WO2018076267A1 - 舵机 - Google Patents

舵机 Download PDF

Info

Publication number
WO2018076267A1
WO2018076267A1 PCT/CN2016/103722 CN2016103722W WO2018076267A1 WO 2018076267 A1 WO2018076267 A1 WO 2018076267A1 CN 2016103722 W CN2016103722 W CN 2016103722W WO 2018076267 A1 WO2018076267 A1 WO 2018076267A1
Authority
WO
WIPO (PCT)
Prior art keywords
steering gear
circuit board
disposed
gear according
flange
Prior art date
Application number
PCT/CN2016/103722
Other languages
English (en)
French (fr)
Inventor
杜旭超
陈新普
刘梅春
刘乐峰
舒文泉
熊友军
Original Assignee
深圳市优必选科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市优必选科技有限公司 filed Critical 深圳市优必选科技有限公司
Priority to US15/323,098 priority Critical patent/US10637331B2/en
Priority to PCT/CN2016/103722 priority patent/WO2018076267A1/zh
Publication of WO2018076267A1 publication Critical patent/WO2018076267A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements
    • B25J9/102Gears specially adapted therefor, e.g. reduction gears
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby
    • H02K11/215Magnetic effect devices, e.g. Hall-effect or magneto-resistive elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/08Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
    • B25J13/088Controls for manipulators by means of sensing devices, e.g. viewing or touching devices with position, velocity or acceleration sensors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/003Couplings; Details of shafts
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/116Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • F16H1/46Systems consisting of a plurality of gear trains each with orbital gears, i.e. systems having three or more central gears

Definitions

  • the present invention belongs to the field of robot technology, and in particular, to a steering gear.
  • the steering gear was first used in the ship to realize its steering function. Because it can continuously control its rotation angle through the program, and because the steering gear also has the advantages of small size, light weight, large torque and high precision, it is widely used in smart cars.
  • the steering gear of a conventional robot usually uses a potentiometer to detect the angle of rotation of the steering gear.
  • the steering gear mainly includes a steering wheel, a reduction gear set, a potentiometer, a DC motor, and a circuit board.
  • the circuit board receives the control signal from the signal line, controls the motor to rotate, and the motor drives a series of gear sets, and then drives to the output steering wheel after deceleration.
  • the output shaft of the steering gear is connected to the potentiometer.
  • the same direction of the steering wheel drives the potentiometer.
  • the potentiometer detects the rotation angle of the steering gear and outputs a voltage signal to the circuit board for feedback.
  • the circuit board is based on The position determines the direction and speed at which the motor rotates to achieve the target stop.
  • the traditional method of detecting the steering angle of the steering gear by the potentiometer is realized by adjusting the voltage (including the DC voltage and the signal voltage) and the current, and the voltage is susceptible to the surrounding environment (such as temperature and sealing). The disturbance of the etc. fluctuates, so the accuracy of the detection is limited.
  • the potentiometer also makes the weight of the steering gear heavier.
  • the prior art steering gear mainly has the following technical problems: First, the potentiometer detects the steering angle of the steering gear, and is prone to deviation due to environmental influence, thereby causing the potentiometer to fail to accurately detect the steering angle of the steering gear. Second, due to the use of potentiometers, the weight of the steering gear is heavier.
  • An object of the present invention is to provide a steering gear, which aims to solve the technical problem that the steering gear of the prior art is heavy and cannot accurately detect the turning angle of the steering gear.
  • a steering gear including a power input device, a gear assembly drivingly coupled to the power input device, and a power output frame driven by the gear assembly to be mounted on the power An output shaft on the output frame, a magnetic coding assembly disposed on a rotation center axis of the power output frame and configured to detect a rotation angle of the output shaft relative to the rotation center axis, and the magnetic coding assembly and the A circuit board to which the power input device is connected.
  • the power output frame is internally connected to a flange, and a center axis of the flange coincides with a rotation center axis of the power output frame.
  • the circuit board is disposed on the flange, and the magnetic coding component is disposed on the circuit board and located on a central axis of the flange, and the circuit board is provided with a sliding groove that is slidably engaged with the output shaft.
  • the output shaft is set to two, and the output shafts of the two are symmetrically disposed on both sides of the magnetic coding component.
  • the flange is provided with a connecting post for fixing the circuit board, and the circuit board is provided with a first connecting hole opposite to the connecting post.
  • the connecting post includes a first connecting post and a second connecting post disposed opposite to the first connecting post, and the first connecting post and the second connecting post are different in size.
  • the flange is further provided with a connecting block; the connecting block is provided with a second connecting hole for connecting with the robot.
  • the connecting block has an arc shape, and the connecting block of the arc shape is slidably engaged with the output shaft.
  • an end of the circuit board is provided with a line connector, and the line connector is electrically connected to the magnetic encoding component.
  • the gear assembly includes a cylinder and a planetary gear set disposed in the cylinder; the inner wall of the cylinder is provided with internal rod teeth, and the planetary gear set is provided with an external gear, the cylinder The inner rod meshes with the outer gear of the planetary gear set.
  • the planetary gear set is set as a three-stage planetary reduction wheel set.
  • the power output frame is detachably mounted on one end of the cylinder.
  • the end surface of the cylinder body is provided with a plurality of first screw holes having the same pitch, and the corresponding power output frame is provided with a plurality of second screw holes opposite to the first screw holes.
  • the power output frame includes an output planet carrier embedded in the flange; the flange is provided with a shaft hole, and the output planet carrier is engaged with a periphery of the shaft hole The output shaft is disposed on the output planet carrier.
  • the magnetic encoding component includes a magnet and a magnetic sensor disposed opposite the magnet and used to detect and process a change in a magnetic field of the magnet.
  • the technical effect of the present invention relative to the prior art is:
  • the steering gear of the present invention is disposed on the center axis of rotation of the power output frame by the magnetic encoder assembly, when the power output frame rotates with the gear assembly,
  • the magnetic coding component on the central axis of rotation of the power output frame accurately detects the rotation angle of the output shaft relative to the central axis of rotation.
  • the magnetic coding component is located on the central axis of rotation of the power output frame, since the magnetic coding component is located on the central axis of rotation of the power output frame, The magnetic coding component is not easily affected by the environment, and the magnetic coding component is convenient for detecting and processing the signal of the rotation angle of the output shaft relative to the central axis of rotation, thereby avoiding the occurrence of deviation and thus accurately detecting the rotation angle of the steering gear.
  • the magnetic coding component is simple in structure and light in weight, and the magnetic coding component is easy to position or fix on the steering gear.
  • FIG. 1 is an exploded view of a steering gear according to a preferred embodiment of the present invention.
  • FIG. 2 is a perspective view of a steering gear according to a preferred embodiment of the present invention.
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” and “second” may explicitly or implicitly include one or more of the features.
  • the meaning of “plurality” is two or more, unless specifically defined otherwise.
  • the terms “installation”, “connected”, “connected”, “fixed” and the like are to be understood broadly, and may be, for example, a fixed connection or a Removable connection, or integrated; can be mechanical connection or electrical connection; it can be directly connected or indirectly connected through an intermediate medium, which can be the internal connection of two elements or the interaction of two elements.
  • the meaning of the above terms in the present invention can be understood by those skilled in the art on a case-by-case basis.
  • a steering gear 1 according to a preferred embodiment of the present invention is applied to a robot.
  • the steering gear 1 includes a power input device 14, a gear assembly 15 that is drivingly coupled to the power input device 14,
  • a power output frame 13 driven by the gear assembly 15 and an output shaft 131 disposed on the power output frame 13 are disposed on a rotation center axis of the power output frame 13 and configured to detect a rotation angle of the output shaft 131 relative to the central axis of rotation
  • the magnetic encoding component 121 and the circuit board 12 electrically connected to the magnetic encoding component 121.
  • the power input device 14 is electrically connected to a main control circuit board (not shown) of the steering gear to power the gear assembly 15.
  • the gear assembly 15 drives the output shaft 131 disposed on the power output frame 13 to rotate.
  • the circuit board 12 controls the magnetic encoding unit 121 disposed on the rotation center axis of the power output frame 13, and the magnetic encoding unit 121 is disposed on the rotation center axis of the power output frame 13 so that the magnetic encoding unit 121 accurately detects the output shaft 131.
  • the steering gear 1 provided by the embodiment of the present invention is disposed on the rotation center axis of the power output frame 13 when the power output frame 13 is rotated by the gear assembly 15, and is disposed on the power output frame.
  • the magnetic encoder assembly 121 on the central axis of rotation of the third can accurately detect the angle of rotation of the output shaft 131 with respect to the central axis of rotation. Specifically, during the rotation of the output shaft 131, the magnetic encoder assembly 121 is located at the rotation of the power output frame 13.
  • the magnetic encoding component 121 On the central axis, the magnetic encoding component 121 is not easily affected by the environment, and the magnetic encoding component 121 facilitates detecting and processing the signal of the rotation angle of the output shaft 131 with respect to the central axis of rotation, thereby avoiding the occurrence of deviation, and thereby accurately detecting the rotation angle of the steering gear 1. Further, the magnetic encoding unit 121 is simple in structure and light in weight, and the magnetic encoding unit 121 is easily positioned or fixed on the steering gear 1.
  • the magnetic encoding component 121 can adopt the conventional conventional technical means.
  • the magnetic encoding component 121 can include a magnet and a magnetic sensor, and a magnetic sensor can be disposed on the circuit board 12, A magnet is provided on the outer joint member of the robot, and the power output frame 13 of the steering gear 1 is connected to the joint of the robot, and the magnetic field sensor detects and processes the magnetic field change of the magnet, and then outputs a signal through the cable.
  • both the magnet and the magnetic sensor employ conventional conventional techniques.
  • the magnetic field detecting chip integrated on the circuit board 12 can be used to process the magnetic field change of the magnet, thereby accurately detecting the rotation angle of the output shaft 131 with respect to the central axis of rotation.
  • the position of the magnet can also be set according to actual needs, so that the magnetic sensor can detect the turning angle of the steering gear by rotating the magnetic field.
  • the power output frame 13 is internally connected to a flange 11 in the middle of the flange 11
  • the axis of the heart coincides with the central axis of rotation of the power take-off frame 13.
  • the flange 11 is connected to the provided cylinder 15 by means of screws 16.
  • a shaft hole 114 is defined in the middle of the flange 11, and the power output frame 13 is mounted in the shaft hole 114.
  • the power output frame 13 includes an output carrier 132 embedded in a shaft hole 114 of the flange 11, the output carrier 132 is engaged with the periphery of the shaft hole 114, and the output shaft 131 is disposed on the output carrier 132.
  • the circuit board 12 Since the central axis of rotation of the power output frame 13 coincides with the central axis of the flange 11, the circuit board 12 is disposed on the flange in order to facilitate the placement of the magnetic encoder assembly 121 on the central axis of rotation of the power output frame 13.
  • the magnetic encoding component 121 On the disk 11, the magnetic encoding component 121 is disposed on the circuit board 12 and located on the central axis of the flange 11.
  • the circuit board 12 In order to facilitate the rotation of the output shaft 131 to better output power, the circuit board 12 is provided with an output shaft. 131 sliding fit sliding groove 124.
  • the output shaft 131 is set to two, and the two output shafts 131 are symmetrically disposed on both sides of the magnetic encoding unit 121. It should be added that the circuit board 12 is fixed between the two output shafts 131. That is, the output shaft 131 of the steering gear 1 has a double protrusion, and a circuit board 12 is disposed between the double protrusions, and the magnetic coding unit 121 is located at the center of the circuit board 12.
  • the magnetic encoding component 121 Since the magnetic encoding component 121 is located at the center of the circuit board 12, the magnetic encoding component 121 is fixed between the two output shafts 131, and the magnetic encoding component 121 does not rotate with the two output shafts 131, which is less likely to cause deviation, thereby further ensuring accurate detection of the magnetic encoding component 121.
  • the number of the output shafts 131 can also be set to multiple A plurality of output shafts 131 are symmetrically disposed on both sides of the magnetic encoding unit 121.
  • the flange 11 is provided with a connecting post 113 for fixing the circuit board 12, and the control circuit board 12 is provided with a first connecting hole opposite to the connecting post 113. 123.
  • the number of the connecting posts 113 can be set to two.
  • the connecting post 113 includes a first connecting post 1131 and a second connecting post 1132 opposite to the first connecting post 11 31, the first connecting post 1131 and the second
  • the size of the connecting post 1132 is set to be different.
  • the first connecting post 1131 and the second connecting post 1132 have a circular cross section, and the first connecting post 1131 and the second connecting post 1132 have different diameters.
  • the shapes of the first connecting post 1131 and the second connecting post 1132 may also be different.
  • the cross section of the first connecting post 1131 may also be set to In a triangular shape (not shown), the cross section of the second connecting post 1132 can be set to be circular.
  • the flange 11 is further provided with a connecting block 111; the connecting block 111 is provided with a second connecting hole 1111 for connecting with the robot. It should be added that the connection block 111 is connected to the skeleton of the robot, and the output shaft 131 is connected to the joint of the robot.
  • the connecting block 111 In order to prevent the connecting block 111 from affecting the rotation of the output shaft 131, the connecting block 111 is curved, and the arc-shaped connecting block 11 is slidably engaged with the output shaft 131. Thus, the rotation of the output shaft 131 on the flange 11 becomes smooth, which is advantageous for the power output of the output shaft 131.
  • the end of the circuit board 12 is further provided with a line connector 122, and the line connector 122 is electrically connected to the magnetic encoding unit 121. Further, the line connector 122 electrically connects the magnetic encoding component 121 to the main control board of the steering gear, thereby facilitating the circuit board 12 to feed back the signal of the magnetic encoding component 121 to the main control board of the steering gear.
  • the gear assembly 15 includes a cylinder 151 and a planetary gear set 152 disposed in the cylinder 151.
  • the inner wall of the cylinder 151 is provided with an inner rod 1510
  • the planetary gear set 152 is provided with an outer gear 1521, which is inside the cylinder 151.
  • the rod 1510 meshes with the outer gear 1521 of the planetary gear set 152.
  • the planet gear shaft 1522 of the planetary gear set 152 is fixedly coupled to the bottom of the power take-off frame 13.
  • an input disk 153 is further provided at the bottom of the cylinder 15, and a center of the input disk 153 is provided with a through hole 1531 through which the shaft 141 of the power input device 14 passes through the through hole 1531 of the input disk 153 and the bottom of the planetary gear set 152. Connected to facilitate power input.
  • the power input device 14 includes a motor, and the planetary gear set 152 is driven by a motor.
  • the planetary gear set 152 drives the power take-off frame 13 to rotate by the planetary gear set 1 52 and the inner rod 1510 of the barrel 151. Therefore, the output shaft 131 rotates with the power output frame 13 under the driving of the planetary gear set 152, and the output shaft 131 is connected to the joint component of the robot, so that the steering gear 1 is driven by the two output shafts 131, Rotate the joint component.
  • the planetary gear set 152 can be set as a three-stage planetary reduction gear set. It should be noted that the three-stage planetary reduction gear set adopts the conventional conventional technology, and the three-stage planetary reduction gear set can also be expressed as a three-stage planetary.
  • the reducer is passed through a three-stage planetary reducer to ensure the reduction ratio of its drive.
  • the planetary gear set 152 includes a planetary gear set 152 stacked in three layers, each of the planetary gear sets 152 includes three external gears 1521, and three external gears 1521 are respectively disposed on the three planetary axles 1522 and in three The planet axle 1522 rotates.
  • the three planetary axles 1522 are integrally designed with the power take-off frame 13 to facilitate the output of power.
  • the power output frame 13 is detachably mounted. At one end of the cylinder 151.
  • the end surface of the cylinder 151 is provided with a plurality of first screw holes 1511 of equal spacing
  • the corresponding power output frame 13 is provided with a plurality of second screws opposite to the first screw holes 151 1 .
  • the hole 112, the first screw hole 1511 and the second screw hole 112 are connected by a screw 16.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Power Steering Mechanism (AREA)
  • Manipulator (AREA)

Abstract

一种舵机(1),包括动力输入装置(14),与动力输入装置(14)驱动连接的齿轮组件(15),由齿轮组件(15)驱动而转动的动力输出架(13),设于动力输出架(13)上的输出轴(131),设于动力输出架(13)的转动中心轴线上且用于检测输出轴(131)相对转动中心轴线的转动角度的磁编码组件(121),以及与磁编码组件(121)和动力输入装置(14)相连的电路板(12)。通过将磁编码组件(121)设置在动力输出架(13)的转动中心轴线上,磁编码组件(121)不易受环境影响,以精准检测输出轴(131)相对转动中心轴线的转动角度,同时,磁编码组件(121)结构简单,重量轻,便于固定在舵机(1)上。

Description

舵机
技术领域
[0001] 本发明属于机器人技术领域, 尤其涉及一种舵机。
背景技术
[0002] 舵机最早用于船舶上实现其转向功能, 由于可以通过程序连续控制其转角, 且 由于舵机还具有体积小、 重量轻、 扭矩大、 精度大的优点, 因而被广泛应用智 能小车以实现转向以及机器人各类关节运动中。 需说明的是, 机器人有许多个 关节, 每一个关节我们称为一个自由度, 一般的机体, 都有十几个自由度, 这 样才能保证动作的灵活性。 在机器人机体上, 我们通常使用舵机作为每一个关 节的连接部分, 舵机可以完成每个关节的定位和运动。
[0003] 传统的机器人的舵机通常采用电位器来检测舵机旋转的角度, 舵机主要包括舵 盘、 减速齿轮组、 电位器、 直流电机以及电路板。 电路板接收来自信号线的控 制信号, 控制电机转动, 电机带动一系列齿轮组, 减速后传动至输出舵盘。 舵 机的输出轴和电位器是相连的, 舵盘转动的同吋, 带动电位器, 电位器通过检 测舵机的转动角度, 并输出一个电压信号到电路板, 进行反馈, 然后电路板根 据所在位置决定电机转动的方向和速度, 从而达到目标停止。 然而传统的通过 电位器来检测舵机转动角度的方法, 由于电位器是通过调节电压 (含直流电压 与信号电压) 和电流的大小来实现的, 而电压易受周边环境 (如温度、 密封性 等) 的干扰而波动, 因此检测的精度有限, 同吋, 电位器还使得舵机的重量较 重。
[0004] 综上, 现有技术的舵机主要存在以下技术问题: 一是电位器在检测舵机转动角 度吋由于受环境影响, 容易产生偏差, 从而导致电位器无法精准检测舵机的转 动角度; 二是由于使用电位器, 使得舵机的重量较重。
技术问题
[0005] 本发明的目的在于提供一种舵机, 旨在解决现有技术中舵机重量重、 无法精准 检测舵机的转动角度的技术问题。 问题的解决方案
技术解决方案
[0006] 本发明是这样实现的, 一种舵机, 包括动力输入装置、 与所述动力输入装置驱 动连接的齿轮组件、 由所述齿轮组件驱动而转动的动力输出架、 设于所述动力 输出架上的输出轴、 设于所述动力输出架的转动中心轴线上且用于检测所述输 出轴相对所述转动中心轴线的转动角度的磁编码组件、 以及与所述磁编码组件 和所述动力输入装置相连的电路板。
[0007] 作为本发明的优选技术方案:
[0008] 进一步地, 所述动力输出架内接于一法兰盘中, 所述法兰盘的中心轴线与所述 动力输出架的转动中心轴线相重合。
[0009] 进一步地, 所述电路板设于所述法兰盘上, 所述磁编码组件设于所述电路板上 且位于所述法兰盘的中心轴线上, 所述电路板上设有用于与所述输出轴滑动配 合的滑动槽。
[0010] 进一步地, 所述输出轴设为两个, 两个的所述输出轴对称设置在所述磁编码组 件的两侧。
[0011] 进一步地, 所述法兰盘上设有用于固定所述电路板的连接柱, 所述电路板上设 有与所述连接柱相对的第一连接孔。
[0012] 进一步地, 所述连接柱包括第一连接柱以及与所述第一连接柱相对设置的第二 连接柱, 所述第一连接柱和所述第二连接柱的大小不同。
[0013] 进一步地, 所述法兰盘上还设有连接块; 所述连接块上设有用于与机器人相连 的第二连接孔。
[0014] 进一步地, 所述连接块呈弧形, 弧形的所述连接块与所述输出轴滑动配合。
[0015] 进一步地, 所述电路板的端部设有线路连接器, 所述线路连接器与所述磁编码 组件电连接。
[0016] 进一步地, 所述齿轮组件包括筒体以及设置在所述筒体内的行星轮组; 所述筒 体的内壁设有内啮齿, 所述行星轮组设有外齿轮, 所述筒体的内啮齿与所述行 星轮组的外齿轮啮合。
[0017] 进一步地, 所述行星轮组设为三级行星减速轮组。 [0018] 进一步地, 所述动力输出架可拆卸安装于所述筒体的一端。
[0019] 进一步地, 所述筒体的端面设有多个间距相等的第一螺丝孔, 对应的所述动力 输出架上设有多个与所述第一螺丝孔相对的第二螺丝孔。
[0020] 进一步地, 所述动力输出架包括内嵌于所述法兰盘中的输出行星架; 所述法兰 盘设有轴孔, 所述输出行星架与所述轴孔的周缘卡合, 所述输出轴设于所述输 出行星架上。
[0021] 进一步地, 所述磁编码组件包括磁铁以及与所述磁铁相对设置且用于检测和处 理所述磁铁的磁场变化的磁传感器。
发明的有益效果
有益效果
[0022] 本发明相对于现有技术的技术效果是: 本发明的舵机通过将磁编码组件设置在 动力输出架的转动中心轴线上, 当动力输出架随着齿轮组件转动吋, 通过设置 在动力输出架的转动中心轴线上的磁编码组件来精准检测输出轴相对转动中心 轴线的转动角度, 具体地, 在输出轴转动的过程中, 由于磁编码组件位于动力 输出架的转动中心轴线上, 磁编码组件不易受环境影响, 磁编码组件便于检测 和处理输出轴相对转动中心轴线的转动角度的信号, 避免了偏差的产生, 进而 精准检测舵机的转动角度。 同吋, 磁编码组件结构简单, 重量轻, 磁编码组件 便于定位或固定在舵机上。
对附图的简要说明
附图说明
[0023] 为了更清楚地说明本发明实施例的技术方案, 下面将对本发明实施例或现有技 术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面所描述的附图仅 仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳 动的前提下, 还可以根据这些附图获得其他的附图。
[0024] 图 1是本发明较佳实施例提供的舵机的爆炸图;
[0025] 图 2是本发明较佳实施例提供的舵机的立体图。
[0026] 附图标记说明:
[0027] 图中: 1-舵机, 11-法兰盘, 111-连接块, 1111-第二连接孔, 112-第二螺丝孔, 113-连接柱, 1131-第一连接柱, 1132-第二连接柱, 114-轴孔, 12-电路板, 121- 磁编码组件, 122-线路连接器, 123-第一连接孔, 124-滑动槽, 13-动力输出架, 131-输出轴, 132-输出行星架, 14-动力输入装置, 141-轴, 15-齿轮组件, 151- 筒体, 1510-内啮齿, 1511-第一螺丝孔, 152-行星轮组, 1521-外齿轮, 1522-行 星轮轴, 153-输入盘, 1531-通孔, 16-螺丝。 本发明的实施方式
[0028] 下面详细描述本发明的实施例, 实施例的示例在附图中示出, 其中自始至终相 同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。 下面通 过参考附图描述的实施例是示例性的, 旨在用于解释本发明, 而不能理解为对 本发明的限制。
[0029] 在本发明的描述中, 需要理解的是, 术语"长度"、 "宽度"、 "上"、 "下"、 "前" 、 "后"、 "左"、 "右"、 "竖直"、 "水平"、 "顶"、 "底 ""内"、 "外"等指示的方位或 位置关系为基于附图所示的方位或位置关系, 仅是为了便于描述本发明和简化 描述, 而不是指示或暗示所指的装置或元件必须具有特定的方位、 以特定的方 位构造和操作, 因此不能理解为对本发明的限制。
[0030] 此外, 术语"第一"、 "第二 "仅用于描述目的, 而不能理解为指示或暗示相对重 要性或者隐含指明所指示的技术特征的数量。 由此, 限定有 "第一"、 "第二 "的特 征可以明示或者隐含地包括一个或者更多个该特征。 在本发明的描述中, "多个" 的含义是两个或两个以上, 除非另有明确具体的限定。
[0031] 在本发明中, 除非另有明确的规定和限定, 术语"安装"、 "相连"、 "连接"、 "固 定"等术语应做广义理解, 例如, 可以是固定连接, 也可以是可拆卸连接, 或成 一体; 可以是机械连接, 也可以是电连接; 可以是直接相连, 也可以通过中间 媒介间接相连, 可以是两个元件内部的连通或两个元件的相互作用关系。 对于 本领域的普通技术人员而言, 可以根据具体情况理解上述术语在本发明中的具 体含义。
[0032] 为了使本发明的目的、 技术方案及优点更加清楚明白, 以下结合附图及实施例 , 对本发明进行进一步详细说明。 [0033] 请参阅附图 1和附图 2, 本发明较佳实施例的舵机 1应用于一机器人, 该舵机 1包 括动力输入装置 14、 与动力输入装置 14驱动连接的齿轮组件 15、 由齿轮组件 15 驱动而转动的动力输出架 13、 设于动力输出架 13上的输出轴 131、 设于动力输出 架 13的转动中心轴线上且用于检测输出轴 131相对转动中心轴线的转动角度的磁 编码组件 121、 以及与磁编码组件 121电连接的电路板 12。
[0034] 在本实施例中, 动力输入装置 14与舵机的一主控线路板 (图中未示出) 电连接 , 为齿轮组件 15提供动力。 齿轮组件 15带动设置在动力输出架 13上的输出轴 131 转动。 电路板 12控制设置在动力输出架 13的转动中心轴线上的磁编码组件 121, 通过将磁编码组件 121设置在动力输出架 13的转动中心轴线上, 以使得磁编码组 件 121精准检测输出轴 131相对转动中心轴线的转动角度。
[0035] 本发明实施例提供的舵机 1, 通过将磁编码组件 121设置在动力输出架 13的转动 中心轴线上, 当动力输出架 13随着齿轮组件 15转动吋, 通过设置在动力输出架 1 3的转动中心轴线上的磁编码组件 121可精准检测输出轴 131相对转动中心轴线的 转动角度, 具体地, 在输出轴 131转动的过程中, 由于磁编码组件 121位于动力 输出架 13的转动中心轴线上, 磁编码组件 121不易受环境影响, 磁编码组件 121 便于检测和处理输出轴 131相对转动中心轴线的转动角度的信号, 避免了偏差的 产生, 进而精准检测舵机 1的转动角度。 此外, 磁编码组件 121结构简单, 重量 轻, 磁编码组件 121便于定位或固定在舵机 1上。
[0036] 需说明的是, 磁编码组件 121可以采用现有常规技术手段, 具体地, 本实施例 中, 磁编码组件 121可包括磁铁和磁传感器, 可以通过在电路板 12上设置磁传感 器, 在机器人的外部关节部件上设置磁铁, 舵机 1的动力输出架 13与机器人的关 节连接, 通过磁传感器检测和处理磁铁的磁场变化, 进而再通过电缆来输出信 号。 具体地, 磁铁和磁传感器均采用现有常规技术手段。 此外, 也可以通过在 电路板 12上设置磁场检测芯片, 通过在电路板 12上集成的磁场检测芯片来处理 磁铁的磁场变化, 进而精准检测输出轴 131相对转动中心轴线的转动角度。 此外 , 磁铁的位置也可以根据实际的需要进行设置, 以便于磁传感器通过旋转磁场 来检测舵机的转动角度。
[0037] 此外, 为了便于安装固定, 动力输出架 13内接于一法兰盘 11中, 法兰盘 11的中 心轴线与动力输出架 13的转动中心轴线相重合。 法兰盘 11通过螺丝 16再与设置 的筒体 15连接。 法兰盘 11的中部设有轴孔 114, 动力输出架 13安装于轴孔 114中 。 动力输出架 13包括内嵌于法兰盘 11的轴孔 114中的输出行星架 132, 该输出行 星架 132与轴孔 114的周缘卡合, 输出轴 131设于输出行星架 132上。
[0038] 由于动力输出架 13的转动中心轴线与法兰盘 11的中心轴线重合, 因此, 为了便 于将磁编码组件 121设置于动力输出架 13的转动中心轴线上, 电路板 12设于法兰 盘 11上, 磁编码组件 121设于电路板 12上且位于法兰盘 11的中心轴线上, 为了便 于输出轴 131的转动, 以更好地输出动力, 电路板 12上设有用于与输出轴 131滑 动配合的滑动槽 124。
[0039] 进一步地, 为了增强输出轴 131动力输出的平衡性和稳定性, 输出轴 131设为两 个, 两个的输出轴 131对称设置在磁编码组件 121的两侧。 需要补充的是, 电路 板 12固定于两个输出轴 131中间。 即舵机 1的输出轴 131呈双凸柱, 且在双凸柱之 间设置电路板 12, 磁编码组件 121位于电路板 12的中央。 由于磁编码组件 121位 于电路板 12的中央, 使得磁编码组件 121固定于两个输出轴 131中间, 磁编码组 件 121不随两个输出轴 131转动, 不易产生偏差, 进一步保证磁编码组件 121精准 检测舵机 1的转动角度。 可以理解地, 鉴于磁编码组件 121设于动力输出架 13的 转动中心轴线上, 且为了更精准地检测输出轴 131相对转动中心轴线的转动角度 , 输出轴 131的个数也可以设为多个, 多个的输出轴 131对称设置在磁编码组件 1 21的两侧。
[0040] 为了便于法兰盘 11与电路板 12的连接, 法兰盘 11上设有用于固定电路板 12的连 接柱 113, 控制电路板 12上设有与连接柱 113相对的第一连接孔 123。 细化地, 为 了便于法兰盘 11与电路板 12的定位及稳固连接, 连接柱 113的数量可设为两个, 优选地, 考虑到增加连接柱 113与电路板 12之间的接触面积, 以使得电路板 12更 稳固地安装在法兰盘 11上, 连接柱 113包括第一连接柱 1131以及与第一连接柱 11 31相对设置的第二连接柱 1132, 第一连接柱 1131和第二连接柱 1132的大小设为 不同。 具体地, 第一连接柱 1131和第二连接柱 1132的横截面均呈圆形, 第一连 接柱 1131和第二连接柱 1132的直径大小不同。 此外, 第一连接柱 1131和第二连 接柱 1132的形状也可以设为不同, 比如, 第一连接柱 1131的横截面还可以设为 呈三角形 (图中未示出) , 第二连接柱 1132的横截面可以设为呈圆形。
[0041] 细化地, 法兰盘 11上还设有连接块 111 ; 连接块 111上设有用于与机器人相连的 第二连接孔 1111。 需要补充的是, 连接块 111与机器人的骨架连接, 输出轴 131 与机器人的关节连接。
[0042] 为了避免连接块 111影响输出轴 131的转动, 连接块 111呈弧形, 弧形的连接块 1 11与输出轴 131滑动配合。 这样, 输出轴 131于法兰盘 11上的转动变得顺畅, 有 利于输出轴 131的动力输出。
[0043] 电路板 12的端部还设有线路连接器 122, 线路连接器 122与磁编码组件 121电连 接。 进一步地, 线路连接器 122将磁编码组件 121再与舵机的主控线路板电连接 , 从而方便电路板 12将磁编码组件 121的信号反馈至舵机的主控线路板。
[0044] 齿轮组件 15包括筒体 151以及设置在筒体 151内的行星轮组 152, 筒体 151的内壁 设有内啮齿 1510, 行星轮组 152设有外齿轮 1521, 该筒体 151的内啮齿 1510与行 星轮组 152的外齿轮 1521啮合。 在本实施例中, 行星轮组 152的行星轮轴 1522与 动力输出架 13的底部固定连接。 此外, 在筒体 15的底部还设有输入盘 153, 输入 盘 153的中央设有通孔 1531, 动力输入装置 14的轴 141穿过输入盘 153的通孔 1531 并与行星轮组 152的底部连接, 以便于动力的输入。
[0045] 细化地, 动力输入装置 14包括电机, 行星轮组 152由电机驱动。 通过行星轮组 1 52与筒体 151的内啮齿 1510传动, 行星轮组 152驱使动力输出架 13转动。 从而, 输出轴 131在行星轮组 152的驱动下随动力输出架 13—同转动, 且该输出轴 131与 机器人的关节部件枢纽连接, 以使舵机 1在两输出轴 131的带动下, 相对于关节 部件转动。
[0046] 优选地, 行星轮组 152可以设为三级行星减速轮组, 需说明的是, 三级行星减 速轮组采用现有常规技术, 三级行星减速轮组也可表述为三级行星减速器, 通 过三级行星减速器以保证其传动吋的减速比。 细化地, 行星轮组 152包括层叠设 置为三层的行星轮组 152, 每层的行星轮组 152包括三个外齿轮 1521, 三个外齿 轮 1521分别设置在三根行星轮轴 1522上且在三根行星轮轴 1522上转动。 还需说 明的是, 三根行星轮轴 1522与动力输出架 13设计为一体, 以便于动力的输出。 此外, 为了便于动力输出架 13与筒体 151的安装配合, 动力输出架 13可拆卸安装 于筒体 151的一端。 进一步地, 为了便于安装和拆卸, 筒体 151的端面设有多个 间距相等的第一螺丝孔 1511, 对应的动力输出架 13上设有多个与第一螺丝孔 151 1相对的第二螺丝孔 112, 第一螺丝孔 1511和第二螺丝孔 112通过螺丝 16相连。 以上仅为本发明的较佳实施例而已, 并不用以限制本发明, 凡在本发明的精神 和原则之内所作的任何修改、 等同替换和改进等, 均应包含在本发明的保护范 围之内。

Claims

权利要求书
[权利要求 1] 一种舵机, 其特征在于, 包括: 动力输入装置、 与所述动力输入装置 驱动连接的齿轮组件、 由所述齿轮组件驱动而转动的动力输出架、 设 于所述动力输出架上的输出轴、 设于所述动力输出架的转动中心轴线 上且用于检测所述输出轴相对所述转动中心轴线的转动角度的磁编码 组件、 以及与所述磁编码组件和所述动力输入装置相连的电路板。
[权利要求 2] 如权利要求 1所述的舵机, 其特征在于, 所述动力输出架内接于一法 兰盘中, 所述法兰盘的中心轴线与所述动力输出架的转动中心轴线相 重合。
[权利要求 3] 如权利要求 2所述的舵机, 其特征在于, 所述电路板设于所述法兰盘 上, 所述磁编码组件设于所述电路板上且位于所述法兰盘的中心轴线 上, 所述电路板上设有用于与所述输出轴滑动配合的滑动槽。
[权利要求 4] 如权利要求 1~3任一项所述的舵机, 其特征在于, 所述输出轴设为两 个, 两个的所述输出轴对称设置在所述磁编码组件的两侧。
[权利要求 5] 如权利要求 2或 3所述的舵机, 其特征在于, 所述法兰盘上设有用于固 定所述电路板的连接柱, 所述电路板上设有与所述连接柱相对的第一 连接孔。
[权利要求 6] 如权利要求 5所述的舵机, 其特征在于, 所述连接柱包括第一连接柱 以及与所述第一连接柱相对设置的第二连接柱, 所述第一连接柱和所 述第二连接柱的大小不同。
[权利要求 7] 如权利要求 2或 3所述的舵机, 其特征在于, 所述法兰盘上还设有连接 块; 所述连接块上设有用于与机器人相连的第二连接孔。
[权利要求 8] 如权利要求 7所述的舵机, 其特征在于, 所述连接块呈弧形, 弧形的 所述连接块与所述输出轴滑动配合。
[权利要求 9] 如权利要求 1~3任一项所述的舵机, 其特征在于, 所述电路板的端部 设有线路连接器, 所述线路连接器与所述磁编码组件电连接。
[权利要求 10] 如权利要求 1~3任一项所述的舵机, 其特征在于, 所述齿轮组件包括 筒体以及设置在所述筒体内的行星轮组; 所述筒体的内壁设有内啮齿 , 所述行星轮组设有外齿轮, 所述筒体的内啮齿与所述行星轮组的外 齿轮啮合。
[权利要求 11] 如权利要求 10所述的舵机, 其特征在于, 所述行星轮组设为三级行星 减速轮组。
[权利要求 12] 如权利要求 10所述的舵机, 其特征在于, 所述动力输出架可拆卸安装 于所述筒体的一端。
[权利要求 13] 如权利要求 12所述的舵机, 其特征在于, 所述筒体的端面设有多个间 距相等的第一螺丝孔, 对应的所述动力输出架上设有多个与所述第一 螺丝孔相对的第二螺丝孔。
[权利要求 14] 如权利要求 1~3任一项所述的舵机, 其特征在于, 所述动力输出架包 括内嵌于所述法兰盘中的输出行星架; 所述法兰盘设有轴孔, 所述输 出行星架与所述轴孔的周缘卡合, 所述输出轴设于所述输出行星架上
[权利要求 15] 如权利要求 1~3任一项所述的舵机, 其特征在于, 所述磁编码组件包 括磁铁以及与所述磁铁相对设置且用于检测和处理所述磁铁的磁场变 化的磁传感器。
PCT/CN2016/103722 2016-10-28 2016-10-28 舵机 WO2018076267A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/323,098 US10637331B2 (en) 2016-10-28 2016-10-28 Servo
PCT/CN2016/103722 WO2018076267A1 (zh) 2016-10-28 2016-10-28 舵机

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/103722 WO2018076267A1 (zh) 2016-10-28 2016-10-28 舵机

Publications (1)

Publication Number Publication Date
WO2018076267A1 true WO2018076267A1 (zh) 2018-05-03

Family

ID=62024431

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/103722 WO2018076267A1 (zh) 2016-10-28 2016-10-28 舵机

Country Status (2)

Country Link
US (1) US10637331B2 (zh)
WO (1) WO2018076267A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7197296B2 (ja) * 2018-07-12 2022-12-27 日本電産コパル株式会社 ギヤドモータ及びこのギヤドモータを備えたロボット
CN109617325A (zh) * 2018-12-12 2019-04-12 深圳市优必选科技有限公司 舵机
CN110682324A (zh) * 2019-09-18 2020-01-14 广东工业大学 一种可全角度旋转的柔性机械臂关节

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103419200A (zh) * 2013-07-23 2013-12-04 大连理工大学 一种机器人的仿肌弹性关节驱动装置
CN203804996U (zh) * 2014-04-04 2014-09-03 华南理工大学广州学院 一种家用机器人关节用的舵机
KR20140121751A (ko) * 2013-04-08 2014-10-16 주식회사 마이크로오토메이션 액추에이터
CN104991442A (zh) * 2015-06-24 2015-10-21 北京工业大学 基于无刷电机驱动的大力矩舵机伺服系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5899648B2 (ja) * 2010-07-27 2016-04-06 株式会社リコー 駆動装置、画像形成装置および画像形成装置の周辺装置
TWM463008U (zh) * 2013-06-07 2013-10-01 Willing Technology Co Ltd 伺服機之齒輪結構
US20150207368A1 (en) * 2014-01-23 2015-07-23 Tricore Corporation Motorized servo device using caseless motor
TWM483607U (zh) * 2014-04-07 2014-08-01 Tricore Corp 伺服機
CN104991142B (zh) 2015-07-09 2018-12-07 杭州亿恒科技有限公司 一种信号分析仪、装置及处理方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140121751A (ko) * 2013-04-08 2014-10-16 주식회사 마이크로오토메이션 액추에이터
CN103419200A (zh) * 2013-07-23 2013-12-04 大连理工大学 一种机器人的仿肌弹性关节驱动装置
CN203804996U (zh) * 2014-04-04 2014-09-03 华南理工大学广州学院 一种家用机器人关节用的舵机
CN104991442A (zh) * 2015-06-24 2015-10-21 北京工业大学 基于无刷电机驱动的大力矩舵机伺服系统

Also Published As

Publication number Publication date
US10637331B2 (en) 2020-04-28
US20180183303A1 (en) 2018-06-28

Similar Documents

Publication Publication Date Title
JP6751346B2 (ja) 精密シリンジ・ポンプおよびその製造方法
WO2018076267A1 (zh) 舵机
CN106092595B (zh) 一种车辆安全维护检测装置
CN104734415A (zh) 一种减速电机
CN111237399A (zh) 一种输出高精度位置信息的伺服舵机
CN106239443A (zh) 一种基于平行四边形连杆机构的二维转台
CN207814346U (zh) 双出轴舵机
CN208662889U (zh) 一种多手臂直线焊接机器人
CN208034713U (zh) 机器人双输出关节伺服
CN208719267U (zh) 一种蜗轮蜗杆旋转机构
CN206419448U (zh) 一种直连式电动滑台
CN203094161U (zh) 一种工业车辆用差动式助力转向手柄装置
CN207034111U (zh) 一种涡轮及其传动结构
CN106369112B (zh) 驱动装置
RU118806U1 (ru) Электромеханический модуль
CN104528366A (zh) 用于汽车生产线的旋转装置
CN203747706U (zh) 一种霍尔传感器式舵机
CN209485263U (zh) 一种高精度电子角度控制装置
CN207206448U (zh) 一种机器人用抓取机械臂
CN103112488B (zh) 一种工业车辆用差动式助力转向手柄装置
CN201956151U (zh) 一种双电位器
CN207197484U (zh) 一种软轴螺距检测装置
CN207618956U (zh) 前移式叉车agv
RU94776U1 (ru) Электромеханический модуль
CN106335055A (zh) 一种机器人舵机组件及机器人

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15323098

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16920356

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16920356

Country of ref document: EP

Kind code of ref document: A1