WO2018076213A1 - 无线充电功率线圈、无线充电系统及无线充电控制方法 - Google Patents

无线充电功率线圈、无线充电系统及无线充电控制方法 Download PDF

Info

Publication number
WO2018076213A1
WO2018076213A1 PCT/CN2016/103438 CN2016103438W WO2018076213A1 WO 2018076213 A1 WO2018076213 A1 WO 2018076213A1 CN 2016103438 W CN2016103438 W CN 2016103438W WO 2018076213 A1 WO2018076213 A1 WO 2018076213A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
wireless charging
power
power supply
vehicle
Prior art date
Application number
PCT/CN2016/103438
Other languages
English (en)
French (fr)
Inventor
周诚智
周和平
Original Assignee
深圳市沃尔核材股份有限公司
深圳市沃尔新能源电气科技股份有限公司
深圳市沃尔特种线缆有限公司
常州市沃尔新材有限公司
乐庭电线工业(惠州)有限公司
惠州乐庭电子线缆有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市沃尔核材股份有限公司, 深圳市沃尔新能源电气科技股份有限公司, 深圳市沃尔特种线缆有限公司, 常州市沃尔新材有限公司, 乐庭电线工业(惠州)有限公司, 惠州乐庭电子线缆有限公司 filed Critical 深圳市沃尔核材股份有限公司
Priority to PCT/CN2016/103438 priority Critical patent/WO2018076213A1/zh
Publication of WO2018076213A1 publication Critical patent/WO2018076213A1/zh

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to the field of wireless charging technologies, and in particular, to a wireless charging power coil, a wireless charging system, and a wireless charging control method.
  • car charging mainly uses wired charging and wireless charging.
  • Wireless charging eliminates frequent contact between electric vehicles and charging power sources, reduces manual operations, simplifies charging steps and reduces charging costs, and thus is more widely used.
  • the wireless charging system comprises a power supply end and a vehicle end, wherein the power supply end is provided with a power supply end coil, and the vehicle end end is provided with a vehicle end coil.
  • the power supply end is provided with a power supply end coil
  • the vehicle end end is provided with a vehicle end coil.
  • the power output power is rectified, transformed, and modulated by the power conversion device, and then transmitted through the power supply end coil.
  • the vehicle end coil receives the wireless electromagnetic energy, and is rectified. After the filtering process, the car battery is charged.
  • a polar coil such as a DD type coil
  • a non-polar coil When the power supply coil and the vehicle end coil are inconsistent, the car may not be charged properly.
  • the prior art usually adds one more coil to the original two coils, that is, the third coil is used to switch the polarity of the power supply end coil to match the power supply end coil and the vehicle end coil.
  • this switching method has a low charging efficiency and requires an additional increase in the copper consumption of the power supply coil. This is a waste of resources and an increase in cost due to the depletion of the earth's mineral resources.
  • a primary object of the present invention is to provide a wireless charging power coil that is intended to improve charging efficiency and reduce cost.
  • the present invention provides a wireless charging power coil including a first coil, a second coil, and a switching device; the first coil is connected to the second coil;
  • the direction of current rotation in the first coil is the same as the direction of current rotation in the second coil is a pole charging mode; the direction of current rotation in the first coil is opposite to the direction of current rotation in the second coil is an infinite charge mode ;
  • the switching device switches the wireless charging power coil to operate in a pole charging mode or a poleless charging mode.
  • the first coil includes a first end and a second end, wherein the first end is located outside the first coil, the second end is located inside the first coil; and the second coil includes the first end and the second end The first end is located outside the second coil, and the second end is located inside the second coil; wherein the first end of the first coil is a current input end.
  • the wireless charging power coil further includes a magnetic conductive member, and the magnetic conductive member is simultaneously disposed on the first coil and the second coil.
  • the first coil is symmetrically and spaced apart from the second coil, and the first coil and the second coil are located in the same plane;
  • the area enclosed by the first coil partially overlaps the area enclosed by the second coil, and the plane of the first coil and the plane of the second coil are parallel to each other;
  • the switching device controls conduction between the second end of the first coil and the first end of the second coil, so that The direction of current rotation in the first coil is opposite to the direction of current rotation in the second coil.
  • the switching device controls conduction between the second end of the first coil and the second end of the second coil,
  • the direction of current rotation in the first coil is made the same as the direction of current rotation in the second coil.
  • the switching device controls conduction between the second end of the first coil and the first end of the second coil.
  • the direction of current rotation in the first coil is opposite to the direction of current rotation in the second coil.
  • the switching device controls conduction between the second end of the first coil and the second end of the second coil,
  • the direction of current rotation in the first coil is made the same as the direction of current rotation in the second coil.
  • a wireless charging system includes a power supply end power conversion module, a power supply end coil, a power supply management module, a vehicle end coil, a vehicle end power conversion module, and a vehicle management module; and the power supply end coil or / And the vehicle end coil adopting the wireless charging power coil according to any one of claims 1;
  • the two input ends of the power supply end power conversion module are connected to the power source, and the two output ends of the power supply end power conversion module are respectively connected with the two ends of the power supply end coil; the two ends of the vehicle end coil and the vehicle end end power conversion The two input ends of the module are connected, and the two output ends of the vehicle end power conversion module are connected to the vehicle battery;
  • the power management module When charging, the power management module sends a coil type signal to the vehicle management module, and the vehicle management module receives the coil type signal, and according to the coil type signal, controls the switching device to switch the vehicle end coil to operate in a pole charging mode or Promise charging mode.
  • the wireless charging power coil further includes a magnetic conductive member, and the magnetic conductive member is simultaneously disposed on the first coil and the second coil.
  • the first coil is symmetrically and spaced apart from the second coil, and the first coil and the second coil are located in the same plane;
  • the area enclosed by the first coil partially overlaps the area enclosed by the second coil, and the plane of the first coil and the plane of the second coil are parallel to each other;
  • the switching device controls conduction between the second end of the first coil and the first end of the second coil.
  • the direction of the current in the first coil is the same as the direction of the current in the second coil.
  • the switching device controls between the second end of the first coil and the first end of the second coil
  • the conduction is such that a current direction in the first coil is the same as a current direction in the second coil.
  • the invention provides a wireless charging control method, which is applied to the wireless charging system as described above, wherein the power supply end coil adopts the wireless charging power coil, and the method comprises the following steps:
  • the power management module sends a coil type signal to the vehicle management module
  • the vehicle management module switches the power supply end coil to operate in a pole charging mode or a poleless charging mode according to the coil type signal.
  • the technical solution of the present invention forms a wireless charging power coil by providing a first coil, a second coil, and a switching device.
  • the first coil is connected to the second coil; wherein the electrical connection relationship between the first coil and the second coil is changed by the switching device, so that the wireless charging power coil can operate in the pole charging mode and the poleless charging mode;
  • the polarity of the wireless charging power coil can be switched by the switching device to match, thereby improving the charging efficiency.
  • the technical solution of the invention only needs to adjust the electrical connection between the first coil and the second coil to achieve matching of the power supply end coil and the vehicle end coil, and the scheme is simple, high in efficiency and low in cost.
  • FIG. 1 is a schematic structural view of an embodiment of a wireless charging power coil according to the present invention.
  • FIG. 2 is a schematic structural view of another perspective view of the wireless charging power coil shown in FIG. 1;
  • FIG. 3 is a schematic view showing a first embodiment of a positional relationship between a first coil and a second coil according to the present invention
  • FIG. 4 is a schematic view showing a second embodiment of the positional relationship between the first coil and the second coil of the present invention
  • Figure 5 is a schematic view showing a third embodiment of the positional relationship between the first coil and the second coil of the present invention.
  • FIG. 6 is a schematic view showing the connection of a first coil and a second coil in a pole charging mode according to the present invention
  • FIG. 7 is a schematic view showing current flow in a first coil and a second coil in a pole charging mode according to the present invention.
  • FIG. 8 is a schematic view showing a magnetic field distribution generated by a first coil and a second coil in a pole charging mode according to the present invention
  • Figure 9 is a schematic view showing the connection of the first coil and the second coil in the electrodeless charging mode of the present invention.
  • FIG. 10 is a schematic view showing current flow in a first coil and a second coil in a stepless charging mode of the present invention
  • FIG. 11 is a schematic view showing a magnetic field distribution generated by a first coil and a second coil in a stepless charging mode of the present invention
  • FIG. 12 is a functional block diagram of an embodiment of a wireless charging system according to the present invention.
  • FIG. 13 is a schematic flowchart diagram of a first embodiment of a wireless charging control method according to the present invention.
  • FIG. 14 is a schematic flowchart diagram of a second embodiment of a wireless charging control method according to the present invention.
  • FIG. 15 is a schematic flow chart of a third embodiment of a wireless charging control method according to the present invention.
  • Label name Label name 1 First coil 30 Power management module 2 Second coil 40 Vehicle end coil 3 Magnetic guide 50 Vehicle terminal power management module 10 Power supply power conversion module 60 Vehicle management module 20 Power supply coil
  • first, second, and the like in the present invention are used for the purpose of description only, and are not to be construed as indicating or implying their relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” or “second” may include at least one of the features, either explicitly or implicitly.
  • the technical solutions between the various embodiments may be combined with each other, but must be based on the realization of those skilled in the art, and when the combination of the technical solutions is contradictory or impossible to implement, it should be considered that the combination of the technical solutions does not exist. It is also within the scope of protection required by the present invention.
  • the invention provides a wireless charging power coil.
  • the wireless charging power coil includes a first coil 1, a second coil 2, and a switching device (not shown);
  • the coil 1 is connected to the second coil 2.
  • the direction of current rotation in the first coil 1 is the same as the direction of current rotation in the second coil 2 is a pole charging mode; the direction of current rotation in the first coil 1 is opposite to the direction of current rotation in the second coil 2 It is a stepless charging mode.
  • the wireless charging power coil can be used for the power coil of the vehicle end, and can also be used for the power coil of the power supply end.
  • the wireless charging power coil includes two rectangular coils of similar shape and independent. The aspect ratio of the rectangular coil is close to 2:1.
  • the first coil 1 and the second coil 2 are both wound by a Litz wire.
  • one of the first end of the first coil 1 and the second coil 2 are connected to the power supply at both ends of the wireless charging power coil.
  • the electrical connection of the first coil 1 and the second coil 2 is changed. Therefore, the direction of the current flowing in the first coil 1 and the second coil 2 changes, the direction of the established electric field of the first coil 1 and the second coil 2 changes, and the magnetic field generated based on the electric field also changes, and finally the wireless is realized. Switching of the polarity of the charging power coil.
  • the technical solution of the present invention forms a wireless charging power coil by providing the first coil 1, the second coil 2, and the switching device.
  • the first coil 1 is connected to the second coil 2; wherein the electrical connection relationship between the first coil 1 and the second coil 2 is changed by a switching device, so that the wireless charging power coil can operate in a pole charging mode and a poleless Charging mode; during actual charging, whether the power coil on the other side is a polar coil or a non-polar coil, the polarity of the wireless charging power coil can be switched by the switching device to match and improve the charging efficiency.
  • the technical solution of the invention only needs to adjust the electrical connection between the first coil and the second coil to achieve matching of the power supply end coil and the vehicle end coil, and the scheme is simple, high in efficiency and low in cost.
  • the first coil 1 includes a first end A and a second end B, wherein the first end A is located outside the first coil, the second end B is located inside the first coil, and the second coil 2 includes the first end C And a second end D, wherein the first end C is located outside the second coil 2, and the second end D is located inside the second coil 2.
  • the connection of the second end B of the first coil 1 to the first end C of the second coil 2 is in a pole charging mode.
  • the wireless charging power coil further includes a magnetic conductive member 3 disposed on the same side of the first coil 1 and the second coil 2.
  • the wireless charging power coil may be provided with a plurality of magnetic conductive members 3, and the plurality of magnetic conductive members 3 are arranged side by side, and are located at the same time on the surfaces of the first coil 1 and the second coil 2.
  • the magnetic conductive member 3 is for enhancing the magnetic field, and the present embodiment employs a ferrite core.
  • the first coil 1 and the second coil 2 are symmetrically and spaced apart, and the first coil 1 and the second coil 2 are located in the same plane. At this time, the first coil 1 and the second coil 2 are not in direct contact, and the first coil 1 and the second coil 2 are spaced apart.
  • the partial coils of the first coil 1 and the partial coils of the second coil 2 overlap each other.
  • the first coil 1 and the second coil 2 are approximately rectangular, and one long side of the first coil 1 and one long side of the second coil 2 coincide, that is, the first coil 1 and the second coil 2 share the middle. One side. At this time, the first coil 1 and the second coil 2 are enclosed in an approximately square shape.
  • the switching device controls the second end of the first coil 1 and the The first end of the second coil 2 is electrically connected, and the connection between the first coil 1 and the second coil 2 is connected by ABDC.
  • the wireless charging power line operates in a pole charging mode, so that the first The direction of current rotation in a coil 1 is the same as the direction of current rotation in the second coil 2.
  • the arrows represent the direction of current flow.
  • the currents of the adjacent edges of the two coils are in the same phase, so the resulting magnetic field substantially cancels.
  • the sum of the magnetic fields produced by the two coils is close to the magnetic field generated by a single square coil.
  • the wireless charging power coil is compatible with the infinite coil of the vehicle end, and the magnetic field has only a single strike between the two coils. (The other goes into the air outside the coil), avoiding the magnetic field cancellation and inefficient transmission caused by the sampling of the DD-type coil and the center of the electrodeless coil.
  • the switching device controls the second end of the first coil 1 and the second coil 2 . Conducted between the second ends, the connection between the first coil 1 and the second coil 2 is ABCD according to the connection.
  • the wireless charging power line operates in the infinite charging mode, so that the current in the first coil 1
  • the direction of rotation is the same as the direction of current rotation in the second coil 2. It can be seen that in this connection mode, the wireless charging power coil is compatible with the electrodeless coil of the vehicle end, and the magnetic field is closed. The closed magnetic field both increases the charging efficiency and reduces the electromagnetic waves emitted outward.
  • the switching device controls the second end of the first coil 1
  • the first end of the second coil 2 is electrically connected.
  • the wireless charging power line operates in a pole charging mode, so that the current rotation direction in the first coil 1 and the current in the second coil 2 The direction of rotation is reversed.
  • the switching device controls the second end of the first coil 1
  • the second end of the second coil 2 is electrically connected, and the wireless charging power line operates in the infinite charging mode, so that the current direction in the first coil 1 is the same as the current direction in the second coil 2. .
  • the first embodiment of the present invention provides a wireless charging system including a power supply end power conversion module 10, a power supply end coil 20, a power supply management module 30, a vehicle end coil 40, a vehicle end power conversion module 50, and a vehicle management module 60; the power supply end coil 20 or/and the vehicle end coil 40 adopts a wireless charging power coil as described above;
  • the second embodiment of the present invention further provides another wireless charging system.
  • the wireless charging system includes a power supply end power conversion module 10, a power supply end coil 20, a power supply management module 30, a vehicle end coil 40, and a vehicle end power conversion module 50. And a vehicle management module 60; the power supply end coil 20 or/and the vehicle end coil 40 adopts a wireless charging power coil as described above;
  • the two input ends of the power supply end power conversion module 10 are connected to the power supply, and the two output ends of the power supply end power conversion module 10 are respectively connected to the two ends of the power supply end coil 20;
  • the two ends of the end power conversion module 50 are connected, and the two output ends of the vehicle end power conversion module 50 are connected to the vehicle battery;
  • the vehicle end sensing device on the electric vehicle detects the power supply end, and the vehicle end and the power supply end perform a handshake protocol to realize software and hardware compatibility detection of the vehicle end and the power supply end, and the vehicle controls the power supply end coil 20 and The power supply end coils 20 are aligned, and coil pairing is performed, and the coil pairing is performed by the following control method.
  • the power management module 30 sends a coil type signal to the vehicle management module 60.
  • the connection mode of the power supply end coil 20 defaults to the pole charging mode, and the power management module 30 sends a coil type signal indicated as having a pole coil.
  • the power management module 30 determines, according to the coil type signal, whether the power supply end coil 20 is compatible with the vehicle end coil 40 and sends back a feedback signal.
  • the vehicle management module 60 switches the vehicle end coil 40 to operate in a pole charging mode or a poleless charging mode according to the feedback signal.
  • the power supply end coil 20 is compatible with the vehicle end coil 40, and the charging is directly performed; if the vehicle end is an infinite coil, the power supply management module 30 issues a control signal to control the switching device.
  • the power supply side coil 20 is switched to the non-polarity, enters the electrodeless charging mode, and is being charged.
  • the power management module 30 sends a coil type signal to the vehicle management module 60.
  • the connection mode of the power supply end coil 20 defaults to the pole charging mode, and the power management module 30 sends the coil type indicated as having a pole coil. signal.
  • the vehicle management module 60 switches the power supply end coil 20 to operate in a pole charging mode or a poleless charging mode according to the coil type signal.
  • the power supply end coil 20 is compatible with the vehicle end coil 40, and is directly charged; if the vehicle end is an infinite coil, the vehicle management module 60 issues a control signal to control the switching device.
  • the vehicle end coil 40 is switched to the non-polarity, enters the electrodeless charging mode, and is being charged.
  • the present invention provides a wireless charging control method for use in a wireless charging system as described above, in which both the power supply end coil 20 and the vehicle end coil 40 employ the wireless charging power coil, the method comprising the steps of:
  • the power management module 30 sends a coil type signal to the vehicle management module 60.
  • the coil type signal is a specific code, indicating that the coil of the power supply end is a dual mode coil, that is, capable of charging in a pole mode and stepless charging. Switch between modes.
  • the vehicle management module 60 sends back a feedback signal according to the coil type signal, and the power management module 30 controls the wireless charging system to perform charging in a charging mode in the pole charging mode/polarization charging mode according to the feedback signal, The charging efficiency value within the preset time;
  • the power management module 30 controls to switch into another charging mode in the pole charging mode/polarization charging mode, and the power management module 30 calculates the charging efficiency value for the time period, and compares the two charging efficiency values;
  • the power management module 30 controls the power supply end coil 20 and the vehicle end coil 40 to operate in a charging mode corresponding to a larger charging efficiency value.
  • the higher efficiency mode is selected for charging, and the charging efficiency is further optimized.

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种无线充电功率线圈、无线充电系统及无线充电控制方法,其中该无线充电功率线圈,包括第一线圈(1)、第二线圈(2)、及切换装置;第一线圈(1)与第二线圈(2)连接;其中,第一线圈(1)中电流转动方向与第二线圈(2)中电流转动方向相同为有极充电模式;第一线圈(1)中电流转动方向与第二线圈(2)中电流转动方向相反为无极充电模式;切换装置,切换该无线充电功率线圈工作于有极充电模式或无极充电模式,降低了成本、提高了充电效率。

Description

无线充电功率线圈、无线充电系统及无线充电控制方法
技术领域
本发明涉及无线充电技术领域,特别涉及一种无线充电功率线圈、无线充电系统及无线充电控制方法。
背景技术
目前汽车充电主要是采用有线充电和无线充电两种方式。无线充电省去了电动汽车与充电电源的频繁接触、减少人工操作环节,简化了充电步骤和降低了充电成本,因而得到更广泛的应用。
无线充电系统包括供电端和车载端,其中供电端设有供电端线圈,车载端设有车辆端线圈。电源输出电能在供电端管理系统的控制下,经电源变换装置进行整流、变压、调制后经供电端线圈发射,在车载端管理系统控制下,车辆端线圈接收无线的电磁能量,经整流、滤波处理后给车载电池充电。
现有的供电端线圈或车辆端线圈通常有两种类型,即有极性线圈(如DD型线圈)和无极性线圈。当供电端线圈和车辆端线圈类型不一致时,会导致汽车无法正常充电。针对这一问题,现有技术通常是原有两个线圈基础上多增加一个线圈,即采用第三线圈来切换供电端线圈的极性,以使供电端线圈和车辆端线圈匹配。
然而,这种切换方法充电效率较低,需额外增加供电端线圈耗铜量,在地球矿产资源日益枯竭的状况下,这导致了资源的浪费,同时也增加了成本。
发明内容
本发明的主要目的是提供一种无线充电功率线圈,旨在提高充电效率、降低成本。
为实现上述目的,本发明提出了一种无线充电功率线圈,包括第一线圈、第二线圈、及切换装置;所述第一线圈与所述第二线圈连接;其中,
所述第一线圈中电流转动方向与所述第二线圈中电流转动方向相同为有极充电模式;所述第一线圈中电流转动方向与所述第二线圈中电流转动方向相反为无极充电模式;
所述切换装置,切换该无线充电功率线圈工作于有极充电模式或无极充电模式。
优选地,所述第一线圈包括第一端和第二端,其中第一端位于第一线圈外侧,第二端位于第一线圈的内侧;所述第二线圈包括第一端和第二端,其中第一端位于第二线圈外侧,第二端位于第二线圈的内侧;其中第一线圈的第一端为电流输入端。
优选地,所述无线充电功率线圈还包括导磁件,所述导磁件同时设于所述第一线圈与所述第二线圈上。
优选地,所述第一线圈与所述第二线圈对称且间隔设置,所述第一线圈与所述第二线圈位于同一平面内;
或所述第一线圈围成的区域与所述第二线圈围成的区域部分重叠,且所述第一线圈所在平面与所述第二线圈所在平面互相平行;
或所述第一线圈的部分线圈与所述第二线圈部分线圈相互重合。
优选地, 在所述无线充电功率线圈为供电端线圈且车辆端线圈为有极线圈时,所述切换装置控制第一线圈的第二端与所述第二线圈的第一端之间导通,使得所述第一线圈中的电流转动方向与所述第二线圈中电流转动方向相反。
优选地,在所述无线充电功率线圈为供电端线圈且车辆端线圈为无极线圈时,所述切换装置控制第一线圈的第二端与所述第二线圈的第二端之间导通,使得所述第一线圈中的电流转动方向与所述第二线圈中电流转动方向相同。
优选地,在所述无线充电功率线圈为车辆端线圈且供电端线圈为有极线圈时,所述切换装置控制第一线圈的第二端与所述第二线圈的第一端之间导通,使得所述第一线圈中的电流转动方向与所述第二线圈中电流转动方向相反。
优选地,在所述无线充电功率线圈为车辆端线圈且供电端线圈为无极线圈时,所述切换装置控制第一线圈的第二端与所述第二线圈的第二端之间导通,使得所述第一线圈中的电流转动方向与所述第二线圈中电流转动方向相同。
本发明一种无线充电系统,所述无线充电系统包括供电端电源变换模块、供电端线圈、供电管理模块、车辆端线圈、车辆端电源变换模块、及车辆管理模块;所述供电端线圈或/和所述车辆端线圈采用如权利要求1任意一项所述无线充电功率线圈;其中,
所述供电端电源变换模块的两输入端接入电源,所述供电端电源变换模块的两输出端分别与供电端线圈的两端连接;所述车辆端线圈的两端与车端端电源变换模块的两输入端连接,所述车辆端电源变换模块的两输出端与车载电池连接;
在进行充电时,所述供电管理模块向所述车辆管理模块发出线圈类型信号,车辆管理模块接收该线圈类型信号,并根据线圈类型信号,控制切换装置切换车辆端线圈工作于有极充电模式或无极充电模式。
优选地,所述无线充电功率线圈还包括导磁件,所述导磁件同时设于所述第一线圈与所述第二线圈上。
优选地,所述第一线圈与所述第二线圈对称且间隔设置,所述第一线圈与所述第二线圈位于同一平面内;
或所述第一线圈围成的区域与所述第二线圈围成的区域部分重叠,且所述第一线圈所在平面与所述第二线圈所在平面互相平行;
或所述第一线圈的部分线圈与所述第二线圈部分线圈相互重合。
优选地,在所述无线充电功率线圈为供电端线圈且车辆端线圈为有极线圈时,所述切换装置控制第一线圈的第二端与所述第二线圈的第一端之间导通,使得所述第一线圈中的电流方向与所述第二线圈中电流方向相同。
优选地,在所述无线充电功率线圈为供电端线圈且车辆端线圈为无极线圈时,所述切换装置控制所述第一线圈的第二端与所述第二线圈的第二端之间导通,使得所述第一线圈中的电流方向与所述第二线圈中电流方向相反。
优选地,在所述无线充电功率线圈为车辆端线圈且供电端线圈为有极线圈时,所述切换装置控制所述第一线圈的第二端与所述第二线圈的第一端之间导通,使得所述第一线圈中的电流方向与所述第二线圈中电流方向相同。
优选地,在所述无线充电功率线圈为车辆端线圈且供电端线圈为无极线圈时,所述切换装置控制所述第一线圈的第二端与所述第二线圈的第二端之间导通,使得所述第一线圈中的电流方向与所述第二线圈中电流方向相反。
本发明提出一种无线充电控制方法,应用于如上所述的无线充电系统,供电端线圈采用所述无线充电功率线圈,该方法包括以下步骤:
供电管理模块向所述车辆管理模块发出线圈类型信号;
车辆管理模块根据所述线圈类型信号切换供电端线圈工作于有极充电模式或无极充电模式。
本发明技术方案通过设置第一线圈、第二线圈、及切换装置形成了一种无线充电功率线圈。所述第一线圈与所述第二线圈连接;其中,通过切换装置改变第一线圈与第二线圈的电气连接关系,使得该无线充电功率线圈能够工作于有极充电模式及无极充电模式;在实际充电时,无论另一侧的功率线圈为有极性的线圈还是无极性的线圈,都可以通过切换装置进行切换无线充电功率线圈的极性,使之匹配,提高了充电效率。本发明技术方案只需调整第一线圈与第二线圈之间的电气连接即可实现供电端线圈和车辆端线圈的匹配,方案简单、效率高且降低了成本。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1为本发明无线充电功率线圈一实施例的结构示意图;
图2为图1所示无线充电功率线圈另一视角的结构示意图;
图3为本发明第一线圈和第二线圈位置关系第一实施例的示意图;
图4为本发明第一线圈和第二线圈位置关系第二实施例的示意图;
图5为本发明第一线圈和第二线圈位置关系第三实施例的示意图;
图6为本发明有极充电模式下第一线圈和第二线圈连接示意图;
图7为本发明有极充电模式下第一线圈和第二线圈中电流流向示意图;
图8为本发明有极充电模式下第一线圈和第二线圈产生磁场分布示意图;
图9为本发明无极充电模式下第一线圈和第二线圈连接示意图;
图10为本发明无极充电模式下第一线圈和第二线圈中电流流向示意图;
图11为本发明无极充电模式下第一线圈和第二线圈产生磁场分布示意图;
图12为本发明无线充电系统一实施例的功能模块图;
图13为本发明无线充电控制方法的第一实施例的流程示意图;
图14为本发明无线充电控制方法的第二实施例的流程示意图;
图15为本发明无线充电控制方法的第三实施例的流程示意图。
附图标号说明:
标号 名称 标号 名称
1 第一线圈 30 供电管理模块
2 第二线圈 40 车辆端线圈
3 导磁件 50 车辆端电源管理模块
10 供电端电源变换模块 60 车辆管理模块
20 供电端线圈
本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明,本发明实施例中所有方向性指示(诸如上、下、左、右、前、后……)仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
另外,在本发明中涉及“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本发明要求的保护范围之内。
本发明提出一种无线充电功率线圈。
参照图1、图2、图6及图8,在本发明实施例中,该无线充电功率线圈,包括第一线圈1、第二线圈2、及切换装置(未示出);所述第一线圈1与所述第二线圈2连接。
所述第一线圈1中电流转动方向与所述第二线圈2中电流转动方向相同为有极充电模式;所述第一线圈1中电流转动方向与所述第二线圈2中电流转动方向相反为无极充电模式。
需要说明的是,该无线充电功率线圈可以被用于车辆端的功率线圈,也可以被用于供电端的功率线圈。本实施例中,无线充电功率线圈包括两个形状相似并且独立的长方形线圈。长方形线圈的长宽比例接近2:1。本实施例中第一线圈1和第二线圈2均采用利兹线绕制而成。
本实施例中,第一线圈1的第一端和第二线圈2中的某一端作为该无线充电功率线圈的两端接入电源。在实际切换时,改变了第一线圈1和第二线圈2的电气连接。因此第一线圈1和第二线圈2中的流动的电流方向改变,第一线圈1和第二线圈2的建立的电场方向随之改变,基于该电场产生的磁场也发生改变,最终实现了无线充电功率线圈的极性的切换。
本发明技术方案通过设置第一线圈1、第二线圈2、及切换装置形成了一种无线充电功率线圈。所述第一线圈1与所述第二线圈2连接;其中,通过切换装置改变第一线圈1与第二线圈2的电气连接关系,使得该无线充电功率线圈能够工作于有极充电模式及无极充电模式;在实际充电时,无论另一侧的功率线圈为有极性的线圈还是无极性的线圈,都可以通过切换装置进行切换无线充电功率线圈的极性,使之匹配,提高了充电效率。本发明技术方案只需调整第一线圈与第二线圈之间的电气连接即可实现供电端线圈和车辆端线圈的匹配,方案简单、效率高且降低了成本。
所述第一线圈1包括第一端A和第二端B,其中第一端A位于第一线圈外侧,第二端B位于第一线圈的内侧;所述第二线圈2包括第一端C和第二端D,其中第一端C位于第二线圈2外侧,第二端D位于第二线圈2的内侧。所述第一线圈1的第二端B与所述第二线圈2的第一端C的连接为有极充电模式。
进一步地,所述无线充电功率线圈还包括导磁件3,所述导磁件设于第一线圈1与所述第二线圈2的同一侧。该无线充电功率线圈可以设置多个导磁件3,多个导磁件3并排设置,均同时位于第一线圈1与所述第二线圈2的表面。该导磁件3用于增强磁场,本实施例采用铁素体磁心。
第一线圈1和第二线圈2的根据位置关系的不同,包括以下:
参照图3,实施例一,所述第一线圈1与所述第二线圈2对称且间隔设置,且所述第一线圈1与所述第二线圈2位于同一平面内。此时第一线圈1和第二线圈2没有直接接触,第一线圈1和第二线圈2间隔设置。
参照图4,实施例二,所述第一线圈1围成的区域与所述第二线圈2围成的区域部分重叠,且所述第一线圈1所在平面与所述第二线圈2所在平面互相平行。此时第一线圈1部分贴合于第二线圈2。
参照图5,实施例三,所述第一线圈1的部分线圈与所述第二线圈2部分线圈相互重合。本实施例中,第一线圈1和第二线圈2近似为长方形,第一线圈1的一长边和第二线圈2的一长边重合,即第一线圈1和第二线圈2共用中间的一边。此时第一线圈1和第二线圈2围成近似正方形。
进一步地,参照图6、图7及图8,在所述无线充电功率线圈为供电端线圈且车辆端线圈为有极线圈时,所述切换装置控制第一线圈1的第二端与所述第二线圈2的第一端之间导通,第一线圈1和第二线圈2之间的连接为A-B-D-C依连接,此时所述无线充电功率线工作于有极充电模式,使得所述第一线圈1中的电流转动方向与所述第二线圈2中电流转动方向相同。
如图7中所示,箭头代表电流的流向。两个线圈相邻边际的电流走向相相同,因此产生的磁场基本抵消。这样两个线圈产生的磁场总和接近于一个正方形线圈单独产生的磁场。所述无线充电功率线圈与车辆端的无极线圈相兼容,磁场在两个线圈之间只有单个走向。(另一个走向在线圈外的空气中),避免了采样DD型线圈与无极线圈中心对准时导致的磁场抵消和低效率传输。
参照图9、图10及图11,在所述无线充电功率线圈为供电端线圈且车辆端线圈为无极线圈时,所述切换装置控制第一线圈1的第二端与所述第二线圈2的第二端之间导通,第一线圈1和第二线圈2之间的连接为A-B-C-D依连接此时所述无线充电功率线工作于无极充电模式,使得所述第一线圈1中的电流转动方向与所述第二线圈2中电流转动方向相同。可见在这种连接方式下,此无线充电功率线圈与车辆端的无极线圈相兼容,磁场成闭路。闭路的磁场既增加了充电效率,也减小了向外发出的电磁波。
类似的,继续参照图6、图7及图8,在所述无线充电功率线圈为车辆端线圈且供电端线圈为有极线圈时,所述切换装置控制第一线圈1的第二端与所述第二线圈2的第一端之间导通,此时所述无线充电功率线工作于有极充电模式,使得所述第一线圈1中的电流转动方向与所述第二线圈2中电流转动方向相反。
类似的,参照图9、图10及图11,在所述无线充电功率线圈为功率接收侧设备且功率发射侧线圈为无极线圈时,所述切换装置控制第一线圈1的第二端与所述第二线圈2的第二端之间导通,此时所述无线充电功率线工作于无极充电模式,使得所述第一线圈1中的电流方向与所述第二线圈2中电流方向相同。
参照图12,根据无线充电功率线圈设置的位置,无线充电系统包括如下两个实施例,
实施例一,本发明提出了一种无线充电系统,所述无线充电系统包括供电端电源变换模块10、供电端线圈20、供电管理模块30、车辆端线圈40、车辆端电源变换模块50、及车辆管理模块60;所述供电端线圈20或/和所述车辆端线圈40采用如上所述无线充电功率线圈;其中,
所述供电端电源变换模块10的两输入端接入电源VS,所述供电端电源变换模块10的两输出端分别与供电端线圈20的两端连接;所述车辆端线圈40的两端与车辆端电源变换模块50的两输入端连接,所述车辆端电源变换模块50的两输出端与车载电池连接;
在进行充电时,所述供电管理模块30向所述车辆管理模块60发出线圈类型信号,车辆管理模块60接收该线圈类型信号,并根据线圈类型信号,控制切换装置切换车辆端线圈40工作于有极充电模式或无极充电模式。
实施例二本发明还提出了另一种无线充电系统,所述无线充电系统包括供电端电源变换模块10、供电端线圈20、供电管理模块30、车辆端线圈40、车辆端电源变换模块50、及车辆管理模块60;所述供电端线圈20或/和所述车辆端线圈40采用如上所述无线充电功率线圈;其中,
所述供电端电源变换模块10的两输入端接入电源,所述供电端电源变换模块10的两输出端分别与供电端线圈20的两端连接;所述车辆端线圈40的两端与车端端电源变换模块50的两输入端连接,所述车辆端电源变换模块50的两输出端与车载电池连接;
在进行充电时,所述车辆管理模块60向所述供电管理模块30发出线圈类型信号,供电管理模块30接收该线圈类型信号,并根据线圈类型信号,控制切换装置切换供电端线圈20工作于有极充电模式或无极充电模式。
在实际应用充电过程中,电动汽车上的车辆端感应装置检测到供电端,车辆端与供电端进行握手协议,实现车辆端与供电端的软件和硬件的兼容性检测,车辆控制供电端线圈20和供电端线圈20对准,在进行线圈配对,线圈配对采用如下控制方法进行。
参照图13,本发明提出一种无线充电控制方法,应用于如上所述的无线充电系统,车辆端线圈40采用所述无线充电功率线圈,该方法包括以下步骤:
S1、供电管理模块30向车辆管理模块60发出线圈类型信号;本实施例中,供电端线圈20的连接方式默认为有极充电模式,供电管理模块30发出表示为有极线圈的线圈类型信号。
S2、供电管理模块30根据所述线圈类型信号判断供电端线圈20与车辆端线圈40是否兼容并发回反馈信号;
S3、车辆管理模块60根据所述反馈信号切换车辆端线圈40工作于有极充电模式或无极充电模式。这里,若车辆端线圈40极性也为有极,则供电端线圈20与车辆端线圈40兼容,则直接进行充电;若车辆端为无极线圈,则供电管理模块30发出控制信号,控制切换装置将供电端线圈20切换至无极性,进入无极充电模式,在进行充电。
参照图14,本发明还提出一种无线充电控制方法,应用于如上所述的无线充电系统,供电端线圈20采用所述无线充电功率线圈,该方法包括以下步骤:
S10、供电管理模块30向所述车辆管理模块60发出线圈类型信号;本实施例中,供电端线圈20的连接方式默认为有极充电模式,供电管理模块30发出表示为有极线圈的线圈类型信号。
S12、车辆管理模块60根据所述线圈类型信号切换供电端线圈20工作于有极充电模式或无极充电模式。这里,若供电端线圈20极性也为有极,则供电端线圈20与车辆端线圈40兼容,则直接进行充电;若车辆端为无极线圈,则车辆管理模块60发出控制信号,控制切换装置将车辆端线圈40切换至无极性,进入无极充电模式,在进行充电。
参照图15,本发明提出一种无线充电控制方法,应用于如上所述的无线充电系统,供电端线圈20和车辆端线圈40都采用所述无线充电功率线圈,该方法包括以下步骤:
S100、供电管理模块30向所述车辆管理模块60发出线圈类型信号;本实施例中,线圈类型信号为特定的代码,表示供电端的线圈为双模式线圈,即能够在有极充电模式和无极充电模式之间进行切换。
S200、车辆管理模块60根据该线圈类型信号发回反馈信号,供电管理模块30根据所述反馈信号,控制无线充电系统进入有极充电模式/无极充电模式中的一充电模式下进行充电,计该预设时间内的充电效率值;
S300、供电管理模块30控制切换进入有极充电模式/无极充电模式中的另一充电模式,供电管理模块30计算此时段充电效率值,并比较两充电效率值大小;
S400、供电管理模块30控制供电端线圈20和车辆端线圈40工作于充电效率值较大者对应的充电模式。如此,通过比较两中模式下的效率,选择效率较高的模式进行充电,进一步地优化了充电效率。
以上所述仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是在本发明的发明构思下,利用本发明说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本发明的专利保护范围内。

Claims (16)

  1. 一种无线充电功率线圈,其特征在于,包括第一线圈、第二线圈、及切换装置;所述第一线圈与所述第二线圈连接;其中,
    所述第一线圈中电流转动方向与所述第二线圈中电流转动方向相同为有极充电模式;所述第一线圈中电流转动方向与所述第二线圈中电流转动方向相反为无极充电模式;
    所述切换装置,切换该无线充电功率线圈工作于有极充电模式或无极充电模式。
  2. 如权利要求1所述的无线充电功率线圈,其特征在于,所述第一线圈包括第一端和第二端,其中第一端位于第一线圈外侧,第二端位于第一线圈的内侧;所述第二线圈包括第一端和第二端,其中第一端位于第二线圈外侧,第二端位于第二线圈的内侧;其中第一线圈的第一端为电流输入端。
  3. 如权利要求1所述的无线充电功率线圈,其特征在于,所述无线充电功率线圈还包括导磁件,所述导磁件同时设于所述第一线圈与所述第二线圈上。
  4. 如权利要求2所述的无线充电功率线圈,其特征在于,所述第一线圈与所述第二线圈对称且间隔设置,所述第一线圈与所述第二线圈位于同一平面内;
    或所述第一线圈围成的区域与所述第二线圈围成的区域部分重叠,且所述第一线圈所在平面与所述第二线圈所在平面互相平行;
    或所述第一线圈的部分线圈与所述第二线圈部分线圈相互重合。
  5. 如权利要求3所述的无线充电功率线圈,其特征在于, 在所述无线充电功率线圈为供电端线圈且车辆端线圈为有极线圈时,所述切换装置控制第一线圈的第二端与所述第二线圈的第一端之间导通,使得所述第一线圈中的电流转动方向与所述第二线圈中电流转动方向相反。
  6. 如权利要求3所述的无线充电功率线圈,其特征在于,在所述无线充电功率线圈为供电端线圈且车辆端线圈为无极线圈时,所述切换装置控制第一线圈的第二端与所述第二线圈的第二端之间导通,使得所述第一线圈中的电流转动方向与所述第二线圈中电流转动方向相同。
  7. 如权利要求3所述的无线充电功率线圈,其特征在于,在所述无线充电功率线圈为车辆端线圈且供电端线圈为有极线圈时,所述切换装置控制第一线圈的第二端与所述第二线圈的第一端之间导通,使得所述第一线圈中的电流转动方向与所述第二线圈中电流转动方向相反。
  8. 如权利要求3所述的无线充电功率线圈,其特征在于,在所述无线充电功率线圈为车辆端线圈且供电端线圈为无极线圈时,所述切换装置控制第一线圈的第二端与所述第二线圈的第二端之间导通,使得所述第一线圈中的电流转动方向与所述第二线圈中电流转动方向相同。
  9. 一种无线充电系统,其特征在于,所述无线充电系统包括供电端电源变换模块、供电端线圈、供电管理模块、车辆端线圈、车辆端电源变换模块、及车辆管理模块;所述供电端线圈或/和所述车辆端线圈采用如权利要求1所述无线充电功率线圈;其中,
    所述供电端电源变换模块的两输入端接入电源,所述供电端电源变换模块的两输出端分别与供电端线圈的两端连接;所述车辆端线圈的两端与车端端电源变换模块的两输入端连接,所述车辆端电源变换模块的两输出端与车载电池连接;
    在进行充电时,所述供电管理模块向所述车辆管理模块发出线圈类型信号,车辆管理模块接收该线圈类型信号,并根据线圈类型信号,控制切换装置切换车辆端线圈工作于有极充电模式或无极充电模式。
  10. 如权利要求9所述的无线充电系统,其特征在于,所述无线充电功率线圈还包括导磁件,所述导磁件同时设于所述第一线圈与所述第二线圈上。
  11. 如权利要求9所述的无线充电系统,其特征在于,所述第一线圈与所述第二线圈对称且间隔设置,所述第一线圈与所述第二线圈位于同一平面内;
    或所述第一线圈围成的区域与所述第二线圈围成的区域部分重叠,且所述第一线圈所在平面与所述第二线圈所在平面互相平行;
    或所述第一线圈的部分线圈与所述第二线圈部分线圈相互重合。
  12. 如权利要求11所述的无线充电功率线圈,其特征在于,在所述无线充电功率线圈为供电端线圈且车辆端线圈为有极线圈时,所述切换装置控制第一线圈的第二端与所述第二线圈的第一端之间导通,使得所述第一线圈中的电流方向与所述第二线圈中电流方向相同。
  13. 如权利要求11所述的无线充电功率线圈,其特征在于,在所述无线充电功率线圈为供电端线圈且车辆端线圈为无极线圈时,所述切换装置控制所述第一线圈的第二端与所述第二线圈的第二端之间导通,使得所述第一线圈中的电流方向与所述第二线圈中电流方向相反。
  14. 如权利要求11所述的无线充电功率线圈,其特征在于,在所述无线充电功率线圈为车辆端线圈且供电端线圈为有极线圈时,所述切换装置控制所述第一线圈的第二端与所述第二线圈的第一端之间导通,使得所述第一线圈中的电流方向与所述第二线圈中电流方向相同。
  15. 如权利要求11所述的无线充电功率线圈,其特征在于,在所述无线充电功率线圈为车辆端线圈且供电端线圈为无极线圈时,所述切换装置控制所述第一线圈的第二端与所述第二线圈的第二端之间导通,使得所述第一线圈中的电流方向与所述第二线圈中电流方向相反。
  16. 一种无线充电控制方法,应用于如权利要求9所述的无线充电系统,其特征在于,供电端线圈采用所述无线充电功率线圈,该方法包括以下步骤:
    供电管理模块向所述车辆管理模块发出线圈类型信号;
    车辆管理模块根据所述线圈类型信号切换供电端线圈工作于有极充电模式或无极充电模式。
PCT/CN2016/103438 2016-10-26 2016-10-26 无线充电功率线圈、无线充电系统及无线充电控制方法 WO2018076213A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/103438 WO2018076213A1 (zh) 2016-10-26 2016-10-26 无线充电功率线圈、无线充电系统及无线充电控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/103438 WO2018076213A1 (zh) 2016-10-26 2016-10-26 无线充电功率线圈、无线充电系统及无线充电控制方法

Publications (1)

Publication Number Publication Date
WO2018076213A1 true WO2018076213A1 (zh) 2018-05-03

Family

ID=62023026

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/103438 WO2018076213A1 (zh) 2016-10-26 2016-10-26 无线充电功率线圈、无线充电系统及无线充电控制方法

Country Status (1)

Country Link
WO (1) WO2018076213A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111591153A (zh) * 2020-04-30 2020-08-28 南京理工大学 一种用于停车场的自适应配置无线充电系统及规划方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102957214A (zh) * 2011-08-18 2013-03-06 富达通科技股份有限公司 电子装置的无线充电线圈结构
CN104756357A (zh) * 2012-03-20 2015-07-01 奥克兰联合服务有限公司 无线功率传输系统中的绕组布置
CN105449873A (zh) * 2015-12-28 2016-03-30 上海交通大学 高兼容性且可灵活配置的无线充电线圈装置
CN105916724A (zh) * 2013-12-13 2016-08-31 丰田自动车株式会社 电力发送装置以及电力传输系统
CN106564395A (zh) * 2016-10-26 2017-04-19 深圳市沃尔核材股份有限公司 无线充电功率线圈、无线充电系统及无线充电控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102957214A (zh) * 2011-08-18 2013-03-06 富达通科技股份有限公司 电子装置的无线充电线圈结构
CN104756357A (zh) * 2012-03-20 2015-07-01 奥克兰联合服务有限公司 无线功率传输系统中的绕组布置
CN105916724A (zh) * 2013-12-13 2016-08-31 丰田自动车株式会社 电力发送装置以及电力传输系统
CN105449873A (zh) * 2015-12-28 2016-03-30 上海交通大学 高兼容性且可灵活配置的无线充电线圈装置
CN106564395A (zh) * 2016-10-26 2017-04-19 深圳市沃尔核材股份有限公司 无线充电功率线圈、无线充电系统及无线充电控制方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111591153A (zh) * 2020-04-30 2020-08-28 南京理工大学 一种用于停车场的自适应配置无线充电系统及规划方法

Similar Documents

Publication Publication Date Title
WO2017086714A1 (ko) 무선 충전기용 공진 컨버터 및 그 구현방법
JP3120030B2 (ja) カラーcrt用消磁システム、ディスプレィ・モニタ・システム、及びcrtの消磁方法
WO2021040184A1 (ko) 코일 구동 장치
WO2018076213A1 (zh) 无线充电功率线圈、无线充电系统及无线充电控制方法
WO2019132373A1 (ko) 전기차용 파워 릴레이 어셈블리 및 그 구동 방법
WO2013187573A1 (ko) 대용량 부하에 대한 폐회로 전력선 통신 시스템
WO2018152901A1 (zh) 一种电源电路及液晶显示器
WO2018044078A1 (ko) Dc-dc 전압 컨버터를 벅 동작 모드에서 안전 동작 모드로 전환하는 제어 시스템
WO2020013551A1 (en) Electronic apparatus
US20050152162A1 (en) High temperature power supply
WO2018149034A1 (zh) 一种压缩机保护电路和空调器
WO2015060606A1 (ko) 무선 전력 전송 시스템에서의 고립 공진기를 이용한 임피던스 매칭 방법 및 장치
JPS58130779A (ja) 対称制御を備えたインバ−タ回路
US20050225920A1 (en) Electrical circuit comprising an electromagnetic relay and a switching arrangement which is mounted in parallel to a contact of the magnetic relay
WO2010008188A2 (ko) 다중 전원 혼합형 증폭기
WO2017015986A1 (zh) 一种像素单元
WO2017020177A1 (zh) 电机控制电路、方法、电机系统、无人机及其控制方法
WO2018170717A1 (zh) 可调输出电压的供电电路及电连接器
WO2023003299A1 (ko) 영구자석을 이용한 전기 에너지 변환 장치
WO2018016832A1 (ko) 전원공급장치 및 이를 포함하는 레이저 장치
WO2019199020A1 (ko) 무선 전력 송수신 시스템 및 그 시스템을 포함하는 디스플레이 장치
WO2017204426A1 (ko) 능동 클램프 풀브릿지 컨버터 및 그 구동방법
TW202247577A (zh) 同步整流控制器
WO2021096327A1 (ko) 무선 전력 수신기 및 무선 전력 수신기의 제어방법
WO2022186422A1 (ko) 유도 가열 방식의 쿡탑

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16919790

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16919790

Country of ref document: EP

Kind code of ref document: A1