequency base station through the low-frequency carrier, and the low-frequency base station forwards the measurement result to the high-frequency base station, and the measurement result may include a beam identifier, a reference signal receiving power (RSRP), CSI, signal quality, signal strength, etc.
  • RSRP reference signal receiving power
  • CSI signal quality, signal strength, etc.
  • high-frequency base stations mostly use beamforming technology.
  • the UE needs to send a beam repair request message to the high-frequency base station in order to restore the high-frequency link.
  • the UE sends the beam repair request to the high-frequency base station through the low-frequency carrier, and the UE will The beam repair request is sent to the low frequency base station through the low frequency carrier, and the low frequency base station sends the beam repair request to the high frequency base station, thereby ensuring the reliability of the beam repair request, so that the base station can reselect the UE according to the beam repair request in time.
  • Beam the UE can send the beam tracking request information to the high frequency base station through the low frequency carrier, thereby ensuring the reliability of the beam tracking request, so that the base station performs the beam tracking operation for the UE in time according to the beam tracking request.
  • the foregoing embodiment only illustrates the high frequency carrier and the low frequency carrier.
  • the foregoing method is applicable to any two carriers, for example, between the first carrier and the second carrier, and the first carrier and The second carrier is a different carrier.
  • FIG. 8 is a schematic structural diagram of a first device according to Embodiment 3 of the present invention.
  • the first device provided in this embodiment includes: a processor 11 , a transmitter 12 , a receiver 13 , and a memory 14 .
  • the transmitter 12, the receiver 13 and the memory 14 are respectively connected to the processor 11 via a bus.
  • the memory 14 is used for a memory instruction, and the processor 11 is configured to execute an instruction stored in the memory 14, specifically:
  • the transmitter 12 is configured to send the transport block TB to the second device by using the subframe n of the first carrier;
  • the processor 11 is configured to determine, according to the HARQ timing relationship of the first carrier, the subframe n, and the multi-carrier frame configured to send the TB, a subframe of a second carrier used by the feedback message that receives the TB m, the HARQ timing relationship of the multi-carrier frame configuration includes a HARQ timing relationship of at least two carriers;
  • the receiver 13 is configured to receive, by using the subframe m of the second carrier, the feedback message of the TB sent by the second device.
  • the processor 11 is further configured to: when the feedback message of the TB is an acknowledgement ACK message, determine that the TB transmission is successful, the first device sends a next TB; when the TB feedback message When the NACK message is denied, it is determined that the TB transmission fails, and the first device retransmits the TB using the subframe j of the third carrier.
  • the processor 11 is further configured to: determine, according to a delay requirement of the TB, a HARQ timing relationship of the multi-carrier frame configuration from a HARQ timing relationship configured by at least two multi-carrier frames.
  • the processor 11 is further configured to: determine to use a multi-carrier HARQ mode, where the first device and the second device use the HARQ timing relationship of the multi-carrier frame configuration.
  • the transmitter 12 is further configured to send an indication message to the second device, where the indication message is used to indicate that the second device switches to the multi-carrier HARQ mode.
  • the receiver 13 is further configured to: receive a request message sent by the second device, where the request message is used to request to switch to a multi-carrier HARQ mode, where the first is in the multi-carrier HARQ mode.
  • the device and the second device use the HARQ timing of the multi-carrier frame configuration relationship.
  • the first device in this embodiment may be used to perform the method in the first embodiment.
  • the specific implementation manners and technical effects are similar, and details are not described herein again.
  • FIG. 9 is a schematic structural diagram of a second device according to Embodiment 4 of the present invention.
  • the second device provided in this embodiment includes: a processor 21, a transmitter 22, a receiver 23, and a memory 24.
  • the transmitter 22, the receiver 23 and the memory 24 are respectively connected to the processor 21 via a bus.
  • the memory 24 is used for a memory instruction, and the processor 21 is configured to execute an instruction stored in the memory 24, specifically:
  • the receiver 23 is configured to receive, on the subframe n of the first carrier, the transport block TB sent by the first device;
  • the processor 21 is configured to determine, according to the HARQ timing relationship of the first carrier, the subframe n, and the multi-carrier frame configuration used by the TB, a subframe of a second carrier used by the feedback message that sends the TB m, the HARQ timing relationship of the multi-carrier frame configuration includes a HARQ timing relationship of at least two carriers;
  • the transmitter 22 is configured to send, by using the subframe m of the second carrier, the feedback message of the TB to the first device.
  • the processor 21 is further configured to: determine, according to a delay requirement of the TB, a HARQ timing relationship of the multi-carrier frame configuration from a HARQ timing relationship configured by at least two multi-carrier frames.
  • the receiver 23 is further configured to: receive an indication message sent by the first device, where the indication message is used to indicate that the second device switches to a multi-carrier HARQ mode, where the multi-carrier HARQ mode is performed.
  • the first device and the second device use a HARQ timing relationship of the multi-carrier frame configuration.
  • the processor 21 is further configured to: determine to use a multi-carrier HARQ mode, where the first device and the second device use the HARQ timing relationship of the multi-carrier frame configuration.
  • the transmitter 22 is further configured to send a request message to the first device, where the request message is used to request to switch to the multi-carrier HARQ mode.
  • the fifth embodiment of the present invention provides a first device.
  • the structure of the first device in this embodiment is the same as that of the first device shown in FIG. 8. Referring to FIG. 8, in this embodiment, the following:
  • the processor 11 is configured to determine, sent by using a first time unit of the first carrier from the multiple carriers Transmitting a carrier identifier of the second carrier used by the feedback message of the block TB and a second time unit;
  • the transmitter 12 is configured to send, to the second device, the indication information, where the indication information is used to indicate that the second device sends the feedback message of the TB on the second time unit of the second carrier;
  • the transmitter 12 is further configured to send the TB to the second device by using the first time unit of the first carrier;
  • the receiver 13 is configured to receive, in the second time unit of the second carrier, a feedback message of the TB sent by the UE.
  • the first time unit is a downlink subframe or a bidirectional subframe
  • the symbols of the downlink subframe are downlink symbols
  • the symbols of the bidirectional subframe include a downlink symbol and an uplink symbol.
  • the second time unit is an uplink subframe or the bidirectional subframe, and the symbols of the uplink subframe are all uplink symbols.
  • the sixth embodiment of the present invention provides a second device.
  • the structure of the second device in this embodiment is the same as that of the second device shown in FIG. 8. Referring to FIG. 8, in this embodiment, the following:
  • the receiver 23 is configured to receive the indication information sent by the first device, where the indication information is used to indicate that the second device sends a feedback message of the transport block TB on the second time unit of the second carrier; the second device Receiving, by the first time unit of the first carrier, the TB sent by the first device;
  • the transmitter 22 is configured to send, according to the indication information, the feedback message of the TB to the first device on the second time unit of the second carrier.
  • FIG. 10 is a schematic structural diagram of a first device according to Embodiment 7 of the present invention.
  • the first device in this embodiment includes: a sending module 31, a determining module 32, and a receiving module 33.
  • the sending module 31 is configured to send the transport block TB to the second device by using the subframe n of the first carrier;
  • a determining module 32 configured to determine, according to the HARQ timing relationship of the first carrier, the subframe n, and the multi-carrier frame configured to send the TB, a subframe of a second carrier used by the feedback message that receives the TB m, the HARQ timing relationship of the multi-carrier frame configuration includes a HARQ timing relationship of at least two carriers;
  • the receiving module 33 is configured to receive, by using the subframe m of the second carrier, the feedback message of the TB sent by the second device.
  • the determining module 32 is further configured to: when the feedback message of the TB is an acknowledgement ACK Determining that the TB transmission is successful, the first device sends a next TB; when the feedback message of the TB is a negative NACK message, determining that the TB transmission fails, the first device uses a third carrier Subframe j retransmits the TB.
  • the determining module 32 is further configured to: determine, according to a delay requirement of the TB, a HARQ timing relationship of the multi-carrier frame configuration from a HARQ timing relationship configured by at least two multi-carrier frames.
  • the determining module 32 is further configured to: determine to use a multi-carrier HARQ mode, where the first device and the second device use the HARQ timing relationship of the multi-carrier frame configuration.
  • the sending module 31 is further configured to send an indication message to the second device, where the indication message is used to indicate that the second device switches to the multi-carrier HARQ mode.
  • the receiving module 33 is further configured to: receive a request message sent by the second device, where the request message is used to request to switch to a multi-carrier HARQ mode, where the first is in the multi-carrier HARQ mode.
  • the device and the second device use a HARQ timing relationship of the multi-carrier frame configuration.
  • FIG. 11 is a schematic structural diagram of a second device according to Embodiment 8 of the present invention.
  • the second device in this embodiment includes: a sending module 41, a determining module 42, and a receiving module 43.
  • the receiving module 43 is configured to receive, on the subframe n of the first carrier, the transport block TB sent by the first device;
  • the determining module 42 is configured to determine, according to the HARQ timing relationship of the first carrier, the subframe n, and the multi-carrier frame configuration used by the TB, a subframe of a second carrier used by the feedback message that sends the TB m, the HARQ timing relationship of the multi-carrier frame configuration includes a HARQ timing relationship of at least two carriers;
  • the sending module 41 is configured to send the feedback message of the TB to the first device by using the subframe m of the second carrier.
  • the determining module 42 is further configured to: determine, according to a delay requirement of the TB, a HARQ timing relationship of the multi-carrier frame configuration from a HARQ timing relationship configured by at least two multi-carrier frames.
  • the receiving module 43 is further configured to: receive an indication message sent by the first device, where the indication message is used to indicate that the second device switches to a multi-carrier HARQ mode, In the multi-carrier HARQ mode, the first device and the second device use the HARQ timing relationship of the multi-carrier frame configuration.
  • the determining module 42 is further configured to: determine to use a multi-carrier HARQ mode, where the first device and the second device use the HARQ timing relationship of the multi-carrier frame configuration.
  • the sending module 41 is further configured to send a request message to the first device, where the request message is used to request to switch to the multi-carrier HARQ mode.
  • the ninth embodiment of the present invention provides a first device.
  • the structure of the first device in this embodiment is the same as that of the first device shown in FIG. 10. Referring to FIG. 10, in this embodiment, the following:
  • the determining module 32 is configured to determine, from the plurality of carriers, a carrier identifier and a second time unit of the second carrier used by the feedback message of the transport block TB sent on the first time unit of the first carrier;
  • the sending module 31 is configured to send the indication information to the second device, where the indication information is used to indicate that the second device sends the feedback message of the TB on the second time unit of the second carrier;
  • the sending module 31 is further configured to send the TB to the second device by using the first time unit of the first carrier;
  • the receiving module 33 is configured to receive, in the second time unit of the second carrier, a feedback message of the TB sent by the UE.
  • the first time unit is a downlink subframe or a bidirectional subframe
  • the symbols of the downlink subframe are downlink symbols
  • the symbols of the bidirectional subframe include a downlink symbol and an uplink symbol.
  • the second time unit is an uplink subframe or the bidirectional subframe, and the symbols of the uplink subframe are all uplink symbols.
  • FIG. 12 is a schematic structural diagram of a second device according to Embodiment 10 of the present invention. As shown in FIG. 12, the second device in this embodiment includes: a sending module 51 and a receiving module 52.
  • the receiving module 52 is configured to receive the indication information sent by the first device, where the indication information is used to indicate that the second device sends a feedback message of the transport block TB on the second time unit of the second carrier; The second device receives the TB sent by the first device on a first time unit of the first carrier;
  • the sending module 51 is configured to send, according to the indication information, the feedback message of the TB to the first device on the second time unit of the second carrier.
  • the processor used in the first device or the second device in the embodiment of the present invention may be Is a central processing unit (CPU), general purpose processor, digital signal processor (DSP), application specific integrated circuit (ASIC), field programmable gate array (FPGA) or other programmable logic device, transistor logic device, hardware components or Any combination thereof. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor may also be a combination of computing functions, for example, including one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
  • the bus according to the embodiment of the present invention may be an Industry Standard Architecture (ISA) bus, a Peripheral Component (PCI) bus, or an Extended Industry Standard Architecture (EISA) bus.
  • ISA Industry Standard Architecture
  • PCI Peripheral Component
  • EISA Extended Industry Standard Architecture
  • the bus can be divided into an address bus, a data bus, a control bus, and the like.
  • the bus in the drawings of the present invention is not limited to having only one bus or one type of bus.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of hardware plus software functional units.
  • the above-described integrated unit implemented in the form of a software functional unit can be stored in a computer readable storage medium.
  • the above software functional unit is stored in a storage medium and includes instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor (English: processor) to perform the embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read only memory (English: Read-Only Memory, abbreviated as: ROM), a random access memory (English: Random Access Memory, abbreviated as: RAM), a magnetic disk or an optical disk, and the like.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • the aforementioned program can be stored in a computer readable storage medium.
  • the program when executed, performs the steps including the foregoing method embodiments; and the foregoing storage medium includes various media that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供一种多载波下的数据传输方法和装置,通过引入多载波帧配置的HARQ时序,使得在载波聚合场景下,当第一设备使用第一载波的子帧n向第二设备发送TB时,第二设备根据多载波帧配置的HARQ时序确定使用第二载波的子帧m发送TB的反馈消息,由于第二设备可以使用任意一个载波发送反馈消息,从而增加了第二设备发送反馈消息的机会,进而能够减少数据传输时延。并且第一设备在重传TB时,可以与初传该TB使用不同的载波,从而增加了重传TB的发送机会,进一步降低了数据传输时延。

Description

多载波下的数据传输方法和装置 技术领域
本发明实施例涉及通信技术,尤其涉及一种多载波下的数据传输方法和装置。
背景技术
智能终端用户的不断增长,使得用户业务量和数据吞吐量不断增加,对通信速率提出了更高要求。然而,无线频谱资源短缺,很难找到连续的大带宽供移动通信采用,因此,在长期演进(Long Term Evolution,简称LTE)系统中引入了载波聚合技术,载波聚合将多个连续或不连续的频谱聚合使用,解决了移动通信对于大带宽的需求,同时也提高了无线频谱资源中零散频谱的利用率。
在载波聚合场景下,每个载波上存在一个混合自动重传请求(Hybrid Automatic Repeat reQuest,简称HARQ)实体,HARQ实体包含多个并列的HARQ进程,每个HARQ实体只能使用本载波的上的HARQ进程进行数据传输,如果本载波上没有可用资源,HARQ实体会等本载波有可用资源时在进行数据传输,导致数据传输时延增大。
发明内容
本发明实施例提供一种多载波下的数据传输方法和装置,以使得多个载波的资源能够被共享,从而降低了数据传输的时延。
本发明第一方面提供一种多载波下的数据传输方法,包括:
第一设备使用第一载波的子帧n向第二设备发送传输块TB;
所述第一设备根据发送所述TB使用的所述第一载波、所述子帧n以及多载波帧配置的HARQ时序关系,确定接收所述TB的反馈消息使用的第二载波的子帧m,所述多载波帧配置的HARQ时序关系中包括至少两个载波的HARQ时序关系;
所述第一设备使用所述第二载波的所述子帧m接收所述第二设备发 送的所述TB的反馈消息。
可选的,所述第一设备使用所述第二载波和所述子帧m接收所述第二设备发送的所述TB的反馈消息之后,还包括:
当所述TB的反馈消息为确认ACK消息时,所述第一设备确定所述TB传输成功,所述第一设备发送下一个TB;
当所述TB的反馈消息为否认NACK消息时,所述第一设备确定所述TB传输失败,所述第一设备使用第三载波的子帧j重传所述TB。
可选的,所述第一设备根据发送所述TB使用的所述第一载波、所述子帧n以及多载波帧配置的HARQ时序关系,确定接收所述TB的反馈消息使用的第二载波的子帧m之前,还包括:
所述第一设备根据所述TB的时延要求从至少两个多载波帧配置的HARQ时序关系中确定出所述多载波帧配置的HARQ时序关系。
可选的,所述第一设备使用第一载波的子帧n向第二设备发送TB之前,还包括:
所述第一设备确定使用多载波HARQ模式,所述多载波HARQ模式下,所述第一设备和所述第二设备使用所述多载波帧配置的HARQ时序关系;
所述第一设备向所述第二设备发送指示消息,所述指示消息用于指示所述第二设备切换到所述多载波HARQ模式。
可选的,所述第一设备使用第一载波的子帧n向第二设备发送TB之前,还包括:
所述第一设备接收所述第二设备发送的请求消息,所述请求消息用于请求切换到多载波HARQ模式,所述多载波HARQ模式下,所述第一设备和所述第二设备使用所述多载波帧配置的HARQ时序关系。
本发明第二方面提供一种多载波下的数据传输方法,包括:
第二设备在第一载波的子帧n上接收第一设备发送的传输块TB;
所述第二设备根据接收所述TB使用的所述第一载波、所述子帧n以及多载波帧配置的HARQ时序关系,确定发送所述TB的反馈消息使用的第二载波的子帧m,所述多载波帧配置的HARQ时序关系中包括至少两个载波的HARQ时序关系;
所述第二设备使用所述第二载波的所述子帧m向所述第一设备发送所述TB的反馈消息。
可选的,所述第二设备根据接收所述TB使用的所述第一载波、所述子帧n以及多载波帧配置的HARQ时序关系,确定发送所述TB的反馈消息使用的第二载波的子帧m之前,还包括:
所述第二设备根据所述TB的时延要求从至少两个多载波帧配置的HARQ时序关系中确定出所述多载波帧配置的HARQ时序关系。
可选的,所述第二设备在第一载波的子帧n上接收第一设备发送的TB之前,还包括:
所述第二设备接收所述第一设备发送的指示消息,所述指示消息用于指示所述第二设备切换到多载波HARQ模式,所述多载波HARQ模式下,所述第一设备和所述第二设备使用所述多载波帧配置的HARQ时序关系。
可选的,所述第二设备在第一载波的子帧n上接收第一设备发送的TB之前,还包括:
所述第二设备确定使用多载波HARQ模式,所述多载波HARQ模式下,所述第一设备和所述第二设备使用所述多载波帧配置的HARQ时序关系;
所述第二设备向所述第一设备发送请求消息,所述请求消息用于请求切换到所述多载波HARQ模式。
本发明第三方面提供一种多载波下的数据传输方法,包括:
第一设备从多个载波中确定第一载波的第一时间单元上发送的传输块TB的反馈消息使用的第二载波的载波标识和第二时间单元;
所述第一设备向第二设备发送指示信息,所述指示信息用于指示所述第二设备在所述第二载波的所述第二时间单元上发送所述TB的反馈消息;
所述第一设备使用所述第一载波的所述第一时间单元向所述第二设备发送所述TB;
所述第一设备在所述第二载波的所述第二时间单元接收所述UE发送的所述TB的反馈消息。
可选的,所述第一时间单元为下行子帧或双向子帧,所述下行子帧的符号都为下行符号,所述双向子帧的符号包括下行符号和上行符号;
所述第二时间单元为上行子帧或所述双向子帧,所述上行子帧的符号都为上行符号。
本发明第四方面提供一种多载波下的数据传输方法,包括:
第二设备接收第一设备发送的指示信息,所述指示信息用于指示所述第二设备在第二载波的第二时间单元上发送传输块TB的反馈消息;所述第二设备在第一载波的第一时间单元上接收所述第一设备发送的所述TB;
所述第二设备根据所述指示信息在所述第二载波的所述第二时间单元上向所述第一设备发送所述TB的反馈消息。
本发明第五方面提供一种第一设备,包括:
发送器,用于使用第一载波的子帧n向第二设备发送传输块TB;
处理器,用于根据发送所述TB使用的所述第一载波、所述子帧n以及多载波帧配置的HARQ时序关系,确定接收所述TB的反馈消息使用的第二载波的子帧m,所述多载波帧配置的HARQ时序关系中包括至少两个载波的HARQ时序关系;
接收器,用于使用所述第二载波的所述子帧m接收所述第二设备发送的所述TB的反馈消息。
可选的,所述处理器还用于:当所述TB的反馈消息为确认ACK消息时,确定所述TB传输成功,所述第一设备发送下一个TB;当所述TB的反馈消息为否认NACK消息时,确定所述TB传输失败,所述第一设备使用第三载波的子帧j重传所述TB。
可选的,所述处理器还用于:根据所述TB的时延要求从至少两个多载波帧配置的HARQ时序关系中确定出所述多载波帧配置的HARQ时序关系。
可选的,所述处理器还用于:确定使用多载波HARQ模式,所述多载波HARQ模式下,所述第一设备和所述第二设备使用所述多载波帧配置的HARQ时序关系,相应的,所述发送器还用于向所述第二设备发送指示消息,所述指示消息用于指示所述第二设备切换到所述多载波HARQ模式。
可选的,所述接收器还用于:接收所述第二设备发送的请求消息,所述请求消息用于请求切换到多载波HARQ模式,所述多载波HARQ模式下,所述第一设备和所述第二设备使用所述多载波帧配置的HARQ时序关 系。
本发明第六方面提供一种第二设备,包括:
接收器,用于在第一载波的子帧n上接收第一设备发送的传输块TB;
处理器,用于根据接收所述TB使用的所述第一载波、所述子帧n以及多载波帧配置的HARQ时序关系,确定发送所述TB的反馈消息使用的第二载波的子帧m,所述多载波帧配置的HARQ时序关系中包括至少两个载波的HARQ时序关系;
发送器,用于使用所述第二载波的所述子帧m向所述第一设备发送所述TB的反馈消息。
可选的,所述处理器还用于:根据所述TB的时延要求从至少两个多载波帧配置的HARQ时序关系中确定出所述多载波帧配置的HARQ时序关系。
可选的,所述接收器还用于:接收所述第一设备发送的指示消息,所述指示消息用于指示所述第二设备切换到多载波HARQ模式,所述多载波HARQ模式下,所述第一设备和所述第二设备使用所述多载波帧配置的HARQ时序关系。
可选的,所述处理器还用于:确定使用多载波HARQ模式,所述多载波HARQ模式下,所述第一设备和所述第二设备使用所述多载波帧配置的HARQ时序关系,相应的,所述发送器还用于向所述第一设备发送请求消息,所述请求消息用于请求切换到所述多载波HARQ模式。
本发明第七方面提供一种第一设备,包括:
处理器,用于从多个载波中确定第一载波的第一时间单元上发送的传输块TB的反馈消息使用的第二载波的载波标识和第二时间单元;
发送器,用于向第二设备发送指示信息,所述指示信息用于指示所述第二设备在所述第二载波的所述第二时间单元上发送所述TB的反馈消息;
所述发送器,还用于使用所述第一载波的所述第一时间单元向所述第二设备发送所述TB;
接收器,用于在所述第二载波的所述第二时间单元接收所述UE发送的所述TB的反馈消息。
可选的,所述第一时间单元为下行子帧或双向子帧,所述下行子帧的 符号都为下行符号,所述双向子帧的符号包括下行符号和上行符号;
所述第二时间单元为上行子帧或所述双向子帧,所述上行子帧的符号都为上行符号。
本发明第八方面提供一种第二设备,包括:
接收器,用于接收第一设备发送的指示信息,所述指示信息用于指示所述第二设备在第二载波的第二时间单元上发送传输块TB的反馈消息;所述第二设备在第一载波的第一时间单元上接收所述第一设备发送的所述TB;
发送器,用于根据所述指示信息在所述第二载波的所述第二时间单元上向所述第一设备发送所述TB的反馈消息。
本发明第九方面提供一种第一设备,包括:
发送模块,用于使用第一载波的子帧n向第二设备发送传输块TB;
确定模块,用于根据发送所述TB使用的所述第一载波、所述子帧n以及多载波帧配置的HARQ时序关系,确定接收所述TB的反馈消息使用的第二载波的子帧m,所述多载波帧配置的HARQ时序关系中包括至少两个载波的HARQ时序关系;
接收模块,用于使用所述第二载波的所述子帧m接收所述第二设备发送的所述TB的反馈消息。
可选的,所述确定模块还用于:当所述TB的反馈消息为确认ACK消息时,确定所述TB传输成功,所述第一设备发送下一个TB;当所述TB的反馈消息为否认NACK消息时,确定所述TB传输失败,所述第一设备使用第三载波的子帧j重传所述TB。
可选的,所述确定模块还用于:根据所述TB的时延要求从至少两个多载波帧配置的HARQ时序关系中确定出所述多载波帧配置的HARQ时序关系。
可选的,所述确定模块还用于:确定使用多载波HARQ模式,所述多载波HARQ模式下,所述第一设备和所述第二设备使用所述多载波帧配置的HARQ时序关系,相应的,所述发送模块还用于向所述第二设备发送指示消息,所述指示消息用于指示所述第二设备切换到所述多载波HARQ模式。
可选的,所述接收模块还用于:接收所述第二设备发送的请求消息,所述请求消息用于请求切换到多载波HARQ模式,所述多载波HARQ模式下,所述第一设备和所述第二设备使用所述多载波帧配置的HARQ时序关系。
本发明第十方面提供一种第二设备,包括:
接收模块,用于在第一载波的子帧n上接收第一设备发送的传输块TB;
确定模块,用于根据接收所述TB使用的所述第一载波、所述子帧n以及多载波帧配置的HARQ时序关系,确定发送所述TB的反馈消息使用的第二载波的子帧m,所述多载波帧配置的HARQ时序关系中包括至少两个载波的HARQ时序关系;
发送模块,用于使用所述第二载波的所述子帧m向所述第一设备发送所述TB的反馈消息。
可选的,所述确定模块还用于:根据所述TB的时延要求从至少两个多载波帧配置的HARQ时序关系中确定出所述多载波帧配置的HARQ时序关系。
可选的,所述接收模块还用于:接收所述第一设备发送的指示消息,所述指示消息用于指示所述第二设备切换到多载波HARQ模式,所述多载波HARQ模式下,所述第一设备和所述第二设备使用所述多载波帧配置的HARQ时序关系。
可选的,所述确定模块还用于:确定使用多载波HARQ模式,所述多载波HARQ模式下,所述第一设备和所述第二设备使用所述多载波帧配置的HARQ时序关系,相应的,所述发送模块还用于向所述第一设备发送请求消息,所述请求消息用于请求切换到所述多载波HARQ模式。
本发明第十一方面提供一种第一设备,包括:
确定模块,用于从多个载波中确定第一载波的第一时间单元上发送的传输块TB的反馈消息使用的第二载波的载波标识和第二时间单元;
发送模块,用于向第二设备发送指示信息,所述指示信息用于指示所述第二设备在所述第二载波的所述第二时间单元上发送所述TB的反馈消息;
所述发送模块,还用于使用所述第一载波的所述第一时间单元向所述第二设备发送所述TB;
接收模块,用于在所述第二载波的所述第二时间单元接收所述UE发送的所述TB的反馈消息。
可选的,所述第一时间单元为下行子帧或双向子帧,所述下行子帧的符号都为下行符号,所述双向子帧的符号包括下行符号和上行符号;
所述第二时间单元为上行子帧或所述双向子帧,所述上行子帧的符号都为上行符号。
本发明第十二方面提供一种第二设备,包括:
接收模块,用于接收第一设备发送的指示信息,所述指示信息用于指示所述第二设备在第二载波的第二时间单元上发送传输块TB的反馈消息;所述第二设备在第一载波的第一时间单元上接收所述第一设备发送的所述TB;
发送模块,用于根据所述指示信息在所述第二载波的所述第二时间单元上向所述第一设备发送所述TB的反馈消息。
可选的,在本发明第一方面至第十二方面中,所述多载波配置的HARQ时序关系中的每个载波都能够发送TB的反馈消息。
可选的,在本发明第一方面至第十二方面中,所述多载波帧配置的HARQ时序关系中辅载波能够用于发送主载波上发送的TB的反馈信息。
可选的,在本发明第一方面至第十二方面中,所述第一载波和所述第二载波不同。
可选的,在本发明第一方面至第十二方面中,所述第一载波为主载波,所述第二载波为辅载波。
可选的,在本发明第一方面、第五方面和第九方面中,所述第一载波和所述第三载波不同。
本发明实施例提供的多载波下的数据传输方法和装置,通过引入多载波帧配置的HARQ时序,使得在载波聚合场景下,当第一设备使用第一载波的子帧n向第二设备发送TB时,第二设备根据多载波帧配置的HARQ时序确定使用第二载波的子帧m发送TB的反馈消息,由于第二设备可以使用任意一个载波发送反馈消息,从而增加了第二设备发送反馈消息的机 会,进而能够减少数据传输时延。并且第一设备在重传TB时,可以与初传该TB使用不同的载波,从而增加了重传TB的发送机会,进一步降低了数据传输时延。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为载波聚合场景的一种示意图;
图2为本发明实施例一提供的一种多载波下的数据传输方法的流程图;
图3为帧配置1的数据发送和接收时序关系的示意图;
图4为帧配置0的数据发送和接收时序的示意图;
图5为多载波帧配置的数据发送和接收时序关系的一种示意图;
图6为多载波帧配置的数据发送和接收时序关系的另一种示意图;
图7为本发明实施例二提供的多载波下的数据传输方法;
图8为本发明实施例三提供的第一设备的结构示意图;
图9为本发明实施例四提供的第二设备的结构示意图;
图10为本发明实施例七提供的第一设备的结构示意图;
图11为本发明实施例八提供的第二设备的结构示意图;
图12为本发明实施例十提供的第二设备的结构示意图。
具体实施方式
载波聚合(Carrier Aggregation,简称CA)是将2个或更多的成员载波(Component Carrier,简称CC)聚合在一起形成载波组以支持更大的传输带宽。在CA场景中,一个载波组内只通过一个载波反馈多个载波的反馈消息,即载波组中所有载波收到数据包后的反馈消息(ACK或NACK)都由一个固定的载波发送。在CA场景中,为用户设备(User Equipment,简称UE)配置有主小区(Primary CC,简称PCC)和辅小区(Secondary CC,简称SCC)。主小区使用的载波单元称为主分量载波(Primary Component  Carrier,简称PCC),也称作主载波,辅小区使用的载波单元称为辅分量载波(Secondary Component Carrier,简称SCC),也称为辅载波。
载波聚合场景可以应用在基站和UE之间,也可以应用在两个基站之间,例如应用在宏站和基站之间。图1为载波聚合场景的一种示意图,如图1所示,基站和UE之间可以通过两个载波CC1和CC2进行通信,宏站和小站之间也可以通过两个载波CC1和CC2进行通信。
图2为本发明实施例一提供的一种多载波下的数据传输方法的流程图,本实施例的方法可以应用于下行数据传输,也可以应用于上行数据传输,当该方法应用于下行数据传输时,第一设备可以为基站,第二设备可以为基站或UE,例如,当第一设备为宏站时,第二设备可以为小站。当该方法应用于上行数据传输时,第一设备为UE或基站,第二设备为基站。如图2所示,本实施例的方法可以包括:
步骤101、第一设备确定使用多载波HARQ模式。
该多载波HARQ模式是本发明新定义的一种传输方式,不同于现有的单载波HARQ模式,在该多载波HARQ模式下,第一设备从多个载波中确定接收TB的反馈消息使用的载波和子帧,本实施例中,第一设备具体根据多载波帧配置的HARQ时序关系,确定接收TB的反馈消息使用的载波和子帧,而在单载波HARQ模式下,第一设备只能根据单载波帧配置的HARQ时序确定接收TB的反馈消息使用的载波和子帧。
需要明确的是,多载波帧配置的HARQ时序关系并不是简单的将多个单载波的帧配置的HARQ时序放到一起,而是对多个载波的HARQ时序进行了调整,通过调整HARQ时序,使得数据包的往返时延(Round-Trip Time,简称RTT)减少,从而能够降低时延。
假设共有两个载波,载波1采用帧配置1,载波2采用帧配置0,图3为帧配置1的数据发送和接收时序关系的示意图,图4为帧配置0的数据发送和接收时序的示意图,如图3所示,帧配置1有7个进程,其中第一行表示子帧(subframe)号,第二行表示对应子帧是下行子帧(D)、特殊子帧(S)还是上行子帧(U),第三行之后的每行表示一个不同的进程,不同进程的数据发送和接收时序不同。以进程0为例,eNB在一个无线帧的子帧0发送数据(Tx),UE在该无线帧的子帧7发送Ack回复,eNB在 下一无线帧的子帧1发送数据(Tx),帧配置1的进程的RTT时间为11ms或13ms。如图4所示,帧配置0有4个进程,所有进程的RTT时间均为10ms。
图5为多载波帧配置的数据发送和接收时序关系的一种示意图,其中,载波1采用帧配置1,载波2采用帧配置0,在该多载波配置的数据发送和接收时序关系中,只能在载波1上反馈ACK消息或NACK消息。如图5所示,所有进程的RTT时间都为11ms,对载波1而言,由于允许重传可以在载波2的子帧上,所以RTT时间有所下降。对载波2而言,由于限制了Ack的回复机会只能在载波1上,造成了本载波的上行子帧浪费,所以相比非载波聚合,RTT时间会有所提高。
图6为多载波帧配置的数据发送和接收时序关系的另一种示意图,图6和图5的主要区别在于,图6所示的多载波帧配置的数据发送和接收时序关系中,ACK消息可以在载波1和载波2上反馈,因此,所有进程的RTT时间都为8ms,从而降低了时延。
根据多载波帧配置的数据发送和接收时序关系可以得到多载波帧配置的HARQ时序关系,多载波帧配置的HARQ时序是指接收端在多个载波上反馈ACK/NACK消息的时序关系,表1为多载波帧配置的HARQ时序关系的一种示意图,表1所示例子,以在CC x(x=0,1)的子帧n的PUCCH上回复CC y(y=0,1)的子帧n-k的PDSCH为例,从发送端描述,k表示发送端发送TB至接收到该TB的反馈消息的子帧间隔,从接收端描述,k表示接收端接收TB至发送该TB的反馈消息的子帧间隔。
表1
Figure PCTCN2016101391-appb-000001
Figure PCTCN2016101391-appb-000002
以CC1和CC2的帧配置为2+2为例进行说明,2+2表示CC1和CC2都使用帧配置2。假设第二设备在CC1的子帧2上接收到第一设备发送的TB,则第二设备可以使用CC2和CC1向第一设备发送ACK/NACK消息。当第二设备使用CC1向第一设备发送ACK/NACK消息,则第二设备需要在CC1的子帧2间隔6个子帧或4个子帧后向第一设备发送ACK/NACK消息;当第二设备使用CC2向第一设备发送ACK/NACK消息,则第二设备需要在CC2的子帧2间隔6个子帧、5个子帧或4个子帧后向第一设备发送ACK/NACK消息。假设第二设备在CC2的子帧2上接收到第一设备发送的TB,则第二设备可以使用CC2或CC1向第一设备发送ACK/NACK消息。当第二设备使用CC1向第一设备发送ACK/NACK消息,则第二设备需要在CC1的子帧2间隔6个子帧或5个子帧后向第一设备发送ACK/NACK消息;当第二设备使用CC2向第一设备发送ACK/NACK消息,则第二设备需要在CC2的子帧2间隔6个子帧后向第一设备发送ACK/NACK消息。
上述是从接收端描述,当从发送端描述时,假设第一设备在CC1的子帧2上向第二设备发送了TB,则第一设备可以在CC1或CC2上接收第二 设备发送的该TB的ACK/NACK消息。当第一设备在CC1上接收该TB的ACK/NACK消息时,第一设备需要在CC1的子帧2间隔6个子帧或4个子帧后接收第一设备发送的ACK/NACK消息;当第一设备在CC2该TB的ACK/NACK消息上时,第一设备需要在CC2的子帧2间隔6个子帧、5个子帧或4个子帧后接收第一设备发送的ACK/NACK消息。假设第一设备在CC2的子帧2上向第二设备发送了TB,第一设备也可以在CC1或CC2上接收第二设备发送的该TB的ACK/NACK消息。当第一设备在CC1上接收该TB的ACK/NACK消息时,第一设备需要在CC1的子帧2间隔6个子帧或5个子帧后接收该TB的ACK/NACK消息,当第一设备需要在CC2上接收该TB的ACK/NACK消息时,第一设备需要在CC2的子帧2间隔6个子帧后接收该TB的ACK/NACK消息。
通过上述表1可知,由于可以在两个载波上发送ACK/NACK消息,从而降低了RTT时延。需要说明的是,表1只是一个示意图,因此k的取值可能与实际情况有所不同。
本实施例中,第一设备可以通过以下如下几种方式确定是否使用多载波HARQ模式:
(1)第一设备判断当前传输的业务中是否有传输时延要求小于时延阈值的业务。当当前传输的业务中有传输时延要求小于时延阈值的业务时,第一设备确定使用多载波HARQ模式。
其中,某个业务的传输时延要求小于时延阈值,说明该业务对时延要求较高,如果采用单载波HARQ模式,由于数据的初传和重传只能在同一个载波上,并且ACK/NACK反馈只能在主载波上,导致数据传输时延增大,因此,第一设备确定使用多载波HARQ模式,多载波HARQ模式下,可以降低数据传输时延。
(2)第一设备判断当前信噪比是否低于信噪比阈值,当当前信噪比低于信噪比阈值时,第一设备确定使用多载波HARQ模式。
第一设备会根据数据的接收结果统计信噪比,一般来说,信噪比越大,说明混在信号里的噪声越小,相反信噪比越小,说明混在信号里的噪声越大。信噪比低于信噪比阈值,说明噪声很大,信道质量不好。通过支持多载波的HARQ模式,使得UE能够支持的上行子帧数目增加,从而增加上 行覆盖,增加上行的信噪比。
(3)第一设备判断当前误块率是否大于误块率阈值,当当前误块率大于误块率阈值时,第一设备确定使用多载波HARQ模式。
误块率是指发送端发送的数据块中出错的块在所有发送的块中所占的百分比,误块率越大说明信道质量越差,通过支持多载波的HARQ模式,使得UE有更多的上行信道探测参考信号(Sounding Reference Signal,简称SRS)传输机会,从而使得基站更准确的获得信道信息,从而提高传输可靠性,降低误块率。
步骤102、第一设备向第二设备发送指示消息,该指示消息用于指示第二设备切换到多载波HARQ模式。
本实施例中,在多载波HARQ模式下,第一设备和第二设备上都存储有至少一个多载波帧配置的HARQ时序关系,并且,第一设备和第二设备上存储的多载波帧配置的HARQ时序关系相同。
需要说明的是,在本发明其他实施例中,也可以由第二设备确定使用多载波HARQ模式,并向第一设备发送请求消息,第一设备接收第二设备发送的请求消息,该请求消息用于请求切换到多载波HARQ模式,如果第一设备允许切换到多载波HARQ模式,则第一设备可以向第二设备发送确认消息,第一设备也可以不发送确认消息,第二设备在一定时间后默认第一设备允许切换到多载波HARQ模式。
步骤103、第一设备使用第一载波的子帧n向第二设备发送TB。
本实施例中,当第一设备需要发送TB时,第一设备按照调度规则,选择使用第一载波的子帧n向第二设备发送TB。具体的,第一设备在确定第一载波和子帧n后,为该TB分配进程号,将该TB和该进程号下发到物理层,物理层将该进程号放到该TB的下行控制信息(Downlink Control Information,简称DCI)中,将该TB的放到物理下行共享信道(Physical Downlink Shared Channel,简称PDSCH)上,然后在第一载波的子帧n上发送该TB和DCI。
步骤104、第二设备根据接收TB使用的第一载波、子帧n以及多载波帧配置的HARQ时序关系,确定发送TB的反馈消息使用的第二载波的子帧m。
第二设备在第一载波的子帧n上接收到数据,第二接收设备从接收到的数据中读取DCI,根据DCI读取TB,并根据DCI中的进程号将该TB放到进程对应的缓存(buffer)中。然后,第二设备根据接收TB使用的第一载波、子帧n以及多载波帧配置的HARQ时序关系,确定发送TB的反馈消息使用的第二载波的子帧m。可选的,该多载波配置的HARQ时序关系中的每个载波都能够发送TB的反馈消息,不相同于现有技术的方案,现有技术中主载波和辅载波上发送的TB的反馈信息都只能在主载波上发送,本实施例中,辅载波也能用于发送TB的反馈信息,即主载波上发送的TB的反馈信息也可以在辅载波上发送。或者,该多载波配置的HARQ时序关系中只有某个载波都能够发送TB的反馈消息。当该多载波配置的HARQ时序关系中的每个载波都能够发送TB的反馈消息时,第二载波和第一载波可能相同,也可能不同。当第一载波和第二载波相同时,第一载波和第二载波都为主载波或都为辅载波;当第一载波和第二载波不同时,第一载波可以为主载波,第二载波为辅载波,也可以第一载波为辅载波,第二载波为主载波。
以表1所示例子为例,表中存储有5个多载波帧配置的HARQ时序关系,第二设备从5个多载波帧配置的HARQ时序关系中确定一个多载波帧配置的HARQ时序关系。第二设备可以根据TB的时延需求确定使用的多载波帧配置的HARQ时序关系。假设第二设备确定了使用2+2多载波配置的HARQ时序关系,且第二设备是在CC1的子帧7上接收到了该TB,即第一载波为CC1,子帧n为子帧7,那么根据多载波帧配置的HARQ时序关系,第二设备可以使用CC1和CC2发送反馈消息,进一步根据CC1和CC2的资源使用情况,确定CC1还是CC2发送反馈消息,假设第二设备确定在CC2的子帧7间隔4个子帧后向第一设备发送反馈消息,那么第二载波为CC2,子帧m为CC2的下一个无线帧的子帧1。
步骤105、第二设备使用第二载波的子帧m向第一设备发送TB的反馈消息。
第二设备对接收到的数据进行检测,如果接收正确,则该反馈消息为ACK消息,如果接收错误,则该反馈消息为NACK消息。
步骤106、当TB的反馈消息为ACK消息时,第一设备确定TB传输 成功,第一设备发送下一个TB,当TB的反馈消息为NACK消息时,第一设备确定TB传输失败。
步骤107、第一设备使用第三载波的子帧j重传TB。
步骤107为可选步骤,当反馈信息为ACK消息时,不需要执行步骤107,当反馈消息为NACK消息时,才需要执行步骤108。
第一设备在第一载波的子帧n上发送TB后,在第二载波的子帧m上接收TB的反馈消息,在接收TB的反馈消息之前,第一设备根据发送TB使用的第一载波、子帧n以及多载波帧配置的HARQ时序关系,确定接收TB的反馈消息使用的第二载波的子帧m,其中,第一设备和第二设备确定第二载波和子帧m的方法相同,这里不再赘述。
需要说明的是,本发明实施例中,在载波聚合场景下,第一设备可以使用多个载波中的任何一个重传TB,因此,第三载波可能和第一载波相同,也可能和第一载波不同。不同于现有技术中,重传TB和初传TB只能在同一个载波上,不能跨载波重传TB。相比于现有技术中,本发明实施例的方法,由于可以跨载波重传TB,如果某个载波比初传TB使用的载波有更多的发送机会,那么第一设备可以使用该载波进行重传,进一步能够降低数据的传输时延。
在重传该TB时,第一设备不会为该TB重新分配进程号,该TB还使用初传时第一设备分配的进程号,第一设备将进程号放到DCI中,在第三载波的子帧j上发送DCI和TB的冗余版本1,一个TB可能会进行多次重传,目前协议规定的最大重传次数为4,为了区别多次传输的TB,引入了冗余版本。通常在初传该TB时,第一载波的子帧n上发送的是DCI和该TB的冗余版本0,后续重传时发送的是该TB的冗余版本3、冗余版本2和冗余版本1。
后续该TB的重传的处理操作都和初传时的处理操作相同,这里不再赘述,当然第一次重传也可能失败,如果失败了按照上述流程进行第二次重传,每次重传的处理操作是相同的这里不再赘述。
本实施例中,通过引入多载波帧配置的HARQ时序,使得在载波聚合场景下,第二设备可以使用任意一个载波发送反馈消息,从而增加了第二设备发送反馈消息的机会,进而能够减少数据传输时延。并且第一设备在 重传TB时,可以与初传该TB使用不同的载波,从而增加了重传TB的发送机会,进一步降低了数据传输时延。
图7为本发明实施例二提供的多载波下的数据传输方法,如图7所示,本实施例提供的方法包括以下步骤:
步骤201、第一设备从多个载波中确定第一载波的第一时间单元上发送的TB的反馈消息使用的第二载波的载波标识和第二时间单元。
不同于实施例一,本实施例的应用场景中不存在帧配置的概念和HARQ时序关系,即每个载波不具有固定的HARQ时序关系。每个载波都可能存在以下三种子帧类型:
(1)下行子帧;子帧内的所有符号都为下行符号;
(2)上行子帧:子帧内的所有符号都为上行符号;
(3)双向子帧:子帧内的符号包括上行符号和下行符号,上行符号和下行符号的比例可以配置。
每个载波上都有可能存在这三种子帧类型。在某个载波上,具体某个时间采用哪种子帧类型,由基站的调度消息决定的。
本实施例中由于不存在固定的HARQ时序关系,因此,由第一设备统一进行调度,第一设备在确定TB的反馈消息使用的载波和时间单元时,可以根据第二设备对TB的处理时间和各载波上的时间单元是否空闲确定TB的反馈消息使用的第二载波的标识和第二时间单元,其中,当第一设备为基站时,第二设备为UE,当第一设备为UE时,第二设备为基站。由于没有固定的HARQ时序关系,对于同一载波和时间单元上发送的TB,每次确定的反馈消息使用的载波和时间单元可能不同,从而使得数据的传输更加灵活。
本实施例中,第一载波和第二载波可能相同也可能不同。第一载波的第一时间单元用于发送TB,因此,第一载波的第一时间单元可以为下行子帧或双向子帧,双向子帧中的下行符号用于发送TB。第二载波的第二时间单元用于发送TB的反馈消息,因此第二载波的第二时间单元可以为上行子帧或双向子帧,双向子帧中的上行符号用于发送TB的反馈消息。
本实施例的方法还可以应用在CA场景中,现有技术在CA场景中,主载波和辅载波上发送的TB的反馈信息都只能在主载波上发送,而本实 施例的方法中多个载波中的每个载波都能够发送TB的反馈消息,即主载波上发送的TB的反馈信息也可以在辅载波上发送。当第一载波和第二载波不同时,第一载波可以为主载波,第二载波为辅载波,也可以第一载波为辅载波,第二载波为主载波。
步骤202、第一设备向第二设备发送指示信息,该指示信息用于指示第二设备在第二载波的第二时间单元上发送TB的反馈消息。
该指示信息中包括第二载波的标识和第二时间单元的信息,第二时间单元的信息可以为子帧号,或者子帧偏移量。该指示信息可以携带在TB的控制信息中。当然,该指示信息也可以通过单独的消息发送,本发明并不对此进行限制。
步骤203、第一设备使用第一载波的第一时间单元向第二设备发送TB。
步骤204、第二设备根据指示信息在第二载波的第二时间单元上向第一设备发送TB的反馈消息。
第一设备对接收到的数据进行检测,如果接收正确,则该反馈消息为ACK消息,如果接收错误,则该反馈消息为NACK消息。如果第二时间单元的信息为子帧的偏移量,那么第二设备根据当前子帧的序号n和子帧的偏移量得到发送反馈信息的子帧的序号m。如果第二时间单元的信息为子帧序号,那么第二设备直接在子帧序号对应的子帧上发送TB的反馈消息。
步骤205、第一设备在第二载波的第二时间单元上第二设备发送的TB的反馈消息,当TB的反馈消息为ACK消息时,第二设备确定TB传输成功,TB发送下一个TB,当TB的反馈消息为NACK消息时,第二设确定TB传输失败。
步骤206、第一设备使用该多个载波中的第三载波的第三时间单元重传TB。
在载波聚合场景下,基站可以使用多个载波中的任何一个重传TB,因此,第三载波可能和第一载波相同,也可能和第一载波不同。不同于现有技术中,重传TB和初传TB只能在同一个载波上,不能跨载波重传TB。相比于现有技术中,本实施例的方法,由于可以跨载波重传TB,如果某个载波比初传TB使用的载波有更多的发送机会,那么第一设备可以使用 该载波进行重传,进一步能够降低数据的传输时延。
在多载波场景中,可能同时存在高频载波和低频载波,高频载波传输速率高,但是高频载波穿透性弱,容易受到遮挡,通信的可靠性较差,低频载波的传输速率慢,但是可靠性高。在很多情况下,为了保证数据传输的可靠性,可以采用低频载波传输来辅助高频传输。基站可以用信令通知UE不同的工作模式,比如在第一工作模式进行低频传输,在第二工作模式下进行低频辅助高频传输,在第三模式下进行高频传输。以下为一些应用场景:
在UE接入高频基站时,可以通过低频载波辅助发送高频载波上传输的数据,高频基站为使用高频载波的基站。低频基站可以将高频同步信号的频域位置、高频同步信号的子载波间隔、高频载波和低频载波的帧时间差别等发送给UE,其中,高频同步信号的频域位置用于UE在接入高频基站的时候,直接获取高频同步信号,无需盲检测获取高频同步信号,便于UE能够快速实现同步。高频同步信号的子载波间隔用于UE在接入高频基站的时候,直接获取高频同步信号的子载波间隔,无需盲检测。高频载波和低频载波的时间差别用于UE通过低频载波的帧的起始时间,获取高频载波的帧的起始时间。UE通过低频载波获取高频同步信号的频域位置、高频同步信号的子载波间隔、高频载波和低频载波的时间差别,避免了UE在接入高频基站时,通过盲检测获取上述信息,导致接入时间长的问题,同时也增加了可靠性。
同步过程中,基站通过波束向UE发送同步信号,UE需要获取同步信号所在的波束对应的符号数,符号数用于UE确定当前符号的位置。在没有低频辅助的情况下,UE可以通过如下方式获取高频的符号数:(1)通过频域偏移量指示不同的符号,其中,不同的符号对应主同步信号(Primary Synchronization Signal,简称PSS)和辅同步信号(Secondary Synchronization Signal,简称SSS)不同频域偏移量,因此根据频域偏移量可以确定符号;(2)不同的符号对应不同的同步序列,通过同步序列确定符号。在有低频辅助的情况下,UE可以通过高频载波和低频载波的帧时间差别,推出高频的帧边界。此时,对高频载波而言,由于推出了高频的帧边界,在有低频辅助的情况下,方案(1)中需要的频域偏移量的数量相 较于没有低频辅助的情况下减少了,方案(2)需要的同步序列的数量相较于没有低频辅助的情况下减少了,例如,在没有低频辅助的情况下,指示10个符号需要10个频域偏移量,而在有低频辅助的情况下,指示10个符号可能只需要2个频域偏移量即可。由于采用的频域偏移量和同步序列减少了,从而降低了基站发送同步信号的复杂度。基站通过低频将采用的有限的频域偏移量或者有限的同步序列发给UE,UE就可以进一步确定符号数。
基站可以通过信令指示UE自行测量高频和低频的帧边界时间差,UE可以通过确定符号数推断出时间差,并将测量结果上报给基站。基站根据该时间差,结合高低频之间的回传通信时间,确定UE上行发送的时间提前量。
在UE接入高频基站后,正常通信阶段,可以通过低频载波辅助高频基站进行波束管理和测量。UE可以基于状态信息参考信号(Channel State Information Reference Signal,简称CSI-RS)测量信道状态信息(Channel State Information,简称CSI),并向基站反馈CSI,从而实现基站对UE的调度。UE在测量之前,高频基站需要将测量配置信息发送给UE,本实施例的方法中,高频基站可以将测量配置信息发送给低频基站,低频基站通过低频载波将测量配置信息发送给UE。该测量配置信息包括测量时间和测量频段等。UE完成测量后,通过低频载波将测量结果发送给低频基站,低频基站再将测量结果转发给高频基站,该测量结果可以包括波束标识、参考信号接收功率(Reference Signal Receiving Power,简称RSRP)、CSI、信号质量、信号强度等。
高频基站为了增大覆盖范围和提高通信质量,大都采用波束成型技术。在高频载波所在的高频链路中断时,为了恢复高频链路,UE需要向高频基站发送波束修复请求消息,本实施例中,UE通过低频载波向高频基站发送该波束修复请求,及UE将该波束修复请求通过低频载波发送给低频基站,低频基站再将该波束修复请求发送给高频基站,从而保证该波束修复请求的可靠性,以便于基站根据该波束修复请求及时的为UE重新选择波束。同理,UE可以通过低频载波向高频基站发送波束跟踪请求信息,从而保证该波束跟踪请求的可靠性,以便于基站根据该波束跟踪请求及时为UE进行波束的跟踪操作。
需要说明的是,上述实施例只是以高频载波和低频载波举例说明,实际上上述方法适用于任意两个载波之间,例如,应用在第一载波和第二载波之间,第一载波和第二载波为不同的载波。
图8为本发明实施例三提供的第一设备的结构示意图,如图8所示,本实施例提供的第一设备包括:处理器11、发送器12、接收器13和存储器14,其中,发送器12、接收器13和存储器14分别通过总线与处理器11连接,所述存储器14用于存储器指令,处理器11用于执行存储器14中存储的指令,具体的:
发送器12,用于使用第一载波的子帧n向第二设备发送传输块TB;
处理器11,用于根据发送所述TB使用的所述第一载波、所述子帧n以及多载波帧配置的HARQ时序关系,确定接收所述TB的反馈消息使用的第二载波的子帧m,所述多载波帧配置的HARQ时序关系中包括至少两个载波的HARQ时序关系;
接收器13,用于使用所述第二载波的所述子帧m接收所述第二设备发送的所述TB的反馈消息。
可选的,所述处理器11还用于:当所述TB的反馈消息为确认ACK消息时,确定所述TB传输成功,所述第一设备发送下一个TB;当所述TB的反馈消息为否认NACK消息时,确定所述TB传输失败,所述第一设备使用第三载波的子帧j重传所述TB。
可选的,所述处理器11还用于:根据所述TB的时延要求从至少两个多载波帧配置的HARQ时序关系中确定出所述多载波帧配置的HARQ时序关系。
可选的,所述处理器11还用于:确定使用多载波HARQ模式,所述多载波HARQ模式下,所述第一设备和所述第二设备使用所述多载波帧配置的HARQ时序关系,相应的,所述发送器12还用于向所述第二设备发送指示消息,所述指示消息用于指示所述第二设备切换到所述多载波HARQ模式。
可选的,所述接收器13还用于:接收所述第二设备发送的请求消息,所述请求消息用于请求切换到多载波HARQ模式,所述多载波HARQ模式下,所述第一设备和所述第二设备使用所述多载波帧配置的HARQ时序 关系。
本实施例的第一设备,可用于执行实施例一的方法,具体实现方式和技术效果类似,这里不再赘述。
图9为本发明实施例四提供的第二设备的结构示意图,如图9所示,本实施例提供的第二设备包括:处理器21、发送器22、接收器23和存储器24,其中,发送器22、接收器23和存储器24分别通过总线与处理器21连接,所述存储器24用于存储器指令,处理器21用于执行存储器24中存储的指令,具体的:
接收器23,用于在第一载波的子帧n上接收第一设备发送的传输块TB;
处理器21,用于根据接收所述TB使用的所述第一载波、所述子帧n以及多载波帧配置的HARQ时序关系,确定发送所述TB的反馈消息使用的第二载波的子帧m,所述多载波帧配置的HARQ时序关系中包括至少两个载波的HARQ时序关系;
发送器22,用于使用所述第二载波的所述子帧m向所述第一设备发送所述TB的反馈消息。
可选的,所述处理器21还用于:根据所述TB的时延要求从至少两个多载波帧配置的HARQ时序关系中确定出所述多载波帧配置的HARQ时序关系。
可选的,所述接收器23还用于:接收所述第一设备发送的指示消息,所述指示消息用于指示所述第二设备切换到多载波HARQ模式,所述多载波HARQ模式下,所述第一设备和所述第二设备使用所述多载波帧配置的HARQ时序关系。
可选的,所述处理器21还用于:确定使用多载波HARQ模式,所述多载波HARQ模式下,所述第一设备和所述第二设备使用所述多载波帧配置的HARQ时序关系,相应的,所述发送器22还用于向所述第一设备发送请求消息,所述请求消息用于请求切换到所述多载波HARQ模式。
本发明实施例五提供一种第一设备,本实施例的第一设备的结构与图8所示第一设备的结构相同,请参照图8所示,本实施例中,具体的:
处理器11,用于从多个载波中确定第一载波的第一时间单元上发送的 传输块TB的反馈消息使用的第二载波的载波标识和第二时间单元;
发送器12,用于向第二设备发送指示信息,所述指示信息用于指示所述第二设备在所述第二载波的所述第二时间单元上发送所述TB的反馈消息;
所述发送器12,还用于使用所述第一载波的所述第一时间单元向所述第二设备发送所述TB;
接收器13,用于在所述第二载波的所述第二时间单元接收所述UE发送的所述TB的反馈消息。
可选的,所述第一时间单元为下行子帧或双向子帧,所述下行子帧的符号都为下行符号,所述双向子帧的符号包括下行符号和上行符号;
所述第二时间单元为上行子帧或所述双向子帧,所述上行子帧的符号都为上行符号。
本发明实施例六提供一种第二设备,本实施例的第二设备的结构与图8所示第二设备的结构相同,请参照图8所示,本实施例中,具体的:
接收器23,用于接收第一设备发送的指示信息,所述指示信息用于指示所述第二设备在第二载波的第二时间单元上发送传输块TB的反馈消息;所述第二设备在第一载波的第一时间单元上接收所述第一设备发送的所述TB;
发送器22,用于根据所述指示信息在所述第二载波的所述第二时间单元上向所述第一设备发送所述TB的反馈消息。
图10为本发明实施例七提供的第一设备的结构示意图,如图10所示,本实施例的第一设备包括:发送模块31、确定模块32和接收模块33。
发送模块31,用于使用第一载波的子帧n向第二设备发送传输块TB;
确定模块32,用于根据发送所述TB使用的所述第一载波、所述子帧n以及多载波帧配置的HARQ时序关系,确定接收所述TB的反馈消息使用的第二载波的子帧m,所述多载波帧配置的HARQ时序关系中包括至少两个载波的HARQ时序关系;
接收模块33,用于使用所述第二载波的所述子帧m接收所述第二设备发送的所述TB的反馈消息。
可选的,所述确定模块32还用于:当所述TB的反馈消息为确认ACK 消息时,确定所述TB传输成功,所述第一设备发送下一个TB;当所述TB的反馈消息为否认NACK消息时,确定所述TB传输失败,所述第一设备使用第三载波的子帧j重传所述TB。
可选的,所述确定模块32还用于:根据所述TB的时延要求从至少两个多载波帧配置的HARQ时序关系中确定出所述多载波帧配置的HARQ时序关系。
可选的,所述确定模块32还用于:确定使用多载波HARQ模式,所述多载波HARQ模式下,所述第一设备和所述第二设备使用所述多载波帧配置的HARQ时序关系,相应的,所述发送模块31还用于向所述第二设备发送指示消息,所述指示消息用于指示所述第二设备切换到所述多载波HARQ模式。
可选的,所述接收模块33还用于:接收所述第二设备发送的请求消息,所述请求消息用于请求切换到多载波HARQ模式,所述多载波HARQ模式下,所述第一设备和所述第二设备使用所述多载波帧配置的HARQ时序关系。
图11为本发明实施例八提供的第二设备的结构示意图,如图11所示,本实施例的第二设备包括:发送模块41、确定模块42和接收模块43。
接收模块43,用于在第一载波的子帧n上接收第一设备发送的传输块TB;
确定模块42,用于根据接收所述TB使用的所述第一载波、所述子帧n以及多载波帧配置的HARQ时序关系,确定发送所述TB的反馈消息使用的第二载波的子帧m,所述多载波帧配置的HARQ时序关系中包括至少两个载波的HARQ时序关系;
发送模块41,用于使用所述第二载波的所述子帧m向所述第一设备发送所述TB的反馈消息。
可选的,所述确定模块42还用于:根据所述TB的时延要求从至少两个多载波帧配置的HARQ时序关系中确定出所述多载波帧配置的HARQ时序关系。
可选的,所述接收模块43还用于:接收所述第一设备发送的指示消息,所述指示消息用于指示所述第二设备切换到多载波HARQ模式,所述 多载波HARQ模式下,所述第一设备和所述第二设备使用所述多载波帧配置的HARQ时序关系。
可选的,所述确定模块42还用于:确定使用多载波HARQ模式,所述多载波HARQ模式下,所述第一设备和所述第二设备使用所述多载波帧配置的HARQ时序关系,相应的,所述发送模块41还用于向所述第一设备发送请求消息,所述请求消息用于请求切换到所述多载波HARQ模式。
本发明实施例九提供一种第一设备,本实施例的第一设备的结构与图10所示第一设备的机构相同,请参照图10所示,本实施例中,具体的:
确定模块32,用于从多个载波中确定第一载波的第一时间单元上发送的传输块TB的反馈消息使用的第二载波的载波标识和第二时间单元;
发送模块31,用于向第二设备发送指示信息,所述指示信息用于指示所述第二设备在所述第二载波的所述第二时间单元上发送所述TB的反馈消息;
所述发送模块31,还用于使用所述第一载波的所述第一时间单元向所述第二设备发送所述TB;
接收模块33,用于在所述第二载波的所述第二时间单元接收所述UE发送的所述TB的反馈消息。
可选的,所述第一时间单元为下行子帧或双向子帧,所述下行子帧的符号都为下行符号,所述双向子帧的符号包括下行符号和上行符号;
所述第二时间单元为上行子帧或所述双向子帧,所述上行子帧的符号都为上行符号。
图12为本发明实施例十提供的第二设备的结构示意图,如图12所示,本实施例的第二设备包括:发送模块51和接收模块52。
其中,接收模块52,用于接收第一设备发送的指示信息,所述指示信息用于指示所述第二设备在第二载波的第二时间单元上发送传输块TB的反馈消息;所述第二设备在第一载波的第一时间单元上接收所述第一设备发送的所述TB;
发送模块51,用于根据所述指示信息在所述第二载波的所述第二时间单元上向所述第一设备发送所述TB的反馈消息。
可以理解,本发明实施例中第一设备或者第二设备中使用的处理器可 以是中央处理器(CPU),通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC),现场可编程门阵列(FPGA)或者其他可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。其可以实现或执行结合本发明公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。
本发明实施例所述的总线可以是工业标准体系结构(Industry Standard Architecture,ISA)总线、外部设备互连(Peripheral Component,PCI)总线或扩展工业标准体系结构(Extended Industry Standard Architecture,EISA)总线等。总线可以分为地址总线、数据总线、控制总线等。为便于表示,本发明附图中的总线并不限定仅有一根总线或一种类型的总线。
在本发明所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
上述以软件功能单元的形式实现的集成的单元,可以存储在一个计算机可读取存储介质中。上述软件功能单元存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(英文:processor)执行本发明各个实施例所述方法的 部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(英文:Read-Only Memory,简称:ROM)、随机存取存储器(英文:Random Access Memory,简称:RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
本领域普通技术人员可以理解:实现上述各方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成。前述的程序可以存储于一计算机可读取存储介质中。该程序在执行时,执行包括上述各方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (28)

  1. 一种多载波下的数据传输方法,其特征在于,包括:
    第一设备使用第一载波的子帧n向第二设备发送传输块TB;
    所述第一设备根据发送所述TB使用的所述第一载波、所述子帧n以及多载波帧配置的HARQ时序关系,确定接收所述TB的反馈消息使用的第二载波的子帧m,所述多载波帧配置的HARQ时序关系中包括至少两个载波的HARQ时序关系;
    所述第一设备使用所述第二载波的所述子帧m接收所述第二设备发送的所述TB的反馈消息。
  2. 根据权利要求1所述的方法,其特征在于,所述多载波配置的HARQ时序关系中的每个载波都能够发送TB的反馈消息。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一设备使用所述第二载波和所述子帧m接收所述第二设备发送的所述TB的反馈消息之后,还包括:
    当所述TB的反馈消息为确认ACK消息时,所述第一设备确定所述TB传输成功,所述第一设备发送下一个TB;
    当所述TB的反馈消息为否认NACK消息时,所述第一设备确定所述TB传输失败,所述第一设备使用第三载波的子帧j重传所述TB。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述第一设备根据发送所述TB使用的所述第一载波、所述子帧n以及多载波帧配置的HARQ时序关系,确定接收所述TB的反馈消息使用的第二载波的子帧m之前,还包括:
    所述第一设备根据所述TB的时延要求从至少两个多载波帧配置的HARQ时序关系中确定出所述多载波帧配置的HARQ时序关系。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述第一设备使用第一载波的子帧n向第二设备发送TB之前,还包括:
    所述第一设备确定使用多载波HARQ模式,所述多载波HARQ模式下,所述第一设备和所述第二设备使用所述多载波帧配置的HARQ时序关系;
    所述第一设备向所述第二设备发送指示消息,所述指示消息用于指示 所述第二设备切换到所述多载波HARQ模式。
  6. 根据权利要求1-4任一项所述的方法,其特征在于,所述第一设备使用第一载波的子帧n向第二设备发送TB之前,还包括:
    所述第一设备接收所述第二设备发送的请求消息,所述请求消息用于请求切换到多载波HARQ模式,所述多载波HARQ模式下,所述第一设备和所述第二设备使用所述多载波帧配置的HARQ时序关系。
  7. 一种多载波下的数据传输方法,其特征在于,包括:
    第二设备在第一载波的子帧n上接收第一设备发送的传输块TB;
    所述第二设备根据接收所述TB使用的所述第一载波、所述子帧n以及多载波帧配置的HARQ时序关系,确定发送所述TB的反馈消息使用的第二载波的子帧m,所述多载波帧配置的HARQ时序关系中包括至少两个载波的HARQ时序关系;
    所述第二设备使用所述第二载波的所述子帧m向所述第一设备发送所述TB的反馈消息。
  8. 根据权利要求7所述的方法,其特征在于,所述多载波配置的HARQ时序关系中的每个载波都能够发送TB的反馈消息。
  9. 根据权利要求7或8所述的方法,其特征在于,所述第二设备根据接收所述TB使用的所述第一载波、所述子帧n以及多载波帧配置的HARQ时序关系,确定发送所述TB的反馈消息使用的第二载波的子帧m之前,还包括:
    所述第二设备根据所述TB的时延要求从至少两个多载波帧配置的HARQ时序关系中确定出所述多载波帧配置的HARQ时序关系。
  10. 根据权利要求7-9任一项所述的方法,其特征在于,所述第二设备在第一载波的子帧n上接收第一设备发送的TB之前,还包括:
    所述第二设备接收所述第一设备发送的指示消息,所述指示消息用于指示所述第二设备切换到多载波HARQ模式,所述多载波HARQ模式下,所述第一设备和所述第二设备使用所述多载波帧配置的HARQ时序关系。
  11. 根据权利要求7-9任一项所述的方法,其特征在于,所述第二设备在第一载波的子帧n上接收第一设备发送的TB之前,还包括:
    所述第二设备确定使用多载波HARQ模式,所述多载波HARQ模式 下,所述第一设备和所述第二设备使用所述多载波帧配置的HARQ时序关系;
    所述第二设备向所述第一设备发送请求消息,所述请求消息用于请求切换到所述多载波HARQ模式。
  12. 一种多载波下的数据传输方法,其特征在于,包括:
    第一设备从多个载波中确定第一载波的第一时间单元上发送的传输块TB的反馈消息使用的第二载波的载波标识和第二时间单元;
    所述第一设备向第二设备发送指示信息,所述指示信息用于指示所述第二设备在所述第二载波的所述第二时间单元上发送所述TB的反馈消息;
    所述第一设备使用所述第一载波的所述第一时间单元向所述第二设备发送所述TB;
    所述第一设备在所述第二载波的所述第二时间单元接收所述UE发送的所述TB的反馈消息。
  13. 根据权利要求12所述的方法,其特征在于,所述第一时间单元为下行子帧或双向子帧,所述下行子帧的符号都为下行符号,所述双向子帧的符号包括下行符号和上行符号;
    所述第二时间单元为上行子帧或所述双向子帧,所述上行子帧的符号都为上行符号。
  14. 一种多载波下的数据传输方法,其特征在于,包括:
    第二设备接收第一设备发送的指示信息,所述指示信息用于指示所述第二设备在第二载波的第二时间单元上发送传输块TB的反馈消息;所述第二设备在第一载波的第一时间单元上接收所述第一设备发送的所述TB;
    所述第二设备根据所述指示信息在所述第二载波的所述第二时间单元上向所述第一设备发送所述TB的反馈消息。
  15. 一种第一设备,其特征在于,包括:
    发送器,用于使用第一载波的子帧n向第二设备发送传输块TB;
    处理器,用于根据发送所述TB使用的所述第一载波、所述子帧n以及多载波帧配置的HARQ时序关系,确定接收所述TB的反馈消息使用的第二载波的子帧m,所述多载波帧配置的HARQ时序关系中包括至少两个载波的HARQ时序关系;
    接收器,用于使用所述第二载波的所述子帧m接收所述第二设备发送的所述TB的反馈消息。
  16. 根据权利要求15所述的设备,其特征在于,所述多载波配置的HARQ时序关系中的每个载波都能够发送TB的反馈消息。
  17. 根据权利要求15或16所述的设备,其特征在于,所述处理器还用于:
    当所述TB的反馈消息为确认ACK消息时,确定所述TB传输成功,所述第一设备发送下一个TB;
    当所述TB的反馈消息为否认NACK消息时,确定所述TB传输失败,所述第一设备使用第三载波的子帧j重传所述TB。
  18. 根据权利要求15-17任一项所述的设备,其特征在于,所述处理器还用于:
    根据所述TB的时延要求从至少两个多载波帧配置的HARQ时序关系中确定出所述多载波帧配置的HARQ时序关系。
  19. 根据权利要求15-17任一项所述的设备,其特征在于,所述处理器还用于:
    确定使用多载波HARQ模式,所述多载波HARQ模式下,所述第一设备和所述第二设备使用所述多载波帧配置的HARQ时序关系;
    所述发送器,还用于向所述第二设备发送指示消息,所述指示消息用于指示所述第二设备切换到所述多载波HARQ模式。
  20. 根据权利要求15-17任一项所述的设备,其特征在于,所述接收器还用于:
    接收所述第二设备发送的请求消息,所述请求消息用于请求切换到多载波HARQ模式,所述多载波HARQ模式下,所述第一设备和所述第二设备使用所述多载波帧配置的HARQ时序关系。
  21. 一种第二设备,其特征在于,包括:
    接收器,用于在第一载波的子帧n上接收第一设备发送的传输块TB;
    处理器,用于根据接收所述TB使用的所述第一载波、所述子帧n以及多载波帧配置的HARQ时序关系,确定发送所述TB的反馈消息使用的第二载波的子帧m,所述多载波帧配置的HARQ时序关系中包括至少两个 载波的HARQ时序关系;
    发送器,用于使用所述第二载波的所述子帧m向所述第一设备发送所述TB的反馈消息。
  22. 根据权利要求21所述的设备,其特征在于,所述多载波配置的HARQ时序关系中的每个载波都能够发送TB的反馈消息。
  23. 根据权利要求21或22所述的设备,其特征在于,所述处理器还用于:
    根据所述TB的时延要求从至少两个多载波帧配置的HARQ时序关系中确定出所述多载波帧配置的HARQ时序关系。
  24. 根据权利要求21-23任一项所述的设备,其特征在于,所述接收器还用于:
    接收所述第一设备发送的指示消息,所述指示消息用于指示所述第二设备切换到多载波HARQ模式,所述多载波HARQ模式下,所述第一设备和所述第二设备使用所述多载波帧配置的HARQ时序关系。
  25. 根据权利要求21-23任一项所述的设备,其特征在于,所述处理器还用于:
    确定使用多载波HARQ模式,所述多载波HARQ模式下,所述第一设备和所述第二设备使用所述多载波帧配置的HARQ时序关系;
    所述发送器,还用于向所述第一设备发送请求消息,所述请求消息用于请求切换到所述多载波HARQ模式。
  26. 一种第一设备,其特征在于,包括:
    处理器,用于从多个载波中确定第一载波的第一时间单元上发送的传输块TB的反馈消息使用的第二载波的载波标识和第二时间单元;
    发送器,用于向第二设备发送指示信息,所述指示信息用于指示所述第二设备在所述第二载波的所述第二时间单元上发送所述TB的反馈消息;
    所述发送器,还用于使用所述第一载波的所述第一时间单元向所述第二设备发送所述TB;
    接收器,用于在所述第二载波的所述第二时间单元接收所述UE发送的所述TB的反馈消息。
  27. 根据权利要求26所述的设备,其特征在于,所述第一时间单元 为下行子帧或双向子帧,所述下行子帧的符号都为下行符号,所述双向子帧的符号包括下行符号和上行符号;
    所述第二时间单元为上行子帧或所述双向子帧,所述上行子帧的符号都为上行符号。
  28. 一种第二设备,其特征在于,包括:
    接收器,用于接收第一设备发送的指示信息,所述指示信息用于指示所述第二设备在第二载波的第二时间单元上发送传输块TB的反馈消息;所述第二设备在第一载波的第一时间单元上接收所述第一设备发送的所述TB;
    发送器,用于根据所述指示信息在所述第二载波的所述第二时间单元上向所述第一设备发送所述TB的反馈消息。
PCT/CN2016/101391 2016-09-30 2016-09-30 多载波下的数据传输方法和装置 WO2018058679A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680089419.6A CN110050428A (zh) 2016-09-30 2016-09-30 多载波下的数据传输方法和装置
PCT/CN2016/101391 WO2018058679A1 (zh) 2016-09-30 2016-09-30 多载波下的数据传输方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/101391 WO2018058679A1 (zh) 2016-09-30 2016-09-30 多载波下的数据传输方法和装置

Publications (1)

Publication Number Publication Date
WO2018058679A1 true WO2018058679A1 (zh) 2018-04-05

Family

ID=61762462

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/101391 WO2018058679A1 (zh) 2016-09-30 2016-09-30 多载波下的数据传输方法和装置

Country Status (2)

Country Link
CN (1) CN110050428A (zh)
WO (1) WO2018058679A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113747586A (zh) * 2021-09-28 2021-12-03 京信网络系统股份有限公司 资源分配方法、装置、系统、计算机设备和存储介质
US11283553B2 (en) 2017-02-28 2022-03-22 Huawei Technologies Co., Ltd. Method and apparatus for data processing using hybrid automatic repeat request (HARQ) processes
WO2023000338A1 (zh) * 2021-07-23 2023-01-26 北京小米移动软件有限公司 载波切换方法、装置、设备及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102377548A (zh) * 2010-08-16 2012-03-14 夏普株式会社 下行harq反馈方法以及相应的基站和用户设备
CN102938693A (zh) * 2011-08-15 2013-02-20 普天信息技术研究院有限公司 Lte-a tdd不同上下行配比的反馈方法
CN103444118A (zh) * 2011-03-14 2013-12-11 Lg电子株式会社 在无线通信系统中发射ack/nack的方法和设备
WO2014209049A1 (en) * 2013-06-26 2014-12-31 Lg Electronics Inc. Method and apparatus for fdd/tdd intra-node and inter-node carrier aggregation
CN105940631A (zh) * 2014-01-30 2016-09-14 高通股份有限公司 具有动态tdd dl/ul子帧配置的载波聚合

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102377548A (zh) * 2010-08-16 2012-03-14 夏普株式会社 下行harq反馈方法以及相应的基站和用户设备
CN103444118A (zh) * 2011-03-14 2013-12-11 Lg电子株式会社 在无线通信系统中发射ack/nack的方法和设备
CN102938693A (zh) * 2011-08-15 2013-02-20 普天信息技术研究院有限公司 Lte-a tdd不同上下行配比的反馈方法
WO2014209049A1 (en) * 2013-06-26 2014-12-31 Lg Electronics Inc. Method and apparatus for fdd/tdd intra-node and inter-node carrier aggregation
CN105940631A (zh) * 2014-01-30 2016-09-14 高通股份有限公司 具有动态tdd dl/ul子帧配置的载波聚合

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11283553B2 (en) 2017-02-28 2022-03-22 Huawei Technologies Co., Ltd. Method and apparatus for data processing using hybrid automatic repeat request (HARQ) processes
WO2023000338A1 (zh) * 2021-07-23 2023-01-26 北京小米移动软件有限公司 载波切换方法、装置、设备及存储介质
CN115868135A (zh) * 2021-07-23 2023-03-28 北京小米移动软件有限公司 载波切换方法、装置、设备及存储介质
CN113747586A (zh) * 2021-09-28 2021-12-03 京信网络系统股份有限公司 资源分配方法、装置、系统、计算机设备和存储介质
CN113747586B (zh) * 2021-09-28 2024-03-01 京信网络系统股份有限公司 资源分配方法、装置、系统、计算机设备和存储介质

Also Published As

Publication number Publication date
CN110050428A (zh) 2019-07-23

Similar Documents

Publication Publication Date Title
CA3061633C (en) Beam configuration method and apparatus
CN108476515B (zh) 非许可频谱中的动态harq-ack码本大小
JP6070785B2 (ja) 高度無線通信システムでのltefdd−tddシステム間キャリアアグリゲーションに関するシグナリング方法、アクセスノード、ユーザ機器、及び無線通信システム
KR101775295B1 (ko) Tdd-fdd 캐리어 집성을 위한 harq 타임라인들
TWI472201B (zh) 處理上鏈路時序的方法及其通訊裝置
US9288823B2 (en) HARQ Timing scheme for single-carrier uplink control information with inter-site carrier aggregation
US10182353B2 (en) Method and apparatus for transmitting/receiving physical channels in communication system supporting carrier aggregation
US11140731B2 (en) Data transmission method, communication device, and data transmission system
CN109168196B (zh) 用于提高多载波环境中的无线电链路性能的系统和方法
US11445531B2 (en) Communication method, communications apparatus, and readable storage medium
US9629133B2 (en) Uplink control information signaling in inter-site downlink carrier aggregation scenarios
US20220225400A1 (en) Communications device, infrastructure equipment and methods
EP3434057A1 (en) User equipment, base station and methods to drop a pucch if colliding with a s-pucch in the same interval
WO2018128065A1 (ja) 無線通信装置、無線通信方法及びコンピュータプログラム
CN105453684B (zh) 在蜂窝移动通信系统中用于请求调度的方法和设备
JP2015523825A (ja) 方法及び装置
CN110089165B (zh) 选择用于定时提前组中下行链路定时和定时提前的可靠小区
IL262071A (en) Radio network junction, wireless device and methods performed in them
US20160269982A1 (en) RRC Diversity
EP3446449A1 (en) Delaying transmission depending on transmission type and ue processing capabilities
WO2017113405A1 (zh) 一种跨载波调度方法、反馈方法及装置
WO2020207333A1 (zh) 链路失败恢复的方法和装置
WO2018058679A1 (zh) 多载波下的数据传输方法和装置
US20210351861A1 (en) Defining a condition based on a reference time interval
WO2018083064A1 (en) Group radio resource management in cells employing a clear channel assessment procedure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16917429

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16917429

Country of ref document: EP

Kind code of ref document: A1